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ABSTRACT 

     This paper describes the development of an 8-bit SCL 8051 ALU with two versions: SCL 

8051 ALU with nsleep and sleep signals and SCL 8051 ALU without nsleep. Both versions have 

combinational logic (C/L), registers, and completion components, which all utilize slept gates. 

Both three-stage pipelined and non-pipelined designs were examined for both versions. The four 

designs were compared in terms of area, speed, leakage power, average power and energy per 

operation. The SCL 8051 ALU without nsleep is smaller and faster, but it has greater leakage 

power. It also has lower average power, and less energy consumption than the SCL 8051 ALU 

with both nsleep and sleep signals. The pipelined SCL 8051 ALU is bigger, slower, and has larger 

leakage power, average power and energy consumption than the non-pipelined SCL 8051 ALU. 
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 INTRODUCTION I.

    An Arithmetic Logic Unit (ALU) is a digital circuit that performs arithmetic and logical 

operations. The ALU is a fundamental building block of the Central Processing Unit (CPU) of a 

computer, and even the simplest microprocessors contain one for purposes such as maintaining 

timers. The processors found inside modern CPUs and graphics processing units (GPUs) 

accommodate very powerful and very complex ALUs; a single component may contain a 

number of ALUs. Therefore, to improve the efficiency and decrease the area of ALUs is 

important. 

    Currently, most digital circuits are designed using a synchronous approach, which results in 

chips requiring precise timing of their components. However, as clock rates have significantly 

increased while feature size has decreased, clock skew has become a major problem. High 

performance chips must dedicate increasingly larger portions of their area for clock drivers to 

achieve acceptable skew, causing these chips to dissipate increasingly higher power, especially at 

the clock edge, when switching is most prevalent. Asynchronous, clockless circuits require less 

power, generate less noise, and produce less electro-magnetic interference (EMI), compared to 

the synchronous counterparts, without degrading performance. 

   Therefore, a variation of NULL Convention Logic (NCL) [1], called Sleep Convention 

Logic (SCL) was chosen as the design logic for this ALU, as it is a delay-insensitive 

asynchronous logic that effectively eliminates such timing dependencies. NCL is a delay-

insensitive (DI) asynchronous (i.e., clockless) paradigm, which means that NCL circuits will 

operate correctly regardless of when the circuit inputs become available; therefore, NCL circuits 

are said to be correct-by-construction (i.e., no timing analysis is necessary for correct operation).  
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    SCL combines the Multi-Threshold CMOS (MTCMOS)  [5] technique with NCL to sleep 

the circuit during idle mode, in place of the NULL cycle, to yield a fast ultra-low power 

asynchronous circuit design methodology, which requires less area and substantially reduced 

energy usage compared to the original NCL circuit. 

   In this paper, an SCL 8051 ALU is designed with two versions: one with C/L, registers, and 

completion all slept using the gates with both sleep and nsleep; and the other using the new 

version of the gates without nsleep. The two versions are then compared in terms of area, leakage 

power, and energy per operation for non-pipelined and 3-stage pipelined designs. 
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 BACKGROUND II.

A. Introduction to NCL 

    NCL is a delay-insensitive (DI) asynchronous (i.e., clockless) paradigm, which means that 

NCL circuits will operate correctly regardless of when circuit inputs become available; therefore, 

NCL circuits are said to be correct-by-construction (i.e., no timing analysis is necessary for 

correct operation).  

    NCL circuits utilize multi-rail logic, such as dual-rail, to achieve delay-insensitivity. A 

dual-rail signal, D, consists of two wires or rails, D
0
 and D

1
, which may assume any value from 

the set {DATA0, DATA1, NULL}. The DATA0 state (D
0
 = 1, D

1
 = 0) corresponds to a Boolean 

logic 0, the DATA1 state (D
0 

= 0, D
1
 = 1) corresponds to a Boolean logic 1, and the NULL state 

(D
0
 = 0, D

1 
= 0) corresponds to the empty set meaning that the value of D is not yet available. 

The two rails are mutually exclusive, such that both rails can never be asserted simultaneously. 

This state is defined as an illegal state. 

    NCL circuits are comprised of 27 fundamental gates. These 27 gates constitute the set of all 

functions consisting of four or fewer variables. The primary type of threshold gate, shown in 

Fig.1, is the THmn gate, where 1 ≤ m ≤ n. THmn gates have n inputs. At least m of the n inputs 

must be asserted before the output will become asserted. NCL threshold gates are designed with 

hysteresis state-holding capability such that all asserted inputs must be de-asserted before the 

output will be de-asserted, as shown in Fig 2. NCL threshold gates may also include a reset input 

to initialize the output. These resettable gates are used in the design of DI registers. 

