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ABSTRACT 

A floating load buck DC-DC switching converter was analyzed, simulated, 

designed and prototyped. The floating load buck converter is first compared to the 

conventional buck converter. It was found that both the floating load buck converter and 

conventional buck converter exhibit similar conversion characteristics despite the 

differences in the placement of their output inductors. A floating load buck converter was 

designed to be used as a high-voltage off-line light-emitting diodes (LEDs) driver using a 

Texas Instruments’ TPS92001 controller. Finally, the characteristics of this floating load 

buck converter LED driver were experimentally examined. 
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CHAPTER 1 

Introduction 

1.1 Background 

Switching converters are widely employed in the power electronics industry. 

They have been commonly used for DC-DC power conversion as shown in Figure1.1. 

High switching frequencies result in high switching losses for these switching converters. 

As such, much research is needed to improve efficiency, decrease system dimension, and 

lower system costs. 

The conventional buck converter is one of the basic topologies in DC-DC 

switching converters. It involves the basic electronic components, such as MOSFET, 

resistors, inductors, capacitors and several diodes, and it does not require a transformer; 

so it is relatively simple to design. Normally, a large output RC filter will connects to the 

output load to achieve small ripple output current. 

The floating load buck converter is called floating load due to the fact that it has 

both terminals of the output load floating. These terminals are not referenced to either the 

power or ground. It should be noted that the conventional buck converter drives a 

grounded load. The inductor in the floating load buck converter is in different position, 

and the output load is floating.  

The reason that we would like to study the floating load buck converter is because 

it has some significant advantages. First of all, considering the cost for the LED drivers, 

this is one of the cheapest choices. Second, it is ideal for high voltage application since 

the drive voltage does not depend on the supply voltage. Third, the load from the input 
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requires no isolation; as such the design does not need a transformer. Fourth, the output 

capacitance is small, enabling the use of compact, high temperature components. Last, it 

can be used as an ideal high brightness LED driver when a DC supply voltage greater 

than the maximum voltage of the HB LED string is available [1]. 

1.2 Organization of this thesis 

This thesis is organized into four chapters.  Chapter 2 provides the background for 

this work.  It discusses the basic theory of the floating load buck converter topology. 

Chapter 3 discusses the two different simulation tools used in this thesis, PSpice and 

Simulink. Chapter 3 presents and discusses the simulation results between the floating 

load buck converter and the conventional buck converter. Chapter 4 provides the analysis 

of the TPS92001, bench testing of a floating load buck converter, using the TPS92001 

controller, and compares the captured waveform results to the simulation results. Chapter 

5 concludes the thesis.  

 

 

Figure 1.1. DC-DC switching power supply system [12]. 
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CHAPTER 2  

Floating Load Buck Converter 

2.1 Floating load buck converter 

The floating load buck converter using a power MOSFET is shown in Figure 2.1. 

In a floating load buck converter, the average output voltage Vo (t) is lower than its input 

voltage Vs. Similar to the conventional buck converter, the operation of the floating load 

buck converter can be divided into two modes, depending on the switching actions. 

According to the continuity of the current flowing through the output inductor, the 

floating load buck converter can be operating either in the continuous mode or the 

discontinuous mode similar to the conventional buck converter [2].  

Continuous Mode: 

Mode1 (0< t ≤ ton), Qs switches on 

 

Figure 2.1. Circuit schematic of a floating load buck converter. 
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Figure 2.2. Mode 1 equivalent circuit for the floating load buck converter (0< t ≤ ton). 

During mode 1, at the beginning of the switching cycle (at t=0), the switching 

transistor Qs is switched on and the free -wheeling diode Dfw is switched off. The 

equivalent circuit during mode 1 is shown in Figure 2.2. Since the input voltage Vs is 

greater than the average output voltage Va, the inductor current increases due to the 

applied input voltage. As such the inductor is being charged and the voltage across the 

inductor L is: 

VL(t) = L           (2-1) 

For a typical large inductance value, the inductor current iL(t) increases linearly 

because of the inductance value. The increase in inductor current is given by 

             (2-2)  

The voltage across the inductor is VL= Vs – Va,  

             (2-3) 
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Figure 2.3. Mode 2 equivalent circuit for the floating load buck converter (ton< t ≤T). 

or     Vs – Va = L = L          (2-4) 

The duration for mode 1 is   ton =           (2-5) 

Mode 2(ton< t ≤T), Qs switches off 

At t = ton, the transistor Qs switches off, the free-wheeling diode Dfw is switched 

on, and Mode 2 begins. The equivalent circuit for mode 2 is shown in Figure 2.3. 

As the current flowing through the inductor cannot be interrupted, its voltage 

polarity across the inductor immediately reverses to maintain the same current which had 

been flowing through just prior to switching off of the switching transistor Qs. Once the 

inductor voltage changes its polarity, the freewheeling diode Dfw conducts. The inductor 

is discharging, and the inductor current falls. The energy stored in the inductor is 

transferred to the capacitor and consumed by the load. For a large inductance value, 
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typically found in switching converters, the inductor current iL(t) will also falls linearly. 

