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Abstract 

 

Background: Temporary anchorage devices (TADs) provide a versatile means by which 

orthodontic anchorage can be established without the need for patient compliance and 

complex force systems.  Their use is predicated on their ability to remain stable 

throughout the course of treatment in which they are needed.  This has been shown to be 

the result of “primary stability” which is achieved through mechanical interlocking of the 

screw threads with the surrounding bone immediately upon placement.  Therefore, 

evaluating the factors that can either enhance or detract from the primary stability of 

TADs can serve to improve the predictability of their success. 

Objectives: The objectives of this study were to describe how variations in synthetic 

cortical bone thickness and the angle of force applied in relation to the long axis of TADs 

affects their stability in terms of pull-out strength, and to ascertain the perspectives of 

practicing orthodontists in the state of Florida on their experiences with temporary 

anchorage devices with regards to success and failure. 

Methods: For the bench top study, 90 1.5x8mm long neck Orthotechnology Spider 

Screws were randomly allocated to 9 groups of 10 TADs each. The 9 groups were 

established based on both the thickness of synthetic cortical bone (1.0, 1.5, and 2.0mm) 

and the angle of force vector applied relative to the long axis of the TADs (45, 90, and 

180
0
). Pull-out testing was carried out by applying a force to the TADs via a universal 

testing machine (Instron, Canton, MA) at a rate of 2.0mm/minute. Real-time graphical 

and digital readings were recorded, with the forces being recorded in Newtons (N). Each 
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miniscrew was subjected to the pull force until peak force values were obtained.  For the 

45
0 

and 180
0
 tests, the force registered at the time-point of pull-out, or screw head 

movement of 1.5mm within the synthetic bone blocks. The determination of 1.5mm of 

movement was made due the dramatically erratic deflection observed by the digital and 

graphical readouts at precisely this point. 

 For the survey portion of this study, A customized survey was developed for this 

study.  The survey was composed of 12 questions, some of which were obtained from a 

questionnaire that was created by Buschang et al.
54 

The additional questions were devised 

by the members of this research project, with the aim of answering questions regarding 

the clinical experiences that practicing orthodontists experienced with TADs. 

Results: For the bench top study:  Implants placed in 2.0mm of synthetic cortical bone 

and pulled at an angle of 180
0 

had the highest pull-out strength among all groups 

(258.38N), while those placed in 1.0mm of synthetic cortical bone and pulled at an angle 

of 90
0
 exhibited the lowest (67.11N).  When evaluated separately, a cortical bone 

thickness of 2.0 mm displayed the highest pull-out forces for the three angles of force 

application, and 180
0
 angle of force displayed the highest-pull-out forces for the three 

cortical bone thicknesses. Conversely, 1.0mm of cortical bone thickness displayed the 

lowest pull-out forces for the three angles of force application, and 90
0
 angle of force 

displayed the highest-pull-out forces for the three cortical bone thicknesses. 

For the survey: The most important factor associated with TAD failure was cited 

as placement location by 45.7% (n=16) of respondents, while root proximity was cited as 

the least important factor by 35.3% (n=12) of respondents. For the site from which 



ix 

 

practitioners indicated that they experience the greatest success, 81.8%  cited the palate, 

while 51.9% responded that they experience the highest failure rates for the posterior 

maxilla (distal to the cuspids). 

Conclusions: A synthetic cortical bone thickness of 2mm and pull forces applied parallel 

to the long axis of TADs resulted in the greatest resistance to pull-out.  
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Chapter 1: Introduction 

1.1. Anchorage in orthodontics  

Orthodontic tooth movement requires the application of forces to the dentition 

and its supporting structures.  As Isaac Newton described in his third law of motion, 

every action, or force in this case, has an equal and opposite reaction.  An exemption 

from this law of nature in orthodontic practice would surely simplify treatment, as one 

would not have to consider the reciprocal effects of the forces applied to the teeth.  

Because orthodontic therapy has its foundations rooted in the biological and physical 

sciences, it behooves practitioners to consider both the intended and unintended forces 

that their chosen mechanics will place on the teeth and periodontium.   

Orthodontic anchorage was first defined in 1923 by Louis Ottofy as “the base 

against which orthodontic force or reaction of orthodontic force is applied.”
1 

In a 

simplified definition, Proffit
2
 defined anchorage as the “resistance to unwanted tooth 

movement.” Essentially, it is a term that acknowledges the role of Newton’s third law in 

every aspect of orthodontic treatment.  Treatment success hinges on the ability of the 

practitioner to control tooth movements in relation to equal and opposite forces.
3
 When 

discussed in terms of force distribution, anchorage can be defined as the dissipation of 

unwanted forces while maximizing those that are desired.
4
 

1.2. The importance of anchorage in orthodontic therapy 

While the aforementioned definitions describe anchorage, they do not lend credit 

to the importance of anchorage control during orthodontic therapy.  Ritto stated, “Success 

or failure of traditional edgewise treatment depends on careful consideration to anchorage 
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for tooth movement.”
5
 Weichman and Büchter

6
 stated that stable anchorage is a pre-

requisite for orthodontic treatment with fixed appliances, and Antoszewska, 

Papadapoulos, Park, and Ludwig
7
 stated that anchorage control is a fundamental 

prerequisite for efficient orthodontic treatment without complications.” Additionally, 

Brettin et al.
 8

 stated that appropriate anchorage in orthodontic treatment is of paramount 

importance.
 
Marcotte

9
 defined anchorage as being comprised of three types: Type A, in 

which the posterior teeth do not move during anterior retraction, Type B, in which the 

anterior and posterior teeth move equal amounts during space closure, and Type C, in 

which the anterior teeth remain stable during posterior protraction.
 

The pitfalls of ignoring anchorage control in orthodontic therapy have been 

discussed by multiple authors. As stated by Meister and Masella,
 10

 “Abandoning control 

of extraction space allows alignment of the dentition but robs us of the opportunity to 

significantly retract the dentition, effectively remodel the dentoalveolar/lip relationship, 

and treat within the relatively stable parameters of the original malocclusion.” 

Concurrently, Geron, Shpack, and Kandos
 11

 noted that anchorage loss (posterior dental 

mesialization) in cases with severe crowding, excessive overjet, and bimaxillary 

protrusion can diminish the amount of anteroposterior correction of the malocclusion and 

possibly detract from facial esthetics. Furthermore,  Gianelly, Smith, Bendar, and Dietz
12

 

described how inadequate control of molar position in extraction cases with asymmetric 

crowding results in compromised canine and midline positioning.  

1.3. Means of establishing anchorage 

Control of anchorage in traditional orthodontic therapy has commonly been 

achieved by incorporating intra and/or extraoral appliances and counteracting moments 
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via archwire bends to create stability in the reactive dental units.
 1 

While proper 

utilization of these techniques may yield adequate anchorage control, there are many 

drawbacks.  One of the primary drawbacks to the use of removable appliances is that 

patient compliance is essential for a successful outcome.
13

  Additionally, an increase in 

percentage of adults seeking orthodontic treatment has resulted in the need for alternative 

means of establishing anchorage control when either dental or periodontal conditions 

may be either inadequate or incomplete.
6
  

1.4. Initial use of implants for anchorage 

In 1969, Brånemark, Briene, and Adelle
 14

 noted in their study that endosseous 

titanium screws may be used to provide stable anchorage for dental prostheses with little 

to no adverse tissue response,
 
and that under light microscope, there was true bone to 

implant contact.
15 

 The phenomenon he described was coined “osseointegration.”  The 

ability of titanium implants to “integrate” with the surrounding bone has since led to 

advances in all fields of dentistry, from periodontics to prosthetics and orthodontics.  In 

1984, Roberts, Smith, Moszary, Zilberman, and Smith
 16

 found that endosseous implants 

were stable in rabbits after 4 to 8 weeks of continuous orthodontic loads, indicating that 

titanium implants can provide rigid osseous anchorage for orthodontic treatment 

purposes. While conventional endosseous implants have been shown to be stable under 

orthodontic loading conditions and successful in over 90% of cases, there are inherent 

drawbacks.  Generally, endosseous implants vary between 6-15mm in length and 3-5mm 

in diameter.
4 

Due to their size, these implants are highly site specific, often limited to the 

retromolar region and edentulous areas. They are also costly, require surgical placement, 

and are difficult to remove once treatment has completed.
6,17

Another drawback is the 
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necessary delay before loading.  After placement of traditional endosseous implants, a 

period of 2-6 months is required for osseointegration of the implant and tissue healing.  

