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ABSTRACT 

Effect of three different contamination removal methods on the bond strength of ceramic 

to enamel contaminated with aluminum chloride and ferric sulfate. 

DEGREE DATE: July 11, 2018 

Cesar Gonzalez, D.D.S. 

COLLEGE OF DENTAL MEDICINE NOVA SOUTHEASTERN UNIVERSITY 

Thesis Directed By:  Sharon C. Siegel, DDS, MS, MBA.  Committee Chair 

                                 Audrey Levitt Galka, DDS.  Committee member 

                                 Amir N. Farhangpour, DDS.  Committee member 

                                 Jeffrey Thompson, PhD.  Committee member 

Background: The need to control moisture and contamination is crucial in adhesive 

dentistry, especially when rubber dam isolation is not feasible. Hemostatic contamination 

can negatively affect adhesion to tooth substrate. To achieve better outcomes, hemostatic 

agents should be rinsed off properly using a method that will remove the contamination 

and will not affect the μ-SBS.  Objective: To evaluate and compare the effect of three 

different aluminum chloride and ferric sulfate  
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contamination removal methods on the μ-SBS of lithium disilicate glass-ceramic bonded 

to enamel and to compare the type of fracture between samples. Material and Methods: 

Lithium disilicate blocks (IPS e.max CAD) were cut into samples of 2 mm in diameter 

and 3mm in height. Thirty-five human molar teeth were collected and separated into 

seven groups (n=17) Groups: G1(control): No contamination. G2: Contamination with 

aluminum chloride and removal by 30 seconds water-rinse. G3: Contamination with 

aluminum chloride, removal by re-etching (37.5% phosphoric acid), water-rinse. G4: 

Contamination with aluminum chloride, removal with 18% EDTA G5: Contamination 

with ferric sulfate, removal with water-rinse. G6: Contamination with ferric sulfate, 

removal by re-etching (37.5% phosphoric acid), water-rinse and dried. G7: 

Contamination with ferric sulfate, removal with 18% EDTA. The enamel surface was 

etched, then contaminated with aluminum chloride and ferric sulfate, cleaned using 3 

different methods, previously described. Ceramic samples were etched with HF acid, 

silanated then bonded to enamel surface using Optibond FL, Variolink veneer cement and 

the Elipar S10 curing light, to avoid oxygen inhibition restoration margins were cover 

with a glycerin to complete polymerization of 10 -30 seconds each side.  Specimens were 

stored in deionized water for 7 days, then subjected to μ-SBS testing, fractured specimens 

were examined with a stereomicroscope to determine the type of fracture, and five 

sample of each group were selected for SEM. 
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To compare differences for the outcome a general linear mode ANOVA was created, and 

data recorded. Results: There were statistically significant differences among the studied 

groups for the μ-SBS (p< 0.05). The G6 (Ferric sulfate- Re-etching) was the closest mean 

μ-SBS (10.75 MPa) to the G1(control group).μ-SBS (16.24 MPa), the lowest μ-SBS 

(6.13 MPa) for the G4 (Aluminum chloride-EDTA). The groups using ferric sulfate as a 

cleaning method presented higher μ-SBS MPa than the groups using aluminum chloride 

as a cleaning method. The type of  fracture on groups with higher μ-SBS (MPa), G6 - 

10.75 MPa (ferric sulfate-reetching), G5 - 9.21 μ-SBS(MPa) (Ferric sulfate-water) 

presented more cohesive fractures, while groups with lower μ-SBS(MPa), G4 – 6.13 MPa 

(Aluminum chloride- EDTA), G3 – 6.27 (aluminum chloride- re- etching) presented 

more mixed fractures. Conclusions: The present study sought to investigate the effect of 

three different contamination removal methods on bond strength of ceramic to enamel 

contaminated with aluminum chloride and ferric sulfate. Ferric sulfate hemostatic agent 

showed higher μ-SBS in all contamination removal methods when compare to aluminum 

chloride hemostatic agent. But all the contamination removal methods in both groups 

failed to increase the bond strength on enamel to the level of the control group. Further 

research is required before we can make definitive conclusions 
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Chapter 1: Introduction 

1.1 Adhesion: 

1.1.1 Overview: 

Contemporary restorative dentistry places a definitive emphasis on strong and durable 

adhesion to tooth substrate which is critical for clinical long term success of resin-bonded 

direct and indirect restorations. Adhesion to tooth substrate is based on an exchange 

process in which inorganic tooth materials is replaced by synthetic resin.1 Buonocore2 

was the first to demonstrate that etching enamel with phosphoric acid enlarges the 

microscopic surface area for better resin penetration and increases resin-enamel bond 

strength. Resin treatment of acid etched enamel creates a new structure that is  neither 

enamel nor resin but a hybridization of the two.3 This was the first description  of the 

hybrid layer although the term had not yet been introduced.  

Adhesives are the compounds containing both hydrophilic monomers that allow bonding 

to tooth structure and hydrophobic monomers that contribute to coupling with restorative 

materials. All adhesives involve three major steps that are responsible for a durable 

adhesive/enamel-dentin bonding interface: 1). etching, 2). priming, 3). bonding.1 Bond 

strength results obtained with one bottle two-step adhesives appear to be less consistent 

than those recorded for three-step adhesives. Also, three-step etch-and-rinse adhesives 

have demonstrated superior bonding performance compared  to two-step adhesives.4 

1 



One-bottle two step etch-and-rinse adhesives seem more technique sensitive and provide 

weaker resin collagen interactions.3 For enamel, an etch-and-rinse approach using 

phosphoric acid remains the preferred option. Scanning electron microscopic studies 

indicate that the enamel etching pattern caused by self-etch adhesive is not as deep and 

appears less retentive than the one achieved with phosphoric acid. The degree of enamel 

etching with self-etch adhesives depend of the pH of the adhesive system. Bonding of 

self-etch systems to enamel still remains critical, and typically separate phosphoric acid-

etching of unground enamel surfaces is recommended.5 Clinical recommendations and 

guidelines can be based on the individual situation and desired treatment. As a general 

rule, the greater the amount of remaining enamel, the more likely the use of an etch-and-

rinse adhesive should be. This is especially true for indirect restorations, such as bonded 

laminate veneers, where the ideal preparation is preferably confined to enamel. While 

current trends favor fewer and simpler clinical application steps, one-step bonding 

systems reveal lower and less predictable bond strengths than multi-step etch-and-rinse. 

Long term survival of adhesive ceramic restorations depends on the success of a reliable 

bond between the ceramic, the composite luting agent and the dental substrates. A 

number of studies6,7 have evaluated the bond strength of the enamel/composite/ceramic 

joints. According with the literature, creating a porous ceramic surface texture, which is 

then silanated, is essential to obtain a reliable bond.6,8 On the other hand, a reliable 

enamel/composite/ceramic  junction has two interfaces: a composite/ceramic interface 

and an enamel/composite interface.9 In clinical studies evaluating the bond strength of the   
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enamel/composite/ceramic junction, a reliable bond can be produced by the mechanical  

interlocking of polymerized luting composite to acid-etch enamel.7 

1.2 Dental Ceramic: 

1.2.1 Overview: 

Applications for ceramics in dentistry became increasingly popular in the 18th century, 

largely due to the esthetic characteristics of the material compared to other tooth 

substitutes.10 Alexis Duchateau, a Parisian apothecary, integrated ceramics into dentistry 

when he created a complete set of dentures using porcelain ceramic material.11 Later, in 

1903, Charles Land further advanced dental ceramics by developing all-ceramic inlays, 

onlays, and crown restorations using fired porcelains,12 innovations that led to the 

creation of porcelain jacket crowns.13 Since then, dental ceramics have evolved with 

modifications to their chemical composition, esthetic properties, manufacturing 

processes, packaging, and indications. Highly esthetic and biocompatible results were 

achieved with early versions of dental ceramics, but the material’s weakness in tensile 

and shear stresses necessitated development of ceramic materials with greater strength 

and durability,14,15 especially when thicker restorations are necessary and/or cementing 

mainly to dentin is required. Along with CAD/CAM technology, today’s pressable and 

millable materials enable fabrication of stronger and more minimally invasive ceramic 

restorations that are also esthetic.16 This facilitates selection of the optimal metal-free  
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ceramic material based on the specific treatment, since newer ceramic materials are 

stronger, easier to use, and versatile. 

