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ABSTRACT 
 

CEPHALOMETRIC REGIONAL SUPERIMPOSITIONS – DIGITAL VS. ANALOG 

ACCURACY AND PRECISION: 1.  THE MAXILLA. 

DEGREE DATE: DECEMBER 12, 2014 

GLENN D. KRIEGER, B.A., SUNY-BINGHAMTON 

D.D.S., UNIVERSITY AT BUFFALO SCHOOL OF DENTAL MEDICINE 

COLLEGE OF DENTAL MEDICINE NOVA SOUTHEASTERN UNIVERSITY 

Directed By:  Richard Singer, D.M.D., M.S., Department of Orthodontics, College of 

Dental Medicine Nova Southeastern University 

 
 

 

Introduction: The purpose of this study was to measure the displacement of defined 

dental structures, as a result of superimposition of cephalometric images across paired 

time-points by both digital and analog methods.  The magnitudes of such displacements 

across three methods of superimposition were compared to each other and to a reference 

method constructed by registering superimposed cephalometric images on tantalum 

markers implanted in the study participants’ maxillae.  The defined dental structures 

were:  1) First molar mesial contact point; 2) First molar apical root bisection; 3) Central 

incisor root apex; 4) Central incisor crown incisal edge.  Methods: Lateral cephalograms 

of 22 patients containing tantalum implants from the Mathews acquisition group were 

digitized, traced and superimposed using analog (implant and structural) and digital 

(Dolphin and QuickCeph) methods.  Superimpositions were exported to Adobe 



 

	
   	
   	
  
	
  

ix	
  

Photoshop where they were scaled and displacement of defined dental landmarks 

measured using a Cartesian coordinate system.  A random-effects, generalized linear 

model with Bonferroni adjustment was used to compare the different methods.  Results: 

The structural method (p < 0.01) showed statistically significant differences versus the 

implant method and demonstrated the smallest 95% confidence interval range compared 

to Quick Ceph and Dolphin (0.45mm, 0.75mm, and 0.95mm, respectively).  The four 

structural method landmarks demonstrated statistically significant differences versus the 

implant method (p<0.05) and had smaller 95% confidence interval ranges compared to 

the corresponding landmarks for Dolphin and Quick Ceph.  Conclusions: Our study 

demonstrated that there are differences in the accuracy of digital and analog methods of 

maxillary regional serial superimposition.  Structural, Dolphin and Quick Ceph methods 

showed a mean overall displacement of defined dental structures within 0.5mm of the 

displacement measured against implant-registered superimposition (reference method).  

Only the structural method demonstrated a statistically significant difference compared to 

the implant method and also exhibited the smallest standard error relative to the mean for 

every measurement.  The low power of this study (0.18) and large standard errors relative 

to the means for the digital methods suggests that a larger sample size may result in 

significant differences regarding Dolphin and Quick Ceph vs. implant methods.  
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CHAPTER 1: INTRODUCTION 
1.1. Background 

 Among all of the species to ever inhabit the earth, Mankind is unique.1  Though 

upright posture and the ability to control fire are undeniably monumental evolutionary 

accomplishments, the human race boasts an unparalleled capacity for reason and 

analytical thought.  It has been argued2 that Man’s self-awareness is what sets him apart 

from the rest of the animal kingdom, and it is this trait that has led to an inherent curiosity 

about his personal identity.  Biologists and Philosophers alike have used Descartes’3 

question “But what, then, am I?” as a stepping-stone for analysis and discourse regarding 

Man’s place in the universe.  Though currently impossible to definitively answer the 

question of “personhood” from a metaphysical perspective, history is replete with 

examples of the search for the anatomical answer to Descartes’ query. 

Ancient anatomical study dates back to circa 1500 BCE evidenced by the Edwin Smith 

Papyrus, which documented the ancient Egyptians’ attempt to better understand the 

human body and the functions of the internal organs.4  Nearly 1000 years later, 

Hippocrates5 and Aristotle6 developed an understanding of the musculoskeletal structure 

of the human body; more than 400 years later, with Galen7 continuing their work in the 

2nd century.  However, parallel to the efforts of early anatomists to catalog and 

understand the inner systemic mechanisms of the human body, others were exploring 

mathematical insights to better define standards for proportions of the human body. 

Marcus Vitruvius Pollio, a 1st century BCE Roman architect, stated that a well-designed 

structure must exhibit the three qualities of “firmitas (solid), utilitas (useful) and venustas 
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(beautiful)” - later known as the “Vitruvian Virtues”.8  Vitruvius further described the 

human figure as the “principal source of proportion among the Classical orders of 

architecture.”8   The concept of defined proportions in human beings was so influential 

that nearly 1500 years later Leonardo Da Vinci employed Vitruvius’ standards to create 

his Canon of Proportions, more widely known as the Vitruvian Man.9  Da Vinci stated in 

unequivocal terms, specific dimensions for the proportions of the human body,9 and 

thereby provided the world quantifiable standards against which the proportions of every 

person could be measured.  While Vitruvian Man described many details of human form 

and function, it did not, however, elucidate the standards related to facial form and 

balance.  For this, the world would have to wait another 250 years. 

Petrus Camper was born into a wealthy Dutch family and was an accomplished artist and 

draftsman before becoming a Surgeon10.  In 1770, bothered that his art students were 

painting the Black Magus from the nativity scene with Caucasian facial features, Camper 

developed the “facial angle” to demonstrate the differences in facial form among the 

races.11   Camper asserted that the angle formed by the intersection of a line drawn 

horizontally form the nostril to the ear and one from the advancing part of the upper 

jawbone to the most prominent part of the forehead was unique for each race.11  

Camper’s primary interest was the artistic component of facial form, and although 

Camper’s angle was later discredited,12 his attempt at defining a standard metric for facial 

form was the first of its kind.  Camper’s efforts inspired others to look at ways of 

quantifying standards for evaluation of facial characteristics for scientific analysis.13  
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In August, 1882, at The World Anthropological Congress of Anatomists and Physical 

Anthropologists in Frankfurt-am-Maine, Germany, the term “Frankfort Horizontal” was 

first used14 to describe the line that extended from the upper rim of the external auditory 

meatus to the lowest point on the margin of the orbit.15  Terms like Camper’s “Facial 

Angle” and the “Frankfort Horizontal” exemplify early attempts to define specific 

starting points for the analysis of facial form.  The points and lines utilized for these early 

attempts to quantify descriptions of facial form were not related to facial growth via 

biology, but rather simply selected for technical convenience.16  To more completely 

analyze facial form, one would need to see within the soft tissue and evaluate skeletal 

patterns of growth.  In 1895, the accidental discovery of X-rays provided a pathway for 

significant advancement in the analysis of facial form. 

The first-ever Nobel Prize was awarded in 1901 to William Roentgen for his discovery of 

electromagnetic radiation in a wavelength range known today as “X-rays”.17   For the 

first time, researchers were able to visualize hard tissues in living individuals, including 

the underlying skeletal framework that contributed to facial appearance.  In 1922, August 

Pacini married roentgenography with human cranial analysis.18   Pacini captured lateral 

radiographic images of the head with the subject’s median sagittal plane positioned 

parallel to the film plane,19 the technique was standardized in order to maintain a fixed 

distance from X-ray source to the film cassette.19  
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1.2. Origins of Cephalometry 

1.2.1. The Cephalometer  

In 1922, Spencer Atkinson introduced the idea that “Key Ridge”, the lowest point of the 

zygomaticomaxillary ridge,20 known as the infrazygomatic crest,21 was the first reference 

point for radiographic analysis of the teeth relative to the facial skeleton.22  Atkinson 

introduced the term to indicate “the functional role of the infrazygomatic crest in 

dissipating the forces of mastication.”21  Anatomists of Atkinson’s era studied growth and 

development through examination of the skulls of diseased children,22 and some 

recognized the value of taking the “study of anatomy out of the dead house”.22  In 1931 

T. Wingate Todd, one of the most respected anatomists of his time,23 recognized and 

expressed the potential of radiographic analysis by the following statement: 

“A dead child is a defective child in whom there has occurred an 
interruption or a prohibition of developmental growth for some time 
before death, unless, of course death is due to an acute disease like 
intussusception or pneumonia or to accident such as injury or burns.  The 
interpretive study of actual skulls must be tempered by recognition of this 
fact.  If we are to investigate healthy skulls we must do it on the living.”24 

The “cephalometer” or “cephalostat”,25 an instrument that allowed investigators to 

reproducibly position the head in a standardized orientation for measurement and 

radiographic examination,26 was invented nearly simultaneously in 1931 by B. Holly 

Broadbent Sr. and T. Wingate Todd who worked together in the U.S17,24  and Hofrath, 

who worked independently in Germany.20   The introduction of standardized 
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cephalometric radiography meant that for the first time, investigators could study 

craniofacial development longitudinally in living subjects, rather than having to rely on 

cross sectional data procured from the examination of dry skulls. 

1.2.2. Identification of Landmarks and Analyses 

Broadbent26 and Brodie27 stated that cephalometry should be used solely for serial 

evaluation, yet others were employing it for diagnosis as well as treatment planning.28  

Hofrath29 and Maves30 used cephalometrics for demonstrating potential benefits for both 

monitoring change and planning prosthetic treatment.28 

Cephalometric analysis is the study of angular and linear measurements of a lateral 

headfilm (i.e., cephalometric radiograph) for descriptive and diagnostic purposes.31  In 

1948, the first standardized cephalometric analysis describing facial form and denture 

relationships32 was presented by Downs.33  Steiner34 subsequently distilled various 

sources to “express our concept of the normal American child of average age.”34  Steiner 

stated that he did not draw his numbers from a particular sample but rather from those he 

felt useful for his clinical goals and therapeutic outcomes.35  Steiner’s measurements 

were clinical guides and had no means or standard deviations.36  In 1954, Tweed37 

presented an analysis derived from a sample of 95 cases of individuals whom he 

described as “having a face that I thought was pleasing”.37  Sassouni, 1955,38 developed 

cephalometric norms based upon a sample of 50 white children ages 7-15 with normal 

occlusions and Ricketts, 1960,39 described skeletal and denture variation by a clinical 

study including over 1000 treated cases.32 
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Baumrind and Frantz40 observed that regardless of the type of cephalometric evaluation 

chosen, there are three types of errors common to all cephalometric radiographic 

analysis: (1) projection errors, (2) landmark location errors and (3) “mechanical errors in 

drawing lines between points on tracings and in measuring with ruler or protractor.”40   

The authors went on to state that errors in projection are all but impossible to prevent 

unless the positions of landmarks are known in three dimensions.41  Baumrind and 

Frantz40 suggested the use of angular, rather than linear measurements wherever feasible, 

because angular measurements remain constant, regardless of enlargement factor.  

