
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

Effect of Different Finish Line Designs on the
Marginal and Internal Fit of Metal Copings Made
by Selective Laser Melting Technology
Adel Al Maaz
Marquette University

Recommended Citation
Al Maaz, Adel, "Effect of Different Finish Line Designs on the Marginal and Internal Fit of Metal Copings Made by Selective Laser
Melting Technology" (2018). Master's Theses (2009 -). 469.
https://epublications.marquette.edu/theses_open/469

https://epublications.marquette.edu
https://epublications.marquette.edu/theses_open
https://epublications.marquette.edu/diss_theses


EFFECT OF DIFFERENT FINISH LINE DESIGNS ON THE 
MARGINAL AND INTERNAL FIT OF METAL                         

COPINGS MADE BY SELECTIVE LASER                                
MELTING TECHNOLOGY 

 
 
 
 
 
 
 
 

 
by 
 

Adel Al Maaz, DDS 
 
 
 
 
 
 
 
 
 

A Thesis submitted to the Faculty of the Graduate School, 
Marquette University, 

in Partial Fulfillment of the Requirements for 
the Degree of Master of Science 

 
 
 
 
 
 
 
 

 
Milwaukee, Wisconsin 

 
May 2018 

	 	



ABSTRACT 
EFFECT OF DIFFERENT FINISH LINE DESIGNS ON THE 

MARGINAL AND INTERNAL FIT OF METAL                         
COPINGS MADE BY SELECTIVE LASER                                

MELTING TECHNOLOGY 
 
 

Adel Al Maaz, DDS 
 

Marquette University, 2018 
 

 
Introduction: Marginal fit has been defined as the gap between the prepared tooth 
and the intaglio surface of the restoration. Internal gap is the perpendicular 
measurement from the internal surface of the casting to the axial wall of the 
preparation.  Selective laser melting has been used for fabrication of metal copings 
such as Co-Cr base alloys and Au-Pt noble alloys. The purpose of this study was to 
determine the effect of different finish line designs on the marginal and internal fit of 
metal copings made from high noble, 25% noble and base alloys manufactured by 
SLM technology. 
 
Material and Methods: An ivorine right maxillary central incisor was prepared with 
three different finish line designs.  Three preparations were scanned using a Trios 
scanner and a total of 90 dies were printed using DPR 10 Resin.  Ninety metal 
copings were fabricated using 3 different types of alloys.  Copings were cemented to 
the dies using resin cement.  All specimens were sectioned buccolingually using a low 
speed diamond saw.  Marginal and internal gaps were measured at 5 locations.  
Marginal and internal gap images were determined using an inverted bright field 
metallurgical microscope at x 100 magnification. A two-way multivariate analysis of 
variance (MANOVA) was conducted to determine overall significance followed by 
analysis of variance (ANOVA) for each dependent variable (α=0.05).	
 
Results: Overall, 2700 measurements were obtained for the study.  The result of 
statistical analyses indicated that both alloy type and finish line had a significance 
influence on overall fit of the copings. For the internal fit, the alloy type had a 
significant effect (p<0.001), but the finish line had no statistically significant 
influence(p=0.337). For the marginal fit, both the alloy type and the finish line had a 
statistically significant effect, (p<0.001). There was no statistically significant 
interaction between variables.  
 
Conclusions: Finish line types did not significantly influence the internal fit between 
the copings and the dies, whereas alloy type did influence the fit between copings and 
dies.  SLM-fabricated copings made with the Base Alloy (Co-Cr) on teeth prepared 
with deep chamfer finish lines demonstrated the best marginal fits when compared to 
the other groups.  
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CHAPTER I 
 

INTRODUCTION 

Marginal and Internal Fit 

One of the factors affecting longevity of fixed dental prostheses (FDP) is 

dependent upon accurate fit of the prosthesis.(1) An important clinical assessment for 

success of a FDP is the marginal fit of the crown or retainer.(2–4) Marginal fit has 

been defined as the gap between the prepared tooth and the intaglio surface of the 

restoration.(5) The marginal fit can also be described as the linear distance between 

the finish line of the preparation and the margin of the restoration.(6) Holmes et al. 

defined the internal gap as the perpendicular measurement from the internal surface of 

the casting to the axial wall of the preparation.(7) Marginal misfit of the prosthesis 

could eventually lead to failure of the prosthesis.(3) A large marginal gap will lead to 

the use of excess luting agent and upon exposure to the oral environment, it may 

decompose due to moisture and chemomechanical processes.(8) As a result, 

microleakage may lead to secondary caries, and if the tooth is vital it could lead to 

pulpal inflammation or necrosis.(3,4,8–10) Inadequate adaptation of the crown 

margins may lead to more plaque retention, subsequent subgingival microflora which 

may lead to gingival and periodontal issues.(11) Another consequence of marginal 

misfit would be a decrease in the strength of the restoration due to stress 

concentrations.(12)  

 Some authors have discussed clinically acceptable marginal gaps. In a 5-year 

clinical study where 1000 metal-ceramic crowns were examined, McLean and 

Fraunhofer concluded that a marginal gap no greater than 120 µm was clinically 

acceptable; Christensen conducted a linear regression prediction formula and 
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concluded 39 µm was the least acceptable marginal discrepancy.(13–15) Other 

authors have written that marginal discrepancies between 100 and 150 µm are 

clinically acceptable.(13–15)  

 In-depth studies regarding marginal and internal fit of restorations fabricated 

using computer aided design/computer aided manufacturing (CAD/CAM) systems 

have been performed.  An in vitro study by Bindl and Mormann evaluated the fit of 

crown copings prepared by 4 different CAD/CAM systems (CEREC inLab, DCS, 

Decim, and Procera); it was demonstrated that the marginal gaps ranged between 17 

to 43 µm and internal gaps ranged between 110 to 136 µm.(1) Another in vitro study 

was conducted by Hyun-Soon et al., where the marginal gaps for zirconium oxide 

based crowns fabricated by Digident and Lava CAD/CAM systems was evaluated.  It 

was reported that mean marginal gaps ranged between 82 to 83 µm.(16) Reich S et al. 

examined the marginal and internal fit of 3 unit FDPs fabricated using Digident, Vita 

In-Ceram, and Lava CAD/CAM systems. It was found that the marginal gaps ranged 

from 67 to 92 µm and internal gaps ranged from 105 to 383 µm.(17)  

 Reich S. et al. performed a study on single crowns made by a chairside 

CAD/CAM system; the results yielded mean marginal gaps of 100 µm and internal 

gaps that ranged from 148 to 284 µm.(18) Marginal gaps of single cast crowns has 

also been studied; 50 % of the marginal gaps of the studied crowns exceeded 150 

µm.(19)  

Another study by Quante K et al. reported marginal and internal fit of metal-

ceramic crowns fabricated with a laser melting procedure (BEGO Medical, Bremen, 

Germany).  Their results resulted in mean marginal gap widths ranged from 74 to 99 

µm.(20)  
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Luting Cements 

Dental luting agents or cements forms the link between a restoration and the 

tooth structure.(21)  Although it is of high importance to establish retention and 

resistance forms during tooth preparation, dental cement may be used to act as a 

barrier against microbial leakage by sealing the interface between tooth and 

restoration and holding them together through some form of surface attachment.(22)  

This attachment could be mechanical, chemical or both.  An ideal dental adhesive 

should possess favorable compressive and tensile strength, have sufficient fracture 

toughness to prevent dislodgment, exhibit adequate film thickness and viscosity to 

ensure complete seating, be tissue compatible, demonstrate good working and setting 

time, and provide a durable bond between dissimilar materials.(23–25)   

