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SYNOPSIS 

Orthodontic tooth movement is a biological response to a mechanical force. One of the 

challenges in orthodontics is obtaining desired tooth movement during treatment. Accelerating 

tooth movement and decreasing demands on anchorage can reduce treatment times and overall 

satisfaction for patient and doctor. Low-level laser therapy (LLLT) is emerging as a 

technology that may decrease orthodontic treatment time. Many in vitro and in vivo studies 

have reported the effects of low level lasers at random time points and energy densities. None 

of the studies have optimized the dose required for osteoblast proliferation and differentiation.   

The purpose of this study was to find the optimum stimulatory dose of low level laser 

irradiation (LLLI) on human osteoblast cell proliferation and differentiation and to analyze 

our findings with reference to the Arndt-Shultz Law of applied energy. In this in vitro study a 

GaAlAs laser at 830nm, 20 mW with continuous exposure at various doses were used on a 

human osteoblast cell line. According to the Arndt-Shulz Law weak stimuli initiate vital 

activity, moderate stimuli enhance the cellular activity with subsequent peak stimulation and 

greater stimuli (beyond a threshold value) may not have any influence or inhibit the vital 

activity.  The implications of LLLI on human osteoblasts and influencing tooth movement in 

orthodontics were discussed.  

 Human osteoblasts were cultured in minimum essential medium (MEM) complete 

medium consisting 10% fetal bovine serum and 1% antibiotics.  Cells grown in complete 

medium were plated onto 96 well plate, allowed to adhere for 4-5 hours and were exposed to 

GaAlAs lasers at 6 , 12, 18, 24, 30, 36, 45, 60, 75, and 90 seconds. The cells treated with 



 

xiii 

LLLI were assessed for cell proliferation at 24, 48 and 72 hour intervals.  A calorimetric cell 

proliferation assay (WST-1) assay was performed according to manufacture’s instructions.  

The results indicated that at 24 hours the 6 and 12 seconds doses significantly 

inhibited proliferation compared to the control. At 48 hours the 30 seconds exposure 

significantly increased proliferation.  At 72 hours time interval, cell proliferation was 

observed in a dose dependent pattern with a minimum at 6 seconds with peak proliferation at 

18 seconds. A gradual decrease in cell viability was observed in the cells treated beyond this 

dose with a maximum inhibition seen at 60 seconds. At 75 and 90 seconds no difference was 

observed between the control and experimental group. 

To establish efficient acquisition of adequate quantities of alkaline phosphatase, cells 

were grown in 12 well plates in complete medium or osteogenic medium. These cells were 

exposed to LLLI for 18, 48, and 60 seconds. The activity of early osteogenic differentiation 

marker alkaline phosphatase (ALP) was investigated 10 days post exposure.  

 Our results demonstrated that alkaline phosphatase activity at 2.4 – 7.3 J/cm
2
 with 48 

– 60 seconds of exposure, and an incident power ranging from 85-269mw significantly 

increased. The findings suggest that these irradiated cells obeyed the Arndt Shulz Law 

governing cellular response to applied energy.  Further this research indicates the possible role 

of LLLT to accelerate tooth movement in orthodontics. Complete disclosure of low level laser 

parameters is essential in order to accurately compare findings of researchers. 
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Chapter 1: Introduction _________________________________________                                 

1.1 Background 

Recent advances in orthodontic procedures offer patient friendly treatment. In today’s age 

of immediate gratification from the increased flow of information and convenience the 

population demands results faster and better than ever before in history. One of the challenges in 

modern orthodontics is to satisfy that demand. Unfortunately, the tooth can only move safely 

through the alveolus at the speed with which the surrounding biology allows. Orthodontic tooth 

movement is a biological response to a mechanical force. Many of the brightest minds in 

orthodontics have pondered upon how to manipulate forces by using innovative mechanics to 

create desired tooth movements, ultimately reducing treatment time. Some of these mechanisms 

include differential moments, functional and orthopedic appliances, temporary skeletal 

anchorage devices, elastics, magnets and many more. The manner in which the force is applied 

to the tooth to obtain the desired movement has been deeply studied and is well understood by 

the diligent orthodontist.  

The biological manipulation of the biological-mechanical process in tooth movement is 

the new frontier for reducing treatment time. The biological part of the process has been less 

studied, is not as well understood, and offers the greatest opportunity for improvement. 

Emerging methods to effect the biological part of tooth movement, include but are not limited to, 

electric stimulation
1
, ultrasound application

2
 and drug injections

3
 including prostaglandins

4
, 

osteocalcin
2
, relaxin

5
, and the active form of vitamin D

6
.  These methods appear to stimulate the 

rate of tooth movement but the drug injections may have side effects such as pain and 

discomfort, the other methods including electric stimulation and ultrasound are not commonly 
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used in an orthodontic clinic. Lasers, however, are beginning to be used more commonly in 

dental practice.  

Low-Level Laser Therapy  (LLLT) is beginning to emerge as a technology that may 

decrease orthodontic treatment time
7
.  LLLT was recently highlighted on the cover of the March 

2012 issue of the American Journal of Orthodontics and Dentofacial Orthopedics referring to an 

article finding that LLLT has the capacity to decrease pain and treatment time on human 

subjects
8
. Low level laser irradiation (LLLI)  has also been found to stimulate the formation of 

osteoclasts on the pressure side during experimental tooth movement, increasing the rate tooth 

movement in rats
9
. It is believed that LLLI affects the proliferation of osteoblast cells that build 

bone but it is not yet clearly understood how the laser acts on the cells
10

.  Increased activity of 

these cells responsible for bone remodeling may allow faster tooth movement while decreasing 

or inhibiting these cells could decrease tooth movement and improve anchorage. Controlling the 

rate of tooth movement through the alveolus during orthodontic treatment would enhance 

treatment time. 

Very little is known about the optimum doses of laser irradiation on human osteoblasts 

because previous studies reported randomly energy densities, time points and power output. 

None of the studies reported the use of an optimum dose with reference to cellular activity.  It is 

very important to establish an optimal dose as the cellular activity depends on the amount of 

stimulation.  

Orthodontics is concerned with tooth movement in humans and so this research examines 

the effects of varying doses of LLLI to the human osteoblast using proliferation and ALP in vitro 

to find optimum inhibition and proliferation in vitro. The findings will be compared to the Arndt-
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Shulz law governing cellular response to applied energy which suggests that if insufficient 

energy is applied to the cells no response will occur, with more energy a threshold will be 

crossed and biostimulation (cell proliferation and differentiation) should occur, with ever 

increasing energy the cells should reach a climax and then begin to be inhibited. In this study, I 

intend to evaluate the effects of LLLI on osteoblast proliferation and differentiation. 

1.2 Biology of Tooth Movement 

Current challenges in orthodontic therapy include the human body’s capacity to remodel 

periodontal tissues and resorb and form new bone as tooth move through the alveolus. The tooth 

is suspended within the bone attached to periodontal ligaments (PDL). When forces are applied 

on the dentition these ligaments transfer the force from the tooth to the periodontal ligament and 

on to surrounding bone.  When the force is administered for a significant duration of time the 

osteoclasts resorb bone on the pressure side of teeth providing a space into which the tooth to 

move. Osteoblasts build bone on the tension side of teeth as they move through the alveolus.
11, 

12
 Figure 1 depicts the concept of tooth movement through the alveolus. 
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Figure 1. Areas of Tension and Osteoblast Activity Coincide in Tooth Movement 

 

 

Figure 1 demonstrates how a mechanical force can affect a biological process, thus 

“biomechanics”. The circled area on the right of the figure encompasses the area of high tensile 

forces and the area you would find high osteoblast activity
13

. The two red arrows indicate the 

direction of the force on the tooth. The tooth is being moved bodily to the left. Osteoclasts and 

Howships Lacunae (resorbed areas of bone) are seen on the pressure side (the circled area on the 

left) of the tooth creating space for the tooth to move in the direction of force
11

.  Osteoblasts and 

new bone formation are seen on the tension side of the tooth being moved, filling in the void 

created by tooth movement. The tensile forces on the periodontal ligament space (PDL) right of 

the tooth root demonstrate an area of increased osteoblast activity and dilated blood vessels. 

Compression forces on the PDL are seen at left with increased osteoclast activity and 

compressed blood vessels.
12
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Osteoblasts and Osteoclasts 

Osteoblasts are stromal cells that synthesize and deposit calcium phosphate crystals, 

hydroxyapatite, to form bone. Osteoblasts are differentiated from mesenchymal cells that 

differentiate into osteoprogenitors, then pre-osteoblasts and finally the mature osteoblast. These 

cells differentiate and proliferate by interaction with a large and complex group of cytokines and 

molecules. Pre-osteoblasts do not form bone matrix and have limited dividing capability. Once 

osteoblasts create the bone matrix a few will embed in that matrix and become osteocytes.
14

 

These osteocytes do not create or destroy bone but it is believed that they can be reactivated into 

bone production
15

. 

Osteoclasts are large, multinucleated, and terminally differentiated cells and are usually 

found on the endosteal, or periosteal, surface lining the bone. Osteoclasts come from the 

macrophage or mononcyte cell line. Osteoclasts degrade bone tissue creating areas of bone 

resorption.
14

 Interestingly, there is evidence that osteoblasts are essential for osteoclasts to resorb 

bone
16

. Unlike the osteoblast the osteoclast does not progress further to an osteocyte but is 

terminally differentiated meaning that once the macrophage stops resorbing bone it undergoes 

apoptosis
17

. 

Osteoblasts regulate the development, differentiation, and function of the osteoclasts. 

