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ABSTRACT 
ORTHODONTIC OPEN-COIL SPRING DEACTIVATION FORCES DIFFER 

WITH VARYING ACTIVATION LEVELS 
 
 

Ryan S. Lubinsky, DDS 
 

Marquette University, 2018 
 
 

Objectives: 
Coil springs are used in orthodontics to deliver forces to move teeth. However, the 
optimal amount of activation to produce predictable, continuous deactivation forces, for 
the purpose of orthodontic tooth movement, is unclear.  The purpose of this study was to 
evaluate the deactivation force characteristics of nickel-titanium open-coil springs after 
varying levels of activation. 

 
Methods: 
Four open-coil spring products were evaluated: Dentsply GAC 100 gram and 150 gram, 
Orthoclassic Orthodontics Medium 150 gram, and American Orthodontics nickel-
titanium springs.  Open-coil springs were compressed (activation) with a universal testing 
machine to 20, 40, 60, or 80% of original length (15 mm; n=15/product/activation level).  
Measurements were conducted at 37oC to simulate intraoral temperatures.  Deactivation 
force values at 3 mm were compared among the four activation levels within each 
product using ANOVA/Tukey.   

 
Results: 
For all four open-coil spring products, deactivation force values at 3 mm significantly 
(p<0.05) decreased with greater activation/compression level.  When activated to 20% of 
original length, the force values at 3 mm compression upon deactivation were only 53-
73% of the force level when activated to 80% of original length.  When activated to 40% 
of original length, the force values at 3 mm compression upon deactivation were 65-91% 
of the force level when activated to 80% of original length. 

 
Conclusions: 
Deactivation forces of nickel-titanium open-coil springs at a given compression level are 
dependent upon the extent of prior compression.  Orthodontists should be aware that 
force values in open-coil springs depend not only on material and structural factors, but 
amount of activation as well. 
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CHAPTER 1 
INTRODUCTION 

 
 
 

Orthodontics is the specialized field of dentistry devoted to “the study of the 

growth of the craniofacial complex, the development of occlusion, and the treatment of 

dentofacial abnormalities” (Moyers, 1988).  The word “orthodontics” is derived from the 

Greek orthos, meaning straight, and odont, meaning tooth (Moyers, 1988).  It is estimated 

that 57 to 59% of the majority of all racial and ethnic groups in the United States has an 

orthodontic treatment need (Proffit, Fields, & Moray, 1998).  The straightening of 

misaligned teeth is critical to the practice of orthodontics and is a vital component of the 

treatment of dentofacial abnormalities.  Due to the complex nature of the structural and 

functional components that support the teeth in the jaws, called the periodontal apparatus, 

teeth can be moved within their bony housing via the application of a force.  These tooth-

moving forces can be generated by many entities including, but not limited to, the 

pressure of the cheeks and tongue, mastication, extra-oral appliances, and intra-oral 

appliances utilizing brackets, wires, screws, elastomerics and coil springs.  Each of these 

entities is utilized in a different manner to produce orthodontic tooth movement, and it is 

important for the orthodontist to appreciate the force characteristics produced by each.   

Coil springs are an integral part of the orthodontic intra-oral appliance.  They are 

manufactured primarily in open-coil and closed-coil forms.  Generally, open-coil springs 

are used to make space between teeth and closed-coil springs are used to close space 

between teeth.   

When a force is applied to a tooth for a sustained period of time, the tooth will 

tend to shift position.  This phenomenon can be explained by the pressure-tension theory 
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of tooth movement (Proffit, Fields, & Sarver, 2013).  The theory explains that when a 

force is applied to a tooth (directly at the center of resistance), an area of pressure is 

created on the side of the periodontal ligament opposite the point of force application, 

and an area of tension is created on the side of the periodontal ligament immediately 

adjacent to the point of force application.  The area of pressure in the periodontal 

ligament causes a cascade of cellular and chemical events leading to adjacent bone 

resorption, and the area of tension leads to another cascade of cellular and chemical 

events, but this time, leading to bone deposition.  The end-result is tooth movement.  

There are two types of resorption that can take place: frontal and undermining.  Frontal 

resorption leads to more efficient and less painful tooth movement, whereas undermining 

resorption leads to the opposite (Proffit, Fields, & Sarver, 2013).  Frontal resorption is 

usually created with relatively lighter forces and undermining resorption with relatively 

heavier forces.  The amount of force necessary to cause movement is dependent on the 

surface area of the periodontal ligament, which differs for each tooth.  Bodily movement 

of teeth with primarily frontal resorption generally requires 70-120 grams of force 

(Proffit, Fields, & Sarver, 2013).  Exceeding this amount can cause detrimental clinical 

effects, like pain, loss of rotational control and anchorage loss (Yee, Turk, Elekdag-Turk, 

Cheng, & Darendeliler, 2009).      

Not only is force magnitude important to efficient and less painful tooth 

movement but force duration as well.  Proffit et al. (2013) suggests the force duration 

threshold required for orthodontic tooth movement in humans is four to eight hours.  

