
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

8-2012

Comparison of Various Pipelined and Non-
Pipelined SCl 8051 ALUs
Jingyi Zhao
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Zhao, Jingyi, "Comparison of Various Pipelined and Non-Pipelined SCl 8051 ALUs" (2012). Theses and Dissertations. 552.
http://scholarworks.uark.edu/etd/552

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uark.edu%2Fetd%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/552?utm_source=scholarworks.uark.edu%2Fetd%2F552&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu

COMPARISON OF VARIOUS PIPELINED AND NON-PIPELINED SCL 8051 ALUs

COMPARISON OF VARIOUS PIPELINED AND NON-PIPELINED SCL 8051 ALUs

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

By

Jingyi Zhao

University of Qingdao Technological, P.R.China

Bachelor of Engineering, 2009

August 2012

University of Arkansas

ABSTRACT

 This paper describes the development of an 8-bit SCL 8051 ALU with two versions: SCL

8051 ALU with nsleep and sleep signals and SCL 8051 ALU without nsleep. Both versions have

combinational logic (C/L), registers, and completion components, which all utilize slept gates.

Both three-stage pipelined and non-pipelined designs were examined for both versions. The four

designs were compared in terms of area, speed, leakage power, average power and energy per

operation. The SCL 8051 ALU without nsleep is smaller and faster, but it has greater leakage

power. It also has lower average power, and less energy consumption than the SCL 8051 ALU

with both nsleep and sleep signals. The pipelined SCL 8051 ALU is bigger, slower, and has larger

leakage power, average power and energy consumption than the non-pipelined SCL 8051 ALU.

This thesis is approved for recommendation to the

Graduate Council.

Thesis Director:

Dr. Scott C. Smith

Thesis Committee:

Dr. Jia Di

 Dr. Randy Brown

THESIS DUPLICATION RELEASE

I hereby authorize the University of Arkansas Libraries to duplicate this thesis when needed for

research and/or scholarship.

Agreed

 Jingyi Zhao

Refused

 Jingyi Zhao

ACKNOWLEDGMENTS

Special thanks are due to Dr. Scott Smith for all of his help with my thesis. It would

be impossible to make it through the semester without his help.

Also, special thanks go out to Dr. Jia Di and Dr. Randy Brown. Thank you for

reviewing my thesis and giving me such a lot of good suggestions.

TABLE OF CONTENT

 INTRODUCTION .. 1 I.

 BACKGROUND ... 3 II.

A. Introduction to NCL ... 3

B. Introduction to SCL ... 6

C. Introduction to ALU ... 9

 PREVIOUS WORK .. 12 III.

NCL Non-pipelined 8051 ALU Design .. 12

1. Completion Block design .. 13

2. Completion Extension design ... 14

 APPROACH AND IMPLEMENTION .. 15 IV.

A. NCL Pipelined 8051 ALU Design ... 15

B. SECRII Architecture .. 19

C. SCL 8051 ALU with Both nsleep and sleep Signals ... 20

D. SCL 8051 ALU Without nsleep Design .. 21

 SIMULATION RESULTS AND EXPLANATIONS ... 22 V.

 Area .. 22 A.

1. Non-pipelined comparison .. 22

2. Pipelined comparison .. 23

 Leakage Power ... 24 B.

 Simulation Time and TDD ... 26 C.

1. Non-pipelined .. 26

2. Pipelined .. 27

 Energy for Each Instruction ... 29 D.

1. Non-pipelined .. 29

2. Pipelined .. 30

 Average power ... 32 E.

1. Non-pipelined .. 32

2. Pipelined .. 33

 CONCLUSION ... 34 VI.

REFERENCES ... 34

TABLE OF FIGURES

Figure 1. THmn threshold gate.. 4

Figure 2. (a) NCL gate static implementation; (b) TH23 gate static implementation 4

Figure 3. NCL system framework .. 5

Figure 4. (a) SCL gate structure with sleep and nsleep, and (b) TH23 implementation 7

Figure 5. (a) SCL gate structure without nsleep, and (b) TH23 implementation 8

Figure 6. ECII SCL architecture ... 9

Figure 7. ALU block diagram ... 9

Figure 8. Original NCL 8051 ALU design ... 11

Figure 9. Non-pipelined NCL 8051 ALU block diagram ... 12

Figure 10. Output Completion Block Design ... 13

Figure 11. (a) normal register diagram; (b) revised register diagram ... 14

Figure 12. Stage 1 completion block design ... 16

Figure 13. Completion Block for Stage 2 ... 18

Figure 14. SECRII architecture ... 19

Figure 15. SCL 8051 ALU with nsleep and sleep pipeline structure ... 20

Figure 16. SCL 8051 ALU pipeline structure without nsleep .. 21

Figure 17. (a) TH23 with nsleep & sleep; (b) TH23 w/o nsleep .. 25

Figure 18. Pipeline stage 1 architecture of SCL 8051 ALU ... 28

Figure 19. (a) SCL gates with sleep & nsleep; (b) SCL gates w/o nsleep 31

TABLE OF TABLES

Table 1: Arithmetic instructions ... 10

Table 2: Logic instructions ... 10

Table 3: Non-pipelined SCL 8051 ALU Area Comparison (without buffer) 22

Table 4: Non-pipelined SMTNCL 8051 ALU Area Comparison (with buffer) 22

Table 5: Pipelined SCL 8051 ALU Area Comparison (without buffer) 23

Table 6: Pipelined SMTNCL 8051 ALU Area Comparison (with buffer) 23

Table 7: SCL 8051 ALU Leakage Power Comparison .. 24

Table 8: Non-pipelined SCL 8051 ALU Simulation Time and TDD Comparison 26

Table 9: Pipelined SCL 8051 ALU Simulation Time and TDD Comparison 27

Table 10: Non-pipelined SCL 8051 ALU Energy Consumption Comparison 29

Table 11: Pipelined SCL 8051 ALU Energy Consumption Comparison 30

Table 12: Non-pipelined SCL 8051 ALU Average Power Comparison 32

Table 13: Pipelined SCL 8051 ALU Average Power Comparison .. 33

1

 INTRODUCTION I.

