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Abstract 

To produce fermentable sugars from lignocellulosic biomass feedstock, severe pretreatment 

conditions are needed (either high acid concentration, temperature, or retention times). High 

severities can produce toxic byproducts which inhibit enzymatic hydrolysis or fermentation. In 

order to reduce pretreatment severities (and thus increase enzyme and fermentation efficiency), 

the white-rot fungus Pleurotus ostreastus was seeded into square and round bales of Kanlow 

switchgrass (Panicum virgastum L.) and left in the field over a period of 9 month. The laccase 

producing fungus is believed to selectively degrade lignin, a common plant structural polymer, 

which can function as an enzymatic inhibitor. Samples were taken from different elevations 

within the bale 3, 5, 7, and 9 months after harvesting. These samples were treated at three 

different severities with liquid hot water pretreatment. Compositional analysis was done on the 

pretreated biomass, which was then enzymatically hydrolyzed with cellulases (endoglucanase 

and beta-glucosidase) after being washed. The yields (total recovered sugars over total present) 

were calculated and compared along five different variables: fungal treatment, storage time, 

pretreatment severity, sampling depth, and washing volumes. The results of the study found 

significant effects for sampling time (p=.0024) and pretreatment severity (p<.0001), but found no 

such significance in the effects of washing (p=.6624) and sampling depth (p=.0693). Results 

regarding the fungal inoculation were inconclusive, but provided the basis for the creation of 

experiments to be carried out in future work.  
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1. Introduction 

The current production of ethanol in the United States is done through the fermentation of 

sugars derived from starch or sucrose, mostly from corn (Bothast et al., 2005). However ethanol 

derived from food sources such as corn has several negative consequences on food prices and 

land and water resource use, such as land and water (Searchinger et al., 2008). One alternative 

solution to these ‘first generation’ attempts at producing biofuel from corn is the usage of 

cellulosic sources for the sugar needed for fermentation, known as ‘second generation’ biofuel 

(Sims et al., 2010). Cellulosic sources, such as wood or grasses, do not compete with food crops 

for resources and are a more sustainable approach to satisfy the demand for renewable fuels. 

Native plants which require little irrigation or maintenance are ideal feedstock sources for second 

generation biofuels, as such material does not compete or consume as many resources during 

cultivation as food crops do. If such a biomass source could be used then many of the issues with 

first generation biofuel could be solved.  

 However, lignocellulosic biomass, such as switchgrass,displays a tightly woven plant cell 

wall that contains lignin.  Lignin is a complex polyphenol molecule composed of multiple 

subunits which can vary between plant species (Ruiz-Duenas et al., 2009). The role of lignin in 

the plant cell walls protect the cellulose fibers from hydrolytic attack, which is the process 

intrinsic to second-generation biofuels manufacturing to extract fermentable sugars from 

biomass. Unlike cellulose, lignin has a unique composition from species to species. Lignin can 

be extracted from biomass separately from cellulose and hemicellulose. A technique common to 

the pulping and forestry industries uses low-boiling solvents and high temperatures to separate 

out the fundamental components of biomass (Quesada-Medina et al. 2010). Though these 

techniques were first developed for woody biomass, the basic principles apply across all types, 
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including herbaceous crops. With solvents, such as acetone and ethanol, combined with 

sufficiently long reflux times, lignin can be removed from plant cell walls (Obst et al., 1998). 

The extracted lignin produced though solvent extraction is known as milled wood lignin. 

Additional extractives, like oils and other plant metabolites, are also present in the lignin-

containing fractions. Lignin removal, or isolation, can be achieved using more advanced 

techniques, such as centrifugal fractionation. However if solvents, such as alkaline sodium 

sulfide, or white liquor, are used, the lignin recovered from the biomass separation is considered 

to be physically different from the lignin within the biomass; this new configuration of lignin is 

called Kraft lignin (Obst et al., 1988). It is important to note that most lignin extraction 

techniques do not remove all of the lignin in one pass, as the variety of lignin components within 

a given biomass require sequential extraction techniques.  

 The National Renewable Energy Laboratory has methods for the determination of total lignin 

content of biomass, which can provide a baseline for further study. This technique, as 

highlighted in Sluiter and Sluiter 2010, does not determine which types of lignin are present or 

what their properties may be. Instead it provides a mass of lignin present in the biomass. Further 

detailed characterization and quantification requires a multitude of analytical techniques, such as 

nuclear magnetic resonance, gas chromatography, and mass spectrometry. A variety of detection 

techniques can be employed to determine the structure and property of different lignin types. 

Through analysis, typically mass spectrometry, the structural units that compose lignin (known 

as H, G, and S types) can be found and the ratio of each type within biomass can be used as a 

basis for classification (Crestini et al., 2011). The bonds between lignin subunits can be broken 

by a multitude of techniques and analyzed by gas chromatography.  However this separation 
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technique only separates the major subunits and does not fully quantify the nature of the lignin 

molecule (Parkas et al., 2007).  

 As lignin degradation compounds are considered as the leading cause of biomass 

recalcitrance in second-generation biofuel production platform, much research has focused on 

how to neutralize or remove lignin present in the biomass. The pulp and paper industry has 

decades of experience in the field of removing lignin and detoxifying plant biomass processing 

streams via Kraft pulping (Bajpai et al., 2012). The problems faced in the pulp and paper 

industry such as large (over 50%) amounts of biomass waste, transportation, and storage are well 

known and are similar to the obstacles faced by second generation biofuel plants (Towers et al. 

2007). 

 However, many lignin extraction techniques exist, which can be applied as part of the 

biomass pretreatment, depending on the results of the lignin characterization. For example, 

laccases, a common class of enzyme with lignin degrading properties, do not act on the lignin 

molecule itself, but rather the on the subunits which make up the compound (Chen et al., 2012). 

Different types of laccase have preference for different subunits, and without proper 

quantification it would be impossible to determine and characterize these enzymes, or perform 

the necessary pretreatment procedure. In order for a good pretreatment or enzymatic hydrolysis 

step to take place, it will be necessary to remove the types of lignin which are specifically 

inhibitory towards cellulases as well as to understand the chemical alterations that occur to the 

lignin after chemical pretreatment. 

 Likewise, genetic modification of species with high biomass productivity to alter their lignin 

content (usually in order to lower it) requires accurate and precise measurements of the nature of 

the lignin within the plant cell wall (Lubieniechi et al., 2013). Delignification as a whole is not 
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considered as important as removing the right types of lignin structures, which again requires 

sufficiently advanced detection mechanisms to gauge the effectiveness of any given 

pretreatment. For example, the ratio between G and S lignin can have significant effects on the 

saccharification of switchgrass (though this does not mean that this relationship holds true for all 

biomass).  These changes do not always effect plant physiology in obvious ways, and thus more 

advanced detection methods are needed (Fu et al., 2011).  

Recalcitrance of biomass can be addressed through lignin removal, which results in a 

cellulose and hemicellulose matrix ready for glucose release through saccharification  (Du et al., 

2010, Zeng et al. 2014). The saccharifiedstream, containing glucose and xylose-containing  

fermentable sugars, can be useful as a source for fermentation. The nature of pretreatments, 

which are essential prior to saccharification, can vary widely both in terms of cost and efficiency. 

These pretreatment technologies can significantlyalter biomass, resulting in ensuing processing 

streams that are laden with chemicals, which are toxic to further downstream processing steps 

that require yeast or other fermenting organisms. These chemicals or byproducts are also 

inhibitory to saccharification enzymes (Rajan and Carrier, 2014). This poses an additional 

challenge to the second-generation biofuel platform, as not only must cellulose must be 

saccharified into glucose, but the unwanted byproducts formed during the process must also be 

removed if the process is to be successful in generating ethanol or other biobased products 

(Chandel et al., 2011). 

There exists numerous pretreatment technologies, with one such pretreatment process 

being liquid hot water pretreatment (LHW). A LHW pretreatment consists of holding a 

processed amount of biomass at a high temperature and controlled pH for a set amount of 

time(Kim et al., 2009).  LHW opens the tightly woven plant cell wall through the solubilization 
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of hemicellulos, resultingin cellulose being more receptive to enzymatic digestion or 

saccharification. Unfortunately, LHW pretreatment produces unwanted byproducts, with furans 

and furan derivatives being primary products. Concentration of furan and furan derivatives in 

pretreatment hydrolyzate can be decreased by reducing LHW temperature; however, doing so 

also decreases the eventual recovery of glucose, as the plant cell wall has not released as much 

hemicellulose, decreasing the ability of the enzymes to saccharify cellulose.On the other hand, 

decreasing pretreatment temperatures and processing times, often referred to as a combined 

severity factor (Abatzoglou et al. 1992), represent an energy cost for the process. If these 

processing temperatures and times could be reduced, making the overall biomass deconstruction 

process less energy intensive, but without a decrease in saccharification yields, the complete 

process would be more sustainable. 

An approach to reducing pretreatment severity while still achieving 70%-90% glucose 

recovery, is to modify the composition of the biomass prior to pretreatment, by selectively 

removing lignin or hemicellulose. To this end a number of different strategies have been 

attempted, among them the use of lignin and hemicellulose degrading fungi to digest those parts 

of the biomass while leaving the cellulose fraction untouched (Gupta et al., 2011).  The 

overarching goal of this research project is to design a processing stream that would enable 

saccharification of biomass at a low pretreatment severity, through a combination of 

pretreatment and storage technology.  
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2. Literature review 

2.1 Fungal pretreatment 

Both bacterial and fungal organisms can degrade lignin, though fungal degradation has been 

shown to be the superior mechanism in terms of yields and thus is the primary area of focus for 

research (Sakdaronnagong et al.2012). Fungal influence on cellulosic biomass has been studied, 

both on the large (farm) scale and small (lab).Farm studies tended to only look at composition of 

biomass after storage with biofuels not as a primary focus for the research. Fungal pretreatment 

tends to cause decreases in total organic matter, but increases the cellulose component of the 

biomass by selectively degrading lignin (Gupta et al.,2011). This lignin degradation can be 

accompanied by holocellulose degradation as well. While cellulose content may be increased by 

the removal of lignin, the total amount of cellulose can only either decrease or remain constant. 

Effective fungal pretreatment relies on optimizing the species and incubation conditions in order 

to increase overall cellulose content as well as total yields.  

 The use of fungus for biomass pretreatment has been reported for wheat straw. Interestingly, 

wheat straw is very similar to switchgrass in terms of composition (AFDC Biomass database). 

Wheat straw and switchgrass lignin have similar S/G ratio, corresponding to the ratio of S, 

syringyl phenylpropanoid units, and G, guaiacyl subunits found in lignin polymers. S/G ratios of 

0.63 for wheat straw and 0.68 for switchgrass have been reported (Zeng et al.,2013 and Huet al., 

2010).  

 Studieswith the fungiPleurotus. ostreatus have shown that carbohydrate lossis slower when 

conducted in a laboratory scale environment with only 5% carbohydrate loss after 63 days (Vane 

et al.,2001), as compared to 42% loss reported for  field environments (Adamovicet al. 1998). In 

rice straw, P. ostreatus degraded 48% of the hemicellulose present in the control group over a 

period of 48 days (Taniguchiet al.,2005). A similar result was reported with 52% degradation of 
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hemicellulose over 21 days on the laboratory scale, with only 22% cellulose and 27% lignin 

degradation (Salvachua, 2011). This indicates that P. ostreatus has, across multiple types of 

biomass and growing conditions, a preference for the degradation of hemicellulose. This may be 

attributed to competing organisms that are able to degrade other parts of the cell wall after the 

fungus removes the lignin, as the digestibility of the biomass as a whole is lowered (Zadrazilet 

al.,2011). 

 Relative to other white rot fungiP. ostreatus was found to be more selective towards lignin 

by virtue of not degrading as much cellulose as other fungus, which could be up to 58% for some 

other tested species such as P. chysoporium (fast growing) and T. versicolor (Taniguchiet al., 

2005). Overallyields of fungal pretreated biomass, however, have to account for the lost 

saccharification potential as a result of the degradation of carbohydrates, as well as the expensive 

cost of fungal spawn (Sainoset al., 2006). While up to 52% of the available cellulose was 

solubilized, only 33% of the total possible glucose was recovered; the low glucose recovery 

could possibly be attributed to degradation of cellulose  by P. ostreatusduring pretreatment, 

making fungal pretreatment alone unfeasible for biofuel production despite its low cost 

(Taniguchiet al., 2005).  

 A multitude of other fungi have also been used for the removal of lignin from biomass. Some 

examples include Phanerochaete chrysosporium, Ceriporiopsis subvermispora, Coriolus 

versicolor, and Pleurotus eryngi, on substrates such as corn stalks, cotton residues, bamboo, 

beech wood, and wheat straw (Sawada et al.1995, Itohet al. 2003, Zhanget al. 2007, Camareroet 

al. 1994, Hattakaet al. 1983). Quantities of lignin removed in each case were both species and 

substrate dependent, and the types of lignin removed (when such analysis was done) also varied 

between species and substrate (Camarero et al.,1994). Saccharification yields were increased 
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between 1.6 (on bamboo) and 2.3 (on beech wood) times the amount that could be achieved 

without pretreatment (Itoh et al.2003, Zhanget al. 2007). Camarero  et al., 1994, reported that, 

although lignin degrading peroxidase enzymes were not known to be produced by the Pleurotus 

family of fungi, there was still preferential degradation of phenolic lignin by the species.  

 The decomposition of lignin is accomplished by the white-rot fungi Basidiomycetous 

(Lundellet al., 2010). This is accomplished through the secretion of a multitude of metabolizing 

proteins and acids, among them being peroxidases and laccases. In biological pretreatment, 

either the fungus itself or laccases/peroxidases derived from fungi typically are used, followed by 

an alkaline wash (Heap et al.2014). This wash step is considered to be additional pretreatment, 

and is not the same as washing procedure proposed by the National Renewable Energy 

Laboratories (NREL) (Kelleret al. 2002).  

 Basidiomycete’s ligninolytic activity is largely a function of the lignin peroxidases (LiP) 

as a correlation exists between the expression of LiP and weight loss in biomass. It is suspected 

that LiP can account for an extra 17.6 milligramsper gram of released reducing sugars during 

enzyme hydrolysis per gram of pretreated biomass, compared to no correlation to active laccases 

(Pinto et al.2012). Laccase activity has not as of yet been correlated to greater amounts of 

saccharification in enzymatic hydrolysis.  