1.2.2 Composition, Characteristics, and Classification: 

Ceramics are inorganic, nonmetallic solids produced by the heating at high temperatures 

and subsequent cooling of raw compounds such as nitrides, carbides, metal oxides, and 

borides, as well as mixtures of these materials. Therefore, a material labeled as ceramic is 

in fact not ceramic if it is created by another processing technique or has organic 

components. The molecules of these compounds are primarily held together by ionic and 

covalent bonds.   

Ceramic materials may contain a crystalline or partly crystalline structure, or they may be 

amorphous (eg, a glass). Since most dental ceramics have at least some crystalline 

component, some authors limit the definition of ceramics to inorganic crystalline-

containing materials, rather than including non-crystalline glasses, even though glasses 

are ceramics.17 Understandably, dental ceramics are generally categorized by their 

microstructure,18 which facilitates scientific understanding of the structural and chemical 

nature of dental ceramics but does little to aid dentists or ceramists in selecting the 

appropriate material for a given clinical situation. The way a ceramic is processed greatly 

influences its mechanical behavior and, therefore, its clinical behavior. Thus, classifying 

dental ceramics based on their composition and how they are processed can better 

provide clear clinical parameters for evaluating and appropriately choosing the most  
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conservative ceramic for each clinical situation.19The categories below are presented 

from most conservative to least conservative in terms of healthy tooth structure 

preservation.  

1.2.2.1 CL-I (Powder/Liquid) 

Class I (CL-I) powder and liquid porcelains are created from materials primarily 

containing silicon dioxide and possess a glassy matrix and varying amounts of a 

crystalline phase within the glassy matrix (eg, Creation Porcelain, Jensen Dental; 

Ceramco 3, DENTSPLY International; EX-3, Kuraray Noritake Dental, Inc.). The CL-I 

group includes feldspathic porcelains, referred to as such because they were originally, 

and some continue to be made from naturally occurring feldspars (i.e., aluminosilicates 

composed of assorted quantities of potassium, sodium, barium, or calcium).19 Several 

feldspathic material options are available on the market today (eg, VITA VM 13, VITA 

Zahnfabrik; Vintage Halo, Shofu). CL-I materials are fabricated by hand and can be used 

where tooth reduction is most conservative (enamel is still present with 0.2-0.3 mm of reduction 

only). It is generally the most translucent ceramic materials, but they are also the 

weakest.19,2010-The material’s high translucency and esthetics create the illusion of 

natural teeth.13 Powder/liquid porcelain materials are ideal for cases in which significant 

enamel remains and/or there is healthy tooth structure on the teeth (ie, 50% or more 

remaining enamel on the tooth), and 50% or more of the bonded substrate is enamel, and 

70% or more of the margin is in the enamel. Feldspathic porcelain restorations that are 

bonded to primarily enamel substrates have proven to be highly successful long term. 
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 Powder/liquid porcelains demonstrate high esthetics and workability, and because they 

can be layered very thinly and placed directly on the enamel, they are considered the 

most conservative of the metal-free ceramic classes.16 CL-I porcelains require a thickness 

of 0.2 mm to 0.3 mm for each shade change.21,22 This class of materials is generally 

indicated for anterior  

restorations but can also be used for the occasional bicuspid and rare molar, providing all 

parameters are at a very low risk level. 

1.2.2.2 CL-II (Glass Ceramics) 

The composition of CL-II ceramics is similar to CL-I porcelain, both possess a glassy 

matrix,23 but the two classes vary in their glass-crystalline ratios and crystal types. In CL-

II materials crystal types can either be added to the glass or grown into the glassy matrix. 

CL-II ceramics also differ from CL-I porcelains in manufacturing, as they are formed into 

dense industrial blocks for pressing and machining. Based on their crystal type and 

documented clinical behavior, CL-II pressed and machined glass ceramics can be further 

subdivided into two distinct groups: CL-IIa and CL-IIb. 

1.2.2.3 CL-IIa 

Materials in this subdivision contain low to moderate (< 50%) leucite containing 

feldspathic glass. Leucite (KAlSi2O6) is a potassium alumino-silicate that exhibits a 

tetragonal structure at room temperature and undergoes a displacive phase transformation  
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from tetragonal to cubic at 625 °C, accompanied with a volume expansion of 1.2%. This 

results in a high coefficient of thermal expansion (20 to 25 × 10-6/°K). Such materials 

(eg, IPS Empress® CAD, Ivoclar Vivadent, Authentic®, Jenson Dental; VITABLOCS® 

Mark II, VITA, Zahnfabrik) contain less than 50% crystalline and perform more like a 

glass, which requires bonding. Like all CL-II materials, which have come to be known as 

glass ceramics, CL-IIa materials can be used for the same indications as CL-I materials 

including anterior teeth, bicuspids, and, on rare occasions, molars. Additionally, they 

have documented long-term clinical success in higher stress situations or when more 

dentin is exposed. They may be highly translucent, but traditionally they have required 

slightly thicker dimensions for workability and esthetics/shade matching (ie, minimum 

working thickness of 0.8 mm if layered with a veneering porcelain).21,22 

Materials in this subcategory demonstrate increased material strength, primarily due to 

the processing technique of using a dense, industrial made block, and possibly due to the 

leucite and its ability to alter the coefficient of thermal expansion, inhibiting crack 

propagation. These dense glass and leucite-containing materials are indicated for thicker 

veneers, anterior crowns, and posterior inlays and onlays, but only when a long-term 

bond and seal can be maintained. 

1.2.2.4 CL-IIb 

This is a new subcategory that includes moderate-to-high (ie,> 50%) crystalline-

containing glass or glass ceramics. The material’s microstructure consists of a glass  
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matrix surrounding a second phase of individual crystals. It originates as homogeneous 

glass, after which a secondary treatment nucleates and grows crystals, a process that 

imparts  improves mechanical and physical properties by maximizing the presence of 

crystals and the generation of compression stress around the crystals. An example of this 

material subcategory is lithium disilicate (eg, IPS e.max®, Ivoclar Vivadent), a glass 

ceramic material composed of silica, lithium dioxide, alumina, potassium oxide, and 

phosphorous pentoxide. After the crystalline component has reached optimal growth 

through the manufacturing process, it is pulverized into powder and processed through a 

variety of different techniques. Lithium disilicate is indicated for the same clinical 

situations as other glass ceramics; however, when fabricated to a full-contour monolithic 

restoration and seated with resin cement, it is also appropriate for higher stress situations, 

such as those requiring full crowns, even on molars. 

New additions to this category are zirconia-reinforced lithium silicates (ZLSs) (eg, VITA 

Suprinity®, VITA Zahnfabrik; CELTRA™ Duo, (Dentsply-Sirona, York PA). ZLS 

materials comprise a lithium-silicate glass ceramic that is strengthened with 

approximately 10% zirconia crystals. Although these materials are still relatively new to 

the market, initial in vitro testing shows they have excellent optics and physical 

properties like lithium disilicates. Only lithium disilicates, however, have long-term 

clinical data to support their use as single restorations anywhere in the mouth 

Restorations fabricated from this material subcategory demonstrate high strength, fracture 

resistance, and natural-looking esthetics, yielding a versatile and strong alternative for a  

8 



wider variety of indications. They are indicated when higher risks are involved (eg, less 

than 50% enamel remains on the tooth, less than 50% of the bonded substrate is enamel, 

and/or when 30% or more of the margin is in dentin). Due to the material’s glass 

properties, adhesive bonding is recommended. However, bonding to dentin results in less 

predictable restorations due to dentin’s flexibility; restorations bonded to enamel are 

much more predictable, given enamel’s significant stiffness compared to dentin.24 

1.2.2.5 CL-III (High-Strength Crystalline) 

CL-III materials are high-strength crystalline ceramics with minimal or no crystalline 

phase and are also produced through industrial processes. They differ from glass or glass 

ceramics based on the way a sintered crystalline matrix of high-modulus material (85% to 

100% of the volume) creates a junction with the particles in the crystalline phase. 