Osteoblasts produce a protein called osteoprotegrin (OPG), also known as osteoclast inhibitory 

factor (OCIF) that is believed to inhibit osteoclastogenesis. The osteoblast also contains a 

transmembrane protein called osteoprotegrin ligand (OPGL) that is also known as a receptor 

activator of NFkB ligand (RANKL). 
14

 The osteoblast has many other pathways that it can 

communicate with the osteoclast. The intriguing part about the osteoblast is that it has the 

capacity to increase and decrease osteoclastic development, differentiation, and function.
14
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The above explanation of the osteoblast and osteoclast relationship demonstrates to the 

reader that the cell to scrutinize, in order to unlock the potential for increased tooth movement 

through the alveolus, is the osteoblast. If the LLLI can stimulate the osteoblast then it in turn has 

the power to influence the osteoclast. With increased control of these two cell lines much could 

be obtained for the advancement of not only orthodontics but the entire medical field involved 

with bone and bone pathology. In this thesis I intend to evaluate the effects of laser light on the 

osteoblast in particular low level laser light. 

 

1.3 Lasers 

 Laser is an acronym for “Light Amplification by the Stimulated Emission of Radiation”.  

Laser irradiation occurs when a photon is emitted prematurely from an over stimulated atom.  A 

photon is the basic unit of light and has both electromagnetic wave, and particle characteristics. 

The photon then interacts with the other excited atoms by decaying their excited electrons to a 

lower energy state causing release of a second photon. This stimulated emission of the second 

photon (resulting in the start of a laser) can only occur if the incident photon has exactly the 

same energy as the released photon resulting in two identical photons in wavelength, direction, 

and phase. If there are more atoms in an excited state these 2 photons can then interact to create 

4, 8, 16, 32 and so on, resulting in laser light. The wavelength is the physical property that 

determines the classification of electromagnetic energy. For example, gamma rays, x-rays, 

ultraviolet rays are considered to have very short wavelengths. Infrared, microwaves, and radio 

waves have longer wave lengths. 
18

 Figures 2 and 3 demonstrate the basic components of the 

conventional optical resonance laser and the diode laser. In this study a GaAlAs diode laser was 

used. 
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Laser light has multiple parameters that attempt to describe it, some of which are: 

wavelength, power density, pulse, coherence, and polarization. Wavelength is measured in 

nanometers (nm). Power density is measured in Watts/cm
2
 or milliwatts (mw). Pulse duration is 

measured in units of time, but in this study continuous laser irradiation was used. Coherence and 

polarization are laser light parameters that are inherent. The energy, or dose, that is delivered to 

the target is measured by the following parameters: Energy (Joules = Watt x Seconds), Energy 

Density (Joules/cm
2
), Irradiation Time (Seconds), and Spot Size (The area of the spot the laser 

light illuminates). The dose administered in this study were calculated as described in the 

materials and methods section. 
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Figure 2. Conventional Optical Resonance Laser 

 

 

 

 

 

Figure 2 shows basic principles, in a conventional optical resonance laser, required to create 

laser light. The lasing medium is placed between two mirrors. One of the mirrors is completely 

reflective. The transmitting mirror allows some of the laser light to escape creating the laser 

beam. An energy source is required to start and sustain the laser beam.
18

  

 

 

 



 

9 

Figure 3. Diode Laser (Like the GaAlAs laser used in this experiment) 

 

 

 

In a diode laser, as used in this study, the laser beam is generated from a semi-conductor 

diode. The laser light emitted in a diode laser is similar to the conventional optic laser light as it 

is created by exciting electrons and providing an energy hole where the electron can fall allowing 

it to release energy in the form of  laser light. 
18
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1.4 Low Level Lasers  

Low level laser irradiation (LLLI) is the application of low power laser light (1mw-

500mw) commonly used to increase tissue regeneration, decrease pain, or to reduce 

inflammation. It is usually in the near infrared spectrum (800nm-1000nm), with an incident 

power between 1mw to 500mw/cm
2
.  LLLI does not function by heat or vaporization rather it 

produces a photochemical effect much like plant cells do to sustain life.
19

 When the laser light 

encounters an object that can absorb the photon, the energy from the photon is not destroyed but 

used to increase the energy level of the absorbing atom or molecule.
18

 The first law of 

photobiology, the Grotthus-Draper Law
20

, explains that if LLLI   influences the  biological 

system the photons must be absorbed by electron absorption bands that belong to photoacceptors 

or chromophores.
19

 These chromophores can be seen in cytochrome c oxidase
21

 hemoglobin, 

melanin, myoglobin, flavins, and flavoproteins
19

. It is believed cytochrome c oxidase in the 

mitochondria is the principle chromophore responsible for the effects seen from LLLI
19

. The 

LLLI in this study is assumed to affect the human osteoblast at the mitochondria creating an 

environment within the cell to increase or decrease cell proliferation and alkaline phosphatase 

production. The effect seen on biological specimens has been reported is known as the Arndt-

Shulz law governing cellular response to applied energy. The Arndt-Shulz law governing cellular 

response to applied energy states that weak stimuli increase vital activity, even greater stimuli 

will raise the vital activity further until a peak is reached as seen in Figure 4. Once this peak has 

been reached, the increases in further stimuli suppress the vital activity. 
19
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Figure 4. Diagram of the Dose/Response Curve Depicting the Arndt Shulz Law 

 

Cellular Activity: 

 

 

 

Figure 4 demonstrates graphically the Arndt Shulz Law. The Arndt Shulz law states that 

weak stimuli (low dose) increase vital activity, even greater stimuli will raise the vital activity 

further until a peak is reached. Once this peak has been reached stronger stimuli suppress the 

vital activity. 
19
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1.4.1 History of Low Level Lasers 

In 1400 B.C. Indians were treating vitiligos using a lotion with a plant preparation called 

psoralens and then exposing the patients to sunlight. The Egyptians later used a similar technique 

to treat leukoderma.
18

 Nearing the end of the 19
th

 century Dr. N.R. Finsen, the father of 

contemporary phototherapy, was treating dermal tuberculosis, smallpox, and measles with 

ultraviolet and red light.
20

 In 1974, psoralens combined with ultraviolet A radiation was 

recognized as an effective treatment for psoriasis and vitiligo. These early uses of light to help 

cure illness demonstrate that light does indeed have curative effects on human organisms. The 

reader may more fully appreciate the effects of light when he or she remembers the last time 

overexposure of the sun light caused the skin to react creating a sun burn or ponders upon the 

thousands of cases of skin cancer thought to be in part a result from over exposure to sun light.  

  The first laser (a ruby laser) was developed by Theodore H. Maiman of Hughes Aircraft 

Corporation in 1960. In 1967 low level laser therapy began to emerge when Endre Mester in 

Budapest, Hungary was irradiating shaven mice to evaluate the effects of lasers on skin cancer. 

He found hair grew back quicker on the treated groups of mice.
22

 Today the term low level laser 

irradiation is used to differentiate it from the higher power ablative lasers that are also used in 

medicine.
20
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1.4.2 Low Level Laser Therapy in Dentistry and Orthodontics  

Multiple areas in the medical field are being tested with low level leser therapy. Some 

promising results in the dental field are found when LLLT is used with: burning mouth 

syndrome
23

, chronic gingivitis
24

, rapid maxillary expansion
25

, alveolar osteitis
26

, healing 

extraction sockets in diabetics
27

, decreasing pain during cavity preparations on children
28

, 

increasing orthodontic tooth movement
29

, dentinal hypersensitivity
30

,  and managing myofascial 

pain
31

.  

Low-Level Laser Therapy (LLLT) is beginning to emerge as a technology that may 

decrease Orthodontic treatment time
7
. It is believed that LLLI affects the proliferation of 

osteoblast cells that build bone but it is not yet clearly understood how the laser acts on the 

cells
10

.  Increased activity of these bone remodeling cells may allow faster tooth movement while 

decreasing or inhibiting these cells could decrease tooth movement. Controlling the rate of tooth 

movement through the alveolus during orthodontic treatment would enhance treatment time. 

1.4.3 Significance of Low Level Laser Therapy in Orthodontics 

One of the major concerns in orthodontic tooth movement is prolonged treatment time. LLLT 

emerged as a viable technology to manipulate tooth movement during orthodontic treatment. To 

date, limited literature is available on the effects of Low-Level Lasers on orthodontic movement 

in humans. Cruz et al in their studies with humans used a GaAlAs laser at 780nm, irradiation for 

10 seconds at 20 mw, with 5 J/cm
2
 on 4 days of each month. They found that LLLT accelerated 

human canine retraction movement by 1mm than the control after 60 days of treatment 
7
. In 

another similar study, 860 nm of GaAlAs laser with power output 100 mW, spectral area 0.09 
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cm
2
, power density 1.11 W/cm

2
, energy dose 2.3 J/point and energy density 25 J/cm

2
/site with 

continuous mode was used to irradiate the alveolar mucosa. The laser irradiation was given at 

three points on buccal and palatal sides, and two points at the distal of the canine with 23 

seconds per point
32

. In this study it was discovered that the means of distal movement between 

the irradiated side and the placebo side had no significant difference for any time periods 

evaluated and attributed this to the belief that they did not have enough surface energy density 

with their GaAlAs laser of 25 J/cm
2 32

. Another study with rat model proved that  LLLI 

accelerated the velocity of tooth movement by stimulating alveolar bone remodeling
33

.   

Another concern in orthodontic tooth movement is pulpal tissue damage during increased 

tooth velocity.  LLLI offers a quicker repair of pulpal tissue due to orthodontic tooth 

movement
34

. This makes LLLT an exciting proponent for increased pulpal health of orthodontic 

patients. 

Another orthodontic benefit of LLLT is that at the optimum dosage it may diminish tooth 

movement
35

. Increased orthodontic anchorage can also decrease orthodontic treatment times. 

The above studies indicate LLLI may have the capacity to decrease or increase tooth 

movement during orthodontic treatment. However, there is no information available on optimum 

dose response on human osteoblast cells.  

Fortuitously, this research can also shed light on other areas of interest outside of 

orthodontics. The cells used for this study are MG-63 osteosarcoma cells (malignant osteoblasts). 

Tuner and Hode explained that LLLT could be a viable option for pain control and general 

stimulation for cancer or suspected cancer patients 
36

. Tuner and Hode stated that LLLT as a 

radioprotective effect on tissue 
36

.  Da Cunha performed LLLT on rats that were submitted to 

radiotherapy and showed that it improved bone density, increased bone marrow cells, and 
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increased osteoblastic activity.
37

 Zimin et al. showed that LLLT does not cause formation of 

neoplasms but there is caution used because of the possible stimulatory effect on tumor growth. 