 The degradation reaction provides additional benefits to biomass prior to pretreatment and 

saccharification such as reduction in particle size and changes in biomass composition which can 

improve enzymatic hydrolysis yields. Fungal pretreatment can also reduce the quantity of 

organic acids, a known enzyme inhibitor (Balan et al.2008). Additionally, some studies on 

Arabidopsishave shown that the degradation of lignin is not proportional to future 

saccharification yields but dependent on the biomass composition, specifically the lignin and 
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carbohydrate types present (Cooket al. 2015). It is known that lignin is the main barrier to rumen 

digestion and studies have shown that delignification of biomass can increase the digestibility of 

the remaining cellulose by up to 99% depending on the biomass (Mukherjee and Nandi , 2004). 

The biomass source is important, as studies on Cypromeria japonicaon recalcitrant cedar wood 

have shown that even highly effective lignin removing fungi, up to 45% removal in cedar after 

20 weeks,was unable to make the biomass more digestible than rice straw. In this study plain rice 

straw was easier to saccharify even with 45% of the cedar’s lignin removed (Okanoet al. 2005).  

2.2 Storage losses 

 Biomass stored in bales has a natural rate of degradation over time. Dry mass losses from 

switchgrass stored for a year or more can be accompanied by mass losses as high as 40% 

(Mooneyet al., 2012). These losses can be mitigated by protective measures such as tarps, bale 

size and shape, moisture content while harvesting, and short storage times (Mooneyet al., 2012). 

Mass losses are partially the result of losing moisture after harvesting, depending on the moisture 

content of the harvested material when baling  and can account for as much as three quarters of 

all mass lost during storage(Monti et al., 2009). All these methods have an associated cost per 

ton as well as other incidental costs such as energy consumed during harvesting and greenhouse 

gas emissions produced (Kumar et al.,2007). Mass rate loss slows down over time and tends to 

reach a constant value near the end of the storage time. In addition, dry matter loss has a 

tendency to increase with time and total precipitation, at a decreasing rate (Larsonet al., 

2010).Thus while certain procedures (such as covering the bales) does improve eventual 

saccharification yields, the cost of these storage options must be taken into consideration when 

considering the entire processing chain of lignocellulosic ethanol.  
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 Reasons for storage losses, other than water, are typically because of digestion of the biomass 

by natural plant-matter consuming organisms. Harvesting biomass while dry (< 40% moisture 

content) tends to result in high losses during cutting and baling, while harvesting while wet 

(>60%) tends to promote biological growth which can convert the biomass into CO2 (Emery and 

Mosier, 2012). In addition, because it has been shown that high moisture contents can deliver 

better delignification (and thus better saccharification), harvesting at higher moisture contents 

should be seen as preferable (Shi et al.2008). The weathered layer in particular suffers large mass 

losses over time due to exposure to moisture, with up to 23% more decrease in available material 

from bagasse when compared to unweathered biomass (Sanderson et al.,1997). The consortia of 

organisms, which use biomass as a substrate, aremade up ofby microbial organisms. Studies in 

biomass storage are well known for common animal feed crops and likewise not much 

information exists on the storage properties intended for other uses (Emery and Mosier,2012). 

Storage losses are affected by a number of variables. Data regarding specifics with respect to 

causes and effects between planting, harvesting, and baling conditions tends to be highly variable 

across the literature. Storage technique can also affect enzymatic hydrolysis yields and alter the 

profile of sugars and byproducts formed in the bioprocessing chain, as storage area (either in the 

field or in a barn) had significant effects on the lignin composition of switchgrass (Djioleu et 

al.,2014). These changes might increase or decrease the success of fungal colonization (both 

natural and intentional) and thus must be considered as white rot fungi require lignin to become 

established (and thus low-lignin storage methods might actually hamper pretreatment yields). 

The same study also found no significance in the glucose compositions of the bales independent 

of storage area, whereas other components (xylose and organic acids) were found to have 

significantly different values after pretreatment. This combination of storage and compositional 
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change (or no change) has to be considered in any biofuel processing chain trying to use stored 

biomass.  

2.3 Liquid hot water pretreatment (LHW) 

Liquid hot water pretreatment (LHW) (also called hydrothermal pretreatment) is a non-acid 

using autohydrolysis method for pretreating biomass which does not require acid-resistant steel 

reactors or feedstock reduction to sizes below 3 mm (van Walsum et al., 1996). In comparison to 

other pretreatment technologies, such as acid hydrolysis,  LHW pretreatment offers minimization 

of losses of oligosaccharides (Wyman et al., 2005) and decreases the need to mitigate the 

generation of with acidic and other waste products (Laser et al., 2002). 

 Typical enzymatic hydrolysis yields range from 35% to 80% recovery of available cellulose. 

These results occur at higher temperatures and solubilize many xylo-oligomers. Furans are 

another byproduct of LHW pretreatment, which can be inhibitory in downstream hydrolysis and 

fermentation reactions (Kimet al., 2008). The pH during LHW is kept in a range between 4 to 7, 

in order to reduce the number of sugar degradation products formed during the reaction. As the 

pH of water itself changes with temperature, this restricts the upward bound of LHW treatments 

to around 200 °C (Kimet al., 2009). LHW treatment works by the process of hydrothermolysis to 

separate and solubilize hemicellulose, thereby disrupting the cell wall and rendering the biomass 

easier for enzymes to digest. Temperatures are maintained at supercritical levels by means of 

pressurized reactor vessels. In addition, temperatures and times tended to have no effect on the 

results of the subsequent enzymatic hydrolysis (Mosieret al., 2005).  

 

Optimization for LHW pretreatment requires adjusting the temperature, time, and pH for which 

the biomass is exposed (Mosieret al., 2005). In this study, the optimization process resulted in an 
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eventual 90% recovery of maximum possible glucose from the substrate (corn stover) and 88% 

of maximum possible ethanol during fermentation. These results are confirmed by multiple 

similar studies on different biomass types (Perezet al. 2008, Yuet al. 2010). A well-optimized 

LHW pretreatment process for switchgrass specifically was found to be similar, with recoveries 

of glucose up to 100% (Kimet al., 2008). In comparison with other pretreatment technologies, 

LHW pretreatment does not disrupt lignin structures and does not significantly reduce the 

crystalline structure cellulose, two mechanisms which are important for enzymatic 

saccharification (Mosieret al., 2005). In addition when compared with other pretreatment 

methods, LHW pretreatment requires higher temperatures and pressures (and thus higher energy 

requirements), and for certain types of biomass (softwoods) LWH is less effective as a 

pretreatment option  for reasons that are currently not understood (Mosier et al., 2005).  

2.4 Enzymatic Hydrolysis 

To break down the complex polysaccharide cellulose, enzymes known as cellulases are used. 

These enzymes are usually derived from cellulose digesting organisms such as the fungus 

Trichoderma ressei (Holtzappleet al.,1990). One type of enzyme alone is incapable of digesting 

the entire cellulose structure and a number of unique enzymes are needed to remove specific 

linkages on the cellulose polymer, such as endo-cellulases (endo-beta-1,4,-glucanase), exo-

cellulase (exo-beta-1,4-glucan glucohydrolyase, which hydrolyses the non-reducing end, and 

exo-beta-1,4-glucan cellobiohydrolase, which uses the reducing end and dominates), and 

occasionally xylanases (to remove residual hemicellulose and make the cellulose more accessible 

to other enzymes) (Holtzappleet al.,1990). The combination of enzymes is needed in order to 

completely break down the cellulose molecule into free sugars which can be readily consumed 

and converted by fermenting organisms.  
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Cellulases are inhibited both competitively and noncompetitively by many of the 

byproducts of chemical pretreatment. Common cellulase inhibitors include other soluble sugars, 

phenolic compounds, organic acids, furans, and furan derivatives (Kimet al., 2011). Typically, 

the most inhibitory compounds to cellulases are in the lowest concentration after chemical 

pretreatment, with (from strongest to weakest inhibition effects) the major compounds being 

lignin derivatives, furan compounds, and organic acids(Jing et al.,2009). In addition to 

pretreatment byproducts the carbohydrates themselves can act as inhibitors. Cellubiose, a 

common product of pretreatment, is very inhibitory to glucanases (Holtzappleet al.,1990) but is 

largely broken down in the enzyme cocktail mixtures available commercially. Mechanisms of 

inhibition of cellulases can differ based on the enzymes exact function but generally the rate 

limiting step is the solubilzation of insoluble cellulose (Himmel et al., 2007).  
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3. Research gaps 

 In the field of biofuel research , there are numerous studies on the lab scale (usually <.1 

kg) regarding the use of fungus to pretreat biomass prior to saccharification (Sawada et al. 1995, 

Itoh et al. 2003, Zhang et al. 2007, Camarero et al. 1994, Hatakka et al. 1983). Studies on 

biomass in excess of .1 kg stored with fungus are either not related to biofuel (Mukherjee and 

Nandi, 2004), focused in efforts to isolate or study lignin degrading enzymes specifically (Pinto 

et al. 2012), or related to the livestock industry (Zadrazil, 1997). Switchgrass has been studied as 

a feedstock for biofuel (Sanderson et al., 2006), had been stored alongside Pleurotus osteratus 

(Liu et al., 2013), and has been saccharified after storage both with (Liu et al., 2013) and without 

(Mitchell and Schmer, 2012). In all these cases, however, the studies have never exceeded 100 g 

in total biomass storage. This means that each case was done in highly idealized conditions, 

where the temperature, moisture content and biological activity of the material was regulated in 

ways that are not reflective of a true bioprocessing operation. These studies never exceeded 90 

days in terms of storage time, and never approached more than .1kg of total mass storage over 

that same period of time. Moreover these studies are frequently conducted at high (>80%) 

moisture content during the storage periods. In terms of storage alone, with no fungal treatment, 

there are a multitude of studies on switchgrass over long periods (greater than 100 days) of time 

(Monti et al., 2009, Larson et al., 2010, Djioleu et al., 2014, Sanderson et al., 1997). These 

studies do not focus on saccharification or biofuel, however, and thus their results do not provide 

information on processes such as pretreatment or enzymatic hydrolysis. Thus there is a 

meaningful research gap between the two types of study: fungal pretreatment studies and long 

term storage studies. For second generation biofuel processing plants to gain traction it is 

important that there be adequate research not only in the laboratory, but in the field as well. This 

study, which examines the effect of storage in biomass saccharification for long terms, large 
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masses, and fungal treatments, is one step closer towards bridging this gap in the research efforts 

in second generation lignocellulosic biofuels.   
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4. Objectives 

Currently many studies regarding the storage of biomass are either done on the small 

scale (typically <0.1 kilograms of biomass) or are done for other purposes, such as in the 

agriculture industry where the digestibility and storage/silage of feed for livestock is an 

important issue, especially regarding minimizing the mass losses incurred during harvesting and 

storage (Emery et al., 2012). There is a need to find affordable, easy to implement technology in 

second generation biofuel processes in order to achieve better saccharification (and thus profits). 

One such promising technique has been the combination of storage and fungal inoculation with 

biomass, which has been shown to increase digestibility of switchgrass in ruminal fluid by 30 to 

59 percent (Zadrazil et al., 1997).  Numerous laboratory studies have been conducted over a wide 

variety of organisms and substrates. Some examples of such fungal studies include the species 

Phanerochaete chrysosporium, Ceriporiopsis subvermispora, Coriolus versicolor, and Pleurotus 

eryngi, on substrates such as corn stalks, cotton residues, bamboo, beech wood, and wheat straw 

(Sawada et al., 1995, Itoh et al., 2003, Zhang et al., 2007, Camarero et al., 1994, Hatakka et al., 

1983). However these studies have been conducted at the laboratory scale, in sanitary conditions 

with small mass samples. It has been yet to be shown that the promising results shown for fungal 

degradation of biomass is translatable to a farm-scale process, which would be the next 

necessary step if the technology is to be applied in the second generation biofuel refinery 

industry.  

There are two major objectives of this study. The first is to determine the saccharification 

potential of the bales which supported fungal growth, which in this study was accomplished in 

square bales. Enough switchgrass was harvested for the creation of 12 bales, 8 of which received 

a 2% by mass fungal inoculation of P. osteratus. These bales were then stored in an open field 

for 270 days, with samples from one set of bales taken at after 90, 150, 210, and 270 days. After 
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sampling the bales were considered compromised and no longer used for the study. After the 

sampling was done, each sample was pretreated at either 180 C or 200 C in a liquid hot water 

pretreatment reactor, and then hydrolyzed with cellulase enzymes to recover the glucose. The 

amount of glucose recovered was then compared to the amount of glucose available in the form 

of cellulose, allowing for the calculation of saccharification efficiencies.   

The second objective of the study was to determine the saccharification potential of bales 

stored for 270 days, which in this study was done in round bales. Enough switchgrass was 

harvested for the creation of 12 bales. These bales were stored in an open field for 270 days with 

samples from the bales taken after 90, 150, 210, and 270 days. In addition analysis was 

conducted in an open air field on both bale types to determine the byproduct and xylo oligmer 

profiles of the hydrolysates, in order to better quantify the changes which occur within square 

and round bales as a result of storage. After sampling the bales were considered compromised 

and no longer used for the study. After the sampling was done, each sample was pretreated at 

either 180 C or 200 C in a liquid hot water pretreatment reactor, and then hydrolyzed with 

cellulase enzymes to recover the glucose. The amount of glucose recovered was then compared 

to the amount of glucose available in the form of cellulose, allowing for the calculation of 

saccharification efficiencies.   

 To attempt to prove or disprove these objectives, a null hypothesis (n0) was used that 

both storage time and fungal inoculation would have no effect. An alpha of .05 was used as the 

threshold to determine whether or not we failed to reject n0 or not.   
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5. Materials and Methods 

5.1. Experiment Overview 

Kanlow switchgrass was grown and cut in December of 2012. Before baling, fungal inoculation 

of the bales was done by spreading commercial P. osteratus spawn on top of the biomass. The 

switchgrass was then baled and stored in the open field for 90, 150, 210, and 270 days. After 

storage, the biomass was pretreated with LHW at either 180 C for 20 minutes or 200 C for 10 

minutes. The biomass was washed with 5 volumes (liter to gram) of water and hydrolyzed with a 

cellulase enzyme cocktail. The resultant release of carbohydrates was quantified and the 

saccharification efficiencies determined through HPLC. 

5.2. Source of Biomass and Pleurotus osteratus Application 

The source of the switchgrass (Panicum virgatum var. Kanlow) was from the experimental field 

of Oklahoma State University South Centeral Research Station in Chichasha, Oklahoma. The 

switchgrass was cut in December of 2012 and left to dry for 3 to 5 days before baling. During 

this period the P. osteratus spawn (Sylvan Inc, Kittanning, PA) was manually spread on some of 

the switchgrass, with some receiving no spawn as to serve as controls. The spawn was applied to 

match a 2% loading, or about 2 kg per 100 kg of biomass.  

5.3. Square and round bales 

The square bale study used 8’ (2.44 m) by 4’(1.22 m) by 3’(.91 m) (length by width by height) 

dimensions and the switchgrass was baled with AGCO high-density balers (Hessen, KS) on 

December 13, 2012. The moisture content of the bales prior to baling was 8.9%, dry basis. 