During this period, the implants should remain unloaded.
15

Although they are not suited 

for use in a majority of orthodontic patients, endosseous implants may still be the optimal 

choice for those involving prosthetic reconstruction after orthodontic treatment. 

1.5. The development of the orthodontic miniscrew  

Weichmann et al.
6 

note that due to the limitations of traditional endosseous 

implants for orthodontic use, development of more versatile systems were undertaken 

with the purpose of improving orthodontic anchorage for all segments of the dental 

arches.
 
 This led to the development of the titanium miniscrew.  In 1945, Gainsforth and 

Higley placed vitallium screws in the mandibles of dogs in an attempt to create 

“absolute” orthodontic anchorage.
18

 While each of the screws ultimately failed, this was 

the first attempt at utilizing skeletal anchorage in orthodontics. The first clinical use of 

miniscrews was reported by Creekmore and Eklund in 1983, in which successfully 

intruded anterior teeth with vitallium miniscrews placed in the anterior nasal spine.
19

 

Since this report, miniscrews have become a standard part of the armamentarium in both 

private practice settings and teaching institutions. 

1.6. Miniscrews in orthodontics: advantages and disadvantages  

Veltri et al.
20

 stated that the main clinical advantages of skeletal anchorage, which 

includes miniscrews, bone plates, and ankylosed teeth, over dental and extraoral 

anchorage are absolute stability and independence from patient compliance. Their use 

also eliminates the undesirable effects that are found with dentally borne anchorage 

mechanics.
21

 Another advantage of miniscrews is versatility in placement.  Practitioners 
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are no longer limited by the large size of endosseous implant. With careful planning, 

miniscrews can be placed almost anywhere they are desired. This results in an increased 

number of indications, because placement can now be determined by the mechanics 

desired as opposed to anatomy.  Kuroda, Sugawara, Deguchi, Kyung, and Yamamoto
 22

 

stated that the advantages of titanium miniscrews are their ability to provide rigid 

anchorage, minimal anatomic limitations, lower cost as compared with traditional 

endosseous implants, and easier, less traumatic placement.  Other advantages include ease 

of removal after treatment, minimal to no waiting period between placement and loading, 

and the potential for placement by the orthodontist.
15,23,24

 

Along with the advantages of miniscrews come disadvantages.  The primary 

disadvantage is a greater failure rate than with traditional endosseous implants.
17 

Costa et 

al found miniscrew failure rates as high as 39% in a study,
6
 whereas Kuroda et al found 

success rates as high as 88.6% with 1.3mm diameter screws.
16 

Miniscrew success is 

highly dependent on site differences. The rate of success has been found to be lower in 

the mandible than in the maxilla,
25

 while the lingual of the mandible exhibited the highest 

failure rates.
6 

Cheng et al found that placement in mobile mucosa results in high failure 

rates.
26

 Costa, Pasta, and Begamaschi suggested that a force that generates a moment on 

the implant in the direction of unscrewing may condemn it to failure.
27

  Additional 

disadvantages include potential damage to surrounding hard and soft tissues during 

placement, irritation and inflammation of peri-implant tissues, and additional cost to the 

patient for a specialist other than the orthodontist to perform the placement.
21

 

1.7 Miniscrew design 
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 The orthodontic miniscrew is comprised of three parts: The head, neck, and body. 

While the geometry of each of these components may vary among manufacturers, the 

ultimate objective of practitioners is to choose a design that will produce the greatest 

retention throughout the course of treatment.  For this reason, many studies have 

evaluated miniscrew related factors associated with stability.  

 Lin, Yu, Liu, Lin, and Lin stated that the optimal design should avoid failure and 

minimize strain on the surrounding bone. In their study, the authors evaluated seven 

miniscrew variables and their correlation to stresses placed on surrounding cortical bone.  

They utilized finite element analysis, a means of digitally analyzing how objects will 

react under various loading conditions.
28

 They found that screw material, head exposure 

length, and screw diameter were the primary determinants of stress production.
29

 

Most commercially available miniscrews utilized in orthodontics are composed of 

a titanium alloy (Ti-6Al-4V) as opposed to commercially pure titanium. It has been 

reported that titanium alloy has the advantages of being biocompatible, exhibits increased 

retention, and is less prone to breakage. Commercially pure titanium is less dense than 

the alloy, resulting in increased potential for breakage.
30

 Additionally, the “softer” nature 

of commercially pure titanium places increased stress per surface area on the surrounding 

cortical bone due to screw bending during loading.  

The diameter of miniscrews ranges from 1.0-2.3mm
31,32

The use of smaller 

diameter miniscrews is suggested in interdental regions, whereas larger diameter 

miniscrews are more applicable in edentulous and retromolar areas.  While this is the 

case, it has been shown that diameters less than 1.2mm increase the potential for screw 
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fracture and loosening because they result in increased stresses being applied to the 

surrounding cortical bone when compared to larger diameter miniscrews.
21,29,30 

Another component of miniscrew design is the taper of the screw body. 

Miniscrews can be either tapered or cylindrical. Tapered miniscrews exhibit an increase 

in diameter from the tip towards the head, while cylindrical miniscrews exhibit a constant 

diameter along the length of the screw body. Florvaag et al.
33

 found that mean insertion 

torque was greatest for tapered miniscrews, and removal torque was greater for 

cylindrical screws. This was similar to the results of the Cha, Takano-Yamomoto, and 

Hwang.
34

 They found that tapered screws had a lower mean maximum removal torque 

than cylindrical miniscrews after 12 weeks of loading, although their initial stability, 

based on removal torque, was greater over the first 3 weeks of loading. They also found 

that bone-implant contact (BIC), which indicates the degree of osseointegration,
35

 did not 

vary significantly between the two types of miniscrews. 

The relationship of screw length to its stability has been examined in several 

studies, but with varying results. Lim, Cha, and Hwang
36

 found that longer miniscrews 

exhibited greater mean insertion torques than shorter screws, and that this difference was 

greater for cylindrical screws. Another study found that success rates were significantly 

higher for 8mm miniscrews (90.2%) than with 6mm miniscrews (72.2%).
37

 These results 

suggested that increased stability can be achieved with longer miniscrews.  Concurrent 

with these results, Lin et al.
30

 suggested utilizing the longest screw possible without 

jeopardizing the health of adjacent tissues. 
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1.7. Primary stability 

The stability of miniscrews arises mainly from “primary stability.”
14 

Lee, Kim, 

Park, and Vanarsdall describe primary stability as the mechanical stabilization achieved 

immediately after placement.
38

  This differs from traditional endosseous implants in that 

their retention depends on osseointegration of the implant with the surrounding bone.  

Primary stability is affected by multiple factors, such as bone quantity and quality, 

surgical technique, and screw geometry. Cortical bone thickness (CBT) and cancellous 

bone density in the region of implant placement have to be critical factors in obtaining 

primary stability of orthodontic miniscrews.  Antoszewska et al.
7
stated that failure of 

orthodontic miniscrews is most often due to lack of primary stability caused by 

inadequate cortical bone and soft tissue irritation.
  

As stated by Jung, Yildizhan, and 

Wherbein, “a prerequisite for sustained success of temporary skeletal anchorage elements 

is bony anchorage of the implant body by immediate contact between the implant surface 

and the peri-implant bone at the cellular level.
39

” Deguchi et al suggested that because of 

this, the quantity of cortical bone in the area of miniscrew placement is the major factor 

in their stability.
40

 Concurrently, Baumgartel et al. stated that it is the absolute amount of 

cortical bone, rather than the ratio of cortical to cancellous bone, which is responsible for 

implant stability.
41

 Others showed that maximum stresses occur at the cortical bone level 

when miniscrews are loaded, and that this stress is decreased significantly with increased 

cortical bone thickness.
42

 Melsen and Verna described the cortical layer to be responsible 

for transferring the load on the miniscrew to the bone.
43

  Additionally, Melsen noted that 

pathological overload of the bone’s adaptive capacity may occur with bone of low 

density and with a cortical plate thickness less than 0.5mm.
44

 This may be due to the 
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direct correlation of cortical bone thickness with removal torque of miniscrews,
45

 which 

has been shown to be a determinant of their stability. Motoyoshi, Inaba, Ono, Ueno, and 

Shimizu found that placement of miniscrews in areas with ≥ 1mm of cortical bone 

thickness has significantly greater success rates than those placed in areas with ≤ 1mm of 

cortical bone.
46

 Therefore, they suggested that 1mm of CBT can be used as the threshold 

for the successful use of miniscrews.  