In Zimin’s article the results of LLL treatment on patients with oncological diseases spanning the 

last 25 years were evaluated. He found that at 2-4 year follow up observations no increase in the 

frequency of metastasis and tumor recurrence were detected. 
38

 

 

1.5  Purpose  

The purpose of this study is to evaluate cell proliferation, and alkaline phosphatase 

production of immortalized human osteoblasts in response to low-level laser irradiation (GaAlAs 

830nm). In addition, the findings are analyzed and compared with the Arndt-Shulz Law 

governing cellular response to applied energy on cultured human osteoblasts. The Arndt-Shulz 

law indicates that weak stimuli excite physiological activity and strong stimuli retard it. The 

implication of LLLI on osteosarcoma cancer is also discussed. The objective is to evaluate 

applicability of the Arndt-Shulz law by investigating the dose of laser energy that inhibit or 

enhance human osteoblasts activity as monitored by the assessment of cell proliferation, 

viability, and alkaline phosphatase activity. The findings will also reveal further information on 

the potential for LLLI to influence tooth movement in orthodontics. 

This in vitro study of human osteoblasts and LLLI, and may be looked at as a pioneering 

step toward a dose response curve for osteoblast activity that may lead to significant 

enhancement to modern day orthodontic biomechanics and further understanding of the effects 

of LLL treatment  on osteosarcoma. Admittedly, another study performed similar to this one with 

human osteoclasts would shed more light on the capacity LLLT may provide for the future of 
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orthodontic tooth movement.  Once the dosage to up-regulate and down-regulate human 

osteoblasts and osteoclasts is known the research can move toward human experimentation with 

a greater understanding and precision. The exact dose necessary to cause the desired 

biomechanical response may be illuminated. 

This research relates clinically to orthodontics because the capacity to regulate the 

osteoblast cell activity may lead to decreased treatment time and increase orthodontists’ 

productivity enhancing well being for all.  This research points to a day when orthodontic braces 

are perhaps mounted with fiber-optics administering correct doses of LLLI to the alveolus 

encased root and periodontium stimulating or inhibiting orthodontic tooth movement to the 

orthodontists’ desire.  The outcome of this project will provide basic information for the 

application of LLLI in orthodontics. 
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1.6 Specific Aims and Hypotheses 

  

1.6.1 Specific Aim 1: Dose Response Curve 

A. To measure and compare human osteoblast cell viability and proliferation at 24, 48, 72 

hours time period after administering a range of low to high doses of LLLI using 20mw, time 

exposures ranging from 6 to 90 seconds, a spot size of 0.252 cm
2
 and energy densities ranging 

from 0.4-6.01 J/cm
2
 in contact mode.  

 

1.6.2 Specific Aim 2: Alkaline Phosphatase 

B.  To determine any differences in Alkaline Phosphatase activity at 10 days. 

 

1.6.3 Hypothesis 

The central hypothesis to be investigated is that at low doses of LLLI human osteoblast 

activity increases, and at high doses activity decreases. In other words, an Arndt-Shulz type dose 

response curve should result. Obtaining this dose response curve may help decrease orthodontic 

treatment time in the future and may shed light on contra-indications of use of LLLI. Human 

osteoblast activity will be defined by cell viability, proliferation, and alkaline phosphatase 

production. To test this hypothesis a range of doses from low to high will be compared.  We 

expect greater human osteoblast activity with lower doses of LLLI and decreased osteoblast 

activity at higher doses; generating a type of dose response curve. It is also hypothesized that 

caution should be used when applying LLLI to patients with cancer because of possible up 

regulation of the cancer cells as seen in vitro. 
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1.7 Location of Study 

 This study was conducted in the Craniofacial Research Center Room # 7391, College of 

Dental Medicine, 3200 South University Drive, Nova Southeastern University, Fort Lauderdale, 

FL 33328. 
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Chapter 2: Materials and Methods__________________________________________            

2.1 Research Design  

In this study human osteoblast like cells derived from osteosarcoma cultures were used. 

Cells were grown in complete medium until it reached 70-80% confluency. The cells were then 

dislodged and suspended in the growth medium.  Based on experimental plan the cells were 

plated in either 96 well plates (as seen in figure 5) or 12 well plates. Experiments on cells 

proliferation and osteogenic differentiation were performed.  The cells plated in 96 well or 12 

well plates were exposed to low level laser irradiation at specific duration of exposure with 

different energy densities and doses. The cell proliferation and alkaline phosphatase activity was 

measured at designated time points. Cell proliferation assay was carried out in a 96 well plate at 

1, 2 and 3 day intervals. These time points were selected because effect of lasers on cellular 

activity was observed as early as 24 hours in mouse osteoblasts cells.
48

  

Differentiation is another hall mark phenomenon that may be induced by low level lasers. 

Alkaline phosphatase is an important biomarker for osteogenic differentiation. Although many 

studies have reported the positive effect of low level lasers on osteogenic differentiation in many 

types of cells
39

 no study has indicated the optimum dose for favorable osteogenic differentiation. 

In this study activity of alkaline phosphatase was measured at different time points. The cells 

without irradiation were considered as control group and cells.  Our pilot study demonstrated that 

there were no measurable levels of alkaline phosphatase produced at any dose after 1, 2, 3 and 5 

days on cell differentiation The activity of alkaline phosphatase was observed at 10 day post 

irradiation. The dose and time of irradaiation was determined based on our pilot experiment. The 

cells cultured in complete medium or osteogenic medium were exposed to laser and activity of 

alkaline phosphatase was measured at 10
th

 day post treatment.      
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  The cells were irradiated by the GaAlAs laser in contact mode for the cells plated in 96 

well plate. Figure 6 demonstrates contact mode with the laser in contact with the bottom of the 

96 well culture plate. The cells plated in 12 well plate to carry out ALP assay cells were 

irradiated by holding the Asah 450 probe at a distance of 72 inches from the cells allowing the 

GaAlAs laser to diverge to nearly completely irradiate the area of one well in the 12 well plate as 

seen in figure 7. A black piece of cardboard paper was placed over the 11 wells not to be 

exposed allowing only the desired cell well to be irradiated. The detailed methods of cell culture 

and irradiation methods, dose determination and experimental procedures are given in detail in 

the following sections. 
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Figure 5. Plating of Osteosarcoma Cells 

 

 

 

 

 

Figure 5 depicts the plating of osteosarcoma cells in 96 well plates. The cells were 

suspended in complete medium or growth medium with 5,000 cells per 100 uL in each well. 

Notice the use of a multi-pipette dispenser for maximum accuracy. 
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Figure 6. Cell Irradiation in Contact Mode 

A 

 

  B    C     D 

 

 

Figure 6 demonstrates:  A. Osteoblasts inside the wells in which they will be irradiated 

with the laser light passing through the bottom of the well into the cells. B. C. & D.: Demonstrate 

the actual procedure. The 96 well plates were placed on top of the lasing apparatus with a cut out 

allowing the laser to be in contact with the bottom of the wells. The Asah 450 stylus (or probe) 

was then held below the wells and the cells were irradiated. 
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Figure 7. LLL Irradiation Setup for 12 well plate 

 

Figure 7 shows the Asah 450 laser stylus held at 72 inches from the cells in the 12 well 

plate. A black cover cut out was positioned over the top of the 12 well plate to allow exposure of 

only 1 well and to inhibit cross contamination to the other wells. 

 



 

24 

2.2 Cell Culture 

Human osteoblast–like cell line MG-63 was obtained from the American Type Culture 

Collection (ATCC# CRL 1427, Manassas, VA 20110). MG -63 cells were derived from a human 

osteogenic sarcoma and possess an osteoblastic phenotype
40, 41

. Cells were grown in Minimum 

Essential Eagle’s medium (MEM; ATCC# CRL 1427, Manassas, VA 20110) supplemented with 

10% fetal bovine serum (Atlanta Biologics, Lawrenceville, GA, USA) and 1% antibiotic and 

antimicotic solution. The cells were fed with a fresh MEM every 2-3 days. Cultures were 

propagated at 37 C under humidified conditions using 5% CO2. The cells grown up to 70 – 80% 

confluent were treated with trypsin to dislodge from the flask. Suspended cells were plated either 

in 96 well plate or 12 well plate based on the experimental design and experiments were 

conducted to investigate the effects of LLLT on osteosarcoma cell viability and differentiation. 

 

2.3 Low Level Laser Irradiation (LLLI) 

LLLI was performed using the Asah 450 GaAlAs (Asah Medico, Hvidovre Denmark) at 

wavelength of 830 nm, with a visible guiding light laser that is 670 nm as shown in figure 8. 

The laser specifications for the stylus of the ASAH 450 indicate that it irradiates a spot 

size of 0.1 cm
2
. In order to verify that this spot size is correct an infrared sensor card (Newport 

Model F-IRC1 Irvine, Ca.) was obtained to visualize and measure the actual spot size of the 

GaAlAs laser. When the authors measured the actual spot size from the lasers origin was 

determined to be 0.252 cm
2
. The actual area of the bottom of the 96 well plate is 0.317 cm

2
 

according to the manufacturer as shown in figure 9. 

The 0.252 cm
2
 spot size was believed to be circular but was impossible to get a precise 

reading because the red guide laser does not turn off during the GaAlAs irradiation. A green 
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filter was then used but was not able to reduce the red guiding laser enough to obtain an unbiased 

reading of the actual spot size. When the GaAlAs laser is fired it glows a bright yellow on the 

infrared sensor card. The red guide light remained red. The authors decided to move the laser to 

a distance of 72 inches and examined the divergence of the GaAlAs laser in comparison to the 

red guiding laser. At this distance the red guiding laser remained about the same spot size but the 

GaAlAs laser experienced much greater divergence reaching a spot size of about 11mm x 23mm. 