Furthermore, Proffit et al. (2013) suggests tooth movement efficiency is a function of 

force duration, with a constant force producing near maximal efficiency.  Put together, 
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relatively light forces, in the range that produce frontal resorption, and constant forces 

will produce the most efficient tooth movement.  In other words, continuous light force 

should be used in an ideal orthodontic appliance (Mirhashemi, Saffarshahroudi, Sodagar, 

& Atai, 2012).    

In order for an activated coil spring to produce light, near constant deactivation 

forces, a number of factors need to be considered in their manufacture.  These factors 

include pitch, diameter of the wire and the coils, among others, but perhaps the most 

important factor is the material.  Nickel-titanium alloy has long been utilized in the 

orthodontic intraoral appliance due to its superelastic behavior (Miura, 1986).  When 

some nickel-titanium wires are bent or stressed, the load-deflection curve will sometimes 

show an area with a slope close to zero, which means as the wire straightens, a relatively 

constant force is produced.  Nickel-titanium wires can also exhibit a relatively long range 

of activation before permanent deformation takes place, which means these wires can be 

bent and distorted to a relatively high degree and return to their original shape (Burstone, 

Bai, & Morton, 1985).  The superelastic behavior of nickel-titanium makes it ideally 

suited as the material for coil springs and other components of the intraoral appliance. 

Elastomerics are frequently used in orthodontics for similar purposes as coil 

springs, however, they pose a significant disadvantage: elastomerics do not exhibit 

superelastic behavior.  Rapid force decay is a significant problem as well (Halimi, 

Benyahia, Doikkali, Azeroual, & Zaoui, 2012).  Elastomeric chain force degradation has 

been reported to be as high as 59-69% in the first hour (Weissheimer, Locks, de Menezes, 

Borgatto, & Derech, 2013).  The rapid force decay affects mechanical properties of the 

elastomeric chains as well as their clinical efficacy (Halimi, Benyahia, Doikkali, 
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Azeroual, & Zaoui, 2012).  Overall, depending on the clinical application, NiTi springs 

can be more adequate for orthodontic tooth movement (Santos, Tortamano, Naccarato, 

Dominguez-Rodriguez , & Vigorito, 2007).  This illustrates the importance of coil 

springs in the orthodontist’s armamentarium.   

Once an orthodontist has chosen to use a nickel-titanium open-coil spring, for 

example, to open space for a tooth that is blocked out of the arch, he or she must decide 

how much force is required to accomplish the tooth movement efficiently.  Most 

manufactures and orthodontic supply companies will list the amount of force produced by 

a particular nickel-titanium open-coil spring.  Those reported force levels may or may not 

be accurate in clinical conditions.  Another decision the orthodontist must make is how 

much to compress the coil.  A coil compressed to 80% of the original length may produce 

a different amount of force than the same length of coil compressed to 20% of the 

original length.  In other words, the superelastic behavior may not be observed at all 

levels of compression, and different force levels could be produced at varying amounts of 

compression.  Overall, it is important for the orthodontist to have confidence in knowing 

how much force the appliance is producing.   

Being aware of the biomechanics and force characteristics of the intraoral 

appliance is an important part of orthodontic knowledge and training.  As a commonly 

used instrument in the orthodontist’s armamentarium, the open-coil spring should be well 

understood.  Material and structural factors of the open-coil spring play a role in force 

production, but the amount of activation can affect deactivation forces as well.  When 

coils are used and activated in the intraoral appliance, only the rebound or deactivation 

force is used to move teeth.  It is hypothesized that as the amount of initial activation of a 
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nickel-titanium open-coil spring increases, the resultant deactivation force will also 

increase.    
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CHAPTER 2 
LITERATURE REVIEW 

 
 

Coil Springs Emerge In Biomaterials Research 

Open-coil springs have been the topic of research since the 1930s.  Early studies 

focused on the comparison of open-coil springs made of precious and non-precious 

metals.  Non-precious metals, such as steel, were found to produce more force at a given 

activation than precious metals, such as gold or silver (Arnold & Cunningham, 1934), 

(Johnson, 1934).  Johnson followed this initial research with an analysis of the effect of 

spring wire diameter, arch wire type, spring length, lumen size, and again, the effect of 

precious versus non-precious metals.  In the 1950s, Born and Bell continued this theme 

and published data illustrating the effect of wire size, arch wire size, and lumen size, at 

varying degrees of compression, on deactivation force production (Bell, 1951) (Born, 

1955).  These early studies, among others, helped to shed light on open-coil spring 

deactivation forces; however, the studies were limited because the reported deactivation 

forces could only be recorded at a discrete level of activation.  Later studies utilized the 

continuous load-deflection curve to illuminate the broader picture of open-coil spring 

behavior.  