 

1.3. Serial Superimposition Techniques 

1.3.1. Cranial Base Superimpositions 

The measurement of lateral cephalometric radiographs may be used to categorize 

craniofacial patterns by type, wherein an individual subject is denoted as a “case” (i.e.- “a 

high-angle case” or “a case with an ANB angle of 6 degrees”)31, to describe the degree to 

which an observed case31 departs from an accepted norm, or to characterize the changes 

during treatment.31 Dr. Broadbent’s Bolton Study (1929-1959) evaluated subjects’ facial 

growth and dental development longitudinally with annual radiographs.42  The initial 

Bolton study, the first database for radiographs related to longitudinal growth of the face 

and teeth published in 1937, was based on 5 years of accumulated data that included 

more than 1000 subjects.19  Broadbent observed that while a child’s brain is developing, 

and before it reaches final maturity, there are areas of the cranium that appear to remain 

fixed during growth.22  Broadbent also detected areas “above the face” in the cranial base 

which were more stable than areas of the rapidly growing lower face.24  Broadbent stated 
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that cephalometric superimposition should occur (by using the relatively more stable 

landmarks) “on the base lines found by connecting such points as the sella turcica and 

nasion as well as the ear hole and the eye point, thereby disclosing somewhat more 

clearly the changes in the teeth and jaws during orthodontic treatment.”22  Broadbent 

demonstrated that the Bolton point (intersection of the occipital condyle and foramen 

magnum)43 to Nasion (the most anterior point of the frontonasal suture)43 formed a 

“plane” that was a stable line of orientation upon which subsequent roentgenograms of 

one subject could be superimposed.26  Broadbent further stated that if one drew a 

perpendicular line from Sella (the midpoint of the cavity of sella turcica)44 to the Bolton-

Nasion plane, the midpoint of that perpendicular line, named point “R”,26 could serve as 

the point upon which a patient’s roentgenographic superimpositions from different 

timepoints (serial superimpositions) could be registered.26  However, Noyes45 stated that 

additional landmarks were necessary in order to measure the “anterior extremities of the 

face” as well as “the breadth and height of the bones”.45 

Noyes presented a lecture in 1942 to the Chicago Association of Orthodontists,45 

regarding the future of facial analysis.12  Noyes affirmed that Broadbent had described 

landmarks that had been proven stable in adolescents and that the pattern and direction of 

growth of the bones that directly supported the dental arches had yet to be discovered.45  

Noyes stated: “…we may be led to discover a proportionality expressed in the form and 

position of dental arches, facial bones and cranial base, revealed by the measurement of 

spaces and angles established by anatomic landmarks.”45  Five years after Noyes’ 

comments, Arne Björk, an orthodontist from Sweden, provided the most expansive study 

of facial growth and development yet, and answered some of Noyes’ questions. 
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Björk12 1947, quantified longitudinal developmental changes in facial structure while 

investigating the impact of growth and development on prognathism.  Björk12 

demonstrated the value of serial superimposition of radiographs to study growth and 

development, but stated that the radiographic location of Bolton point was compromised 

by the asymmetric position of the occipital condyles.12   Björk emphasized the need to 

determine the most appropriate anatomic structures for cephalometric superimposition, 

evidenced by his statement that it was essential to determine “…which measurements, 

linear and angular, would provide the smallest error…in the accuracy in which the 

various points may be located in the films.”12  Regarding his methodology, Björk further 

stated: 

“…those measurements which give the smallest errors have been selected 
and it has been possible to establish a method of measuring the length and 
height of the face and the cranial base from X-ray films; a method in which 
the errors of individual measurements are the smallest possible and where 
the order of these errors is known.”12 

Björk precisely used the same methods to capture all lateral head films during his study 

to “maintain the same level of distortion throughout”.12  Björk compared the position and 

movement of defined skeletal landmarks (which provided the smallest errors) among a 

sample of 12 year-old Swedish boys to that of a sample of Swedish army conscripts aged 

21 and 22.12  It is interesting to note that although the Frankfort line has been broadly 

accepted by many in craniometry,33,46,47 Björk chose to not use Frankfort as a reference 

point. Björk stated that Porion, and subsequently the Frankfort line, was an “inferior 

reference point”.15  Björk’s study12 was a broad analysis of the growth of the facial bones 

and cranium.  Though numerous angular and linear measurements associated with 

skeletal landmarks were evaluated, Björk found that the line connecting Sella-Nasion (S-
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N) showed only a 6.5% increase between the age groups in the study, the smallest linear 

change of any of the constructed planes he studied.12  Although, one could have 

concluded that the S-N line’s linear stability would make it a prime candidate for serial 

superimpositions of lateral radiographs, Björk12 had not yet made that inference.  Björk’s 

study concentrated on the angular and linear measurements related to the prognathic 

growth pattern he observed in boys from ages 12 to 21-2212, and not the possible 

usefulness of the data for defining stable landmarks for radiographic superimposition.  

The clinical application of Björk’s work12 was not immediate, and in 1948, a year after 

Björk had published The Face in Profile, Downs presented a cephalometric analysis 

using techniques for superimposing serial cephalograms developed by Broadbent22 more 

than a decade earlier.33  In 1951, Krogman46 also cited Broadbent’s approach22 as the 

proper way of aligning overall superimpositions, he referred to the S-N line as the 

“Broadbent Plane”,46 and moreover, stated that Björk12 did not have landmarks 

designated for “orientational axis”.46  A follow-up study by Björk20 in 1955 evaluated 243 

boys at ages 12 and 20; Björk concluded that the S-N line would be the most suitable 

reference line for superimposition during “the adolescent period in man”, a finding that 

supported Brodie’s work on cranial changes during growth.48   Björk’s subsequent 

studies49,50 elucidated growth patterns and reinforced his contention that S-N line was a 

stable plane upon which serial superimposition could be performed.  Björk49 specified the 

use of the contour of the anterior wall of sella for superimpositions performed during the 

juvenile growth period, and the anterior contours of the middle cranial fossa (the internal 

base of the skull posterior to the sphenoidal ridges and limbus and anterior to the crests of 
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the petrous part of the temporal bone)51 for superimpositions involving radiographs of 

subjects after growth cessation.49  

However, other authors50,52-54 have suggested that local remodeling around sella and 

nasion, due to growth, calls into question the validity of simply using S-N for cranial base 

superimpositions.  Johnston55 stated that the literature49,56,57 “argues that the bony 

anatomy from the anterior half of sella turcica to the region of foramen caecum and the 

internal outline of the frontal bone is sufficiently stable to support meaningful anterior 

cranial base superimpositions.”55  Björk and Skieller added49 that serial cranial base 

superimpositions can be oriented vertically on the contours of the cribiform plate, the 

contours of the bilateral fronto-ethmoidal crests and “possibly” also by the cerebral 

surfaces of the orbital roofs and the trabecular system of the anterior cranial base and the 

inner contour of the frontal bone. (Figure 1) 
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Figure 1: Landmarks associated with Björk and Skieller's cranial base superimpositions49 

  

Björk’s original endorsement of S-N as a stable landmark for overall cranial base 

superimpositions is still widely used, however, Björk discussed a deficiency when relying 

upon overall superimpositions in the analysis of regional growth when he added: 

“The age changes in the facial pattern which emerge from an analysis of this kind 
become significant only through an appreciation of the regional growth changes 
and mutual displacement of the bone and it is my hope that this article will serve 
as a contribution toward the solution of these problems.”58 

 

1.3.2. Implant Method of Superimposition 

Brodie48 demonstrated the need to distinguish the cranium from the facial bones when 

analyzing growth and development, but Björk stated: “Modern X-ray technique is 
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nevertheless unable to reveal the mechanism governing growth of the individual bone 

elements in the facial skeleton.”59  The specific periosteal bone growth and resorption 

affecting each bone composing the face makes cranial base superimpositions alone 

inadequate for analysis of growth and development of individual bones of the face and 

jaw.12,58  It had already been demonstrated that radiographs of the external contours of 

bones could not be used to analyze the growth mechanisms that contributed to the 

composite shape.61-64  Björk ultimately developed a new method of analyzing the growth 

mechanism of the maxilla and mandible that used metallic implants.59 

Utilizing three or four 0.62mm x 2.0mm Vitallium pins as references implanted in each 

jaw, Björk studied the growth in a way never previously performed.  The metallic 

implants served as fixed reference points within the jaws upon which serial radiographic 

superimposition could be performed and created a “gold standard” for regional 

superimposition.59   The implants were placed with their position fixed and without risk 

of movement due to eruption of teeth, orthodontic treatment or osseous remodeling.60 

This approach was repeated by others,57,61-70 and by superimposing the Vitallium pins on 

serial cephalograms, a thorough picture of the growth pattern of each jaw was observed.  

What Baumrind29 referred to as: “(1) local remodeling, (2) developmental changes at 

more distant locations, or (3) the effects of therapeutic intervention” could be thoroughly 

evaluated employing Björk’s implant methods. 

