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ABSTRACT 
 

APPLICATION OF MECHANICAL VIBRATION TO ENHANCE 
THE STABILITY AFTER ORTHODONTIC TREATMENT - A MICRO-CT STUDY 

 
 
 

Nicolas R. Branshaw, M.A. D.M.D. 
 
 

Marquette University, 2018 
 
 
 
Introduction: Mechanical vibration (MV) possesses anti-resorptive properties that can 
possibly enhance the stability of the dentition during retention, lessening the potential for 
relapse of teeth to their initial positions. In this project, we established a mouse model 
and investigated the effects of MV on bone modeling during orthodontic retention.  
 
Materials and Methods: Thirty-two 14-week-old inbred strain C57BL/6 male mice were 
randomly assigned into four groups: 1) Control (N=6); 2) Mechanical Vibration (MV) (N 
=6); 3) Orthodontic Retention (OR) (N=9); and 4) Orthodontic Retention and Mechanical 
Vibration (ORMV) (N=11). All mice in OR and ORMV groups received approximately 
10g of orthodontic force by a coil spring to move maxillary right 1st molar mesially for 10 
days, followed by a retention period of 2 weeks. In MV and ORMV groups, the mice 
received MV (60 Hz, 0.3g) for 5min/day on the maxillary right 1st molar throughout the 
retention period. Micro-focus computed tomography (micro-CT) was used to quantify 
new bone formation through bone volume fraction (BVF), crestal bone heights and 
intermolar distances post-orthodontic retention. For each of the parameters, one-way 
ANOVA was used to examine whether there is a statistically significant difference 
among the 4 experimental groups, with Tukey comparison being used to determine the 
significant difference between each 2 groups (p < 0.05 is considered significant). 
 
Results: In general, mechanical vibration produced significant changes of alveolar bone 
height and bone volume fraction among the experimental groups. For the alveolar bone 
height (mm) at distal buccal root, the order from least to greatest was MV (0.23±0.021) < 
Control (0.24±0.045) < ORMV (0.31±0.073) < OR (0.33±0.092). For the BVF (%) at 
furcation of M1, the order from least to greatest was OR (0.49±0.134) < ORMV 
(0.52±0.078) < Control (0.62±0.072) < MV (0.66±0.082). For the BVF (%) at 
interproximal between M1 and M2, the order from least to greatest was OR (0.43±0.149) 
< ORMV (0.49±0.115) < Control (0.69±0.051) < MV (0.74±0.028).    
 
Conclusion: Mechanical vibration (60Hz, 0.3g, 5min/day) is able to increase the bone 
volume at furcation and interproximal and the crestal bone heights, indicating its 
potential clinical application to enhance the stability of orthodontic treatment.  
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Chapter I 
 
Introduction 
 

Orthodontic forces produce physiologic changes within the dento-alveolar 

complex. The response of the dentition to these forces necessitates the development of a 

new equilibrium within the oral cavity. Orthodontic appliances, oral habits, hard and soft 

tissues create a complex matrix of forces that contributes to the movement of teeth within 

the periodontium. The goal of orthodontic treatment is to produce a stable, esthetic and 

functional occlusion. While the final stage of orthodontic therapy is orthodontic retention 

which aims to maintain the teeth in their corrected positions after the active orthodontic 

tooth movement.  

Retainers (fixed or removable) are routinely prescribed for long periods of use as 

teeth have a strong tendency to return to their initial positions after active orthodontic 

tooth movement (Maltha et al., 2017; Horowitz et al., 1969). Patients often struggle with 

compliance of the prescribed retention protocols during retention (Kacer et al., 2010), 

often leading to orthodontic relapse. Orthodontic retention can even compromise oral 

hygiene possibly causing discomfort to the patients (Artun, 1984; Artun et al., 1987; 

Pandis et al., 2007). The importance of increased post-orthodontic stability is significant 

as the reduction of potential relapse and accordingly shortened retention time provides 

meaningful benefits to the patients.  

Various new technological and surgical innovations have been proposed to 

accelerate orthodontic treatment based on the chemical and cellular responses they elicit 
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during treatment (Nimeri et al., 2013; Almpani et al., 2016). Few of those treatments 

have been proposed to enhance the stability of orthodontic treatment during retention. 

More specifically, mechanical vibration produces anabolic and catabolic effects on the 

periodontal support structures of the dentition (Thompson et al., 2014; Nishimora et al., 

2008), demonstrating a promising and yet minimally invasive adjunct to treatment that 

could improve the stability of the dentition post-orthodontic treatment.  

Bone volume and periodontal reorganization are significant factors that affect 

orthodontic tooth movement and retention (Yu et al., 2016). Studies have shown that 

mechanical vibration has anabolic effects on bone mass and its architecture both in 

orthopedics and dentistry (Thompson et al., 2014; Alikhani et al., 2018; Nishimora et al., 

2008). However, no knowledge is known about the effects of mechanical vibration on the 

modeling/formation of alveolar bone after active orthodontic tooth movement. In this 

project, we generated a mouse retention model to investigate whether mechanical 

vibration promotes stability of tooth position after active orthodontic movement by 

determining differential alveolar bone formation between experimental groups.  

Increased bone volume fraction (BVF) and decreased crestal alveolar bone 

heights from CEJ are indicators for increased periodontal stability. This study utilized 

micro-focused computed tomography (micro-CT) to measure BVF and alveolar bone 

heights of mice calvarias for the 4 experimental groups, i.e. control, mechanical 

vibration, orthodontic retention and orthodontic retention with mechanical vibration.  
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Chapter II 
 

Literature Review 
 
Biology of Orthodontic Tooth Movement 
 

Consistent force application on the dentition produces pressure and tension areas 

within the periodontal ligaments, as depicted in Figure 1, producing chemical and 

electrical signals that initiate resorption and apposition of bone within the alveolus. This 

biologic response provides the mechanism of tooth movement within the alveolar bone 

and the foundation of orthodontic tooth movement. Further understanding of this 

mechanism through research and clinical experience has established various theories on 

how to enhance the efficiency of tooth movement and the stability during retention.  

Biologic electricity is created initially during tooth movement through the 

piezoelectric effect. Orthodontic piezoelectricity is a flow of electrons through the 

alveolus derived from the alteration of the crystalline lattice structures within periodontal 

ligament and bone, following force application. The flow of electrons demonstrates a 

quick rate of decay, though the piezoelectric flow initiates again as the force is released 

from the tooth and the crystal lattice is able to return to its original position. (Profit et al. 