Chaconas et al. (1984) produced one of the first data sets, from the compression 

of open-coil springs, with load-deflection curves.  The study examined three different 

materials: stainless steel, chrome steel alloy, and Elgiloy alloy.  Lumen size and coil wire 

thickness were examined as well.  Lastly, the arch wire (the wire that is threaded into the 

coil spring and used in the testing apparatus) was varied between rectangular and round.  

The coil springs were 20 mm in length and were compressed 10 mm (1/2 the original 
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length).  An Instron test machine was used to record load deflection data.  Chaconas et al. 

found that as lumen size increased, deactivation forces decreased, and as coil wire size 

increased, deactivation forces increased.  Varying arch wire shape only produced a 

significant difference in coil springs with larger lumen sizes.  Coil springs with smaller 

lumen sizes were not significantly affected.  Lastly, there were differences between 

manufacturers of coil springs.  The load deflection curves varied for coil springs 

reportedly of the same size and material, but produced by different manufacturers.  This 

was attributed to differences in pitch, or the number of loops in a given section of coil.  

Those manufacturers that incorporated more total wire in a given length of coil, meaning 

a higher pitch or more loops, produced lighter forces overall.  All of the load deflection 

curves were reportedly similar in shape.  There was an initial, relatively short period of 

non-linearity, attributed to the spring “settling in” to the test apparatus.  Immediately 

thereafter, the curve was linear, meaning as the amount of compression increased, the 

amount of force also increased in a relatively proportional fashion.  Chaconas et al. 

recommends that orthodontists compress an open-coil spring, of one of the 

aforementioned materials, to 1/3rd its original length for clinical applications.  This should 

produce force levels capable of tooth movement.  Compressing springs greater than this 

amount could produce orthopedic forces, which are too great for efficient tooth 

movement (Chaconas, Caputo, & Harvey, 1984).   

 

Nickel-Titanium Alloy 

Nickel-titanium alloy (NiTi) was first developed by the US Naval Ordnance 

Laboratory in the 1960s and was named nitinol by combining the first letters of nickel, 
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followed by titanium, and lastly Naval Ordnance Laboratory (Proffit, Fields, & Sarver, 

2013).  NiTi alloy is especially useful in orthodontics due to its dual martensite and 

austenite crystal structure, and, more specifically, its fully reversible transition between 

the two.  This transition can occur at relatively low temperature (Proffit, Fields, & Sarver, 

2013).  NiTi wires are able to withstand great amounts of stress before permanent 

deformation occurs relative to other metals and alloys, for example, stainless steel, and 

NiTi wires have a low load deflection rate.  As a NiTi wire deactivates, or returns to its 

original shape, the resultant deactivation forces are relatively constant and light.  This 

behavior is largely due to the phase transformation from martensite to austenite (Proffit, 

Fields, & Sarver, 2013).   

Improvements in NiTi alloy were developed in the 1980s. These improvements 

lead to a phenomenon known as “super-elasticity”.  The original nitinol wire was found 

to have good springback, but lacked this super-elasticity (Miura, 1986).  A super-elastic 

wire is one that, after being bent or activated to a point before permanent deformation, 

displays a near constant amount of deactivation force as the wire returns to its original, 

unbent shape (Miura, 1986).  Miura and colleagues reported on a new type of NiTi wire 

developed by the Furukawa Electric Co., LTD of Japan (Miura, 1986).  This wire was 

shown to have this super-elasticity phenomenon.  Chinese NiTi, introduced around that 

time by the General Research Institute for Non-Ferrous Metals in Beijing, China, was 

found to have a lower load deflection rate, higher springback, and more constant 

deactivation forces compared to nitinol wires (Burstone, Bai, & Morton, 1985). 

               

 



	

	

9	

Nickel-Titanium Properties 

“Superelasticity” is a property of NiTi determined by the tri-dimensional lattice of 

the alloy, which can be present in the martensite and austenite phases (Santoro, Nicolay, 

& Cangialosi, 2001).  The martensitic phase is characterized by a lattice that is body-

centered (cubic or tetragonal), and the austenitic phase is characterized by a lattice that is 

face-centered (hexagonal close packed).  The concentrations of these two phases can be 

modified by temperature variation, such that the crystal structure undergoes molecular 

arrangement modification without atomic composition changes.  In other words, the 

austenite to martensite transformation is reversible.  At lower temperatures, the NiTi 

alloy is primarily in the martensitic phase, and at higher temperatures, the alloy is 

primarily in the austenitic phase.  The temperature at which the transformation from 

martensite to austenite occurs, and visa versa, is called the temperature transitional range 

(TTR).  The TTR varies based on the unique composition and material processing history 

of each NiTi alloy (Santoro, Nicolay, & Cangialosi, 2001).   

Evidence of superelasticity can be seen on a stress-strain or load-deflection graph.  