 An Arithmetic Logic Unit (ALU) is a digital circuit that performs arithmetic and logical

operations. The ALU is a fundamental building block of the Central Processing Unit (CPU) of a

computer, and even the simplest microprocessors contain one for purposes such as maintaining

timers. The processors found inside modern CPUs and graphics processing units (GPUs)

accommodate very powerful and very complex ALUs; a single component may contain a

number of ALUs. Therefore, to improve the efficiency and decrease the area of ALUs is

important.

 Currently, most digital circuits are designed using a synchronous approach, which results in

chips requiring precise timing of their components. However, as clock rates have significantly

increased while feature size has decreased, clock skew has become a major problem. High

performance chips must dedicate increasingly larger portions of their area for clock drivers to

achieve acceptable skew, causing these chips to dissipate increasingly higher power, especially at

the clock edge, when switching is most prevalent. Asynchronous, clockless circuits require less

power, generate less noise, and produce less electro-magnetic interference (EMI), compared to

the synchronous counterparts, without degrading performance.

 Therefore, a variation of NULL Convention Logic (NCL) [1], called Sleep Convention

Logic (SCL) was chosen as the design logic for this ALU, as it is a delay-insensitive

asynchronous logic that effectively eliminates such timing dependencies. NCL is a delay-

insensitive (DI) asynchronous (i.e., clockless) paradigm, which means that NCL circuits will

operate correctly regardless of when the circuit inputs become available; therefore, NCL circuits

are said to be correct-by-construction (i.e., no timing analysis is necessary for correct operation).

2

 SCL combines the Multi-Threshold CMOS (MTCMOS) [5] technique with NCL to sleep

the circuit during idle mode, in place of the NULL cycle, to yield a fast ultra-low power

asynchronous circuit design methodology, which requires less area and substantially reduced

energy usage compared to the original NCL circuit.

 In this paper, an SCL 8051 ALU is designed with two versions: one with C/L, registers, and

completion all slept using the gates with both sleep and nsleep; and the other using the new

version of the gates without nsleep. The two versions are then compared in terms of area, leakage

power, and energy per operation for non-pipelined and 3-stage pipelined designs.

3

 BACKGROUND II.

A. Introduction to NCL

 NCL is a delay-insensitive (DI) asynchronous (i.e., clockless) paradigm, which means that

NCL circuits will operate correctly regardless of when circuit inputs become available; therefore,

NCL circuits are said to be correct-by-construction (i.e., no timing analysis is necessary for

correct operation).

 NCL circuits utilize multi-rail logic, such as dual-rail, to achieve delay-insensitivity. A

dual-rail signal, D, consists of two wires or rails, D
0
 and D

1
, which may assume any value from

the set {DATA0, DATA1, NULL}. The DATA0 state (D
0
 = 1, D

1
 = 0) corresponds to a Boolean

logic 0, the DATA1 state (D
0

= 0, D
1
 = 1) corresponds to a Boolean logic 1, and the NULL state

(D
0
 = 0, D

1
= 0) corresponds to the empty set meaning that the value of D is not yet available.

The two rails are mutually exclusive, such that both rails can never be asserted simultaneously.

This state is defined as an illegal state.

 NCL circuits are comprised of 27 fundamental gates. These 27 gates constitute the set of all

functions consisting of four or fewer variables. The primary type of threshold gate, shown in

Fig.1, is the THmn gate, where 1 ≤ m ≤ n. THmn gates have n inputs. At least m of the n inputs

must be asserted before the output will become asserted. NCL threshold gates are designed with

hysteresis state-holding capability such that all asserted inputs must be de-asserted before the

output will be de-asserted, as shown in Fig 2. NCL threshold gates may also include a reset input

to initialize the output. These resettable gates are used in the design of DI registers.

 The NCL gate static implementation has four blocks: reset, set, hold0, and hold1 as shown

in Fig.2 (a). Block set is the gate’s Boolean function that determines when the gate output is

4

asserted. reset determines when the gate output is deasserted, which occurs only when all inputs

are logic0. hold1 is the complement of reset, which holds the output at logic1 once it is asserted

as long as any input remains asserted. hold0 is the complement of set, which holds the output at

logic0 once it is deasserted, until the set logic becomes true to assert the output. Fig.2 (b) shows

the TH23 gate static implementation as an example. The Boolean function of TH23 is AB + AC

+ BC. The Boolean functions of the four blocks are shown as follows:

set = AB + AC + BC; hold0 = CBCABA  ;

reset = CBA  ; hold1 = A + B + C;

Figure 1. THmn threshold gate

Figure 2. (a) NCL gate static implementation; (b) TH23 gate static implementation

5

Figure 3. NCL system framework

 NCL systems contain at least two delay-insensitive (DI) registers, one at both the input and

at the output, and can be finely pipelined by inserting additional registers, as shown in Fig 3.