     The NCL gate static implementation has four blocks: reset, set, hold0, and hold1 as shown 

in Fig.2 (a). Block set is the gate’s Boolean function that determines when the gate output is 
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asserted.  reset determines when the gate output is deasserted, which occurs only when all inputs 

are logic0. hold1  is the complement of reset, which holds the output at logic1 once it is asserted 

as long as any input remains asserted.  hold0 is the complement of set, which holds the output at 

logic0 once it is deasserted, until the set logic becomes true to assert the output. Fig.2 (b) shows 

the TH23 gate static implementation as an example. The Boolean function of TH23 is AB + AC 

+ BC. The Boolean functions of the four blocks are shown as follows: 

set = AB + AC + BC;   hold0 = CBCABA  ; 

reset = CBA  ;       hold1 = A + B + C; 

 

Figure 1. THmn threshold gate 

 

Figure 2. (a) NCL gate static implementation; (b) TH23 gate static implementation 
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Figure 3. NCL system framework 

   NCL systems contain at least two delay-insensitive (DI) registers, one at both the input and 

at the output, and can be finely pipelined by inserting additional registers, as shown in Fig 3. 

Two adjacent register stages interact through their request and acknowledge signals, Ki and Ko, 

respectively, to prevent the current DATA wavefront from overwriting the previous DATA 

wavefront, by ensuring that the two DATA wavefronts are always separated by a NULL 

wavefront. The acknowledge signals are combined in the Completion Detection circuitry to 

produce the request signal to the previous register stage, utilizing either the full-word or bit-wise 

completion strategy. 

To ensure delay-insensitivity, NCL circuits must adhere to the following criteria: Input-

Completeness and Observability. Input-Completeness requires that all outputs of a combinational 

circuit may not transition from NULL to DATA until all inputs have transitioned from NULL to 

DATA, and that all outputs of a combinational circuit may not transition from DATA to NULL 

until all inputs have transitioned from DATA to NULL. Observability requires that no orphans 

may propagate through a gate. An orphan is defined as a wire that transitions during the current 

DATA wavefront, but is not used in the determination of the output. Therefore, any gate that 

transitions must contribute to at least one output transitioning. 
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B.  Introduction to SCL 

   Multi-Threshold CMOS (MTCMOS) [5] incorporates transistors with two or more different 

threshold voltages (Vt) in a circuit. Low-Vt transistors offer fast speed but have high leakage, 

whereas high-Vt ones have reduced speed but far less leakage current. MTCMOS combines these 

two types of transistors by utilizing low-Vt transistors for circuit switching to preserve 

performance and high-Vt transistors to gate the circuit power supply to significantly decrease 

sub-threshold leakage. 

    SCL uses modified static SCL threshold gates without hold1 to implement the 

Combinational Logic, static SCL threshold gates with hold1 (SCL1) for the Completion 

Detection circuitry, and buffers for large fanout signals (e.g., Sleep/Ki). 

   The SCL gate with both sleep and nsleep is illustrated in Fig. 4, where the high-Vt 

transistors are circled [4]. During active mode, the Sleep signal is logic 0 and sleep¯¯¯¯ is logic1, 

such that the gate functions as normal. During sleep mode, Sleep is logic 1 and sleep¯¯¯¯ is logic0, 

such that the output low-Vt pull-down transistor is turned on quickly to pull the output to logic0, 

while the high-Vt NMOS gating transistor is turned off to reduce leakage. The set block, the 

PMOS transistor of the output inverter, and the output pull-down transistor are low-Vt, since they 

are on the critical path. The other transistors are high-Vt to reduce leakage. 

   The SCL gate without nsleep is illustrated in Fig. 5 [2], where the high-Vt transistors are 

circled. It works similar to the SCL gate with both sleep and nsleep. During active mode, the 

Sleep signal is logic 0, such that the gate functions as normal. During sleep mode, Sleep is logic1, 

such that the output low-Vt pull-down transistor is turned on quickly to pull the output to logic0, 

while the high-Vt NMOS gating transistor is turned off to reduce leakage. The PMOS transistor 
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of the output inverter and the output pull-down transistor are low-Vt, since they are on the critical 

path. The transistors located on the bottom of the set block are high-Vt to reduce leakage, while 

the rest of the set block transistors are low-Vt to preserve speed. The other transistors are high-Vt 

to reduce leakage. 