In an examination of the effects of implant angulations in relation to the cortical 

bone, Deguchi et al found that angling miniscrews 30
0
 to the surface of the bone surface 

produced 1.5x greater BIC than placing the miniscrews perpendicular.
40

 Pickard, Dichow, 

Rossouw, and Buschang utilized dried cadaver skulls to test the pull out strength of 

miniscrews relative to their orientation to the line of action applied.  Their findings 

contradicted the “tent-peg” theory of resistance.  They found that miniscrews angled 

toward the line of force had greater stability than those that are “tent-pegged”, or angled 

away from the direction of force application.
47

  This was further confirmed in a study 

which showed that pull out force of the miniscrews declined as the angle of pull from the 

long axis of the miniscrews increased. 

Although primary stability has been shown to be an essential component to 

miniscrew success, one study revealed a correlation coefficient of 0.39 when relating 

cortical bone thickness to pull-out strength of miniscrews.
48

 This indicates that the initial 

mechanical interdigitation is not the sole determinant of an implant’s stability. Secondary 

stability of miniscrews, or that derived from the deposition of new bone around the 

implant, also contributes to their stability.
22 

While studies have found that there are no 

significant differences in BIC with respect to loading time,
3
  Wu, Bai, and Wang found 
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that allowing a healing time of 4 weeks prior to loading orthodontic miniscrews resulted 

in greater pull-out strengths. This 4 week period has been shown to correlate 

histologically with abundant bone deposition around the implant
49

 and a concurrent 

increase in secondary stability.    

1.8. Cortical bone factors 

Based on the importance of cortical bone thickness on the stability of orthodontic 

miniscrews, knowledge of how various sites differ in thickness may help practitioners to 

better determine where their miniscrews may be most stable.  The thickness of cortical 

bone has been shown to differ both between and within the mandible and maxilla.  The 

maxilla and mandible both exhibit the thinnest and weakest cortical bone in the anterior 

region. Cortical bone thickness in both arches increases posteriorly, although there is a 

decrease in both thickness and density distal to the maxillary second molar.
40,50,51

A 

qualitative analysis of alveolar bone density revealed that in the maxilla, the cortex was 

most dense in the premolar area.  Additionally, Peterson, Wang, and Dechow found that 

the modulus of elasticity was greatest in the molar and incisor regions in dentate 

maxillae.
52

 (Appendix K)Similarly, Lettry, Seedhom, Berry, and Cupone determined that 

the cortex in the mandibular premolar area has the highest modulus of elasticity.
53 

While 

these findings did not necessarily correlate to thickness, they indicated that the premolar 

areas have the strongest cortices in the alveolus. The mandible, on average, has been 

shown to have a greater thickness of cortical bone when related to equivalent maxillary 

sites. Although these findings would indicate that miniscrew stability and success would 

be greater in the mandible, this is not the case. The posterior mandible has the thickest 

cortical bone, yet it is associated with lower success rates than the maxilla.  This may be 
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due to pathological overheating of the bone during miniscrew placement, issues with 

hygiene maintenance, and a smaller zone of attached ginigiva
40

. Additionally, it has been 

suggested that the higher success rates found in the posterior maxilla may be due to an 

increase in cancellous bone density in the area.
51 

An evaluation of cortical bone thickness of every interdental site on dry human 

skulls showed that there are also significant variations within sites.  Cone beam 

tomography revealed that there was a general trend towards increasing cortical bone 

thickness further apically toward the basal bone in the maxilla and mandible, although the 

maxilla did exhibit an area of decreasing thickness at 4mm apical to the alveolar crest.
50

 

These findings indicate that miniscrews should be placed as far apically as possible, as 

stated by Baumgartel et al.  Conversely, Deguchi et al. found that in the molar areas of 

the maxilla and mandible, there was no significant difference in cortical bone thickness 

when CBCT readings were made at 3-4mm apical to the alveolar crest and 6-7mm apical 

to the crest
40

  

Along with increased interdigitiation, greater thicknesses of cortical bone 

provides improved support and stress distribution.  This allows the forces placed on the 

miniscrews to be distributed to a greater area.  Motoyoshi et al. described a “cascade” of 

miniscrew failure.
46

 In their finite element analysis, they found that thinner cortices 

resulted in greater stress distribution to the surrounding cancellous bone.  When ≤ 1mm 

of cortical bone was present, the stresses distributed to the cancellous bone were more 

prone to result in “overload resorption.”  This, as they stated, occurs from a superior to 

inferior direction along the implant-bone interface.  If forces are great enough to produce 

the resorption, increasing mobility and potential failure are likely. 
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1.9 Root Contact 

Another factor associated with orthodontic miniscrew failure is placement in 

contact with dental roots.
13

  A survey conducted by Buschang, Carillo, Ozenbaug, and 

Rossouw revealed that the number one reason why orthodontists do not place their own 

miniscrews is fear of root damage.
54

 In a study on beagle dogs which evaluated 

miniscrew placement relative to root proximity and distance from the alveolar crestal 

ridge, the authors found that 100%  of the implants placed <1mm from the crestal ridge 

and in contact with dental roots were deemed failures.  Conversely, they achieved 100% 

success when the miniscrews were placed >1mm from the crestal ridge and were not in 

root contact.  Based on their results, they suggest that utilization of a surgical stent and/or 

cone beam computed tomography imaging (CBCT) may reduce the risk of errant 

miniscrew placement.
55

 Another study found that failure rates of miniscrews to be 79.2% 

when invasion of the roots occurred, as opposed to 8.3% when no root contact was 

evident.  They suggest that the increase in failure with root invasion may be caused by 

decreased BIC, physiologic movement of the teeth being transferred to the miniscrew, 

and slippage of the miniscrew upon contact with the roots. It is hypothesized the 

physiologic tooth movement during function puts forces on the implant, thereby reducing 

its stability.
17

 In a radiographic evaluation of miniscrew placement, Kuroda et al. 

achieved 90% success rates in non-invading miniscrews.  Additionally, they found that 

traditional radiographic means may be inadequate for determining if root invasion has 

occurred.  In their study, they utilized CBCT imaging to evaluate the 3-dimensional 

position of miniscrews that appeared to be contacting roots on conventional radiographs.  

There results showed that although there was close proximity, the appearance of root 
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invasion on a 2-dimensional film does not indicate actual root contact.
16

 Additional 

reports have shown that contact with the root or periodontal ligament space results in a 

significant increase in miniscrew failure rate.  Failure rates of these magnitudes indicate 

that careful placement is essential, and it has been suggested that there be 2mm of 

clearance between implant and the PDL space in order to prevent invasion from 

occurring.
6
 Additionally, placing the implants at an angle of 20

0
-40

0
 to the long axis of 

the teeth has been shown to reduce the risk of root impingement.
19

 Close root proximity 

between adjacent sites may limit the potential for miniscrew placement interdentally. Due 

to this, biomechanical considerations and angulations of forces applied to the TADs may 

be influenced.
 