The sensor card showed that the GaAlAs laser actually has a rectangular spot size with areas of 

higher and lower intensity forming a kind of grid as seen in figure 10.  

The Asah 450 Laser was sent to its origin company for evaluation of function and 

calibration. A Sanwa Laser Power Meter (Sanwa Electric Instrument Co., Ltd. Tokyo, Japan 

Model OPM-0572) was used to further evaluate calibration as seen in figure 11. This laser 

detector is capable of measuring wavelengths in the 830nm range, power range of .01 to 30mW 

with an accuracy of +5% of full scale reference wavelength. It was determined that when the 

laser was set to 20mW the laser power meter averaged 19mW after three exposures.  
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Figure 8. Asah 450 and Laser Equipment 

 

 

 

 

 

 

 

Starting at left the Asah 450 laser apparatus is shown in figure 8. The apparatus was used 

to input the proper irradiating parameters including mW’s and time of exposure. At center, the 

Sanwa laser power meter was used to calibrate the Asah 450 laser and to calculate any 

attenuation that the laser light may experience as it passes through the air and plastic bottom of 

the 96 cell well plate. Next, the eye protection is shown and was used during sessions of 

irradiation for safety. At right, the laser stylus is shown and was calibrated in this orientation. 
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Figure 9. Spot Size Calculation 

 

 

Figure 9 demonstrates how the laser specifications for the probe of the ASAH 450 were 

analyzed. Some difficulty was found in calculating the actual spot size even with the sensor card 

as the visible red laser light remains illuminated during the exposure with the GaAlAs laser light. 

A green filter (not shown here) was placed just below the stylus in order to inhibit the 

confounding visible red guiding light in order to better evaluate the spot size from the GaAlAs 

laser light. The digital calipers were placed just above the infrared sensor card. The Asah 450 

was then irradiated for an extended period of time in nearly contact mode so that the authors 

could measure the diameter of the spot as outlined on the infrared sensor card. The authors best 

efforts determined the actual spot size from the lasers origin was .252 cm
2
. The actual area of the 

bottom of the 96 well plate is .317 cm
2
. 
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Figure 10. Divergence and Grid of GaAlAs Laser 

 

 

 

Figure 10 shows the divergence of laser irradiation.The grid pattern that is experienced 

by the GaAlAs laser at 72 inches from the tip of the stylus. The visible red guiding laser light can 

be seen at the top left of the illuminated rectangular orange appearance of the infrared GaAlAs 

laser light. The GaAlAs laser light appears to illuminate in a rectangular shape with a grid 

pattern. The spot size  was calculated by measuring the illuminated rectangle.  
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Figure 11. Sanwa Laser Power Meter 

 

 

 

 

 

 

 

Figure 11 shows the laser stylus being lowered to be nearly in contact with the Sanwa 

laser power meter in order to calibrate the Asah 450 laser. When the Asah 450 apparatus stated 

that it was to produce 20mW we found that it averaged 19mW.  
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Owing to the fact that the laser light would pass through the bottom of the 96 well plate 

the laser light was checked for attenuation. This was done by removing the clear bottom of one 

of the 96 wells and irradiating through it to our laser power meter as seen in figures 12 and 13. 

After three exposures, with the laser light set at 20 mW on the Asah 450, through a cut out well 

bottom (measured to be 0.27mm thick) an average of 16.83 mW would be reaching the cells at 

the bottom of our 96 well plates.  

The black 96 well plate with a clear bottom was chosen in order to decrease or eliminate 

any cross exposure (contamination) of the laser light from one well to the next. In order to verify 

that no laser light would pass through the black well walls, a piece was cut from the plate and 

evaluated. 0 mW were recorded after three trials of lazing through the black well walls (.8mm 

thick) as seen in figure 14. 
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Figure 12. Bottom Cut Out of 96 Well Plate to Check for Attenuation 

 

 

 

 

 

 

 

Figure 12 demonstrates the bottom view of the 96 well plates that were used for 

irradiating the osteoblasts. In this figure a dental handpiece with a carbide bur was used to 

remove the bottom of the well in order to measure its thickness and to determine the amount of 

attenuation that the laser light experiences before it reaches the osteoblasts that will be residing 

on its surface. The laser stylus will be in contact with the bottom side of these wells in what is 

described as “contact mode”. Note that between each of the wells there is a layer of black plastic 

that will inhibit cross contamination of laser light during exposures. 

 



 

32 

 

Figure 13.  96 Well Bottom Cut Out and Placed Over Laser Power Meter for Attenuation 

 

 

 

 

 

 

 

 

Figure 13 demonstrates how the cut out bottom of the well was held by digital calipers 

over the Sanwa laser power meter. The laser light was passed through the cut out piece in contact 

mode. The Sanwa beam sensor was placed just below the well (identical to where the osteoblasts 

would reside in relationship to the laser and the cell well bottom). Attenuation was determined in 

this manner. It was determined that when the Asah 450 apparatus stated it was producing 20mW 

the osteoblasts would experience 16.83mW due to attenuation of the bottom of the cell well. 
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Figure 14. Black Side Wall of 96 Well Plate 

 

 

 

 

Figure 14 demonstrates how the cut out black walls of the 96 well plate was held by 

digital calipers over the Sanwa laser power meter. The laser light was passed through the cut out 

piece in contact mode. (This figure shows the laser light reflecting off the black piece of well 

wall and is not in contact mode. The actual testing was done in contact mode meaning the stylus 

was in contact with the plastic wall).The Sanwa beam sensor was placed just below the well to 

determine the amount of attenuation and elimination of cross contamination that should be 

expected during irradiation of the osteoblasts. It was determined that when the Asah 450 

apparatus stated it was producing 20mW there would be 0mW passing through the well walls 

completely eliminating cross contamination of laser light. 
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2.3.1 Determination of Dose: 

Dose determination for 24, 48 and 72 Hours WST Assays: 

A search for optimal proliferative and inhibitory doses (Appendix A) was made from a 

diligent literature review.  In accordance with the above literature and the desire to find both 

proliferative and inhibitory doses it was determined that a range of laser doses would be given in 

contact mode, continuous pulse, and no booster doses, as noted in Table 1. 

The format with which these dosages were administered to the 96 well plates is shown in 

figure 15. 

Dose Determination for ALP Assays: 

No measurable quantities of alkaline phosphatase were observed at 24, 48, 72, and 120 

hours in our pilot study for the ALP assays. It was determined that at 10 days and in a 12 well 

plate measurable quantities could be observed. The author utilized the information from the 

proliferative doses acquired performing the WST assay and replicated interesting doses, as 

closely as possible, in a 12 well plate (Table 2) with the laser stylus at 72 inches from the plate as 

seen in figures 16 and 7. The Sanwa Laser Detector was used to evaluate the energy density 

experienced by the cells at the new distance.  
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Table 1. Laser Irradiation Doses: 96 Well Plate Treatment 

 

 

 
 

Cell 

Column 

Machine 

mW 

Actual mW 

Reaching  

Time 

Exposed (S) 

Joules 

Produced 

ActuSpot Size 

(cm^2) 

Energy 

Density(J/cm^2) 

1 20 16.83 6 0.10098 0.252 0.401 

2 20 16.83 12 0.20196 0.252 0.801 

3 20 16.83 18 0.30294 0.252 1.202 

4 20 16.83 24 0.40392 0.252 1.603 

5 20 16.83 30 0.5049 0.252 2.004 

6 20 16.83 36 0.60588 0.252 2.404 

7-12 Control  0 0 0 N/A 0.000 

 
 
 

Cell 

Column 

Machine 

mW 

Actual mW 

Reaching  

Time 

Exposed (S) 

Joules 

Produced 

ActuSpot Size 

(cm^2) 

Energy 

Density(J/cm^2) 

4 20 16.83 60 1.0098 0.252 4.007 

5 20 16.83 75 1.26225 0.252 5.009 

6 20 16.83 90 1.5147 0.252 6.011 

7-12 Control 0 0 0 N/A 0.000 

 
 

 

 

Table 1 demonstrates the parameters used to calculate the energy density created during 

irradiation in contact mode.  Notice that the Asah 450 apparatus stated 20mW but the actual 

mW’s reaching the cells at the bottom of the cell wells is 16.83mW due to attenuation.  Joules 

produced during the exposure are noted.  
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Figure 15. Dose Layout for 24, 48, and 72 Hour Experiments 
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Figure 15 demonstrates the dose layout as it was 

administered in the 96 well plates for time periods 

24, 48, and 72 hours. Column 1 has 8 wells and 

each was exposed with 6 seconds creating an 

energy density of  0.40 J/cm
2
 in each well. Each 

succeeding column was irradiated accordingly and 

columns 7-12 which were used as controls. The 

60, 75 and 90 second exposures were performed in 

a similar layout. 
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Table 2. Laser Irradiation Doses: 12 well plate 

 

 

Machine 
mW 

Actual mW  
Applied 

Time Exposed 
in seconds 

Joules 
Produced 

Actual Spot 
Size (cm^2) 

Energy 
Density(J/cm^2) 

85 85 18 1.53 1.76 0.8693 

85 85 48 4.08 1.76 2.3182 

269 269 18 4.842 1.76 2.7511 

269 269 48 12.912 1.76 7.3364 

269 269 60 16.14 1.76 9.1705 

Control 0 0 0 N/A 0 
 

 

 

The author utilized the information from the proliferative doses from the MTT assay and 

replicated the interesting doses, as closely as possible, in a 12 well plate as indicated above. 
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Figure 16. Dose Layout for ALP assay experiment 

 

 

 

   

Figure demonstrates the format in which the osteoblasts were placed within the 12 well 

plates for irradiation. 
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2.4 Cell Proliferation Assay (WST-1 Assay) 

  The cells dislodged from T 75 flaks were suspended in growth medium. Approximately 

5,000 cells per 100 μL were seeded in each well of the 96 well plates and allowed to adhere for 

3-4 hours. The cells were then irradiated by the method described above and were returned to the 

incubator and incubated at 37°C with 5% CO2 for 24, 48, and 72 hour time intervals. After each 

designated time intervals the medium was removed and cells were washed twice with phosphate 

buffered saline (PBS) and cell proliferation assay was performed based on the cleavage of 

tetrazolium salt WST-1 (Roche Diagnostic GmbH, Lot 12417300, Manheim, Germany) by 

mitochondrial dehydrogenases in the viable cells. Briefly, WST-1 reagent was added to each 

well at 1:10 ratio to cell culture medium. After 4 hours of incubation in a humidified atmosphere 

with 5% CO
2
 at 37°C and absorbance was measured at 490 nm using a microtiter plate reader 

(DTX 880 multimode detector; Beckman Coulter, Fullerton, CA, USA) at 450 nM (figure 17). 