 

Figure 4. (a) SCL gate structure with sleep and nsleep, and (b) TH23 implementation 
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Figure 5. (a) SCL gate structure without nsleep, and (b) TH23 implementation 

   The Early Completion Input-Incomplete SCL architecture, denoted as ECII, ensures input-

completeness through the sleep mechanism, such that input-incomplete logic functions can be 

used to design the circuit, which decreases area, and power, and increases speed. In SCL, Early 

Completion [1] is utilized instead of regular completion, as shown in Fig 6, where each 

completion signal is used as the sleep signal for all threshold gates in the subsequent pipeline 

stage. Early Completion utilizes the inputs of registeri-1 along with the Ki request to registeri-1, 

instead of just the outputs of registeri-1 as in regular completion, to generate the request signal to 

registeri-2, Ko i-1. 
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Figure 6. ECII SCL architecture 

C.  Introduction to ALU 

 

Figure 7. ALU block diagram 

    An ALU is a necessary component of any general-purpose microcontroller/microprocessor. 

Fig.7 shows the inputs and outputs of an ALU block. Currently, most digital circuits are designed 

using a synchronous approach, which results in chips requiring precise timing of their 

components. Functional problems arise when such circuitry is placed in extreme environments, 

due to the variances in semiconductor device behaviors. SCL was chosen as the design logic for 

this ALU, as it is a delay-insensitive asynchronous logic that effectively eliminates such timing 

dependencies, allowing the design to match the specification while operating under extreme 

environments, while utilizing substantially less power.   
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   The ALU is capable of executing the following arithmetic operations: add, addc, subb, inc, 

dec, inc DPTR, mul, div, and DA. It is also capable of executing the following logical operations: 

and, or, xor, CPL, RL, RR, RLC, RRC, and swap.  

   The 8051 ALU has three inputs (AL, AOS, and LOS) to choose the instruction to be 

executed. “AL” stands for Arithmetic/ Logic; “AOS” stands for Arithmetic Operation Select and 

“LOS” stands for Logic Operation Select.  The following table shows the instructions that are 

chosen by the three inputs [3]. 

Table 1: Arithmetic instructions 

instruction AL AOS LOS input involved output involved 

add 0 0 x TMP1, TMP2 resultL, CY, AC, OV 

addc 0 1 x TMP1, TMP2, CY resultL, CY, AC, OV 

subb 0 2 x TMP1, TMP2, CY resultL, CY, AC, OV 

inc 0 3 x TMP1 resultL 

dec 0 4 x TMP1 resultL 

incDPTR 0 5 0 TMP1, TMP2 resultL, resultH 

MUL 0 5 1 TMP1, TMP2 resultL, resultH, OV 

DA 0 5 2 TMP1, CY, AC resultL, CY 

DIV 0 5 3 TMP1, TMP2 resultL, resultH, OV 

Table 2: Logic instructions 

instruction AL LOS AOS input involved output involved 

and 1 0 x TMP1, TMP2 resultL 

or 1 1 x TMP1, TMP2 resultL 

xor 1 2 x TMP1, TMP2 resultL 
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CPL 1 3 0 TMP1 resultL 

RL 1 3 1 TMP1 resultL 

RR 1 3 2 TMP1 resultL 

RLC 1 3 3 TMP1, CY resultL, CY 

RRC 1 3 4 TMP1, CY resultL, CY 

SWAP 1 3 5 TMP1 resultL 

    According to the values of AL, AOS, LOS, we set AL as dual rail logic, LOS as quad rail 

logic, and AOS as a 6 rail MEAG (Mutually Exclusive Assertion Group). Fig.8 shows the 

original design of the NCL 8051 ALU. 

genTMP2 genCarry genMinTerm

adder sumMinterms

passTMP passTMP passTMP passTMP passTMP passTMP passTMP

incDPTR MUL DIV DA

passTMPL

logic

MUX MUX MUX MUX

T2i T2m T1da

AC

TMP1bus

CY OV resultH resultL

CYa OVa Sa
L Hi SLCYLQ CYda SdaR

OVd

LmHm

OVm

T1i T1m T2d T1d T1da

Li

TMP2bus AL0 AOS0 AOS1 AOS4 CYi LOS0 LOS1 LOS2AOS3AOS2 AOS5 LOS3 ACi AL1

8 8

8 8

 

Figure 8. Original NCL 8051 ALU design 
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 PREVIOUS WORK III.