2013) The piezoelectric signals affect orthopedic and dento-alveolar structures producing 

adaptations to stresses placed on the skeletal structures. Research has shown that 

mechanical vibration amplifies the piezoelectric signals during orthodontic tooth 

movement, accelerating the metabolic and anabolic processes of the dento-alveolar 

complex (Shapiro et al., 1979). 

The pressure-tension theory is generally accepted as the foundational theory of 

orthodontic tooth movement. Orthodontic force generates pressure and tension within the 
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periodontal ligament initiating blood flow restrictions and chemical messengers that 

signal cellular differentiation, enabling tooth movement within periodontium. (Profit et 

al. 2013). Compression or pressure within the periodontal ligament restricts blood flow 

and initiates the release of chemical messengers that further stimulate an osteoclastic and 

mononuclear cellular response to metabolize bone structures (Raisz, 1999). Conversely, 

tension within the periodontal ligament initiates the release of chemical messengers to 

signal bone formation through osteoblastic activity and bone apposition. The deposition 

and apposition of alveolar bone structures occurs through a mechanism that ensures 

equivalent amounts of bone are replaced as to maintain the integrity of periodontium 

(Hill, 1998).   

 
 

   
Figure 1. Mechanisms of Orthodontic Tooth Movement. a) Histologic cross-section view 
of tooth root under orthodontic force, demonstrating pressure and tension of the 
periodontal ligament (Melsen et al., 2006). b) Histological slide showing the pressure 
side during orthodontic movement. From left to right: tooth structure (dentin and 
cementum), disorganized periodontal fibers and bone (Melsen et al., 2006). c) Sagittal 
diagram of pressure and tension areas within the periodontal ligament after application of 
orthodontic force to the tooth.  

C. 
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Accelerated Tooth Movement  
 
 Anabolic and catabolic processes in alveolar bone modeling are crucial to 

orthodontic tooth movement and the methods to incite these processes can accelerate 

orthodontic tooth movement. It was discovered early in the 19th century that bone 

modeling and remodeling were accelerated during wound healing. A pioneering 

American oral surgeon, Hullihan, had experimented with corticotomies to accelerate 

tooth movement with this improved bone remodeling. Corticotomies and wound 

incitation though effective at accelerating orthodontic tooth movement entail high cost of 

surgery, possible iatrogenic effect, potential infections and a low but still present 

morbidity that must be taken into account for an elective procedure (Proffit et al., 2013).   

Other physical processes that have been proposed to accelerate orthodontic tooth 

movement are application of light to alveolus, therapeutic ultrasound to the periodontium 

and mechanical vibration (Proffit et al., 2013; Almpani et al., 2016). Light therapy is 

believed to induce vasodilation for increased blood flow, excite cellular enzymes and 

release pro-inflammatory mediators that will accelerate wound healing, although 

evidence is of low quality in support of light therapy in accelerated tooth movement 

(Sonnesson et al, 2017). Therapeutic ultrasound has been shown to increase blood flow to 

treatment areas and it is theorized that the increased blood flow will accelerate tooth 

movement (Proffit et al., 2013). Promising research has suggested that mechanical 

vibration incites anabolic and metabolic pathways to accelerate orthodontic tooth 

movement (Alikhani et al., 2018), although presently very little is known about the 

effectiveness of many of these less invasive wound healing adjunctive procedures on 

orthodontic retention.  
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Mechanisms of Cellular Differentiation Under Mechanical Vibration 
 

Studies have suggested that differentiation of mesenchymal stem cells toward the 

osteogenic pathway occurs more frequently under mechanical vibration. Up regulation of 

bone morphogenic proteins (BMP) and RUNX2 proteins, as well as phosphorylation of 

Smad1, ERK1/2 and p38 MAPK under low intensity vibration significantly increase 

induction of stem cell differentiation to osteoblast and/or chondroblasts (Suzuki et al., 

2009; Angle SR et al., 2011; Ikeda et al., 2016). Furthermore, evidence has shown that 

low intensity mechanical vibration down regulates NF-kappaB ligand (RANKL) and up 

regulates osteoprotegerin (OPG), establishing an environment that increases bone 

regeneration (Maddi et al., 2006), as well as inhibited osteoclast formation through DC-

STAMP (Kulkarni et al., 2012). Overall, in vitro studies imply the potential use of 

mechanical vibration in producing a denser and more stable alveolus post orthodontic 

tooth movement.  

 
Retention 
 

Retention is the final phase of orthodontic treatment that aims to maintain the 

occlusion in an improved esthetic and functional position after active orthodontic 

treatment. Inflammation within the periodontal tissues that occurs during active treatment 

initiates catabolic processes within the dento-alveolar complex (Alikhani et al., 2018); 

altering bone densities (Yu et al., 2016), enlarging PDL spaces, and activating metabolic 

signals in an attempt to establish a new equilibrium (Ikeda et al., 2016). The physiologic 

condition of the periodontium at the start of the retention can be considered a recovery 

from physiologic changes that have occurred during treatment. Utilization of fixed and 

removable retainers, as illustrated in Figure 2, are necessary to stabilize the dento-
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alveolar complex after orthodontic therapy, as teeth have tendency to relapse towards 

their initial position (Horowitz et al., 1969).  

Relapses prevention and occurrence happens through complex biologic processes 

that include skeletal growth, rearrangement of periodontal ligaments, bone metabolism, 

and soft tissue adaptations (Maltha et al., 2017). Clinicians have sought to find ways to 

increase orthodontic stability post active treatment. Researchers have suggested both 

physical and chemical adjuncts to improve orthodontic stability during retention. The 

invasiveness and cost of physical surgical procedures, such as cortocotomies and 

conventional circumferential supracrestal fiberotomy (CSF), have prohibited many 

clinicians from studying or exploiting their potential benefits in improving orthodontic 

retention (Jahanbin et al., 2014). Pharmacologic agents, many of which are naturally 

occurring proteins, could help decrease relapse potential of the dentition (Hudson et al., 

2012; Kim et al., 1999; Hassan et al., 2010). Even with FDA approval, storage and use of 

pharmacologic agents in retention would be cost prohibitive for minimal if any benefit to 

the patient.   

Less invasive physical adjunctive devices, such as low frequency ultrasound, Low 

Level Laser Therapy (LLLT), and low frequency mechanical vibration have been 

proposed to accelerate orthodontic tooth movement, however little is known about their 

effects on orthodontic retention (Sonnesson et al, 2017; Jing et al., 2017; Proffit et al., 

2013). Studies have shown that low frequency ultrasound increases production of Bone 

Morphogneic Protein, a protein necessary for bone apposition, however no clinical 

evidence has been provided on its ability to improve orthodontic retention (Suzuki et al., 
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2009). LLLT has some evidence of translation demonstrating prevention of relapse 

improves with laser therapy in the short term (Jahanbin et al., 2014).   