1.2.2.6 CL- IIIla 

CL-IIIa materials are manufactured by creating a porous matrix that is formed into a 

block, and then final processed to shape using CAD/CAM technology, after which a 

second-phase material melts and fills the pores within the material. Lanthanum 

aluminosilicate glass is drawn in either a liquid or molten glass form into all the pores via 

capillary action, creating a dense and interpenetrating material from the internal to 

external surfaces. The final material is an 85% crystalline mesh infused with a small  
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amount of glass. This material is disappearing from the marketplace and being replaced 

entirely by 100% polycrystalline ceramics.  

1.2.2.7 CL-IIIb 

CL-IIIb high-strength 100% crystalline ceramics initially were alumina-based materials 

(eg, Procera®, Nobel Biocare); more recently they are zirconia-based (eg. LAVA™, 3M 

ESPE; Prettau®, Zirkonzahn). Alumina systems have proven successful for single units 

but are being replaced by zirconia and lithium disilicate due to the increased risk of 

failure in the molar region.25,26 Zirconia can also be used when significant tooth structure 

is missing, when elevated risk for flexure and stress is present, for posterior full-crown 

and fixed partial denture situations, and when adhesive bonding is problematic, such as 

with subgingival margins. In cases where the bond and seal cannot be maintained (ie, 

high-risk bonding situations, including moisture control problems, high shear and tensile 

stresses on bonded interfaces, and variable bonding interfaces), high-strength CL-III 

ceramics or metal ceramics (CL-IV, see below) are appropriate, because they can be 

placed using conventional cementation techniques. A concern with full-contour zirconia, 

however, is wear on opposing dentition. Whether alumina or zirconia, these materials 

demonstrate greater strength than CL-I and CL-II materials and can be used to fabricate a 

core substructure to replace metal. However, they are more opaque due to their greater 

crystalline content, which detracts from overall esthetics. They are therefore layered with 

porcelain,27 allowing these materials to offer both superior strength and improved esthetic  
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results.27 CL-III high-strength ceramics require a thickness of 1.2 mm to 1.5 mm, 

depending on the substrate color.22,25 More translucent versions are now used in the 

posterior region as full contour or monolithic all-zirconia restorations. Marketed first in 

this category was BruxZir® (Glidewell Laboratories), with many other manufacturers 

subsequently entering the market. 

1.2.2.8 CL-IV (Metal Ceramics) 

CL-IV represents metal ceramics, which are essentially CL-I materials fused to a highly 

supportive substrate metal, allowing their use in high-stress clinical situations where 

conventional crowns and esthetics maybe required. They are ideal when minimal to no 

tooth structure remains. Like CL-III materials, CL-IV metal ceramics demonstrate greater 

strength but limited esthetic characteristics. CL-IV metal ceramics require a thickness of 

a t least 1.5 mm to create lifelike esthetics. These metal ceramics demonstrate similar 

qualities to CL-III zirconia-based restorations,28 but the metal substructures do not have 

the same thermal firing sensitivity as zirconia.28 CL-IV metal ceramics can be improved 

in esthetic qualities with use of a much higher gold framework material (eg, Captek™, 

Argen USA Inc.). 
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1.3 Hemostatic Agents: 

1.3.1 Overview: 

Tooth preparation procedures often cause gingival bleeding which may be a result of 

tissue trauma or gingival inflammation.29 In addition, the need to control moisture and 

contamination is common in restorative dentistry, especially when rubber dam is not 

feasible.30 In this cases hemostasis is of utmost importance in maintaining the ideal, 

contaminant-free operatory field.31,32 Historically, techniques for soft-tissue management 

and control are categorized into three main methods: Mechanical, chemical or surgical.33 

Mechanical methods were the first introduced, among them gingival retraction cord is the 

most popular. However, plain cords not moistened with suitable medicaments generally 

are not able to control hemorrhage effectively.33  The most common procedures used to 

control bleeding and decrease the flow of gingival fluid involve the use of a topical 

hemostatic agent.31,34 These agents are based on two categories of pharmacological 

action: astringents (blood coagulation agents) and vasoconstrictors (adrenergic 

agents).31,34  

Based on the existing information in the literature, among the widely used chemical 

agents for control of hemorrhage in restorative dentistry, the most common hemostatic 

agents are aluminum chloride (A1Cl)35 and ferric sulfate (Fe2(SO4)3) 36 in 15-25% 

concentrations and 3-10 min application times. To achieve better outcomes during  
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making impressions or using bonding agents, common hemostatic agents recommended 

before or during etching, should be rinsed off properly.  

 Hemostatic and bonding agents is a topic found in different studies at the literature, but 

with strong differences between them. There is no standardization between studies 

regarding contamination methods and how to apply them, using different hemostatic 

agents as, 15.5% ferric sulfate, 20% ferric sulfate, 13% ferric sulfate gel, 25 % aluminum 

chloride, 8% racemic epinephrine solution among others, the contamination periods range 

from 10 seconds to 48 hours, being water the most used cleaning method between them. 

Ajami and Colleagues37 are the only ones to used water, EDTA and phosphoric acid as a 

cleaning method. Chaiyabutr and Kois38 used water, phosphoric acid and aluminum oxide 

abrasion. Almost all these studies use permanent human extracted teeth for their in vitro 

studies, and just some studies use primary teeth,39-41using in these studies both, self-

etching and total-etching systems. Between the studies in literature only two studies 

evaluate the influence of hemostatic agent on dental enamel.42  

1.3.2 Chemical agents commonly used in restorative dentistry: 

Chemically, active gingival retraction agents are categorized as Class I (vasoconstrictors, 

adrenergic) or Class II (hemostatic agents, astringents)43. The difference between 

vasoconstrictors, hemostatic agents and astringents are as follows, as described by the 

British Journal of Pharmaceutical Research.44 
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Vasoconstrictors like epinephrine do not coagulate, but act by constricting blood vessels 

and decreasing their size. There have been concerns, however, over the use of racemic 

epinephrine-impregnated cords due to elevation of blood pressure and increase in heart 

rate45 and no benefits have been recognized over other non-impregnated cords.46 

Astringents, such as alum or aluminum potassium sulfate (KAl (SO4)2), 

AlCl3 and zinc chloride (ZnCl2), are substances that act by precipitating proteins on the 

superficial layer of mucosa and make it mechanically stronger. Styptics like ferric 

chloride and Fe2(SO4)3 are concentrated forms of astringents, which cause superficial 

and local coagulation.44 

Hemostatic agents arrest more serious hemorrhage from cut capillaries and arterioles. 

AlCl3 and ferrous sulfate are preferred astringents among dentists because of minimum 

tissue damage44 and also ease of use and effective results.47 There is a wide range of 

products based on these two components from different manufacturers to choose from. 

1.3.2.1 AlCl3: 

It is one of the most commonly used astringents.32,48 It acts by constricting blood vessels 

and extracting fluid from tissues. The material is used in concentrations of 5-25% and has 

minimal systemic side-effects.35 AlCl3 is the least irritating among hemostatic agents 

used with cords, but it disrupts the setting of polyvinyl siloxane impression materials. 

However, rinsing thoroughly with water resolves its inhibitory effect.49 
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1.3.2.2 Fe2(SO4)3: 

It does not traumatize the tissue noticeably and healing is more rapid than with AlCl3. 