NCL Non-pipelined 8051 ALU Design 

    The 8051 ALU has 18 different instructions. Based on the type of instruction executed, 

different inputs and outputs would be DATA and the rest of the inputs and outputs will remain 

NULL. For example, for CPL, RL, and RR instructions, only the TMP1bus input is used and 

resultL will hold the output. On the other hand, for MUL, DIV, and incDPTR, both TMP1bus 

and TMP2bus are used and both resultH and resultL will hold the output. 

    Because the size of registers cannot be dynamic, a special registration method is used. The 

idea is based on the fact that by reading the operation determination signals (AL, AOS, LOS), we 

can determine which outputs will be utilized and therefore which registers must be used to 

produce the completion signal. The Completion Extension block and Completion block were 

designed to produce the completion signal. The connection is shown in Fig.9. 

 

Figure 9. Non-pipelined NCL 8051 ALU block diagram 
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1. Completion Block design 

The NCL 8051 ALU has five outputs: resultH, resultL, OV, AC, and CY. For some 

operations, not all of the outputs will be used. In this case, Ko won’t be deasserted when the 

operation is finished. Therefore, instead of using one 19-bit register for all the outputs, each 

output has its own register and Ko signal. And a specialized completion block is designed to 

choose which outputs are involved to produce the final Ko.  

Four control signals (conRH, conOV, conAC, conCY) were defined in the design to 

choose the outputs that are involved in one operation. These control signals will only be 

asserted if their corresponding output is not involved in the ALU output for the current 

operation, otherwise they stay low. The design of the output completion block is shown in 

Fig.10. 

 

Figure 10. Output Completion Block Design 
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          In this design, a revised register with an uninverted Ko is used, as shown in Fig.11 (b). 

1

2

ko

D.rail0

D.rail1

ki

Q.rail0

Q.rail1
2

ko

D.rail0

D.rail1

1

2

ko

D.rail0

D.rail1

ki

Q.rail0

Q.rail1
2

(a) (b)
 

Figure 11. (a) normal register diagram; (b) revised register diagram                                 

2. Completion Extension design 

     The completion extension block is designed to generate the control signals that choose 

which inputs will be involved in a given operation.      

     Table 1 and 2 shows the inputs and outputs that are involved for each instruction. 

    In the NCL 8051 ALU design, AL is set as dual rail logic, AOS as six-rail MEAG, and 

LOS as quad rail logic. For example when “mul” instruction is chosen, AL = 0, AOS = 5, 

LOS = 1, which equals to AL.rail0 = 1, AOS.rail5 = 1, LOS.rail1 = 1. 

    Based on the inputs and outputs that are involved for each instruction, the formula of 

each control signal is as follows: 

conAC = AL
1
 + AL

0 
* (AOS

3
 + AOS

4   
+ AOS

5
); 

conCY = AL
0  

* (AOS
3
 + AOS

4
) + AL

0 
* AOS

5 
* LOS

0
 + AL

0
 * AOS

5
 * (LOS

1
 + LOS

3
) + AL

1
 

* (LOS
0
 + LOS

1
 + LOS

2
) + AL

1
 * LOS

3
 * (AOS

0
 + AOS

1
 + AOS

2
 + AOS

5
); 

conOV = AL
1
 + AL

0 
* AOS

5
 * (LOS

0
 + LOS

2
) + AL

0
 * (AOS

3
 + AOS

4
); 
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conRH = AL
0
 * (AOS

0
 + AOS

1
 + AOS

2
) + AL

0
 * (AOS

3
 + AOS

4
) + AL

0
 * AOS

5
 * LOS

2
;   

 APPROACH AND IMPLEMENTION IV.

A. NCL Pipelined 8051 ALU Design 

    An instruction pipeline is a technique used to increase instruction throughput (the number 

of instructions that can be executed in a unit of time). Pipelining does not reduce the time to 

complete an instruction, but increases the number of instructions that can be processed at once. 

  Each instruction is split into a sequence of dependent steps. The first step is always to fetch 

the instruction from memory; the final step is usually writing the results of the instruction to 

processor registers or to memory. Pipelining seeks to let the processor work on as many 

instructions as there are dependent steps, just as an assembly line builds many vehicles at once, 

rather than waiting until one vehicle has passed through the line before admitting the next one.      

    As the goal of the assembly line is to keep each assembler productive at all times, 

pipelining seeks to keep every portion of the processor busy with some instruction. Pipelining 

ideally lets one instruction complete in every cycle. 