The decrease in inductor current during Mode 2 for the duration, toff is given by 

   * toff                      (2-6) 

or        Va = L*                   (2-7) 

The duration for mode 1 is      toff =                     (2-8) 

For steady-state operation, the peak to peak current ripple in the inductor during the 

Mode 1 (0< t ≤ ton) and during the Mode 2 (ton< t ≤T) are the same, which is . 

From equations (2-3) and (2-6), we obtain 

   * toff                    (2-9) 

Define D as the duty cycle. Substituting  and   into 

equation (2-9) gives 

                (2-10) 

Or     Va = Vs*D                            (2-11)                                                              

From equation (2-11), the average output voltage Va of the floating load buck 

converter is the product of the duty cycle D and the input voltage Vs, since 

     T = =                   (2-12) 
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      =  +                 (2-13) 

Therefore, the current ripple in the inductor can be expressed as         

                    I =               (2-14) 

Discontinuous Mode: 

In certain cases, the energy stored in the inductor is completely expended just 

prior to the beginning of the next switching cycle as shown in Figure 2.4. At the point 

when iL = 0, the value of L is defined as the critical inductance Lc. The peak inductor 

current increasing about twice this value compared to continuous mode operation. Thus 

[1], 

             ILP = 2IL =               (2-15) 

 

Figure 2.4. Discontinuous mode inductor current waveform [1]. 
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Figure 2.5. Discontinuous mode 2 equivalent circuit for the floating load buck 
converter (ton< t ≤ t2). 

 

 

Figure 2.6. Discontinuous mode 2 equivalent circuit for the floating load buck 
converter (t2< t ≤ T). 

 
The equivalent circuits for the floating load buck converter operating under 

discontinuous mode are shown in Figures 2.5 and 2.6. 

2.2 State-Space Averaged Model for an Ideal Floating Load Buck Converter 

In a control system, the state space model can be used to represents a physical 

system by a set of first-order differential or difference equations. It consist all the 

possible internal states of the dynamic linear system [3]. In our work, state-space 
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averaging approximation technique is chosen to approximate the floating load buck 

switching converter as a continuous linear system.  

State variables for this floating load buck converter are chosen as the inductor 

current, x1, and the capacitor voltage, x2 as shown in Figure 2.7. With the assumption of 

ideal switching devices, two switched models are shown in Figures 2.8 and 2.9. 

 

Figure 2.7. State-space average model circuit schematic of an ideal floating load 
buck converter. 

 

 

Figure 2.8. Floating load buck converter switched model for dT interval. 
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Figure 2.9. Floating load buck converter switched model for (1-d)T interval. 

During the interval when the switching transistor is on, using Kirchoff’s voltage 

law in Figure 2.8, the state equation can be defined as   

                                              (2-16) 

Applying Kirchoff’s current law shown in Figure 2.8, the state equation is  

                    (2-17) 

Similarly, apply Kirchoff’s voltage law in Figure 2.9 for the interval when the 

switch is off, the state equation is  

                                            (2-18) 

Then, using Kirchoff’s current law in Figure 2.9, the state equation is  

                     (2-19) 

State equations for interval dT written in matrix form is,  

    = + [      (2-20) 
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State equations for interval (1-d)T written in matrix form is,  

    =  + [ ]     (2-21) 

The state-space averaged state coefficient matrix is  

       (2-22) 

With the state-space averaged source coefficient matrix is 

                       (2-23) 

The state-space averaged equations for the floating load buck converter in matrix 

form are 

      [ ]     (2-24) 

These state-space average equations are identical to those for the conventional 

buck converters [2]. 

2.3 Control Schemes 

 There are several control schemes that has been used for controlling switching 

mode converters. Current mode Pulse Width Modulation (PWM) control will be used in 

this thesis project as shown in Figure 2.10. The PWM signal modulates the switch on and 

off durations, so it controls the inductor energized time period within each switching 

cycle to maintain the desired voltage or current level at the output. Fixed-frequency 
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PWM control will be chosen instead of the variable frequency to avoid the unwanted 

electromagnetic interferences. In order to compare the output voltage error signal to the 

inductor current sensing signal, the inductor current sensing signal should be converted to 

a sense voltage signal based on the current mode control design [4]. In a current mode 

PWM controller, if the duty cycle exceeds 50%, slope compensation is usually required 

to avoid sub-harmonic oscillation. 

 

Figure 2.10. Fixed frequency PWM controller. 

2.4 Theoretical Calculation 

The objective of this section is to obtain component values for the simulation of 

the floating load buck converter. 

For an average output current,  

Ioa = 
2

400200 mAmA +
= 300mA           (2-25) 
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  The average load resistance is,  

         (2-26) 

And the minimum load resistance is: 

       (2-27) 

A load resistance value 2.8 will be chosen for simulation. 