The cells without irradiation were considered as controls the cell viability of experimental group 

was compared to control group. The percent viability was measured as: 

i.e Viability= (Absorbance of laser treated sample/ Absorbance of control) X 100 
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Figure 17. Microplate Reader 

 

 

 

 

 

Figure shows the microplate reader (DTX 880 multimode detector; Beckman Coulter, 

Fullerton, CA, USA) that was used to measure the absorbance values for cell proliferation assay 

and ALP activity assay. 
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2.5 ALP Assay (pNPP Method) 

 Cells suspended in culture medium were plated in 12 well plates with a density of 1x10
3
. 

After removal of culture medium, the cells were washed twice with PBS and lysed with M-per 

mammalian extraction buffer (Thermo Fisher Scientific, Rockford, IL.). Following 

centrifugation at 12,000 g for 10 min, the supernatant of the cell lysate was used for measuring 

ALP activity using a pNPP Phosphate Assay (Sciencell, Carlsbad, CA.) following 

manufacturer’s instructions. Briefly, a volume of 15 μl of cell lysate was added to 30 μl of assay 

buffer followed by addition of 5 μl of 10X p-nitorphenyl phosphate (pNPP) solution. The 

samples were incubated at 37°C for 30-60 minutes. The reaction was stopped by adding of 50 μl 

of stop solution. Absorbance was mearued using a microtiter plate reader (DTX 880 multimode 

detector; Beckman Coulter, Fullerton, CA) at 405 nm. The quantity of ALP activity was 

normalized against the total protein quantity as measured by the BCA protein assay (Thermo 

Fisher Scientific, Rockford, IL.) 
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2.6 Statistical Analysis 

WST Assay: 

A one-way analysis of variance (ANOVA) with Tukey’s HSD Post-hoc Pair-wise 

Comparisons was used for each of the time periods 24, 48, and 72 hours after a single irradiation 

exposure. These were not repeated measures as each of the time periods was represented by 

different cell culture wells. The primary outcome measures, comparing control and treatment 

groups, with treatment groups “normalized” to control groups. Significance for test was 

predetermined at P<0.05. 

ALP Assay: 

A students T-test was used to performed to determine significant differences in Alkaline 

Phosphatase (ALP) production. Treatment groups were “normalized” to the control. Significance 

for test was predetermined at P<0.05. 
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Chapter 3: Results________________________________________________________           

Cell Proliferation: 

  The cells irradiated with 6, 12, 18, 24, 30, and 36 seconds were examined at 24,  48 and 

72 hours. An additional group was examined at 72 hours for time periods 45, 60, 75, and 90 

Seconds. The cell viability at 6 and 12 seconds of exposure was significantly inhibited by 12% 

and 10%, respectively, after 24 hours when compared to control (P<0.05). At 30 seconds of 

LLLI exposure cell proliferation increased by 18% after 48 hours (P<0.05). None of the 

significant doses mentioned above were significantly different pair-wise. 

 The 72 hour experimental group demonstrates a dose-responsive curve as explained by 

Arndt Shulz Law. At this time period 18 seconds of exposure significantly increased 

proliferation and 60 seconds significantly decreased proliferation by 11% and 27%, respectively. 

Although the difference between experimental groups at 72 hours was only significant between 6 

second and 18 second exposures  a bell curve starting low at 6 seconds gradually increasing to 18 

seconds and then beginning to decrease again at 24-36 seconds ultimately decreasing 

proliferation at 60 seconds. It should be noted that at time points 75 and 90 seconds no 

significant decrease in proliferation was noted which is not expected in relation to the Arndt 

Shulz Law. Continued decreased proliferation would be expected at these time points. The 

author speculates a bimodal response may be occurring (Table 3 and Graphs 1-3). 
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Table 3. Cell Proliferation at 24, 48, and 72 Hours in Percent 

 

 

 

Controls 6 sec 12 sec 18 sec 24 sec 30 sec 36 sec 

24 hours 100 88* 90* 98 100 99 98 

48 hours 100 106 95 96 99 118* 100 

72 hours 100 93 108 111* 106 105 102 

J/cm^2 0.00 0.40 0.80 1.20 1.60 2.00 2.40 

 

 

 

  Controls 45 sec 60 sec 75 sec 90 sec 

72 hours 

Continued 100 90 73* 92 98 

J/cm^2 0.00 3.00 4.00 5.00 6.01 

 

  

 

 The numbers in red with an asterisk show experimental groups that were significantly 

different than the control. The numbers highlighted in yellow indicate pair wise comparisons 

demonstrating significant difference between irradiation exposures at the same time. 
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 Graph 1.   Cell Proliferation 24 Hours after Exposure  

Mean±SD n=16 

 
 

 
 
 

Graph 2.  Cell  Proliferation 48 Hours after Exposure 

Mean±SD n=16 
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Graph 3.  Cell Proliferation 72 Hours after Exposure  

Mean±SD n=16 
 

 

 
 

 

72 Hours Continued 
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Alkaline Phosphatase Results: 

 Osteogenic Growth Medium: 

Activity of Alkaline phophatase was measured after 10 days of exposure. Our results 

demonstrated that there was an increase of 59% in ALP activity (P=0.002) when cells were 

exposed for 48 seconds at 85mW . Similarly, cells exposure for 48 seconds at 269mW  showed 

an increase of  a 44% (P=0.001). When these two exposures were compared to each other they 

were not statistically different but it is interesting to note that the 48 second, 269 mW exposure 

inhibited ALP activity 15% when compared with the 48 second, 85 mW exposure. 

Complete Growth Medium: 

At 10 days ALP activity demonstrated that a 48 and 60 second exposure at 85mW created 

a 60% and 66% increase, respectively, in ALP activity (P<0.05). Similarly the 48 second 

exposure at 269mW created a 40% increase in ALP activity (P<0.05). When these two exposures 

were compared they were not statistically different but it is interesting to note that the 48 second, 

269 mW exposure inhibited ALP activity by 20% when compared with the 48 second, 85 mw 

exposure. 

Both the osteogenic medium and the complete medium studies performed at 269 mW 

demonstrated a type of dose response curve, as explained by the Arndt Shulz, increasing at 48 

seconds and then decreasing at 60 seconds but this difference was not statistically significant.  
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Graph 4: ALP activity at 10 Days in Osteogenic Medium 

Expressed in Fold Difference 
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Graph 5: ALP Fold Difference at 10 Days in Complete Medium 

Expressed in Fold Difference 
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Chapter 4: Discussion and Conclusions________________________________________   __ 

Manipulation of the bone and it’s mechanisms for remodeling and growth are an 

important part of orthodontics, and in orthopedics in general. Low Level Laser Irradiation is 

emerging as an important adjunct to bone therapy. The study was proposed to evaluate the 

effects of LLLI from the Gallium Aluminum Arsenide Laser (GaAlAs), in the infrared 830 

nanometer (nm) range. The project was aimed at establishing the optimum GaALA irradiation 

parameters such as time of irradiation (dose) and energy densities on human osteoblast cell 

proliferation and differentiation. The Arndt-Shulz law indicates that weak stimuli excite 

physiological activity and strong stimuli retard it. The objective is to evaluate applicability of the 

Arndt-Shulz law, the dose at which the human osteoblast cells proliferate or decrease and the 

dose at which the differentiation is initiated.  

Other in-vitro studies have been performed in order to analyze quantitatively and 

compare LLLI to osteoblast proliferation and alkaline phosphatase production. However, the 

difficulty found in accurately measuring and explaining the dose of LLLI that the cells receive 

makes it extremely difficult to extrapolate and compare results amongst published. Appendix A 

demonstrates the difficulty in extrapolating and comparing the results of many articles. Some of 

the confounding conditions include, but are not limited to, the complexity of correctly applying a 

large number of LLLI parameters such as wavelength, power density, pulse structure, total 

energy, and irradiation timing.
19

 Many of the articles reviewed report an energy density and even 

compare their energy densities with other articles but the majority of the articles fail to report the 

spot size of the laser or fail to report the distance from the laser to the cell cultures being 

irradiated. Spot size is the area that the laser light covers as it contacts the cells being irradiated. 

Without knowing this the optimal dose received by the cells cannot be precisely recorded. The 
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author found that many of the articles demonstrated in Appendix A assumed the fiber optic width 

to be the spot size but they did not test for divergence of the laser light. There is also a lack of 

information given in most articles about the assumptions used in calculating dose.  

An example of the difficulty in comparing articles is given here: Laser A reports an 

energy density of 1.2 J/cm
2
, 20 mW, and a 6 second exposure. If laser A is then moved away 

from the cell culture and the laser diverges from 0.1 to 0.5 cm
2
, an energy density of 1.2 J/cm

2
, 

20 mW, at 6 seconds exposure would be reported. The actual energy density irradiating the cells 

would be only 0.24 J/cm
2
, and it would require a 30 second exposure to actually reach 1.2 J/cm

2
. 

Even if the 30 second exposure was then used at the new spot size the amount of energy that 

would be emitted to create the same energy density would increase 5 times. Then one has to ask 

if the cells receive similar treatment as one set received a 6 second exposure and the other a 30 

second exposure. This very dilemma was faced as the author contemplated how to deliver a 

similar dose of LLLI to the 12 well plate at 72 inch for the 10 day ALP testing from the findings 

in the WST assay. 