As a superelastic NiTi wire is initially stressed or deflected, the corresponding amount of 

strain or load increases in a relatively linear or proportional pattern.  This occurs within 

the austenite phase. Once a critical stress is reached, further strain results in 

transformation to martensite and the slope of the graph becomes flatter.  As the stress or 

deflection is decreased, the corresponding amount of strain or load does not follow a 

linear or proportional pattern.  Rather, there is a “superelastic plateau” where the strain or 

load remains constant.  If this superelastic plateau is absent, then the NiTi wire is not 

exhibiting superelastic behavior.  If a NiTi wire has a high TTR, and wire deflection is 
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taking place at low temperature, the wire will likely remain in the martensitic phase at all 

times during deflection and not exhibit the effects of phase transformation.  In general, 

austenitic NiTi wires are relatively stiffer than martensitic NiTi wires (Santoro, Nicolay, 

& Cangialosi, 2001).  To summarize, the superelasticity phenomenon of NiTi alloys is 

due to the transformation between the martensitic and austenitic phases, which can be 

induced by stress (Santoro & Beshers , 2000).     

“Shape memory” is another clinically useful property of NiTi alloys.  If a NiTi 

wire is subjected to repeated deflection and temperature cycles, the wire while in the 

austenitic phase will retain a preformed shape.  If the temperature of the austenitic wire is 

lowered, the martensitic phase transformation will begin to occur, and the wire will 

become more pliable and able to accept deformations.  As the temperature is increased, 

the wire will transform back towards austenite and regain its preformed shape (Santoro, 

Nicolay, & Cangialosi, 2001).   

 

Nickel-Titanium Coil Springs 

Miura et al. (1988) conducted one of the first studies to examine the application of 

the nickel-titanium alloy in the orthodontic intraoral appliance.  It was known that nickel-

titanium alloy had superelastic characteristics in archwires, but the force characteristics in 

coil springs was not well understood.  In general, a superelastic nickel-titanium wire has a 

near constant deactivation force, and the wire can withstand relatively large deflection 

before permanent deformation occurs (Miura, Mogi, Ohura, & Karive, 1988).  

Graphically, superelastic behavior is evident as a plateau in a load-deflection graph 

during the deactivation phase.  Miura et al. compared nickel-titanium to stainless steel 
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open-coil springs and also examined the effects of coil wire diameter, coil lumen 

dimension, martensite transformation temperature variation, and coil pitch.  Testing was 

conducted at 37oC +/- 1.0 oC to simulate intraoral temperatures and compression rate was 

10 mm per minute.  The testing results demonstrated that the nickel-titanium open-coil 

springs produced near constant deactivation forces without signs of permanent 

deformation.  The superelastic plateau occurred while the spring length was between 15-

75% of pre-compression length.  The stainless steel springs produced deactivation forces 

that increased with greater amounts of compression and became permanently deformed 

after maximal compression.  For the nickel-titanium open-coil springs, deactivation 

forces increased with greater coil wire diameter, decreased with greater lumen dimension, 

and decreased with greater martensite transformation temperature.  As pitch increased, 

the range where the deactivation force is near constant also increased, but overall force-

level was nearly unaffected.  Miura et al. keenly points out that as the percent 

compression of an open-coil nickel titanium spring approaches zero, the deactivation 

force is below the threshold for tooth movement.  Clinically, this suggests the millimeters 

of coil incorporated in the intraoral appliance should be greater than the amount of 

desired tooth movement. The superelastic behavior and differences between stainless 

steel and nickel-titanium can primarily be explained by the stress-induced martensite 

transformation of nickel-titanium (Miura, Mogi, Ohura, & Karive, 1988).  

A study by von Fraunhofer et al. (1993) arrived at a similar conclusion to Miura et 

al. (1988) regarding the greater utility of nickel-titanium in coil springs.  The stainless 

steel springs tested produced heavy, rapidly decaying forces upon deactivation whereas 
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the nickel-titanium springs produced lighter and relatively constant deactivation forces 

(von Fraunhofer, Bonds, & Johnson, 1993).     

Bourke et al. (2010) and Brauchli et al. (2011) conducted studies that examined 

the force deflection characteristics of a series of commercially available nickel-titanium 

open-coil springs.  The former compressed the springs to 50% of the original length and 

the latter compressed the springs to 25% and 50% of the original length.  Bourke et al. 

(2010) noted the actual average deactivation forces of the springs were between 9 and 

42% below the reported force labeled by the manufacturers, which included GAC 

International (Bohemia, NY) and 3M Unitek (Monrovia, CA).  Interestingly, maximum 

force values were significantly higher than the labeled force value.  It was noted that the 

manufacturer method of determining force values is not well understood (Bourke, 

Daskalogiannakis, Tompson, & Watson, 2010).  Another interesting conclusion from this 

study is that as the same springs were tested multiple times over a period of 12 weeks, the 

average deactivation forces for the springs decreased over time.  The springs were also 

found to display non-superelastic behavior, indicated by the high load-deflection ratios, 

and deactivation forces decreased as the springs decompressed.   