1.9. Purposes of this study 

Many studies have been undertaken to determine optimal characteristics of 

orthodontic miniscrews, bone type, and location of placement.  Many were based on 

cadavers, humans, and animals such as dogs and rabbits.  Those studies provided an 

abundance of information on the success and stability of TADs in their respective 

materials. However, the control of these studies regarding bone type and density was 

difficult to establish.  The study proposed herein was to establish parameters for ideal 

cortical bone thickness and angulation of force application in a controlled laboratory 

environment. These findings were to be related to the clinical experiences reported by 

practicing orthodontists in the state of Florida.  
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1.10. Significance of this study 

This study will provide information regarding the effects that cortical bone 

thickness and angle of force application has on miniscrew stability.  This information can 

be used by orthodontists to improve their success with miniscrews.  
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1.11. Specific aims and hypotheses 

 Specific Aim1: To determine the effect of cortical bone thickness on the pull-out  

                                       strength of temporary anchorage devices 

 Specific Aim 2: To determine the effect of the angle of force applied relative to                    

   the long axis of temporary anchorage devices on their pull-out          

   strength 

Specific Aim 3: To determine the effect of pull force angle combined with    

   Cortical bone thickness on the pull-out strength of temporary    

       anchorage devices 

 Specific Aim 4: To present information obtained from a survey of practicing  

orthodontists in the state of Florida on their reported experiences  

with miniscrews, and the factors which they perceive to be most 

important for successful TAD use 

 

1.12. Location of study 

The design, preparation, and data collection activities of the study took place at: 

 Nova Southeastern University College of Dental Medicine 

 3200 South University Drive 

 Fort Lauderdale, Florida  33328 
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Chapter 2: Materials and Methods 

2.1. Bench top Study: 

2.1.1. Temporary anchorage devices 

Ninety self-drilling, self-tapping K1 long neck Spider Screws (OrthoTechnology, 

Tampa, Florida) were received in sealed and sterilized original packaging. (Figure 1)  

The screws have a screw length of 8.0mm and a screw body diameter of 1.5mm.  The 

height of the soft tissue collar measures 2.0mm, while its diameter measures 3.9mm.  The 

screw head contains both a bracket-like head design with cross hatches, and a 

perpendicular round slot beneath the tie wings.  The screws are fabricated from Grade 5 

titanium alloy (Ti 6AL-4V ELI).
56

 (Appendix H) 

            

Figure 2.1 OrthoTechnology Long Neck 1.5x8mm K1 Spider Screw 

2.1.2. Sawbones synthetic cortical bone analogs 

The synthetic bone utilized was procured from Sawbones (Pacific Research 

Laboratories, Vashon, Washington).  The blocks were fabricated from solid, rigid 

polyurethane foam based on the ASTM F-1839-08 materials testing 

standards.
57

(Appendix I) The blocks consisted of both a cortical bone layer and a 
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cancellous bone layer. The densities used were 40pcf and 15pcf respectively. This was 

chosen based on the Misch Bone Density Classification Scheme.
58,59

 (Appendices J and 

L) Each block was fabricated with a 4cm thick cancellous bone layer, overlayed with one 

of 3 cortical bone thicknesses. Two blocks of each of the 1.0, 1.5, and 2.0mm cortical 

bone thickness were used.  The blocks were stored together in a cool, dark environment 

prior to testing to decrease the chance of environmentally induced variations between the 

blocks.  

 

          Figure 2.2 Sawbones Synthetic cortical bone block showing cortical and cancellous layers 

2.1.3. Groups 

The 90 Spider Screws were randomly divided into 9 separate groups of 10 screws 

each. The screws were removed from their packaging with the OrthoTechnology hand 

driven Screw Driver Body with attached pick-up driver shaft immediately before 

placement into their respective bone blocks.  Following visual examination for any 

defects, the screws were manually placed perpendicularly into the bone blocks to a depth 

of 8.0mm utilizing the hand-driven drive shaft at a rate of two turns per second. 
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Consistency in placement angle of each miniscrew was assured by the use of a 

customized jig. The jig was fabricated by creating a small acrylic cube in a clear plastic.  

A guide hole with the same diameter as the driver shaft (2.45mm) was drilled through the 

block.  Orientation of the guide hole was perpendicularly created by drilling the pilot hole 

with a mounted drill press at an angle of 90
0
 to the flat surface which was placed on the 

Sawbones surface for placement of the miniscrews. Uniformity in depth of placement 

was assured by measuring the distance from the bone surface to the top of the screw head 

with a digital caliper. Prior to mechanical testing, the blocks with the screws in place 

were stored together. 

The 9 groups were established based on both the thickness of synthetic cortical bone and 

the angle of force vector applied relative to the long axis of the TADs.   

Groups A-C: The first three groups consisted of 10 randomly assigned Spider Screws per 

group placed in bone blocks having 1.0mm of cortical bone thickness.  The angle of force 

application relative to the screw was 45 degrees for group A, 90 degrees for group B, and 

180 degrees for group C. 

Groups D-F: The next groupings consisted of 10 randomly assigned Spider Screws per 

group placed in bone blocks having 1.5mm of cortical bone thickness. The angle of force 

application relative to the screws was 45 degrees for group D, 90 degrees for group E, 

and 180 degrees for group F. 

Groups G-I: The final grouping consisted of 10 randomly assigned Spider Screws per 

group placed in bone blocks having 2.0mm of cortical bone thickness. The angle of force 
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application relative to the screws was 45 degrees for group G, 90 degrees for group H, 

and 180 degrees for group I.  

2.1.4. Pull-out testing 

Pull-out testing was carried out by applying a force to the TADs via a universal 

testing machine (Instron, Canton, MA). Each of the bone blocks was placed in an 

adjustable vice with a built-in protractor. Each TAD was placed perpendicular to the bone 

block surface, the vice allowed the long axes of the TADs to be oriented from 0-90 

degrees relative to the arm of the testing machine.  Performing the pull-out tests on the 

45
0 

and 90
0
 groups was carried out with a loop fabricated from .016” stainless steel 

Australian orthodontic wire. This wire was attached to a vice on the Instron arm and 

looped around the tie wings of the screw heads. Prior to initiating a pull force, the center 

of the screw head was positioned precisely below the center of the test machine arm. The 

positioning and proper angle of pull was confirmed by protractor calibration from three 

reference points. For the 180
0
 pull out test, the vice was attached directly to both the 

screw head and mounted at its base to the Instron arm. (Figure 1) 

 Following proper orientation of the bone blocks and zeroing of forces exerted by 

the Instron machine, a pull-force was applied at a rate of 2.0mm/minute.  Real-time 

graphical and digital readings were recorded, with the forces being recorded in Newtons 

(N). Each screw was subjected to the pull force until peak force values were obtained.  

For the 45
0 

and 180
0
 tests, this force corresponded to the point of maximum loading, or 

screw movement of 1.5mm within the synthetic bone blocks. The determination of 

1.5mm of movement was made due the dramatically erratic deflection observed by the 

digital and graphical readouts at precisely this point. 
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            Figure 2.3 Diagrammatic representation of the bench top setup with pull force vectors 

2.1.5. Statistical analysis 

The data was imported into JMP-8 software (SAS Institute, Cary, NC) and 

analyzed. Descriptive statistics included the mean, standard deviation, maximum, 

minimum, and upper and lower 95% confidence intervals. The analysis was performed to 

determine if there were significant differences between cortical bone thicknesses, angles 

of force application, and angle by thickness. A Shapiro-Wilk’s W test was performed to 

determine normality, and was found to be violated. Additionally, Levene’s test for equal 

variances was also violated. Therefore, generalized models testing was performed to 

evaluate the data. 
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2.2. Materials and Methods for the Survey: 

2.2.1. Survey design 

 A customized survey was developed for this study.  The survey was composed of 

12 questions, some of which were derived from a questionnaire that was created by 

Buschang et al.
54 

The additional questions were devised by the members of this research 

project, with the aim of answering questions regarding the clinical experiences that 

practicing orthodontists had with TADs.  The survey was reviewed by Nova Southeastern 

University’s institutional review board for research with human subjects, and was granted 

exemption from further review. 

2.2.2. Obtaining a list of Florida orthodontists 

 The list of orthodontists was obtained from the American Association of 

Orthodontists membership listing.  The inclusion criteria included active membership in 

the American Association of Orthodontists and practice address located in Florida.  From 

the group of orthodontists that satisfied these criteria, a list of 389 orthodontists was 

obtained. 

2.2.3. Study design 

Each orthodontist received an email through Surveymonkey.com, which invited 

them to partake in the survey.  Duplicate emails were filtered so that each email address 

was used only once.  The survey email contained a cover letter (Appendix A) which 

provided a description of the current study and the contact information of the principle 

investigator.  Additionally, a web-link was embedded in the cover letter which would 

direct the user to the unique survey website, and an opt-out link should they wish to not 

participate or refuse future emails. If the web-link was selected, the respondent was 

directed to the survey (Appendix B).  Three weeks following the initial email, a reminder 
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email, which was the same as the first email, was sent to all of the orthodontists who had 

not responded and not opted out.  Following this reminder, 1 week was given to allow for 

response collection. 
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Chapter 3: Results 

3.1. Results of laboratory portion 

The independent variables studied were synthetic cortical bone thickness in 

increments of 1.0, 1.5, and 2.0mm, and angle of force application relative to the vertical 

axis of the implants in degrees (
0
).  The dependent variable was force in Newtons (N). 