Twelve bales were made for each study. The square and round bales were transported to 

Stillwater, OK two days after baling for the study. The bales were stored outside in the field with 

no cover or protection. Each bale was spaced one to two metersapart, and left on a wooden 

forklift pallet to separate them from the ground. Sampling was conducted using a hay corer that 
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was 2 in (.05 m) in diameter and 3 ft (.9 m) long, mounted on a handheld electric drill. Figure 1 

presents how samples were drawn from evenly spaced locations within square bales.The 

sampling was done as shown in Figure 1. Samples were taken from three elevations and 3 

horizontal locations. The top, middle, and bottom cores were combined for testing.  A 6 inch 

‘margin’ was used around the edge of the bales, such that all bottom samples were 6 inches from 

the bottom, and all top samples were six inches from the top. In addition all left and right 

horizontal samples were 6 inches from the edges. This ‘margin’ was used because the biomass 

closest to the surface of the bales receives the most weathering, and is not representative of the 

whole bale. In total there were 64 unique sampling points, which were combined into 10 

composite samples based on the vertical location of the sample. After moisture content and 

compositional analysis had been conducted, all samples were combined for the enzymatic 

hydrolysis step of the experiment.  
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Figure 1: Sampling regime for square bales. Image reproduced with permission of 

Mengxing Li, Oklahoma State University collaborator on the project.Colors correspond to 

sampling depth. 

The round bales were also prepared with Kanlow switchgrass, in the same location, but on 

December 19, 2013. AGCO high-density balers (Hessen, KS) were used to make the round 

bales.Bales were 5 feet by 5 feet (1.52 meter by 1.52 meter) (diameter by height). Bales were 

transported from Chichasha to Stillwater no more than two days after baling.  Bales were left to 

stand on wooden pallets in the field. The sampling regime is shown in Figure 2. Cores were 

taken one foot (.31 m) and two feet deep (.61 m) into the bales. Sampling was conducted using a 

hay corer that was 2 in (.05 m) in diameter and 3 ft (.9 m) long, mounted on a handheld electric 

drill. The sampling points from the left and right were both started 1 foot in from the bale, and 

core samples were spaced such that 8 total distinct perimeter sampling points existed. A total of 

48 samples were collected. Samples from the 1 foot depth category were placed together, and 
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samples from the 2 foot depth category were similarly combined. All samples were stored at 4 

°C in a walk-in cold room after collection to prevent further degradation of the biomass. 

 

Figure 2 Round bale sampling regime. Reproduced with permission by Mengxing Li, a 

Graduate Student collaboratorin the project from OK State. The left image shows the side 

view of the bales, and the right image shows the head-on view of the bales. Color represents 

sampling depth, with red being the samples taken within 1 foot of the surface of the bale, 

and green samples being taken from between 1 foot and 2 feet within the bale. 
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5.4. Biomass Characterization 

Compositional analysis was performed at Oklahoma State University (Stillwater, OK) at the end 

of the storage periods for both studies, through the months of October and November. 

Compositional analysis of the biomass before and after liquid hot water pretreatment was 

conducted using the NREL standard protocol for herbaceous crops (Sluiter and Sluiter 2010). 

Total solids content of the biomass was determined following Sluiter et al. (2008) and the 

structural carbohydrates and lignin content were calculated using the method in Hymanet al. 

(2007).  Extraction of the solid portion of the biomass was done using deionized water and 190 

proof ethanol (Pharm CO-AAPER Brookfield, CT) with an Accelerate Solvent Extractor, ASE® 

300 system (Dionex Corporation, Sunnyvale, CA). The sugars and lignin content of the biomass 

were determined using an acid soluble lignin test (ASL) and the analysis of the hydrolysates was 

performed using a 205 nm UV-VIS spectrophotometer (Cary 50 Bio, Varian Inc, Palo Alto, Ca). 

Detection and quantification of the carbohydrates were performed with a refractive index 

detector (RID) and a Bio-rad Aminex HPX-87 P column (Bio-Rad, Sunnyvale, CA,), using a 

high-pressure liquid chromatography (HPLC) instrument as described (Fredericket al., 2013) The 

HPLC eluent was deionized water flowing at a rate of 0.6 ml/min at a temperature of 86 °C. Each 

sample analysis took 30 minutes.  

Digestibility of the biomass was done using 30 ml of 72% sulfuric acid along with 1 gram of 

biomass, shaken in a 30 °C water bath. Quantification of the glucose content of the biomass was 

done using an YSI 2900 Biochemistry Analyzer (YSI Life Sciences Inc, Yellow Springs, OH) 

with an immobilized enzyme membrane.  Moisture content was found using an Ohaus MB45 

Moisture Analyzer (Pine Brook, NJ) both before and after pretreatments. 
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5.5. Liquid Hot Water Pretreatment 

The pretreatment was carried out in a 1 liter bench top stirred reaction vessel (Parr Series 4520, 

Parr Instrument Company, Moline, Il,) with a propeller agitator and a 1 kW electrical heater. The 

reactor volume was loaded as following:  425 grams of deionized water and 75 (dry weight) 

gram of switchgrass, which was ground and sifted through a 13 mm screen by a hammer mill 

(Model E9506, Bliss Industries, Ponca City OK). A reaction time of 10 minutes and temperature 

of 200 °C was used for the first treatment group, and a reaction time of 20 minutes at 180 °C for 

the second treatment group. For both pretreatments, the agitation of the reactor was set at 300 

RPM and there was only manual agitation during cooling. 

The severity of each pretreatment was calculated, which is the severity pretreatment equation (1) 

(Dogaris et al. 2009). The factor R0 is the severity number, the variable t is the pretreatment 

time, and the variable T is the pretreatment temperatures in degrees C. The severity factor for 

each pretreatment was used to quantify that the 180 C treatment was less severe than the 200 C. 

Higher SV factors typically result in biomass that has higher saccharification efficiencies (Laser 

et al. 2002, Perez et al. 2008, Mosier et al. 2005). The two different SV factor pretreatments were 

conducted to determine if the effect of storage had different effects based on severity. The SV 

factor for the 180 treatment was calculated to be 3.66, whereas the SV factor calculated for the 

200 C treatment was 3.94.The pretreatment hydrolysate and solids were separated using a 

vacuum filter with a Buchner funnel and Whatman filter paper (Whatman PLC, Brentford UK). 

The solid portion in the square bales were washed with 2 liters of deionized water after 

separation to remove any residual carbohydrates or pretreatment hydrolysates in the sample. For 

round bales, the biomass samples were washed with 5 times their mass of water (approximately 

375 ml of water). Since the round bales were the only ones washed with this volume, only the 

wash waters from the round bales were saved. The solids and hydrolysates were stored at 4 °C 
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until needed. All pretreatments were conducted through the months of November and December, 

and were received for enzymatic hydrolysis in late December.  
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5.6. Enzymatic Hydrolysis 

Hydrolysis was carried out in 30 ml reaction vessels. All enzyme reactions were conducted at 50 

°C in a 100 RPM shaking water bath (Thermo Electron Corporation, Winchester, VA). All 

enzyme reactions used a 4.8 sodium citrate buffer solution (EMD Gibbstown, NJ). All water 

used in this and other experiments were from a Direct-Q system (Millipore, Billerica, MA) that 

displayed 12.2 M Ώ resistance. Three combinations of enzymes were used in the enzymatic 

assay experiment: Accelerase ® 1500 (Genencor, Cedar Rapids IA), Cellic® CTec2 and HTec2 

and Novozyme 188(Novozyme, Franklington, NC), which is cellobiase from Aspergillus niger, 

combined with Celluclast, which is cellulase from Trichoderma reesei ATCC 26921 

(Novozyme, Franklington, NC). For the enzymatic assay, each enzyme was loaded to 60 filter 

paper units (FPU) per gram glucan in the biomass. One filter paper unit is equal to the quantity 

of enzyme needed to produce 2 mg of reducing sugar from 50 mg of filter paper (4%) in 60 

minutes. FPU is unique to each enzyme. In assays performed on the enzyme batches, Accellerase 

was found to be between 11 and 12 FPU/ml, Ctec and Htec were determined to be between 20 to 

22 FPU/ml, and Celluclast and Novozyme were evaluated to be between18-20 FPU/ml.  

Four sets of controls were done in accordance with NREL cellulase activity measuring 

standards (Adney and Baker 2008). The first set of controls contained unpretreated biomass 

together with the enzyme. The second control contained no biomass and only enzyme. The third 

control was a set of samples with only biomass and no enzyme. The fourth set consisted of filter 
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paper and enzyme, with no biomass. Ctec and Htec enzyme cocktails contain a small amount of 

latent glucose in the batch, and the total concentration for that enzyme solution was subtracted 

from all the totals in the enzymes done for those sample sets (such that all the data only shows 

sugar released because of the enzyme and not what was already present). These three controls 

apart from Ctec and Htec samples showed no signs of saccharification. The hydrolyzed filter 

paper was used as the ‘maximum’ amount of theoretical yield possible for the enzymes. This was 

in accordance with NREL cellulase activity measuring standards (Adney and Baker 2008).  

Since composition and moisture content were known for each set of biomass and to 

ensure analytical uniformity, each sample was loaded to ensure that only 100 mg of glucan was 

present in each hydrolysis tubes. For the filter paper controls, 100 mg of filter paper was added 

and it was assumed that the conversion yielded 100% glucan. Each individual condition had its 

own moisture content and glucan content, however, which meant that the amount of total 

biomass added for each sample could vary from as low as 150 mg to as high as 900 mg. The total 

volumes of each reaction vessel were adjusted with water to make sure that the final reaction 

volume was 10 ml. Thus, while each reaction vessel was loaded to 1% glucan loading (100 mg in 

10000 mg of water), the total mass loading in each vessel was dependent on the biomass 

composition. Enzymatic hydrolysis was conducted for 24 hours. Aliquots of hydrolysate were 

saved and analyzed on HPLC and YSI and then stored at -4 °C.  

5.7. High Performance Liquid Chromatography Analysis 

High Performance Liquid Chromatography (HPLC) was conducted to determine carbohydrate 

content and carbohydrate degradation products present in the liquid hydrolysates of the 

pretreatment and enzymatic hydrolysis solutions. All the methods used for separation was based 

on previously published techniques (Spacil et al. 2008 and Djioleu et al. 2014). The 



26 

 

carbohydrates (glucose and xylose) were detected with a Waters 2414 Refractive Index Detector 

(RID, Milford, MA) after being passed through a Waters 2695 separation module with a Shodex 

(Waters, Milford MA) precolumn (SP-G, 8 μm, 6 x 60 mm). The method used to achieve 

separation used deionized water eluting at 0.2 ml per minute, and the column was heated to 

85°C, using a Waters (WAT038040) external heater. Organic acids and other liquid hydrolysis 

byproducts were detected on a similar Waters 2695 separation module with a Bio-Rad (Hercules, 

CA) Aminex HPX-87H Ion Exclusion column (7.8 mm x 30 mm). The column was heated to 

55°C and the mobile phase was 0.005M sulfuric acid flowing at a rate of 0.6 ml per minute. The 

byproducts were detected using a Waters 296 Photodiode Array Detector (PDA); all byproducts 

were detected at the wavelength of 280 nm. All injections were 2.5 μl.  

5.8. Quantification 

HPLC chromatograms were used to quantify the amounts of the known standards that were 

present in each analyzed sample. The standards used for carbohydrate detection were D-(+) 

glucose from Alfa-Aesar (Ward Hill, MA), and standards used for organic acid byproduct 

detection (furfural, HMF, acetic acid, and formic acid) were also from Alfa-Aesar. Typical 

calibration curves for the organic acids are presented in Figure 3. The YSI Biochemical Analyzer 

was self-calibrating and was set to calibrate to a 2% threshold every 4 samples or 30 minutes, 

whichever came first. HPLC calibration was done once at the start of every set of samples. 

5.9. Scanning Electron Microscope (SEM) 

SEM imaging was used to determine whether or not there was any evidence of any fungal 

growth on the biomass for the initial and final sampling periods. Samples were dried and 

mounted on aluminum specimen stands with double coated, carbon conductive PELCO tabs (Ted 

Pella, INC., Redding, CA). After mounting, each sample was sputter-coated using a 

Polaron/emitech SC7620 Sputter Coater (Quorum Technologies, Ltd. Esast Sussex, UK) at a 
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thickness of 1-2 nm of gold. A FEI Nova Nanolab duo-beam SEM/FIB SEM was used at 30 kV 

to view the samples (FEI Company, Hillsboro, OR). SEM images were only taken of the biomass 

prior to pretreatment, and only for the bales at the beginning and end of the testing period. Only 

square bales were examined by SEM. Scanning Electron Microscope images were conducted 

using a FEI Nova Nanolab duo-beam SEM/FIB system at 30 kV, courtesy of the Arkansas Nano 

& Bio Materials Characterization Facility at the University of Arkansas, supported by the 

National Science Foundation and the State of Arkansas.   
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Figure 3 Calibration curves needed for byproducts quantification. Area refers to the area 

under the curve in each chromatogram, and the concentration which corresponds to that 

reading. Calibrations were done on a Waters 2695 Separations module with aBio-Rad 

Aminex HPX-87H Ion Exclusion column (7.8 mm x 30 mm). 
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5.9. Statistical Analysis 

All data points were measured in triplicate and each experiment was done either in duplicate or 

triplicate. Where applicable, linear regression and Student’s t-test or Tukey’s test was used using 

JMP 11.0 software. The alpha value for all tests was 0.05. Graphs were constructed with either 

JMP 11.0 or Excel 2007. Two-factor analysis of variances (ANOVA) was used to find 

significance of the data for the storage study, with P<0.05 values being considered significant.  
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6. Results and Discussion 

6.1. Square Bales 

6.1.1. Moisture Content 

 

Figure 4 Moisture content as a function of sampling month. The blue bars represent the 

control samples, whereas the red and green bars (Group 1 and Group 2) are the fungal 

treated samples. 