Alghamdi et al
42

  reported that cell proliferation  rate at  that an energy density of 0.5 to 

4.0 J/cm
2
, and a visible spectrum ranging from 600 to 700nm of LLLI are  optimal for  various 

cell lines.”
42

 Nevertheless the authors included the beam diameter of the lasers being used but the 

articles themselves did not reveal adjusting for spot size. Distance from the laser to the cells and 

calibration of the laser being used was not frequently reported. The similar articles that finally 

determined various LLLI parameters were to be used for the 24, 48, and 72 hour testing are 

found in Appendix A. Even amongst these articles great variability is noted concerning the LLLI 

parameters reported. 
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One of the limitations in the study was the determination of spot size. We determined the 

laser spot size 0 .252 cm
2
 in contact mode but the area of the  of  96 well plate  is 0.317 cm

2
.  As 

the area of the well is larger than the spot size, it is possible that laser irradiation was not evenly 

spread to every part of the well of 96 well plate. As noted in materials and methods the cells 

were irradiated by hand from the bottom of the 96 well plate and it is possible that some 

movement occurred during irradiation of the cells that may introduce variability into the dose. 

The cells were grown in complete or osteogenic medium in 12 well plate for determining 

activity of alkaline phosphatase. When the cells were exposed to laser irradiation at a distance of 

72 inches the authors found variability within the laser beam. The beam showed a type of grid 

with areas of high and low intensity. The authors were curious to find whether these areas 

introduced variability within the laser beam itself and so the Sanwa laser detector was positioned 

in different parts of the rectangular grid and great variability was found. At closer distances 

(contact mode) it was also noted that the laser’s power would fluctuate during an exposure 

usually only about 5-6 mW over a time period as short as 15 seconds. The authors suspect that 

these variables have been overlooked by many researchers who have reported findings on the 

effects of LLLI and may contribute to the confounding reports on the effectiveness of LLLI.  

Some of the LLLI parameters used appear to have a proliferative effect on immortalized 

human osteoblasts at 48 and 72 hours. At 48 hours, it was 30 seconds and 2.0 J/ cm
2 

at 72 hours 

it was 18 seconds at 1.2 J/cm
2
. Other authors found similar findings on proliferative effects cells 

near this range of energy density
42-44

. Their findings do not suggest that these irradiated cells 

followed a dose response curve as mentioned in the Arndt Shulz Law to a statistically significant 

level. This result is similar to the sudy of Arisu et al
45

 found but our study was performed to a 

much smaller increment of energy densities. However, the mean cell viability in our study 
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showed a tendency to follow this dose response curve. Our study may have had too much 

variability introduced from the weaknesses described earlier to record a statistically significant 

dose response curve as described by the Arndt Shulz Law.  

 The ALP findings are intriguing. It appears that the 48 seconds time exposure is just the 

optimum duration of time to increase the ALP production as it significantly increased production 

regardless of the 85mw or the 269mw energies. There is a 5 J/cm
2 

difference between these two 

doses but the time appears to be an influencing factor. This was suspected by the author as we 

see this happen with plants when exposed to too much light they wilt, when exposed to too little 

they fail to thrive but when given the correct time of light exposure they thrive. 

No significant ALP findings were detected in our pilot study for 24, 48, and 72 hours. 

This was not expected as other studies have reported enhanced ALP activity in this time 

interval
39, 44, 46

. We attribute our differing findings to the use of a different cell line than the 

studies cited. We see that the laser makes a difference in proliferation in the 24-72 hours time 

interval but the cell must not only proliferate to create new bone. The author assumes the cell 

requires time to perform transcription of DNA and then translation into protein to produce a 

significant effect upon the ALP.  
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Conclusions: 

Within the limitations of this in-vitro study, it can be concluded that:  

1) LLLI has a significant proliferative and inhibitory effect at 24, 48, and 72 hours within the 

range of doses given. 

2) The LLLI significantly affects the ALP activity at 10 days. Alkaline phosphatase activity 

at 2.4 – 7.3 J/cm
2
 with 48 – 60 seconds of exposure, and an incident power ranging from 85-

269mw significantly increased. The findings suggest that these irradiated cells obeyed the Arndt 

Shulz Law governing cellular response to applied energy 

3) LLLI should be carefully considered when being used with a patient that has been 

diagnosed with cancer.  

4) It is imperative to establish consistent guidelines for standardization among future in-vitro 

LLLI studies in order to accurately and consistently compare and evaluate studies. 
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Appendix A: Literature Review for Dose Requirements 

 
 

 

Article Dose Method Doses Effective Doses 

Chellini F. Et al 47 
Saos-2 Osteoblasts 

Nd: Yag Laser 
PULSED 
Non contact mode, Laser  
optic fiber placed 2 mm 
from irradiation surface. 
10 seconds Irradiation   
Constant 28 degrees C. 
400um optic 

Wavelength:1,064 nm 
Pulse duration: 100 
microseconds  
Power output: 1.4 W 
with 20mJ pulse energy 
and a variable pulse 
frequency of 50-70 Hz.  
Energy density: 
1.5J/cm^2  
Spot Size: ? 
Beam diameter: ? 

20 mJ and 50Hz 
20 mJ and 70Hz  
Both exerted a strong 
stimulation of 
osteoblastic cell 
proliferation at 24 and 
48 hours. MTS assay 
(mRNA expression of 
ALP significantly 
higher at 7 days and 
then decreased) 

Hou et al.43 
BMSC Cells 
(Used bone marrow 
derived mesenchymal 
cells) 

InGaAsP diode laser 
Continuous Wave LLLI  
Optic fiber placed 89 mm 
above cells allowing laser 
beam width of 34mm. 
Power Density: 
6.61mW/cm^2 
Irradiation time of 75, 
150, 300, and 750 
seconds. 

Wavelength: 635 nm 
Power output: 60 mw,  
Total energy: 4.5, 9,  18, 
45 J’s 
Energy density: 0, 0.5, 
1, 2, or 5 J/cm^2 
Spot size: ?  
Beam diameter: 34mm 

Optimal energy 
density of .5 J/cm2 
significantly increased 
BMSC proliferation. 

Abramovitch- Gottlib et 

al. 39 

BMSC Cells 

Polarized He:NE Laser 
Continuous Wave   
Irradiated from a 
distance of 20 cm for 10 
min per day from days 1-
28 through a 5 cm hole. 
Employed intensity: 
0.5mW/cm^2 

Wavelength:632.8 mm 
Output Power: 10 mw 
Total Energy: 6J 
 Energy Density: 0.5 
J/Cm2 
Spot size: ? 
Beam diameter: 5cm  

ALP significantly 
enhanced at  48 hours 
and significantly lower 
at day 21 and 28. 
Optimal energy 
density 0.5J/cm^2 on 
day 2. 

Kim et al.46 

Mesenchymal Stem  

 
 
 
 
 
 

LED Light 
Continuous Wave   
MTT assay 96 wells 
plates and ALP assay.  
All cells assayed 48 hours 
after irradiation.  
Cells exposed 3 cm from 
the light source. 

Wavelength:647nm,  
Power output:8.98 to 
9.89 mW,  
Total energy:  .093, .279 
and .836 J,  
Energy density: .01, .03 
and .11 J/cm^2,  
Spot Size: ? 
Beam Diameter: 3.2 cm  
Time/Energy: Cells 
irradiated once for 10 s, 
30 s or 90 s at energies 
.093, .279, and .836 J’s. 

MTT assay showed no 
increas in 
proliferation. ALP 
assay showed 
significant increase at 
30s at 48 hours. 
Optimal energy 
density: .01, .03, and 
.11 J/cm^2. The .03 
energy density was 
the most optimal and 
it was delivered in 30 
seconds. 
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Renno48 
Mouse osteoblast cells 
(MC3T3) 

GaAlAs diode laser 
Continuous Wave,  
Performed on glass 
Scaffold 
Irradiating probe was 
fixed perpendicular 
above cell culture well at 
distance of 5mm.   

Wavelength:830 nm 
Power Output: 30 mW 
Energy Density:10J/Cm2 
(at diode) 
Spot Size: 10mm^2  
Beam divergence:9.5 
degree beam 
divergence,  
Time: 335 s irradiation 
per spot.   

Evaluated cell 7 days 
after irradiation. 
Irradiation decreased 
cell prolifteration 13%. 
They gave too much 
for a glass scaffold. 
Previously they had 
this dosage worked 
well in vitro  

Stein49 
Human Osteoblasts 
(Saos 2)  

Diode Laser 
Continuous Wave  
Evaluated cells at 24, 48, 
and 72 hrs  
The laser was adjusted  
to exactly cover the 
bottom of one culture 
well (11.5cm above the 
bottom of the culture 
plate. 
 

Wavelength: 670 nm 
Power output: 400mW  
Energy density:1J/cm^2 
or 2J/cm^2 
Time: 30 or 60 Seconds 
Spot Size: ? 

1J/cm^2:Cell viability 
and alkaline phosphatase 
slightly enhanced.  
2 J/cm^2: reduced cell 
viability during the first 48 
h and resulted in 
persistently lower alkaline 
phosphatase activity 
mRNA slightly decreased 
with time in un- treated 
controls and cells 
irradiated with 1 J/cm2, 
but their expression was 
increased by treatment 
with 2 J/cm2 after 72 h. 

Pires Oliviera 50 
Mouse Osteoblasts 
(Ofcoll II) 
GaAlAs 
MTT Assay 

GaAlAs Diode Laser 
Continuous mode 
Irradiating probe 
positioned vertically 
above each well at a 
distance of 2 cm from 
the plate. 
Irradiation time was 36 
seconds for each well. 
Plates positioned in black 
mask with only area to 
be irradiated exposed 

Wavelength: 830 nm 
Power output: 50mW 
Energy density: 3J/cm^2 
Optic Fiber Diameter: 
600um  
Spot Size: ? 
Time: Cells irradiated for 
36 seconds at 24 hr 
intervals with 24, 48 and 
72 h incubation times 
following radiation 
 

MTT assay: 
Significant increases of 
living cells of 30% and 
50% were observed in 
comparison to 
controls after 9.6 
minutes (3J/cm^2) of 
laser emission 
(p=0.05) primarily 48 
and 72 hrs following 
the first radiation. 