In 1878, Pierce invented zinc phosphate cement, which is considered the 

oldest dental luting agent.  It has the longest track record as a luting agent for securing 

cast restorations. For more than 130 years, it has served as a standard by which newer 

systems are compared to.(26,27)  In 1903, silicate cements were developed.  They 

were the earliest tooth colored restorative materials.  Silicate cements could be 

considered to be the precursors to modern composite resin and glass ionomer 

cements.(27)      

Polyacrylate cement were discovered in 1968 by D.C. Smith, where he used 

zinc oxide as a powder and polycarboxylic acid as the liquid component.  It was the 

first cement system to be developed with the potential for adhesion to tooth 

structure.(28)  In an attempt to combine both properties of silicate and polycarbxylate 

cements, Wilson and Kent developed glass ionomer cement in 1969.(28)  Then came 

resin modified glass ionomer cement, which were developed in 1986.(27)   
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In the mid 1980’s, resin cement was invented.  Resin cements with dentin 

bonding agents have shown greater retention of restoration to teeth when compared to 

zinc phosphate cement.(28)  Resin cements can be classified according to their 

method of polymerization, and can be classified into auto-polymerizing, dual-

polymerizing and light-polymerizing cements.  Auto-polymerizing cements are 

recommended for use in areas difficult to reach with light curing units such as metal 

restorations.(29)  Dual-polymerized cements are polymerized by both a chemical 

reactions and visible light of specific wavelengths.  Dual-polymerized cements 

contain a self-initiator (benzoyl peroxide) and a light initiator 

(camphoroquinone).(30)  Lastly, light polymerized cements are cements that set only 

with exposure to certain wavelengths of visible light.  They contain a photo-initiator 

similar to camphoroquinone although some cements may contain different types of 

photo-initiators.(30)   

According to the American Dental Association (ADA) specification No. 8,   

luting cement film thickness for a single crown restoration should not exceed 25 µm 

when using a Type I luting agent, and should not exceed 40 µm when using a Type II 

luting agent.(31)   Type I luting materials are designed for the accurate seating of 

precision restorations such as inlays.  Type I luting agents include hydroxyapatite, 

glass ionomer, zinc phosphate, and polycarboxylate cements.  Type II luting materials 

are designed for all uses except for cementing precision restorations and require 

increased film thicknesses.(32)   

Die Spacer 

In the past, dentists and researchers believed that having a frictional fit 

between the coping and the tooth surface would achieve more retention.  This meant 

that during cementation, a perfect fit couldn’t be obtained due to lack of space for the 
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luting agent.(33–36)  Die spacers are designed to allow space for the cement between 

the internal surface of the restorations and the tooth surfaces.  This space reduced the 

stress areas created during cementation and allowed for a better fit and retention for 

definitive restorations.(36)   

In 1993, Grajower et al. stated that “an optimum fit of the casting can be 

obtained only if relief space allows for the cement film thickness and roughness of the 

tooth and casting surfaces”.  They believed that an effective technique included 

placing a spacer directly to the die, including the base of the tapered region.  They 

recommended that the only part not to be included was the horizontal part of the 

shoulder finish line.  They  also arbitrarily recommended that 50 µm  be used as  the 

thickness of  die spacers.(37)   

Tjan and Li found that an improved marginal fit was achieved when resin 

cement was used when compared to the marginal fit obtained with zinc phosphate 

cement.  They speculated that the reason could be because, in their study, they applied  

two layers of copal varnish to the surfaces of the prepared teeth prior to cementation 

with zinc phosphate cement, which could have influenced the marginal fitting of the 

metal castings.(38)  In a study reported by Anna Olivera et al. showed that resin 

cement (Panavia 21) exhibited the highest tensile strength when compared to resin 

modified glass ionomer cement (Vitremer luting cement) and zinc phosphate cement 

(Harvard Richter and Hoffmann, Berlin Germany).(39)  These results were also in 

agreement with the results obtained by Lee and Swartz, Tjan and Li, Pamieijer and 

Jefferies, El-Mowafy et al. and Gorodovsky and Zidan.(38,40–43)   

Lost Wax Technique 

Lost wax casting is an ancient technique for replicating an object by casting it 

in molten metal.  The lost wax technique has been used in dentistry for more than 100 
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years and is still one of the most popular methods for fabricating metal dental 

restorations.(44) This is a process where a wax pattern of a dental restoration is made 

and converted to a casting alloy or a ceramic.(45)  Many alloys have been designed 

for use in dentistry; Cobalt/chromium (Co-Cr) alloys can be cast similar to 

nickel/chromium (Ni-Cr) alloys and have better corrosion resistance.(46,47) Metal 

structures are conventionally fabricated using lost-wax technique.  However, 

CAD/CAM technology allows the precise design of metal structures.(48) 

Dental Alloys 

For successful cast restorations, alloys should meet minimum requirements for 

strength, stability, castability, corrosion/tarnish resistance, burnishability, polishability 

and biocompatibility.  Metal ceramic alloys must possess additional physical 

properties above and beyond the properties of non-metal ceramic alloys.  Success of  

metal ceramic restorations is dependent upon the physical properties of the metal 

substructures.(49) These alloys require higher melting temperatures, thermal 

compatibility with ceramics, oxide formation and sag resistance.(49)  According to 

the ADA in 1986 dental cast alloys are divided into different groups:(50) 

1. High noble alloys ³ 60 % Au, Pt, Pd and ³40 % Au 

2. Noble Alloys ³ 25 % Au, Pt, Pd 

3. Base metal alloys < 25 % Au 

Noble-metal metal-ceramic alloys (Gold-Platinum-Palladium): 

Gold-platinum-palladium (Au-Pt-Pd) alloys were the first alloys successfully 

used for metal-ceramic restorations; however due to high costs, more economical 

alloys were developed with significantly better mechanical properties and sag 

resistance.  If the alloy had more palladium than platinum, it was referred to as a gold-

palladium-platinum alloy (Au-Pa-Pt).  When palladium was eliminated from the 
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alloy, the alloy would be  referred to as a gold-platinum alloy (Au-Pt).(51)  Because 

of their properties having a low sag resistance, those alloys should be limited to single 

crowns and three unit FDPs.(52) Tables 1 and 2 below list the properties of several 

noble-metal  and metal-ceramic alloys. 

 

Table	1.	Compositional	ranges	(wt.	%)	of	noble-metal	metal-ceramic	alloys.	

Type	 Au	 Pt	 Pd	 Ag	 Cu	 Sn	 Ga	 In	 Other	
Au–Pt–Pd	 75–

88 
≤8 ≤11 ≤5 – 2–5 – <1 Fe, Re 

Au–Pd	 44–
55 

– 35–45 – – 8–12 ≤5 8–12 Ru, Re 

Au–Pd–
Ag	

39–
77 

– 25–35 12–
22 

– 3–7 – 1.5 Fe, Ru, 
Re 

Pd–Ag	 – – 50–60 28–
40 

– 4–8 – 1–5 Ru 

Pd–Cu	 ≤2 ≤1 70–80 – 9–
15 

0–8 3–9 0–8 Ru 

Pd–Ga	 0–2 – 74–85 1–7 – — 6–10 6 Ru 
* Adapted from Powers and Sakaguchi.(53) 

Table	2.	Properties	of	noble-metal	metal-ceramic	alloys.	