Solutions of Fe2(SO4)3 above 15% are very acidic and can cause significant tissue 

irritation and post-operative root sensitivity. It coagulates blood so quickly that it must be 

placed directly against the cut tissue. The recommended application time is 1-3 min.36The 

resulting tissue displacement is maintained for at least 30 min.44The tissue is temporarily 

discolored for 1 or 2 days. It disrupts the setting reaction of polyvinyl siloxanes. 

Therefore, all traces of the medicament should be rinsed off thoroughly from the tissue 

before taking an impression.32 Due to its iron content, Fe2(SO4)3 stains gingival tissues a 

yellow-brown to black for several days.49 

1.3.3 Effects of hemostatic agents to tooth structure: 

 Hemostatic agents are acidic solutions, with pH values ranging from 0.7 to 2.0.50-52 The 

use of hemostatic agents is routine in clinical procedures, understanding their effects on 

dentin morphology, as well as on the enamel surface and on bonding, is of 

unquestionable importance. Aluminum chloride and ferric sulfate are the main active 

ingredients in most of the hemostatic agents studied in literature. In the presence of water, 

these compounds undergo hydrolysis and form hydrochloric acid and sulfuric acid, 

respectively. Because both are strong acids, they may cause the etching effect observed 

on the dentin surface.50,51 
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At the same time, contaminants, such as remaining particles of the hemostatic agent, may 

obstruct the flow of resin monomers into the dentinal tubules. Small contaminant 

particles may penetrate the dentinal tubules and, ultimately, affect the development of the 

hybrid layer. Prabhakar and Bedi40 pointed out that one possible explanation for the 

reduced shear bond strength associated with ferric sulfate could be the coagulation of 

plasma proteins in the dentinal fluid, which also might affect the surface architecture of 

the dentin. In addition, there may be discoloration of the dentin (if the tooth preparation 

exposes dentin) by the iron in ferric sulfate binding to the dentinal tubules and thus the 

restoration will look darker since the substrate is darker.  For the specimens in the 

aluminum chloride groups in the literature, the deposition of aluminum in the form of 

unbound minerals on the dentin surface and the formation of a layer of residue may be 

responsible, in part, for the decrease in bond strength.37The study findings suggest that 

self-etching monomers may not remove these contaminants sufficiently, because their 

bonding ability depends on forming short resin tags and a relatively thin submicron 

hybrid layer. Self-etching monomers may not readily etch a more acid-resistant dentin 

surface that is contaminated with a hemostatic agent.37 As a result, self-etching adhesive 

systems are more susceptible to reduced bond strengths after contamination because the 

smear layer is used as a bonding substrate. However, phosphoric acid, with a pH of 0.516 

and an aggressive etching effect, seems to be able to demineralize the dentin and remove 

virtually all the contaminant on the dentin surface. Therefore, the phosphoric acid in etch-

and-rinse systems may have acted as a cleaning agent. 
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 The literature is limited about evaluations of the effects of the hemostatic agents to 

enamel, Trakyali and Oztoprak42 reported that the bond strength is affected negatively 

using a based plant hemostatic on enamel. They pointed out that the μ-SBS in the 

contaminated dentin specimens may have been lower than that in uncontaminated 

specimens owing to the possible prevention of contact between the tooth enamel and the 

bonding agent, the obstruction of resin tags on the etched enamel surface, or both.37 

1.3.4 Hemostatic agents and contamination removal methods: 

In most cases, it appears that water alone was not sufficient to remove contamination. 

Researchers in only two studies assessed cleaning methods for hemostatic agents.37,38 

According to Ajami and colleagues37, application of 10% percent 

ethylenediaminetetraacetic acid (EDTA) for 60 seconds followed by a 30second water 

spray restored the bond strength of a self-etching adhesive to dentin. However, the 

authors reported that phosphoric acid failed to increase the bond strength of self-etching 

adhesive to dentin to the level of that in the control group. They reported that a five-

minute water rinse under high pressure resulted in an increase in bond strength when 

compared with that in the no rinsed, nonconditioned contaminated group; however, the 

bond strength still was much lower than that in the control group.37 Furthermore, for 

some dental practices, the five-minute water rinse may be considered clinically 

unacceptable. Chaiyabutr and Kois38 pointed out that after hemostatic contamination with 

25 % aluminum chloride or 13% percent ferric sulfate, the cleansing protocol should  
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include particle abrasion with low-pressure aluminum oxide or phosphoric acid etching to 

restore the bond strength to precontamination levels when using a self-adhesive resin 

cement. These authors reported that the mean bond strengths of specimens in the acid 

etch groups and the particle abrasion groups were not significantly different from the 

mean bond strength of specimens in the control group; however, the group that 

underwent water rinsing alone demonstrated the lowest mean bond strength.38 Because 

the results reported here are limited to the materials and contamination times used in each 

study, a standardized study is needed in which investigators compare all cleaning 

methods; that is, EDTA, particle abrasion, 37 % phosphoric acid and water spray. 

1.4 Purpose of the study: 

The purpose of this study is to evaluate and compare the effect of three different 

aluminum chloride and ferric sulfate contamination removal methods on the μ-SBS of 

lithium disilicate glass-ceramic bonded to enamel with light cured resin cement. In 

addition, the study compares the type of fracture between the interface (enamel/light-

cured cement and lithium disilicate glass ceramic) treated with different contamination 

removal methods. 
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1.5 Specific aims and hypothesis: 

1: To evaluate the μ-SBS of three different cleaning methods (water rinse, re-etching, and 

EDTA) to remove aluminum chloride hemostatic agent on lithium disilicate (IPS e.max 

CAD) bonded to enamel using an etch-and-rinse adhesive and light cured cement. 

2: To evaluate the μ-SBS of three different cleaning methods (water rinse, re-etching, and 

EDTA) to remove ferric sulfate hemostatic agent on lithium disilicate (IPS e.max CAD) 

bonded to enamel using an etch-and-rinse adhesive and light cured cement. 

3: To compare the type of fracture between the interface (enamel and light-cured cement 

/lithium disilicate glass-ceramic) treated with different aluminum chloride removal 

methods. 

 4: To compare the type of fracture between the interface (enamel and light-cured cement 

/lithium disilicate glass-ceramic) treated with different aluminum chloride removal 

methods.  

Null Hypothesis:  

For aim 1- There will be no significant differences in μ-SBS of lithium disilicate (IPS 

e.max CAD) bonded to enamel with etch-and-rinse adhesive and light cured resin cement 

contaminated with aluminum chloride hemostatic agent after application of three 

contamination removal methods when compared  to the control group. 

For aim 2- There will be no significant differences in μ-SBS of lithium disilicate (IPS 

e.max CAD) bonded to enamel with etch-and-rinse adhesive and light cured resin cement  
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contaminated with ferric sulfate hemostatic agent after application of three contamination 

removal methods when compared  to the control group. 

For aim 3- There will be no significant differences in type of fracture between the 

interface (enamel and light cured cement/lithium disilicate glass-ceramic) treated with 

different aluminum chloride removal methods when compared to control group. 

For aim 4- There will be no significant differences in type of fracture between the 

interface (enamel and light cured cement/lithium disilicate glass-ceramic) treated with 

different ferric sulfate removal methods when compared  to the control group. 

1.6 Location of study: 

Bioscience Research Center, Room 7356 at Nova Southeastern University, Health 

Professional Division, College of Dental Medicine. 3200 South University Drive Fort 

Lauderdale, Florida 33328-2018. 
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Chapter 2:  Materials and methods 

2.1 IRB Approval: 

This research protocol was submitted to the Institutional Review Board of the Health 

Professions Division of Nova Southeastern University.  The research was approved with 

the research acceptance IRB # 2018-59.   

2.2 Grant: 

A grant #335663 was awarded for this study after an expedited review by the Health 

Professions Divisions at Nova Southeastern University in the amount of $4850.98. 

2.3 Sample Size Calculation:  

A power analysis was performed using a G Power statistical software to compare the 

differences between groups. Using two-way ANOVA with effect size of 4, α<0.05, 

power of 80%, resulting in 10 samples minimum per group for this study.  