Brauchli et al. (2011) conducted a related study, but it differed primarily by the 

addition of a 25% compression level.  Most of the nickel-titanium open-coil springs were 

found to have a more linear load deflection graph, but the GAC springs (Dentsply GAC, 

Bohemia, NY) and the RMO springs (Rocky Mountain Orthodontics, Denver, Colorado) 

were found to display superelastic behavior, evidenced by a clear force plateau (Brauchli, 

Senn, Ball, & Wichelhaus, 2011).  This superelastic behavior only occurred in the 50% 

compression test.  It is believed the superelastic behavior did not occur in the 25% 
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compression test because there was not enough deformation present to create lattice 

transformation.  Spring manufacturers have tried to mitigate this issue by reducing the 

number of coils in a given length of spring, so that a small amount of activation creates a 

relatively larger degree of deformation and subsequently inducing lattice transformation.  

One method for doing so was the stop-wound spring.  Still, these springs did not exhibit 

superelastic behavior in either the Brauchli et al. (2011) or the Bourke et al. (2010) 

studies.  The absence of superelastic behavior was speculated as attributable to the use of 

non-superelastic nickel-titanium alloys such as stabilized or work-hardened martensite 

(Brauchli, Senn, Ball, & Wichelhaus, 2011).  Lastly, Brauchli et al. (2011) recommends 

utilizing a coil-spring that is 200% the interbracket distance clinically, which should 

result in spring compression upon activation of at least 50%.  This should allow for the 

utilization of the superelastic behavior found in the GAC and RMO springs.     
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CHAPTER 3 
MATERIALS AND METHODS 

 
 
 

In this study, four open-coil spring products were evaluated: DENTSPLY GAC 

Sentalloy Coil Spring (15 mm; 100 and 150 gram coils; 0.009” x 0.030” wire size and 

inner diameter; Dentsply GAC, Islandia, NY), Orthoclassic Orthodontics (15 mm; 150 

gram; .035” inner diameter; McMinnville, OR), and American Orthodontics (20 mm; 

0.010” x 0.030” wire size and inner diameter; Sheboygan, WI) nickel-titanium springs.  

Sixty of each type were collected and randomly distributed into test groups of n=15. Four 

different compression (activation) levels were utilized with reference to the 15 mm pre-

cut length of the coils so that the coils were compressed to 20, 40, 60, or 80% of original 

length.  Testing was conducted so that each type of coil spring is tested at each of the four 

compression levels.  Each spring is tested one time.  The American Orthodontics coil 

springs arrived pre-cut to 20 mm.  All other coils were precut to 15 mm.  The length of 

the American Orthodontics springs was reduced so that it measured 15 mm by trimming 

5 mm of spring with a wire cutter.  The terminal ends of the American Orthodontics coil 

springs are not flat and are unfinished.  All of the other coil springs have flat, finished 

ends.   

A universal testing machine (Instron Corp, Canton, MA) applied the compression 

force at 10 mm/minute to achieve each distance of activation, which included 3, 6, 9, and 

12 mm of compression to correspond to 80, 60, 40, and 20% of original spring length, 

respectively.  Measurements were conducted at 37 +/- 1oC.  The temperature was 

monitored with a Temp Alert Dual Thermo air thermometer (Fisher Scientific, Hampton 

NH).     
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The experimental setup utilized a cylinder with a hole drilled through the top 

surface such that it allowed a 0.020 inch stainless steel guiding wire to pass through, but 

not the coil.  The guiding wire was attached to a Jacobs chuck, which held the open-coil 

springs in place for testing.   

Springs (n=15) of each type were compressed at each activation level.  Each 

spring was compressed and tested only once.  After testing, each spring was placed in an 

envelope and labeled so that each spring could be matched to its corresponding test.   

Activation and deactivation forces at mm increments were compared within each 

product among the percent compressed groups (20, 40, 60, 80%).  IBM SPSS Statistics 

software (Armonk, NY) was used to analyze the data with ANOVA using a significance 

value of p<0.05.  Activation and deactivation forces were analyzed separately.  Force 

versus compression curves were compared for each product.     
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CHAPTER 4 
RESULTS 

 
 
 

In Tables 1-8 below, the average force values and standard deviation for each coil 

group across the activation range are shown.  

Coil Compression 1 mm 2 mm 3 mm
GAC 150 (g) 86 ± 4 181 ± 9 263 ± 12
GAC 100 (g) 84 ± 7 170 ± 10 216 ± 11
AO 55 ± 7 115 ± 11 173 ± 15
OO Medium 21 ± 1 44 ± 1 66 ± 2  

      Table 1. Activation forces (grams) for 3 mm total activation group 
 

Coil Compression 2 mm 1 mm
GAC 150 (g) 164 ± 6 77 ± 3
GAC 100 (g) 139 ± 6 72 ± 6
AO 80 ± 5 38 ± 3
OO Medium 40 ± 2 20 ± 2 	
Table 2. Deactivation forces (grams) for 3 mm total activation group 