The body of literature through the 1950’s35,38,48,52,53,56,58,59,71-76 and 1960’s51,54,55,61-64 

elucidated the pattern of growth and remodeling of the facial bones. The “previous 

implant studies” of Björk59,60,62,77 and Björk and Skieller63,64 provided the foundation for 
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superimposition techniques specifically designed to study maxillary growth and 

development.77  

 

1.3.3. Structural Method of Superimposition 

Prior to Björk and Skieller’s clarification of the pattern, magnitude and direction of facial 

growth and development77 there was “a lack of reliable reference structures for 

superimposition of cephalometric radiographs in longitudinal series”.77   Implants used as 

such a fixed reference permitted clarification of how the maxilla grew, remodeled and 

rotated.77  Due the fact that the maxilla exhibits appositional rather than interstitial 

growth, once placed, the implants are impervious to movement.  Serial radiographs were 

superimposed upon the unmoving implants and any positional changes of other structures 

of the face or cranium could be measured precisely and the observed changes attributed 

to either treatment effects or osseous remodeling or both. 

 

The maxilla grows downward and forward relative to the cranial base, therefore, one 

could easily presume that such growth occurs solely through apposition of bone in the 

anterior maxilla.  However, the overall downward and forward growth is actually due to 

bodily translation of the maxilla with apposition at the floor of the nose and simultaneous 

surface remodeling which is almost entirely resorption in the anterior maxilla.78  The fact 

that remodeling and translation are two simultaneous, yet different growth methods in the 

maxilla can obscure the precise contribution each mechanism plays in the process.  When 

orthodontic therapy is completed in a growing individual, it becomes impossible for one 

to distinguish final changes attributable to translation, surface remodeling or treatment 
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effects without fixed references upon which regional cephalometric superimpositions can 

be superimposed and registered. 

 

Physiology and placement of implants in structures undergoing appositional growth allow 

the understanding that implants are positionally fixed, however, when examining overall 

superimposition, a phenomenon referred to as “relocation” could make it appear as if the 

implant has moved, as illustrated in Figure 2.  Implants, though fixed within the bone, can 

appear to be relocated during growth, and when superimposed, demonstrate the true 

process of remodeling and treatment effects. 

 

Figure 2:"Relocation" of a fixed object (the red dot) during mandibular remodeling79 

 

 

Implants have served as fixed points for serial cephalometric regional superimposition to 

determine if there exist anatomic structures that exhibit minimal or negligible 

displacement during treatment and growth.  The existence of such “stable” anatomic 
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structures would permit their use, as surrogates for the implants, for the purpose of serial 

regional superimposition, thereby allowing a reliable method of serial regional 

cephalometric superimposition for individual without implants.  Serial radiograph 

registration and orientation upon such anatomic structures known to be the most stable is 

referred to as the “structural method”.77   Structural method superimposition allows one 

to visualize those changes attributable to skeletal growth and those related to tooth 

movement in the antero-posterior dimension using natural reference structures, i.e. a best 

method in lieu of implants.55  

 

Björk and Skieller’s structural protocol included superimposing two cephalometric 

radiographs from a time series on the anterior contours of the zygomatic process (Figure 

3).77  Orienting the radiographs on the S-N line enabled evaluation of the amount of 

rotation of the maxilla during growth.77 

 

                           

Figure 3: Björk and Skieller's suggested method of maxillary superimposition on the 
anterior contours of the zygomatic process.  (Note the European protocol of 
cephalometric viewing with the anterior to the left, versus the US method with the 
anterior to the right.)77 
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Due to the subsequently larger structures in the latter radiograph (due to growth), the two 

radiographs would need to be adjusted vertically.  Björk and Skieller suggested that one 

should adjust the vertical arrangement keeping in mind that the amount of resorption of 

the nasal floor is “on average about the same as” the amount of apposition at the orbital 

floor77 though this latter supposition was later redacted to a 3:2 orbital floor apposition to 

nasal floor resorption ratio80 and subsequently supported by other research.57  

 

The lack of a defined vertical registration point to properly align the two radiographs was 

also problematic because it created an arbitrary component to the vertical alignment.  

Brodie81 showed that on S-N registration there was an almost parallel lowering of the 

nasal floor during development, making the nasal floor a suitable landmark for 

superimposition.  However, Björk and Skieller63 demonstrated that the downward and 

forward growth of the maxilla is associated with varying degrees of vertical rotation, 

making the nasal floor an unsuitable reference structure in maxillary superimposition. 

 

Moss and Greenberg82 and Koski83 suggested that the infraorbital canal could serve as 

suitable a stable landmark, moving in concert with the orbit during growth.  However, 

Björk and Skieller80 demonstrated that the infraorbital canal, along with the orbit, 

changes position relative to the anterior cranial base upon application of orthodontic 

forces, and therefore is not a suitable landmark for registration of serial superimposition 

of radiographs. 
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Numerous studies have evaluated the stability of landmarks for maxillary 

superimposition,69,70,84-88 but it was Johnston55 who developed a complete protocol for 

structural method analysis of maxillary superimposition.  Johnston submitted that Björk 

and Skieller’s work63,64,77,80 provided a useful “approximation”55 of implant 

superimpositions, but he added that the anterior surface of the zygomatic process is 

difficult to see and is too short to achieve reliable control of the palatal plane.55   The 

structural method of maxillary superimposition suggested by Johnston included best-fit 

registrations on both the zygomatic process of the maxilla (right and left sides averaged) 

and on the bony anatomical details superior to the incisors.55   Johnston added: “The 

superior and inferior surfaces of the posterior hard palate assist in orientation, and to 

minimize the probability of gross errors in antero-posterior registration, care should be 

taken to ensure that the PTM fissure of the older tracing lies at or behind that of the 

younger.”55 (Figure 4) 
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Figure 4: Johnston’s structural method of maxillary superimposition.  “Registration is 
based on the zygomatic process of the maxilla (‘key ridge’) and the curvature of the 
palate (i.e.-structures in the region of R); orientation, on the horizontal structures of the 
hard palate.  Note that care is taken to ensure that the pterygomaxillary fissure of the 
older tracing is at or behind the younger.  Once again, the superimposition is recorded by 
an arbitrary fiducial line.  Maxillary advancement relative to cranial base (MAX) is 
measured at W; Mandibular displacement relative to maxilla (ABCH) is measured at D.  
Both measurements are executed parallel to MFOP.”55 

 

Johnston introduced the concept of fiducial lines;55 arbitrary straight lines, ends marked 

crosswise, to record registered superimpositions (Figure 4).  The appropriate regional 

superimposition carries them forward and back, pairwise, throughout the series.55   The 

major advantage of fiducial lines was the simplified process of documenting and 
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repeating structural superimposition and the ease with which one viewed changes from 

the vantage point of any of three areas:  the cranial base, maxilla, or mandible  (Figure 5). 

 

 

Figure 5: Example of cranial base superimposition of three cephalograms with 
corresponding fiducial lines on right (shaded oval).55 

 

 

It should be noted that even the most stable natural reference structures are not absolute, 

that is, such structures demonstrate some degree of movement during growth.  Recall that 

even while Björk advocated the S-N line as a “stable” horizontal point for overall 

superimpositions, Björk’s work demonstrated an average S-N growth in length of 6.5% in 

boys from age 12 to 21 or 22.12   It is important to keep in mind that the average of 6.5% 
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growth of S-N includes all subjects.  Some subjects may not have changed at all, while 

some might have changed considerably more than the average.  Consequentially, 

superimpositions on natural landmarks defined as “stable” will not be as accurate as 

superimpositions on implants, which neither grow nor move. 

 

1.4. Digital Imaging  

Johnston’s publication (1996)55 came at a time when computing power was becoming 

more affordable and easier to use.89   The clinical use of computers includes image 

capture, storage and post-capture image enhancement.90   When computers are used to 

facilitate the viewing, display, printing, archiving, printing or transmission of an image, 

the resultant product is referred to as a “digital image”.91  

 

There are significant fundamental differences between analog film and digital images 

with respect to their composite “building blocks”.  Digital images are composed of a 

matrix of small squares of color called “pixels” (short for “picture elements”)92 which, 

when placed together in a mosaic, create the “complete” image.90   A radiographic film, 

in contrast, has a nearly infinite number of elements in gray scale.90  When a radiographic 

film is converted into digital form, it is composed of pixels similar to any other digital 

image.  Three particular properties related to pixels can play a significant role when the 

image is sent to a screen or printer for display; total pixels, pixel density and resolution. 

 

The larger the number of pixels, the less apparent they become.90   An image that is 800 x 

800 pixels contains 640,000 pixels versus an image that is 2000x 2000 pixels that which 
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contains 4 million pixels.  If a monitor can display 1200 pixels wide by 900 pixels 

vertically, then the greatest number of pixels it can display is 1,080,000 (1200 x 900). 

Thus, a 4 million-pixel image will completely fill the screen while the 640,000-pixel 

image will not have enough pixels to fill the screen.  In the latter case, if enlarged to fit 

the entire width and height, the image appears indistinct, or decomposed, known as, 

“pixelized”92 and would need to be reduced in size for better clarity (Figures 6 & 7).  

 

Figure 6: An example of an image with enough pixels to completely fill the screen.92 
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Figure 7: The same image as Figure 6 zoomed in at 1600%.  Notice that there are not 
enough pixels to fill the screen, and as a result, the pixels are visible.  The image appears 
“pixelized”.92 

	
  
The number of pixels per inch (ppi) displayed is also known as “pixel density”.93 

(Though pixel density can also be known as “resolution”, the term “resolution” will be 

used here solely to describe the overall screen resolution.)  Greater pixel density means 

that each pixel is smaller, resulting in greater visible image detail.  However, human 

visual acuity is limited to 300 ppi94 and pixel density greater than that is of no humanly 

discernible value.  

 

Additionally, the size of each individual pixel is a function of the number of pixels 

displayed on the entire screen and the size of the screen itself.  An 11 x 8 inch screen (88 

sq inches) with a resolution of 1100 x 800 has a pixel density of 100 ppi.  A 20 x 12 inch 
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screen with the same resolution has a pixel density of approximately 37 ppi, a 63% 

reduction from the 11 x 8 inch screen, resulting in an image with reduced visual detail.  

 

Pixel density also plays a role in the resolution of displayed images.  For instance, an 

image of 792 pixels by 576 pixels (width by height), displayed at a pixel density of 72ppi 

yields an on-screen image of 11 x 8 inches (792/72 by 576/72).  The greater the size of 

the screen at a given pixel density, the more pixels and subsequently the greater screen 

resolution necessary to optimally fill the display for increased clarity.  