Two adjacent register stages interact through their request and acknowledge signals, Ki and Ko,

respectively, to prevent the current DATA wavefront from overwriting the previous DATA

wavefront, by ensuring that the two DATA wavefronts are always separated by a NULL

wavefront. The acknowledge signals are combined in the Completion Detection circuitry to

produce the request signal to the previous register stage, utilizing either the full-word or bit-wise

completion strategy.

To ensure delay-insensitivity, NCL circuits must adhere to the following criteria: Input-

Completeness and Observability. Input-Completeness requires that all outputs of a combinational

circuit may not transition from NULL to DATA until all inputs have transitioned from NULL to

DATA, and that all outputs of a combinational circuit may not transition from DATA to NULL

until all inputs have transitioned from DATA to NULL. Observability requires that no orphans

may propagate through a gate. An orphan is defined as a wire that transitions during the current

DATA wavefront, but is not used in the determination of the output. Therefore, any gate that

transitions must contribute to at least one output transitioning.

6

B. Introduction to SCL

 Multi-Threshold CMOS (MTCMOS) [5] incorporates transistors with two or more different

threshold voltages (Vt) in a circuit. Low-Vt transistors offer fast speed but have high leakage,

whereas high-Vt ones have reduced speed but far less leakage current. MTCMOS combines these

two types of transistors by utilizing low-Vt transistors for circuit switching to preserve

performance and high-Vt transistors to gate the circuit power supply to significantly decrease

sub-threshold leakage.

 SCL uses modified static SCL threshold gates without hold1 to implement the

Combinational Logic, static SCL threshold gates with hold1 (SCL1) for the Completion

Detection circuitry, and buffers for large fanout signals (e.g., Sleep/Ki).

 The SCL gate with both sleep and nsleep is illustrated in Fig. 4, where the high-Vt

transistors are circled [4]. During active mode, the Sleep signal is logic 0 and sleep¯¯¯¯ is logic1,

such that the gate functions as normal. During sleep mode, Sleep is logic 1 and sleep¯¯¯¯ is logic0,

such that the output low-Vt pull-down transistor is turned on quickly to pull the output to logic0,

while the high-Vt NMOS gating transistor is turned off to reduce leakage. The set block, the

PMOS transistor of the output inverter, and the output pull-down transistor are low-Vt, since they

are on the critical path. The other transistors are high-Vt to reduce leakage.

 The SCL gate without nsleep is illustrated in Fig. 5 [2], where the high-Vt transistors are

circled. It works similar to the SCL gate with both sleep and nsleep. During active mode, the

Sleep signal is logic 0, such that the gate functions as normal. During sleep mode, Sleep is logic1,

such that the output low-Vt pull-down transistor is turned on quickly to pull the output to logic0,

while the high-Vt NMOS gating transistor is turned off to reduce leakage. The PMOS transistor

7

of the output inverter and the output pull-down transistor are low-Vt, since they are on the critical

path. The transistors located on the bottom of the set block are high-Vt to reduce leakage, while

the rest of the set block transistors are low-Vt to preserve speed. The other transistors are high-Vt

to reduce leakage.

Figure 4. (a) SCL gate structure with sleep and nsleep, and (b) TH23 implementation

8

Figure 5. (a) SCL gate structure without nsleep, and (b) TH23 implementation

 The Early Completion Input-Incomplete SCL architecture, denoted as ECII, ensures input-

completeness through the sleep mechanism, such that input-incomplete logic functions can be

used to design the circuit, which decreases area, and power, and increases speed. In SCL, Early

Completion [1] is utilized instead of regular completion, as shown in Fig 6, where each

completion signal is used as the sleep signal for all threshold gates in the subsequent pipeline

stage. Early Completion utilizes the inputs of registeri-1 along with the Ki request to registeri-1,

instead of just the outputs of registeri-1 as in regular completion, to generate the request signal to

registeri-2, Ko i-1.

9

Figure 6. ECII SCL architecture

C. Introduction to ALU

Figure 7. ALU block diagram

 An ALU is a necessary component of any general-purpose microcontroller/microprocessor.

Fig.7 shows the inputs and outputs of an ALU block. Currently, most digital circuits are designed

using a synchronous approach, which results in chips requiring precise timing of their

components. Functional problems arise when such circuitry is placed in extreme environments,

due to the variances in semiconductor device behaviors. SCL was chosen as the design logic for

this ALU, as it is a delay-insensitive asynchronous logic that effectively eliminates such timing

dependencies, allowing the design to match the specification while operating under extreme

environments, while utilizing substantially less power.

10

 The ALU is capable of executing the following arithmetic operations: add, addc, subb, inc,

dec, inc DPTR, mul, div, and DA. It is also capable of executing the following logical operations:

and, or, xor, CPL, RL, RR, RLC, RRC, and swap.

 The 8051 ALU has three inputs (AL, AOS, and LOS) to choose the instruction to be

executed. “AL” stands for Arithmetic/ Logic; “AOS” stands for Arithmetic Operation Select and

“LOS” stands for Logic Operation Select. The following table shows the instructions that are

chosen by the three inputs [3].