Coil Compression 1 mm 2 mm 3 mm 4 mm 5 mm 6 mm
GAC 150 (g) 90 ± 7 187 ± 12 265 ± 20 303 ± 20 305 ± 20 330 ± 17
GAC 100 (g) 85 ± 6 179 ± 11 244 ± 13 252 ± 19 266 ± 17 288 ± 21
AO 59 ± 11 121 ± 21 181 ± 26 227 ± 22 263 ± 14 293 ± 12
OO Medium 25 ± 17 53 ± 35 77 ± 49 98 ± 53 116 ± 48 133 ± 51

Table 3. Activation forces (grams) for 6 mm total activation group 
 
Coil Compression 5 mm 4 mm 3 mm 2 mm 1 mm
GAC 150 (g) 201 ± 13 200 ± 12 206 ± 11 159 ± 7 77 ± 5
GAC 100 (g) 157 ± 19 150 ± 20 155 ± 17 150 ± 9 74 ± 4
AO 193 ± 11 158 ± 16 123 ± 23 84 ± 22 41 ± 11
OO Medium 96 ± 30 82 ± 35 67 ± 37 47 ± 32 23 ± 16 	

Table 4. Deactivation forces (grams) for 6 mm total activation group 
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Coil Compression 1 mm 2 mm 3 mm 4 mm 5 mm 6 mm 7 mm 8 mm 9 mm

GAC 150 (g)
87 ± 
6

182 ± 
11

263 ± 
13

302 ± 
18

301 ± 
31

336 ± 
33

370 ± 
34

399 ± 
20

419 ± 
18

GAC 100 (g)
83 ± 
5

175 ± 
9

234 ± 
12

247 ± 
18

253 ± 
14

272 ± 
22

291 ± 
21

217 ± 
23

330 ± 
26

AO
56 ± 
12

118 ± 
22

179 ± 
28

225 ± 
23

256 ± 
16

291 ± 
18

320 ± 
18

346 ± 
22

373 ± 
22

OO Medium
25 ± 
17

52 ± 
34

77 ± 
48

98 ± 
53

114 ± 
41

133 ± 
48

149 ± 
54

163 ± 
62

189 ± 
60 	

Table 5. Activation forces (grams) for 9 mm total activation group 

Coil Compression 8 mm 7 mm 6 mm 5 mm 4 mm 3 mm 2 mm 1 mm

GAC 150 (g)
203 ± 
17

186 ± 
19

183 ± 
12

181 ± 
10

185 ± 
8

200 ± 
11

150 ± 
7

71 ± 
4

GAC 100 (g)
167 ± 
11

155 ± 
11

146 ± 
12

143 ± 
14

143 ± 
15

148 ± 
14

143 ± 
6

69 ± 
6

AO
223 ± 
26

210 ± 
22

193 ± 
17

173 ± 
13

144 ± 
16

113 ± 
22

76 ± 
22

35 ± 
11

OC Medium
107 ± 
20

97 ± 
19

92 ± 
24

85 ± 
26

74 ± 
31

60 ± 
36

42 ± 
31

19 ± 
14 	

Table 6. Deactivation forces (grams) for 9 mm total activation group 
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Coil Compression 1 mm 2 mm 3 mm 4 mm 5 mm 6 mm
GAC 150 (g) 87 ± 6 181± 10 263 ± 16 303 ± 19 315 ± 22 335 ± 19
GAC 100 (g) 83 ± 4 168 ± 6 211 ± 6 215 ± 12 226 ± 16 245 ± 12
AO 54 ± 7 112 ± 10 174 ± 22 221 ± 12 258 ± 12 292 ± 12
OO Medium 21 ± 1 43  ± 2 65  ± 2 85  ± 2 103 ± 3 121 ± 3

Coil Compression 7 mm 8 mm 9 mm 10 mm 11 mm 12 mm
GAC 150 (g) 361 ± 25 392 ± 29 408 ± 25 419 ± 17 435 ± 16 450 ± 16
GAC 100 (g) 261 ± 8 280 ± 11 297 ± 16 317 ± 13 324 ± 13 324 ± 18
AO 320 ± 17 346 ± 18 373 ± 20 398 ± 22 424 ± 28 678 ± 43
OO Medium 136 ± 4 150 ± 6 171 ± 10 203 ± 15 241 ± 16 272 ± 19

							Table 7. Activation forces (grams) for 12 mm total activation group 
	
Coil Compression 11 mm 10 mm 9 mm 8 mm 7 mm 6 mm
GAC 150 (g) 257 ± 22 233 ± 17 200 ± 15 186 ± 9 178 ± 8 177 ± 7
GAC 100 (g) 169 ± 9 151 ± 10 133 ± 9 124 ± 6 119 ± 6 116 ± 5
AO  271 ± 24 244 ± 20 223 ± 18 217 ± 17 201 ± 16 187 ± 11
OO Medium 130 ± 9 110 ± 8 98 ± 9 91 ± 8 86 ± 6 80 ± 4