The duty cycle of the floating load buck converter can be determined as: 

              (2-28) 

If the output inductor is chosen to be smaller than the critical inductance at the 

highest load current, the converter would operate in the discontinuous mode: 

         (2-29) 

An smaller inductance value of 87µH is chosen. With this inductor values, the 

ideal peak-to-peak ideal inductor ripple current is: 

         (2-30) 

The output capacitance should be calculated to satisfy the output voltage ripple 

requirement at full load: 

     5≤
∆

a

a

V

v
%                         (2-31) 
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                    (2-32) 

Then,           

C ≥
( )

05.0****8

1**
2

as

S

VLf

DDV −
=

( )
05.0*5.1*10*87*10000*8

1.01*1.0*15
62 −

−
=258.62µF     (2-33)  

In practice, a value of 470µF is chosen. The chosen output capacitance is usually 

much larger than the calculated value in order to reduce the equivalent series resistance 

(ESR) on the capacitors. It is a normal practice to further reduce the ripple voltage by 

paralleling several capacitors to reduce their ESRs. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



15 

 

CHAPTER 3 

Simulation of the Float Load Buck Converter 

3.1 Introduction to PSpice 

PSpice is a version of the standard circuit simulator Spice. It is widely used as a 

simulation tool to analyze analog circuit performance in both steady-state and transient 

operations. PSpice is licensed from the MicroSim Corporation, which is one of the many 

commercial derivatives of the University of California at Berkeley’s  SPICE (Simulation 

Program with Integrated Circuit Emphasis) simulation tool[5].   

To obtain a circuit file for a PSpice simulation, the first step is to draw the circuit 

diagram and then number all the nodes using the schematic capture feature in PSpice. An 

electrical circuit node consists of at least two connections.  Components models can be 

found in the PSpice libraries. Basically, the simulation can be performed using various 

levels of device and component modeling. Once the circuit is drawn, and checked for 

connections, user can create a simulation profile for the simulation. The user can place 

the probes to a specific point in the circuit to visualize the current and voltage waveforms.                         
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3.2 Open-loop Simulation 

3.2.1 Floating Load Buck Converter 

D1
D1N5401

+
-

+

-

S1

S

VON = 1.0V
VOFF = 0.0V

0

0

V1

TD = 0

TF = 1n
PW = 0.01m
PER = 0.1m

V1 = 0

TR = 1n

V2 = 10

0

L

87u

C4
470u

RL

0.005

Rc
0.001

Vs
15

R3
2.8

V+

V-

 

Figure 3.1. Open-loop simulation circuit for a floating load buck converter. 

The open-loop floating load buck converter was designed using PSpice with the 

values calculated from Chapter 2. Figure 3.1 shows the PSpice circuit schematic for the 

simulation of the open-loop floating load buck converter. Ideal switch S1 is used to 

represent the switching element. The voltage pulse generator V1 functions as a PWM 

signal generator, it generates the duty cycle, the rise, and fall time of the pulse for the 

converter. As shown, the switching frequency is 10 kHz. 

Figure 3.2 shows that the output voltage of the open-loop floating load buck 

converter to be at 1.5V. This is as predicted from the duty cycle. 

Figure 3.3 shows the current across the inductor and capacitor of simulated 

floating load buck converter. The discontinuity in the inductor current waveform 
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indicates that the open-loop floating load buck converter is operating in discontinuous 

mode. 

 
Figure 3.2. Output voltage of the open-loop floating load buck converter. 

 

 Figure 3.3. Inductor current and capacitor current waveforms. 

3.2.2 Comparison with Conventional Buck Converter 
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For comparison purpose, the same ideal switches, diodes, inductors, and 

capacitors for both floating load buck converter and buck converter were used for the 

simulation. 

D1
D1N5401

+
-

+

-

S1

S

VON = 1.0V
VOFF = 0.0V

0

0

V1

TD = 0

TF = 1n
PW = 0.01m
PER = 0.1m

V1 = 0

TR = 1n

V2 = 10

0

L

1500u

C4
4.4u

RL

0.05

Rc
0.01

Vs
15 R3

5
U1
TCLOSE = 20m

1
2

R4
10

I

V-

V+

 

 Figure 3.4. Open-loop simulation circuit schematic for floating load buck converter. 

+ -
+ - S1

S
VON = 1.0V
VOFF = 0.0V

D1
D1N5401

V1
15Vdc

0

RL

0.05

IN1

IN2
OUT

if  ( V(%IN1)<V(%IN2),10,0)<EXP2>

V2

1Vdc

V3

TD = 0

TF = 1n
PW = 0.01m
PER = 0.1m

V1 = 0

TR = 1n

V2 = 10

0

L1

1500u

1 2

C4
4.4u

Rc
0.01

R3
5

U1
TCLOSE = 20m

1
2

R4
10

I

V

 

Figure 3.5. Open-loop simulation circuit schematic for conventional buck converter. 
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Figures 3.4 and 3.5 show the circuit schematic for the floating load buck 

converter and the conventional buck converter, respectively. 