Low frequency mechanical vibration has demonstrated promising anabolic effects 

on craniofacial tissues in the absence of inflammation, such as that caused in orthodontic 

tooth movement (Xie et al., 2006; Alikhani et al., 2018). Low frequency mechanical 

vibration could have a significant effect on improving alveolar bone density during the 

retention phase of orthodontic treatment (Alikhani et al., 2018). Although research has 

supported a promising foundation and adjunctive devices are already approved by FDA 

for clinical use, few studies have been conducted to assess the effects of mechanical 

vibration on orthodontic retention.     

 
 

  
Figure 2. Examples of orthodontic retainers. a) bonded fixed retainer (Image from Dear 
Doctor Inc.) and b) Hawley retainer (Image from Dolphin Aquarium software). 
 
 
Health Benefits of Mechanical Vibration 
 

Vibration research has shown evidence of providing generalized health benefits. 

Orthopedic vibrational research has demonstrated improved bone density in patients with 

osteoporosis (Li et al., 2006; Xie et al., 2006). Studies in exercise science have shown 

low magnitude vibration reduces muscle soreness by improving blood flow to effected 

2a. 2b. 
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areas (Veqar et al., 2014). Additionally, vibration has shown to improve flexibility, 

balance, muscle strength and coordination (Veqar et al., 2014; Uhm et al., 2018; Almpani 

et al., 2016).  

 
Mechanical Vibration Effects on Bone 
 

Studies have shown that mechanical vibration has anabolic and catabolic effects 

on bone mass and architecture, both in orthopedics and dentistry (Thompson et al., 2014; 

Nishimora et al., 2008). Active orthodontic therapy initiates a physiologic inflammation, 

which in the presence of mechanical vibration activates catabolic functions (Alikhani et 

al., 2018). This increased metabolic turnover is the mechanism that allows for accelerated 

orthodontic tooth movement while under mechanical vibration (Pavlin et al., 2015). 

Whereas in the absence of inflammation mechanical vibration signals anabolic processes 

that some researchers have suggested could play a significant role in stabilizing the 

dentition during orthodontic retention (Alkahani et al., 2018). 

Studies have suggested that ranges of frequencies with adjunctive mechanical 

vibration devices are effective at accelerating orthodontic tooth movement. Established 

companies, such as AcceleDent®, retail adjunctive mechanical vibration devices (Figure 

3) to clinicians, stating that these devices accelerate orthodontic tooth movement. The 

U.S. Food and Drug Administration (FDA) has approved Acceledent® as a Class II 

medical device proven to move teeth up to 50% faster (AcceleDent website). 

AcceleDent®’s low frequency mechanical vibration occurs at 30 Hz with .3g of 

acceleration. Recent translational research has shown significant improvement in 

orthodontic tooth movement seen at 60 Hz and 120 Hz, but without significant difference 

between 60 Hz and 120 Hz (Alkahani et al., 2018). Future clinical research should be 

conducted at a higher frequency beyond what is currently being clinically prescribed to 

patients.     



  10 

 

 
Figure 3. Orthodontic vibration device - AcceleDent®. This device provides mechanical 
vibration at a frequency of 30 Hz with .3g of acceleration, used 20 min per day. 
 
 
Mouse Skull Anatomy 

 The average dimensions of mouse calvaria are approximately length 25 mm 

anterior-posterior, width 10 mm left-right, and height 10 mm superior-inferior 

(Kawakami et al., 2008). In this study, the experimental area of interest was 5 mm 

anterior to the right maxillary 1st molar to the distal of right maxillary 3rd molar as 

depicted in Figure 4. Calvaria were resected superior to the anterior ethmoidal foramen 

and posterior to the tympanic bulla to reduce bone volume for CT scans (Figure 4).  

 
 

 

Figure 4. Anatomy of a mouse calvaria.  a) Anatomy of the left sagittal view of a mouse 
calvaria highlighting the side contralateral to the Region of Interest that will be scanned 
by micro-CT to measure variations in bone height and bone volume fraction. b) Inferior 
horizontal view of the mouse calvaria, highlighting to the experimental Region of 
Interest. 
 

  

  

4a
.

4b
.
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Micro-Computed Tomography 
 
Computed Tomography in dentistry has enabled clinicians to better visualize 

constructs of alveolar bone, tooth morphology, accessory canals, impaction and 

resorption of the dentition. This 3-dimensional rendering of the hard tissues within dental 

facial complex is quickly becoming the standard of care in many clinical situations. The 

use of this technology has only been limited by the cost and the level of radiation 

produced. However, the costs have decreased and limited fields of view/ scan speeds 

have reduced exposure significantly. From a research perspective, micro-CT provides 

significant experimental value for hard tissue density and volumes of alveolar bone 

(Ohiomoba et al., 2017; Park et al., 2009).  
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Chapter III 
 
Materials and Methods 
 
Experimental Design 
 

In this project we investigated the effects of mechanical vibration on orthodontic 

tooth retention. Thirty-two 14-week-old inbred strain C57BL/6 male mice were randomly 

assigned into four groups:  

1) Control (N=6)  

2) Mechanical Vibration (MV) group (N =6)  

3) Orthodontic Retention (OR) group (N=9)  

4) Orthodontic Retention and Mechanical vibration (ORMV) group (N=11)  

All the 20 mice undergoing orthodontic treatment received approximately 10 g of force 

through a coil spring to move maxillary right 1st molar anteriorly for 10 days, followed by 

a retention period of 2 weeks. In MV and ORMV groups, we applied mechanical 

vibration (60 Hz, 0.3g) for 5min/day on the maxillary right 1st molar throughout the 

retention period while the control and OR groups were treated under the same condition 

but without vibration. 

 
Appliance Placement  
 

In accordance with the Recommended Best Practices for Mouse Anesthesia & 

Analgesia designed by Marquette University’s Office of Research and Compliance 

(ORC), mice were placed under general anesthesia by injection with Ketamine (100 

mg/kg) and Xylazine (10 mg/kg) prior to appliance delivery. Once fully anesthetized a 

.030 in. stainless steel (SS) wire was used to fabricate a custom mouth prop (Figure 6a) 
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to retract the buccal soft tissue while separating maxillary and mandibular incisors for an 

unobstructed surgical field. Titanium micro needle holders for ophthalmic surgery 

(Figure 5) were used to pass separate 0.009 inch. SS ligature wire beneath the contact of 

right maxillary 1st and 2nd molars and between the maxillary central incisors. Each 

ligature was then ligated to a custom fabricated nickel – titanium mini-spring (G&H 

Company) approximately 3.5 mm in length. During ligation the custom spring was 

activated to produce an orthodontic force intended to mesialize the right maxillary 1st 

molar. A self-etching primer and flowable composite were used to prevent dislodgement 

of the central incisor ligation, as no height of contour is present to retain the ligation. 1st 

molar ligation was tied beneath the height of contour with no composite attachment, as 

accidentally bonding 1st and 2nd molars together would significantly affect results.  