2.4 Groups: 

Materials to be used in this study are presented in Table 1. 

Thirty five caries-free human molar teeth were collected from a private dental office 

(Best Smile Cosmetic Dentistry, Pembroke Pines, FL) and placed in a container with 

10% formalin (Henry Schein, Melville, NY) with a secure lid to prevent leaking during 

transport or storage and labeled with the biohazard symbol (Figure1) until sterilization is  
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complete after two weeks in 10% Formalin.  This followed the guidelines for infection 

control in dental health-care settings from the Centers for Disease Control and Prevention  

(CDC.53 Ten % formalin is thus used to prevent dehydration of teeth as well as cross-

contamination between extracted teeth and has been proven to be an appropriate storage 

solution for adhesion studies to enamel.54,55 Teeth with caries, restorations, anomalous 

morphology or decalcifications were excluded from this study.  

Samples were randomly divided into 7 groups using the buccal, lingual and interproximal 

surfaces of 35 extracted teeth with a total of 119 working surfaces and 17 surfaces per 

group. Each group was indicated with a different color of nail polish on the stone block 

holding the tooth. The markings were done on the surfaces facing the buccal and lingual 

of the tooth, G1(control) black, G2 (Aluminum chloride/ water) blue, G3 (aluminum 

chloride/ etch) green, G4 (Aluminum chloride/ EDTA) red, G5 (Ferric sulfate/ water) 

orange, G6 (Ferric sulfate/ etch) yellow, G7 (Ferric sulfate/ EDTA) purple (Figure 2). 

 

* Control group (G1)  

* Water and Aluminum chloride group (G2) 

* Re-etched and Aluminum chloride group (G3)  

* EDTA and Aluminum chloride group (G4) 

* Water and Ferric sulfate group (G5) 

* Re-etched and Ferric sulfate group (G6) 

* EDTA and Ferric sulfate group (G7) 
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2.5 Sample preparation: 

2.5.1 IPS e-max CAD preparation: 

Lithium disilicate blocks (IPS e.max CAD, Ivoclar Vivadent, Amherst, NY) with high 

translucency (HT), shade A2, size C14 were used for this study (Figure 3). These blocks 

were cut into samples of 2mm in diameter and 3mm in height, using a low speed blade 

IsoMet Wafering Blades-15LC, 7in, (BUEHLER An ITW Company, USA) (Figure 4). 

The blocks were crystalized in a ceramic furnace (EP 600 Combi, Ivoclar Vivadent, 

Liechtenstein) for 25 minutes according to manufactures’ instructions (Figure 5).   

Samples were etched with 9.5% hydrofluoric acid (Porcelain etch, Ultradent, South 

Jordan, UT) for 60 seconds following manufacturer’s instructions (Figure 6), washed for 

10 seconds, dried and then silanated (Monobond, Ultradent, South Jordan, UT) (Figure7). 

 

2.5.2 Enamel preparation: 

Teeth were individually scaled using a hand instrument (H6/H7 scaler; Hu-Friedy, 

Chicago IL) (figure 8), cleaned using fluoride-free pumice (Preppies Pumice, Whip Mix, 

Louisville, KY) applied with a rubber cup for 10 seconds (Figure 9).56 Teeth were then 

rinsed and air dried with compressed oil-free air. A planar enamel-bonding surface was 

created grinding down the most superficial portion of enamel on the buccal, lingual and 

interproximal aspect of the teeth using three low speed contouring discs (Super-snap 
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 contouring discs silicone carbide coarse, medium and soft, (Shofu Dental Corp. San 

Marcos, CA).  The order of the disc use was   first using the coarse disc to achieve the  

desired reduction (Figure 10), followed by the medium disc (Figure 11) to begin  

polishing  the area and then finishing this step with the fine polishing disc (Figure 12), 

reducing no more than 1mm in depth to keep the surface on enamel and allowing a 2mm 

diameter flat surface to bond the lithium disilicate block (IPS e.max CAD, Ivoclar 

Vivadent, , Amherst, NY). Teeth were mounted in 25x25x25mm Type IV dental stone 

blocks (Resin Rock, Whip Mix, Louisville KY) such that the coronal portion was 

exposed, to prevent movement of the sample during testing (Figure 13). 

The enamel was etched with 37.5% phosphoric acid (Ultradent, South Jordan, UT) for 20 

seconds (Figure 13), then rinsed thoroughly for 15 seconds (Figure 14), air dried for 3 

seconds without desiccating following manufacturer’s instructions. Optibond FL (Kerr, 

Orange, CA) primer was applied with light brushing motion for 15 seconds and air dried 

for 5 seconds (Figure 15). Using the same applicator, adhesive (Kerr, Orange, CA) was 

applied with light brushing motion for 15 seconds and then was then air thinned for 3 

seconds (Figure 16). Light curing was performed for 20 seconds using an Elipar S10(3M 

ESPE, Maplewood, MN) with a light intensity of 1200 Mw/cm2 +/- 10% (Figure 17). 

 

2.5.3 Contamination procedure: 

After enamel preparation buccal, lingual and interproximal surfaces of the 35 teeth were 

randomly selected to be divided between the control group and the other 6 groups. 
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Contamination of the samples was carried out following this procedure stated below,  

each group was marked with different colors: G1(control) black, G2 (water/ALCL) blue, 

G3 (etch/ ALCL) green, G4 (EDTA/ ALCL) red. G5 (water/ Fe2(SO4)
3

) orange, G6 (etch/ 

Fe2(SO4)
3) yellow, G7 (EDTA/ Fe2(SO4)

3
 ) purple. (Figure18) 

 

2.5.3.1 Control group (G1): no contamination  

 

2.5.3.2 Water and Aluminum chloride group (G2): Using a microbrush 25% 

aluminum chloride hemostatic agent (Viscostat Clear, Ultradent, South Jordan, UT) was 

applied on the selected surface for 60 seconds (Figure 19), followed by the tooth surface 

being rinsed with water spray for 30 seconds and dried.  

 

 2.5.3.3 Re-etched and Aluminum chloride group (G3): Using a microbrush 25% 

aluminum chloride hemostatic agent (Viscostat Clear, Ultradent, South Jordan, UT) was 

applied on the selected surface for 60 seconds, followed by the tooth surface being re-

etched with 37.5% phosphoric acid (Ultradent, South Jordan, UT) for 20 seconds (Figure 

20), rinsed with water spray for 30 seconds and dried. 

 

 2.5.3.4 EDTA and Aluminum chloride group (G4): Using a microbrush 25% 

aluminum chloride hemostatic agent (Viscostat Clear, Ultradent, South Jordan, UT) was  
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applied on the selected surface for 60 seconds, followed by  the tooth surface being rinsed 

with 18% EDTA (Ultradent, South Jordan, UT) for 60 seconds and dried (Figure 21).  

 

2.5.3.5 Water and Ferric sulfate group (G5): Using a microbrush 20% ferric sulfate 

hemostatic agent (Viscostat, Ultradent, South Jordan, UT) was applied on the selected 

surface for 60 seconds (Figure 22), followed by  the tooth surface being rinsed with water 

spray for 30 seconds and dried.  

 

2.5.3.6 Re-etched and Ferric sulfate group (G6): Using a microbrush 20% ferric 

sulfate hemostatic agent (Viscostat, Ultradent, South Jordan, UT) was applied on the 

selected surface for 60 seconds, followed by the tooth surface being re-etched with 37.5% 

phosphoric acid (Ultradent, South Jordan, UT)  for 20 seconds (Figure 23), rinsed with 

water spray for 30 seconds and dried. 

 

2.5.3.7 EDTA and Ferric sulfate group (G7): Using a microbrush 20% ferric sulfate 

hemostatic agent (Viscostat, Ultradent, South Jordan, UT) was applied on the selected 

surface for 60 seconds, followed by the tooth surface being rinsed with 18% EDTA 

(Ultradent, South Jordan, UT) for 60 seconds and dried (Figure 24). 