The assumptions for a 2-way factorial ANOVA are normality, equal variances, and 

independent observations. The observations are not correlated but the normality test 

(Shapiro-Wilk W test) demonstrated that the variables were not normally distributed.  

Levene’s test for equal variance was also violated.  Given this, a generalized linear model 

was run to look for difference between the variables. Generalized linear models can be 

used when response variables follow distributions other than the normal distribution, and 

when variances are not constant. Significant differences were found between thicknesses, 

angles, and depth by angle (p < 0.05). To find where the specific differences occurred, 

linear-contrasts (multiple comparison tests) were conducted. (Appendix D) 

3.1.1. Difference in pull-out strength between synthetic cortical bone thickness  

 

The 2.0mm cortical bone thickness groups yielded the greatest pull-out forces, 

while the 1.0mm thickness groups exhibited the lowest. The mean pull-out force 

difference between 1.0mm and 1.5mm was found to be 34.30N.  The confidence interval 

for the upper and lower 95 percentile between these groups is 41.91N and 26.70N 

respectively. Between 1.0 and 2.0mm of synthetic cortical bone thickness, the difference 

between the means was 64.99N. The confidence interval for the upper and lower 95
th
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percentiles was 72.60N and 57.39N respectively. Between the 1.5mm and 2.0mm 

synthetic cortical bone thickness groups, the mean difference in pull-out force was found 

to be 30.69N.  The confidence interval for the upper and lower 95
th

 percentiles was 

38.30N and 30.69N respectively. Among each of these observations, all differences in 

mean pull-out force were found to be significant at the p<0.05 level. (Appendix E) 

  

 

 

 

Figure 3.1 Difference in mean pull-out strength between the three thicknesses of cortical bone for all 

groups 
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Figure 3.2 Difference in mean pull-out strength between the three thicknesses of cortical bone for 45
0
  

angle of pull 

 
 

                

Figure 3.3 Difference in mean pull-out strength between the three thikncesses of cortical bone for 90
0 

angle of pull 
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Figure 3.4 Difference in mean pull-out strength between the three thicknesses of cortical bone at 180
0
 

angle of pull 

 

3.1.2 Difference in pull-out strength by angle (Figures 5-8) 

 A pull-force vector of 180
0 

(or parallel to the long axis of the miniscrew) resulted 

in the greatest pull-out strengths, while a pull force of 90
0
 (perpendicular to the long axis 

of the miniscrews) yielded the lowest pull-out strengths. The mean pull-out force 

difference between the 45
0
 and 90

0 
force vectors was 30.02N. The confidence intervals 

for the upper and lower 95
th

 percentiles were 37.63N and 22.41N respectively.  The mean 

pull-out force difference between 45
0
 and 180

0
 force vectors was 97.22N.  The 

confidence intervals for the upper and lower 95
th

 percentiles were 104.83N and 89.61N 

respectively. The mean pull-out force difference between the 90
0
 and 180

0
 force vectors 

was 127.24N. The confidence intervals for the upper and lower 95
th

 percentiles were 

134.85N and 119.63N respectively.  All differences were found to be significant at the 

p<0.05 level. (Appendix F) 
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Figure 3.5 Difference in mean pull-out strength between the three angles of force vector application for 

1.omm cortical bone thickness groups. 

 

 

Figure 3.6 Difference in mean pull-out strength between the three angles of force vector application for 

1.5mm cortical bone thickness groups 
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Figure 3.7 Difference in mean pull-out strength between the three angles of force vector application for 

2.0mm cortical bone thickness groups 

3.1.3. Difference in pull-out strength between angles by cortical bone thickness 

 The greatest pull-out forces observed were in the 2.0mm x 180
0 

group, and the 

lowest pull out forces observed were in the 1.0mm x 90
0
 group  The observations within 

the groups having the same cortical bone thickness with differing angles of force vector 

application are presented.  Between the 1.0mm synthetic cortical bone thickness groups, 

significant differences in mean pull-out strength were observed between groups A and C 

and B and C at the p<0.05 level (Groups A-C). Among the 1.5mm cortical bone thickness 

groups (Groups D-F), the differences between pull-out strength were significant for all 

angles of force application (p<0.05) (groups D-F). 
 
Between the 2.0mm synthetic cortical 

bone thickness groups (Groups G-I), significant differences in mean pull-out strength 

were noted for each of the 3 angles of force application at the p<0.05 level. 
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90
0
).  Additionally there were no significant differences in mean pull-out force observed 

between any of the 90
0 

force vector groups (Groups B, E, and H). Lastly, there was no 

significant difference observed between Groups C (1.0mm x 180
0
) and G (2.0mm x 45

0
) 

at p<0.05.  

 All other differences in mean pull-out strength between groups of depth by angle 

were found to be significant at p<0.05.  The maximum mean pull-out force observed was 

258.38N. This corresponded to group I (2.0mm thickness, 180
0
), and the minimum mean 

force needed for TAD pull out was 67.11N. This was found in group B (1.0mm 

thickness, 90
0
). (Appendix G) 

 

 

                       Figure 3.8. Differences in mean pull-out strength of angle by cortical bone thickness 
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3.2. Results of the Survey  

 The survey used in this study was intended to describe how practitioners in the 

state of Florida are using TADs, and to determine the factors which they felt are most 

applicable to their success and/or failure.   The responses were qualitatively evaluated, 

and the results are presented below. (Appendix C) 

3.2.1. Question 1: How many years have you been practicing orthodontics?  

 Of the 50 respondents, 49 answered this question and 1 skipped the question. 51% 

of those who answered this question stated that they have been practicing for greater than 

20 years,14.3% said that have been practicing from 1-5 years and 16-20 years 

respectively, 12.2% have been practicing from 11-15 years, and 8.2% have been 

practicing 6-10 years. 

3.2.2. Question 2: Do you use temporary anchorage devices in your practice?  

 Of the 50 survey respondents, 49 answered this question and 1 skipped the 

question.  53.1% of those who answered the question stated that they used TADs, but 

infrequently, 24.5% stated that they have never used them, 20.4% stated that they use 

them often, and 2.0% stated that they have used them, but are no longer doing so. 

3.2.3. Question 3: Have you learned to use temporary anchorage devices?  

 Of the 50 survey respondents, 50 answered this question. 60.0% stated that they 

learned to used them via instruction, 16.0% stated that they learned on their own, 18.0% 

stated that they have not learned to use them and are no interested in doing so, and 6.0% 

stated that they have not learned to use them but plan on doing so. 
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3.2.4. Question 4: How did you learn to use temporary anchorage devices? 

 Of the 50 respondents, 50 answered this question. 60.0% of the respondents stated 

that they learned to use TADs through continuing education courses, 10.0% stated that 

they learned during their residency, 2.0% stated that they learned in study clubs, 2.0% 

stated that they learned through trial and error, and 26.0% stated that the answer choices 

provided were not applicable to their learning experiences. 

3.2.5. Question 5: Approximately how many of your treatment plans involve the use 

of temporary anchorage devices?  

 Of the 50 survey respondents, 38 answered this question and 12 skipped it. Out of 

the 38 responses, 100% stated that they use TADs in 0-10% of their treatment plans. 

3.2.6. Question 6: Do you prefer pre-drilling or self-drilling temporary anchorage 

devices?  

 Of the 50 survey respondents, 36 answered this question and 14 skipped it.  Out 

of the 36 responses, 97.2% stated that they prefer self-drilling TADs, while 2.8% stated 

that they prefer pre-drilling TADs.  

3.2.7. Question 7: Based on the answer above, what is your primary reason for 

choosing one over the other? 

 Of the 50 respondents, 36 answered this question and 14 skipped it. All of those 

who answered the previous question answered this question as well. Out of the 36 

responses, 63.9% stated that they prefer their technique due to greater ease of placement, 

27.8% felt that their chosen technique provides greater TAD stability, 25.0% felt that 

their preferred technique resulted in less patient discomfort, and 8.3% (n=3) cited other 

reasons. 

 The 3 respondents who chose “other” wrote in responses.  One did not place 

TADs, but if they did they would not use a pilot hole, one found no reason to pre-drill 
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unless bone is too dense, and one stated that it was a matter of safety, citing that it is 

easier to evaluate patient response when placing self-drilling miniscrews, and that the 

operator can better tell when root contact has occurred. 