Type	 Ultima
te 

tensile 
strengt

h 
(MPa)	

0.2% 
yield 

strengt
h 

(MPa)	

Elastic 
modulus 

(GPa)	

Elonga
tion 
(%)	

Diamon
d 

pyramid 
hardnes

s 
(kg/mm

2)	

Casting 
temperatu

re (◦C)	

Au–
Pt–Pd	

480–500	 400–420	 81–96	 3–10	 175–180	 1150	
	

Au–
Pd	

700–730	 550–575	 100–117	 8–16	 210–230	 1320–1330	
	

Au–
Pd–
Ag	

650–680	 475–525	 100–113	 8–18	 210–230	 1320–1350	
	

Pd–
Ag	

550–730	 400–525	 95–117	 10–14	 185–235	 1310–1350	

Pd–
Cu 

550–
1100	

550–
1100	

94–97	 8–15	 350–400	 1170–1190	

* Adapted from Powers and Sakaguchi.(53) 
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Gold Palladium Silver (Au-Pd-Ag) Alloys: 

Au-Pd-Ag alloys were developed to overcome several limitations associated 

with  Au-Pt-Pd alloys, including high cost, low hardness, and poor sag resistance.(51)  

These alloys can be subdivided into 2 main groups; high silver and low silver.  An 

alloy is considered a high silver containing alloy when it contains 12 % silver (Ag) or 

more and it is considered a low silver containing alloy when it contains 5 % to 11.9 % 

silver (Ag).(52)   The major drawback of silver-containing alloy is the potential for 

silver to discolor the porcelain.(52,54)  

Gold-Palladium (Au-Pd) Alloys: 

These alloys were  developed to minimize limitations associated with silver 

and the high coefficient of thermal expansion of Gold-Palladium-Silver (Au-Pd-

Ag).(51)  Coefficient of thermal expansion is defined as the change in length per unit 

of the original length of a material when its temperature is raised 1˚ K.(52)  In 1977, 

these  alloys generally exhibited a white gold color and were commercially 

successful.(52,54)  The main limitation of Au-Pd alloys was an incompatible degree 

of thermal expansion with some high expansion porcelains.  Due to this limitation, 

multiple Au-Pd alloys were developed that contained less than 5 % silver.  Castability 

of these alloys improved,  thermal expansion increased, as well as their clinical 

usefulness.(54) 

Palladium Cobalt (Pd-Co) Alloys 

These alloys had limited clinical usefulness.  The main benefits associated 

with Pd-Co alloys included high coefficients of thermal expansion which made them 

compatible with certain types of dental porcelains.(54) Manufacturers have added 1-2 

percent of noble metals such as gold and/or platinum to improve its grain structure.  

The major limitation associated with Pd-Co alloys was the tendency to form a dark 
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oxide layer which tended to discolor the porcelain. It was also reported that these 

alloys had weaker bonding with porcelain than did Pd-Cu alloys.(55) 

Base-Metal Ceramic Alloys 

There are two main categories of this type of alloy: nickel-based and cobalt-

based, (Tables 3 and 4).  Alloys in both categories contain chromium as the second 

largest metal in the alloy; chromium is involved with improved corrosion resistance. 

(51) Base-metal alloys have excellent physical properties.  For example, they exhibit 

the highest modulus of any alloy type used for cast restorations.(56)  The modulus of 

elasticity is defined as the measure of the stiffness or rigidity of an alloy, since it 

corresponds to the amount of stress for unit elastic strain.(52) 

 

Table	3.	Compositional	ranges	(wt.	%)	of	base-metal	metal-ceramic	alloys.	

Type	 Ni	 Cr	 Co	 Ti	 Mo	 Al	 V	 Fe	 Be	 Ga	 Mn	 Nb	 W	 B	 Ru	
Ni–
Cr	

62–
77	

11–
22	

–	 –	 4–14	 0–4	 –	 0–1	 0–2	 0–2	 0–1	 –	 –	 –	 –	

Co–
Cr	

–	 25–
34	

53–
68	

–	 0–4	 0–2	 –	 0–1	 –	 0–3	 –	 0–3	 0
–
5	

0
–
1	

0–6	

*Adapted from Powers and Sakaguchi.(53) 

 
Table	4	(Properties	of	base-metal	metal-ceramic	alloys).	

Type Ultimate 
tensile 

strength 
(MPa) 

0.2% 
yield 

strength 
(MPa) 

Elastic 
modulus 

(GPa) 

Elongation 
(%) 

Diamond 
pyramid 
hardness 
(kg/mm2) 

Casting 
temperature 

(◦C) 

Ni–Cr 400–1000 255–730 150–210 8–20 210–380 1300–1450 

Co–Cr 520–820 460–640 145–220 6–15 330–465 1350–1450 

*Adapted from Powers and Sakaguchi.(53) 
 

Base-metal alloys used in metal-ceramic restorations, have exhibited better 

castability than noble alloys. (55)  However, they have a tendency to form thicker, 

darker oxide layers than do noble metal alloys, which may present esthetic 

challenges.(56)  Historically, base-metal alloys were divided into 4 groups: nickel-
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chromium-beryllium, nickel-chromium, nickel-high-chromium, and cobalt-

chromium.(56)   

1. Nickel-chromium-beryllium alloys were used due to the presence of beryllium 

which facilitated casting.(55)  This type of alloy has been discontinued due to 

health concerns. 

2. The major contents of Ni-Cr alloys are nickel and chromium, they may also 

contain minor amounts of other metals.(51)  Commercially available Ni-Cr 

alloys are close in composition and physical properties but differ in corrosion 

resistance.(56)   Aluminum and titanium have been added in small amounts to 

form strengthening precipitates.  Iron, tungsten and vanadium have also been 

added for solid solution hardening.  Of the elements added for hardening these 

alloys, molybdenum and tungsten are the most effective.(57)  

3. Cobalt is the main component in cobalt-chromium (Co-Cr) alloys.  Chromium 

has been added for strength and corrosion resistance.(51)   Co-Cr has been 

established as a satisfactory alternative for patients known to be allergic to 

nickel.(56)  Co-Cr alloys have the highest melting range of the casting alloys.  

This limitation makes it a little difficult to manipulate while casting in the 

laboratory.(56) 

Intra-oral Scanners 

 In 1987, the first commercially available digital intraoral impression system 

was invented, it was known as CEREC 1 system.(58)  Its method of operation was 

based on the principle of “triangulation of light”, and the surface being scanned 

required a coat of powder to improve the scan quality.(59)  After that, multiple new 

digital intraoral devices were developed.  CEREC, LavaTM C.O.S, iTero, E4D and 
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TRIOS are some of the available intraoral digital impression systems available in the 

market today.(60) 

Dentist’ experiences and patient compliance are a key factors in the quality of 

the digital impressions.(61)  Multiple studies have evaluated the clinical behavior of 

FDPs fabricated using the intraoral digital impressions and CAD/CAM protocols.  