Figure 3.6 (a) shows the current transient response while Figure 3.6 (b) shows the 

voltage transient response from the floating load buck converter. 

 

Figure 3.6. Transient response due to a load change at time=20msec for floating load 
buck. 
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Figure 3.7. Transient response due to a load change at time=20msec for 
conventional buck. 

 
Figure 3.7 (a) shows the current transient response while Figure 3.7 (b) shows the 

voltage transient response for the conventional buck converter. Comparing the transient 

response from Figures 3.6 (a) and 3.6 (b) and Figures 3.7 (a) and 3.7 (b), we can see that 

they exhibit similar behaviors. 
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Figure 3.8. (a) The voltage across the ideal switch (b) The voltage across diode. 

 

Figure 3.9. (a) The voltage across the ideal switch (b) The voltage across diode. 

Figure 3.8 (a) shows the voltage across the ideal switch while Figure 3.8 (b) 

shows the voltage across the diodes from the floating load buck converter. Figure 3.9 (a) 

shows the voltage across the ideal switch while Figure 3.9 (b) shows the voltage across 

the diodes from the conventional buck converter. 
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Comparing the voltage across the ideal switch and diodes from Figures 3.8 (a) and 

3.8 (b) and Figures 3.9 (a) and 3.9 (b), we can observe that they have exactly the same 

amount of voltage drop on the ideal switches as well as on the diodes. 

3.3 Closed loop Simulation 

3.3.1 Floating Load Buck Converter  
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Figure 3.10. Closed loop simulation circuit for a floating load buck converter. 

Figure 3.10 shows the circuit schematic of the closed loop simulation of the floating 

load buck converter operating as a LED driver for seven white LEDs using a Texas 

Instrument’s TPS92001 controller. The TPS92001 is modeled as a UCCX809_1 

controller as shown in Appendix A. The details of this closed loop floating load buck 

converter are discussed in Chapter 4. 
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Equations (3-1), (3-2) and (3-3) were used to determine the PSpice diode model 

parameters values [6]. As shown in Fig 3.11, the LED diode model was built by changing 

an existing diode model. Table 3.1 describes all the PSpice parameters individually.  

 

Figure 3.11. The PSpice diode model [6]. 

 

Pspice Parameter Description Units 

Is Saturation current A 

N Emission coefficient  

RS Ohmic resistance Ω 

VJ Built-in potential V 

CJ0 Zero-bias depletion (junction) capacitance F 

M Grading coefficient  

TT Transit time s 

BV Breakdown voltage V 

IBV Reverse current at Breakdown voltage A 

 

Table 3.1. Parameters of the PSpcie Diode Model [7]. 

Ifwd = IS * (e
Vd/N*Vt  – 1)              (3-1) 
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     Vd = N * Vt * ln ( +1)                                           (3-2) 

Vfwd = Ifwd * Rs + N * Vt * ln ( +1)                                       (3-3) 

Figure 3.12 shows the output voltage of the simulated closed loop LED driver. For 

seven LED diodes, the output voltage is expected to be 19.8V. 

The current across the inductor is shown in Figure 3.13. As can be seen, the 

continuity of the current waveform indicates that the floating load buck converter is 

operating in its continuous mode. 

 

Figure 3.12. Output voltage of the simulated closed loop floating load buck 
converter. 
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Figure 3.13. Inductor current from the simulated closed loop floating load buck 
converter. 
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Figure 3.14. Simulation testing points shows on the floating load buck converter. 
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Figure 3.14 shows the circuit nodes for the captured waveforms shown in Figure 

3.15. 

As shown in Fig 3.14, seven diode models are used to modify LED load. A DC 

voltage of 85V was used as the input power supply. The Texas Instruments’ UCCX809_1 

PSpice model was chosen as the controller and driver for the isolated DC-to-DC fixed 

frequency floating load buck converter. A 12V DC power supply connected to pin6 of the 

controller is to provide the power to the chip. There is an internal oscillator inside the 

chip, which creates a sawtooth waveform for the PWM comparator by charging and 

discharging a timing capacitor. The R13, R15 and C12 set the switching frequency of the 

converter according to the equations (3-4) and (3-5) [8]. 

   fosc = (0.74*(C12+27pF)*(R13+R15))
-1         (3-4) 

   Dmax=0.74*R13*(C12+27pF)* fosc         (3-5) 

In this simulated closed loop floating load buck converter, the switching 

frequency is set to be about 92.53 kHz. As such, the switching time period will be around 

10.8µs. As shown in Figure 3.15, the switching time period is shown to be about 10.5µs, 

which is closed to the design value. The duty cycle is about 23.81%, which satisfies the 

converting ratio between the input and output voltages, which is  =  

for the converter. 