Table 1: Arithmetic instructions

instruction AL AOS LOS input involved output involved

add 0 0 x TMP1, TMP2 resultL, CY, AC, OV

addc 0 1 x TMP1, TMP2, CY resultL, CY, AC, OV

subb 0 2 x TMP1, TMP2, CY resultL, CY, AC, OV

inc 0 3 x TMP1 resultL

dec 0 4 x TMP1 resultL

incDPTR 0 5 0 TMP1, TMP2 resultL, resultH

MUL 0 5 1 TMP1, TMP2 resultL, resultH, OV

DA 0 5 2 TMP1, CY, AC resultL, CY

DIV 0 5 3 TMP1, TMP2 resultL, resultH, OV

Table 2: Logic instructions

instruction AL LOS AOS input involved output involved

and 1 0 x TMP1, TMP2 resultL

or 1 1 x TMP1, TMP2 resultL

xor 1 2 x TMP1, TMP2 resultL

11

CPL 1 3 0 TMP1 resultL

RL 1 3 1 TMP1 resultL

RR 1 3 2 TMP1 resultL

RLC 1 3 3 TMP1, CY resultL, CY

RRC 1 3 4 TMP1, CY resultL, CY

SWAP 1 3 5 TMP1 resultL

 According to the values of AL, AOS, LOS, we set AL as dual rail logic, LOS as quad rail

logic, and AOS as a 6 rail MEAG (Mutually Exclusive Assertion Group). Fig.8 shows the

original design of the NCL 8051 ALU.

genTMP2 genCarry genMinTerm

adder sumMinterms

passTMP passTMP passTMP passTMP passTMP passTMP passTMP

incDPTR MUL DIV DA

passTMPL

logic

MUX MUX MUX MUX

T2i T2m T1da

AC

TMP1bus

CY OV resultH resultL

CYa OVa Sa
L Hi SLCYLQ CYda SdaR

OVd

LmHm

OVm

T1i T1m T2d T1d T1da

Li

TMP2bus AL0 AOS0 AOS1 AOS4 CYi LOS0 LOS1 LOS2AOS3AOS2 AOS5 LOS3 ACi AL1

8 8

8 8

Figure 8. Original NCL 8051 ALU design

12

 PREVIOUS WORK III.

NCL Non-pipelined 8051 ALU Design

 The 8051 ALU has 18 different instructions. Based on the type of instruction executed,

different inputs and outputs would be DATA and the rest of the inputs and outputs will remain

NULL. For example, for CPL, RL, and RR instructions, only the TMP1bus input is used and

resultL will hold the output. On the other hand, for MUL, DIV, and incDPTR, both TMP1bus

and TMP2bus are used and both resultH and resultL will hold the output.

 Because the size of registers cannot be dynamic, a special registration method is used. The

idea is based on the fact that by reading the operation determination signals (AL, AOS, LOS), we

can determine which outputs will be utilized and therefore which registers must be used to

produce the completion signal. The Completion Extension block and Completion block were

designed to produce the completion signal. The connection is shown in Fig.9.

Figure 9. Non-pipelined NCL 8051 ALU block diagram

13

1. Completion Block design

The NCL 8051 ALU has five outputs: resultH, resultL, OV, AC, and CY. For some

operations, not all of the outputs will be used. In this case, Ko won’t be deasserted when the

operation is finished. Therefore, instead of using one 19-bit register for all the outputs, each

output has its own register and Ko signal. And a specialized completion block is designed to

choose which outputs are involved to produce the final Ko.

Four control signals (conRH, conOV, conAC, conCY) were defined in the design to

choose the outputs that are involved in one operation. These control signals will only be

asserted if their corresponding output is not involved in the ALU output for the current

operation, otherwise they stay low. The design of the output completion block is shown in

Fig.10.

Figure 10. Output Completion Block Design

14

 In this design, a revised register with an uninverted Ko is used, as shown in Fig.11 (b).

1

2

ko

D.rail0

D.rail1

ki

Q.rail0

Q.rail1
2

ko

D.rail0

D.rail1

1

2

ko

D.rail0

D.rail1

ki

Q.rail0

Q.rail1
2

(a) (b)

Figure 11. (a) normal register diagram; (b) revised register diagram

2. Completion Extension design

 The completion extension block is designed to generate the control signals that choose

which inputs will be involved in a given operation.

 Table 1 and 2 shows the inputs and outputs that are involved for each instruction.

 In the NCL 8051 ALU design, AL is set as dual rail logic, AOS as six-rail MEAG, and

LOS as quad rail logic. For example when “mul” instruction is chosen, AL = 0, AOS = 5,

LOS = 1, which equals to AL.rail0 = 1, AOS.rail5 = 1, LOS.rail1 = 1.

 Based on the inputs and outputs that are involved for each instruction, the formula of

each control signal is as follows:

conAC = AL
1
 + AL

0
* (AOS

3
 + AOS

4
+ AOS

5
);

conCY = AL
0

* (AOS
3
 + AOS

4
) + AL

0
* AOS

5
* LOS

0
 + AL

0
 * AOS

5
 * (LOS

1
 + LOS

3
) + AL

1

* (LOS
0
 + LOS

1
 + LOS

2
) + AL

1
 * LOS

3
 * (AOS

0
 + AOS

1
 + AOS

2
 + AOS

5
);

conOV = AL
1
 + AL

0
* AOS

5
 * (LOS

0
 + LOS

2
) + AL

0
 * (AOS

3
 + AOS

4
);

15

conRH = AL
0
 * (AOS

0
 + AOS

1
 + AOS

2
) + AL

0
 * (AOS

3
 + AOS

4
) + AL

0
 * AOS

5
 * LOS

2
;

 APPROACH AND IMPLEMENTION IV.