These studies have demonstrated acceptable qualities in the restorations including 

marginal fit and occlusion characteristics.(62) 

Intraoral digital impressions have improved over time and are now able to 

record complete arches.  Intraoral digital scanners allow the dentist to record/capture 

teeth, implant scan bodies, and soft tissues in 3 dimensions.  CAD/CAM has changed 

the way dentistry is practiced and has become an integral part of dental 

practice.(63,64) 

Clinicians seeking to overcome the shortcomings associated with conventional 

elastomeric impressions have used digital impressions as an alternative to elastomeric 

impression materials and procedures.  One major advantage of digital impressions is 

having the ability to magnify the impression digitally, highlight the defective areas in 

real time, and recapture missing areas.(65)   

Intraoral cameras work either by recording images in a video type format or by 

recording still images during the scanning process. Still photos are based upon 

triangulation or parallel confocal laser scanning.  Lava C.O.S (3M ESPE) and Lava 

True Definition scanner (3M ESPE) uses active wavefront sampling for data 

collection from which a video image is formed.  CEREC AC Bluecam (Sirona) uses 

active triangulation and optical microscopy to produce still images. The CEREC AC 

Omnicam (Sirona) uses video for data collection.  iTero and 3Shape Trios uses the 

parallel confocal method to produce digital images.(66) 
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CAD/CAM 

Over 40 years ago, CAD/CAM processes were introduced for several dental 

applications, and included designing and milling ceramic inlays and veneers.(67)  

Since the development and evolution of CAD/CAM technology at the beginning of 

the 1970’s, the accuracy of dental restorations made using this technology has 

increased and the cost per unit has decreased as the cost of the milling machines 

decreased. (44)     

There are many CAD/CAM systems available for processing different types of 

dental restorations in dental clinics, dental laboratories and manufacturing 

centers.(1,68,69) Three pioneers contributed to the development of CAD/CAM 

systems in dentistry.(68) In 1971, Dr. Duret has been identified as the first pioneer in 

dental CAD/CAM and began fabricating crowns by incorporating the shape of 

occlusal surfaces using a series of systems that began with an optical impression of 

the abutment tooth made intra-orally. This was followed by designing an optimal 

crown form taking into consideration functional movements, and milling the crowns 

using a numerically controlled milling machines.(68,70)  

 A second pioneer, and developer of the CEREC system, was Dr. Werner 

Mormann.  His technology was utilized chair-side directly on patients.  Following 

tooth preparation, he directly captured (imaged) the preparations using an intra-oral 

camera. An inlay could be designed and milled from a ceramic block in a compact in-

office milling machine.  Due to the capability for one-day fabrication of CAD/CAM 

restorations, CAD/CAM technology rapidly spread throughout the profession and 

dental laboratory industry. (68,71)  

In the early 1980’s, Dr. Andersson developed the Procera system. His 

development began as a method that used cobalt chromium alloys as a substitute for 
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gold alloys.  This change dramatically decreased costs.  Many people are known to be 

allergic to certain metals, especially in northern Europe. Dr. Andersson researched 

using titanium as a substitute for cobalt chromium alloys. Due to difficulties 

associated with casting titanium, he attempted to fabricate titanium copings using 

spark erosion existing technology and introduced CAD/CAM technology into the 

process of composite veneered restorations.(72) “This was the application of 

CAD/CAM in a specialized procedure as part of a total processing system.  This 

system later developed as a processing center networked with satellite digitizers 

around the world for the fabrication of all-ceramic frameworks. Such networked 

production systems are currently being introduced by a number of companies 

worldwide.”(68,73)  

Subtractive vs. Additive Manufacturing 

 Most of the fabrication techniques in CAD/CAM technology have been based 

upon subtractive manufacturing, or in another word, milling technology.(44)  It is an 

approach where the material is removed to create a desired shape, the desired shape is 

created effectively but at the expense of materials discarded as wastes during the 

process.  This is a major limitation associated with milling technology as waste 

material adds to the cost of fabrication of restorations.(74) Additive manufacturing 

processes have been recently introduced. This provides a completely new concept, “it 

was developed to meet the requirements of rapid manufacturing (RM) and rapid 

prototyping (RP), such as stereolithography (SLA), fused deposition modeling 

(FDM), selective electron beam melting (SEBM) or selective laser sintering 

(SLS)”.(47–51) Each of those techniques have been used for fabrication of 

restorations using different dental materials.  



	
	

14	

 SLS has been increasingly used for fabrication of dental restorations.(44) SLS 

is basically a process that fabricates 3-dimensional (3D) parts by incorporating layers 

of powders of different materials (such as polymers, ceramics or metals), under the 

heat of a focused laser beam. The process is driven by the data provided by the CAD 

file.(76,77) Terminology has not yet been clearly identified in the dental field, but 

according to the binding mechanism of the sintered material, researchers have 

preferred to use the term SLS for non-metallic materials such as ceramics or 

polymers, others have used the term DMLS (direct metal laser sintering) or SLM 

(selective laser melting) for alloys.(44,76,77) 

 Selective laser melting first started in the aerospace and automotive industries 

for fabrication of sophisticated hollow structures. This process was later modified and 

implemented in the dental field.(44) SLM is an additive manufacturing procedure, 

which manufactures metal parts directly from a 3D CAD model. Koutsoukis et al. 

stated “it works by fusing fine layers of metal powders by means of a high-power 

source of a focused laser beam.  The concept of this technique is similar to that for 

SLA, except that in SLM the liquid medium has been replaced by the metallic 

powder.”(75)   

The principle that SLM systems operate upon is that a 3D file of the desired 

object (dental restoration), created by a CAD system, is divided into vertical or 

horizontal layers and then transferred to the laser sintering device. The desired alloy 

powder is applied to form the platform, while the laser scanner scans the required 

surfaces according to the information gathered from the 3D CAD file.  A powerful 

CO2 laser is usually used because it can generate enough heat to sinter the powder and 

form a layer of metal.  “The build platform is driven by a piston with the ability to 

adjust to the vertical axis. Adjacent to the manufacturing piston is the powder-feeding 
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piston, capable of vertical adjustment. When operating, the laser beam transfers heat 

to the powder mixture, resulting in local melting and fusing of the particles. When the 

layer with the desired shape has been completed, the manufacturing piston backpedals 

while the feeding piston rises to refill the build platform, assisted by a roller. The 

procedure is then repeated for the next layer, until the product has been completely 

fabricated as designed by the 3D CAD file.”(75) 

 Depending upon the properties of the alloy to be used for sintering, the 

parameters such as melting temperature, laser beam absorption/reflection coefficient 

and thermal conductivity should be noted.  The average grain diameter of the powder 

could affect the mechanical properties of the restoration and metallurgical phenomena 

during solidification.(77,80) In order to minimize porosities and improve the 

mechanical properties, full melting of the powder particles is required.(77) Settings of 

the apparatus such as the scanning speed, the holding time, the temperature of the 

preheated bed and the thickness of each layer will all affect the quality of the final 

result.(68–70) One important aspect in the SLM process is minimizing potential 

thermal distortion, which could be accomplished by improving wettability based on 

proper selection of the preheated bed temperature.(76)  

Takaichi et al. studied the microstructure of SLM surfaces and they compared 

it to castings and milled surfaces.  They reported that there was a significant 

difference between the surfaces of SLM, milled and cast Co-Cr alloys. It was 

concluded that cast Co-Cr alloys have the characteristic dendritic microstructure with 

a dispersed heavier phase in interdendritic positions, while the milling microstructure 

depends solely on the characteristics of the block used and SLM surfaces are 

dependent mainly on operational parameters.(80)  
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Porosities are undesirable when it comes to fabricating dental restorations as it 

causes the deterioration of the mechanical properties of the metal.(83)  SLM and 

milling techniques are superior to castings when it comes to porosities. In theory, 

SLM technique could provide structures with up to 100 % nominal density of the 

sintered alloy but it depends mainly on the proper adjustment of operating conditions 

including laser per, scan spacing, scan rate and scan thickness.(40, 36, 22)  Porosities 

in the castings on the other hand could be due to shrinkage of the castings, and the 

gross dendritic structure of Co-Cr alloys during solidification.(83,85,86)  Porosity in 

milled structures is mainly dependent upon the initial quality of the metallic 

block.(87) 

Selective laser melting (SLM) has been used for fabrication of metal copings 

such as Co-Cr base alloys and Au-Pt noble alloys.(20,88) One of the first SLM 

systems was accurate to approximately 50 to 80 µm per layer thickness.(89) 

Progressive development of the SLM process has led to better results. Multiple 

studies reported layer thicknesses of approximately 20 µm for dental 

applications.(60–63)  