 
 

 

Figure 5. Micro-surgery tools. The titanium micro needle holders for ophthalmic surgery 
were used during appliance placement to provide a minimally invasive approach to 
appliance placement (https://www.ebay.com/i/323201898564?chn=ps). 
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Figure 6. Experimental setting-up for mice. a) a mouse under inhalation anesthesia, with 
the custom mouth prop in place and b) an illustration of the orthodontic appliance utilized 
in our study (Image from d’Appuzzo 2013). 
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655650/)  
 
 
Mechanical Vibration 
 

Post induction of anesthesia through isoflurane inhalation, mice was propped on a 

platform as seen in Figure 7b. Unilateral Mechanical vibration was conducted through an 

electromechanical actuator held in place by a custom apparatus as demonstrated in 

Figure 7b. Custom software (LabView) was designed to communicate with the 

electromechanical actuator to produce specific frequencies of vibration. Vibration was 

conducted at 0.3g (acceleration), 20 micrometers of micro-displacement (vertical), and 60 

Hz frequency, for 5min/day. Inhalation of isoflurane was used for daily sedation as 

research has shown injectable anesthesia affect metabolic processes when used daily, 

which could skew experimental results.  



  15 

 

 
Figure 7. Manipulation of mice during experiment. a) demonstration of the use of 
electromechanical actuator being placed on the right maxillary 1st molar of the mouse 
while sedated through isoflurane inhalation. b) demonstration of the stabilization 
platform for inhalation of isoflurane.  
 
 
Retention of orthodontic tooth movement 
 

To halt active orthodontic treatment, Flow Tain©, a light curable composite 

material was injected into the threads of the spring coils and cured. The deactivated 

spring then acted as a fixed retainer during the retention phase in this study. The retention 

phase was conducted for 14 days. Fukui et al. (2003) suggests that a significant amount 

of periodontal reorganization occurs following orthodontic tooth movement of 8 days in 

rats. When extrapolated to mice, 14 days would allow for significant bone recovery and 

periodontal recovery to occur.  

 
Euthanasia 
 

Euthanasia is defined as the termination of animals by stimulating rapid 

unconsciousness followed by death without producing pain or distress. Pain is derived 

through nerve impulses that reach the brain. Consequently, an unconscious animal is 

unable to feel pain. Respiratory and cardiac arrest preceded by an expedited 

unconsciousness is necessary for a suitable euthanasia method.  
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Euthanasia of mice within this animal model is consistent with the 2007 Report of 

the AVMA Guidelines on Euthanasia. Guidelines recommend inhalation of CO2 to 

depress the cerebral cortex, preventing pain and distress, while rapid unconsciousness 

and death occur. Mice were placed in a sealed chamber with a CO2 flow rate of 4 liters 

per minute, until animals appeared unconscious (approximately 1 min).  Flow rates of 

CO2 were then adjusted to 10 liters per minute for four minutes causing asphyxiation. 

Followed by cervical dislocation and decapitation to ensure death.   

 
Tissue Preparation 
 

The mandible and all soft tissues were physically separated from the mouse 

calvaria. Additionally, the cranium was removed from the maxilla to minimize the micro-

CT scan volume. Calvaria were washed 3 times in PBS. Fixation in formalin for 24 hours 

then into 70% ethanol till examination. 

 
Micro-Computed Tomography 
 

Distance measurements of molar tooth movement, alveolar bone height and bone 

volume fraction (BVF) were analyzed using micro-computed tomography (SCANCO 

Medical AG, Bruttisellen, Switzerland) (Figure 8). Peak Kilo voltage was set to 55 kVp 

with an intensity of 145 JA. Voxel size was set to 8 µm. 
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Figure 8. The micro-computed tomography system (SCANCO Medical AG, Bruttisellen, 
Switzerland). 

 
 
Bone Parameters 
 

Bone Volume Fraction (BVF) was analyzed on micro-computed tomographies 

(SCANCO Medical AG, Bruttisellen, Switzerland). For quantitative analyses, the micro-

CT images were cropped to a region of interest (ROI) that was limited to the furcation of 

the maxillary right 1st molar. Scanning parameters followed guidelines set by Yadav et al.  

(2015). Samples were scanned individually within 16 mm chamber under high resolution 

in a liquid medium. Peak voltage was set to 55 kVp with an intensity of 145 JA. Voxel 

size was set to 8 µm to provide the necessary resolution for accurate measurement of the 

bone volume fraction within the alveolus. Threshold of bone within each scan was 

established through histogram analysis and then averaged over all scans to the equivalent 

6555 units, which was used to specify bone in all scans. 
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Figure 9. 3D rendering images of Micro-CT scans to depicting the effects of OTM and 
MV on the maxillary 1st molar region labeled as “S”. a) Control group; b) Mechanical 
Vibration (MV) group; c) Orthodontic Retention (OR) group; and d) Orthodontic 
Retention and Mechanical Vibration (ORMV). 
 
 
Tooth movement measurement 
 

Measurements of the 1st molar orthodontic tooth movement were made through 

micro-focus computed tomography. Micro-CT slices were oriented and aligned along the 

occlusal plane and the central fossa. Distances measured through the sagittal slice at the 

greatest height of contour on the distal of maxillary right 1st to the mesial height of 

contour of the maxillary right 2nd molar, as demonstrated between blue and green arrows 

in Figure 12. 

a
.

b
.
d
.

c
.
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Differences in Crestal Bone Height 
 
 Differences in crestal bone height were measured to establish the effectiveness of 

vibration in alveolar bone regeneration post orthodontic movement. Sagittal and frontal 

planes of the micro-CT scans were aligned separately through pulpal chambers of 

distobuccal and mesial roots of the maxillary right 1st molar. Distances were measured 

through the sagittal plane from the CEJ to the height of crestal bone at each root 

respectively. Measurements for each group are depicted in Figures 16 and 17.  