Prior to the LHW pretreatment each bale’s moisture content was determined. The data in figure 4 

represents the moisture content for all the sampling elevations combined. This data was only 

found once per bale, and thus there are no replications and statistical analysis on the data cannot 

be conducted. However these average values are not unusual for bales of switchgrass and all fall 

below the 20 percent mark, which is known to be a threshold for causing degradation  of organic 

matter within the bales (Huhnke 2003). The bales were separated into three groups: Group 0, the 

control, and Group 1 and Group 2, which received the 2% by mass fungal inoculation.  
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6.1.2. Compositional Analysis 

 

Figure 5 Compositional analysis (mean glucan, xylan and lignin content) of control and 

fungal inoculated (Group 1 and Group 2) square bales as a function of storage time. The 

blue bars represent glucan, the red xylan, and the green lignin. The group refers to the 

treatment that particular bale received. Group 0 is the control, Group 1 and Group 2 are 

the two sets of bales which received fungal spawn during baling 

Figure 5 presents compositional analysis for square bales before pretreatment. The X-axis 

represents the number of months after baling during which each sample was taken, while the Y-

axis is the percentage of glucan, xylan, lignin that is present in the total biomass.   Group 0 is the 

control, and Group 1 and 2 are the Pleurotus ostreatus treated bales. Comparisons between 

treatment times were not performed since there was only one experimental unit for each 

condition. However, it can be observed from the data that within each bale there is relative 

composition homogeneity, as there was not a significant amount of variation within bales. This 

was an important observation as samples were taken throughout the bale, as shown in Figure 1.  
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Since the samples were taken from different locations within the bales, the average composition 

was relatively homogenous, indicating that environmental variances did not have a significant 

effect on localized composition. This does not account for the 6 inch margin used while 

sampling. 

 

Figure 6 Xylan composition of control and inoculated (Group 1 and Group 2) square bales 

as a function of storage time, before pretreatment. Each colored bar represents a different 

treatment group: blue (Group 0) is the control, Group 1 and Group 2 both received the 

same amount of fungal spawn initially. 

Figure 6 is showing the xylan content as a percentage of total biomass in each sample, by 

group and sampling date. Group 0 is the control, and Group 1 and 2 are the Pleurotus ostreatus 

treated bales. It can be observed in Figure 5 that xylan composition across all three groups 

accounted for 20 to 30 percent of biomass composition, with the lowest values obtained in Group 
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2. On the other hand, the xylan content for Group 1 bales was similar to those of the control, 

possibly indicating that the fungus did not colonize the bales, and/or did not metabolize xylan for 

growth. These results are inconclusive however as there were too few replications to perform 

statistical analysis. The most meaningful observation is that compositions of xylan present in the 

biomass did not show the same degree of removal present in the laboratory scale studies (Gupta 

et al. 2011). 
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Figure 7 Scanning Electron Microscopy (SEM) images of control,Figure 7a, 7b, and 7c are 

the control. Figure 7d, 7e, and 7f are the Group 1 bales. Figure 7g, 7h, and 7i are the Group 

2 bales.Figure 7f and 7i show (red arrow) the presence of fungal spores on the switchgrass. 

In order to perform a qualitative check to determine whether or not P. ostreatus grew, 

electonr microscope images were taken of the biomass at the beginning and end of the study. 

Scanning Electron Microscopy (SEM) images of control, Group 1 and Group 2 biomass are 

presented in Figure 7. The intermediate samples (months 5 and 7) were not imaged. It should be 

noted that between the six biomass samples 104 images were taken over a four hour SEM 

session. Images that were found to be representative of the rest of the sample were selected for 
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assembling figure 5. The control group, both on month 3 and month 9 sampling times, showed 

no signs of fungal hyphae or spore formation, as shown in Figures 7a, 7b, and 7c.  Biomass 

sampled on month 3 showed no signs of fungal hyphae or spores, both in the control and treated 

groups as seen in Figures 7a, 7d, and 7g. The formation of fungal spores was found only on the 

older biomass (month 9) in both Group 1 and Group 2 samples as seen in Figures 7e and 7h. The 

fungus in Figure 7e was growing rather than just surviving as evidenced by the presence of 

fungal spores on the month 9 biomass but not the month 3 biomass. Group 1 biomass showed 

some signs of colonization, with individual fungal hyphae and spore formation apparent on the 

surface of the biomass. This does not mean the fungus was present on the surface of the bales, 

however. The fungal filaments in this group of biomass were minimal and there was not much 

fungal biomass in comparison to the switchgrass biomass. This can be seen in Figure 7f where 

the biomass is still visible beneath the fungal hyphae. The presence of spores indicates a growing 

fungus but the total colonization appeared minimal. Group 2 bales showed significant 

colonization, however, as can be seen in Figure 7i, where in places biomass was not visible 

beneath the fungus hyphae. Through visual identification, it would appear that fungus mass was 

more present in Group 2 biomass than that of Group 1. Visual traits of the spores and fungal 

reticulum in the SEM images were similar to that observed in other white-rot fungi species (Luet 

al., 2009). The extent of colonization in this case was purely qualitative and descriptive and no 

quantitative work was done to estimate the degree of colonization of the fungus. Although P. 

osteratus spores were placed during baling, it is possible, however, that the fungal species 

observed is not P. osteratus , as fruiting bodies were not detected nor were any genomic testing 

done to confirm the presence of P. osteratus.  

6.1.3. Pretreated Biomass 
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The biomass shown in Figure 5 was subsequently pretreated in 180 Cand 200 °C water. 

Figure 8 (below) presents the compositional analysis of pretreated bales. The two X-axis 

represents the temperature of the liquid hot water (LHW) pretreatment (180and 200 °C) as a 

function of the four sampling months. Each pretreatment was done in duplicate. Each colored bar 

represents a specific fraction of the biomass, being either glucan, xylan, or lignin. The secondary 

Y-axis represents the grouping of each bale, with Group 0 being the control and Groups 1 and 2 

being the fungal treated bales. For the sake of clarity data similar to what is presented in Figure 7 

is also shown in Table 2.   
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Figure 8 Compositional analysis of pretreated biomass. The y-axis is the percent (out of 

100) of each component found in the pretreated biomass at either 180 or 200 Celsius. The 

blue bar represents the detected ratio of glucan family molecules, the red bar the detected 

amounts of the xylan family molecules, and the green bar represents lignin molecules. The 

data is separated into the 3 treatment groups, with 0 being the control, and Group 1 and 

Group 2 being the two fungal treated bales. The x-axis is time, separated into sampling 

months. 
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Table 1 Composition of bales after pretreatment. The data is separated into the 3 treatment 

groups, with 0 being the control, and Group 1 and Group 2 being the two fungal treated 

bales. The sample time is represented by the months column (3, 5, 7, and 9).  The top table 

is the pretreatment conducted at 180 degrees Celsius, whereas the bottom table is at 200 

degrees Celsius. 

Temp   180 C           

  Glucan Xylan Lignin   

month group Mean Std Dev Mean Std Dev Mean Std Dev 

3 0 

 

63.94 1.0818 12.185 0.3748 31.09 0.3041 

1 54.97 1.9304 13.105 0.3323 30.37 0.3889 

2 57.72 0.9970 14.430 0.19799 26.56 0.15556 

5 0 60.78 1.1950 16.140 0.09192 28.11 0.007071 

1 58.81 1.0182 18.515 0.13435 27.87 0.8485 

2 59.95 0.9758 14.270 2.291 34.31 0.19799 

7 0 61.01 1.6971 17.330 0.2263 31.72 0.12021 

1 58.39 0.02828 15.875 1.1809 29.95 1.2021 

2 52.97 1.7466 19.10 0.2828 28.34 0.9617 

9 0 60.72 1.1384 20.87 0.18385 31.22 1.9021 

1 54.03 1.0889 17.180 0.08485 29.58 0.08485 

2 50.57 1.2021 17.845 0.09192 25.05 0.6293 

Temp   200 C           

  Glucan Xylan Lignin 

month group Mean Std Dev Mean Std Dev Mean Std Dev 

3 0 66.32 2.121 4.56 0.7212 36.52 0.2333 

1 64.62 0.3677 4.37 0.3394 37.13 0.04950 

2 62.84 0.3257 3.84 0 38.88 0.4667 

5 0 64.22 0.5091 3.905 0.03536 34.54 1.7819 

1 64.42 2.143 5.81 0.02828 32.9 0.4808 

2 51.85 1.4284 4.1 0.2121 39.72 0.9475 

7 0 62.85 4.815 3.165 0.2616 36.51 0.5444 

1 65.33 2.786 4.625 0.03536 40.13 0.10606 

2 58.45 1.7961 7.52 0.6930 39.83 0.8415 

9 0 65.53 3.295 3.74 0.5233 38.78 1.2092 

1 67.27 2.744 5.49 0.07071 34.87 0.6293 

2 57.71 2.517 4.045 0.13435 40.78 0.7849 

Each pretreatment was only done once, thus the data here is inconclusive and no 

statistical analysis was conducted. It was observed from the data in table 1 that the control in 

month 9 samples had higher glucan content when compared to that from both treatment groups. 
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Group 1 glucan composition after pretreatment was similar to that of the control. As opposed to 

Group 1, Group 2 samples at months 3, 5, and 9 showed lower glucan averages after 

pretreatment when compared to those of the control. LHW pretreatment selectively solubilizes 

hemicellulose (Mosier et al., 2005), confirming that the amounts of glucan and lignin remained 

unchanged, while the amounts of xylan decreased. Because of LHW’s selectivity, increases in 

glucan and lignin are attributed to decreases of xylan. There was more xylan left over in the 

pretreated Group 2 biomass than that of the pretreated control biomass. This could be the result 

of structural changes in the biomass, caused either by weathering or organisms, such as fungi. It 

is known that structural changes, such as lignin modification can improve saccharification yields 

(Li et al. 2008) and that the modification of hemicelluloses in plant cell walls can likewise have a 

positive effect on biomass digestibility and cellulose accessibility (Abramson et al. 2010). The 

exact nature and mechanisms behind the results here are unknown but the most likely cause is a 

structural change in the biomass, rather than a compositional one. This is the likely reason why 

even though the compositions heading into pretreatment were similar, the resultant compositions 

after pretreatment showed differences. As the pretreatment was conducted only once however it 

is also possible that this is a result of natural variation.  
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Table 2: Organic acid profile of prehydrolysates. The mean values for three pretreatment 

byproducts (acetic acid, formic acid, and furfural) are shown below divided into sampling 

month, temperature, and treatment group. Group 0 was the control, with Group 1 and 

Group 2 being the fungal treated bales. 180 degree C pretreatment hydrolysate is the left 

table, and 200 degree C pretreatment hydrolysate is on the right. 

LHW Prehydrolysate Byproducts (g/l) 

180 C     200 C     

Month Group 

Acetic 

Acid 

Formic 

Acid Furfural 

Acetic 

Acid 

Formic 

Acid Furfural 

3 0 0.19406 0.3619 0.5961 0.6081 0.4969 2.0303 

1 0.3481 0.2563 1.0230 0.4727 0.3537 2.390 

  2 0 0 0 0.3134 0.3832 1.5267 

5 0 0.2840 0.3444 0 0.6148 0.4714 1.8149 

1 0.2554 0.2445 1.8148 0.2372 0.3015 0.8058 

  2 0 0.2139 0 0.4647 0.3653 2.093 

7 0 0.3735 0.3814 0 0.6256 0.5237 3.674 

1 0 0.19691 0 0.5121 0.3630 2.209 

  2 0.09913 0.3984 0 0.4424 0.3668 0.8103 

9 0 0.18013 0.2025 0 0.7458 0.3504 2.9520 

1 0.2366 0.14803 0 0 0 0 

2 0 0.04913 0 0.2976 0.3058 1.8627 

 

As with table 1, all the data shown here was from a single LHW preatreatment, and thus 

the differences in the means are inconclusive. Overall more byproducts were formed at 200 °C 

compared to 180 °C; however, a higher process temperature resulted in more mass conversion as 

more total grams per liter of byproducts were formed at 200 C when compared to 180C, which is 

consistent with previous reported literature (Liamsakul et al. 1994). Samples from each bale 

were only pretreated once (no replications on pretreatments and thus no standard deviations).  

The control bales (Group 0), on average, higher total mass of byproducts, mostly in 

furfural; the maximum concentration of furfural observed was 4 gram per liter). As compared to 

Jing et al. 2009, organic acids, formic and acetic, were both in concentrations considered to be 
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below typical inhibition amounts (<1 g/l) and furfural concentrations were within the 0 to 10% 

inhibition range (between 0 and 4 g/l). The concentrations of organic acids and other byproducts 

formed from pretreatment cannot be potential causes for the lower enzymatic hydrolysis yields 

that were observed during analysis, as all concentrations were well below the individual 

inhibition thresholds. However this does not account for possibly synergistic affects. Similar 

studies done on Kanlow switchgrass (Suryawati et al. 2008) showed a somewhat similar by-

product profile, with little (0.2 g/l) HMF formation. Furfural (0.9 g/l) and acetic acid formation 

(3.6 g/l) were different from our results, which showed between 0.2 g/l and 0.8 g/l for acetic acid 

and between 0.5 and 4.0 g/l for furfural (at the 200 °C severity). The large spread in the profile of 

byproducts between previously published literature and our own data does not suggest that either 

is wrong, but that even at the same severity the temperature and residence times of the biomass 

in the reactor can produce byproduct profiles at the end which can vary significantly. Regardless, 

the concentrations that were formed in this series of pretreatments would not be inhibitory at 

normal concentrations and would be present in even more dilute concentrations in the enzymatic 

hydrolysis steps.  

There have been no studies on byproduct profiles of biomass pretreated after fungal and 

LHW treatment, therefore it is difficult to determine whether or not these observed differences 

and similarities are expected or not. The fungal treatment is assumed to digest hemicellulose 

preferentially, thus we would expect a lower total concentration of hemicellulose degradation 

products in the prehydrolysate (furfural and hydromethylfufural).  What we see instead is that 

bales with lower xylan content did not necessarily correspond to lower quantities of byproducts. 

This indicated, on the other hand, that although there was less hemicellulose to convert, the 

conversion of the existing hemicellulose was perhaps enhanced. This could be due to the fact that 
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the hemicellulose that was present was more accessible than in the control, perhaps due to the 

decay of the cell structure but not necessarily the cell composition. With respect to the 

compositional analysis data, even though group 1 showed no difference from the control, the 

total inhibitors formed were still lower.  

If Group 2 supported spawn growth, it is possible that processed Group 2 biomass would 

show differences in sugar yields and enzymatic inhibitors, while Group 1 would be more similar 

to the control group. Based off the decreased xylan content in Group 2 bales, we would expect 

greater yields in the enzymatic hydrolysis step as lower hemicellulose contents typically 

correlates to higher saccharification of the cellulose to glucose. This is partially the reason for 

selecting LHW as a pretreatment, as the removal of hemicellulose results directly in cellulose 

being more susceptible to enzymatic attack.  (Zhang et al. 2013). Thus we would expect samples 

with low xylan content to produce a higher percentage recovery of glucose over those with 

higher xylan content. 
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6.1.4. Enzymatic Hydrolysis 

 

Figure 9 Yield (g/g) of sugar from enzymatic hydrolysis of pretreated biomass. The three 

treatment groups are 0 (control) and the two fungal treated groups (Group 1 and Group 2). 