3.2.8. Question 8: Do you tend to utilize temporary anchorage devices more often for 

direct or indirect anchorage?  

 Of the 50 survey respondents, 36 answered this question and 14 skipped it. Out of 

the 36 responses, 47.2% stated that they used TADs mostly for applying direct anchorage 

to the dentition, 27.8% stated that they use them as a means of establishing both direct 

and indirect anchorage equally, and 25.0% stated that they use them mostly for indirect 

anchorage. 

3.2.9. Question 9: Approximately what level of force do you place on temporary 

anchorage devices?  

 Of the 50 survey respondents, 36 answered this question and 14 skipped it. Forty-

seven point two percent of those who answered the question reported that they apply 151-

250 grams to the TADs, 36.1% reported that they apply between 51-150 grams, 11.1% 

reported that they apply between 25-50 grams, 5.6% reported that they apply between 

251-350 grams, and none reported using greater than 350 grams of force. 

3.2.10. Question 10: For what treatment plans do you find temporary anchorage 

devices most useful?  

 Of the 50 survey respondents, 37 answered this question and 13 skipped it. The 

respondents were permitted multiple answers for this question.  Of the responses, 64.9% 

indicated that TADs were most useful for cases involving molar intrusion, 59.5% for 

molar protraction, 24.3% for anterior retraction, 16.2% for anterior intrusion, and 8.1% 

for other reasons.  
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 The 4 respondents who answered “other” wrote in their answers.  Two found 

miniscrews to be most effective for molar distalization, one found them to be most 

effective for maximum anchorage control when needed, and one found them to be most 

applicable when used in conjunction with Class III reverse-pull headgear. 

3.2.11. Of the following 6 criteria, please rank in order of importance the factors you 

perceive to be most applicable to temporary anchorage device failure.  

 Of the 50 survey respondents, 35 answered this question and 15 skipped it. Of the 

35 who answered this question.  For the most important factor associated with TAD 

failure, the responses were as follows: 45.7% (n=16) for placement location, 42.9% 

(n=15) for operator error, 16.7% (n=5) for vector of force applied to the TAD, 8/8% 

(n=3) for the level of forces applied to the TADs, and 2.9% (n=1) indicated that root 

proximity and placement angulation were the most important factors respectively 

 For the least important factors associated with TAD failure, the responses were as 

follows: 35.3% (n=12) cited root proximity, 14.7% (n-5) cited forces applied to the 

TADs, 13.3% (n=4) cited the vector of force applied to the TADs, 8.6% (n=3) cited 

operator error, and 5.9% (n=2) stated that placement angulation was the least important 

factor. 

Please see (Figure X) for a detailed display of the results.   

3.2.12. At what sites of placement have you experience the highest failure rates of 

temporary anchorage devices?  

 Of the 50 survey respondents, 31 answered this question and 19 skipped it.  

Regarding the site which practitioners feel they experience the highest failure rates, the 

answers were as follows: 51.9% for the posterior maxilla (distal to the cuspids), 30.8% 

cited the posterior mandible (distal to cuspids), 13.0% cited the anterior mandible mesial 
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to the cuspids), 10.2% cited the anterior maxilla (mesial to the cuspids), and 0.0% cited 

the palate.  

 For the site from which practitioners indicated that they experience the greatest 

success, the responses were as follows: 81.8% for the palate, 15.0% (for the anterior 

maxilla, 7.7% for the posterior mandible, 4.3% for the anterior mandible, and 3.7% for 

the posterior maxilla.  
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Chapter 4:  Discussion 

 The ability to establish and obtain orthodontic anchorage is a prerequisite for 

efficient orthodontic treatment without complications.
6,7,60

 Its importance has lent itself to 

countless scholarly articles, research studies, and textbook chapters.  A practitioner’s 

ability to utilize different anchorage schemes effectively imparts them with the ability to 

control their desired dentoskeletal movements and carry out treatment both efficiently 

and predictably.  Incorporation of bone-borne temporary anchorage devices (TADs) into 

the orthodontists’ armamentarium has allowed a high level of control that eliminates the 

need for patient compliance while simplifying treatment mechanics.  

 In addition to anchorage control, the use of temporary anchorage devices has 

made many dentoskeletal movements that were once extremely difficult to obtain quite 

predictable. An example of this can be seen with buccal segment intrusion in anterior 

open bite malocclusions. As with anchorage, an enhanced ability to control the 

placement, location, and types of forces to particular segments can be achieved with 

TADs. 

 When utilizing TADs in practice, their ability to perform as desired lies in their 

ability stability under the various forces applied to them, and to remain stable throughout 

the duration of treatment in which they are incorporated.  Multiple studies have shown 

that the main determinant of TAD stability is created by mechanical interlocking of the 

screw threads with the surrounding cortical and cancellous bone.  This is described as 

“primary stability
14

,” and is similar to that found when one screws a nail into wood. High 

levels of osseointegration, such as those needed for successful endosseous implant 



36 

 

success, are not necessary with TADs, considering they are placed with the intent of 

atraumatic removal at a future date.
39

 and have been shown to remain stable under a 

continuous 200g force for 6.5 months with as little as 15.33% osseointegration.
3 

  

 The gold-standards for testing the primary stability of TADs are pull-out testing
47

 

and insertion torque testing.
26,61

 Increased forces needed to pull out TADs indicates a 

higher level of primary stability. Concurrently, TADs designed to resist the highest forces 

are the most desirable. Part 1 of this study aimed to determine how variations in both 

synthetic cortical bone thickness and the vector of forces applied to TADs relative to their 

long axes affect their pull-out strength. Synthetic bone analogs were used in order to 

allow control over variables such as bone density, local variations in cortical bone 

thickness, and variations in bone contour.  While the findings are not intended to indicate 

the levels of force to be used in orthodontic therapy, they are intended to provide data 

that can increase the predictability of TAD success based on how and where these forces 

are applied.  

  Synthetic bone analogs were used instead of cadaver bones in order to minimize 

the variability of thickness, density, and quality.  While the synthetic bone blocks are 

manufactured with consistent thickness and physical properties, cadaver bone has been 

shown to vary significantly in these properties between sites on the same bone.
34,36 ,62

 

Additionally, synthetic bone is not subject to dessication and quality change over time, 

which has been experienced when working with cadaver bone.
62

  While the synthetic 

bone blocks do not present all of the same properties as human bone, their uniformity 

provides a reliable and consistent medium for controlled biomechanical testing. The 

ASTM F-1839-08 materials testing standards states that the uniformity and consistent 
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properties of rigid polyurethane foam make it an ideal material for comparative testing of 

bones screws and other medical devices and instruments. Based on these statements, 

multiple studies on the mechanical properties of TADs have utilized Sawbones synthetic 

bone analogs as their test medium.
9, 39, 41 

Therefore, this synthetic bone was chosen for 

this study.  

The forces which elicited pull-out in each of the groups were in excess of those 

utilized in orthodontic tooth movement. However, this study evaluated TAD stability 

solely from a mechanical perspective. The study was not designed take into account 

factors such as human error, individual patient variation, or biological factors that can 

influence clinical TAD stability.  Further discussion of the study design, results, and other 

implications for orthodontists using TADs follows.   

4.1. Specific Aim 1: To determine how variations in synthetic cortical bone thickness 

affect the pull-out strength of temporary anchorage devices 

 To determine how variations in synthetic cortical bone thickness affected the pull-

out strength of TADs, placement angle, angle of force application, and rate of force 

application were controlled.  Findings indicate that for the 3 angles applied herein, a 

thickness of 2.0mm of synthetic cortical bone thickness yielded the highest average pull 

out strength, while 1.0mm of synthetic cortical bone yielded the lowest.  This is in 

accordance with the results of multiple studies, indicating that placing TADs in areas 

with greater cortical bone thickness results in greater primary stability.
40, 41, 42, 43

 The most 

plausible reason for this is that in areas of increase cortical bone thickness, there is 

inherently greater bone-implant contact. This in turn, results in a greater resistance to pull 

out due to increased mechanical interlocking of the screw threads. Based on this 
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information, practitioners should place miniscrews in the areas of greatest cortical bone 

thickness.  