A. NCL Pipelined 8051 ALU Design

 An instruction pipeline is a technique used to increase instruction throughput (the number

of instructions that can be executed in a unit of time). Pipelining does not reduce the time to

complete an instruction, but increases the number of instructions that can be processed at once.

 Each instruction is split into a sequence of dependent steps. The first step is always to fetch

the instruction from memory; the final step is usually writing the results of the instruction to

processor registers or to memory. Pipelining seeks to let the processor work on as many

instructions as there are dependent steps, just as an assembly line builds many vehicles at once,

rather than waiting until one vehicle has passed through the line before admitting the next one.

 As the goal of the assembly line is to keep each assembler productive at all times,

pipelining seeks to keep every portion of the processor busy with some instruction. Pipelining

ideally lets one instruction complete in every cycle.

 In each stage, data is divided into several groups depending on the components that are

involved for each operation. Each stage can be divided into 10 parts: Adder, sumMinterms,

incDPTR, MUL, DIV, DA, logic, AL, AOS, and LOS. For each part, one control signal was

assigned to decide if the component is involved in the operation.

 The stage1 control signals were assigned as follows.

 Con1_adder = AL
1
 + AL

0
 * AOS

5
;

 Con1_genMinterm = AL
0
 + AL

1
* LOS

3
;

16

 Con1_DPTR = AL
1
+ AL

0
 * (AOS

0
 + AOS

1
 + AOS

2
 + AOS

3
 + AOS

4
) + AL

0
 * AOS

5
 * (LOS

1

+ LOS
2
 + LOS

3
);

 Con1_mul = AL
1
 + AL

0
 * AOS

5
 * (LOS

0
 + LOS

2
+ LOS

3
) + AL

0
 * (AOS

0
+ AOS

1
 + AOS

2
 +

AOS
3
 + AOS

4
);

 Con1_DA = AL
1
 + AL

0
 * AOS

5
 * (LOS

0
 + LOS

1
+ LOS

3
) + AL

0
 * (AOS

0
+ AOS

1
 + AOS

2
 +

AOS
3
 + AOS

4
);

 Con1_div = AL
1
 + AL

0
 * AOS

5
 * (LOS

0
 + LOS

1
+ LOS

2
) + AL

0
 * (AOS

0
+ AOS

1
 + AOS

2
 +

AOS
3
 + AOS

4
);

 Con1_logic = AL
0
 + AL

1
 * (LOS

0
 + LOS

1
+ LOS

2
);

 The final Ko1 is generated by the completion block in Fig.12.

Con1_genMinterm

Con1_DPTR

Con1_mul

Con1_DA

Con1_DIV

1

Con1_adder

1

1

1

1

1

Ko1_a

Ko1_s

Ko1_i

Ko1_m

Ko1_da

Ko1_d

1

Con1_logic

Ko1_logic

comp

4 Ko1_al

ko1_aos

ko1_los

ko1

Figure 12. Stage 1 completion block design

Stage 2 is a little different from Stage 1 because for each component, some outputs are not

involved in the result dependent on which operation is being executed. For “adder”, OVa, AC, or

17

CYa may not be used; for MUL, OVm may not be used, for DIV, OVd may not be used. Hence, a

more detailed extension completion design is required for Stage 2.

 There are four outputs in the “Adder” component: AC, CYa, OVa, and Sa. AC, CYa, OVa

may not be used in an operation. Con2_AC, Con2_CYa, Con2_OVa are assigned to decide if any

of the three outputs are used or not.

Con2_AC = AL
1
 + AL

0
 * (AOS

3
 + AOS

4
+ AOS

5
);

Con2_CYa = AL
1
 + AL

0
 * (AOS

3
 + AOS

4
+ AOS

5
);

Con2_OVa = AL
1
 + AL

0
 * (AOS

3
 + AOS

4
+ AOS

5
);

 There are two outputs in the “logic” component: CYL and SL. CYL may not be used in one

operation. Con2_CYL is assigned to decide if CYL is used or not.

Con2_CYL = AL
0
 + AL

1
* [LOS

0
 + LOS

1
 + LOS

2
 + LOS

3
 * (AOS

0
+ AOS

1
 + AOS

2
 + AOS

4
 +

AOS
5
)];

 The completion block design of Stage 2 is shown in Fig.13.

18

Con2_genMinterm

Con2_DPTR

Con2_mul

Con2_DA

Con2_DIV

1

Con2_adder

1

1

1

1

1

Ko2_a

Ko2_s

Ko2_i

Ko2_m

Ko2_da

Ko2_d

Con2_logic

comp

4 Ko2_al

ko2_aos

ko2_los

ko2

Ko2_AC

Ko2_CYa

Ko2_OVa

Ko2_Sa

Con_AC2

Con_CYa

Con_OVa

1

1

1

4

Con_CYL
Ko2_CYL
Ko2_SL3

Figure 13. Completion Block for Stage 2

19

B. SECRII Architecture

In this thesis, an SCL 8051 ALU with sleep and nsleep and an SCL 8051 ALU without

nsleep are designed and compared. Each version has two designs: non-pipelined and pipelined.

The pipelined architecture that is used in this thesis is called SECRII (Slept Early Completion

and Registration Input-Incomplete) [4], as shown in Fig.14.