   In each stage, data is divided into several groups depending on the components that are 

involved for each operation. Each stage can be divided into 10 parts: Adder, sumMinterms, 

incDPTR, MUL, DIV, DA, logic, AL, AOS, and LOS. For each part, one control signal was 

assigned to decide if the component is involved in the operation.  

   The stage1 control signals were assigned as follows. 

         Con1_adder = AL
1
 + AL

0
 * AOS

5
; 

         Con1_genMinterm = AL
0
 + AL

1 
* LOS

3
; 
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       Con1_DPTR = AL
1 
+ AL

0
 * (AOS

0
 + AOS

1
 + AOS

2
 + AOS

3
 + AOS

4
) + AL

0
 * AOS

5
 * (LOS

1
 

+ LOS
2
 + LOS

3
); 

       Con1_mul = AL
1
 + AL

0
 * AOS

5
 * (LOS

0
 + LOS

2 
+ LOS

3
) + AL

0
 * (AOS

0 
+ AOS

1
 + AOS

2
 + 

AOS
3
 + AOS

4
); 

       Con1_DA = AL
1
 + AL

0
 * AOS

5
 * (LOS

0
 + LOS

1 
+ LOS

3
) + AL

0
 * (AOS

0 
+ AOS

1
 + AOS

2
 + 

AOS
3
 + AOS

4
); 

       Con1_div = AL
1
 + AL

0
 * AOS

5
 * (LOS

0
 + LOS

1 
+ LOS

2
) + AL

0
 * (AOS

0 
+ AOS

1
 + AOS

2
 + 

AOS
3
 + AOS

4
); 

       Con1_logic = AL
0
 + AL

1
 * (LOS

0
 + LOS

1 
+ LOS

2
); 

  The final Ko1 is generated by the completion block in Fig.12. 

Con1_genMinterm

Con1_DPTR

Con1_mul

Con1_DA

Con1_DIV

1

Con1_adder

1

1

1

1

1

Ko1_a

Ko1_s

Ko1_i

Ko1_m

Ko1_da

Ko1_d

1

Con1_logic

Ko1_logic

comp

4 Ko1_al

ko1_aos

ko1_los

ko1

 

Figure 12. Stage 1 completion block design 

Stage 2 is a little different from Stage 1 because for each component, some outputs are not 

involved in the result dependent on which operation is being executed. For “adder”, OVa, AC, or 
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CYa may not be used; for MUL, OVm may not be used, for DIV, OVd may not be used. Hence, a 

more detailed extension completion design is required for Stage 2. 

    There are four outputs in the “Adder” component: AC, CYa, OVa, and Sa. AC, CYa, OVa 

may not be used in an operation. Con2_AC, Con2_CYa, Con2_OVa are assigned to decide if any 

of the three outputs are used or not. 

Con2_AC = AL
1
 + AL

0
 * (AOS

3
 + AOS

4 
+ AOS

5
); 

Con2_CYa = AL
1
 + AL

0
 * (AOS

3
 + AOS

4 
+ AOS

5
); 

Con2_OVa = AL
1
 + AL

0
 * (AOS

3
 + AOS

4 
+ AOS

5
); 

  There are two outputs in the “logic” component: CYL and SL. CYL may not be used in one 

operation. Con2_CYL is assigned to decide if CYL is used or not. 

Con2_CYL = AL
0
 + AL

1 
* [LOS

0
 + LOS

1
 + LOS

2
 + LOS

3
 * (AOS

0 
+ AOS

1
 + AOS

2
 + AOS

4
 + 

AOS
5
)]; 

         The completion block design of Stage 2 is shown in Fig.13. 
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Figure 13. Completion Block for Stage 2 
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B. SECRII Architecture 

In this thesis, an SCL 8051 ALU with sleep and nsleep and an SCL 8051 ALU without 

nsleep are designed and compared. Each version has two designs: non-pipelined and pipelined. 

The pipelined architecture that is used in this thesis is called SECRII (Slept Early Completion 

and Registration Input-Incomplete) [4], as shown in Fig.14. 

Sleep early 
completion

Sleep DI 
Register

MTNCL C/L 

Sleep early 
completion

Sleep DI 
Register

Sleep DI 
Register

Sleep DI 
Register

MTNCL C/L MTNCL C/L 

Sleep early 
completion

Sleep early 
completion

ko0 ko1 ko2 ko3 ki

input output

Sleep

Sleep
Sleep

Sleep
Sleep

 

Figure 14. SECRII architecture 

    The SECRII architecture has the ability to sleep both completion components and registers 

at the same time. It has all the benefits of the SECII [4] in addition to saving more energy and 

area because of sleeping the registers. 