The sampling dates were 3, 5, 7, and 9 months after baling. The yield is expressed as a 

percentage of what was recovered over what was available.Yield represents the percentage 

of available glucan available which was hydrolyzed in each study. 

As a function of time at the 180 C treatment, Group 0 and Group 1 both showed no effect 

(p=.293 and p=.208) and Group 2 showed some effect (p=.0239). At the 200 C treatment, time 

was significant only in Group 1 bales (p=.570, p=0.0133, p=0.583 for Group 0, 1, and 2 

respectively). 200 C produced higher average yields in every case (highest p=.0509).  Group 1 

showed significant differences from Group 0 and Group 1 at all levels past the first sampling 
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date month 3 (highest p=.0421). This means that after month 3, the Group 1 bales were 

significantly different than the control. All the data can be seen in figure 9. It should be noted 

that the compositional analysis of Group 1 was closer to that of the control; however, the 

enzymatic hydrolysis results suggest that Group 1 displayed different properties from the control, 

whereas Group 2 hydrolysis results suggest there existed no difference between Group 2 bales 

and the control in terms of accessibility to the enzyme. These results imply that biomass 

composition, including the resultant enzymatic hydrolysis yields, are not a predictor of fungal 

growth in and of themselves; it is more than likely that a total mass balance of xylan within the 

bales, as opposed to the mass fraction, would be a better indicator of fungal growth. Monitoring 

the dry matter loss within bales is in fact one of the most common methods for tracking bale 

degradation (Monti et al. 2009). Moreover, analytical procedures exist for the detection and 

quantification of fungal mycliem within biomass (Matcham et al. 1985) which could be used in 

future studies to get a better estimate of the success in colonization after the initial fungal spawn 

is introduced to the bale. Due to the fact that initial and final bales masses were not measured, 

the only data available in terms of bale mass in this experiment was the composition of the 

biomass. This is clearly not sufficient to describe the properties of switchgrass after storage and 

with or without fungal treatment. The lack of a distinct trend or correlation between composition 

amounts and final saccharification yields could possibly have been avoided through gravimetric 

analysis. 

The increase in hydrolysis yields given a higher severity pretreatment (200 °C) is 

consistent with literature results at the same conditions across multiple types of biomass such as 

sugar cane bagasse, wheat straw, and corn stover (Laser et al. 2002, Perez et al. 2008, Mosier et 

al.2005). The lower severity pretreatment (180 °C) shows variation of between 20% and 50% 
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recoveries, with 180 °C being a pretreatment temperature typically too low to achieve any 

significant amounts of solubilization of hemicellulose (Liu et al.2003), which is the primary 

benefit of LHW pretreatment. The yields at both treatment temperatures themselves are not 

abnormal, but the variation between them, especially in the case of the Group 1 bales, indicate 

that there could be a large amount (between 20 and 90 %) in recovery values for full scale field 

studies. This variability could be caused by a number of uncontrolled variables, such as variable 

amounts of sun exposure, differences during baling, moisture content variation, or presence or 

non-presence of other biomass degrading microorganisms within the bales. It is known that 

differences in storage location and baling technique can result in swings of composition in hay as 

large as 14% (Rotz and Abrams, 1988).  

There appeared to be no difference between the storage times and the yields of sugar 

recovered at each step. Though storage studies have shown decreased or increased overall 

glucose content and digestibility given longer storage periods, this study was conducted over 9 

months, approximately 270 days, with samples collected every 90 days as in bale quality studies 

(Vane et al. 2001, Taniguchi et al. 2005, Salvachua et al. 2011). A similar storage study done for 

7 months showed degradation of extractives between 8 and 11 % (Wiselogel et al. 1996). A 

different variety of switchgrass (Cave-in-Rock) stored outside for 9 months showed a 9% 

decrease in cellulose content (Agblevor et al. 1996). There is a limited about of research 

available on the storage of switchgrass for biofuel (Mitchell and Schumer 2012) and the 

combination of storage together with saccharification over such a long period of storage time is 

unique to this study.  

What is clear from the data is that the composition of the biomass (Figures 5, 6, and 8) 

are not predictors of enzymatic hydrolysis yields (Figure 8). Even with the same composition as 
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the control, Group 1 bales performed differently than the control group when it came to sugar 

recovery. Likewise, the Group 2 bales, which were compositionally different from the control, 

performed equally as well in the enzymatic hydrolysis stage. Since there is evidence of fungal 

colonization on the biomass (Figure 7) for both Group 1 and Group 2 bales, we know for certain 

then that the compositional analysis of said bales is not sufficiently informative to tell us the 

condition of the switchgrass, at least in regards to enzymatic digestion. As far as the fungal 

treatment is concerned, it is difficult to make one general statement regarding the results, but it is 

safe to say that the fungal treated bales all either performed worse or equally as well as the 

control in regards to saccharification. This would indicate that, at best, the fungal treatment has 

done nothing, and, at worst, the fungal treatment has decreased overall sugar recovery in the 

switchgrass. In order to prove this definitively it would be necessary to have tracked the dry 

matter loss as well in each bale, as it is very likely the fungal treated bales (with fungal growth as 

well) would have experienced a more rapid mass decay when compared to the control. Coupled 

with the compositional analysis, it would be possible to do a full mass balance of the system such 

that the losses could be tracked with enough accuracy to state if the overall effect of the fungal 

treatment was a net positive or negative (or no effect). Although there are hints that the structure 

of the switchgrass in the treated bales is different from those of the control, the current data 

available for square bales attests to the fact that the fungal treatment at the very least did not 

improve the accessibility of the biomass to enzymatic attack. 

  



47 

 

6.2. Round Bales 

The second study, from early March of 2014 to late September of 2014,used 1 ton (1000 

kg) round bales of Kanlow switchgrass. These bales were stored the same way as the square 

bales, outside and on wooden pallets. All experimental procedures (compositional analysis, 

pretreatment, and enzymatic hydrolysis) that were conducted on the square bales were likewise 

conducted on the round bales. Round bales were sampled at 2 depths: between the surface and 1 

foot deep, and between 1 foot deep and 2 feet deep. The pretreated biomass was also washed 

prior to being enzymatically hydrolyzed, a step omitted in the square bale study. Fungal spawn 

was originally included in the round bales, but visual inspection after the study was finished 

seemed to suggest that there was no colonization of the bales by the fungi used to inoculated 

them, as there was no typical evidence of fungal growth such as visible white hyphae. The results 

below detail the composition of the biomass prior to enzymatic hydrolysis, and finally the 

accessibility of the round bale biomass to enzymatic attack.  

As to the prior work there was no quantification of dry matter loss over time. The only mass 

balance which exists is for the pretreatment into enzymatic hydrolysis steps, which is not 

indicative of the total mass of each cell wall component present in the biomass.  
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6.2.1. Moisture Content 

 

 

Figure 10 Moisture content as a function of time for the round bales. The blue bars were 

samples taken within the first foot of the surface of the bale. The red bars were samples 

taken between 1 foot deep and 2 feet deep. 

As with the square bales, moisture content had a positive trend with time for both depth 1 

(p<.0001) and depth 2 (p = .0016). For month 3, depth 2 had a statistically higher moisture 

content (p=.0433), whereas for months 7 and 9 depth 1 had a statistically higher moisture content 

(p=.0244, p=.0206). Month 5 showed no difference between depth 1 and depth 2 (p=.2462). This 

data is consistent with the idea that over time, bale integrity drops and allows for greater amounts 

of water to infiltrate.  
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6.2.2. Compositional Analysis 

 

Figure 11 Compositional analysis (mean glucan, xylan and lignin content) of the round 

bales function of storage time. The blue bars represent glucan, the red xylan, and the green 

lignin. Month represents the sampling time. Depth signifies where in the bale the biomass 

came from (depth 1 or depth 2). The letters denote significant differences are a function of 

sample time, but only between the same sampling depths. 

Figure 11 presents the glucan, xylan, and lignin content of stored round bales as a 

function of storage time. Prior to pretreatment, there was no evidence of sampling depth making 

a difference in the composition (lowest p=.586). Sampling month made no difference in lignin 

composition (p=.284) or but did make a difference in glucan (p=.0008) and xylan (p=.0146). In 

the analysis time was the only factor that affected the composition. It is important to note that all 
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analyzed components were relative, which implied that the total masses may have changed 

significantly, but their overall ratio would have remained relatively constant.   

6.2.3. Digestibility of Bales 

 

Figure 12 Compositional analysis of pretreated solids as a function of sampling date 

sampling depth. This biomass was pretreated at 180 Celsius. The Y-axis is the percent (out 

of 100) of each component which was present after pretreatment, with the red bars being 

glucan family molecules, the blue bars being lignin, and the green bars being xylan family 

molecules. 
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Figure 13 Compositional analysis of pretreated solids as a function of sampling date 

sampling depth. This biomass was pretreated at 200 degrees Celsius. The Y-axis is the 

percent (out of 100) of each component which was present after pretreatment, with the red 

bars being glucan family molecules, the blue bars being lignin, and the green bars being 

xylan family molecules.The four sampling months (3,5,7, and 9) are divided into the two 

sampling depths and shown side by side. 

Figure 12 and Figure 13 presents the composition analysis of the biomass after 180 °C or 

200 °C liquid hot water (LHW) pretreatment. Considering only the variable of time (month) and 

controlling for sampling depth and temperature, there were no observed differences between the 

treatments (p=.2557 for depth and p=.1139 for sampling month). When controlling for 

everything but temperature, between 180 °C or 200 °C pretreatment temperatures, all time and 

depths were significantly different in glucan and lignin composition (p=<.0001). The 200 °C  

pretreated samples all showed significantly lower averages of xylan compared to the 180 °C 

samples (p<.0001) and also showed difference across sampling month (p=.0009). From this data, 

we concluded that the starting point for all the bales, at all sampling times, had similar 

composition after pretreatment, as depth and time of sampling did not have any statistical 
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significance on composition (lowest p=.195). Therefore even the detected compositional 

differences in the raw biomass should not be relevant passed the pretreatment step, as 

statistically all the biomass treated at the same temperature was statistically identical. The total 

amounts of each component within the bales, however, were not determined, as no total mass 

recordings were obtained for the initial and final periods during sampling. However, from this 

data it was concluded that pretreatment at 200 °C solublized more xylose than that of 180 C. 

Higher xylose solubilization at pretreatment temperatures of 200 °C  is consistent with  

previously reported literature (Liu et al. 2003)and with our prior study with square bales. Higher 

xylose solubilization at pretreatment temperatures of 200 °C  holds across all sampling dates, 

which implies a pretreatment temperature of 180 °C is sufficiently high to solubilize as much 

xylose as 200 °C. Likewise, the lack of significance in sampling depths indicates that the 

switchgrass within each bale was homogenous in composition both before and after 

pretreatment, regardless of sampling depth. 

 

Figure 14 Total xylo oligosaccharides recovered in grams/liter in the pretreatment 

hydrolysate at both sampling depths. Only the 200 °C pretreatment temperature is shown 
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here as no significant quantities of xylo oligomers were detected in the 180 °C pretreatment 

samples. Though there was xylose present in 180 °C pretreated samples, the totals were less 

than 1 g/l and there were no detected oligomers in those prehydrolysates. 

Figure 14 presents the xylo oligosaccharides recovered in 200 °C pretreatment 

hydrolyzates at both sampling depths. It was observed that the 200 °C hydrolyzate yielded both a 

wider variety of xylooligmers along with a greater amount of total xylose (over 10 gram/liter) 

when compared to that from the 180 °C results, which produced less than 1 gram total of xylo 

oligosaccharides after pretreatment. Though differences existed in the types of oligosaccharides 

formed, the total amounts between sampling depths were statistically similar. Neither sampling 

depth nor sample time significantly affected the xylo oligomer totals after pretreatment. These 

results indicated that whereas the total amounts and quantities of xylo oligomers were similar 

between samples, the polysaccharides breakdown proceeded differently between sampling depth 

and sampling time. This difference is indicative of a structural change in the biomass rather than 

that of a chemical nature, as evidenced by similar compositions in the original biomass. The 

observed differences in xylooligomer profiles must be due to degradation rather than 

composition, as all biomass samples had approximately the same quantity of xylan solubilization 

after pretreatment.  
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Figure 15 Chromatograms of the oligomers with the peak integration tables below. Both 

the depths and beginning and end sampling times are shown, only for 200 degrees Celsius. 

The retention time for xylose is around 4.4 minutes, then the xylose dimer at around 5.1 

minutes, then the xylose trimer at 6.1 minutes. 

Despite the totals between the beginning and end bales being similar (Figure 11), the 

individual profiles within each bale (and within the depths of each bale) were identical. Depth 2 



55 

 

samples had more quantifiable peaks in each chromatogram (9 to 7 in the month 3 bales and 7 to 

6 in the month 9 bales) and the response of the detection in each bale was distinct. The overall 

total amount of xylose present was similar, but it appeared as though the degradation from long 

xylose polymers to shorter chains occurred differently rates within the bales. Overall this finding 

indicates that there might be structural differences within the bales that are not apparent when 

looking strictly at the xylan content of the biomass. The ‘gross’ quantity of xylose is not a good 

indicator of the similarity of the biomass. LHW pretreatment, also known as autohydrolysis, has 

been known to produce differing xylo oligosaccharide profiles based on the severity of the 

pretreatment used (Carvalheiro et al. 2004). Retention time in the reactor rather than 

pretreatment temperature was known to cause the observed shifts in the profiles. The results of 

this study show that most of the xylo oligosaccharides were accounted for in the first few 

polymer chains (DP1, DP2, DP3, DP4, and DP5). This is expected as LHW is known for 

solubilizing and breaking up hemicellulose, but the exact extent to which LHW treatment was 

effective at breaking down long xylose chains was not consistent across sample types. In 

summary it can be said that the degree of degradation was not the same between bales coming 

out of pretreatment, even if the net total amount of xylan removed was identical. 
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6.2.4. Enzymatic Hydrolysis Results 

Using least square linear regression with JMP 11.0’s modeling software a series of effects tests 

were done on the four variables in the experiment: storage time (months), pretreatment 

temperature, sampling depth, and washing/not washing. The results found that washing had no 

effect (p=.6624), sampling depth had little effect (p=.0693), and storage time and temperature 

had the largest effects (p=.0024 and p<.0001 respectively). In this case the null hypothesis can be 

rejected for storage time and pretreatment temperature, but the data fails to disprove n0 for 

sampling depth and washing. The individual means were tested with ANOVA and the results are 

shown below. 
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6.2.5. Analysis of sample dates 

 

Figure 16 Yield (g/g) of sugar as a function of sampling date. Washed biomass is denoted 

with the letter w, while unwashed biomass is denoted with the letter u. Time is in months. 

Temperatures is in Celsius. Depth 1 and depth 2 correspond to the sampling depth from 

which the biomass was taken. 