Preparation Finish Lines 

Clinically, the effect of different finish line designs on fitting accuracy should 

be taken into account and should be meticulously studied.(93) Several studies 

examined the effect of different finish lines on adaptation of crowns and yielded 

contradictory results.(94) For cast restorations, Preston and Schillingburg 

recommended beveled shoulders as the best type of finish line for cast 

restorations.(95,96) For In-Ceram crowns, Pera et al. reported that chamfer or 50-

degree shoulder tooth preparations yielded better marginal adaptation when compared 

with 90-degree shoulder finish lines.(97) Comlekoglu et al. compared the marginal 
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gaps associated with zirconia crowns designed with knife edge, mini chamfer, 

chamfer and rounded shoulder finish line designs and found that the lowest marginal 

discrepancy values was for knife edge finish line ( 87 µm) compared to mini-chamfer 

(114 µm), chamfer (144 µm) and rounded shoulder (114 µm) finish line designs.(98)  

Euan at al. found a lower mean marginal gap value for Lava all-ceramic system 

crowns designed with round shoulder finish lines compared to chamfer finish 

lines.(99)  On the contrary, Tsitrou et al. found that there was no significant difference 

in marginal gaps of dental restorations designed with shoulder and chamfer finish 

lines.(100) 

For Procera crowns, Lin et al. reported that featheredge finish lines resulted in 

increased marginal discrepancies when compared with 0.8 mm rounded shoulder and 

0.5 mm rounded shoulder finish lines.(101,102) In another study by Gwinner FP et 

al., it was reported that crowns fabricated with sintered gold copings, beveled long 

chamfer (BLC) finish lines showed less marginal gaps when compared to beveled 

round shoulder finish lines (BRS).(103) Ates et al. concluded in their study that cast 

Co-Cr crowns had the best adaptation on chamfer finish lines whereas CAD-CAM Y-

TZP frame works had the best adaptation on shoulder finish lines.(104)  
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CHAPTER II 

AIM OF THE STUDY 

Multiple studies have examined the marginal fit of copings formed using SLM 

technology.  However, none of the studies used standardized finish lines to test the fit 

of the copings.  Moreover, several of the studies were performed with the copings 

fitted on chamfer finish lines, while others placed the copings on heavy chamfer 

finish lines.  Additionally, none of the studies demonstrated which material was best 

to be used when SLM technology is utilized.(20,88,91,105,106) 

 The purpose of this study was to determine the effect of different finish line designs on 

the marginal and internal fit of metal copings made from high noble, 25% noble and 

base alloys manufactured by SLM technology. 

Two null hypotheses were considered for this study: (1) finish line design will 

have no effect upon marginal accuracy or internal fit of SLM restorations; and (2) 

composition of the metal alloy will have no effect upon marginal accuracy or internal 

fit of SLM restorations.   
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CHAPTER III 

MATERIALS AND METHODS 

Preparation: 

An ivorine right maxillary central incisor (T1560; Columbia Dentoform Corp) 

was prepared to receive a metal coping, Fig. 1. 

	

Figure	1.	(Unprepared	right	maxillary	central	incisor.)	

	
Three different finish line designs were prepared using diamond burs (Brasseler 

USA): 

1. Shoulder with a 90 degrees axiogingival internal line angle (S) 

2. Deep Chamfer (DC) 

3. Chamfer (C) 

• Preparations were standardized with incisal reduction of 2 mm for all 

three groups. 

• Uniform axial reduction of 1.5 mm for groups (S) and (DC), and 1 mm for 

(C). 
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• Margin width was 1 mm for groups (S) and (DC) and 0.5 mm for (C). 

• Total convergence angle was 12 degrees for all groups  

An index was made of the unprepared teeth using polyvinyl siloxane 

impression material (Express putty; 3M ESPE, St Paul, MN, USA) to standardize and 

measure the preparations, Fig. 2.  

	

						Figure	2.	(PVS	putty	index	of	unprepared	right	maxillary	central	incisor.)	

	
	

Measurements were made using a calibrated manual periodontal probe (UNC 

15, Hu-Friedy, Chicago, USA), Figs. 3 and 4.	

	

	

	

	

	

	

	

Figure	3.	(Preparation	index	placed	onto	a	prepared																													Figure	4.	(UNC	15,	Hu-Friedy	Probe.)	

	right	maxillary	central	incisor.)																																																																	 
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12 degree total convergence was maintained by placing the typodont on a cast 

holder and placing all the parts on a surveyor. The 12 degree convergence was 

maintained by using the bur (Brasseler, USA) and the survey arm of the surveyor (J.M 

Ney Co., Bloomfield, Conn.), Fig. 5. 

 

	

Figure	5.	(Bur	placed	in	the	survey	arm	and	held	perpendicular	to	the	long	axis	of	the	tooth.) 

 

Before duplication of the prepared ivorine teeth, each tooth was attached to a 

square base fabricated using orthodontic resin (Dentsply Intl). This material increased 

the diameter of the ivorine tooth shaft and aided in mounting the tooth during 

sectioning, Fig. 6. 

 

	

				Figure	6.	(Prepared	teeth	mounted	in	orthodontic	resin	base.)	
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Die Fabrication 

The three preparations, along with the mounted bases, were scanned using a 

Trios scanner (3Shape, Copenhagen, Denmark) to create a stereolithographic (STL) 

file.  All models were printed using DPR 10 Resin (Carbon3D, USA), Fig. 7. 

	

						Figure	7.	(Printed	die.) 

Copings Fabrication 

3Shape CAD design system was used to locate the margins and design the 

copings.  Die spacer thickness of 25 µm was assigned uniformly to all the copings. 

SLM Technology 

Group B dies were manufactured from a base alloy; there were 10 specimens 

per tooth preparation. Group H dies were manufactured from a high noble alloy; there 

were 10 specimens per tooth preparation.  Group N dies were manufactured from a 25% 

noble alloy; there were 10 specimens per tooth preparation.  There was a total of 90 

teeth in the study.   

SLM metal copings were printed using a CAD/CAM system by Argen, (Argen 

Manufacturing System; Argen Corporation). Ninety metal copings were fabricated 
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using 3 types of alloys; 30 copings were made from a base alloy-(Argen 

Manufacturing System; Argen Corporation) (Group B); (Co 61, Cr 25, Mo 6, W 5, Si 

<1, Fe <1, Mn <1), 30 copings were made from a high noble alloy, (Argen 

Manufacturing System; Argen Corporation) (Group H); (Au 40, Pd 39.9, Ag 10, Ru 

<1, In 10) and 30 copings were made from 25% noble alloy-(Argen Manufacturing 

System; Argen Corporation) (Group N); (Pd 25, Co 42.75, B <1, Mo 12, Cr 20).  

Following fabrication, fit of the copings were checked visually with a light 

microscope at a magnification of 12.5× (Stereo Star Zoom, American Optical, 

Buffalo, NY).  Internal adjustments were made as necessary to fit the master die, Fig. 

8.   

	

				Figure	8.	(SLM	copings	and	dies.)	
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Table	5.	(Alloys	and	finish	line	groupings.)	

Groups 
(B) - Base Alloy            

(N = 30) 

(H) – High Noble Alloy 

(N = 30) 

(N) – 25 % Noble Alloy 

(N = 30) 

 

 

 

Finish Line Design 

(S) - Shoulder with a 90 

degrees axiogingival 

internal line angle  

N = 10 

(S) - Shoulder with a 90 

degrees axiogingival 

internal line angle  

N = 10 

(S) - Shoulder with a 90 

degrees axiogingival 

internal line angle  

N = 10 

(DC) – Deep Chamfer 

N = 10 

(DC) – Deep Chamfer 

N = 10 

(DC) – Deep Chamfer 

N = 10 

(C) – Chamfer 

N = 10 

(C) – Chamfer 

N = 10 

(C) – Chamfer 

N = 10 

Total Samples N= 90 

 

Copings Cementation 

Resin Cement (Panavia 21 EX; Kuraray Noritake Dental Inc., Japan) was 

mixed according to the manufacturer’s instructions, Fig. 9.