Figure 3.15(a) shows the gate drive signal output from the PWM controller. This 

signal is used to drive the MOSFET switch, turning it on and off. Figure 3.15(b) indicates 

the sensing signal across the current sensing resistor at the source circuitry of the power 

MOSFET using a resistor sensing technique. Figure 3.15(c) shows the sensing feedback 



27 

 

signal at the FB or CS pin of the TPS92001 controller. The signal is input to the 

controller through the FB or CS pin. Figure 3.15(d) shows the sawtooth signal of the 

TPS92001 PWM controller, which indicates the switching frequency for the switching 

converter. Figure 3.15(e) shows the voltage waveform from the free-wheeling diode. As 

can be seen, diode conducts when the switch turns off.  These waveforms will be 

compared to experimentally obtained waveforms in Chapter4. 
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Figure 3.15. Waveforms under the testing circuit for a floating load buck converter. 
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3.4 Introduction to MATLAB/SIMULINK 

Simulink, developed by the MathWorks, Inc., is a program that runs as a 

companion to MATLAB. It is a software package for modeling, simulating, and 

analyzing dynamical systems [9]. For modeling, Simulink provides a graphical user 

interface for building models as block diagrams. After defining a model, the simulation 

can be performed using a choice of many integration methods, either from the Simulink 

menus or by running commands in the MATLAB's command window. Using scope and 

other display blocks, Simulink shows the simulation results while the simulation is 

running [10]. 
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3.5 Open loop Simulation 

3.5.1 Floating Load Buck Converter 

 

Figure 3.16. Open loop simulation circuit for a floating load buck converter. 

Figure 3.16 shows the SIMULINK simulation circuit schematic for an open loop 

floating load buck converter.  

The sawtooth waveform block time value is set to be [0 0.001e-4 1e-4] as shown 

in Figure 3.17, which indicates that the switching frequency is 10 kHz. Figure 3.18 shows 

the Pulse-width modulator (PWM) signal model for the floating load buck converter. 
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Figure 3.17. Sawtooth waveform block settings. 

 

 

Figure 3.18. Inside the PWM signal model for the floating load buck converter. 
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Figure 3.19. Subsystem model for open loop floating load buck converter. 

Figure 3.19 shows the subsystem model for the simulated open loop floating load 

buck converter. 

Figure 3.19 shows the output voltage waveform and the inductor current 

waveform. The average output voltage is around 1.5V, which is correct according to the 

10% duty cycle. The current flowing through the inductor shows the continuity of its 

waveform, which indicates that the floating load buck converter is operating in 

continuous mode. 

The waveforms captured in Figure 3.20 shows the PWM signals and the reference 

voltage signal compared with sawtooth signal waveforms. As can be seen, the 10% duty 

cycle can be clearly observed.  
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Figure 3.20. Output voltage waveform and inductor current waveform. 

 

Figure 3.21. PWM signal and sawtooth waveforms. 
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3.5.2 Comparison with Conventional Buck Converter 

 

Figure 3.22 Open loop simulation circuit for a conventional buck converter. 

Figure 3.22 shows the SIMULINK simulation circuit schematic for an open-loop 

conventional buck converter. The simulation blocks are indicated in Figure 3.22. 

Figure 3.23 shows the Pulse-width modulator (PWM) signal model, which is 

exactly same as the floating load buck converter as shown in Figure 3.18. 

Figure 3.24 indicates what is inside the Subsystem model for the conventional 

buck converter. Although the conventional buck converter and floating load buck 

converter have the inductor placed in different position, their subsystem models are 

exactly the same. 
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Figure 3.23. Inside the PWM signal model for the conventional buck converter. 

 

Figure 3.24. Subsystem model for the conventional buck converter. 
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Figure 3.25. Output voltage waveform and inductor current waveform. 

Figure 3.25 shows the captured waveforms which shows the average output 

voltage to be about 1.5V. The inductor current shows that the conventional buck 

converter is operating under continuous mode. 

By using SIMULINK, the function blocks for both the floating load buck 

converter and the conventional buck converter such as PWM signal model and the 

subsystem model are exactly the same; as such their simulation results are identical. 
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3.6 Closed loop Simulation 

3.6.1 Floating Load Buck Converter 

 

 

Figure 3.26. Top level system model for digital controlled floating load buck 
converter. 

 
Figure 3.26 shows the system model for the digital controlled buck converter. The 

digital controller includes the A/D converter, the Discrete-time integral compensator, and 

the Digital PWM. 
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Figure 3.27 shows the output voltage and the inductor current waveforms for the 

closed-loop floating load buck converter. 

Figure 3.28 shows more details on the error signals with error delays, and the duty 

cycle command DC. 

 

Figure 3.27. Output voltage waveform and inductor current waveform. 
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Figure 3.28. Waveform details in the digital controller. 
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CHAPTER 4  

Experimental Results 

4.1 Circuit Block Analysis of the TPS92001 Controller 

 

Figure 4.1. Circuit schematic for TPS92001. 

Figure 4.1 shows the circuit schematic for the LED driver using a floating load 

buck converter with a Texas Instruments TPS92001 controller. The input is a 120VAC 

directly from the AC mains. The inductor L1 and capacitor C5 form a filter network with 

a RC time constant. To control the current flowing through the LEDs, a current sensing 

resistor is placed in the source circuitry of Q2. 