Coil Compression 5 mm 4 mm 3 mm 2 mm 1 mm
GAC 150 (g) 177 ± 6 177 ± 7 191 ± 10 143 ± 5 64 ± 6
GAC 100 (g) 113  ± 5 113 ± 6 114 ± 8 120 ± 7 66 ± 7
AO 167 ± 9 136 ± 11 104 ± 8 68 ± 6 31 ± 5
OO Medium 71 ± 3 59 ± 3 44 ± 3 28 ± 2 10 ± 2

							Table 8. Deactivation forces (grams) 12 mm total activation group 
 

Table 9 demonstrates the mean force value at 3 mm compression upon 

deactivation for each coil brand and for all four levels of initial activation.  

Activation 3mm (80%) 6mm (60%) 9mm (40%) 12mm (20%) 
GAC 150 (g) Mean 174 123 113 104 
GAC 100 (g) Mean 216 155 148 114 
AO Mean 263 206 200 191 
OO Medium Mean 66 66 60 44 
     
Total Mean 180 137 130 113 

Table 9. Mean deactivation force (grams) at 3 mm compression upon deactivation 

 

The following figures (Figs. 1-21) demonstrate graphically the forces generated 

during each of the activation/deactivation ranges for each group.  The black and white 
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figures represent an example of one coil from each activation group for each brand as 

listed.  The colored figures represent a compilation of the four graphs from a given test 

group for each brand as listed.    

For all four open-coil spring products, deactivation force values at 3 mm 

significantly (p<0.05) decreased with greater activation/compression level.  When 

activated to 20% of original length, the force values at 3 mm compression upon 

deactivation were 53-73% of the force level when activated to 80% of original length.  

When activated to 40% of original length, the force values at 3 mm compression upon 

deactivation were 65-91% of the force level when activated to 80% of original length. 

 

 

	
Figure 1. Graph of AO coil 3 mm compression 
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Figure 2. Graph of AO coil 6 mm compression 

	

	
Figure 3. Graph of AO coil 9 mm compression 
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Figure 4. Graph of AO coil 12 mm compression 

	

	
Figure 5. Composite graph of all four AO coil compression levels  
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Figure 6. GAC-100gm coil 3 mm compression 

	

	
Figure 7. GAC-100gm coil 6 mm compression 
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Figure 8. GAC-100gm coil 9 mm compression 

	

	
Figure 9. GAC-100gm coil 12 mm compression 
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Figure 10. GAC-100gm composite of all four compression levels 

	
 

	
Figure 11. GAC-150gm 3 mm compression 
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Figure 12. GAC-150gm 6 mm compression 

	

	
Figure 13. GAC-150gm 9 mm compression 
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Figure 14. GAC-150gm 12 mm compression 

	

	
Figure 15. GAC-150gm composite all four compression levels 
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Figure 16. OO coil 3 mm compression 

	

	
Figure 17. OO coil 6 mm compression 
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Figure 18. OO coil 9 mm compression 

	

	
Figure 19. OO coil 12 mm compression 
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Figure 20. Composite graph of all four Orthoclassic 

	
Figure 21. Comparison of AO, GAC, and OO coils at 12 mm compression 
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CHAPTER 5 
DISCUSSION 

 
 
 

Nickel-titanium open-coil springs are a routinely used and effective auxiliary for 

the orthodontic intraoral appliance.  Studies have shown repeatedly that nickel-titanium 

open-coil springs are capable of producing light, continuous forces when properly 

utilized.  In this study, the deactivation forces of four commercially available nickel-

titanium open-coil springs were analyzed using four different levels of initial activation.  

 Prior to beginning the study, it was hypothesized that as the amount of initial 

activation of a nickel-titanium open-coil spring increases, the resultant deactivation force 

at a given level of compression upon deactivation will also increase.   The data collected 

do not support this hypothesis.  As seen in Table 9, as the amount of initial activation 

increased from 3 mm to 12 mm (or activation from 80% of original length to 20% of 

original length), the average deactivation force at 3 mm compression upon deactivation 

significantly decreased (p<0.05) for each coil type.  3 mm compression upon deactivation 

was utilized to compare the deactivation forces because a deactivation force could be 

recorded at this level for each test group.  A likely explanation for this trend is related to 

the absence of a superelastic plateau observed in the 3 mm initial activation test group of 

the GAC 100 gram and 150 gram springs.  As the amount of initial coil activation 

increases, there is increased deformation of the coil wire which will likely lead to the 

production of stress-induced martensite.  This phase transformation from austenite to 

martensite resulted in the lower deactivation force levels.   