	

	Figure	9.	(Panavia	21	EX.) 
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  After application of cement, the copings were seated with a rocking motion 

until they were completely seated on the die visually. The cemented coping-die 

assemblies were placed under an apparatus capable of maintaining a static deadweight 

load of 49 N; excess cement was removed using a fine microbrush prior to setting, 

Fig. 10. 

	

				Figure	10.	(Cemented	coping-die	assembly	placed	under	static	load	of	49	N.)	

	
	

The cemented coping-die assemblies were kept under load for 3 minutes, as 

this was the setting time for the cement as per manufacturer instructions. After that, 

the specimens were placed into an incubator (Isotemp Incubator 655D, Fisher 

Scientific, USA) and was kept at 37 deg. C for 3 minutes to mimic mouth temperature 

and to ensure complete setting of each cement mix, Fig. 11. 
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			Figure	11.	(Isotemp	incubator).	

All specimens were then stored at room temperature until sectioning.  

Sectioning of Samples 

Each specimen was sectioned in a buccolingual direction using a low speed 

diamond saw (IsoMet speed saw; Buehler Ltd, USA) with a 127 × 0.4 mm diamond 

wafering blade (Buehler IsoMet, USA) under wet conditions, Fig. 12. 

	

			Figure	12.	(Low-speed	diamond	saw	with	diamond	wafering	blade.)	
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Figure	14	.(Tooth	diagram	of	
measured	locations.) 

After sectioning, each specimen was marked with a small notch using a small 

.010 mm round carbide bur (Brasseler USA) at points B, C and D in order to assist 

with orientation under high magnification, Fig. 13. 

	

Figure	13	(Sectioned	Tooth,	with	notches	made	at	points	B,	C	and	D)	

	
	
Measuring the Marginal and Internal Gaps 

The marginal and internal gaps between the printed copings and each die for each 

sectioned specimen were measured at 5 locations, Fig. 14. 

(A) Facial margin (Marginal Gap) 

(B) Facial mid-axial (Internal Gap) 

(C) Incisal (Internal Gap) 

(D) Lingual mid-axial (Internal Gap) 

(E) Lingual margin (Marginal Gap) 
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Three measurements were made per point, for determining an average value at 

each point, which will total 15 measurements (3 × 5) per each half coping-die 

assembly.  Two coping-die assemblies were produced from each specimen, Fig. 15. 

 

	

Figure	15.	(Specimen	sectioned	into	halves.)	

The marginal and internal gap images were determined using an inverted 

bright field metallurgical microscope at ×100 magnification 

(Metallograph/Microscope; Leco/Olympus), Fig. 16. 

 

	

			Figure	16.	(Metallograph/	Microscope.) 
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The software used to calculate the marginal and internal gaps after the images 

were captured by the microscope was Spot Software 5.2 (Spot Imaging Solutions). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
	

30	

CHAPTER IV 
 

STATISTICAL ANALYSIS 

 Means, standard deviations under different conditions were compared to test 

the null hypotheses. Box’s test and Levene’s test were performed to verify an 

assumption of equal variances. Material and type of finish line were used as 

independent variables and internal and marginal gaps were used as dependent 

variables. A two-way multivariate analysis of variance (MANOVA) was conducted to 

determine overall significance followed by analysis of variance (ANOVA) for each 

dependent variable (α=0.05). Tukey’s HSD was used for post-hoc comparison 

(α=0.05). All statistical analyses were performed in SPSS (SPSS statistics 24, IBM).  
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CHAPTER V 

RESULTS 

As shown in Table 6, the mean of the Internal Fit of the Deep Chamfer finish 

line in the Base Alloy group showed the largest internal gap when compared with the 

other two finish lines.  In the Noble Alloy group, chamfer finish lines had the largest 

internal gap when compared to the other two finish lines.  In the High Noble Alloy 

group, the internal gap was largest with the deep chamfer finish line when compared 

to the other two finish lines. 

 As for the Marginal Fit, the mean measurement of the Base Alloy group 

showed the largest gap with Chamfer Finish Lines than the deep chamfer or shoulder 

finish lines.  This was also true in the Noble Alloy group.  In the High Noble Alloy 

group, Chamfer Finish Lines showed the largest gap when compared to the other two 

finish lines.   
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Table	6.	(Mean	of	the	internal	and	marginal	fit	of	the	materials	with	finish	lines.)	

 

 Material Finish Line Mean Std. Deviation N 

 
 
 
 
 
 
 
 
 

Internal Fit 

Base Alloy Deep Chamfer 123.2940 20.53320 10 

Chamfer 122.4940 9.83070 10 

Shoulder 113.9340 8.68592 10 

Total 119.9073 14.24140 30 

Noble Alloy Deep Chamfer 87.7670 13.29221 10 

Chamfer 93.5390 16.17431 10 

Shoulder 87.2050 13.26173 10 

Total 89.5037 14.10957 30 

High Noble 

Alloy 

Deep Chamfer 158.6840 19.20336 10 

Chamfer 149.4950 8.78947 10 

Shoulder 151.3100 23.63601 10 

Total 153.1630 18.11444 30 

Total Deep Chamfer 123.2483 34.16477 30 

Chamfer 121.8427 25.98493 30 

Shoulder 117.4830 31.08720 30 

Total 120.8580 30.35358 90 

 
 
 
 
 
 
 

Marginal Fit 

Base Alloy Deep Chamfer 19.8000 12.10314 10 

Chamfer 34.8920 10.55894 10 

Shoulder 33.6250 10.25573 10 

Total 29.4390 12.69007 30 

Noble Alloy Deep Chamfer 34.4990 12.41087 10 

Chamfer 58.5170 10.97184 10 

Shoulder 43.7410 11.64719 10 

Total 45.5857 15.11562 30 

High Noble 

Alloy 

Deep Chamfer 32.3080 12.83968 10 

Chamfer 51.5430 15.56549 10 

Shoulder 46.0500 9.32671 10 

Total 43.3003 14.86781 30 

Total Deep Chamfer 28.8690 13.70384 30 

Chamfer 48.3173 15.77229 30 

Shoulder 41.1387 11.48298 30 

Total 39.4417 15.82464 90 
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Table	7.	(Multiple	comparisons	between	the	materials	by	post	hoc	tests.)	

 

*P	Value	£	0.05 

 
Table	8.	(Internal	fit	corresponding	to	the	materials	in	Tukey’s	HSD.)	

Material N 

Subset 

1 2 3 

Noble Alloy 30 89.5037   
Base Alloy 30  119.9073  
High Noble Alloy 30   153.1630 

Sig.  1.000 1.000 1.000 
 

 

 

 

 

 

 

 

Variable 

 

 

 

(I) Material 

 

 

 

(J) Material 

 

 

 

Mean Difference (I-J) 

 

 

 

Std. Error 

 

 

 

Sig. 