A bridge circuit consisting of four INHD04 diodes rectifies the Alternating 

Current (AC) voltage to Direct Current (DC) voltage. By using four diodes, the bridge 
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rectifier achieves a full-wave rectification. The rectifier circuit converts the 120VAC 

power source to a DC voltage for the operation of the device. The TPS92001 controller 

derives its DC power supply from the circuit connected to D2. C6 is the decoupling 

capacitor. In case there will be AC signal superimposed on the DC power line, C6 can 

remove these unwanted signals. R3, D5 and Q formed a voltage regulator sub-circuit. The 

R3 in series with D5 helps to limit the current, and also improve the voltage regulation. 

Also, the D7 12V zener diode connected to the collector circuitry of Q regulates the 

voltage to maintain a regulated 12V for the TPS92001. 

R5, D5, R4 and Q form a voltage regulator for the TPS92001 chip as shown in 

Figure 4.2. The reason for using a voltage regulator instead of a simple resistor to supply 

the chip is to maintain a constant supply voltage despites a large change in the AC main 

voltage. 

.  

Figure 4.2. Voltage regulator formed by R5, D5, R4 and Q. 
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For an input AC of 63V, the rectified DC supply is 63V× =89.10V, so the input 

DC is about 89V. The FZT757TA PNP transistor has a β (hFE) value about 50 [11]. The 

voltage dropped at the zener diode is around 12V. So, the voltage dropped on R3 is  

VR3 = 89V-12V-IBQR5          (4-1) 

The base-emitter loop yields,  

12V = IEQR4 + 0.7V          (4-2) 

IEQ =  = 2.2114mA         (4-3) 

So,    IBQ =  = 0.0442mA         (4-4) 

VR3 = 89V-12V- 0.0442mA* R5 = 63.70V≈ 64V        (4-5) 

VC = 89V-64V- IEQ*R4-0.7V= 12.99V ≈ 13V        (4-6) 

As the calculations shown above, the voltage regulation supply a voltage about 13V for 

the TPS92001 chip without consideration of any power losses. 
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4.2 Functional Blocks of TPS92001 Controller [8] 

For a switching mode power converter, the PWM controller contains control and 

drive circuitries. The PWM controller TPS92001 inside the circuit shown in Figure 4.1 

not only generates the PWM signals on the gate pin, but also performs current regulation 

through the current sensing. This general purpose LED lighting PWM controller supports 

both isolated and non-isolated topologies. The functional block diagram for the 

TPS92001 controller is shown in Figure 4.3. 

 

Figure 4.3. Function blocks inside the TPS92001. 

Pin“CS” also called pin “FB” is the summing node for the sensing feedback 

signals and slope compensation. As shown in Figure 4.1, the voltage at the capacitor C7 is 
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discharged by the internal NMOS transistor during the PWM off time. Pin“SS” is pin for 

the soft start. A capacitor C13 is connected to this node. This capacitor is being charged 

by the internal 6µA current source as shown in Fig 4.3. Pin “VDD” and pin “GND” are 

the supply input voltage and ground, respectively for the chip. Pin “GD” is the high 

current driver output. Pin “RTC” and pin “RTD” generate a sawtooth waveform through 

an oscillator network. By changing several resistor and capacitor components values, the 

duty cycle for the output driver pin GD can be changed. As shown in Figure 4.1, R13, R15, 

and C12 connected to these pins determine the switching frequency and the duty cycle for 

the floating load buck converter. Depending on the input voltage Vss, there are three cases 

[8]: 

Case 1. When Vss < 0.5V, 

As shown in Figure 4.4, for the initial start point, the Vss at pin “SS” is less than 

0.5V. This voltage is compared with a 0.5V in Part A, and the output of the comparator 

yields a logic “High” to the input of the NAND gate. Consequently, the output for the 

NAND gate gives a logic “Low” as an input signal to the 5V reference voltage source, so 

the pin ”REF” has an output signal “Low”. As shown in Part B, the Vss is also compared 

with a 1V voltage, so it gives a logic “High” to the OR gate, which yields a logic “High” 

to reset input of the PWM Latch.  

“VDD” pin provide an under voltage lockout function for this chip. If the supply 

voltage VDD is less than 15/8V or 10/8V, the Schmit trigger will output logic “High”. 

This goes to Part C, through the NAND gate, the pin “GD” will stay low, so the chip will 
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not function. Also, the output signal “Low” from the Schmit trigger will disable the 

NMOS in PartD. 

However, if the “VDD” pin receives the correct power supply voltage, it will trigger the 

Schmit trigger to output a logic “Low”. When this signal goes to Part C, as mentioned 

before, the reset pin has a logic “High” so the output Q is logic “Low”, then the output to 

pin “GD” will be low.  

 

Figure 4.4. Initial start point inside the TPS92001. 