    Since the registers are now controlled by the sleep signals rather than Ki signals, the 

registers are different in SECRII. In order to save area, the two gates required for passing a dual 

rail signal share some sleep transistors. These gates use the SCL1 style [4] for the completion 

component, and SCL gates for combinational logic (because the new architecture is similar to 

FECII, which doesn’t let partial NULL propagate). 
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C. SCL 8051 ALU with Both nsleep and sleep Signals 

     The SCL 8051 ALU with both sleep and nsleep pipeline structure is shown in Fig.15, 

which utilizes the SECRII architecture with the SCL gates that have both nsleep and sleep inputs. 
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Figure 15. SCL 8051 ALU with nsleep and sleep pipeline structure 



21 

 

D. SCL 8051 ALU Without nsleep Design 

 The SCL 8051 ALU without nsleep pipeline structure is shown in Fig. 16, which utilizes 

the SECRII architecture with the SCL gates that only have a sleep input.  
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Figure 16. SCL 8051 ALU pipeline structure without nsleep 
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 SIMULATION RESULTS AND EXPLANATIONS V.

    The simulation was run in Mixed Signal simulation mode in UltraSim simulator. Four 

implementations of an 8051 ALU utilizing SCL gates were simulated at the transistor level, after 

inserting buffers, using the 1.2V IBM 8RF-LM 130nm CMOS process, and compared in terms of 

area, leakage power, and energy per operation, average power and average cycle time (TDD).  

The SCL 8051 ALU with nsleep and sleep has lower leakage power, but it is slower than SCL 

8051 ALU without nsleep. Comparing the SCL 8051 ALU with nsleep and sleep to the SCL 

8051ALU without nsleep, the SCL 8051 ALU without nsleep is faster, smaller, and requires less 

energy per operation, but bigger average power than the version without nsleep.     

 Area A.

1. Non-pipelined comparison  

      Table 3: Non-pipelined SCL 8051 ALU Area Comparison (without buffer) 

 gates NFETs PFETs Transistors Area (um^2) 

SCL (without nsleep) 1330 7973 7408 15381 301 

SCL (sleep & nsleep) 1336 9276 7922 17198 347 

       Table 4: Non-pipelined SMTNCL 8051 ALU Area Comparison (with buffer) 

 gates NFETs PFETs Transistors Area (um^2) 

SMTNCL (without nsleep) 2079 8740 8175 16915 356 

SMTNCL (sleep & nsleep) 1685 9677 8323 18000 399 
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2. Pipelined comparison  

     Table 5: Pipelined SCL 8051 ALU Area Comparison (without buffer) 

 gates NFETs PFETs Transistors Area (um^2) 

SCL (without nsleep) 1775 10962 10199 21161 412 

SCL (sleep & nsleep) 1819 12639 10670 23309 468 

     Table 6: Pipelined SMTNCL 8051 ALU Area Comparison (with buffer) 

 gates NFETs PFETs Transistors Area (um^2) 

SMTNCL (without nsleep) 2756 11961 11198 23159 483 

SMTNCL (sleep & nsleep) 2273 13208 11239 24447 535 

The SCL 8051 ALU (nsleep & sleep) is bigger than the SCL 8051 ALU without nsleep. 

Compare the gate structures shown in Fig. 4(a) and Fig. 5(a), there is one more NFET in 

SCL gates with nsleep and sleep than SCL gates without nsleep. It reduces the area of SCL 

ALU without nsleep. 

Before being buffered, the SCL 8051 ALU w/o nsleep has fewer gates than the one with 

both sleep and nsleep. The reason is the SCL 8051 ALU with both nsleep and sleep needs 

many “invx0” gates to generate “nko” for each stage. 

After being buffered, the SCL ALU w/o nsleep has more gates than the version with 

both sleep and nsleep. For each node, the gates w/o nsleep have a little higher load 

capacitance than the gates with both nsleep and sleep. The buffer script added several small 

size buffers “inverter_a” for the nodes in the SCL ALU w/o nsleep. Buffer “inverter_a” is 

the minimum sized buffer, so it didn’t add much area to the overall ALU.  
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 Leakage Power B.

   Table 7: SCL 8051 ALU Leakage Power Comparison 

 non-pipelined(nW) 3-stages pipelined(nW) 

SCL (nsleep & sleep) 149.7 156.2 

SCL (w/o nsleep) 160.1 183.6 

          The leakage power of the version with both sleep & nsleep is slightly less compared to the 

version w/o sleep.   