Sleep early
completion

Sleep DI
Register

MTNCL C/L

Sleep early
completion

Sleep DI
Register

Sleep DI
Register

Sleep DI
Register

MTNCL C/L MTNCL C/L

Sleep early
completion

Sleep early
completion

ko0 ko1 ko2 ko3 ki

input output

Sleep

Sleep
Sleep

Sleep
Sleep

Figure 14. SECRII architecture

 The SECRII architecture has the ability to sleep both completion components and registers

at the same time. It has all the benefits of the SECII [4] in addition to saving more energy and

area because of sleeping the registers.

 Since the registers are now controlled by the sleep signals rather than Ki signals, the

registers are different in SECRII. In order to save area, the two gates required for passing a dual

rail signal share some sleep transistors. These gates use the SCL1 style [4] for the completion

component, and SCL gates for combinational logic (because the new architecture is similar to

FECII, which doesn’t let partial NULL propagate).

20

C. SCL 8051 ALU with Both nsleep and sleep Signals

 The SCL 8051 ALU with both sleep and nsleep pipeline structure is shown in Fig.15,

which utilizes the SECRII architecture with the SCL gates that have both nsleep and sleep inputs.

LOS_r0

resultH 8

resultL

8OV

AC
CY

C/L

REG

REG REG
C/L C/L

AL_r1

AOS_r1

LOS_r1 REG
AOS_r0

ko1

AL_r0

REG

TMP1bus

TMP2bus

AL

AOS

LOS

ko2

co
n

R
H

co
n

O
V

co
n

A
C

Completion
Extension

co
n

C
Y

Completion
Block

ko3

AL_r2

AOS_r2

LOS_r2

Con_stage2

Completion
Extension

Completion
Block

Con_stage1

Completion
Block

Completion
Extension

AC,CY,OV

Completion
Extension

Completion
Block

Con_stage0

ko

Ko, nko Ko1, nko1 Ko2, nko2 Ko3, nko3

REG

REG

ki

sleep
nsleep

Figure 15. SCL 8051 ALU with nsleep and sleep pipeline structure

21

D. SCL 8051 ALU Without nsleep Design

 The SCL 8051 ALU without nsleep pipeline structure is shown in Fig. 16, which utilizes

the SECRII architecture with the SCL gates that only have a sleep input.

LOS_r0

resultH 8

resultL

8OV

AC
CY

C/L

REG

REG REG
C/L C/L

AL_r1

AOS_r1

LOS_r1 REG
AOS_r0

ko1

AL_r0

REG

TMP1bus

TMP2bus

AL

AOS

LOS

ko2

co
n

R
H

co
n

O
V

co
n

A
C

Completion
Extension

co
n

C
Y

Completion
Block

ko3

AL_r2

AOS_r2

LOS_r2

Con_stage2

Completion
Extension

Completion
Block

Con_stage1

Completion
Block

Completion
Extension

AC,CY,OV

Completion
Extension

Completion
Block

Con_stage0

ko

ko ko1 ko2 ko3

REG

REG

ki

sleep

Figure 16. SCL 8051 ALU pipeline structure without nsleep

22

 SIMULATION RESULTS AND EXPLANATIONS V.

 The simulation was run in Mixed Signal simulation mode in UltraSim simulator. Four

implementations of an 8051 ALU utilizing SCL gates were simulated at the transistor level, after

inserting buffers, using the 1.2V IBM 8RF-LM 130nm CMOS process, and compared in terms of

area, leakage power, and energy per operation, average power and average cycle time (TDD).

The SCL 8051 ALU with nsleep and sleep has lower leakage power, but it is slower than SCL

8051 ALU without nsleep. Comparing the SCL 8051 ALU with nsleep and sleep to the SCL

8051ALU without nsleep, the SCL 8051 ALU without nsleep is faster, smaller, and requires less

energy per operation, but bigger average power than the version without nsleep.

 Area A.

1. Non-pipelined comparison

 Table 3: Non-pipelined SCL 8051 ALU Area Comparison (without buffer)

 gates NFETs PFETs Transistors Area (um^2)

SCL (without nsleep) 1330 7973 7408 15381 301

SCL (sleep & nsleep) 1336 9276 7922 17198 347

 Table 4: Non-pipelined SMTNCL 8051 ALU Area Comparison (with buffer)

 gates NFETs PFETs Transistors Area (um^2)

SMTNCL (without nsleep) 2079 8740 8175 16915 356

SMTNCL (sleep & nsleep) 1685 9677 8323 18000 399

23

2. Pipelined comparison

 Table 5: Pipelined SCL 8051 ALU Area Comparison (without buffer)

 gates NFETs PFETs Transistors Area (um^2)

SCL (without nsleep) 1775 10962 10199 21161 412

SCL (sleep & nsleep) 1819 12639 10670 23309 468

 Table 6: Pipelined SMTNCL 8051 ALU Area Comparison (with buffer)

 gates NFETs PFETs Transistors Area (um^2)

SMTNCL (without nsleep) 2756 11961 11198 23159 483

SMTNCL (sleep & nsleep) 2273 13208 11239 24447 535

The SCL 8051 ALU (nsleep & sleep) is bigger than the SCL 8051 ALU without nsleep.

Compare the gate structures shown in Fig. 4(a) and Fig. 5(a), there is one more NFET in

SCL gates with nsleep and sleep than SCL gates without nsleep. It reduces the area of SCL

ALU without nsleep.

Before being buffered, the SCL 8051 ALU w/o nsleep has fewer gates than the one with

both sleep and nsleep. The reason is the SCL 8051 ALU with both nsleep and sleep needs

many “invx0” gates to generate “nko” for each stage.