 

When discussing image preparation for printing, the term “pixels per inch” is replaced 

with “dots per inch” (dpi).95   It is suggested that images should be printed with at least 

300 dpi for proper print quality.95   Printing the aforementioned 792 x 576 pixel image at 

300 dpi, results in an image only 2.64 x 1.92 inches in size.  However, to print an image 

that is 8.5 x 11 inches at 300 dpi requires an image composed of 2550 x 3300 pixels, or 

8,415,000 pixels.  Thus, for a given pixel density, the number of pixels composing an 

image has a dramatic effect on image size and the ability to discern visual detail. 

1.5. Digital Radiography in Dentistry 

Digital radiography is the conversion of transmitted X-rays into a digital image using an 

array of solid-state detectors, computer processing and display of the image.51  In contrast 

to digital radiography, conventional radiographic film uses silver halide grains in a 

gelatin matrix to capture an image.96 
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The advantages of digital radiography include the elimination of darkroom chemicals, a 

reduced radiation dose and immediate availability of the image.97,98   Additional 

advantages include facilitated image archiving and enhancement, ready image corrections 

for over/under exposure, and the ability to quickly share an image while keeping the 

original.98,99   Images can be captured through the use of digital sensors (direct imaging), 

phosphor plates (semi-direct imaging) or through the scanning of analog film (indirect 

acquisition).106 

 

Both the direct and semi-direct imaging methods do not generally include provisions to 

control resolution.  However, when indirect acquisition is utilized, the dpi of a scanned 

image, as discussed above, will affect its clarity and viewing size.  

 

The literature is replete with investigators reporting a range of scanner setting anywhere 

from 150 dpi to 800 dpi.99-113  A study by Ongkosuwito,121 however, showed no 

difference in accuracy of landmark identification when comparing scanner resolution 

settings of 300 dpi to 600 dpi.  Therefore, indirect acquisition of images at 300dpi to 600 

dpi has no effect upon on-screen visual detail. 

 

1.6. Digital Cephalometry 

1.6.1. Digital Cephalometry In Orthodontics 

 
Baumrind and Frantz40 asserted that the primary challenges with serial superimposition 

are projection error and the difficulty of “precise replication of skull positioning”.40  The 
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former can be minimized by using angular rather than linear measurements whenever 

possible, and the latter minimized by operator fastidiousness to a standardized head 

positioning protocol.  However, even Baumrind and Frantz state that perfect alignment of 

the true anatomic midsagittal plane with the nominal midsagittal plane of the cephalostat 

happens only “rarely and by chance”.40  Projection errors can lead to inaccuracies in both 

angular and linear measurements.40,114   The variability in landmark identification 

revealed in other studies31,115-117 demonstrates the challenge of obtaining accurate data 

from serial superimposition registered and oriented upon potentially imprecise 

landmarks.  

 

Baumrind’s40 third error of headfilm analysis, described as “…errors introduced in 

drawing lines between points by hand and in measuring with ruler and protractor” was 

obviated with the introduction of digital technology.  In 1971, Baumrind40 stated:  

“At the present state of the art of machine computation, errors of this type can be 
entirely eliminated by the simple expedient of computing the necessary linear and 
angular relationships algebraically, given the landmark coordinates.  If only for 
this reason, we have no doubt that in the relatively near future all head film 
analyses will be carried out as some form of programmed computer operation.”40 
 

Errors produced by drawing lines between points by hand, linear and angular measuring 

have been reduced with the aid of digital technology, yet the transition from analog 

tracing has introduced other types of errors.  Baumrind’s aforementioned comments 

regarding the accuracy of linear and angular relationships computed by machine “given 

the landmark coordinates” relied on accurate landmark identification.  Pixel-based 

images are far from a precise replica of an analog film and do not allow the nearly 

unlimited freedom of hand tracing.  Unlike digital landmark identification, analog tracing 
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allows an operator to identify a landmark anywhere on the acetate, limited in scale only 

by the size of the marking instrument and the ability to visualize the landmark itself.  The 

simple fact that pixels have a defined size within which a single mark cannot be precisely 

located limits absolute accuracy in digital landmark visualization and identification.  

With such limitations in mind, however, there is still perceived value in digital 

cephalometric analysis. 

 

In 1972, Ricketts118 espoused the virtues of computerized cephalometric analysis for use 

in orthodontics but warned: “It should be understood at the outset that a computer can do 

nothing that the orthodontist cannot do if he is given the time and possesses the 

knowledge.”118   Baumrind (1980)119 added: “It is reasonable to assume that almost all 

quantitative head film interpretation will soon be done in some sort of computer assisted 

mode.”  Baumrind’s comments proved prophetic, and by 2005, 40% of orthodontic 

offices in the U.S. reported using computers for cephalometric analysis.120   However, 

just because clinicians were moving to digital cephalometric programs did not mean that 

there was an equal or greater degree of accuracy in either landmark identification or 

superimposition accuracy. 

 

1.6.2. Digital vs. Analog Landmark Identification 

As early as 1971, Baumrind31 employed a form of computer called the Oscar K 

“coordinatograph” to asses the reliability of examiners to precisely locate specific 

cephalometric landmarks.  In 1979, Houston121 demonstrated the clinical application of 

digital landmark identification for cephalometric analysis.  Richardson122 followed in 
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1981 with the first study comparing digital and “traditional” methods of landmark 

identification.  Using a “digitizer” first described by Bondevik123 in his own study, 

Richardson,122 and later Houston,124 were able to compare landmark identification 

accuracy using direct digitization, finding similar results comparing digital and 

conventional methods.  Digitizers utilize a Cartesian coordinate system to identify 

landmarks on either a radiograph (direct digitization) or an overlay tracing (tracing 

digitization), recording the information on a computer for analysis. 

 

Sandler125 was the first to compare the accuracy of landmark identification in direct 

digitization versus tracing digitization and compare it to traditional hand tracing, finding 

that manual tracing was found to yield more reproducible results especially for the points 

articulare and gonion which are constructed on a tracing, but only estimated using the 

digitizer.109 

 

Lim126 compared the accuracy of landmark identification between traditional hand tracing 

and the semi-direct imaging method of capture (phosphor plates).  No differences in 

accuracy of landmark identification were demonstrated when comparing hand tracing and 

the digital method of landmark identification.  Lim stated  that “comparable quality 

digital cephalograms can be taken at 30% radiation reduction, compared to the 

conventional method.”126   It is worth noting that Lim126 merely stated that a 

“conventional film/screen system” was used.  The multiple permutations of modern high 

sensitivity film and intensifying screens could potentially eliminate the radiation 

exposure differential between digital and analog radiography. 
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From 1991 to the present many investigators have reported studies99,102,103,105,106,108-113,127-

137 comparing the accuracy of landmark identification using analog and digital methods 

of images captured at a single timepoint employing a variety of permutations of hand 

tracing and digital input and output.  The following is a summary of the salient findings 

from the aforementioned studies: 

1. Generally, a statistically significant difference has been found in the accuracy 

of landmark identification of defined structures when comparing analog and 

digital methods utilizing cephalometric images of a single 

timepoint.99,102,106,108,111-113,127,129,131,132,135,137  

a. Geleen127 compared landmark identification on conventional film, a 

printed hard copy and monitor-displayed images.  Geleen127 found the 

monitor-displayed images to have a lower precision in landmark 

identification when compared to film and hardcopies.  Note that both 

the printed hardcopies and the on-screen images were digitally 

enhanced.  The author noted that “post-processing algorithms may 

cause a systemic error in landmark localization” and “…the possibility 

for this type of error could not be investigated.”127   

 

b. Chen129 found statistically and clinically significant differences for Po 

in the vertical axis, ANS in the horizontal axis and AR and Upper 

Molar but specified no axis for the last two.  Chen also stated that 

although the “reliability of landmark identification in digital images 
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was comparable to that in original radiographs” landmarks Po, ANS, 

AR and Upper Molar “should be scrutinized more carefully” when 

employing digital cephalometry.  

 

Of concern was the statement: “…the best estimate for each landmark 

or “gold standard” for determining the inter-observer errors was 

defined as the mean position identified by 7 observers.”  It is difficult 

to reconcile the use of the terms “best estimate” and “gold standard” 

interchangeably in the context of measuring error. 

 

2. There were no clinically significant differences found in the accuracy of 

landmark identification of defined structures when comparing analog images 

versus on-screen identification of landmarks from a scanned copy of the 

analog image102,111,128,131 with the following exceptions: 

a. Chen130 found that the monitor yields a comparable or better level of 

performance in landmark identification compared to hardcopy with the 

exception of the vertical component of Go.  However, it is worth 

noting that “interobserver error” was calculated by measuring the 

distance from the mean for each landmark, for each of the 12 tracers, 

rather than re-tracing multiple cephalograms and performing a 

statistical analysis for interobserver error.  The author further states 

that there were several factors that could have played a role in the 

outcome including the scanning and printing procedures.  There were 
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no “extra measures”130 taken to control for distortion during the 

printing of hardcopies.  Additionally, though there was a  “calibration 

operation”130 performed on the scanner prior to scanning analog 

tracings, there was no discussion as to the details of the 

aforementioned operation.  

 

b. Celik99 found NLA (Nasolabial Angle) to have “low levels of 

reproducibility” using digital methods, Vistadent 2.1 AT (Dentsply 

International Inc, York, PA)) and Jiffy Orthodontic Evaluation 

(version 5.0, Rocky Mountain Orthodontics, Denver, Colorado, USA), 

compared to hand tracings.  