 
Furcation Region of Interest Analysis  
 
 Bone volume fraction of the right 1st molar was measured to establish the 

effectiveness of vibration on alveolar bone regeneration. The horizontal plane of the 

micro-CT was reoriented to be leveled with the apex of all three roots of maxillary right 

1st molar. Points were established at each root within alternating slices of the horizontal 

plane (Figure 10a) and then interpolated to generate a three-dimensional Region of 

Interest (ROI) (Figure 10b). For the furcation ROI, points were established in three 

locations, i.e. the most distal point of the mesial root, the most mesial point of the distal 

buccal root, and the most mesial buccal point of the distal lingual root. These points are 

demonstrated in Figure 10.   
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Figure 10. Definition of furcation region of interest (ROI). a) Horizontal plane 
demonstrating points to generate the furcation ROI. From left to rights roots around the 
established points on most mesial point of distal buccal root, most mesial buccal point on 
distal lingual root and most distal point on distal buccal root. b) ROI was generated 
through points placed in a) throughout all horizontal slices.  

 
 
Interproximal Region of Interest (ROI) Analysis  
 
 Bone volume fractions (BVF) between the upper right 1st and 2nd molars were 

measured to establish the effectiveness of vibration on alveolar bone modeling/formation. 

The horizontal plane of the micro-CT was oriented mesio-distally to level with the 

occlusal plane of the maxillary right 1st and 2nd molars, then oriented buccal-lingually to 

the apex of the mesial lingual and mesial buccal roots of the maxillary right 2nd molar. 

The interproximal ROI between the 1st and 2nd molars was developed through 4 points at 

each of the 4 roots present within each slice of the horizontal plane. The points were 

located at the most mesial portion of the mesial buccal and mesial lingual roots of the 

maxillary 2nd molar, then at the most distal point of the maxillary lingual root and the 

most distal lingual point of the distal buccal root of the maxillary 1st molar. The points 

were then interpolated between slices to generate the interproximal Region of Interest, as 

seen in Figure 11.   

 
 

a. b. 
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Figure 11. Definition of the interproximal ROI. a) Horizontal plane demonstrating points 
to generate the furcation ROI. Points were located at the most mesial portion of the 
mesial buccal and mesial lingual roots of the maxillary 2nd molar, then at the most distal 
point of the maxillary lingual root and the most distal lingual point of the distal buccal 
root of the maxillary 1st molar. b) ROI was generated through points placed in a) 
throughout all horizontal slices.  
 
 
Intra-Examiner Reliability 
 

Variability between scans is inherently present when the examiner selects points 

of interest within each scan. To examine the variability present within the examiner 

(N.B.), we conduct an intra-examiner reliability test – represented by intraclass 

Correlation Coefficient (ICC). Significance was measured in terms of p value <.05 and 

the measurements were correlated to the ICC with 1 being ideal. Two-way mixed effects 

model where people effects are random and measures effects are fixed. The estimator is 

the same, whether the interaction effect is present or not. Type C intraclass correlation 

coefficients using a consistency definition. The between-measure variance is excluded 

from the denominator variance. This estimate is computed assuming the interaction effect 

is absent, because it is not estimable otherwise. 

 

a. b. 
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Statistical Analysis 

Descriptive statistics, ANOVA analysis, and multiple comparison Tukey analysis 

were used to examine the distribution and differences of BVF and crestal bone heights 

among the 4 experimental groups (p < 0.05 is considered significant). 
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Chapter IV 
 

Results 
 
 
Intra-Examiner Reliability 
 

Variability between measurements is inherently present when the examiner 

selects points of interest within each scan. To examine the variability present within the 

examiner (N.B.), we conducted an intra-examiner reliability test – represented by 

Intraclass Correlation Coefficient (ICC). Measurements for all the 5 variables in one scan 

in this study were repeated three times every two days apart. The correlation of all the 

measures of 3 times demonstrated high significance (p < 0.000), indicating that all the 

measurements conducted at the 3 times were very close to each other, as ICC were 0.999 

(1 is ideal).  Results depicted in Table 1 and Table 2.  

 
 

Table 1. Repeated measurements for the Intraclass Correlation Coefficient. Repeat 
measurements for one scan three times every two days for heights of distal buccal and 
mesial root crestal bone to CEJ respectively as well as for the furcation BVF of the ROI.  

TIME 

Total Volume 
(mm^3) 

furcation 

Bone 
Volume 
(mm^3) 

furcation 
BVF 

Interproximal 

Distal 
buccal root 
Bone-CEJ 

Mesial 
Buccal 

Root Bone-
CEJ 

T1 0.076 0.0422 0.5559 0.23 0.45 
T2 0.0764 0.0441 0.5767 0.25 0.43 
T3 0.0749 0.0437 0.5837 0.24 0.43 

 
 
Table 2: Statistical calculation of the Intraclass Correlation Coefficient.   

 
Note: As shown, ICC = 0.998 (p < 0.000) indicating that points selected demonstrated a 
high rate of consistency. 
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Intermolar distance  
 

Due to appliance dislodgement in all but one mouse in the OR group, most 

intermolar distances displayed at the end of experiment were not measurable. A single 

experimental mouse that displayed 1st molar orthodontic movement (Figure 12b), and the 

intermolar distances were measured through micro-CT analysis. The sagittal plane was 

aligned through the central fossa and distances were measured from the height of contour 

of the 1st and 2nd molars, seen in Figure 12a. This mouse displayed orthodontic tooth 

movement of .19 mm as measured through micro-CT analysis.    

 
 

 
Figure 12. Measurement of tooth movement. a) Sagittal plane of the micro-CT scan 
aligned through the central fossa, measuring intermolar distance from the distal of 
maxillary 1st molar to the mesial of maxillary 2nd molar at the heights of contour. b) The 
calvaria dissection demonstrating 1st molar mesial displacement under orthodontic force.   
 
 
Tooth to Crestal Bone Relationship 
 

Bar graphs (Figure 13) represent the experimental group means and standard 

deviations for the height of crestal bone to cemental enamel junction (CEJ) around the 

distal buccal and mesial roots of the maxillary 1st molar. Micro-CT examples of each 

experimental group distances measured around the distal buccal root and mesial root are 

Incisor 1st	molar 

a. b. 
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depicted in Figures 13 and 15. Variations in heights of crestal bone were measured 

indirectly through their relationship to the CEJ of the maxillary 1st molar, indicating an 

inverse relationship between data collected and crestal bone heights. In other words, 

larger values from the data (Figure 14 and Tables 3, 4, 5) equate to lower crestal bone 

heights and a reduction of crestal bone.  