After being buffered, the SCL ALU w/o nsleep has more gates than the version with

both sleep and nsleep. For each node, the gates w/o nsleep have a little higher load

capacitance than the gates with both nsleep and sleep. The buffer script added several small

size buffers “inverter_a” for the nodes in the SCL ALU w/o nsleep. Buffer “inverter_a” is

the minimum sized buffer, so it didn’t add much area to the overall ALU.

24

 Leakage Power B.

 Table 7: SCL 8051 ALU Leakage Power Comparison

 non-pipelined(nW) 3-stages pipelined(nW)

SCL (nsleep & sleep) 149.7 156.2

SCL (w/o nsleep) 160.1 183.6

 The leakage power of the version with both sleep & nsleep is slightly less compared to the

version w/o sleep.

 Pleakage = VDD Ileakage , and leakage current is influenced by transistor width, supply voltage,

and transistor threshold voltages. For SCL gates without nsleep, they utilize high-Vt for the

NFETs at the bottom of “set” block (Fig.17. b). Compared to the SCL gates with both nsleep and

sleep (Fig.17.a), the high-Vt transistor width has increased. Because of the bigger high-Vt

transistor width, the leakage current increases a little more than the gates with both nsleep and

sleep.

25

Figure 17. (a) TH23 with nsleep & sleep; (b) TH23 w/o nsleep

26

 Simulation Time and TDD C.

1. Non-pipelined

Table 8: Non-pipelined SCL 8051 ALU Simulation Time and TDD Comparison

instruction
SCL(w/o nsleep) SCL(nsleep & sleep)

simulation time (ns) TDD(ns) simulation time (ns) TDD(ns)

add 61.6 6.2 85.7 8.6

addc 63.7 6.4 83.0 8.3

subb 63.6 6.4 84.5 8.5

inc 63.2 6.3 84.3 8.4

dec 63.2 6.3 84.7 8.5

incDPTR 58.2 5.8 81.4 8.1

MUL 68.5 6.9 98.9 9.9

DA 56.5 5.7 81.8 8.2

DIV 90.5 9.0 120.8 12.8

and 56.5 5.7 78.5 7.9

or 56.6 5.7 79.9 8.0

xor 56.6 5.7 79.9 8.0

CPL 56.7 5.7 77.9 7.8

RL 56.7 5.7 77.8 7.8

RR 56.6 5.7 77.7 7.8

RLC 56.6 5.7 77.5 7.8

RRC 56.6 5.7 77.4 7.7

SWAP 56.5 5.7 77.5 7.8

27

2. Pipelined

Table 9: Pipelined SCL 8051 ALU Simulation Time and TDD Comparison

instruction
SCL(w/o nsleep) SCL(nsleep & sleep)

simulation time (ns) TDD (ns) simulation time(ns) TDD (ns)

add 69.8 7.0 117.2 11.7

addc 76.3 7.6 122.8 12.3

subb 78.1 7.8 124.7 12.5

inc 77.5 7.8 124.3 12.4

dec 77.7 7.8 124.8 12.5

incDPTR 74.7 7.5 121 12.1

MUL 86.4 8.6 136.4 13.6

DA 74.0 7.4 121.2 12.1

DIV 97.5 9.8 161 16.1

and 67.5 6.8 120.5 12.0

or 63.2 6.3 116.3 11.6

xor 63.3 6.3 116.3 11.6

CPL 66.4 6.6 113.4 11.3

RL 66.7 6.7 112.9 11.3

RR 66.5 6.7 112.9 11.3

RLC 66.6 6.7 112.8 11.3

RRC 66.6 6.7 112.7 11.3

SWAP 66.6 6.7 112.7 11.3

 The w/o nsleep version has a shorter TDD. Because the SCL w/o nsleep gates have one

less NFET than SCL nsleep & sleep gates, the rise time for SCL w/o nsleep gates is shorter than

SCL nsleep & sleep gates.

28

 Unexpectedly, after pipelining the SCL 8051 ALU, the TDD is even longer than the non-

pipelined ALU. This is because the added completion extension block needed to choose which

signals are involved in each operation.

LOS_r0

C/L

REG
AOS_r0

ko1

AL_r0

REG

ko2

Completion
Extension

Completion
Block

Con_stage1

REG

REGDATA

AL, AOS, LOS

Stage 1

Figure 18. Pipeline stage 1 architecture of SCL 8051 ALU

 Take operation “add” as an example, in the first stage of operation “add”, shown in Fig. 18,

the worst case delay of the C/L is 553.51 ps while the worst case delay of stage 1 completion

extension is 1046.1 ps. The design of “completion extension” extends the simulation time for

each stage, in this case the whole simulation time is also extended which explains why the

simulation time and TDD for the pipelined ALU is longer than the non-pipelined ALU.

29

 Energy for Each Instruction D.