 

3. Turner found no demonstrated clinically significant differences in the 

accuracy of landmark identification of defined structures when comparing 

direct, semi-direct and indirect image acquisition to one another.102 

 

4. There were no clinically significant differences in the accuracy of 

cephalometric measurements in single timepoint films when analog and 

digital methods of cephalometric analysis were 

compared.99,105,106,109,112,132,136,137   Exceptions included: 

a. Ongkosuwito128 concluded that hand tracing was more accurate with 

Wits appraisal compared to a scanned image at 300 dpi and that 
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indirect acquisition demonstrated more accuracy measuring Facial 

angle (L1-NB,L1-Apo and Pg-NB).  

b. Comparing hand tracing to Dolphin Imaging Software (Version 8.0), 

Power108 found “the systematic error in the software’s calculation of 

LAFH%” for SNA, SN to Maxillary plane, upper incisor edge-apex to 

max plane and lower anterior facial height as a percent of total anterior 

face height “resulted in measurements 4% larger than manual 

techniques, a difference which is clinically significant.”108  

c. Kubashvili131 found statistically significant differences in the 

reliability of measurement of the facial angle using Vistadent Image 

Management System, v8.0 (Dentsply International Inc, York, PA) 

while comparing analog versus indirect acquisition and semi-direct 

imaging in both Dolphin, v7.0 and Vistadent Image Management 

System. Kubashvili131 stated that differences could have been 

attributable to (1) obscurity of porion and orbitale, (2) differences in 

the algorithms of the two different computer software programs, or (3) 

to a difference in ability to view various landmarks in Vistadent, all of 

which appear to be plausible reasons. 

 

5. Based upon calculated intraclass correlation coefficients, cephalometric 

measurements attained with and without enhancement in digital 

cephalometric programs were “in agreement”105 with those measurements 
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found in hand tracing.  Only Li–NB (mm) showed an ICC <0.75 for four out 

of the five programs tested when the basic features were used.105 

 

6.  Turner102 studied the differences in landmark identification between 

onscreen digitization using ScreenCeph v1.4, hand tracing followed by 

digitization of the identified point and direct digitization.  Turner found that 

significant differences existed in landmark identification of 15 of 28 

measurements comparing ScreenCeph to direct digitization: 6 at the 5% level 

and 9 at the 1% level, with median score differences ranging from 0.2mm to 

0.53mm.102 

1.6.3. Digital vs. Analog Superimposition 

Bill Gates, arguably the standard bearer of the technology movement stated: 

“…automation applied to an inefficient operation will magnify the inefficiency."138   To 

fully understand the gravity of Gate’s comment, and what it infers regarding 

cephalometric analysis, one must examine the essential differences in application of 

analog and digital technology as it relates to cephalometric superimposition technique. 

 

Accurate analog cephalometric superimposition, though technically arduous in execution 

is conceptually quite simple.  The process includes an operator, a light source, a pencil 

and a tracing medium such as acetate.  The limiting factors include the tracer’s ability to 

properly identify landmarks, draw lines, measure angles and correctly superimpose serial 

radiographs upon chosen landmarks.  Like an artist, the operator has the ability to 
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precisely trace any landmark, and more importantly, the freedom to transfer the landmark 

in an almost unlimited form to the transfer medium (the tracing acetate). 

 

Digital superimposition, however, has constraints borne from the inherent limitations of 

digital technology.  A pixel is a defined size, meaning that unlike analog technology 

where a tracer can choose to put pencil to acetate at any position, a digital tracer may 

only place the cursor upon a pixel in a predefined array.  On a 16” x 20” monitor with a 

resolution of 1000 x 1000, there are 1 million pixels composing a 320 square inch screen, 

meaning that there are 3,125 pixels per square inch and each pixel is 0.0003” wide.  Any 

point within that pixel can only be represented by that single pixel which will be a 

representation of the entire space it occupies.  The pixel pitch, or the space between 

pixels, is another component of digital technology, which limits an operators’ ability to 

pinpoint a precise location on a screen.  Such constraints, though small, may reduce the 

precision of digital landmark tracing and superimposition of images through cumulative 

summation. 

 

Digital superimposition programs are, by definition, directed by the code, or instructions, 

which silently instruct the computer about how to execute the software.  Unlike analog 

tracings, which can be superimposed in any manner desired by the operator, the finite, 

and sometimes limited number of landmarks offered by the program’s software engineers 

restricts the points upon which digital superimposition can be performed.  
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One can appreciate the importance of operators refining both tracing and superimposition 

skills before progressing to digital cephalometric analysis, lest the limitations of the 

digital medium magnify existing errors.   

 

Bruntz113 investigated the accuracy of computerized overall superimposition using 

Dolphin Imaging v.9 (Dolphin Imaging and Management Solutions, Chatsworth, Calif) 

versus hand tracing.  AP changes in molar and incisor position were determined by 

perpendicular lines to ANS-PNS running through the mesial point of the first molar and 

incisor tip.  Vertical changes were determined from vertical lines to ANS-PNS.  No 

statistically significant differences were found in the distances of measured anatomic 

structures when comparing the digital and manual superimpositions.113   Bruntz stated: 

“Superimpositions made from a computerized cephalometric program [Dolphin Imaging] 

by using a scanned cephalogram appear to be as accurate as those made from the original 

cephalogram with conventional manually traced techniques.”113  
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Figure 8: Bruntz’ method of maxillary superimposition on ANS-PNS at ANS.  Solid lines 
indicate initial tracing and dotted lines final tracing landmarks.  A and B represent AP 
and vertical changes in molar position, respectively.  C and D represent AP and vertical 
changes in incisor position, respectively.  E represents angular change in incisor 
position.113 

 

Roden-Johnson133 evaluated the measurement accuracy of defined landmarks in 

maxillary and mandibular regional superimpositions by comparing analog and digital 

tracing using ABO superimposition analysis guidelines.  The ABO standard for 

superimposition used by Roden-Johnson included “registration on the lingual curvature 

of the palate and the best fit on the maxillary bony structures.”133   Roden-Johnson found 

no statistical differences in the values of hand and digital tracing in maxillary regional 

superimpositions with most values within ± 1mm and ±1° when comparing T1 and T2 

values of both methods.133   
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Huja100 compared hand and digital maxillary regional superimpositions superimposed 

according to the ABO recommendations.  The digital superimpositions were constructed 

using Dolphin Imaging v.10.  Huja found no differences in the accuracy of measurement 

across two time-points of displacement of the defined landmarks (U1 Tip, U1 Apex, U6 

Tip, U6 Apex), between analog and digital methods.  

 

Bruntz113 and Huja100 referred to hand traced cephalometric analysis as the “gold 

standard”, however, in the absence of implants, had traced cephalograms are better 

described as a “control group” rather than “gold standard” as studies49,59,61,139 have 

demonstrated that tantalum implants placed interstitially in the maxilla are the only 

stable, fixed “gold standard” reference points upon which regional serial 

superimpositions may be aligned and registered for true understanding of changes due to 

growth and of treatment effects.  
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Figure 9: Huja100 method of alignment for maxillary regional superimposition. 

 

1.7. Purpose 

Metallic implants permit construction of reference “gold standard” superimpositions 

thereby enabling a quantitative evaluation, by comparison, of the measurement accuracy 

of displacement of selected dental structures derived by analog structural method and 

digital method of superimposition.  

 

To date, no study has compared the displacement of defined dental landmarks in 

maxillary regional superimpositions across paired time-points utilizing metallic implants 

as fixed reference points.  Therefore, the purpose of this study is to measure the 

displacement of the defined dental structures across paired timepoints utilizing tantalum 
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implants as a fixed reference points to determine if the use of the structural method 

and/or computer-generated regional superimpositions of the maxilla are as accurate as the 

implant superimposition method, and whether any differences are clinically relevant.  

 

1.8. Specific Aims 

Specific Aim 1:  To determine if there are differences in the measured displacements of 

defined dental structures across paired time-points in maxillary regional superimpositions 

generated in Dolphin, Quick Ceph, and the structural methods compared each other and 

to the implant method of superimposition. 

 

Specific Aim 2:  To determine if differences in in the measured displacements of defined 

dental structures across paired time-points in maxillary regional superimpositions 

generated in Dolphin, Quick Ceph, and the structural methods are clinically relevant. 

 

 
1.9. Location of Study 

The design and preparation of this study took place at: 

Nova Southeastern University College of Dental Medicine 

3200 South University Drive 

Fort Lauderdale- Davie, Florida 33328 
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CHAPTER 2: MATERIALS AND METHODS  
2.1. Grant 

This study was awarded a grant by the Health Professions Division at Nova Southeastern 

University. 

 

2.2. Lateral Cephalograms 

After review and exemption by the IRB of Nova Southeastern University, the sampling 

frame for this study was the 36 patient records comprising the Matthews Acquisition 

Group, accessed with permission, from the Craniofacial Research Instrumentation 

Laboratory (CRIL),  University of the Pacific, Arthur A. Dugoni School of 

Dentistry Department of Orthodontics, 2155 Webster Street, Suite 617 San Francisco, CA 

94115. Mathews originally acquired all of the radiographs for the study he performed in 

1978.66  

 

In acquiring the data set, Mathews utilized the following inclusion criteria: 

1. Participants were patients of record of the Department of Orthodontics, University 

of California School of Dentistry, San Francisco, CA. 

2. The participant’s orthodontic records were complete with no missing data. 

3. Parental permission allowing the insertion of tantalum implants was granted for 

each participant. 

 

36 patient records comprise Mathews’ acquisition group, including 13 male and 23 

female.  Patients’ ages at the time of records acquisition were 3.6 - 9.1 years and were 
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recalled annually for between 5 - 14 years.  The sample utilized for this study consists of 

selected cephalometric radiographs of 22 patients from the sampling frame.  14 patient 

records did not meet the inclusion criteria and were therefore excluded from the study. 

 

Inclusion criteria for the cephalometric radiographs utilized in this study (Figure 10) were 

as follows: 

1. Radiographic quality sufficient to allow detailed analysis. 

2. Two or more implants intact in both the maxilla and mandible across all time-

points. 

3. The patient records were complete and unaltered. 

 

Figure 10: Arrows indicate location of maxillary tantalum implants present in a lateral 
cephalometric radiographic image. 
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All radiographs in this study were taken at approximately 2-year intervals, allowing three 

serial cephalograms for every patient.  For males, the images were taken at ages 12, 14 

and 16 years (T1, T2, T3) and for females they were taken at ages 10, 12 and 14 years (T1, 

T2, T3). 