Figure 16 presents the sugar yield in terms of gram per gram recovered in 180 °C and 

degrees 200 °C pretreatment hydrolyzates at both sampling depths, including washed and non-

washed biomass. There were no significant differences determined between sampling date and 

enzymatic hydrolysis yields for the 180 °C pretreatment temperatures (lowest p=.0564). 

However, there were significant differences associated with sampling time for some of the 200 

°C pretreatment samples.  Washed samples at the depth 2 showed the most significant downward 

trend (p=.0057) when compared to the other 3 sample sets at 200 C. This indicated that washing 
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and pretreatment temperatures enhanced the effects that storage had on the bales in regards to 

saccharification. The reasons why biomass which was sampled deeper in the bales showed a 

greater decline in glucose recovery, but not necessarily glucose content, is that biomass from the 

surface of the bale is potentially more weathered, and thus already partially degraded and easier 

to access. This relationship specifically examined in the depth data comparisons later in the 

thesis it should be noted that a difference in enzymatic accessibility between depths over time 

was observed, namely that biomass closer to the surface (depth 1) did not differ in enzymatic 

accessibility as much as biomass deeper in the bale (depth 2).  
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6.2.6. Analysis of washing 

 

Figure 17 Yield (g/g) of sugar as a function of washing. Yield is in grams recovered over 

grams available. Time is in months. Washed biomass is denoted with a w, while unwashed 

biomass is denoted with a u. Time is in months. Temperatures is in Celsius. Sampling depth 

denotes the area within the bale the biomass was taken from (depth 1 or depth 2). 

Figure 17 presents the sugar yield in terms of gram per gram recovered in 180 °C and 200 

°C pretreatment hydrolyzates at both sampling depths, including washed and non-washed 

biomass. The solids loading (1%) was sufficiently small such that the wash step should not of 

had a significant effect given how diluted the samples were. The increase in carbohydrate 

recovery in washed biomass samples is similar to published literature (Frederick et al. 2013), 

though the relationship in this work is surprising given the very dilute (1 in 100) ratio between 
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the mass (and thus the pretreatment hydrolysate) and the reaction volume. It was not expected 

that there would be sufficient pretreatment hydrolysate left within the biomass at such a small 

concentration that any enzymatic inhibition would occur. Thus, it might be the case that the act 

of washing alters the biomass in some way other than diluting the pretreatment hydrolysate, 

which may be the cause of the observed differences in enzymatic hydrolysis yields between 

washed and unwashed samples.  
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6.2.7. Analysis of temperature 

 

Figure 18 Yield (g/g) of sugar as a function of pretreatment temperature. Washed biomass 

is denoted with a w, while unwashed biomass is denoted with a u. Time is in months. 

Temperatures is in Celsius. 

Figure 18 presents the sugar yield in terms of gram per gram recovered as a function of 

pretreatment temperatures (180 °C and 200 °C). For nearly every sample, 200 °C pretreatment 

produced significantly greater average yields of glucose when compared to the less severe 180 

°C pretreatment (lowest p=.008). There were two cases where there was no difference between 

180 C and 200 C, at sampling months 5 and 9 at depth 2 washed (p=.203 and p=.340 

respectively).This indicated that washing the deeper sampled biomass improved the 180 °C 

pretreated biomass saccharification sufficiently that it became statistically similar to that of the 
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200 °C pretreatment.  This relationship was also aided by the lower amount of saccharification 

achieved in the month 9 bales as well, which brought the sugar recoveries of the 200 °C 

pretreated samples closer to those of those pretreated at 180 °C. These results are consistent with 

Figure 15, which shows that the later month 9 bales for 200 °C were lower than those from 

month 3.  

These results were consistent with the data found in both the composition analysis and in 

the pretreatment compositional analysis: 180 °C and 200 °C pretreated biomass both had 

different physical properties going into the next step of the process (after LHW preatreatment), 

consequently both sets of biomass responded differently to the saccharification processing chain. 

There were some conditions, such as washed and stemming from depth 2 that produced a 

significant difference in enzymatic yields but the general trend across all treatment groups was 

statistical similarity rather than a difference.  
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6.2.8. Analysis of sampling depth 

 

Figure 19 Yield (g/g) of sugar as a function of sampling depth. Washed biomass is denoted 

with a w, while unwashed biomass is denoted with a u. Time is in months. Temperatures is 

in Celsius. 

Figure 19 presents the sugar yield in terms of gram per gram recovered as a function of 

sampling depth. Overall depth effects showed no consistent trend, though the relatively low p 

value (.0693) does suggest some effect might exist. In combination with storage (Figure 16) it 

was observed that sampling depth combined with storage time did play a role in overall 

saccharification yields. This implied that, for a given month, sampling depth did not matter 

because bales were homogenous throughout with respect to enzymatic saccharification.  Across 
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the study period, sampling depth did matter where for the 200 °C pretreated biomass, washed 

biomass showed a significant decrease over time and over sampling depth in regards to 

enzymatic digestibility, on the other hand unwashed biomass showed no trends regarding 

sampling depth or sample time.   
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6.3. Average Precipitation (Round and Square) 

The amount of precipitation which fell during the months of storage was found using the 

Oklahoma Mesonet network of weather monitoring stations, at their Stillwater station (lat 36-07-

15 long 97-05-42).  

Table 3 Precipitation over sampling dates, separated into month and year. Squares bales, 

where fungal colonization was observed, were conducted in 2013, whereas the round bales 

where no growth was observed were conducted in 2014. 

Inches of 

rain March April May June July August September October Total 

Month 3 4 5 6 7 8 9 10  

2014 1.21 0.84 0.65 6.29 3.98 2.01 4.19 2.18 21.35 

2013 1.12 5.33 6.22 3.95 5.57 2.25 1.16 1.88 27.48 

 

Precipitation alone is not an indicator of bale degradation, but together with temperature 

and humidity can be used to estimate the dry matter loss over time (Huhnke 2003). Wetter, 

warmer weather is preferable to hot, dry weather. The Spring of 2014 in particular was very hot 

and dry, where 2013 was wetter and more temperate. In addition the 2013 bales were square, 

which are known to be more susceptible to weather unlike round bales (Macdonald and Clark 

1987). Thus the square bales, which were studied in 2013, provided conditions hospitable to 

fungal growth.The dry year of 2014 could be an explanation for no observable difference was 

present between the fungi treated and non-fungi treated round bales. 
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7. Conclusions 

7.1 Storage Study 

There were no significant changes in composition between bales during storage. This is 

not an unexpected finding as previous storage studies of switchgrass, such as in Wiselogel et al. 

(1996) and Adler et al. (2006), showed that the biomass composition changed only slightly 

between all plant cell wall components, frequently less than 5%, and at a decreasing rate over 

time. Compositional changes are possible, but often not considered as a significant contributor to 

bale chemistry after baling (Monti et al. 2009). Our study showed that, as far as composition of 

each set of biomass is concerned, there was little change over time; it should be noted that dry 

matter loss, however, could occur. 

The most significant differences in the study did not come from compositional analysis, 

but from enzymatic hydrolysis results, where large significant differences could be determined 

between different samples, which had statistically similar compositions. This suggested that the 

differences determined from enzymatic hydrolysis yields were not due to compositional changes 

within the biomass, but possibly due to structural biomass changes. The structural change of 

switchgrass bales over time had previously been reported. Switchgrass bales stored in an 

unprotected environment for up to nine months were reported to have decreases in extractives of 

switchgrass of up to 11% (Wiselogel et al. 1996). Moreover, it has been reported that multiple 

types of white-rot fungi could degrade structural proteins in non-woody biomass, such as wheat 

straw (Agosin et al. 1985), and that different types of lignin were degraded at different rates, 

depending on storage conditions (Shinners et al. 2010). Thus it is possible that, while 

composition of biomass did not change in terms of its ratio of cellulose/lignin/xylan/ash, the 

structural integrity of biomass could have been  modified over time. In this work, there were no 
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significant changes in swichgrass composition as a function of time, but analysis of biomass in 

terms of its ability to release carbohydrates after enzymatic hydrolysis showed significant 

differences, as shown in Figure 16. It was observed that switchgrass, while compositionally very 

similar over time, released carbohydrates more readily in the earliest sampling dates as opposed 

to the latest. The by-product profile of the prehydrolysates for each sample was relatively 

similar. The pretreatment was not the source of the differences observed in enzyme yields, as the 

overall levels of inhibitory byproducts formed were not sufficiently large to inhibit the enzymatic 

reactions.  Acetic and formic acid were less than 1 g/l, while furfural was less, than 5 g/l; 

concentrations of 5 g/l or greater would be required to confer inhibition starting (Jing et al. 

2009). On the other hand, the oligomer profiles varied as a function of time, as shown in Figure 

15, and these are known to be inhibitory to enzymatic hydrolysis (Qing et. a 2010).  

The only differences in sampling dates came from the 200 °C treated group, and at depth 

2 samples, which indicated that if sampling date had an effect on biomass recalcitrance, it was 

only at the more severe pretreatment conditions. This is consistent with the literature wherein 

higher temperatures, usually corresponding to higher severities of LHW pretreatment give better 

and a wider range of saccharification results (Hendriks and Zeeman 2009). This means that 

whatever structural differences that may exist within the biomass during storage either through 

decomposition or otherwise are only evident at higher severities.   
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7.2Water 

In regards to the differences in precipitation between the round and square bales, it can be 

said that the lower amount of precipitation in 2014 when compared to 2013 could be the 

explanation for why none of the fungal inoculum grew in the round bales, which were assembled 

in 2014, a year with low precipitation. It has been reported that high levels of precipitation (over 

65 cm) correspondedto high levels of bale degradation (Wiselogel et al. 1996).As opposed to 

field set-ups, laboratory fungal biomass deconstruction experimentsrequire additional water and 

oxygen to foster fungal growth. Reports on addition of components consist of: saturation of 

initial growth medium with water  up to 75% (Vane et al. 2001);  addition of water to the 

inoculum to sustain growth with up to 1:3 mass to volume ratio(Salvachua et. a 2011); and, the 

periodic addition of water to maintain the biomass at 80% (wet basis), (Balan et al. 2008). 

Moisture content for the biomass in laboratory scale experiments can be as high as 90% (wet 

basis), but most published laboratory work on the cultivation of P. ostreatus is conducted at 60 

% to 70 % moisture content. In comparison, our biomass never exceeded 10 % moisture content, 

and in fact averaged around 6 %, which were conditions that were not conducive to foster P. 

ostreatus growth. In that respect we were cultivating the fungus in extremely dry conditions, 

without additional mineral supplementation, and in potentially oxygen deprived environments.  

7.3Biomass Recalcitrance 

Though there were observed differences in the biomass digestibility, there was no trend 

associated with the application of the white-rot fungus inoculum and the digestibility of the 

biomass. Though specific data points did perform better (or worse) within the two treatment 

groups, it was not possible to quantify whether this was natural variability, or a direct result of 

the fungal treatment. Since there were not enough replications of the square or round 

experimental units (1 control and 2 treatment bales) there is insufficient data to state whether or 
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not the differences in the averages are significant or not. Qualitative analysis of the biomass in 

the square bales confirmed the growth of fungus through the observation of both white fruiting 

bodies of the mushroom as well as the mycelia within the bale but no quantitative analysis such 

as determining fungal composition or doing mycelia counts was conducted. Therefore it can be 

said that the fungus did successfully colonize the material, but the extent and progress of the 

fungus cannot be quantified due to the experimental setup not allowing for such data to be 

collected on a monthly basis.  

However, two general patterns seem present in the data. Within the square fungal treated 

bales that were enzymatically hydrolyzed there typically were only two levels of significance (A 

and B), with the data tending to either be statistically similar to the control group or lower. For 

200 C, the fungal treated bales did not outperform the control group. For 180 °C, there was only 

one data set (group 1, month 4),  which outperformed the control group in enzymatic hydrolysis, 

and all other treatment groups were statistically equal to or lower than the control, as shown in 

Figure 9. Since the compositions of all Groups (0, 1, and 2) were statistically similar, as were the 

compositions of the biomass after pretreatment, this indicated that there was no structural change 

in the biomass which made it more susceptible to enzyme attack (or at least no more susceptible 

than the control already was). The most likely reason for this is simply that the biomass was not 

affected by the addition of fungal spawn, even if the fungus was observed growing within the 

biomass. This could be because the fungus tends to grow locally, rather than distributed equally 

throughout the bale, and the bale sampling method takes an average of multiple points within the 

bale (some of which might have no fungi). This would mean simply that cultivating the fungi 

requires more than just spreading the spawn evenly though the bale. The difficulties in achieving 

uniform fungal growth in biomass are well studied outside of bales (Adamovic et al. 1998, Balan 
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et al. 2008). Ultimately the investment needed to provide a suitable environment for fungal 

cultures on biomass would likely be cost prohibitive, thus while our study did not provide ideal 

conditions for fungal growth, it did provide a more realistic expectation  of fungal viability in 

bales stored as they would be on a biofuels farm.  

In regards specifically to the hypothesis that fungal treated bales would lower the 

pretreatment severity needed to hydrolyze sugars, the experiment was inconclusive. At best we 

showed that the introduction of fungal treatment decreased overall enzyme yields while showing 

no difference in biomass composition, though statistically even these results were only true for a 

few select data sets. There were no significant differences in regard to storage time and 

composition, but there were significant differences between the ability of the enzyme to 

hydrolyze the biomass that was ‘older’. This suggests a non-compositional based factor which is 

inhibiting enzymatic activity at some level within the biomass, a change which is present after it 

has been left outside after harvest for some time (9 months). This change was present in both 

round and square bales though to a different extent in each. The round bales, which are known to 

shed water more effectively, showed no signs of significant differences between treated (with 

mushroom) and untreated controls, and there was no visual identification of fungal growth within 

these bales either. One possible reason for this was the dryness and inaccessibly of round bales to 

oxygen and water, which is an intended feature of their shape. Square bales, with their greater 

surface area and more water-retaining shape, did show signs of fungal growth (in fruiting 

bodies), but this growth was localized and not throughout the entire bale.  

Between different bales there were multiple incidences of significant differences between 

enzymatic hydrolysis yields, which shows that even in bales being considered to be the same 

‘unit’, there are large amounts of inherent experimental variability within them. These 
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differences were more pronounced at the 200 °C pretreatment temperatures, with a decreasing 

amount of significance the older the bales were (the older the bales were, the more their data 

looked like other data from similarly aged bales). This is consistent with literature findings 

regarding storage of biomass for long periods of time, which show that the dry matter loss (and 

thus decomposition) of biomass over time follows a decreasing rate as a function of time (Larson 

et al. 2010).  