Arisu 45 
Human Osteoblasts 
(Saos 2) 
 

Nd:Yag and HeNE aiming 
beam  
Noncontact mode  
Used MTT to evaluate 
cells at 7, 14, and 21 
days.  
Lased from a distance of 
2mm.  
 

Wavelength: 1065 nm 
Power output: Settings 
varied from 20-120mJ 
Pulse repetition rate: 
10-30Hz 
Power output: 0.2-3.6W 
Time: 10 second 
exposures with 13 
different energy settings 
Fiber optic diameter: 
320um 
Spot Size: ? 

The statistically 
significant powers 
were from group 1 
with Pulse energy 
20MJ at 10 Pulses per 
second, output power 
of 0.2 W for 10 
seconds of exposure.  
The other significant 
group 14 was a HeNe 
laser continuous wave 
with 0.1 W power 
output for 10 seconds. 
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Stein 44 
Human Osteoblasts 
 

HeNe Laser 
Cells cultured in 24 wells 
were irradiated using a 
transparent grid 
composed of 1.8mm x 
1.8mm squares placed at 
the bottom of the tissue 
culture plate to ensure 
precise irradiation over 
all tissues. 
Laser irradiation was 

applied on days 2 and 3 

after seeding  

Wavelength: 632nm 
Power Output: 10mW 
Beam diameter: 1.8mm 
Energy Density: 0.14, 
0.43, and 1.43 J/cm^2 
Time: 1, 3, and 10 
seconds 
Spot Size: ? 
 
 

MTT and ALP assay 24 
and 48 hours after 
second irradiation. 
MTT: After 3 seconds 
(0.43 J/cm^2) 
significant increase of 
40% and 38%  
ALP: After 3 seconds 
(0.43 J/cm^2) 
exposure had 2 fold 
increase in ALP 
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Appendix B:  

 

WST-1 Descriptive Statistics 

 

 

24 Hours Descriptive Statistics of Proliferation through Absorbance 

Group 24 Hrs N  Min Max Mean SD % Viability P Value 

Control (No LLLI) 96 0.232 0.450 0.352 0.040 100.00 N/A 

6 Sec of LLLI 16 0.194 0.444 0.307 0.074 87.404 0.029 

12 Sec of LLLI 16 0.238 0.491 0.314 0.058 89.250 0.018 

18 Sec of LLLI 16 0.292 0.418 0.342 0.037 97.338 0.301 

24 Sec of LLLI 16 0.300 0.477 0.351 0.044 99.987 0.963 

30 Sec of LLLI 16 0.275 0.387 0.328 0.037 93.425 0.022 

36 Sec of LLLI 16 0.281 0.422 0.343 0.041 97.653 0.406 

 

 

 

48 Hours Descriptive statistics of Proliferation through Absorbance  

Group 48 Hrs N  Min Max Mean SD % Viability P Value 

Control (No LLLI) 96 0.236 0.389 0.324 0.033  100.00 N/A 

6 Sec of LLLI 16 0.211 0.493 0.341 0.085 105.261 0.421 

12 Sec of LLLI 16 0.169 0.371 0.305 0.050 94.016 0.150 

18 Sec of LLLI 16 0.158 0.362 0.307 0.050 94.561 0.192 

24 Sec of LLLI 16 0.143 0.376 0.317 0.052 97.619 0.585 

30 Sec of LLLI 16 0.308 0.425 0.376 0.034 115.907 0.000 

36 Sec of LLLI 16 0.270 0.393 0.322 0.030 99.297 0.810 
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72 Hours Descriptive statistics of Proliferation through Absorbance 

 

Group 72 Hrs N  Min Max Mean SD % Viability P Value 

Control (No LLLI) 72 0.201 0.420 0.309 0.026 100.000 N/A 

6 Sec of LLLI 20 0.140 0.433 0.297 0.095 96.208 0.587 

12 Sec of LLLI 20 0.276 0.405 0.341 0.036 110.347 0.001 

18 Sec of LLLI 20 0.295 0.424 0.355 0.038 115.032 0.000 

24 Sec of LLLI 20 0.306 0.397 0.340 0.024 110.127 0.000 

30 Sec of LLLI 20 0.287 0.380 0.337 0.024 109.208 0.000 

36 Sec of LLLI 20 0.255 0.368 0.327 0.035 106.104 0.027 

 

 

 

 

 

 

 

72 Hours Descriptive statistics of Proliferation through Absorbance (Continued) 

 

Group 72 HRS  N  Min Max 
Mean 

Absorbance SD 
Percent 
Viability P Value 

Control (No 
LLLI) 80 0.301 0.930 0.624 0.169 100.000 N/A 

45 Sec of LLLI 16 0.283 0.860 0.570 0.187 91.432 0.270 

60 Sec of LLLI 16 0.262 0.887 0.466 0.187 74.758 0.003 

75 Sec of LLLI 16 0.372 0.722 0.585 0.112 93.722 0.182 

90 Sec of LLLI 16 0.306 0.888 0.627 0.170 100.488 0.944 
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Appendix C:  

 

10 Day ALP Descriptive Statistics 

 

 

 

 

 

 

 

Osteogenic Medium 

 

  85 mW 

 

269 mW 

 

Control 

18 Sec –  

0.87 J/cm^2 

48 Sec –  

2.32 J/cm^2 

 

18 Sec –  

2.75 J/cm^2 

48 Sec –  

7.34 J/cm^2 

60 Sec –  

9.17 J/cm^2 

 

  8.00 8.00 

 

8.00 8.00 8.00 

Mean 100.0 109.50 159.08 

 

84.80 144.39 115.36 

SD   15.19 16.45 

 

43.31 19.88 36.87 

SEM   5.37 5.82 

 

15.31 7.03 13.04 

P Value   P=0.206 P=0.002 

 

P= 0.262 P=0.001 P= 0.171 

 

 

 

 

Complete Medium 

 

85 mW 269 mW 

 

18 Sec- 

0.9 J/cm^2 

48 Sec- 

2.3 J/cm^2 

60 Sec- 

2.9 J/cm^2 

18 Sec- 

2.8 J/cm^2 

48 Sec- 

7.34 

J/cm^2 

60 Sec- 

9.2 J/cm^2 

 

8.00 8.00 8.00 8.00 8.00 8.00 

Mean 87.54 160.30 166.44 105.76 139.85 108.87 

SD 12.67 27.19 34.75 30.67 36.47 25.12 

SEM 4.48 9.61   10.84 12.89 8.88 

P Value P=0.109 P=0.049 P=0.005 P=0.240 p=0.046 p=0.464 
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Appendix D: Raw Data 

 

 

 

WST ASSAY 24 HOURS AFTER SINGLE DOSE OF LLLI 

 

N 
6 

Sec 
12 

Sec 
18 

Sec 
24 

Sec 
30 

Sec 
36 

Sec Control Control Control Control Control Control 

             1 0.217 0.308 0.367 0.388 0.367 0.409 0.365 0.413 0.381 0.257 0.352 0.336 

2 0.295 0.343 0.375 0.376 0.387 0.422 0.424 0.415 0.397 0.270 0.386 0.388 

3 0.325 0.297 0.391 0.477 0.370 0.383 0.374 0.380 0.393 0.392 0.401 0.369 

4 0.419 0.356 0.376 0.409 0.358 0.333 0.363 0.372 0.399 0.304 0.417 0.367 

5 0.444 0.491 0.418 0.349 0.362 0.281 0.305 0.371 0.370 0.279 0.389 0.350 

6 0.430 0.243 0.360 0.300 0.336 0.345 0.343 0.372 0.395 0.308 0.404 0.335 

7 0.323 0.238 0.359 0.326 0.350 0.349 0.379 0.360 0.365 0.318 0.353 0.296 

8 0.295 0.283 0.318 0.338 0.337 0.361 0.354 0.280 0.368 0.232 0.286 0.418 

9 0.309 0.323 0.329 0.346 0.332 0.385 0.352 0.339 0.357 0.299 0.285 0.329 

10 0.306 0.317 0.335 0.335 0.339 0.353 0.350 0.354 0.344 0.340 0.334 0.357 

11 0.325 0.302 0.302 0.346 0.300 0.325 0.327 0.336 0.336 0.394 0.356 0.364 

12 0.294 0.314 0.304 0.347 0.287 0.325 0.306 0.389 0.313 0.360 0.450 0.377 

13 0.209 0.322 0.292 0.339 0.294 0.303 0.301 0.309 0.316 0.375 0.449 0.339 

14 0.194 0.309 0.324 0.305 0.286 0.289 0.323 0.297 0.329 0.365 0.358 0.344 

15 0.276 0.318 0.304 0.320 0.275 0.318 0.327 0.287 0.311 0.380 0.359 0.398 

16 0.255 0.256 0.321 0.323 0.276 0.313 0.310 0.302 0.310 0.409 0.360 0.395 
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WST ASSAY 48 HOURS AFTER SINGLE DOSE OF LLLI 

 