 Mean values of the data collected from the CEJ of the distal buccal root to crestal 

bone (See Figure 14 and Tables 3, 4, 5) strongly correlates with BVF of interproximal 

and furcation ROI’s, indicating that crestal bone increased with mechanical vibration 

(MV vs. Control) and crestal bone heights decrease with orthodontic tooth movement 

(ORMV vs. OR). Whereas mean values of the distance from the CEJ of the mesial root to 

crestal bone demonstrate congruent data for non-retention groups, though retention 

groups where incongruent with previous findings, as seen in Figure 16 and Tables 6, 7, 

8. The mesial crestal bone heights of retention group demonstrated greater crestal bone 

heights than that of the retention and vibration group. None of the data collected from our 

experimental groups was statistically significant possibly due to large variation and small 

sample size.  
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Figure 13. Determination of the height of crestal bone (blue arrow) to CEJ (green arrow) 
around the distal buccal root of the maxillary 1st molar in each experimental group: a). 
Control group. b). MV group. c). OR group d). ORMV group. 
 
 

Table 3. Descriptive results of the distances (mm) from CEJ to crestal bone for the 
distal buccal root. 

  

 N Mean 
Std. 

Deviation Std. Error 

95% Confidence Interval 
for Mean 

Minimum Maximum 
Lower 
Bound 

Upper 
Bound 

Control 6 .238333 .0449073 .0183333 .191206 .285461 .1700 .3000 

MV 6 .230000 .0209762 .0085635 .207987 .252013 .1900 .2500 

OR 9 .330000 .0916515 .0305505 .259550 .400450 .2300 .4900 

OR+MV 11 .305455 .0728510 .0219654 .256513 .354397 .2000 .4400 

Total 32 .285625 .0775819 .0137147 .257654 .313596 .1700 .4900 
 

 

 

 

 

 

 
 

a.	 b.	

d.	c.	
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Table 4. ANOVA analysis of the distances (mm) from CEJ to crestal bone for the 
distal buccal root.  

 

 
Sum of 

Squares df Mean Square F Sig. 

Betw

een 

Grou

ps 

(Combined) .054 3 .018 3.804 .021 

Linear Term Unweighted .035 1 .035 7.390 .011 

Weighted .032 1 .032 6.706 .015 

Deviation .022 2 .011 2.354 .114 

Within Groups .133 28 .005   
Total .187 31    

 
 

Table 5. Multiple (Tukey) comparisons between each two groups for the distances 
from CEJ to crestal bone for the distal buccal root. 

(I) Group (J) Group 

Mean Difference 

(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Control MV .0083333 .0397247 .997 -.100127 .116794 

OR -.0916667 .0362635 .077 -.190677 .007344 

OR+MV -.0671212 .0349199 .242 -.162463 .028221 

MV Control -.0083333 .0397247 .997 -.116794 .100127 

OR -.1000000* .0362635 .047 -.199011 -.000989 

OR+MV -.0754545 .0349199 .159 -.170797 .019888 

OR Control .0916667 .0362635 .077 -.007344 .190677 

MV .1000000* .0362635 .047 .000989 .199011 

OR+MV .0245455 .0309256 .857 -.059891 .108982 

OR+MV Control .0671212 .0349199 .242 -.028221 .162463 

MV .0754545 .0349199 .159 -.019888 .170797 

OR -.0245455 .0309256 .857 -.108982 .059891 
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Figure 14. Bar graph of the mean ± SD of the 4 experimental groups for the height of 
crestal bone to cemental enamel junction (CEJ) around the distal buccal root of the 
maxillary 1st molar.  

 
 

 
Figure 15. Determination of the height of crestal bone (blue arrow) to CEJ (green arrow) 
around the mesial root of the maxillary 1st molar in each experimental group: a). Control 
group. b). MV group. c). OR group d). ORMV group.  

*	 

 

a. b. 

d. c. 
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Table 6. Descriptive results of the distances (mm) from the CEJ at the mesial to the 
crestal bone. 

 

 N Mean 

Std. 

Deviation Std. Error 

95% Confidence 

Interval for Mean 

Minimum Maximum 

Lower 

Bound 

Upper 

Bound 

Control 6 .496667 .0608824 .0248551 .432775 .560559 .4200 .5800 

MV 6 .438333 .0608002 .0248216 .374527 .502139 .3300 .5000 

OR 9 .517778 .1153015 .0384338 .429149 .606406 .3400 .7000 

OR+MV 11 .540000 .0804984 .0242712 .485920 .594080 .4300 .6900 

Total 32 .506563 .0898245 .0158789 .474177 .538948 .3300 .7000 
 
 

Table 7. ANOVA Analysis of the distances (mm) from the CEJ at the mesial root 
to the crestal bone. 

 

 
Sum of 

Squares df Mean Square F Sig. 

Between 

Groups 

(Combined) .042 3 .014 1.881 .156 

Linear Term Unweighted .017 1 .017 2.273 .143 

Weighted .020 1 .020 2.736 .109 

Deviation .022 2 .011 1.453 .251 

Within Groups .208 28 .007   
Total .250 31    
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Table 8. Multiple (Tukey) comparisons between each two groups for the distances from 
the CEJ at the mesial root to the crestal bone 

 

 (I) Group (J) Group 

Mean Difference 

(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Control MV .0583333 .0497819 .649 -.077587 .194254 

OR -.0211111 .0454445 .966 -.145189 .102966 

OR+MV -.0433333 .0437608 .756 -.162814 .076147 

MV Control -.0583333 .0497819 .649 -.194254 .077587 

OR -.0794444 .0454445 .319 -.203522 .044633 

OR+MV -.1016667 .0437608 .117 -.221147 .017814 

OR Control .0211111 .0454445 .966 -.102966 .145189 

MV .0794444 .0454445 .319 -.044633 .203522 

OR+MV -.0222222 .0387552 .939 -.128036 .083591 

OR+MV Control .0433333 .0437608 .756 -.076147 .162814 

MV .1016667 .0437608 .117 -.017814 .221147 

OR .0222222 .0387552 .939 -.083591 .128036 
 
 

  
Figure 16. Bar graph of the mean ± SD of the 4 experimental groups for the height of 
crestal bone to cemental enamel junction (CEJ) around the mesial root of the maxillary 1st 
molar.  
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Bone Volume Fraction (BVF) 
 

The stability of tooth positions after orthodontic tooth movement depends mainly on the 

quantity of the newly formed alveolar bone around the orthodontically repositioned teeth during 

retention. The quantity of alveolar bone in the experimental groups thus represents dental 

stability. On the Micro-CT scans of the mouse calvaria, Bone Volume Fraction (BVF) was 

measured in two locations, the furcation of the 1st molar (Figure 17) and the interproximal bone 

between the 1st and 2nd molars (Figure 18). BVF was calculated from two ROI’s extrapolated 

from the methods discussed above. Results from ROI’s in both the furcation and interproximal 

molar region provided congruent BVF data. Mean values from both furcation (Figure 18 and 

Tables 9, 10, 11) and interproximal (Figure 19 and Tables 12, 13, 14) ROIs indicated that 

vibration produced an increase in BVF and orthodontic tooth movement decreased BVF. 