 

No potential ethical issues could be identified as part of this research study.  Due to the 

observational nature of this study no procedures were performed or implemented on 

human subjects.  All data collection complied with IRB and HIPPA regulations and all 

data was de-identified to ensure confidentiality.  
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2.3. Analog Method 

A diagrammatic summary of the workflow process is outlined in Figure 11. 

 

Figure 11: Workflow diagram for the study 

 
Richard Singer, DMD, MS hand traced all patient serial radiographs (T1, T2, T3) on 

acetate using a 0.3mm drafting pencil.  Tracings were performed side by side in order to 

ensure accuracy in tracing of anatomic landmarks55.  Landmarks were identified to allow 

superimposition using the structural and implant methods.  The “defined dental 

structures” traced included central incisor tip and apex, mesial contact of the first molar 

and an average terminal root length of the first molar centered mesio-distally along the 
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long axis of the tooth.  Templates of the most visibly clear teeth were created and 

transferred to the other films in the series to allow precise duplication of the landmarks 

for measurement.  

 

The outlines of all maxillary implants were traced at all timepoints using a 0.3mm 

drafting pencil. 

 

2.4. Structural and Implant Superimpositions 

Structural superimpositions were performed as described by Björk61, Björk and Skeiller65 

and Johnston55 including “best fit” registration on the zygomatic process of the maxilla 

and the bony anatomic details superior to the incisors.  In addition, the anterior inferior 

surfaces of the hard palate assisted in orientation, with the PTM fissure of the older 

tracing lying at or behind that of the newer.55  

 

Fiducial lines were drawn adjacent to the maxilla as described by Johnston55 allowing 

quicker and more precise superimpositions of tracings forward or backward, pairwise, 

throughout the series.55   

 

Acetate tracings of paired timepoints (T1-T2, T2-T3) for each patient were aligned using 

the fiducial lines (for structural method) or implants (implant method) and scanned into 

the designated patient folder, stored on the secure Nova Southeastern College of Dental 

Medicine server.  Tracings were scanned into digital jpeg format at 300 DPI101,128 using 

an Epson Perfection V750 Pro scanner (Epson USA, Long Beach, California, USA). 
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Figure 12: Structural method of superimposition.  The arrows demonstrate 
superimposition of the fiducial lines for the maxillary tracings. 
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Figure 13: Example of the implant method of superimposition.  The arrows demonstrate 
the implants from different timepoints superimposed over one another. 

 

 
Figure 14: Magnified view of implant superimposition (arrows demonstrate 
superimposed implants).  Notice the changes in the alignment of the fiducial lines. 
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2.5. Digital Method 

All patient original cephalometric radiographs (T1, T2, T3) were scanned into digital jpeg 

format at 300 DPI101,128 using an Epson Perfection V750 Pro scanner and subsequently 

imported into Dolphin Imaging V11.5 (Dolphin Imaging, Chatsworth, California, USA) 

and Quick Ceph Studio V3.2.8 (Quick Ceph Systems, San Diego, California, USA) 

cephalometric analysis programs.  Landmarks digitally traced included those required to 

complete maxillary regional superimpositions according to the recommendations of the 

respective software programs.  Outlines of the most visibly clear maxillary central incisor 

and 1st molar were transferred to the other films in the series to allow precise duplication 

of the landmarks for measurement. 

 

Maxillary regional superimpositions were performed using the programs’ automated 

functionality according to the manufacturers’ instructions.140,141   Digital 

superimpositions included paired timepoints (T1-T2, T2-T3) for each patient.  Dolphin 

V11.5 automated maxillary regional superimposition tracings were aligned according to 

manufacturer recommendations: “to the (ANS-PNS) line, with ANS points 

overlapping”.140   Manufacturer recommended Quick Ceph Studio V3.2.8 automated 

superimposition preferences were created similar to Dolphin automated regional 

superimpositions through superimposition of “ANS-PNS@ANS”.141 
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Figure 15: Example of Dolphin method of Superimposition.  The crosshairs in the corners 
(red arrows) are digital duplicates of the punch holes of known distance for scale 
calibration purposes. 
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Figure 16: Example of Quick Ceph method of superimposition.  For Quick Ceph, lines 
connect the punch holes instead of crosshairs. 

 

Resultant superimpositions were exported in 1:1 scale and stored on the secure Nova 

Southeastern College of Dental Medicine server. 

 

2.6. Measurement of Displacement of Defined Dental Landmarks 

Superimpositions were imported into Adobe Photoshop CS6 Extended as .jpg files.  All 

digital images were standardized using the scale feature of Adobe Photoshop CS6 
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Extended (Adobe Systems Inc., San Jose, California, USA) where scale calibration was 

applied and displacements of the defined dental structures measured.  

 

Figure 17: The grey line represents the measured displacement of the mesial molar 
contact using Adobe Photoshop.  This method was utilized for all four methods of 
analysis (Implant, Structural, Dolphin & Quick Ceph). 

 
A significant incidental finding of this study was an unexpected difficulty in accurately 

and precisely measuring the displacement of the defined dental structures (the 

“measurement scale” tool (figure 18)).  Photoshop uses a pixel-based calibration of on-

screen objects of known distance to scale all other measurements in the image.  Adobe 

states that the measurement scale tool allows users to “accurately measure distance”,142 

however, we found errors (in some cases >1.5%) when using this tool, irrespective of 

monitor, computer or operating system.  
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Figure 18- The measurement scale tool in Adobe Photoshop allows one to create a scale 
against which all other on-screen objects can be measured.  In this case, the line of known 
length (100mm) extends through 38 on-screen pixels (in this case, simulated by the grid) 
allowing a measurement scale of 38 pixels equaling 100mm. 

 
Photoshop measurement errors were challenging to address due to the unidentifiable 

nature of the source of the error.  Close examination and scrutiny of our methods offered 

no understanding of extant measurement errors even following on-screen calibration.  

Calibration of known vertical distances (punch holes A-B or C-D, Figure 19) led to 

inaccurate horizontal measurements and vice versa.  Even corner to corner (A-C) 

calibration yielded inaccurate measurements for the opposing diagonal (B-D).  To our 

knowledge, no other study utilizing Adobe Photoshop for measurement purposes has 

reported identifying calibration errors, and we endeavored to find a solution. 
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Figure 19: Example of labeled corner punch holes of known distances (A,B,C,D) used in 
calibration. 

 
An initial thought was that in order to properly use a pixel-based scale, the cephalogram 

must be perfectly aligned along the horizontal or vertical axis.  If one were to set the scale 

using points B and C and the radiograph was not completely level with respect to the 

horizontal axis, then the line between the points would pass diagonally through the 

pixels, which is a longer distance than perpendicularly (figures 20 & 21).  Setting the B-C 

line to a true horizontal, should have created a more accurate scale calibration, but instead 

continued to yield inaccurate measurements of known vertical distances and calibration 
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using said approach for known vertical distances created errors in horizontal 

measurement. 

 

 

Figure 20- The line crosses the pixels at 90 degrees, traveling the shortest distance 
through each pixel, extending 38 pixels in total.  
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Figure 21- If the cephalogram is rotated relative to the horizontal axis, the line connecting 
B-C crosses through the pixels diagonally, travelling a longer distance within each pixel.  
As a result, instead of including 38 pixels (figure 3) it only crosses 36.  Measurement 
scale would therefore change from 100mm=38 pixels (figure 3) to 100mm=36 pixels.  
The resultant calibration error of 5.3% would be applied to every future on-screen 
measurement. 

 
The only solution for the problem of measurement inaccuracy was a correction factor 

applied to the raw data.  The diagonal measurements (B-C and A-D) were recorded and 

averaged for 10 cephalograms of each method, and compared to the known distances.  

The correction factor, applied to the raw data provided an accurate, final measurement 

prior to submission for statistical analysis. 

 

All measurement data was stored in a password protected Microsoft Excel (Microsoft 

Corporation, Redmond, Washington, USA) spreadsheet. 
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Given that one experimenter, Dr. R. Singer, produced the analog tracings utilized in this 

study, it is important to estimate the reliability of this individual tracer.  To that end, a 

random sample of 10 tracings were selected and traced at a separate setting in order to 

independently assess intra-rater reliability.  10 Dolphin and 10 Quick Ceph regional 

superimpositions were selected and traced at a separate setting to assess intra-rater 

reliability for the digital method. 

 

2.7. Statistical Analysis 

Descriptive statistics as well as a mixed-effects, generalized linear model [GLM] were 

utilized for analysis of the data and an intra-class correlation coefficient [ICC] was used 

to evaluate intra-rater reliability. 
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CHAPTER 3: RESULTS 
	
  
Table 1 shows mean total displacements of the defined dental structures for all methods 

(implant, structural, Dolphin & Quick Ceph).  All methods exhibited mean displacements 

≤ 0.72mm and the Implant and structural methods showed smaller ranges than that of 

Dolphin and Quick Ceph (6.67mm and 5.97mm vs. 9.19mm and 9.53mm, respectively). 

 

Table 2 presents method displacements relative to the Implant method reference.  The 

structural method (p=0.00) showed statistically significant differences versus the implant 

method and demonstrated the smallest 95% confidence interval range compared to Quick 

Ceph and Dolphin (0.45mm, 0.75mm and 0.95mm, respectively). 

 

Table 3 displays method displacements by tooth relative to the implant method reference.  

The structural method incisor and molar measurements demonstrated statistically 

significant differences (p=0.00) with a smaller 95% confidence interval range than 

Dolphin and Quick Ceph Incisor and molar measurements (0.64mm and 0.56mm vs. 

1.23mm and 1.12mm and 1.08 and 1.09mm, respectively). 

 

Table 4 shows method displacements by landmark relative to the implant method 

reference.  The four structural method landmarks (incisor crown and apex, molar mesial 

contact and apex) demonstrated statistically differences versus the implant method 

(p<0.05) and had smaller 95% confidence interval ranges compared to the corresponding 

locations for Dolphin and Quick Ceph.  
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Figure 22 presents scattergrams for total individual measurement differences relative to 

the reference for each method (n=176).  The structural method showed a smaller 

dispersion compared to the Dolphin and Quick Ceph methods. 