As visualized in Figure 1-21, the degree of superelastic behavior differed between 

test groups.  A clear superelastic force plateau occurred during deactivation for both the 
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100 gram and 150 gram GAC coil groups with initial activations of 6 mm, 9 mm, and 12 

mm.  The GAC test groups with 3 mm initial activation did not exhibit a superelastic 

force plateau.  The AO and OO test groups, between all ranges of initial activation, 

exhibited a more linear load deflection graph.  A possible explanation for the lack of 

superelastic force plateau in the AO and OO springs is a difference in NiTi material 

properties between the GAC springs and AO/OO springs.  Additionally, the reported 

GAC coil-wire diameter was 0.001 inches smaller than the AO and OO coil-wire 

diameters.  It is likely that a superelastic force plateau was not seen in the GAC groups 

with 3 mm initial activation because the spring was only activated to 80% of initial 

length, which is likely insufficient for the austenite to martensite phase transformation to 

occur.  This is supported by the findings of Brauchli et al. (2011) who also tested GAC 

springs and found superelastic force plateaus in activation to 50% of original length but 

not in activation to 75% of original length.  It was suggested that there was insufficient 

deformation produced in the latter group to cause lattice transformation (Brauchli, Senn, 

Ball, & Wichelhaus, 2011).   

For the GAC springs that exhibited a clear superelastic force plateau, a greater 

initial activation lowered the force level at which the plateau occurred.  For example, as 

seen in Figure 7 and 9 for the GAC 100 gram test groups, the superelastic plateau 

occurred at approximately 110 grams of force for the 12 mm compression test group and 

approximately 150 grams of force for the 6 mm compression test group.  This 

phenomenon is referred to as hysteresis.    

Two of the three coil-spring brands tested, GAC and OrthoClassic, provided 

information on the force levels of their products.  The force levels of the GAC coils were 
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reported as 100 grams and 150 grams, and the force levels of the OrthoClassic coils were 

reported as 150 grams.  This information can be valuable to clinicians as many may not 

have the equipment needed to identify force levels of coil springs, and different clinical 

applications require different force levels.  These brands, however, do not provide details 

on recommended activation levels or the degree of activation required to produce the 

reported force levels.  The superelastic force plateaus for the GAC springs are generally 

higher than the listed force levels for GAC springs, as seen in Figure 10 and 15.  The 

tested force levels during superelastic plateaus begin to approach the listed force levels 

with greater initial activation.  For OrthoClassic, the listed force levels are generally 

higher than tested force levels, which only reached the listed levels during maximal 

activation and not during deactivation.  As seen in Table 8, the highest recorded mean of 

deactivation forces for the OrthoClassic Medium (150 gram) spring was 130 grams 

during the 12 mm initial activation test group.   

Brauchli et al. (2011) recommended clinicians activate nickel-titanium open-coil 

springs to at least 50% of initial length to produce continuous forces after finding a 

superelastic force plateau only with compression to 50% of initial length and not with 

compression to 75% of initial length.  This can be accomplished by utilizing a spring that 

is 200% of the interbracket distance where the spring will be placed (Brauchli, Senn, 

Ball, & Wichelhaus, 2011).  Without sufficient activation and deformation to induce 

phase transformation, the resultant forces on the teeth will likely be more variable.  Based 

on the findings and the specific size and brands of coils tested in this study, coil 

activation to 60% of the initial length will also be sufficient to produce continuous forces, 

but only with the GAC 100 and 150 gram springs.  Other springs not tested in this study 
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may produce similar patterns of deactivation forces.  The clinician should also be aware 

that, in general, greater initial activation generates lower deactivation forces.  This may 

seem counterintuitive to a clinician not familiar with nickel-titanium load-deflection 

patterns.   

Placing nickel-titanium open-coil springs that are 200% of an interbracket 

distance is not without potential negative side effects.  A coil spring will continue to 

apply forces to the teeth until the coil is removed or the coil spring has deactivated to its 

initial length.  Consequently, if a fixed intraoral appliance fitted with an open-coil spring 

sized to 200% the interbracket distance is left in place for an extended period of time 

unsupervised, the spring could displace teeth outside the bony housing, especially if 

utilizing a continuous, low-stiffness, NiTi archwire.  If a spring is being used for 

distalization of a posterior tooth, an unmonitored open-coil spring could cause excess 

tooth movement or impaction of other unerupted teeth.  A myriad of other negative 

consequences are possible.  Therefore, it is essential for the clinician to closely monitor 

patients with coil-springs compressed more than the desired total amount of tooth 

movement.  This remains true for many of the intraoral appliances available in the 

orthodontists’ armamentarium.      
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CHAPTER 6 
CONCLUSION 

 
 
 

Nickel-titanium open-coil springs exhibit lower deactivation forces with greater 

amounts of initial activation.  Superelastic behavior was observed in the form of a 

superelastic plateau in the GAC 100 gram and 150 gram springs with initial activation 

levels of 6 mm, 9 mm and 12 mm.  A lesser degree of superelastic behavior was observed 

in the AO and OO springs.  Based on these results, nickel-titanium open-coil springs 

appear to be an effective orthodontic auxiliary at producing continuous forces, especially 

when activated by compression to at least 60% of original length in certain brands of coil 

springs.   
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