 

2.5.4 Bonding procedure: 

The lithium disilicate samples (IPS e.max CAD, Ivoclar Vivadent, Amherst, NY) were 

cemented perpendicular to the enamel surface of each tooth that was previously reduced  
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The prepared ceramic samples were randomly distributed among the groups and luted to 

the enamel surfaces with a uniform layer of micro filled, light-curing luting composite 

system (Variolink veneer Ivoclar, Vivadent,  Amherst, NY) (Figure 25) maintaining light 

pressure on the ceramic and cured for 10 seconds following manufacturer’s instructions 

using a Elipar S10 (3M ESPE, Maplewood, MN) curing light with a light intensity of 

1200  Mw/cm2 +/- 10% (Figure 26). To avoid oxygen inhibition restoration margins 

were cover with a glycerine gel (Liquid-Strip, Ivoclar Vivadent, Amherst, NY) (Figure 

27) after the removal of excess, but prior to complete polymerization of 10 -30 seconds 

on each side.  

2.6 Storage: 

Following all the cementation procedures, teeth were  stored  in deionized water for 7 

days to provide aging of the samples and to simulate mouth temperature, before any bond 

strength test was performed (Figure 28). 

 

2.7 Shear bond strength test: 

 Shear bond strengths were determined using a universal testing machine (Istron, Canton, 

MA) (Figure 29). Following the protocol used by Mccarthy in 201357 The metal blade 

was oriented perpendicular to the porcelain base, (Figure 30) 1mm from the buccal 

surface of the tooth. An occluso-gingival force was applied at a crosshead speed of 

5mm/minute until the ceramic  debonded or fractured. ). RStudio and R 3.2.2 software 

were used for all statistical analysis, and significance was accepted at p<0.05. 
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2.8 Stereomicroscopy and SEM analysis: 

Fractured specimens were examined with a stereomicroscope (Olympus SZ-CTV; 

Olympus, Tokyo, Japan) at 40x magnification to determine the mode of failure (Figure 

31).58 Failure modes were classified as  (Table 2): 

Type 1: adhesive failure 

Type 2: cohesive failure 

Type 3:  mixed failure  

Five samples of each group were randomly selected from each of the seven main groups 

for scanning electron microscope SEM (ThermoFisher Scientific, Hillsboro, OR)  (Figure 

31)to analyze the interface between the veneer and cement materials (Figures 32, 33, 34, 

35, 36, 37, 38).  
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Chapter 3: Results 

Means and standard deviations were calculated for all continuous measures. For core  

differences for the outcome measure μ-SBS (MPa) a general linear model (ANOVA) was 

created. The fixed effects were grouped (*Aluminum Chloride (AC)-Re-etch vs. Ferric 

Sulfate (FS)-Re-etch vs *Aluminum Chloride-Water vs Ferric Sulfate-Water vs. 

*Aluminum Chloride-EDTA vs Ferric Sulfate-EDTA vs *Control group). RStudio and R 

3.2.2 software were used for all statistical analysis, and significance was accepted at 

p<0.05.  

Results in table 3 shows that there were significant differences among the studied groups 

for the μ-SBS. The highest mean μ-SBS (16.24 MPa) was recorded for the G1(control 

group), and the lowest μ-SBS (6.13 MPa) was recorded for the G4 (Aluminum chloride-

EDTA). The G6 (Ferric sulfate- Re-etching) mean μ-SBS was the closest (10.75 MPA) to 

the G1(control group). Overall the groups using ferric sulfate as a contamination method 

presented higher μ-SBS (MPa) than the groups using Aluminum Chloride as a cleaning 

method (Table 5) (Figures 39, 40). There was a significant difference in the measurement 

of μ-SBS by group F[6,112) = 32.90, p < 0.001, eta-squared = 64%]. This means that 

64% of the variability in μ-SBS was accounted for by the differences in treatments (Table 

4). 
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The type of fracture presented among the groups was intimately related to the MPA in 

each group, groups with higher MPA, G6 - 10.75 MPA (Ferric sulfate- re etching), G5 - 

9.21 MPA (Ferric sulfate-water) presented more cohesive fractures, while groups with 

lower MPA, G4 – 6.13 MPA (Aluminum chloride- EDTA), G3 – 6.27 (Aluminum 

chloride- re- etching) presented more mixed fractures. 

The G1 (control group) presented 70.5% cohesive fractures, 23.5% mixed fractures and 

5.8% fracture on the substrate, G2 (water/ALCL) presented 58.8% mixed fractures, 

29.4% cohesive fractures, 5.8% adhesive fractures and 5.8% substrate fractures, G3 (etch/ 

ALCL) presented 94.1% mixed fractures and 5.8% cohesive fractures, G4 (EDTA/ 

ALCL) presented 58.8% mixed fractures and 41.1% cohesive fractures, G5 (water/ 

Fe2(SO4)3) presented 52.4% mixed fractures, 41.1% cohesive fractures and 5.8% adhesive 

fractures, G6 (etch/ Fe2(SO4)3) presented 64.7% cohesive fractures, 29.4% mixed failures 

and 5.8% substrate fractures G7 (EDTA/ Fe2(SO4)3 ) presented 58.8% cohesive fractures, 

35.2% mixed fractures and 5.8% adhesive fractures. 
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Chapter 4: Discussion 

 

 

Porcelain laminate veneers increasing popularity depends primarily on the esthetic and 

conservative properties of the restorations; however clinical durability is also of key 

importance. Bond strength may be the most crucial factor of durability. 

The statistical analysis performed in this study revealed significant differences in the 

mean shear bond strength values between the 7 groups. The shear bond strength values in 

the control group were significantly higher than the remaining groups. 

During the etch and rinse technique selective dissolution of hydroxyapatite crystals 

through etching is followed by in situ polymerization of resin that is readily absorbed by 

capillary attraction within the created etch pits, thereby, enveloping individually exposed 

hydroxyapatite crystals. Two types of resin tags interlocks within the etch pits. “Macro”- 

tags fill the space surrounding the enamel prism while numerous “Micro”-tags result 

from resin infiltration/polymerization within the tiny etch-pits at the cores of the etched 

enamel prism. The later are especially thought to contribute the most about retention to 

enamel. 

The results showed that the type of hemostatic agent and contamination removal method 

had a significant effect on micro-shear bond strength. The highest mean μ-SBS (10.75 

MPa) was observed in the group of ferric sulfate- re-etching. This result correlates with 

the statement that phosphoric acid reportedly breaks down and removes ferric sulfate as 

mentioned by Tarighi et al33, but the fact the ferric sulfate is a viscous gel makes its 

removal harder. The residues of ferric sulfate may result in the inhibition of the 
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 infiltration of the resin cement in to the etched enamel surfaces as stated by Farhadpour 

et al59 causing an acceptable μ-SBS but not as good as the control group that is observed 

in our ferric sulfate groups. In the presence of water this compound undergoes hydrolysis 

and forms sulfuric acid causing an etching effect that already was observed in dentin 

surfaces in different studies.38,51,60 

 The current study showed a relation between the higher mean of μ-SBS in the ferric 

sulfate groups to the type of fracture in the control group, more cohesive fractures were 

found in the ferric sulfate groups as well as the control group, considering this 

information it can be concluded that the higher the μ-SBS the highest incidence of 

cohesive fractures will be found as a result. 