 

 

Internal 

Fit 

Base Alloy  Noble Alloy 30.4037* 4.04836 .000 

High Noble Alloy  -33.2557* 4.04836 .000 

Noble Alloy Base Alloy   -30.4037* 4.04836 .000 

High Noble Alloy -63.6593* 4.04836 .000 

High Noble Alloy Base Alloy   33.2557* 4.04836 .000 

Noble Alloy 63.6593* 4.04836 .000 

 

Marginal 

Fit 

Base Alloy Noble Alloy -16.1467* 3.06395 .000 

High Noble Alloy -13.8613* 3.06395 .000 

Noble Alloy  Base Alloy   16.1467* 3.06395 .000 

High Noble Alloy 2.2853 3.06395 .737 

High Noble Alloy  Base Alloy   13.8613* 3.06395 .000 

Noble Alloy -2.2853 3.06395 .737 
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Table	9.	(Marginal	fit	corresponding	to	the	material	in	Tukey’s	HSD.)	
  

Material N 

Subset 

1 2 

Base Alloy 30 29.4390  
High Noble Alloy 30  43.3003 

Noble Alloy 30  45.5857 

Sig.  1.000 .737 
 
 
 

Multiple comparisons between the materials using Post Hoc Tests and Tukey 

Test revealed significant differences between the 3 materials as shown in Table 7. 

 Regarding the Internal Fit, the highest mean difference was found in the High 

Noble Alloy followed by the Base alloy.  The least mean difference was noted in the 

Noble Alloy group.  All the groups demonstrated significant differences as shown in 

Table 8. 

Considering the Marginal Fit, there were significant differences between the 

groups except between the Noble Alloy and the High Noble Alloy groups as shown in 

Table 9. 
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Table	10.	(Mean	of	the	internal	fit	corresponding	to	the	finish	line	in	Tukey’s	HSD.)	
  

Finish Line N 

Subset 

1 

Shoulder 30 117.4830 

Chamfer 30 121.8427 

Deep Chamfer 30 123.2483 

Sig.  .333 
 
 
 
Results shown in (Table 10) show no significant differences in all the groups 

regarding Internal Fit of the different finish lines. 

 

Table	11.	(Mean	of	the	marginal	fit	corresponding	to	finish	lines	in	Tukey’s	HSD.)	
  

Finish Line N 

Subset 

1 2 

Deep Chamfer 30 28.8690  
Shoulder  30  41.1387 

Chamfer 30  48.3173 

Sig.  1.000 .056 
 
 
 

Results shown in (Table 11) showed a significant difference between the Deep 

Chamfer Finish Line group as compared to the Chamfer Finish Line and Shoulder 

Finish Line groups. There was no significant difference between the Chamfer Finish 

Line Group when compared to the Shoulder Finish Line group. 
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Figure	17.	(Estimated	Marginal	Means	of	Internal	Fit)		

*	Materials;	1	(Base	Alloy),	2	(Noble	Alloy),	3	(High	Noble	Alloy)	*	Finish	Lines;	1	(Deep	Chamfer),	2	(Chamfer),	
3	(Shoulder).	

	
	
          As shown in Figure 17, Internal Fit showed the highest gap in the Deep Chamfer 

Finish Line with the High Noble Alloy group.  The smallest gaps were noted in the 

Shoulder Finish Line group with the Noble Alloy group. 
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Figure	18.	(Estimated	Marginal	Means	of	Marginal	Fit)		

*	Materials;	1	(Base	Alloy),	2	(Noble	Alloy),	3	(High	Noble	Alloy)	*	Finish	Lines;	1	(Deep	Chamfer),	2	(Chamfer),	
3	(Shoulder).	

	
 
           As shown in Figure 18, Marginal Fit showed the highest gap between the 

Chamfer Finish Line with the Noble Alloy Group.  The smallest gaps were noted 

between the Deep Chamfer Finish Line and Base Alloy Group. 

             Copings fabricated utilizing Selective Laser Melting (SLM) technology from 

three different types of alloys yielded a comparable fit. They demonstrated a mean 

marginal gap in the range of (29-45) µm and an Internal gap in the range of (89-153) 

µm irrespective to the Finish Line used. 

 The result of statistical analyses indicated that both alloy type and finish line 

had a significance influence on overall fit of the copings. For the internal fit, the alloy 

type had a significant effect (p<0.001), but the finish line had no statistically 
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significant influence (p=0.337). For the marginal fit, both the alloy type and the finish 

line had a statistically significant effect, (p<0.001). There was no statistically 

significant interaction between variables.  

          For all the finish lines used, the lowest marginal gaps were obtained in the Base 

Alloy group (29) µm.  No statistical significant differences existed among the High 

Noble Alloy group (43) µm and the Noble Alloy groups (45) µm. 

          Regarding the internal fit of the three different alloy groups irrespective to the 

Finish Line used, there were significant differences among the groups. The lowest 

internal gap was in the Noble Alloy group (89) µm followed by the Base Alloy group 

(120) µm and High Noble Alloy group (153) µm. 

          Considering the finish lines without considering the Alloys used, the mean 

values for the internal fit measurement were (123) µm, (122) µm, and (117) µm for 

the Deep Chamfer, Chamfer, and Shoulder finish lines respectively. There were no 

significant differences between the 3 mean values. 

          The marginal gap was (48) µm for the Chamfer Finish Line group, (41) µm for 

the Shoulder Finish Line group and (29) µm for the Deep Chamfer Finish Line group.  

According to the results of this study, the best finish line design was the Deep 

Chamfer Finish line irrespective to the alloy used.  There were no significant 

differences between Chamfer Finish Line and Deep Chamfer Finish line groups. 

          The Internal fit of the Noble Alloys group with the Deep Chamfer Finish lines 

and Shoulder Finish Lines showed the smallest internal gap (88 ± 13) µm and (87 ± 

13) µm, respectively.  Whereas copings made with High Noble Alloys and Deep 

Chamfer Finish lines showed the largest internal gap (159 ± 19) µm. 

          The marginal fit of the copings in the Base Alloys group with the Deep 

Chamfer Finish lines had the best marginal fit (20 ± 12) µm.  Whereas copings made 
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with the Noble alloy and with Chamfer Finish Lines showed the least acceptable 

marginal fit (59 ± 11) µm. 

 

	

Figure	19.	(Boxplot	(mean	of	marginal	fit).)	
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Figure	20.	(Boxplot	(Mean	of	Internal	Fit).)	
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Microscopic Images 

Overall, 2700 measurements (30 measurements × 90 specimens) were 

obtained for the study. The microscope was linked to a digital acquisition device and 

computer software (Spot Software 5.2, Spot Imaging Solutions). 

Below are representative microscopic images showing different alloys with different 

finish lines and measured at different locations. 

 

	
Figure	21.	(Noble	alloy;	facial	margin,	chamfer	finish	line.)	
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Figure	22.	(Base	alloy;	facial	midaxial,	deep	chamfer	finish	line.)	

					

	

	
Figure	23.	(Base	alloy;	incisal,	chamfer	finish	line.)	
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Figure	24.	(Base	alloy;	lingual	midaxial,	shoulder	finish	line.)	

 

	
Figure	25.	(High	noble	alloy;	lingual	margin,	chamfer	finish	line.)	
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CHAPTER VI 

DISCUSSION 

The primary purpose of this study was to evaluate the effect of 3 different 

finish line designs with 3 different alloys on the marginal and internal fits of SLM-

fabricated copings. The first null hypothesis was rejected as statistically significant 

results were found among the 3 finish line groups. Therefore, the type of finish line 

design had a direct effect on marginal gaps noted between the copings and the dies. 

However, no statistical difference was found on the internal fit relative to the different 

type of finish lines used. The second null hypothesis was also rejected as there were 

statistical differences between the type of alloys used and the marginal and internal fit 

of the SLM-fabricated copings. 

Terminology varies when it comes to defining the word “fit”.  The same 

term has been used to describe multiple different measurements. There are no clear 

general guidelines for performing gap measurements of dental restorations.  