8. Suggestions for Future Work 

With these results in mind, there are several clear directions to take subsequent studies to 

alleviate the natural variability within the bales as well as to maximize the likelihood of fungal 

colonization. One important factor to take into account is the dry matter loss within each bale, 

which was not tracked in this study but is a fundamental data type that is used in similar storage 

studies in order to ensure both mass closure (once the mass balance in known) within the bales as 

well as to provide a metric for degradation of the bales over time. Without that data it is 

impossible to conduct a full ‘yield’ analysis on how much sugar exists within a single bale, as we 

have no baseline for total starting sugars present (as cellulose). In addition to taking mass loss 

over time, bales should likely be stored indoors and be supplied (at least initially) with water 

after baling. The addition of water and storage indoors removes two key uncontrollable variables 

of the experiment (precipitation and water content within the bales at harvest). With these two 

changes, the differences between square and round bales would likely lessen (or disappear) as we 

have removed the source of variability (precipitation) which favors fungal growth in one type of 

bale but not the other. Additionally more replications of each condition would help to reduce the 

overall variability by having a larger sample size. This is especially important for the control 

bales. Given the large experimental units (1000 kilograms) however it is possible that together 
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with funding and land availability, getting more units is difficult. It would then be meaningful to 

consider smaller bales instead; much like has been done already (Monti et al. 2009).Smaller 

bales with the same amount of biomass would allow for more replications and more easily 

controlled experimental conditions, which would both increase the consistency and decrease the 

variability in the data at the expense of having data which is less applicable to the industry. There 

is currently another follow-up study being conducted using smaller bales with controlled 

moisture content.  

The results have shown that fungal inoculation of switchgrass bales can produce 

significant changes in enzymatic hydrolysis of sugars, though the levels are lower rather than 

higher in terms of grams of glucose yielded per gram of cellulose present. While this work is 

different from currently published work regarding fungal pretreatment (which has been shown to 

increase yields), for the reasons discussed prior (water, storage time, storage method) our study 

showed either no effect or the opposite effect on large bales of biomass. Storage times only had 

effects on switchgrass at the more severe pretreatment conditions, though the more severe 

pretreatments also produced significantly more sugar recoveries overall.   



73 

 

9. References 

Abramson, M., Shoseyov, O., & Shani, Z. (2010). Plant cell wall reconstruction toward 

improved lignocellulosic production and processability. Plant Science, 178(2), 61-72.  

Abatzoglou, N.; Chornet, E.; Belkacemi, K. Phenomenological kinetics of complex systems: The 

development of a generalized severity parameter and its application to lignocellulosics 

fractionation. Chem. Eng. Sci. 1992, 153, 375-380. 

Adamovic, M., Grubic, G., Milenkovic, I., Jovanovic, R., Protic, R., Sretenovic, L., & Stoicevic, 

L. (1998). The biodegradation of wheat straw by Pleurotus ostreatus mushrooms and its 

use in cattle feeding. Animal Feed Science and Technology, 71, 357-362.  

Adney, B., & Baker, J. (1996). Measurement of cellulase activities. Laboratory analytical 

procedure, 6, 1996. 

Adler, P. R., Sanderson, M. A., Boateng, A. A., Weimer, P. J., & Jung, H. G. (2006). Biomass 

yield and biofuel quality of switchgrass harvested in fall or spring. Agronomy Journal, 

98(6), 1518-1525.  

Agblevor, F., Rejai, B., Evans, R., & Johnson, K. (1993). Pyrolytic analysis and catalytic 

upgrading of lignocellulosic materials by molecular beam mass spectrometry. Energy 

from Biomass and Wastes, 16, 767-767.  

Agosin, E., Monties, B., & Odier, E. (1985). Structural changes in wheat straw components 

during decay by lignin‐degrading white‐rot fungi in relation to improvement of 

digestibility for ruminants. Journal of the Science of Food and Agriculture, 36(10), 925-

935.  

Bajpai, P. (2012). Brief description of the pulp and paper making process. In Biotechnology for 

Pulp and Paper Processing (pp. 7-14). Springer US. 

Balan, V., Costa Sousa, L., Chundawat, S.P.S., Vismeh, R., Jones, A. D., & Dale, B. E. (2008). 

Mushroom spent straw: A potential substrate for an etahnol-based biorefinery. Journal of 

Industrial Microbiology and Biotechnology, 35, 293-301.  

Bothast, R. J., & Schlicher, M. A. (2005). Biotechnological processes for conversion of corn into 

ethanol. Applied Microbiology and Biotechnology, 67(1), 19-25. doi:10.1007/s00253-

004-1819-8  

Camarero, S., Galletti, G. C., & Martinez, A. T. (1994). Preferential degradation of phenolic 

lignin units by two white rot fungi. Applied and Environmental Microbiology, 60(12), 

4509-4516.  



74 

 

Carvalheiro, F., Esteves, M., Parajó, J., Pereira, H., & Gırio, F. (2004). Production of 

oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresource Technology, 

91(1), 93-100.  

Chandel, A. K., Silva, S. S., & Singh, O. V. (2011). Detoxification of lignocellulosic 

hydrolysates for improved bioethanol production. In M. A. D. S. Bernardes (Ed.), Biofuel 

production- recent developments and prospects (pp. 227-246) InTech.  

Chen, Y. R., Sarkanen, S., & Wang, Y. Y. (2012). Lignin-degrading enzyme activities. 

In Biomass Conversion (pp. 251-268). Humana Press. 

Cohen, R., Jensen Jr., K. A., Houtman, C. J., & Hammel, K. E. (2002). Significant levels of 

extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose. 

Federation of European Biochemical Societies, 531, 483-488.  

Composition, B. F. (2009). Property Database. US Department of Energy Biomass Program. 

Available online at http://www. afdc. energy. gov/biomass/progs/search1. cgi. Accessed 

Jun, 18. 

Cook, C., Francocci, F., Cervone, F., Bellincampi, D., Bolwell, P. G., Ferrari, S., & Devoto, A. 

(2015). Combination of pretreatment with white rot fungi and modification of primary 

and secondary cell walls improves saccharification. BioEnergy Research, 8(1), 175-186.  

Crestini, C., Melone, F., Sette, M., & Saladino, R. (2011). Milled wood lignin: A linear 

oligomer. Biomacromolecules, 12(11), 3928-3935. doi:10.1021/bm200948r  

Dogaris, I., Karapati, S., Mamma, D., Kalogeris, E., & Kekos, D. (2009). Hydrothermal 

processing and enzymatic hydrolysis of sorghum bagasse for fermentable carbohydrates 

production. Bioresource technology, 100(24), 6543-6549. 

Djioleu, A., Sverzut, C. B., Martin, E., Childress, E., Johnson, c., West, C. P., & Carrier, D. J., 

(2014). Effects of harvest and storage of switchgrass on the recovery of carbohydrates 

during dilute acid pretreatment and enzymatic hydrolysis. Forage and Grazing Lands, 

12(1) doi:10.2134/FG-2013-0016-RS  

Du, B., Sharma, L. N., Becker, C., Chen, S., Mowery, R. A., van Walsum, G. P., & Chambliss, 

C. K. (2010). Effect of varying feedstock pretreatment chemistry combinations on the 

formation and accumulation of potentially inhibitory degradation products in biomass 

hydrolysates. Biotechnology and Bioengineering, 107(3), 430-440. doi:10.1002/bit.22829  

Emery, I. R., & Mosier, N. S. (2012). The impact of dry matter loss during herbaceous biomass 

storage on net greenhouse gas emissions from biofuels production. Biomass and 

Bioenergy, 39, 237-246.  

Frederick, N., Zhang, N., Djioleu, A., Ge, X., Xu, J., & Carrier, D.J. (2013). The effect of 

washing dilute acid pretreated poplar biomass on ethanol yields. In A. K. Chandel, & S. 



75 

 

S. Silva (Eds.), Sustainable degradation of lignocellulosic biomass- techniques, 

applications, and commercialization (pp. 105-117). Rijeka, Croatia: InTech.  

Fu, C., Mielenz, J. R., Xiao, X., Ge, Y., Hamilton, C. Y., Rodriguez, M., ... & Wang, Z. Y. 

(2011). Genetic manipulation of lignin reduces recalcitrance and improves ethanol 

production from switchgrass. Proceedings of the National Academy of Sciences, 108(9), 

3803-3808. 

Gupta, R., Mehta, G., Khasa, Y. P., & Kuhad, R. C. (2011). Fungal delignification of 

lignocellulosic biomass improves the saccharification of 

cellulosics. Biodegradation, 22(4), 797-804. 

Hatakka, A. (1983). Pretreatment of wheat straw by white-rot fungi for enzymic saccharification 

of cellulose. European Journal of Applied Microbiology and Biotechnology, 18(6), 350-

357. doi:10.1007/BF00504744  

Heap, L., Green, A., Brown, D., van Dongen, B., & Turner, N. (2014). Role of laccase as an 

enzymatic pretreatment method to improve lignocellulosic saccharification. Catalysis 

Science & Technology, 4(8), 2251-2259. Hendriks, A., & Zeeman, G. (2009). 

Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource 

Technology, 100(1), 10-18.  

Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of 

lignocellulosic biomass. Bioresource technology, 100(1), 10-18. 

Himmel, M. E., Ding, S., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, 

T. D. (2007). Biomass recalcitrance: Engineering plant and enzymes for biofuels 

production. Science, 315, 804-807.  

Holtzapple, M., Cognata, M., Shu, Y., & Hendrickson, C. (1990). Inhibition of trichoderma 

ressei cellulase by sugars and solvents. Biotechnology and Bioengineering, 36, 275-287.  

Hu, Z., Sykes, R., Davis, M. F., Charles Brummer, E., & Ragauskas, A. J. (2010). Chemical 

profiles of switchgrass. Bioresource Technology, 101(9), 3253-3257. 

doi:http://dx.doi.org/10.1016/j.biortech.2009.12.033 

Huhnke, R. L. (2003). Round bale hay storage Division of Agricultural Sciences and Natural 

Resources, Oklahoma State University, Stillwater, OK.  

Hyman, D., Sluiter, A., Crocker, D., Johnson, D., Sluiter, J., Black, S., & Scarlata, C. 

(2007). Determination of Acid Soluble Lignin Concentration Curve by UV–Vis 

Spectroscopy; Laboratory Analytical Procedure (LAP). NREL Technical Report 

NREL/TP-510-42620. 

Itoh, H., Wada, M., Honda, Y., Kuwahara, M., & Watanabe, T. (2003). Bioorganosolve 

pretreatments for simultaneous saccharification and fermentation of beech wood by 



76 

 

ethanolysis and white rot fungi. Journal of Biotechnology, 103(3), 273-280. 

doi:http://dx.doi.org/10.1016/S0168-1656(03)00123-8 

Jing, X., Zhang, X., & Bao, J. (2009). Inhibition performance of lignocellulose degradation 

products on industrial cellulase enzymes during cellulose hydrolysis. Applied 

Biochemistry and Biotechnology, 159(3), 696-707. doi:10.1007/s12010-009-8525-z  

Keller, M., Hamilton, J., & Nguyen, Q. (2002). Microbial pretreatment of biomass: Potential for 

reducing the severity ofThermochemicalBiomass pretreatment. 24th Symposium on Fuels 

and Chemical from Biomass, Gatlinburg, TN.  

Kim, Y., Hendrickson, R., Mosier, N. S., & Ladisch, M. R. (2009). Liquid hot water 

pretreatment of cellulosic biomass. Biofuels: Methods and Protocols, 581, 93-102.  

Kim, Y., Mosier, N., Ladisch, M., Pallapolu, V. R., Lee, Y. Y., Garlock, R., Warner, R. E. 

(2011). Comparative study on enzymatic digestibility of switchgrass varieties and 

harvests processed by leading pretreatment technologies. Bioresource Technology, 102, 

11089-11096.  

Kim, Y., Ximenes, E., Mosier, N. S., & Ladisch, M. R. (2011). Soluble inhibitors/deactivators of 

cellulase enzymes from lignocellulosic biomass. Enzyme and Microbial Technology, 48, 

408-415.  

Kim, Y., Mosier, N. S., & Ladisch, M. R. (2008, November). Effect of liquid hot water 

pretreatment on switchgrass hydrolysis. In AIChE meeting, Philadelphia, PA.  

Kumar, A., & Sokhansanj, S. (2007). Switchgrass (panicum vigratum, L.) delivery to a 

biorefinery using integrated biomass supply analysis and logistics (IBSAL) model. 

Bioresource Technology, 98, 1033-1044.  

Larson, J. A., Mooney, D. F., English, B. C., & Tyler, D. D. (2010, February). Cost analysis of 

alternative harvest and storage methods for switchgrass in the Southeastern US. In 2010 

Annual Meeting of Southern Agricultural Economics Association (pp. 6-9). 

Laser, M., Schulman, D., Allen, S. G., Lichwa, J., Antal, M. J., & Lynd, L. R. (2002). A 

comparison of liquid hot water and steam pretreatments of sugar cane bagasse for 

bioconversion to ethanol. Bioresource Technology, 81(1), 33-44.  

Li, X., Weng, J., & Chapple, C. (2008). Improvement of biomass through lignin modification. 

The Plant Journal, 54(4), 569-581.  

Liamsakul, W., Zemann, A., & Bobleter, O. (1993). Hydrothermal pretreatment of rice straw. 

In Advances in Thermochemical Biomass Conversion (pp. 1545-1557). Springer 

Netherlands.  



77 

 

Liu, C., & Wyman, C. E. (2003). The effect of flow rate of compressed hot water on xylan, 

lignin, and total mass removal from corn stover. Industrial and Engineering Chemistry 

Research, 42(21), 5409-5416.  

Lu, Y., Yan, L., Wang, Y., Zhou, S., Fu, J., & Zhang, J. (2009). Biodegradation of phenolic 

compounds from coking wastewater by immobilized white rot fungus Phanerochaete 

chrysosporium. Journal of Hazardous Materials, 165(1), 1091-1097.  

Lubieniechi, S., Peranantham, T., & B Levin, D. (2013). Recent patents on genetic modification 

of plants and microbes for biomass conversion to biofuels.Recent patents on DNA & gene 

sequences, 7(1), 25-35. 

Lundell, T. K., Makela, M. R., & Hilden, K. (2010). Lignin-modifying enzymes in filamentous 

basidiomycetes- ecological, functional, and phylogenetic review. Journal of Basic 

Microbiology, 50, 5-20.  

Macdonald, A. D., & Clark, E. A. (1987). Water and quality loss during field drying of 

hay. Advances in agronomy, 41, 407-437.  

Matcham, S. E., Jordan, B. R., & Wood, D. A. (1985). Estimation of fungal biomass in a solid 

substrate by three independent methods. Applied Microbiology and Biotechnology, 21(1-

2), 108-112. doi:10.1007/BF00252371  

Mitchell, R., & Schmer, M. (2012). Switchgrass harvest and storage. InSwitchgrass (pp. 113-

127). Springer London. 