In this case, although the oscillator will still function, but the output signal from the 

“GD” pin remains low. 
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Case 2. When 1V < Vss < 0.5V, 

 

Figure 4.5. When 1V < Vss < 0.5V, inside the TPS92001. 

 

The C13 is charging up by the internal 6µA current source at the “SS” pin, so the 

Vss is increasing. When Vss increases to above 0.5V but less than 1V, this is the second 

time period. 

At first, the signal is compared with the 0.5V in Figure 4.5 Part A, it gives an 

output logic “Low” for the input to the NAND gate. Then, the output for the NAND gate 

gives a logic “High” as an input signal to the 5V reference voltage source, so the “REF” 
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pin yield a 5V reference signal. As shown in Part B, the Vss is also compared with the 1V, 

so it gives a logic “low” to the OR gate, which yields a logic “low” to the reset pin of the 

PWM Latch, enabling the PWM signals. 

Case 3. When Vss > 1V, 

 

Figure 4.6. When Vss > 1V, inside the TPS92001. 

 

When Vss is greater than 1V, this signal is first compared in Part B, the output 

from the comparator gives a logic “Low”, it passes through the OR gate, giving a logic 

“Low” to the reset pin of the PWM Latch. If the voltage at pin “CS” exceeds the 1V 

threshold voltage, it will reset the PWM latch and modulates the “GD” pin on-time to 

zero. 
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4.3 Characterization of the floating load buck LED driver 

The TPS92001-based floating load buck LED driver was prototyped and 

characterized. For safety reasons, an isolated AC main input of 63V was used. An 

isolation transformer was connected to the AC mains, the input of the inverting buck 

LED driver was connected to a variable transformer. The load consists of seven 1-W 

white LEDs with a rated current of 350mA. 

A. Gate Drive Signal 

Figure 4.7 shows the test circuit for the testing of the gate drive signal. 
 

. 

 

Figure 4.7. Test circuit at R6 for gate drive signal. 
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Figure 4.8. Gate signal output captured on R6. 

Figure 4.8 shows the switching waveform for the gate signal. As can be seen, the 

switching frequency is around 88kHz with a duty cycle D of about 27.3% when the AC 

main is 63V with a load current of 117mA. The amplitude of the gate signal is about 15V.  

The experiemtal waveforms obtained are very similar to the simulated  waveforms shown 

in Figure 3.15 (a). 

B. Current-sensed Signal 

The node voltage between the source of the switching tansistor Q2 and the current-sensed 

resistor(R8 and R10) shown in Figure 4.9 represents the current-sensed voltage. The 

current flowing through the LEDs is approximately Vsense/(R8+R10).  
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Figure 4.9. Test circuit for the current-sensed signal. 

From Figure 4.10, a peak value current of 4.40V/(1.6Ω+1.8Ω) = 623.53mA was 

measured. The current-sensed signal increases approximatly from 300mV to 600mV. 

This indicates that  the LEDs current varies from 88 mA to 176mA as the power 

switching transistor is switched on. The duty cycle is about 27.3%. The spikes are due to 

the inductive kicks during switching.  The experiemtal waveforms obtained are very 

similar to the simulated  waveforms shown in Figure 3.15 (b). 
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.  

Figure 4.10. Waveforms for the current-sensed signal. 

C. Feedback pin FB signal 

As can be seen in Figure 4.11, the feedback pin of the TPS92001 controller is 

connected to the current sense resistors (R8 and R10) and the source of the switching 

tansistor Q2. R11 and C8 couple the sawtooth signal to the feedback  “FB” pin. The 

current-sensed signal adds to this signal at the “FB” pin.  So that a 1V-threshold is 

obtained. Above 1V, the TPS92001 controller triggers and resets the PWM latch. 

Capacitor C7 serves as a filtering capcacitor to remove the current spike shown in Figure 

4.10. 
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Figure 4.11. Test circuit for the Feedback pin signal. 

.  

Figure 4.12. Waveforms for the Feedback pin signal. 

Figure 4.12 shows the feedback signal on “FB” pin. The experiemtal waveforms 

obtained are very similar to the simulated  waveforms shown in Figure 3.15 (c). 
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D. Oscillator Signal of TPS92001. 

 

Figure 4.13. Test circuit for the oscillator signal. 
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Figure 4.14. Waveforms for the oscillator signal. 

 

Figure 4.15. Sawtooth signal from R13. 

Figure 4.13 shows the measurement circuit for the oscillator signal of the TPS92001. 

The waveforms shown in Figure 4.14 are the signals captured from the oscillator from 

Pin “RT2” on TPS92001 chip. As can be seen in Figure4.14, the oscillator signal is a 

sawtooth with a peak-to-peak value of 1.76V and an oscillator frequency of 89kHz, 

which is very close to the caclulated switching frequency of 93kHz. The discrepancy in 

switching frequency is due mainly to the differences of the component values used in the 

simulation and actual circuit implementation. The experiemtal waveforms obtained in 

Figure 4.14 are very similar to the simulated  waveforms shown in Figure 3.15 (d). 