          Pleakage = VDD Ileakage , and leakage current is influenced by transistor width, supply voltage, 

and transistor threshold voltages. For SCL gates without nsleep, they utilize high-Vt for the 

NFETs at the bottom of “set” block (Fig.17. b). Compared to the SCL gates with both nsleep and 

sleep (Fig.17.a), the high-Vt transistor width has increased. Because of the bigger high-Vt 

transistor width, the leakage current increases a little more than the gates with both nsleep and 

sleep.  
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Figure 17. (a) TH23 with nsleep & sleep; (b) TH23 w/o nsleep 
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 Simulation Time and TDD C.

1. Non-pipelined 

Table 8: Non-pipelined SCL 8051 ALU Simulation Time and TDD Comparison 

instruction 
SCL(w/o nsleep) SCL(nsleep & sleep) 

simulation time (ns) TDD(ns) simulation time (ns) TDD(ns) 

add 61.6 6.2 85.7 8.6 

addc 63.7 6.4 83.0 8.3 

subb 63.6 6.4 84.5 8.5 

inc 63.2 6.3 84.3 8.4 

dec 63.2 6.3 84.7 8.5 

incDPTR 58.2 5.8 81.4 8.1 

MUL 68.5 6.9 98.9 9.9 

DA 56.5 5.7 81.8 8.2 

DIV 90.5 9.0 120.8 12.8 

and 56.5 5.7 78.5 7.9 

or 56.6 5.7 79.9 8.0 

xor 56.6 5.7 79.9 8.0 

CPL 56.7 5.7 77.9 7.8 

RL 56.7 5.7 77.8 7.8 

RR 56.6 5.7 77.7 7.8 

RLC 56.6 5.7 77.5 7.8 

RRC 56.6 5.7 77.4 7.7 

SWAP 56.5 5.7 77.5 7.8 
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2. Pipelined 

Table 9: Pipelined SCL 8051 ALU Simulation Time and TDD Comparison 

instruction 
SCL(w/o nsleep) SCL(nsleep & sleep) 

simulation time (ns) TDD (ns) simulation time(ns) TDD (ns) 

add 69.8 7.0 117.2 11.7 

addc 76.3 7.6 122.8 12.3 

subb 78.1 7.8 124.7 12.5 

inc 77.5 7.8 124.3 12.4 

dec 77.7 7.8 124.8 12.5 

incDPTR 74.7 7.5 121 12.1 

MUL 86.4 8.6 136.4 13.6 

DA 74.0 7.4 121.2 12.1 

DIV 97.5 9.8 161 16.1 

and 67.5 6.8 120.5 12.0 

or 63.2 6.3 116.3 11.6 

xor 63.3 6.3 116.3 11.6 

CPL 66.4 6.6 113.4 11.3 

RL 66.7 6.7 112.9 11.3 

RR 66.5 6.7 112.9 11.3 

RLC 66.6 6.7 112.8 11.3 

RRC 66.6 6.7 112.7 11.3 

SWAP 66.6 6.7 112.7 11.3 

 

   The w/o nsleep version has a shorter TDD. Because the SCL w/o nsleep gates have one 

less NFET than SCL nsleep & sleep gates, the rise time for SCL w/o nsleep gates is shorter than 

SCL nsleep & sleep gates.  
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   Unexpectedly, after pipelining the SCL 8051 ALU, the TDD is even longer than the non-

pipelined ALU. This is because the added completion extension block needed to choose which 

signals are involved in each operation.   
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Figure 18. Pipeline stage 1 architecture of SCL 8051 ALU 

   Take operation “add” as an example, in the first stage of operation “add”, shown in Fig. 18, 

the worst case delay of the C/L is 553.51 ps while the worst case delay of stage 1 completion 

extension is 1046.1 ps. The design of “completion extension” extends the simulation time for 

each stage, in this case the whole simulation time is also extended which explains why the 

simulation time and TDD for the pipelined ALU is longer than the non-pipelined ALU. 
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 Energy for Each Instruction D.