Monti, A., Fazio, S., & Venturi, G. (2009). The discrepancy between plot and field yields: 

Harvest and storage losses of switchgrass. Biomass and Bioenergy, 33, 841-847.  

Mooney, D. F., Larson, J. A., English, B. C., & Tyler, D. D. (2012). Effect of dry matter loss on 

profitablity of outdoor storage of switchgrass. Biomass and Bioenergy, 44, 33-41.  

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). 

Features of promising technologies for pretreatment of lignocellulosic biomass. 

Bioresource Technology, 96, 673-686.  

Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., & Ladisch, M. R. (2005). Optimization of pH 

controlled liquid hot water pretreatment of corn stover. Bioresource Technology, 96(18), 

1986-1993.  

Mukherjee, R., & Nandi, B. (2004). Improvement of in vitro digestibility through biological 

treatment of water hyacinth biomass by two Pleurotus species. International 

Biodeterioration and Biodegradation, 53, 7-12.  

Obst, J. R., & Kirk, K. (1988). Isolation of lignin. Methods in Enzymology, 161, 3-12.  



78 

 

Okano, K., Kitagawa, M., Sasaki, Y., & Watanabe, T. (2005). Conversion of japanese red cedar 

(Cryptomeria japonica) into a feed for ruminants by white-rot basidomycetes. Animal 

Feed Science and Technology, 120, 235-243.  

Parkås, J., Brunow, G., & Lundquist, K. (2007). QUANTITATIVE LIGNIN ANALYSIS 

BASED ON LIGNIN DEGRADATION PRODUCTS: PERMANGANATE 

OXIDATION. BioResources, 2(2), 169-178. 

Pérez, J., Ballesteros, I., Ballesteros, M., Sáez, F., Negro, M., & Manzanares, P. (2008). 

Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from 

wheat straw for fuel-ethanol production. Fuel, 87(17), 3640-3647.  

Pinto, P. A., Dias, A. A., Fraga, I., Marques, G., Rodrigues, M. A. M., Colaco, J., Bezerra, R. M. 

F. (2012). Influence of ligninolytic enzymes on straw saccharification during fungal 

pretreatment. Bioresource Technology, 111, 261-267.  

Qing, Q., Yang, B., & Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose 

hydrolysis by enzymes. Bioresource Technology, 101(24), 9624-9630. 

Quesada-Medina, J., López-Cremades, F. J., & Olivares-Carrillo, P. (2010). Organosolv 

extraction of lignin from hydrolyzed almond shells and application of the δ-value theory. 

Bioresource Technology, 101(21), 8252-8260. 

doi:http://dx.doi.org/10.1016/j.biortech.2010.06.011 

Rajan, K., & Carrier, D. J. (2014). Effect of dilute acid pretreatment conditions and washing on 

the production of inhibitors and on recovery of sugars during wheat straw enzymatic 

hydrolysis. Biomass and Bioenergy, 62, 222-227. 

Rotz, C. A., & Abrams, S. M. (1988). Losses and quality changes during alfalfa hay harvest and 

storage. Transactions of the American Society of Agricultural Engineers, 31(2), 350-355. 

Ruiz-Duenas, J. D., & Martinez, A. T. (2009). Microbial degradation of lignin: How a bulky 

recalcitrant polymer is efficiently recycled in nature and how we can take advantage of 

this. Microbial Biotechnology, 2(2), 164-177.  

Sainos, E., Diaz-Godinez, G., & Loera, O. (2006). Growth of pleurotus ostreatus on wheat straw 

and wheat-grain-based media: Biochemical aspects and preparation of mushrrom 

inoculum. Applied Microbial and Cell Physiology, 72, 812-815.  

Sakdaronnarong, C. K., Onsrithong, N., Suwankrua, R., & Jonglertjunya, W. (2012). Improving 

enzymatic saccharification of sugarcane bagasse by biological/physico-chemical 

pretreatment using Tranmetes versicolor and Bacillus spp. . Bioresources, 7(3), 3935-

3947.  



79 

 

Salvachua, D., Prieto, A., Lopez-Abelairas, M., Lu-Chau, T., Martinez, A. T., & Martinez, M. J. 

(2011). Fungal pretreatment: An alternative in second-generation ethanol from wheat 

straw. Bioresource Technology, 102, 7500-7506.  

Sanderson, M. A., Egg, R. P., & Wiselogel, A. E. (1997). Biomass losses during harvest and 

storage of switchgrass. Biomass and Bioenergy, 12(2), 107-114.  

Sanderson, M. A., Adler, P. R., Boateng, A. A., Casler, M. D., & Sarath, G. (2006). Switchgrass 

as a biofuels feedstock in the USA. Canadian Journal of Plant Science, 86, 1315-1325. 

doi:10.4141/P06-136  

Sawada, T., Nakamura, Y., Kobayashi, F., Kuwahara, M., & Watanabe, T. (1995). Effects of 

fungal pretreatment and steam explosion pretreatment on enzymatic saccharification of 

plant biomass. Biotechnology and Bioengineering, 48(6), 719-724. 

doi:10.1002/bit.260480621  

Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., . . . Yu, T. 

(2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions 

from land-use change. Science, 319(5867), 1238-1240. doi:10.1126/science.1151861  

Shi, J., Chinn, M. S., & Sharma-Shivappa, R. R. (2008). Microbial pretreatment of cotton stalks 

by solid state cultivation of Phanerochaete chrysoporium . Bioresource Technology, 99, 

6556-6564.  

Shinners, K., Boettcher, G., Muck, R., Weimer, P., & Casler, M. (2010). Harvest and storage of 

two perennial grasses as biomass feedstocks. Transactions of the ASAE (American 

Society of Agricultural Engineers), 53(2), 359.  

Sims, R. E. H., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second 

generation biofuel technologies. Bioresource Technology, 101(6), 1570-1580. 

doi:http://dx.doi.org/10.1016/j.biortech.2009.11.046 

Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., ... & Wolfe, J. (2008). 

Determination of total solids in biomass and total dissolved solids in liquid process 

samples. National Renewable Energy Laboratory, Golden, CO, NREL Technical Report 

No. NREL/TP-510-42621. 

Sluiter, J., & Sluiter, A. (2010). Summative Mass Closure. Laboratory Analytical Procedure 

Review and Integration: Feedstocks. NREL/TP-510-48087.  

Spáčil, Z., Nováková, L., & Solich, P. (2008). Analysis of phenolic compounds by high 

performance liquid chromatography and ultra performance liquid 

chromatography. Talanta, 76(1), 189-199. 

Suryawati, L., Wilkins, M. R., Bellmer, D. D., Huhnke, R. L., Maness, N. O., & Banat, I. M. 

(2008). Simultaneous saccharification and fermentation of Kanlow switchgrass pretreated 



80 

 

by hydrothermolysis using Kluyveromyces marxianus IMB4. Biotechnology and 

Bioengineering, 101(5), 894-902. doi:10.1002/bit.21965  

Towers, M., Browne, T., Kerekes, R., Paris, J., & Tran, H. (2007). Biorefinery opportunities for 

the Canadian pulp and paper industry. Pulp & Paper Canada, 108(6), 26-29. 

Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., & Tanaka, T. (2005). 

Evaluation of pretreatment with pleurotus ostreatus for enzymatic hydrolysis of rice 

straw. Journal of Bioscience and Bioengineering, 100(6), 637-643.  

Van Walsum, G. P., Allen, S. G., Spencer, M. J., Laser, M. S., Antal Jr, M. J., & Lynd, L. R. 

(1996, January). Conversion of lignocellulosics pretreated with liquid hot water to 

ethanol. In Seventeenth Symposium on Biotechnology for Fuels and Chemicals (pp. 157-

170). Humana Press. 

Vane, C. H., Martin, S. C., Snape, C. E., & Abbott, G. D. (2001). Degradation of lignin in wheat 

straw during growth of the oyster mushroom (Pleurotus ostreatus) using off-line 

thermochemolysis with tetramethylammonium hydroxide and solid-state 13C -NMR. 

Journal of Agricultural and Food Chemistry, 49, 2709-2716.  

Wiselogel, A., Agblevor, F., Johnson, D., Deutch, S., Fennell, J., & Sanderson, M. (1996). 

Compositional changes during storage of large round switchgrass bales. Bioresource 

Technology, 56(1), 103-109.  

Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). 

Comparative sugar recovery data from laboratory scale application of leading 

pretreatment technologies to corn stover. Bioresource technology, 96(18), 2026-2032. 

Yu, Q., Zhuang, X., Yuan, Z., Wang, Q., Qi, W., Wang, W., ... & Xu, H. (2010). Two-step liquid 

hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic 

digestibility of cellulose. Bioresource Technology,101(13), 4895-4899. 

Zadrazil, F. (2011). Changes in in vitro digestibility of wheat straw during fungal growth and 

after harvest of oyster mushrooms (pleurotus spp.) on laboratory and industrial scale. 

Journal of Applied Animal Research, 11, 37-48.  

Zeng, J., Helms, G. L., Gao, X., & Chen, S. (2013). Quantification of wheat straw lignin 

structure by comprehensive NMR analysis. Journal of Agricultural and Food Chemistry, 

61, 10848-10857.  

Zeng, Y., Zhao, S., Yang, S., & Ding, S. (2014). Lignin plays a negative role in the biochemical 

process for producing lignocellulosic biofuels. Current Opinion in Biotechnology, 27(0), 

38-45. doi:http://dx.doi.org/10.1016/j.copbio.2013.09.008 



81 

 

Zhang, C., Zhuang, X., Wang, Z., Matt, F., John, F., & Zhu, J. Y. (2013). Xylanase 

supplementation on enzymatic saccharification of dilute acid pretreated poplars at 

different severities. Cellulose, 20(4), 1937-1946. doi:10.1007/s10570-013-9934-2  

Zhang, X., Xu, C., & Wang, H. (2007). Pretreatment of bamboo residues with Coriolus 

versicolor for enzymatic hydrolysis. Journal of Bioscience and Bioengineering, 104(2), 

149-151. doi:http://dx.doi.org/10.1263/jbb.104.149 

  



82 

 

9. Appendix 

Table 1: Glucose recovery masses in total grams for 180 C in round bales 

Glucose Recoveries for Round Bales (grams) 

Each reaction vessel was loaded to .1 gram 

of cellulose 

180 C               

Depth 1       Depth 2       

Unwashe

d     Washed 

Unwashe

d     Washed 

                

bal

e Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 

1 0.024218 

0.00087

7 

0.02604

4 

0.00447

9 0.0406 

0.00497

5 

0.04409

2 

0.00240

1 

2 0.029644 0.0033 

0.02496

3 

0.00169

8 0.020425 

0.00109

2 

0.06072

5 

0.00796

5 

3 0.036406 

0.00587

9 

0.04391

8 

0.00899

8 0.039109 

0.00650

8 

0.03296

3 0.00231 

4 0.033646 

0.01282

2 

0.03942

8 

0.00221

3 0.035184 

0.00042

1 

0.07385

9 

0.00298

9 

5 0.028672 

0.00854

9 

0.04791

3 

0.00548

6 0.043876 

0.00818

4 0.03647 

0.00043

9 

6 0.040428 

0.00068

1 

0.04562

3 

0.00394

9 0.045219 

0.00438

6 

0.03563

3 

0.00563

3 

7 0.02018 

0.00214

3 

0.02648

3 

0.00558

6 0.035238 0.00142 

0.04822

2 

0.00123

7 

8 0.034867 

0.00242

3 

0.03632

1 

0.00227

8 0.047575 

0.00407

6 

0.03521

2 

0.00613

1 

9 0.0334 

0.00133

5 

0.03961

1 

0.00114

1 0.048165 

0.00061

7 

0.06684

2 

0.00071

8 

10 0.03222 0.00225 

0.04292

9 

0.00177

9 0.045515 

0.00169

2 

0.04680

8 

0.00964

3 

11 0.044617 

0.00103

5 

0.03614

4 

0.00743

1 0.065872 

0.00333

3 

0.05410

9 

0.00045

5 

12 0.024817 

0.00074

6 

0.03172

5 0.00028 0.030773 

0.00119

2 

0.03505

9 

0.00097

2 

 

Table2: Glucose recovery masses in total grams for 200 C in round bales 

200 C               

Depth 1       Depth 2       

Unwashed     Washed Unwashed     Washed 

                

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 

0.101806 0.010807 0.096504 0.00955 0.09276 0.007588 0.085386 0.017837 
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0.076099 0.006694 0.104934 0.005606 0.059875 0.004268 0.086899 0.003597 

0.081324 0.002314 0.078434 0.002806 0.08458 0.002453 0.08104 0.003862 

0.072416 0.007225 0.080102 0.009271 0.086869 0.006719 0.037373 0.002353 

0.087964 0.003287 0.088774 0.000669 0.088196 0.005699 0.093459 0.012122 

0.074911 0.01145 0.085893 0.009405 0.101098 0.004655 0.0493 0.010791 

0.056847 0.006537 0.075354 0.000952 0.052017 0.009307 0.063473 0.009587 

0.08218 0.007932 0.097276 0.000834 0.06945 0.007674 0.04116 0.009042 

0.075088 0.00156 0.062992 0.006688 0.070759 0.001391 0.086038 0.015012 

0.094825 0.006149 0.092019 0.003567 0.103365 0.002348 0.03543 0.006785 

0.039557 0.000476 0.038991 0.009317 0.114113 0.004816 0.060921 0.009991 

0.083674 0.003666 0.090401 0.000841 0.075486 0.002513 0.08884 0.002686 
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Table 3: Glucose recoveries in mass for square bales at 180 C and 200 C 

Glucose Recoveries (gram)  

Each reaction vessel 

was loaded to .1 

gram of cellulose 

180 C   200 C   

bale Mean Std Dev Mean Std Dev 

1 0.051366 0.002918 0.085337 0.003558 

2 0.027066 0.003559 0.085029 0.004679 

3 0.041506 0.003275 0.08388 0.006334 

4 0.037666 0.000906 0.075751 0.006968 

5 0.027944 0.00893 0.069412 0.012494 

6 0.044545 0.002278 0.065741 0.002596 

7 0.030543 0.002947 0.053691 0.014229 

8 0.021875 0.000667 0.049962 0.005113 

9 0.039921 0.004815 0.078532 0.018831 

10 0.031311 0.003727 0.076825 0.011015 

11 0.039704 0.000326 0.084195 0.007569 

12 0.020234 0.00546 0.070359 0.005386 

 


	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	12-2015

	Storage of Round and Square Switchgrass Bales: Effect of Storage Time and Fungal Inoculation on Saccharification Efficiency
	Noaa Frederick
	Recommended Citation


	