4.2. Specific Aim 2: To determine how variations in the vector of force application 

relative to the long axis of the TADs affects the pull-out strength of temporary 

anchorage devices 

 To determine how variations in the angle of force vector relative to the long axis 

of the TADs affects their pull-out strength, the placement angle, thickness of synthetic 

cortical bone, and rate of force application were controlled. The findings indicated that 

the angle of force application yielded significant differences in pull-out strengths within 

the 1.0 and 2.0mm groups, with the 180
0
 angles resulting in the greatest resistance to 

pull-out. The lowest pull-out strength was noted when the TADs were pulled at an angle 

of 90
0 

relative to their long axes. No significant differences were found between the 

varying angles of force application in each of the 1.5mm cortical thickness groups.   

 These results concurred with the results of studies by Pickard and Petrey,
47,62

, in 

which TADs exhibited the greatest pull-out strength oriented more parallel with the line 

of force applied. Similarly, the results of this study indicated that applying forces more 

parallel to the long axes of the TADs resulted in increased stability, independent of 

miniscrew orientation. This may occur for two reasons. Stresses on the bone surrounding 

the TAD were more evenly distributed with parallel forces, whereas increased stresses 

build around the apex and neck when forces are applied at an angle, and when forces are 

applied parallel to the long axes, the full expression of thread engagement occurs. 
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4.3. Specific Aim 3: To determine how both synthetic cortical bone thickness and the 

vector of force application combined affect the pull-out strength of temporary 

anchorage devices  

 An evaluation of the pull-out strength variations caused by the thickness of 

cortical bone and angulations of force application combined revealed that by altering 

each of the variables together, differing observations are noted.  Referring to the results 

of the variables individually, it can be seen that increasing the cortical bone thickness and 

applying forces parallel to the long axes of the TADs results in the greatest primary 

stability.  

 This is very idealistic, because when treatment planning, the location of TAD 

placement is dictated by the mechanics needed to illicit the desired dentoskeletal 

movements.  Due to this, it is often impossible to place the TAD in the area of greatest 

cortical bone thickness, or in a location that offers a parallel vector of force. Utilizing 

cone-beam tomography, measurements of buccal cortical plate thickness has been found 

to be greatest in the premolar-molar areas of both the maxilla and mandible, with 

increasing thickness as one moves apically from the alveolar crest.
34

  

When analyzing how altering thickness by angle affects the pull-out strength of 

TADs, the data reveals that alterations in either placement location or angle of force 

application may be made to increase stability based on estimations of cortical bone 

thickness from these studies. For instance, no significant differences in pullout strength 

were observed between 1.0mm of cortical bone thickness with a force angled at 45
0
 and 

both 1.5 and 2.0mm of cortical bone thickness with forces applied at 90
0
.  Additionally, 

there were no significant differences between any of the groups tested at a pull force 

vector at 90
0
, or between 1.0mm at 180

0 
and 2.0mm at 45

0
.  
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 Based on this information, if a practitioner is placing a TAD in the anterior 

region, which has cortical bone thicknesses ranging from 0.82-1.27mm in the mandible 

and 0.75-1.17mm in the maxilla
50

, angling the TADs more parallel to the vector of force 

may offset some of the decreased stability due to thinner cortical bone. Additionally, 

when placing the TADs palatally, their location along either the alveolar ridge or 

parasagittal areas can be best determined by the direction of force that will be applied to 

the TAD.  

4.4. Discussion of survey results 

 The survey was intended to provide insight to the clinical experiences practicing 

orthodontists in Florida have had with TADs.  Fifty of the 389 (12.8%) orthodontists who 

were solicited for participation in the survey responded to at least one question. This 

response rate is in accordance with the results of previous web-based survey studies by 

Hardigan and Buschang et al, which reported that response rates for surveys sent via 

electronic mail were 11%,and 6% repectively.
54, 63

 The results of this survey reflect the 

clinical experiences of those who answered the survey, and cannot be generalized to 

include those of all orthodontists. 

 Over half of those who responded to this survey have practiced for more than 20 

years, and over 75% have practiced for 11 years or more.  While this may have been due 

to the demographic makeup of orthodontic practitioners Florida, this may also be due a 

greater interest in the topic by those who were not trained in the use of TADs during their 

residency years.  A majority stated that they learned how to use TADs in continuing 

education course, whereas only 10% stated they learned during their residency.  In their 

2008 survey, Buschang et al. found similar demographic results, with 58.5% of 
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respondents having at least 15 years of practice experience, and 8.4% having been trained 

in their use during residency.
54

 These results show that the use of TADs is becoming 

more widely used, and that those who have graduated from residency within the past 

decade are likely to have received formal training in their application. 

 All of the survey respondents stated that they utilize TADs in 0-10% of their 

cases. Although the usefulness and versatility of TADs has been extensively cited in the 

literature, it seems as though their use in practice is more limited.  This may indicate that 

TADs are generally used when there is a true benefit to them, or that those who answered 

the question do not find them very useful.  TADs do not serve to eliminate the need for 

biomechanical and tooth borne considerations for the development of anchorage. Rather, 

practitioners seem to use them as an adjunctive treatment option to be used when obvious 

tooth borne or extra-oral anchorage is not an option. The respondents indicated that 

TADs were most commonly applied in cases involving either molar protraction or molar 

intrusion. This differs from the results obtained a survey conducted in 2009, which noted 

that the majority of practitioners find TADs most useful for anterior en masse 

retraction.
64

 A majority of appliances utilized for obtaining anchorage (headgear, Nance, 

etc.) produce a distal holding force which assists anterior retraction Means to maintain 

the position of anterior teeth for molar protraction have fewer appliance options (i.e. 

reverse pull headgear), thus relying more on time consuming archwire or auxiliary 

modifications(elastics, uprighting springs, torquing springs, etc). TADs offer another 

option if placed anteriorly if when applying a pull force, and posteriorly when applying a 

push force. Regarding the forces applied to the dentition from TADs, 47.2% applied, by 

their estimation, 151-250g, and 36.1% applied 51-150g in the majority of their cases. 



42 

 

These forces fall within the optimal ranges for bodily tooth movement and root 

uprighting, which are 70-120g and 50-100g respectively.
65

 This concurs with the 

information provided, in that a majority of orthodontists utilized TADs predominantly for 

molar protraction and anterior retraction, both of which involved bodily movement and 

root uprighting.  

Over 97% of the respondents preferred self-drilling TADs, citing that this choice 

was based predominantly on a greater ease of placement, and less patient discomfort.  

Other studies have shown that a majority of orthodontists place their own TADs,
57 

and 

the self-drilling design allows their placement without any site preparation or other inter-

specialty referral. Most orthodontic practices are open and do not isolate individual 

patients to allow the preferred private and calm patient environment. Therefore, the 

preference for the one-step placement technique afforded by the self-drilling design is not 

surprising.   

When questioned about the factors that played the greatest role in implant failure, 

the greatest response was placement location, while operator error was ranked second 

among the most commonly perceived reasons for failure. These results reflect the 

thoughts of only those who responded, as operator error likely plays a significant role in 

miniscrew failure. When miniscrews are placed manually, without the aid of a torque 

gauge or guide stent, there is increased potential for excessive forces applied and wobble 

of the TADs during placement. This, in turn, may result in decreased TAD longevity. The 

following question in the survey added to this response, revealing that practitioners 

ranked the posterior maxilla as the site in which they experienced the highest rates of 

failure, and the palate as being the site in which the highest success rates were observed.  
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These results conflict with those noted in one study
22

which noted that the posterior 

maxilla had higher success rates than the posterior mandible. In their study, the authors 

suggest that, while the posterior mandible has a thicker cortical plate, higher failure rates 

are noted. Regarding the vector of force being applied to the miniscrews, only 16.7% of 

respondents cited that this was the primary factor associated with miniscrew failure.  

While this may not be the perception of the majority, this shows that practitioners are 

considering the way in which they are applying forces to the miniscrews, and determining 

the significance of this particular factor in miniscrew success was the primary goal of the 

laboratory portion of this study 

4.5. Conclusions 

The current study evaluated how cortical bone thickness and the angle of force 

relative to the long axis of TADs affected primary stability. The perspective of Florida 

orthodontists on their experiences with TADS was evaluated via a survey. The results 

show that the greater cortical bone thickness, combined with an angulation of force 

paralleling the long axis of TADs resulted in the greatest resistance to pull out.  While the 

forces observed in this study were in excess of those routinely used for orthodontic tooth 

movement
65

, the results can be applied to improve the predictability of TAD stability. 