1. Non-pipelined  

Table 10: Non-pipelined SCL 8051 ALU Energy Consumption Comparison 

instruction SCL(w/o nsleep)  (pJ) SCL (nsleep & sleep) (pJ) 

add 52.3 87.5 

addc 58.1 91.5 

subb 57.8 91.9 

inc 57.8 90.4 

dec 56.8 91.1 

incDPTR 60.3 94.1 

MUL 71.7 102.8 

DA 58.9 91.8 

DIV 71.3 104.5 

and 56.9 90.1 

or 54.6 90.2 

xor 54.6 90.7 

CPL 53.5 90.0 

RL 53.0 89.6 

RR 53.6 89.2 

RLC 53.2 89.1 

RRC 53.2 88.1 

SWAP 54.0 90.1 
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2. Pipelined  

Table 11: Pipelined SCL 8051 ALU Energy Consumption Comparison 

instruction SCL(w/o nsleep)  (pJ) SCL (nsleep & sleep)   (pJ) 

add 59.3 90.1 

addc 63.0 100.2 

subb 63.3 99.9 

inc 62.2 99.5 

dec 61.8 98.9 

incDPTR 63.9 101.6 

MUL 72.2 113.3 

DA 63.4 100.4 

DIV 73.9 111.9 

and 60.8 100.1 

or 60.2 98.1 

xor 60.1 97.5 

CPL 59.6 96.1 

RL 59.7 96.4 

RR 59 97.7 

RLC 59.8 97.4 

RRC 59.3 96.9 

SWAP 60.4 96.7 

 

  From the table above, the SCL version without nsleep consumes less energy than the 

version with both nsleep and sleep. 

 leakageDDpeakDDscDDL IVfIVtfVCP  
2

, 

Where Pdynamic = fVC DDL

2
 . 
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  SCL gates w/o nsleep remove the NFET which is driven by nsleep. This reduces the load 

capacitance, which decreases both energy and dynamic power. Also, the total number of 

transistors in the SCL 8051 ALU with both nsleep and sleep is more than the SCL 8051 ALU 

w/o nsleep, which also decreased the total energy consumption for the version w/o nsleep. 

 

Figure 19. (a) SCL gates with sleep & nsleep; (b) SCL gates w/o nsleep
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 Average power E.

1. Non-pipelined  

Table 12: Non-pipelined SCL 8051 ALU Average Power Comparison 

instruction SCL(w/o nsleep) (mW) SCL (nsleep & sleep) (mW) 

add 0.74 0.77 

addc 0.74 0.81 

subb 0.75 0.80 

inc 0.73 0.80 

dec 0.72 0.79 

incDPTR 0.79 0.84 

MUL 0.82 0.93 

DA 0.78 0.83 

DIV 0.86 0.96 

and 0.83 0.85 

or 0.85 0.85 

xor 0.85 0.87 

CPL 0.79 0.85 

RL 0.78 0.85 

RR 0.79 0.86 

RLC 0.79 0.86 

RRC 0.79 0.86 

SWAP 0.80 0.86 
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2. Pipelined  

Table 13: Pipelined SCL 8051 ALU Average Power Comparison 

instruction SCL (w/o nsleep) (mW) SCL (nsleep & sleep) (mW) 

add 0.96 1.02 

addc 0.99 1.10 

subb 0.99 1.09 

inc 0.98 1.07 

dec 0.98 1.07 

incDPTR 1.09 1.15 

MUL 1.27 1.35 

DA 1.12 1.25 

DIV 1.13 1.27 

and 1.08 1.14 

or 1.06 1.13 

xor 1.06 1.13 

CPL 1.05 1.15 

RL 1.05 1.15 

RR 1.04 1.15 

RLC 1.06 1.15 

RRC 1.05 1.14 

SWAP 1.07 1.16 

 

 The SCL 8051 ALU w/o nsleep has a lower average power than the SCL 8051 ALU with 

both nsleep and sleep inputs, even though the version w/o nsleep has a higher leakage power. 

However, compared to the dynamic power, the leakage power is small and can be ignored. The 

reason that the SCL 8051 ALU with both sleep & nsleep has a higher dynamic power has already 

been explained in Section D. 
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 The pipelined SCL 8051 ALU has a higher average power than the non-pipelined SCL 8051 

ALU because the pipelined version has more gates than the non-pipelined version. 

 

  CONCLUSION VI.

   This thesis first pipelined a previous design of an NCL 8051 ALU, and then designed both 

pipelined and non-pipelined SCL 8051 ALU versions, using gates with both nsleep and sleep 

signals, and using gates with just a sleep signal. The SCL 8051 ALU reduced the leakage power 

and total energy consumption compared to the NCL 8051 ALU. The SCL 8051 ALU without 

nsleep version provides many advantages such as smaller, faster and lower energy consumption, 

but has a higher leakage power.  
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