E. Free-wheeling Diode 

Figure 4.16 shows the test circuit for the free-wheeling diode. Figure 4.17 shows the 

signals from the switching diode D3 on the main circuit. The free-wheeling diode 
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switches on when Q3 is off.  It shows the average input DC voltage is around 84V after it 

passed through the bridge rectifier and the filter net work. The maximam DC voltage can 

go up to 90V. The calculation shows that with an input AC of around 63V, the rectified 

output DC supply is to be around 89V without considering all the losses. 

  

Figure 4.16. Test circuit for free-wheeling diode. 
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Figure 4.17. Waveforms for free-wheeling diode. 

F. Signal from the drain of swtich transistor Q2 

 

Figure 4.18. Test circuit for the drain of FQT4N25. 
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Fig 4.18 shows the test circuit for the drain voltage of the switching transistor Q2. 

Fig 4.19 shows the voltage waveform at the drain of Q2 with the switching frequency is 

about 89kHz. When the switch is on, the drain voltage is near zero. However, when the 

switch is off, the drain voltage is above 78V. The experiemtal waveforms obtained are 

very similar to the simulated  waveforms shown in Figure 3.15(e). A duty cycle about 

73% is indicated. Similarly, the experiemtal waveforms obtained in Figure 4.19 are very 

similar to the simulated  waveforms shown in Figure 3.15 (e). 

 

Figure 4.19. Waveforms for the drain signal of FQT4N25. 

 

G. Reference voltage on TPS92001D 

Figure 4.20 shows the test circuit for the pin “REF” on TPS92001D. The 

reference signal shown in Figure 4.21 is a constant DC voltage of 5V which 

indicates that the chip is function correctly. 
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Figure 4.20. Test circuit for the Reference pin signal. 

 

Figure 4.21. Reference pin signal from TPS92001D. 



59 

 

CHAPTER 5 

Conclusion 

A floating load buck LED driver was analyzed, design and prototyped. It was 

found that the characteristics of the floating load buck converter are similar to those of 

the conventional buck converter despites of the difference in the placement of output 

inductor. The floating load buck converter was successfully prototyped to drive seven 

white LED diodes. The advantages of the floating load buck converter make it a very 

attractive off-line high voltage LED driver. 
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Micro Model for UCC2809 

* UCCx809-1 
***********************************************************************
****** 
* (C) Copyright 2009 Texas Instruments Incorporated. All rights 
reserved.                                             
***********************************************************************
****** 
** This model is designed as an aid for customers of Texas Instruments.                                             
** TI and its licensors and suppliers make no warranties, either 
expressed                                            
** or implied, with respect to this model, including the warranties of                                                    
** merchantability or fitness for a particular purpose. The model is                                                      
** provided solely on an "as is" basis. The entire risk as to its 
quality                                                     
** and performance is with the customer                                                                                      
***********************************************************************
****** 
* 
* This model was developed for Texas Instruments Incorporated by: 
*   AEi Systems, LLC 
*   5777 W. Century Blvd., Suite 876 
*   Los Angeles, California  90045 
* 
* This model is subject to change without notice. Neither Texas 
Instruments Incorporated  
* nor AEi Systems is responsible for updating this model. 
* For more information regarding modeling services, model libraries and 
simulation  
* products, please call AEi Systems at (310) 216-1144, or contact AEi 
Systems by email:  
* info@AENG.com. Or visit AEi Systems on the web at http://www.AENG.com. 
* 
***********************************************************************
****** 
* 
** Released by: Analog eLab Design Center, Texas Instruments Inc. 
* Part: UCC1809-1, UCC2809-1, and UCC3809-1,  
* Date: 08/28/2009 
* Model Type: Transient  
* Simulator: PSpice  
* Simulator Version: 16.0.0.p001 
* Reference Design: Based on PMP665  
* Datasheet: SLUS166B - NOVEMBER 1999 - REVISED NOVEMBER 2004 
* 
***********************************************************************
****** 
* 
* Updates: 
* 
* Final 1.00 
* Release to Web. 
* 
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***********************************************************************
****** 
.SUBCKT UCCx809_1 FB SS RT1 RT2 Gnd Out Vdd Ref 
***************************************** 
$CDNENCSTART 
eee8c5c7a2bc4b01f045f303678664e7916da0bae22e8cb0bba041dd67c69ce448ea701
48a9ac1670c8926c1ac5057c8ccfcd77bf87ca9dc675668663bb5180d 
8d1bc80c06f871c6c77e911f29f94db969fec2fec4df0cb6b294f6a760b5bb2f1c8e00b
4d57d473ff7768608afccc6eb7dcc0f146546e2985b5652ae1d276d77 
***************************************** 
ec9f0d421d535b11ef85457a8943bba883e9027594e73552456676176791578b04976a1
a6cae8b7afeb0c2d46ab7210bb1612b8855c93a7199eaf7488bed9cdb 
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