4.6. Limitations 

 The current study was performed under laboratory conditions with synthetic bone 

substrates.  Individual variation among human subjects, potential for bone remodeling, 

and other factors associated with TAD success and failure where inherently not 

accounted for. The findings are to be used only when clinically applicable.  Incorporation 

of the data obtained in this study in future clinical treatment planning is not intended to 
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be mutually exclusive from the other factors associated with miniscrew stability or other 

reliable modes of anchorage development. Rather, this data was intended to provide 

information to help improve the success in the use of TADs. 

 Additionally, the results of the survey are indicative only of orthodontists who 

responded to the survey. While the sample was intended to be representative of all 

practicing orthodontists, but due to differing regional, national, and international trends, 

the information obtained can only be assumed to represent 1/8 of orthodontists only in the 

state of Florida. 

 

4.7. Future implications 

 While TADs are a relatively new tool in the orthodontist's armamentarium, there 

has been a significant amount of research published regarding both the optimal 

environment for placement, and the design of TADs. A majority of these studies have 

been performed on non-human mammals, such as beagle dogs, cadaver bones, and 

synthetic bone blocks.  While studies of the past indicate up to a 95% success rate with 

TAD use. A future split mouth prospective intra-oral in-vivo study of TADs is 

recommended. 
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Appendices 

Appendix A. Survey Cover Letter 
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Appendix B. Online Survey  
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Appendix C. Survey Responses 
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Appendix D: Raw Data from Bench top study 

 

Effects Test 

Source DF L-R ChiSquare Prob>ChiSq 

Group 2 163.354 <0.0001 

Degree 2 280.281 <0.0001 

Group*Degree 4 124.899 <0.0001  

 

Descriptive Statistics: 

Cortical Bone Thickness Degree Pull Force Vectors  

45 Degrees 90 Degrees 180 Degrees 

1.0 mm Mean (N) 76.62 67.11 129.06 

SD 5.31 6.51 29.46 

Min (N) 69.38 57.93 81.38 

Max (N) 84.71 82.76 184.28 

1.5 mm Mean (N) 98.30 68.29 209.10 

SD 6.48 4.95 11.37 

Min (N) 89.51 62.13 183.75 

Max (N) 107.89 76.62 221.13 

2.0 mm Mean (N) 129.96 79.43 258.38 

SD 5.20 7.98 12.03 

Min (N) 121.38 65.70 240.00 

Max (N) 138.13 91.20 275.45 
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Appendix E:  Cortical bone thickness differences. 

Degrees Degrees Difference Lower 95% CI Upper 95% CI Difference 

2.0 mm 1.0 mm 64.99 57.39 72.60 *P < 0.05 

1.5 mm 1.0 mm 34.30 26.70 41.91 *P < 0.05 

2.0 mm 1.5 mm 30.69 23.08 38.30 *P < 0.05 
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Appendix F: Angle of pull force differences. 

Group Group Difference Lower 95% CI Upper 95% CI Difference 

180 Degrees 90 Degrees 127.24 119.63 134.85 *P < 0.05 

180 Degrees 45 Degrees 97.22 89.61 104.83 *P < 0.05 

45 Degrees 90 Degrees 30.02 22.41 37.63 *P < 0.05 
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Appendix G: Angle by Thickness differences 

Group Group Difference Lower 95% CI Upper 95% CI Difference 

2.0 mm,180 
Degrees 

1.5 mm,45 
Degrees 

191.28 173.68 208.87 *P < 0.05 

2.0 mm,180 
Degrees 

1.5 mm,90 
Degrees 

190.09 172.50 207.68 *P < 0.05 

2.0 mm,180 
Degrees 

1.0 mm,45 
Degrees 

181.76 164.17 199.35 *P < 0.05 

2.0 mm,180 
Degrees 

1.5 mm,180 
Degrees 

178.95 161.36 196.54 *P < 0.05 

2.0 mm,180 
Degrees 

1.0 mm,90 
Degrees 

160.08 142.49 177.67 *P < 0.05 

2.0 mm,90 
Degrees 

1.5 mm,45 
Degrees 

142.00 124.41 159.59 *P < 0.05 

2.0 mm,90 
Degrees 

1.5 mm,90 
Degrees 

140.81 123.22 158.40 *P < 0.05 

2.0 mm,90 
Degrees 

1.0 mm,45 
Degrees 

132.48 114.89 150.07 *P < 0.05 

2.0 mm,90 
Degrees 

1.5 mm,180 
Degrees 

129.67 112.08 147.26 *P < 0.05 

2.0 mm,180 
Degrees 

2.0 mm,45 
Degrees 

129.32 111.73 146.91 *P < 0.05 

2.0 mm,180 
Degrees 

1.0 mm,180 
Degrees 

128.42 110.83 146.01 *P < 0.05 

2.0 mm,90 
Degrees 

1.0 mm,90 
Degrees 

110.80 93.21 128.39 *P < 0.05 

2.0 mm,90 
Degrees 

2.0 mm,45 
Degrees 

80.04 62.45 97.63 *P < 0.05 

2.0 mm,90 
Degrees 

1.0 mm,180 
Degrees 

79.15 61.56 96.74 *P < 0.05 

1.0 mm,180 
Degrees 

1.5 mm,45 
Degrees 

62.85 45.26 80.44 *P < 0.05 

2.0 mm,45 
Degrees 

1.5 mm,45 
Degrees 

61.96 44.37 79.55 *P < 0.05 

1.0 mm,180 
Degrees 

1.5 mm,90 
Degrees 

61.67 44.08 79.26 *P < 0.05 

2.0 mm,45 
Degrees 

1.5 mm,90 
Degrees 

60.77 43.18 78.36 *P < 0.05 

1.0 mm,180 
Degrees 

1.0 mm,45 
Degrees 

53.34 35.75 70.93 *P < 0.05 

2.0 mm,45 
Degrees 

1.0 mm,45 
Degrees 

52.44 34.85 70.03 *P < 0.05 

1.0 mm,180 
Degrees 

1.5 mm,180 
Degrees 

50.53 32.94 68.12 *P < 0.05 
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2.0 mm,45 
Degrees 

1.5 mm,180 
Degrees 

49.63 32.04 67.22 *P < 0.05 

2.0 mm,180 
Degrees 

2.0 mm,90 
Degrees 

49.28 31.69 66.87 *P < 0.05 

1.0 mm,180 
Degrees 

1.0 mm,90 
Degrees 

31.65 14.06 49.24 *P < 0.05 

1.0 mm,90 
Degrees 

1.5 mm,45 
Degrees 

31.20 13.61 48.79 *P < 0.05 

2.0 mm,45 
Degrees 

1.0 mm,90 
Degrees 

30.76 13.17 48.35 *P < 0.05 

1.0 mm,90 
Degrees 

1.5 mm,90 
Degrees 

30.01 12.42 47.60 *P < 0.05 

1.0 mm,90 
Degrees 

1.0 mm,45 
Degrees 

21.68 4.09 39.27 *P < 0.05 

1.0 mm,90 
Degrees 

1.5 mm,180 
Degrees 

18.88 1.28 36.47 *P < 0.05 

1.5 mm,180 
Degrees 

1.5 mm,45 
Degrees 

12.32 -5.27 29.91 NS 

1.5 mm,180 
Degrees 

1.5 mm,90 
Degrees 

11.14 -6.45 28.73 NS 

1.0 mm,45 
Degrees 

1.5 mm,45 
Degrees 

9.51 -8.08 27.10 NS 

1.0 mm,45 
Degrees 

1.5 mm,90 
Degrees 

8.33 -9.26 25.92 NS 

1.5 mm,180 
Degrees 

1.0 mm,45 
Degrees 

2.81 -14.78 20.40 NS 

1.5 mm,90 
Degrees 

1.5 mm,45 
Degrees 

1.18 -16.41 18.77 NS 

1.0 mm,180 
Degrees 

2.0 mm,45 
Degrees 

0.90 -16.70 18.49 NS 
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Appendix H: Physical Properties of Ti 6AL-4V. 
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Appendix I: Physical properties of Sawbones (40pcf cortical layer, 15pcf cancellous 

layer) 
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Appendix J: Material properties mandibular bone
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Appendix K: Material properties of maxillary bone
66
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Appendix L: Misch Bone Density Classification with related synthetic bone densities 

 

 

 

 

 

 

 

 

 



64 

 

Appendix M: Orthotechnology K1 Spider Screw Geometry 
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