 

 

 

 
Figure 22- Scattergrams of method displacements relative to Implant method reference*  

 *All values in mm 
 
 
 
The ICC for the analog and digital tracing intra-rater reliability showed non-statistically 

significant p-values. 
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CHAPTER 4: DISCUSSION 
	
  
4.1. Findings 

Serial maxillary regional cephalometric superimpositions allow clinicians to visualize 

maxillary dentofacial changes due to growth and orthodontic treatment separately.  

Superimpositions may be performed by manual tracing (analog method) or digitally, by 

the use of computer programs.  It is important to understand the accuracy of the method 

of superimposition employed to estimate the effect of that method upon evaluation of 

growth and treatment effects.  

 

Accuracy may be determined by comparison of methods to a referent “gold” standard.  In 

the case of maxillary regional superimpositions, such a “gold standard” is obtained by 

using a database consisting of radiographs of individuals in whom fixed metallic implants 

have been inserted into the maxilla, namely, the Mathews Acquisition Group.  To our 

knowledge, studies comparing the accuracy of digital and analog methods of maxillary 

regional cephalometric superimposition, employing an implant reference, have not 

previously been reported.  Utilizing the radiographic data of the Mathews Acquisition 

Group, this study compared analog, digital, and reference methods of maxillary regional 

cephalometric superimpositions by measuring the resultant displacement of defined 

dental structures assessed across paired time points. 

 

The principle finding of this study was that differences in mean displacement of defined 

dental landmarks were different for the analog (structural) and digital (Dolphin, Quick 

Ceph) methods of maxillary regional superimposition when compared to the implant 
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method.  The three non-reference methods each demonstrated less than 0.5mm mean 

displacement difference compared to the implant method. 

 

The standard error of the mean displacement from the reference was considerably smaller 

for the structural method than for the digital methods, for all defined dental structures 

(landmarks) measured, which was potentially due to the difficulty in accurate digital 

representation of identified landmarks due to software limitations in the digital methods.  

There were significant methodological differences in representation of identified 

landmarks between in the digital and analog methods.  

 

The structural method of superimposition employed an individualized template of the 

incisor and molar that was traced from the most easily identifiable image of one each 

participant’s three cephalograms.  The template permitted transfer by tracing of 

reproducible incisor and molar representations across each time point.  In contrast, it was 

not possible to create a digital “template” that permitted similar reproducibility across the 

time points in either of the digital software programs evaluated in this study.  Dolphin 

software creates digital tooth templates (incisor and molar) based upon the identification 

of the incisor edge and apex and molar apex and crown.  Dolphin permitted the tooth 

outline to be copied forward and backward in a series of cephalograms, however, the 

generalized shape of the digitally generated template could not be manipulated to 

perfectly match the natural tooth form.  The result was a “best fit” of the incisor and 

molar, rather than a precise outline that was a routine part of the analog template method.  

The Quick Ceph software approach was somewhat different, in that the tooth “templates” 
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created were based upon the scale of the image.  The digital tracings of both the incisor 

and molar that resulted were generally not representative of actual tooth dimensions; 

moreover, there was no method available for individualized corrections.  Sophisticated 

diagnosis, treatment planning, and evaluation of treatment outcomes are dependent on 

accurate cephalometric information.  Such information is predicated upon accurate 

identification and accurate digital representation of dental landmarks that are then used to 

construct cephalometric tracings and resulting cephalometric measurements.  Our 

observations indicate that Quick Ceph and Dolphin do not provide precise landmark 

representation in all cases, particularly regarding individual tooth size and shape when 

performing regional superimpositions.  

 

Digital and analog cephalometric techniques use different methods for detail 

enhancement to facilitate accurate tracing.  Hand-tracing (analog) magnification is 

accomplished through a set of loupes or a magnifying glass, while digital magnification 

occurs through digital “zooming” of an on-screen image.  The digital method can 

magnify an image considerably more than the fixed limits of loupes, but there are 

important issues inherent to the process.  Magnifying an image by 400%, 800% or even 

1600% results in a pixelated image.  A pixelated rendering of a rounded edge in an image 

acquires the shape of the individual pixels, which are rectangular.  Precisely identifying 

or measuring to the apex of a rounded structure becomes imprecise when there are only 

sharp edges.  No such pixilation occurs in analog images regardless of magnification 

because pixels play no role.  Theoretically, one could use a high power microscope to 

considerably magnify and trace analog cephalograms, yet curved edges would remain 
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rounded, potentially resulting in more precise identification and tracing of landmarks 

with curved surfaces, rather than less precise with increased magnification, a feature of 

the digital techniques. 

 

The smaller standard error of mean displacement relative to the reference for the 

structural method may also be explained by inherent differences in the superimposition 

techniques.  The structural method superimpositions were performed according to 

Johnston’s guidelines55, but neither of the digital methods offered a reasonable way of 

approximating the “bony anatomic details superior to the incisors” as Johnston suggested 

for maxillary superimposition and used “ANS-PNS at ANS” as a substitute.  Current 

digital software has limited ability to trace the maxillary bony details required for 

Johnston’s superimposition methods.55   The digital superimposition methods employed 

in this study strictly followed the recommendations in the respective software user 

manuals. 

 

The relative standard error (RSE) is a measure of reliability or precision, and is 

represented by the formula: ((standard error/mean)*100).  The RSE for the displacement 

of defined dental structures versus the reference was 19.57% for the structural method, 

76.92% for Dolphin and 320% for Quick Ceph.  The RSE values derived from the 

Dolphin and Quick Ceph methods were almost 4 and 16 fold multiples, respectively, of 

that of the structural method.  
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While none of the methods demonstrated mean displacement of defined dental structures 

versus the reference exceeding the preciously discussed threshold for clinical 

significance, the digital methods showed the smallest difference.  However, the digital 

methods also exhibited a markedly larger RSE, demonstrating an important difference 

between the methods.  The structural method can be described as generally being “off-

target”, but more precise (i.e., less scattered and more reproducible) than the digital 

methods.  Conversely, the digital methods are, on average more accurate (i.e. mean 

values not statistically different from the reference method mean), but imprecise (i.e., 

more scattered and less reproducible) by multiples of the mean value.  Clinical 

application of our results relative to selecting a method of regional cephalometric 

superimposition, suggests that the selection is between the structural method that 

exhibited good precision and accuracy within a clinically acceptable range, or the digital 

methods, that on average are, more accurate, but also imprecise, such that the magnitude 

of any single measurement could have a value that exceeds multiples of the mean value. 

 

A power analysis yielded a power of 18% for this study, meaning there was only an 18% 

chance of not making a Type II error (failing to reject a false hypothesis) when 

comparing each of the methods of superimposition to the implant method (reference).  

The null hypothesis tested in this study was the hypothesis of no difference in the 

displacement of defined dental landmarks resulting from any of the methods of 

superimposition compared to the implant method.  The null hypothesis was rejected for 

the structural method, but not for the digital methods, however, the low power of our 

analyses indicates a strong likelihood that Type II errors for the digital methods may have 
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gone undetected.  Taking into account the low power and large standard error of the mean 

displacements would suggest that a larger sample size and greater power might permit 

evaluation of whether the failure to reject the null hypothesis of no difference from the 

reference for the digital methods was a correct decision, however, an accessible larger 

sample does not exist. 

 

Few studies40,143 in the literature discuss the threshold of clinical significance for 

measured landmark displacements resulting from cephalometric regional 

superimpositions.  Baumrind and Frantz40 are alone in explaining their understanding of 

clinical significance as it relates to cephalometric analysis.  

“The reader may appropriately ask how much error can be tolerated in 
clinical procedures.  Clinical procedures always involve comparisons 
between values for two head films or between values for one head film 
and some set of standards or "norms."  In either event, it is the difference 
between the two values for any given measure which is important.” 
“…we could not properly ascribe clinical significance to a change in 
mandibular plane angle of less than 2 x 1.8 or 3.6 degrees [2 standard 
deviations] or to a change in interincisal angle unless it exceeded 2 x 
3.54 or 7.1 degrees [2 standard deviations]. This is not to say that 
smaller differences are not important to us as clinicians. On the contrary, 
we all know that they are important.  It is, rather, to say that our current 
measurement instrument, the angular head film measurement, is in most 
cases too inaccurate to differentiate all but the grossest changes.”40 

 

Baumrind and Frantz40 suggested that the use of cephalometric measurements for 

diagnosis, treatment planning and case evaluation are insignificant unless they are beyond 

two standard deviations of the measurement error for a landmark, angular or linear 

measurement. 
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Other studies have mentioned the term, “clinical significance”, without explicit 

definition.  For example,  Bruntz, et al.113 compared measurements and superimpositions 

produced on analog radiographs with those made on scanned digital images, and found 

that “linear distortion was no greater than 1.1mm” and “because the width of the fiducial 

mark itself was approximately 0.5mm, one might contend that the total disparity between 

modalities truly is clinically insignificant.”113   Huja et al100 compared hand-traced and 

computer based maxillary regional superimpositions, and stated: “…the differences were 

small (<1mm) and can be considered clinically insignificant.”  Roden-Johnson et al.133 

compared Quick Ceph and hand-traced cranial base and regional superimposition 

accuracy and concluded:  “…the variation was less than 1.5mm for all of them 

[landmarks]; this leaves the clinical significance questionable because the width of the 

pencil used to trace the cephalograms was 0.5mm.”133   Roden-Johnson et al. further 

stated: “…this study confirms the findings of other investigators143-145 showing that the 

differences in landmark identification between hand and computer are not clinically 

significant.”133 

 

The conclusions of Bruntz et al.,113  Huja et al.,100  and Roden-Johnson et al.133 derive 

from use of a technique artifact to make inferences regarding a physiologically, 

diagnostically, or biologically meaningful difference in measurements where no such 

relationship exists.  Baumrind and Frantz,40 elaborated further regarding the clinical 

significance of errors in landmark identification: “…for the observed difference to be 

considered real (that is, biologic) it must exceed by a consequential margin the 

measurement error for that measure.  Only then can one say with reasonable certainty that 
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the observed difference is real and not simply the product of estimating errors.”40 

Baumrind and Frantz continued: “Suppose we are not too demanding and require merely 

that the observed difference be at least twice the standard deviation of the estimating 

error.  This is not an unreasonably rigorous demand…”.40 

 

Baumrind, Miller and Molthen146 studied what they called “typical landmark 

displacements due to error of tracing superimposition”, i.e., the displacement of 

landmarks due to errors in tracing when tracings are superimposed.  In the example cited, 

tracings were superimposed on the palatal plane and landmark displacement was 

observed.  The standard deviations (SD) of the measurements for the upper incisor edge 

and the upper first molar cusp were 1.33mm and 1.10mm respectively.146   Application of 

Baumrind and Frantz’s40 suggestion of 2*SD for changes to be “real” would mean that 

the upper incisor edge and molar cusp errors would have to be greater than 2.66mm and 

2.20mm respectively, in order not to be considered error in landmark measurement alone.  