Kuphasuk60 et al demonstrated through SEM evaluations decreased bond strength and 

remnants of aluminum chloride in tooth structures. This correlate with the results 

obtained in this study where the aluminum chloride groups reported the lowest μ-SBS 

when compared to the control group. In the presence of water this compound undergoes 

hydrolysis and forms hydrochloric acid causing an etching effect that already was 

observed in dentin surfaces in different studies.38,51,60 

The current study showed a difference between the higher mean of μ-SBS in the 

aluminum chloride groups to the type of fractures in the control group, and more mixed 

fractures were found in the aluminum chloride groups than the control group, considering 

this information it can be concluded that the lower the μ-SBS the highest incidence of 

mixed fractures will be found as a result.  
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Chemicals including aluminum chloride and ferric sulfate which are commonly used to 

control bleeding and gingival fluids, are highly acidic, with Ph values of 0.7 to 3.0.  It is 

noteworthy that all materials with and acidic pH do not have the capacity to produce a 

proper bond with tooth structures, because they may leave deposits on tooth structures 

that may interfere with bonding 

Researchers have evaluated the influence of hemostatic contamination on bonding to 

enamel. They pointed out that the SBS in the contaminated samples is lower when 

compare to the no contaminated samples. Some studies have reported that contact of 

other astringent agents on tooth structure resulted in decreased bond strength between 

composite and tooth structure.60,61.   For this study the application time of hemostatic 

agent was extended to 1 min, a sufficient time to achieve hemostasis. Most situations will 

require less time for hemostasis, and therefore teeth will have less contact time with 

hemostatic agents. 
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Chapter 5: Conclusion 

Greater emphasis should be given to the moisture and contamination control prior to the 

bonding of ceramic restorations to enamel. The literature is limited with regard to 

evaluations of the effects of hemostatic agents to enamel. The present study sought to 

investigate the effect of three different contamination removal methods on bond strength 

of ceramic to enamel contaminated with aluminum chloride and ferric sulfate. In this 

study Ferric sulfate hemostatic agent showed higher μ-SBS in all contamination removal 

methods when compared to aluminum chloride hemostatic agent. But all the 

contamination removal methods in both groups failed to increase the bond strength on 

enamel to the level of the control group. Within the limitations of this study, our findings 

show that hemostatic agents can induce changes on the enamel surface and in bonding 

performed on enamel. This data suggests that the bond strength of etch-and-rinse systems 

is affected after contamination with a hemostatic agent.  

The clinical implication from this research is that when making impressions for porcelain 

veneers or crowns, and using a hemostatic agent containing aluminum chloride or ferric 

sulfate, proper measures to remove it from the dental structures should be taken. This is 

recommended not only because can affect the impression material setting but also lower 

the bond strengths in the restorations. 

 From this research it can be concluded that if impregnated cord is to be used with a 

hemostatic agent and etch and rinse bonding systems, ferric sulfate is the agent of choice  
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to maximize bond strength of the restoration.  However, further research is required 

before we can make definitive conclusions. 
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Chapter 6: Limitation of the study 

One limitation of this research is that only one type of ceramic was included for 

comparison of the bond strength when the enamel was contaminated with hemostatic 

agents.  IPS e.max blocks were selected as a material of choice for this study, since is a 

material used for the fabrication of ceramic veneers in dentistry, but inclusion of other 

types of ceramic would provide a better understanding of the interaction of ceramic with 

hemostatic agents. 
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Tables 

 

 

MATERIAL COMPOSITION TREATMENT MANUFACTER 

Optibond FL  48% filled light-cure adhesive  Keer Corporation 

Ceramic etch 9% hydrofluoric acid solution  90 seconds  Ultradent  



Enamel etch 37.5% phosphoric acid 20 seconds Ultradent 

Silane solution  Single-component material 

that enhances binding values 

60 seconds Ultradent  

Variolink veneer  Micro filled light-curing 

luting composite 

60 seconds Ultradent  

ViscoStat clear   25% AICI  60 seconds  Ultradent  

ViscoStat 20% Fe2(SO4)3 60 seconds Ultradent 

Elipar S10 light intensity of 1200  

Mw/cm2 +/- 10% 

20 seconds 3M ESPE 

EDTA 18% Ethylene 

diaminetetraacetic acid 

60 seconds Ultradent  

IPS e.max CAD Lithium disilicate glass 

ceramic (LDGC) 

CAD/CAM block Ivoclar vivadent  

 

Table 1: materials composition, treatment and manufacturer. 
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adhesive cohesive mixed substrate 

CONTROL (G1)   12 4 1 

AC-WATER (G2) 1 5 10 1 

AC- RE-ETCH (G3)   1 16   

AC-EDTA (G4)   7 10   

FS-WATER (G5) 1 7 9   



FS- RE-ETCH (G6)   11 5 1 

FS-EDTA (G7) 1 10 6   

 

Table 2. Type of fractures 

 

Groups N M SD Min Max 

AC:RE-ETCH 17 6.27 1.97 2.91 10.50 

FS:RE-ETCH 17 10.75 3.26 7.11 16.76 

AC:Water 17 7.82 2.49 4.60 11.61 

FS:WATER 17 9.21 2.49 5.53 14.43 

AC:EDTA 17 6.13 3.11 2.00 13.22 

FS:EDTA 17 7.93 1.97 5.41 13.74 

Control 17 16.24 1.95 13.31 19.53 

 

Table 3. Descriptive statistics 
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Group 
 

Group Difference 
Lower 

95% CI 

Upper 

95% CI 
P-Value 

AC:RE-ETCH - FS:RE-ETCH -4.48 -6.17 -2.79 <.0001 

AC:RE-ETCH - AC:Water -1.55 -3.24 0.14 0.552 

AC:RE-ETCH - FS:WATER -2.94 -4.63 -1.25 0.015 

AC:RE-ETCH - AC:EDTA 0.14 -1.55 1.83 1.000 

AC:RE-ETCH - FS:EDTA -1.66 -3.36 0.03 0.466 

AC:RE-ETCH - Control -9.97 -11.66 -8.28 <.0001 



FS:RE-ETCH - AC:Water 2.93 1.24 4.62 0.016 

FS:RE-ETCH - FS:WATER 1.54 -0.15 3.23 0.560 

FS:RE-ETCH - AC:EDTA 4.62 2.93 6.31 <.0001 

FS:RE-ETCH - FS:EDTA 2.82 1.13 4.51 0.024 

FS:RE-ETCH - Control -5.49 -7.18 -3.79 <.0001 

AC:Water - FS:WATER -1.39 -3.08 0.30 0.675 

AC:Water - AC:EDTA 1.69 -0.00 3.38 0.447 

AC:Water - FS:EDTA -0.11 -1.80 1.58 1.000 

AC:Water - Control -8.42 -10.11 -6.73 <.0001 

FS:WATER - AC:EDTA 3.08 1.39 4.77 0.009 

FS:WATER - FS:EDTA 1.28 -0.41 2.97 0.755 

FS:WATER - Control -7.03 -8.72 -5.34 <.0001 

AC:EDTA - FS:EDTA -1.80 -3.49 -0.11 0.366 

AC:EDTA - Control -10.11 -11.80 -8.42 <.0001 

FS:EDTA - Control -8.31 -10.00 -6.61 <.0001 

 

Table 4. Pairwise comparisons 
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Figures 



 

Figure 1. Teeth container 

 

Figure 2. Groups differentiation 
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Figure 3.  IPS e.max blocks 

 

Figure 4. Blade IsoMet Wafering Blade-15LC, 7in 

 

Figure 5. Ceramic furnace EP 600 Combi 
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Figure 6.  9.5% Hydrofluoric acid application 

 

 

Figure 7. Silane application 

 

  

Figure 8. Teeth being scaled 
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Figure 9. Teeth cleaned using fluoride-free pumice 

 

Figure 10.  Reduction with Super-snap contouring discs silicone carbide coarse 

 

 

Figure 11.  Reduction with Super-snap contouring discs silicone carbide medium 
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Figure 12.  Polishing with Super-snap contouring discs silicone carbide fine 

 

 

Figure 13.  Teeth mounted in 25x25x25mm dental stone blocks 

 

 

Figure 14.   37% Phosphoric acid application  
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Figure 15.   Rinsed with water spray and dried. 