Averages of BVF indicate that vibration could increase the alveolar bone concentrations post 

orthodontic movement, though results were not statistically significant (Tables 11 and 14). 

Interproximal BVF did demonstrate a significant decrease between Control and OR groups, 

indicating that orthodontic tooth movement decreased BVF (Table 14).    
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Figure 17. Determination of BVF of the 1st molar furcation ROI in each of the experimental 
group. a). Control group. b). MV group. c). OR group d). ORMV group.  
 
 
Table 9. Descriptive statistics for mean furcation BVF (%) of experimental groups.  

 
 

 N 

Mean 

(mm3/mm3) 

Std. 

Deviation Std. Error 

95% Confidence Interval 

for Mean 

Minim

um Maximum 

Lower 

Bound 

Upper 

Bound 

Control 6 .614917 .0721790 .0294669 .539169 .690664 .5468 .7289 

MV 6 .656133 .0821844 .0335516 .569886 .742381 .5509 .7779 

OR 9 .492178 .1340975 .0446992 .389101 .595254 .2780 .7226 

OR+MV 11 .518800 .0774853 .0233627 .466745 .570855 .3775 .6896 

Total 32 .555084 .1131028 .0199939 .514306 .595862 .2780 .7779 

 

 

 

 

 

 

 
 

a. b. 

d. c. 
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Table 10. ANOVA Analysis of mean furcation BVF (%) of experimental groups. 
 

 

 
Sum of 

Squares df 

Mean 

Square F Sig. 

Between 

Groups 

(Combined) .133 3 .044 4.701 .009 

Linear Term Unweighted .079 1 .079 8.367 .007 

Weighted .075 1 .075 7.990 .009 

Deviation .058 2 .029 3.057 .063 

Within Groups .264 28 .009   
Total .397 31    

 
 

Table 11. Multiple comparisons for mean furcation BVF (%) of experimental 
groups. The mean difference is significant at the 0.05 level. 

(I) Group (J) Group 

Mean 

Difference 

(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Control MV -.0412167 .0560312 .882 -.194199 .111766 

OR .1227389 .0511492 .100 -.016914 .262392 

OR+MV .0961167 .0492541 .230 -.038362 .230596 

MV Control .0412167 .0560312 .882 -.111766 .194199 

OR .1639556* .0511492 .017 .024302 .303609 

OR+MV .1373333* .0492541 .044 .002854 .271812 

OR Control -.1227389 .0511492 .100 -.262392 .016914 

MV -.1639556* .0511492 .017 -.303609 -.024302 

OR+MV -.0266222 .0436202 .928 -.145719 .092474 

OR+MV Control -.0961167 .0492541 .230 -.230596 .038362 

MV -.1373333* .0492541 .044 -.271812 -.002854 

OR .0266222 .0436202 .928 -.092474 .145719 
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Figure 18. Bar graph of the experimental groups mean values and variability for 
furcation BVF. (* P < .05) 
 
 

 
Figure 19. Determination of BVF of Interproximal 1st and 2nd molar ROI in each of the 
experimental group. a). Control group. b). MV group. c). OR group d). ORMV group.  
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Table 12. Descriptive statistics for mean interproximal BVF (%) of experimental 
groups. 

 
 

 N 

Mean 

(mm3/mm3) 

Std. 

Deviation Std. Error 

95% Confidence 

Interval for Mean 

Minimum Maximum 

Lower 

Bound 

Upper 

Bound 

Control 6 .685150 .0509205 .0207882 .631712 .738588 .6058 .7422 

MV 6 .737133 .0276634 .0112935 .708102 .766164 .7057 .7862 

OR 9 .433044 .1489026 .0496342 .318588 .547501 .2355 .6405 

OR+MV 11 .491273 .1149293 .0346525 .414062 .568483 .2375 .6213 

Total 32 .557347 .1611730 .0284916 .499238 .615456 .2355 .7862 
 
 

Table 13. ANOVA Analysis of mean interproximal BVF (%) of experimental 
groups. 

 

 
Sum of 

Squares df Mean Square F Sig. 

Between 

Groups 

(Combined) .479 3 .160 13.704 .000 

Linear 

Term 

Unweighted .302 1 .302 25.936 .000 

Weighted .283 1 .283 24.245 .000 

Deviation .197 2 .098 8.433 .001 

Within Groups .326 28 .012   
Total .805 31    
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Table 14. Multiple comparisons for mean furcation BVF (%) of experimental groups. 
The mean difference is significant at the 0.05 level. 

(I) Group (J) Group 

Mean Difference 

(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower 

Bound Upper Bound 

Control MV -.0519833 .0623216 .838 -.222141 .118174 

OR .2521056* .0568915 .001 .096774 .407437 

OR+MV .1938773* .0547837 .007 .044301 .343454 

MV Control .0519833 .0623216 .838 -.118174 .222141 

OR .3040889* .0568915 .000 .148757 .459421 

OR+MV .2458606* .0547837 .001 .096284 .395437 

OR Control -.2521056* .0568915 .001 -.407437 -.096774 

MV -.3040889* .0568915 .000 -.459421 -.148757 

OR+MV -.0582283 .0485173 .632 -.190696 .074239 

OR+MV Control -.1938773* .0547837 .007 -.343454 -.044301 

MV -.2458606* .0547837 .001 -.395437 -.096284 

OR .0582283 .0485173 .632 -.074239 .190696 
 

 
 

 
  
Figure 20. Bar graph of the experimental group mean values for interproximal BVF (%), 
as well as the range of values for each group.  (** P < .01) 
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Chapter V 
 
Discussion 
 
 
Animal Species 
 
 Previous studies used rabbits (Al-Sayagh et al., 2014), rats (Alikhani et al., 2018) 

and mice (Yadav et al., 2015).  In this study we used thirty-two 14-week-old inbred strain 

C57BL/6 male mice to provide greater reliability through increased sample sizes. Size 

and cost of other species often limits studies to small samples sizes, increasing chances 

for statistical error and decreasing the significance. While many researchers avoid the 

size limitations of the dentition and oral cavity in mice, our research team found that the 

right tools enabled us to overcome these limitations.     