While none of the methods of superimposition in our study exceeded Baumrind and 

Frantz’s suggested thresholds, as early as 1976 Baumrind and Frantz stated that by using 

computers for tracing superimposition: “…we would have markedly sharpened the 

cutting edge of our measuring instrument and would be able to ascribe biologic 

significance to observed changes half the size of those we can properly consider 

significant at present.”40   The terms “biologic significance” and “clinical significance” 

refer to “real” or “biologic” differences in pairwise comparison of measurements that are 

not attributed to measurement error alone. 
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Applying Baumrind and Frantz’s approach, we created proposed thresholds for clinical 

significance using the study results reported by Huja et al.100   Huja et al. used a computer 

to measure landmark displacement associated with hand and digital superimpositions for 

three of the four dental landmarks utilized in our study: upper incisor tip, upper incisor 

apex and upper 1st molar apex.100   The ranges for “clinical significance” derived by 

extension of Baumrind and Frantz’s40 suggestions to the data from Huja et al. are (0.88 – 

1.14) and (0.82 - 1.16) millimeters for analog and digital measurements respectively 

(Table 6).  A similar approach applied to our study results by method, indicate that the 

range of “clinically significance” are (0.88 – 1.14), (0.82 – 1.16), and (0.82 – 1.16) 

millimeters for the structural, Dolphin, and Quick Ceph methods respectively (Table 7), 

all comparable to the ranges extended from the data of Huja et al.100   The measured 

displacements of the represented defined dental landmarks in our study are of a 

magnitude clearly less than the “standard” suggested by Baumrind and Frantz40 needed to 

meet the threshold of “clinical significance” thereby permitting differentiation of biologic 

changes from differences due to measurement error.  In other words, it would appear that 

all three methods are accurate enough for clinical use, but as previously discussed, the 

digital methods demonstrate an imprecision large enough that any single measurement 

could exceed multiples of their respective mean values. 
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4.2. Strengths and Limitations 

To our knowledge, this study was the first to compare digital and analog methods of 

maxillary regional superimposition that used a sample comprised of radiographs of 

patients with maxillary implants as fixed reference structures and that employed implant 

registered analog superimpositions as the reference for comparison among the methods 

evaluated.  

 

One limitation of this study was the sample size, which yielded a statistical power of only 

18%.  Unfortunately, there are only two known cephalometric implant databases in 

existence: The Matthews database (used in this study) and the Björk database (a larger 

sample size but with restricted access).  Consequently, unless Björk’s database can be 

used in a future study, the sample size for replicating this type of study will not likely be 

larger, and thereby similarly limited by low statistical power (i.e., limited ability to 

reduce Type II errors).147
 

 

A second limitation of this study was that some of the radiographs evaluated in this study 

had diminished radiographic detail.  As such, landmark identification was extremely 

difficult, but this affected both the analog and digital methods equally. 

 

A limitation resulting from the variability observed in measurements resulting from 

digital superimposition methods may be partially attributed to the reliance of the digital 

methods upon anterior nasal spine (a landmark proven to be difficult to precisely 

identify)116,117,148,149 for superimposition and registration.  
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Test results of intra-rater reliability for both the digital and analog methods of 

superimposition were assessed by intraclass correlation that demonstrated no statistical 

differences regarding measurements of repeated superimpositions.  Only one researcher 

had access to the CRIL database, thus inter-rater reliability could not be assessed.  Future 

studies could capitalize upon the methodological strength of our study by implementing a 

design improvement wherein the same operator(s) trace, superimpose, and measure each 

analog and digital cephalogram. 

 

4.3. Conclusions 

The results of this study suggest that there are differences in the accuracy of digital and 

analog methods of serial maxillary regional superimposition.  All three superimposition 

methods (Structural, Dolphin and Quick Ceph) showed a mean overall displacement of 

defined dental structures no more than 0.46mm relative to the implant (reference) 

superimposition method. 

 

The structural method alone, demonstrated a statistically significant mean displacement 

measurement differences compared to the implant method and yet also exhibited the 

smallest standard error relative to the mean for every measurement.  The implication is 

that while all three methods show accuracy below the threshold for clinical significance 

the digital methods lack precision, meaning that any single measurement may have a 

value exceeding multiples of the mean value, an observation disguised by our finding no 
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statistically significant difference in mean displacements measured by the digital methods 

compared to the reference method.   

 

The low power of this study (18%) and large relative standard errors for the digital 

methods suggests that a larger sample size may have elucidated if the failure to reject the 

hypothesis of no difference in measured displacements for the Dolphin and Quick Ceph 

methods, respectively, from the reference, were a result of a Type II statistical error, or 

correct decisions. 

 

This study highlighted many of the issues surrounding registration, accuracy, and 

interpretation of maxillary regional cephalometric superimpositions.  There are 

methodological advantages and disadvantages to both analog and digital methods each 

requiring due consideration prior to selecting a method for clinical use. 
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TABLES 
   
Table 1-Mean total displacements* 

 

 

Table 2-Method displacements relative to implant method reference* 

Method Displacement SE p-Value 95% Confidence Interval CI Range 

Implant - - Reference - - 
Structural -0.46 0.09 < 0.001 (-0.69, -0.24) 0.45 

Dolphin 0.26 0.20 0.56 (-0.21, 0.74) 0.95 

Quick Ceph 0.05 0.16 > 0.99 (-0.32, 0.43) 0.75 

*All values in millimeters 
      

 

Table 3-Method displacements by tooth relative to Implant method reference* 

Method Displacement SE p-Value 95% Confidence Interval CI Range 

Incisor 
             Implant - - Reference - - 

       Structural -0.45 0.12 < 0.001 (-0.77, -0.13) 0.64 
       Dolphin 0.07 0.23 > 0.99 (-0.55, 0.68) 1.23 

Quick Ceph 0.23 0.21 > 0.99 (-0.32, 0.78) 1.09 
Molar    

 
 

       Implant - - Reference - - 
       Structural -0.47 0.11 < 0.001 (-0.75, -0.19) 0.56 

       Dolphin 0.46 0.21 0.18 (-0.10, 1.02) 1.12 

Quick Ceph -0.12 0.20 > 0.99 (-0.66, 0.42) 1.08 

*All values in millimeters 
     

Method Displacement SE Min Max Range 

Implant 2.65 1.36 0.09 6.76 6.67 

Structural 2.19 1.16 0.40 6.37 5.97 

Dolphin 2.91 1.80 0.35 9.54 9.19 

Quick Ceph 2.71 1.62 0.14 9.67 9.53 
*All values in millimeters 
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Table 4-Method displacements by landmark relative to implant method reference* 

Method Displacement SE p-Value 95% Confidence Interval CI Range 

Incisor Crown 
             Implant - - Reference - - 

       Structural -0.54 0.14 < 0.001 (-0.94, -0.14) 0.80 

       Dolphin 0.04 0.29 > 0.99 (-0.79, 0.86) 1.65 

Quick Ceph 0.39 0.25 > 0.99 (-0.31, 1.09) 1.40 

Incisor Apex    
 

 

       Implant - - Reference - - 

       Structural -0.37 0.12 0.03 (-0.71, -0.03) 0.69 

       Dolphin 0.10 0.28 > 0.99 (-0.69, 0.89) 1.58 

Quick Ceph 0.07 0.23 > 0.99 (-0.58, 0.72) 1.30 

Molar Mesial Contact 
            Implant - - Reference - - 

       Structural -0.40 0.13 0.02 (-0.76, -0.04) 0.72 

       Dolphin 0.50 0.24 0.48 (-0.20, 1.20) 1.40 

Quick Ceph -0.02 0.24 > 0.99 (-0.70, 0.66) 1.36 

Molar Apex    
 

 

       Implant - - Reference - - 

       Structural -0.55 0.10 < 0.001 (-0.82, -0.27) 0.55 

       Dolphin 0.41 0.21 0.58 (-0.19, 1.01) 1.20 

Quick Ceph -0.23 0.22 > 0.99 (-0.87, 0.42) 1.29 

*All values in millimeters 
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Table 5-Thresholds for clinical significance based upon Huja's100 findings 

Landmark 
Superimposition 

Method  SD  
Threshold for clinical 
significance 

U1 tip Analog 0.44 0.88 
U1 tip Digital 0.58 1.16 
U1 apex Analog 0.57 1.14 
U1 apex Digital 0.41 0.82 
U6 apex Analog 0.46 0.92 
U6 apex Digital 0.52 1.04 
*All measurements in mm 
 

 
 

  
 
 
 
 
 
Table 6-Method displacements relative to the reference by landmark relative to threshold  
              for clinical significance* according to the method of Baumrind and Frantz40 

Method Mean 
Displacement 

95% CI 
Range 

Threshold for 
Clinical 

Significance    
   Incisor Crown 

             Structural 0.54 0.80 0.88 
          Dolphin 0.04 1.65 1.16 
   QuickCeph 0.39 1.40 1.16 
   Incisor Apex    
          Structural 0.37 0.69 1.14 
          Dolphin 0.10 1.58 0.82 
   QuickCeph 0.07 1.30 0.82 
   Molar Apex    
          Structural 0.55 0.55 0.92 
          Dolphin 0.41 1.20 1.04 
   QuickCeph 0.23 1.29 1.04 
   *All values in millimeters 
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