N 
6 

Sec 
12 

Sec 
18 

Sec 
24 

Sec 
30 

Sec 
36 

Sec Control Control Control Control Control Control 

             1 0.347 0.169 0.362 0.341 0.403 0.326 0.298 0.329 0.276 0.323 0.303 0.303 

2 0.493 0.265 0.342 0.342 0.408 0.318 0.314 0.254 0.322 0.309 0.325 0.316 

3 0.384 0.313 0.323 0.321 0.425 0.315 0.282 0.287 0.349 0.291 0.316 0.277 

4 0.386 0.278 0.306 0.376 0.425 0.302 0.327 0.312 0.330 0.325 0.275 0.252 

5 0.389 0.323 0.300 0.338 0.408 0.291 0.296 0.303 0.353 0.301 0.344 0.270 

6 0.353 0.255 0.158 0.314 0.394 0.302 0.306 0.236 0.334 0.339 0.283 0.250 

7 0.420 0.312 0.317 0.356 0.388 0.321 0.322 0.329 0.328 0.324 0.272 0.279 

8 0.474 0.293 0.296 0.350 0.360 0.270 0.331 0.307 0.247 0.299 0.325 0.311 

9 0.223 0.365 0.319 0.143 0.308 0.339 0.335 0.338 0.256 0.362 0.357 0.311 

10 0.294 0.337 0.289 0.344 0.372 0.305 0.354 0.335 0.361 0.351 0.307 0.346 

11 0.347 0.277 0.233 0.299 0.361 0.355 0.369 0.379 0.329 0.348 0.389 0.355 

12 0.354 0.316 0.311 0.316 0.361 0.365 0.342 0.352 0.344 0.340 0.379 0.290 

13 0.298 0.371 0.339 0.305 0.360 0.393 0.325 0.371 0.375 0.384 0.373 0.344 

14 0.269 0.337 0.344 0.302 0.372 0.338 0.309 0.348 0.350 0.343 0.376 0.376 

15 0.223 0.357 0.361 0.338 0.352 0.316 0.331 0.349 0.346 0.360 0.369 0.310 

16 0.211 0.312 0.307 0.283 0.319 0.301 0.309 0.344 0.313 0.346 0.345 0.333 
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WST ASSAY 72 HOURS AFTER SINGLE DOSE OF LLLI 

 

N 
6 

Sec 
12 

Sec 
18 

Sec 
24 

Sec 
30 

Sec 
36 

Sec Control Control Control Control Control Control 

             1 0.140 0.309 0.296 0.318 0.350 0.265 0.271 0.350 0.312 0.293 0.235 0.277 

2 0.141 0.312 0.334 0.306 0.313 0.331 0.332 0.309 0.370 0.337 0.298 0.256 

3 0.198 0.355 0.295 0.314 0.348 0.353 0.348 0.323 0.380 0.334 0.262 0.236 

4 0.280 0.305 0.332 0.327 0.335 0.347 0.360 0.326 0.374 0.320 0.260 0.244 

5 0.266 0.324 0.302 0.310 0.317 0.368 0.323 0.342 0.370 0.343 0.304 0.236 

6 0.207 0.320 0.354 0.331 0.328 0.367 0.318 0.342 0.356 0.307 0.281 0.218 

7 0.192 0.346 0.312 0.315 0.323 0.314 0.336 0.299 0.345 0.316 0.261 0.201 

8 0.214 0.343 0.343 0.357 0.356 0.337 0.343 0.347 0.318 0.351 0.275 0.226 

9 0.329 0.328 0.349 0.327 0.326 0.349 0.341 0.352 
    10 0.381 0.324 0.351 0.345 0.314 0.293 0.272 0.319 
    11 0.418 0.405 0.399 0.363 0.343 0.359 0.396 0.420 
    12 0.402 0.361 0.405 0.355 0.369 0.341 0.347 0.365 
    13 0.295 0.397 0.363 0.397 0.356 0.341 0.301 0.359 
    14 0.309 0.373 0.348 0.370 0.372 0.350 0.338 0.332 
    15 0.421 0.399 0.424 0.362 0.346 0.351 0.322 0.346 
    16 0.415 0.321 0.336 0.334 0.314 0.302 0.317 0.354 
    17 0.433 0.365 0.373 0.361 0.347 0.279 0.324 0.366 
    18 0.261 0.296 0.393 0.341 0.316 0.288 0.284 0.356 
    19 0.319 0.276 0.409 0.329 0.380 0.362 0.291 0.316 
    20 0.317 0.353 0.383 0.334 0.287 0.255 0.237 0.379 
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WST ASSAY 72 HOURS AFTER SINGLE DOSE OF LLLI (More Time Points) 

 

 

N 
45 

Sec 
60 

Sec 
75 

Sec 
90 

Sec Control Control Control Control Control 

          1 0.757 0.887 0.644 0.702 0.754 0.558 0.781 0.785 0.573 

2 0.718 0.550 0.718 0.707 0.702 0.536 0.800 0.794 0.841 

3 0.727 0.429 0.630 0.888 0.655 0.553 0.727 0.812 0.800 

4 0.314 0.419 0.610 0.640 0.694 0.549 0.582 0.667 0.646 

5 0.519 0.347 0.519 0.571 0.605 0.724 0.539 0.582 0.342 

6 0.475 0.284 0.509 0.679 0.515 0.536 0.632 0.650 0.311 

7 0.283 0.362 0.572 0.668 0.611 0.459 0.487 0.429 0.656 

8 0.349 0.436 0.374 0.545 0.573 0.323 0.301 0.317 0.414 

9 0.824 0.746 0.663 0.719 0.536 0.822 0.729 0.825 0.729 

10 0.860 0.536 0.546 0.745 0.639 0.771 0.785 0.869 0.847 

11 0.709 0.648 0.696 0.788 0.745 0.729 0.770 0.840 0.893 

12 0.666 0.359 0.602 0.773 0.476 0.779 0.713 0.777 0.930 

13 0.356 0.340 0.699 0.619 0.590 0.713 0.485 0.647 0.877 

14 0.571 0.330 0.722 0.370 0.693 0.717 0.385 0.339 0.750 

15 0.497 0.525 0.372 0.306 0.349 0.701 0.335 0.741 0.345 

16 0.501 0.262 0.477 0.307 0.422 0.424 0.666 0.388 0.318 
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ALP 10 DAYS AFTER SINGLE DOSE OF LLLI 

ALP assay Results 

Osteogenic Medium 
 

Complete Medium 

85 mW 269 mW 
 

85 mW 269 mW 

Control 
18 
Sec 

48 
Sec Control 

18 
sec 

48 
Sec 

60 
Sec 

 
Control 

18 
Sec 

48 
Sec Control 

18 
sec 

48 
Sec 

60 
Sec 

0.113 0.084 0.072 0.113 0.063 0.059 0.073 
 

0.067 0.058 0.082 0.067 0.051 0.063 0.062 

0.119 0.090 0.071 0.119 0.072 0.083 0.083 
 

0.060 0.072 0.078 0.060 0.053 0.087 0.072 

0.065 0.076 0.065 0.065 0.066 0.045 0.046 
 

0.079 0.069 0.086 0.079 0.068 0.080 0.069 

0.058 0.077 0.067 0.058 0.055 0.040 0.042 
 

0.092 0.080 0.088 0.092 0.054 0.104 0.078 

0.082 0.061 0.041 0.082 0.054 0.056 0.045 
 

0.082 0.061 0.041 0.082 0.054 0.056 0.045 

0.079 0.055 0.030 0.079 0.046 0.054 0.040 
 

0.079 0.055 0.030 0.079 0.046 0.054 0.040 

0.045 0.053 0.058 0.045 0.035 0.032 0.034 
 

0.045 0.053 0.058 0.045 0.035 0.032 0.034 

0.047 0.042 0.046 0.047 0.042 0.029 0.031 
 

0.047 0.042 0.046 0.047 0.042 0.029 0.031 

               Protein Content in in µg per 15 µL 

8.97 5.29 3.49 8.97 10.22 3.67 3.88 
 

10.98 13.61 8.73 10.98 10.50 8.52 7.78 

8.97 5.29 3.49 8.97 10.22 3.67 3.88 
 

10.98 13.61 8.73 10.98 10.50 8.52 7.78 

10.59 12.83 6.42 10.59 8.22 5.52 8.15 
 

14.93 13.69 7.56 14.93 8.59 8.20 11.11 

10.59 12.83 6.42 10.59 8.22 5.52 8.15 
 

14.93 13.69 7.56 14.93 8.59 8.20 11.11 

8.97 5.29 3.49 8.97 10.22 3.67 3.88 
 

10.98 13.61 8.73 10.98 10.50 8.52 7.78 

8.97 5.29 3.49 8.97 10.22 3.67 3.88 
 

10.98 13.61 8.73 10.98 10.50 8.52 7.78 

10.59 12.83 6.42 10.59 8.22 5.52 8.15 
 

14.93 13.69 7.56 14.93 8.59 8.20 11.11 

10.59 12.83 6.42 10.59 8.22 5.52 8.15 
 

14.93 13.69 7.56 14.93 8.59 8.20 11.11 

               Normalization 

0.013 0.016 0.021 0.013 0.006 0.016 0.019 
 

0.006 0.004 0.009 0.006 0.005 0.007 0.008 

0.013 0.017 0.020 0.013 0.007 0.023 0.021 
 

0.005 0.005 0.009 0.005 0.005 0.010 0.009 

0.006 0.006 0.010 0.006 0.008 0.008 0.006 
 

0.005 0.005 0.011 0.005 0.008 0.010 0.006 

0.005 0.006 0.010 0.005 0.007 0.007 0.005 
 

0.006 0.006 0.012 0.006 0.006 0.013 0.007 

0.009 0.012 0.012 0.009 0.005 0.015 0.012 
 

0.007 0.004 0.005 0.007 0.005 0.007 0.006 

0.009 0.010 0.009 0.009 0.004 0.015 0.010 
 

0.007 0.004 0.003 0.007 0.004 0.006 0.005 

0.004 0.004 0.009 0.004 0.004 0.006 0.004 
 

0.003 0.004 0.008 0.003 0.004 0.004 0.003 

0.004 0.003 0.007 0.004 0.005 0.005 0.004 
 

0.003 0.003 0.006 0.003 0.005 0.004 0.003 

               Fold difference 

100 126 165 
 

49 129 150 
  

71 154 
 

81 122 131 

100 128 152 
 

53 171 161 
  

97 165 
 

93 188 169 

100 96 164 
 

130 133 91 
  

96 216 
 

151 185 118 

100 110 191 
 

122 133 93 
  

95 189 
 

101 206 114 

100 126 128 
 

58 167 127 
  

60 63 
 

69 88 77 

100 118 97 
 

51 167 117 
  

56 48 
 

61 88 71 

100 97 213 
 

100 137 98 
  

128 255 
 

135 129 102 

100 74 162 
 

115 118 86 
  

97 193 
 

155 112 89 
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