Holmes et al. established a critical approach to this problem.(7)  They established 

multiple gap definitions according to the contour differences between crown and 

tooth margins. Nevertheless, in clinical practice, it has been extremely difficult to 

describe a gap using only a definition due to morphologic diversities, rounded 

margins or defects.(107) This is the main reason why many investigators report 

widely different results when it comes to measuring gaps of crown/tooth marginal 

gaps.   

In this study, according to Myung-Joo Kim et al., marginal gaps were 

defined as “two dimensional vertical marginal discrepancy measured from the 

coping to the margin of the preparations”.  Internal gaps, per according Myung-Joo 
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Kim et al., were defined as the “vertical measurement from the internal surface of 

the copings to the axial walls of the preparations”.(108) 

Multiple techniques have been advocated for measuring the marginal and 

internal fit of crowns. Direct viewing, cross-sectional, impression technique, explorer 

and visual examination have been used most often.(109) In this study, the cross-

sectional technique was used after the cementation of the copings onto the dies as it 

had multiple advantages over previously cited techniques. 

Sorensen described the cross-sectional method to measure marginal accuracy. 

Sorensen’s technique permitted a comparison of different margin designs and the 

evaluation of the fit of restorations. Although this technique is time consuming and 

required many steps, it also resulted in significant waste of laboratory specimens 

(crowns).  It did provide more information and greater precision of measurement than 

other modalities.  The cross-sectional evaluation of the margins permitted more 

precise measurement of predetermined points which was not possible with the direct 

viewing technique.(109) 

In this study, the material used to fabricate the dies was a 3D printed DPR 10 

Resin (Carbon3D, USA).  Several investigation have used metal, acrylic resin or 

natural teeth to measure the marginal fit between crowns and preparations.(110–114) 

The advantages of DPR 10 printed dies that were used in this study are the 

standardization of all the copings, and the ability to print as many dies as necessary 

for the study without having a large discrepancy between the specimens. Moreover, 

there is a lack of wear during the fitting process and improved fitting accuracy. 

Die spacing methods have specific differences for each system and can 

influence the fit of the restorations.(104)  Weaver et al. found that the amount of die 

spacer used had a specific factor for fit.(115)  Therefore, in the present study, die 
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spacer was not manually applied on the surfaces of the dies, rather it was specified 

during the design process of the copings using 3Shape CAD design software.  The 

advantage of using software to determine the amount of die spacer used eliminated 

the differences that can occur depending on the practitioner applying the die spacer.  

Well-fitted metal copings during the try-in phase might not fit accurately after 

porcelain application.(116)  Anusavice et al. believed that the majority of the changes 

in the alloy occurred during the oxidation cycle.(117)  Campbell et al. and Gemalmaz 

et al. reported in their respective studies, that marginal gaps increased significantly 

following ceramic application.(118,119)  On the contrary, multiple studies found no 

significant differences on the marginal gaps before and after ceramic application on 

restorations.(109,116,120,121) 

 In an effort to make the measurements as accurate as possible, and to focus on 

SLM-fabricated copings’ marginal and internal fits, this study measured the cemented 

copings without porcelain veneering so as to not complicate the results with other 

variables and factors.  Sulaiman et al. and Beschnidt SM et al. used a similar 

technique to determine the coping fit without application of porcelain to the 

copings.(122,123) 

Even though statistically significant differences of the marginal fit occurred 

between the different types of finish lines used with different types of alloys used in 

the present study which ranged from (20 to 59) µm, the results were found to be with 

in clinically acceptable levels.  McLean and Von Fraunhofer in a clinical study of 100 

restorations over a 5-year period, hypothesized that (120) µm represented the 

maximum clinically acceptable misfit.(6) 

Bindl and Mormann reported acceptable internal gap widths of (81 to 136) µm 

for different all-ceramic CAD/CAM crown copings.  These findings reported gap 
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measurements that were greater, for two of the alloys (noble and base metal) but less 

than the gaps noted (153) µm with the high noble alloy group recorded in the present 

study.(1)   

Katrin et al. studied the marginal and internal fit of precious and base alloys 

fabricated with laser melting technology.  They found no significant differences in 

marginal discrepancies and internal fits between the two types of alloys.(20)  The 

results of Katrin et al. contradicted the results of the present study, where it was found 

that the type of alloy did have a significant difference on marginal and internal fit of 

the SLM-fabricated copings. 

As the concept of minimally invasive dentistry is spreading, more clinicians 

are willing to implement that principle in their practice.(124,125)  However, as the 

minimal preparation design is highly preferred, there might be some constraints on the 

tooth design by the material used and its method of fabrication.(100)  In this present 

study, SLM technology clearly showed less capability for capturing the chamfer 

finish line preparations when compared to heavy chamfer or a shoulder finish line 

preparations with all the different types of alloys used in this study. 

In this study, it was found that the marginal fit of the copings fabricated with 

Base Alloy (Co-Cr) and deep chamfer finish lines had the best marginal fit of (20 ± 

12) µm.  This fact leads the authors to believe that Co-Cr alloy crowns made by SLM 

technology could result in widespread clinical use, even though its present use is 

limited.  Research on surfaces of SLM-fabricated Co-Cr alloys crowns have 

demonstrated that they have rougher surfaces than those made by conventional 

casting procedures with the same composition.  This has an advantage over 

conventional castings because it positively affects the metal ceramic bond.  It is of 

interest that the composition of the Co-Cr alloy used in this study for SLM did not 
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contain tungsten and had a lower molybdenum content when compared to the 

composition of Co-Cr alloys for casting.  Ucar et al. presumed “laser sintering of the 

former Co-Cr alloy is facilitated by the absence or diminished percentage of such 

refractory metals, which have much higher melting temperatures than cobalt and 

chromium”.(126)  

In the present study, marginal fit was influenced by the type of finish line; 

deep chamfer finish lines were better when compared to the marginal gaps associated 

with chamfer and shoulder finish lines.  It was not in agreement with the results of 

Zen et al’s study, as they found that marginal fit was not influenced by the type of 

finish line in the preparations.(127) 
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Limitations of the Study 

The limitations of this study include that the assessment of marginal and 

internal fit were not performed intraorally and that the errors in fabrication and 

handling of dies were assumed to be minimal.  Further studies are required for clinical 

application and assessment of the present data. Future research should include 

biocompatibility of restorations prepared by selective laser melting (SLM) 

technology. 

 Another limitation of the study was that only copings were fabricated using 

SLM; therefore, the influence of porcelain firing on the marginal and internal fit of 

the crowns was not measured. 

 The copings fabricated in this study were not subjected to mechanical and 

thermal cycling.  It is well known that thermo-mechanical cycling may be one of the 

important factors that affect the long –term success of the restorations and may have 

an impact on accuracy of marginal and internal fit of SLM-fabricated copings. 
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CHAPTER VII 

CONCLUSIONS 

Within the limitations of the study, the following conclusions were drawn: 

1. The automatic fabrication process resulted in accurate marginal and internal 

fits of the SLM-fabricated copings and minimized errors due to casting 

shrinkage and human errors.  

2. Coping fabricated with this SLM technology fit within pre-established, 

clinically acceptable ranges. 

3. Finish line configurations and alloys used in this study influenced the marginal 

fit of the SLM-fabricated copings.  

4. Finish line types did not significantly influence the internal fit between the 

copings and the dies, whereas alloy type did influence the fit between copings 

and dies.   

5. SLM-fabricated copings made with the Base Alloy (Co-Cr) on teeth prepared 

with deep chamfer finish lines demonstrated the best marginal fits when 

compared to the other groups.  
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