1. Non-pipelined

Table 10: Non-pipelined SCL 8051 ALU Energy Consumption Comparison

instruction SCL(w/o nsleep) (pJ) SCL (nsleep & sleep) (pJ)

add 52.3 87.5

addc 58.1 91.5

subb 57.8 91.9

inc 57.8 90.4

dec 56.8 91.1

incDPTR 60.3 94.1

MUL 71.7 102.8

DA 58.9 91.8

DIV 71.3 104.5

and 56.9 90.1

or 54.6 90.2

xor 54.6 90.7

CPL 53.5 90.0

RL 53.0 89.6

RR 53.6 89.2

RLC 53.2 89.1

RRC 53.2 88.1

SWAP 54.0 90.1

30

2. Pipelined

Table 11: Pipelined SCL 8051 ALU Energy Consumption Comparison

instruction SCL(w/o nsleep) (pJ) SCL (nsleep & sleep) (pJ)

add 59.3 90.1

addc 63.0 100.2

subb 63.3 99.9

inc 62.2 99.5

dec 61.8 98.9

incDPTR 63.9 101.6

MUL 72.2 113.3

DA 63.4 100.4

DIV 73.9 111.9

and 60.8 100.1

or 60.2 98.1

xor 60.1 97.5

CPL 59.6 96.1

RL 59.7 96.4

RR 59 97.7

RLC 59.8 97.4

RRC 59.3 96.9

SWAP 60.4 96.7

 From the table above, the SCL version without nsleep consumes less energy than the

version with both nsleep and sleep.

 leakageDDpeakDDscDDL IVfIVtfVCP  
2

,

Where Pdynamic = fVC DDL

2
 .

31

 SCL gates w/o nsleep remove the NFET which is driven by nsleep. This reduces the load

capacitance, which decreases both energy and dynamic power. Also, the total number of

transistors in the SCL 8051 ALU with both nsleep and sleep is more than the SCL 8051 ALU

w/o nsleep, which also decreased the total energy consumption for the version w/o nsleep.

Figure 19. (a) SCL gates with sleep & nsleep; (b) SCL gates w/o nsleep

32

 Average power E.

1. Non-pipelined

Table 12: Non-pipelined SCL 8051 ALU Average Power Comparison

instruction SCL(w/o nsleep) (mW) SCL (nsleep & sleep) (mW)

add 0.74 0.77

addc 0.74 0.81

subb 0.75 0.80

inc 0.73 0.80

dec 0.72 0.79

incDPTR 0.79 0.84

MUL 0.82 0.93

DA 0.78 0.83

DIV 0.86 0.96

and 0.83 0.85

or 0.85 0.85

xor 0.85 0.87

CPL 0.79 0.85

RL 0.78 0.85

RR 0.79 0.86

RLC 0.79 0.86

RRC 0.79 0.86

SWAP 0.80 0.86

33

2. Pipelined

Table 13: Pipelined SCL 8051 ALU Average Power Comparison

instruction SCL (w/o nsleep) (mW) SCL (nsleep & sleep) (mW)

add 0.96 1.02

addc 0.99 1.10

subb 0.99 1.09

inc 0.98 1.07

dec 0.98 1.07

incDPTR 1.09 1.15

MUL 1.27 1.35

DA 1.12 1.25

DIV 1.13 1.27

and 1.08 1.14

or 1.06 1.13

xor 1.06 1.13

CPL 1.05 1.15

RL 1.05 1.15

RR 1.04 1.15

RLC 1.06 1.15

RRC 1.05 1.14

SWAP 1.07 1.16

 The SCL 8051 ALU w/o nsleep has a lower average power than the SCL 8051 ALU with

both nsleep and sleep inputs, even though the version w/o nsleep has a higher leakage power.

However, compared to the dynamic power, the leakage power is small and can be ignored. The

reason that the SCL 8051 ALU with both sleep & nsleep has a higher dynamic power has already

been explained in Section D.

34

 The pipelined SCL 8051 ALU has a higher average power than the non-pipelined SCL 8051

ALU because the pipelined version has more gates than the non-pipelined version.

 CONCLUSION VI.

 This thesis first pipelined a previous design of an NCL 8051 ALU, and then designed both

pipelined and non-pipelined SCL 8051 ALU versions, using gates with both nsleep and sleep

signals, and using gates with just a sleep signal. The SCL 8051 ALU reduced the leakage power

and total energy consumption compared to the NCL 8051 ALU. The SCL 8051 ALU without

nsleep version provides many advantages such as smaller, faster and lower energy consumption,

but has a higher leakage power.

REFERENCES

[1] S. C. Smith and J. Di, Designing Asynchronous Circuits using NULL Convention Logic

(NCL), Synthesis Lectures on Digital Circuits and Systems, Vol. 4/1, July 2009, Morgan &

Claypool Publishers (doi: 10.2200/S00202ED1V01Y200907DCS023);

[2] L. Zhou, S. C. Smith, and J. Di, "Bit-Wise MTNCL: An Ultra-Low Power Bit-Wise

Pipelined Asynchronous Circuit Design Methodology," IEEE Midwest Symposium on Circuits

and Systems, pp. 217-220, August 2010.

[3] Atmel 8051 Microcontrollers Hardware Manual;

[4] Jia Di, S. C. Smith, “Ultra-low Power Multi-Threshold Asynchronous Circuit Design”,

United States Patent, Patent No.: US 8,207,758 B2, Jun 26, 2012;

[5] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J.Yamada, “1-V Power

Supply High-Speed Digital Circuit Technology with Multithreshold-Voltage CMOS,” IEEE

Journal of Solid-State Circuits, Vol. 30/8, pp. 847-854, August 1995.

http://comp.uark.edu/~smithsco/SCSmith_8244.pdf
http://comp.uark.edu/~smithsco/SCSmith_8244.pdf

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	8-2012

	Comparison of Various Pipelined and Non-Pipelined SCl 8051 ALUs
	Jingyi Zhao
	Recommended Citation

	tmp.1472046846.pdf.9cgPa