 

 

Figure 16.  Optibond FL primer application with light brushing motion 

 

 

Figure 17.  Optibond FL adhesive application with light brushing motion 
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Figure 18.  Light cured for 20 seconds using an Elipar S10 

 

Figure 19.  25% aluminum chloride hemostatic agent application for 60 seconds 

 

 

Figure 20. Tooth surface re-etched with 37.5% phosphoric acid for 20 seconds after 

aluminum chloride application 
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Figure 21. Tooth surface rinsed with 17% EDTA for 60 seconds and dried. 

 

 

Figure 22.   20% ferric sulfate application for 60 seconds 

 

Figure 23.  Tooth surface re-etched with 37.5% phosphoric acid for 20 seconds 
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Figure 24.  Tooth surface rinsed with 17% EDTA for 60 seconds and dried. 

 

 

Figure 25.  Lithium disilicate sample luted to the enamel surfaces with a uniform layer of 

micro filled, light-curing luting composite system 

 

 

Figure 26.  Light cured for 10 seconds using an Elipar S10 
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Figure 27.  Margins covered with a glycerine gel after the removal of excess, but prior to 

complete polymerization of 10 -30 seconds each side. 

 

 

Figure 28.   Teeth maintained in deionized water for 7 days 
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Figure 29.   Shear bond strengths determined using a universal testing machine 

 

 

Figure 30. The metal blade oriented perpendicular to the porcelain base 1mm from the 

buccal surface of the tooth 
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Figure 31.   Scanning electron microscope 
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Figure 32. SEM images from control group (G1) 
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Figure 33.  SEM images from Water and Aluminum chloride group (G2) 
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Figure 34.   SEM images from Re-etched and Aluminum chloride group (G3) 
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Figure 35.  SEM images from group EDTA and Aluminum chloride group (G4) 
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Figure 36.  SEM images from group Water and Ferric sulfate group (G5) 
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Figure 37.   SEM images from group Re-etched and Ferric sulfate group (G6) 
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Figure 38. SEM images from EDTA and Ferric sulfate group (G7) 
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Figure 39. shear bond strength graph 
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Figure 40.   Plot of Shear Bond Strength by Treatment Group. The blue bars are confidence 

intervals for the means, and the red arrows are for the comparisons among them. If an arrow from 

one mean overlaps an arrow from another group, the difference is not significant 

 

 

 

 

 

 

 

 

65 

 
 

 



Appendices 

Appendix A:  Measurements from Shear Bond Test, Row Data 

 

load (N) shear bond (MPa) 
control 1 95.37 15.89 

control 2 116.59 19.43 

control 3 97.7 16.28 

control 4 73.32 17.65 

control 5 99.21 16.53 

control 6 108.94 18.16 

control 7 79.88 13.31 

control 8 85.7 14.28 

control 9 84.32 14.05 

control 10 117.16 19.53 

control 11 105.68 17.61 

control 12 99.56 16.59 

control 13 83.07 13.84 

control 14 98.05 16.34 

control 15 82.59 13.76 

control 16 91.5 15.25 

control 17 105.2 17.53 

AC- water 1 69.64 11.61 

AC- water 2 55.44 9.24 

AC- water 3 50.01 8.33 

AC- water 4 68.29 11.38 

AC- water 5 28.03 4.67 

AC- water 6 33.53 5.59 

AC- water 7 43.79 7.3 

AC- water 8 50.61 8.43 

AC- water 9 29.35 4.89 

AC- water 10 48.66 8.11 

AC- water 11 62.98 10.5 

AC- water 12 63.74 10.62 

AC- water 13 28.35 4.73 

AC- water 14 56.68 9.45 

AC-water 15 15.59 4.6 

AC-water 16 30.25 5.04 

AC-water 17 50.63 8.44 
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AC- etch 1 17.43 2.91 

AC- RE-ETCH 2 51.4 8.57 

AC- RE-ETCH 3 60.01 10 

AC- RE-ETCH 4 31.64 5.27 

AC- RE-ETCH 5 34.74 5.79 

AC- RE-ETCH 6 62.99 10.5 

AC- RE-ETCH 7 38.64 6.44 

AC- RE-ETCH 8 36.13 6.02 

AC- RE-ETCH 9 30.61 5.1 

AC- RE-ETCH 10 34.32 5.72 

AC- RE-ETCH11 36.14 6.02 

AC- RE-ETCH 12 41 6.83 

AC- RE-ETCH 13 28.24 4.71 

AC- RE-ETCH 14 26.43 4.41 

AC- RE-ETCH 15 26.53 4.42 

AC- RE-ETCH 16 42.22 7.04 

AC- RE-ETCH 17 41.33 6.8 

AC-EDTA 1 12.02 2 

AC-EDTA 2 42.03 7 

AC-EDTA 3 15.93 2.66 

AC-EDTA 4 14.17 2.36 

AC-EDTA 5 65.73 10.96 

AC-EDTA 6 35.68 5.95 

AC-EDTA 7 20.55 3.96 

AC-EDTA 8 79.31 13.22 

AC-EDTA 9 19.88 3.31 

AC-EDTA 10 25.17 4.19 

AC-EDTA 11 55.32 9.22 

AC-EDTA 12 35.65 6.43 

AC-EDTA 13 34.78 5.8 

AC-EDTA 14 28 4.67 

AC-EDTA 15 37.31 6.22 

AC-EDTA 16 45.3 7.55 

AC-EDTA 17 52.21 8.7 

FS-WATER 1 86.58 14.43 

FS-WATER 2 66.78 11.13 

FS-WATER 3 37.93 6.32 

FS-WATER 4 72.8 12.13 

FS-WATER 5 51.9 8.65 

FS-WATER 6 52.68 8.78 

FS-WATER 7 61.87 10.31 

FS-WATER 8 42.38 7.06 

FS-WATER 9 64.5 10.75 
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FS-WATER 10 33.18 5.53 

FS-WATER 11 74.25 12.38 

FS-WATER 12 61.1 10.18 

FS-WATER 13 44.89 7.48 

FS-WATER 14 42.77 7.13 

FS-WATER 15 52.28 8.71 

FS-WATER 16 57.95 9.66 

FS-WATER 17 35.64 5.94 

FS- RE-ETCH 1 66.69 11.12 

FS- RE-ETCH 2 47.17 7.86 

 FS- RE-ETCH 3 83.74 13.96 

FS- RE-ETCH 4 61.56 10.26 

FS- RE-ETCH 5 46.15 7.69 

FS- RE-ETCH 6 88.36 14.73 

FS- RE-ETCH 7 47.56 7.93 

FS- RE-ETCH 8 42.65 7.11 

FS- RE-ETCH 9 67.61 11.27 

FS- RE-ETCH 10 49.93 8.32 

FS- RE-ETCH11 64.06 10.68 

FS- RE-ETCH 12 99.17 16.76 

FS- RE-ETCH 13 96.36 16.06 

FS- RE-ETCH 14 55.32 9.22 

FS- RE-ETCH 15 46.94 7.82 

FS- RE-ETCH 16 86.43 14.41 

FS- RE-ETCH 17 45.93 7.57 

FS-EDTA 1 40.05 6.67 

FS-EDTA 2 51.63 8.61 

FS-EDTA 3 46.79 7.8 

FS-EDTA 4 45.2 7.53 

FS-EDTA 5 50.66 8.44 

FS-EDTA 6 55.32 9.22 

FS-EDTA 7 82.45 13.74 

FS-EDTA 8 54.15 9.03 

FS-EDTA 9 36.57 6.1 

FS-EDTA 10 42.73 7.12 

FS-EDTA 11 49.25 8.21 

FS-EDTA 12 32.45 5.41 

FS-EDTA 13 43.44 7.24 

FS-EDTA 14 35.66 5.94 

FS-EDTA 15 33.69 5.61 

FS-EDTA 16 52.65 8.77 

FS-EDTA 17 56.62 9.4 
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Appendix B:  Observations from Stereomicroscopy, Row Data  

 

adhesive cohesive mixed substrate 
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* 
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