 
Experiment Design 
 
 In this project, we investigated the effect of mechanical vibration on orthodontic 

tooth retention. Thirty-two 14-week-old inbred strain C57BL/6 male mice were randomly 

assigned into four groups:  

1) Control (N=6)  

2) Mechanical Vibration (MV) group (N =6)  

3) Orthodontic Retention (OR) group (N=9)  

4) Orthodontic Retention and Mechanical vibration (ORMV) group (N=11)  

Twenty mice in OR and ORMV groups received approximately 10g of force by a coil 

spring to move maxillary right 1st molar anteriorly for 10 days, followed by a retention 

period of 2 weeks. In MV and FMV groups we applied mechanical vibration (60 Hz, 
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0.3g) for 5 min/day on the maxillary right 1st molar throughout the retention period while 

the control group were treated under the same condition without vibration. 

 
Orthodontic Tooth Movement (OTM) 

 Orthodontic tooth movement (OTM) as measured by the distance between the 1st 

and 2nd molars at the height of contour (See Figure 12) was only found in one 

experimental mouse at a distance of .19 mm of space by the end of the 2 weeks retention 

simply because the coil spring was remained to the end. OTM though was believed to 

have occurred in the rest of experimental mice as the majority of mice lost the coil 

appliances between days 3 and 5 at the 1st molar attachment. During appliance placement 

a 0.009” wire was passed beneath the contact point between the 1st and 2nd molars, then 

tied around the 1st molar. Similar animal models with rats indicated that the wire tied 

beneath the height of contour would be enough to hold appliance placement at the molar 

attachment. Dislocation of the appliance from the 1st molar attachment is believed to have 

occurred as orthodontic tooth movement opened space between 1st and 2nd molars, the 

wire was able to slip over the height of contour and through the separated contact point 

halting orthodontic tooth movement. Indicating at least 0.01” of space was created 

through orthodontic tooth movement for the 1st molar wire to be passed through the 

contact during the first few days of the orthodontic tooth movement phase.  

 Considerations for future appliance placement may consider placing bonding 

material over the wire at the 1st molar attachment. Though significant effort should be put 

in place to prevent bonding materials from bonding the 1st and 2nd molars together, as this 

mistake would significantly alter results.   
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Mechanical Vibration 

 Current clinical devices use low frequency mechanical vibration at 30 Hz with 

0.3g of acceleration to enhance OTM; and recent translational research has shown 

significant improvement in OTM seen at 60 Hz and 120 Hz (Alkahani et al., 2018). The 

improvement of tooth movement at higher frequencies in comparison to what is being 

clinically prescribed indicates the need for future studies at higher frequencies. This study 

has expanded on initial mechanical vibration retention studies conducted at lower 

frequencies of 30 Hz (Yadav et al., 2015), in an effort to more effectively demonstrate the 

affects of higher frequency vibration on retention. In addition, this retention model 

created a fixed retention period during vibration, allowing for bone regeneration to occur 

and bypass the greatest period of potential relapse.  

Our study demonstrated that the BVFs at furcation and interproximal regions as 

well as crestal bone height means were consistent with the current evidence of 

mechanical vibration improving bone volume regeneration (Alikhani et al., 2016). 

Therefore, the increased bone regeneration could have a positive effect on the stability of 

post orthodontic treatment, although results from this study were not significant. Mesial 

crestal bone heights for both retention groups demonstrated incongruent data in 

comparison to other consistent changes in this study can be explained that the alveolar 

bone mesial to the 1st molar underwent significant resorption allowing tooth to move 

orthodontically thus its reversal to bone formation may take longer time which is not 

revealed in the time window of this study. Though a large variability and small sample 

sizes created significant overlap between both experimental retention groups. Increased 

distance from mesial crestal bone to CEJ for retention and vibration group may indicate 
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that longer period of retention and vibration is necessary for the bone that only 

experiences resorption. None of the data between experimental groups was significant.  

 
Orthodontic Retention (OR) 

 Previous retention studies (Yadav et al., 2015) have expanded on relapse potential 

under mechanical vibration, although these studies lacked a realistic study of retention 

stability. Relapse potential is greatest during the initial period post removal of 

orthodontic forces. Yadav et al. (2015) allowed for relapse to occur with no period of 

retention and no initial alveolar bone regeneration to begin. Anabolic processes necessary 

for bone regeneration from mechanical vibration occur over several days post removal of 

orthodontic forces. A stabilization period should be established while mechanical 

vibration is occurring through the retention period. This procedure may negate the 

greatest initial relapse and allow the accelerated cellular metabolic processes of 

mechanical vibration to initiate.   

 
Limitations 

 Several imitations exist in this study, including sample size and appliance 

dislocation, resulted in the lack of significance in experimental results. Larger samples 

sizes of experimental groups could provide more consistent results, providing greater 

significance to the data collected. The appliances delivered in the experimental groups 

were dislocated from molar region, due to a lack of retention provided by the height of 

contour of the distal portion of the 1st molar. Ligation of the 1st molar region may require 

future application of composite bonding to prevent dislocation of the appliance, though 

great care should be maintained not to bond 1st and 2nd molars together. Mesial crestal 
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bone only experienced resorption and results indicated that retention only demonstrated 

greater crestal bone heights. Longer retention periods may be necessary to provide 

improved results consistent with past studies.  

 
Clinical Implications 

Current clinical device AcceleDent utilizes mechanical vibration at 30 Hz with 

0.3g of acceleration to enhance orthodontic tooth movement. Recent translational 

research has shown significant improvement in orthodontic tooth movement seen at 60 

Hz and 120 Hz (Alikhani et al., 2018). Indicating two major implications for clinical 

application. FDA approved devices for accelerated orthodontics are readily available for 

study on the effects of mechanical vibration during orthodontic retention. Additionally, 

our findings of BVF of furcation and interproximal regions as well as crestal bone height 

indicate further study of mechanical vibration at higher frequencies may provide 

improved results for clinical devices.  
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Chapter VI 
Conclusion 

Although not statistically significant between OR and ORMV groups, the mean 

BVFs (both M1 furcation and interproximal between M1 and M2) and interproximal 

crestal bone heights demonstrate a positive correlation between mechanical vibration and 

alveolar bone regeneration for both OR and ORMV groups. These findings implicate the 

use of mechanical vibration during the retention phase of orthodontic treatment to 

improve the stability of tooth positions after orthodontic movement. 
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