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Introduction: Manufacturers claim that modern NiTi files with proprietary heat treatment 

transform at higher temperatures, thus staying more martensite and being more resistant to cyclic 

fatigue and more flexible. There are some studies comparing the effect of body temperature and 

room temperature on cyclic fatigue of these newer NiTi files.  However, there is not yet a study 

published for evaluating the relationship between bending properties of NiTi instruments and 

temperature following the ISO 3630-1 guideline.  The objective of this study was to evaluate how 

temperature affects the bending properties of six different brands of NiTi rotary instruments with 

different transformation temperature ranges.   

  

Methods: Six commercially available NiTi files were selected for this experiment.  The tested 

files included K3 40/.04 (Sybron Endo, Orange, CA), ProFile Series 29 Green Size 6 (Dentsply 

Tulsa Dental Specialties), K3XF 40/.04 (Sybron Endo, Orange, CA), Vortex Blue 40/.04 

(Dentsply Tulsa Dental Specialties), ProFile Vortex 40/.04 (Dentsply Tulsa Dental Specialties), 

and HyFlex CM™ 40/.04 (Coltène/Whaledent Inc., Cuyahoga Falls, OH).  The Austenite finish 

temperatures of the files were 9.6 ± 0.5, 17.6 ± 0.6, 24.9 ± 1.1, 35.4 ± 1.2, 45.7 ± 0.9, and 60.3 ± 

3.1, respectively.  The bending properties of the files were measured using a torsiometer (Sa 

bri Dental Enterprises, Inc. Downers Grove IL) following ISO 3630-1 guidelines.  Twelve of 

each file type were grouped into 3 groups based on temperatures.  Each temperature group had a 

total of 72 files.  Group 1 measured the bending moment (g.cm) at 9±2°C, group 2 at 23±2°C, and 

group 3 at 35±2°C.  The data was statistically analyzed by ANOVA and post hoc HSD (P<0.05) 

 

Results: For all tested files, the bending moment of the files increased as the temperature rose 

from 9to 23 to 35°C.  At all temperatures, HyFlex CM was significantly more flexible than other 

files. ProFile Vortex, K3XF, and Vortex Blue showed similar flexibility with each other.  They 

were significantly more flexible than ProFile Series 29, which was significantly more flexible 

than K3.    

 

Conclusion: Testing temperature and brand of the files were significant independent variables 

affecting the flexibility of the files.  
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CHAPTER 1 

INTRODUCTION 

 For endodontic disinfection to be effective, canal identification, cleaning, and shaping is 

critical.  Mechanical debridement of canals can be achieved through the use of endodontic 

instruments, such as stainless steel hand files and Nickel-Titanium (NiTi) rotary instruments.  

NiTi’s superior flexibility and torsional properties compared to stainless steel make it possible for 

it to be used in a rotary handpiece, making canal instrumentation safer and more efficient 

(Haapasalo et al., 2013).  In addition, advancements in thermal treatments such as M-wire, Blue-

wire, R phase, and controlled memory technologies can offer improved mechanical properties of 

flexibility and cyclic fatigue, as compared with conventional NiTi instruments (Shen et al., 2013).  

Improved flexibility of the file facilitates optimal cleaning and shaping of curved canals with 

fewer iatrogenic complications, such as ledging, zipping, and transportation (Kuhn et al., 1997). 

 Of note for the practitioner are the considerations of rotary instrumentation in the clinical 

setting.  Intracanal temperature ranges between 30-35°C (Hemptinne et al., 2015); however, 

many in vitro studies have been conducted at either room temperature or it was unspecified.  Of 

clinical significance, and where a gap in the literature exists, is in examining the bending 

properties of different nickel-titanium rotary files at intracanal temperatures.       

 Manufacturers claim that modern NiTi files with proprietary heat treatment transform at 

higher temperatures, thus staying more martensite and being more resistant to cyclic fatigue and 

more flexible. There are some studies comparing the effect of body temperature and room 

temperature on cyclic fatigue of these newer NiTi files (Dosanjh et al., 2017, Plotino et al., 2017). 

However, there is not yet a study published for evaluating the relationship between bending 

properties of NiTi instruments and temperature following the ISO 3630-1 guideline (2008). 

 The objective of this study was to evaluate how temperature affects the bending 

properties of six different brands of NiTi rotary instruments with different transformation 
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temperature ranges.  Although iatrogenic complications, such as ledging, zipping, transportation, 

and file separations heavily depend on operator experience and technique (Shen et al., 2009), it is 

believed that this study will help some clinicians to learn more about the properties of NiTi in 

clinical situations. 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

 The main objective of root canal therapy is to prevent or treat apical periodontitis 

(Orstavik et al., 1998).  One of the key elements of successful root canal therapy is 

chemomechanical debridement to remove microorganisms and its substrate, and to create a shape 

acceptable for dense and permanent root canal filling (Schilder, 1974).   

 In 1965, Kakehashi et al. proposed that the main etiology of apical periodontitis is 

bacteria.  According to their experiment, pulp tissue of germ free rats remained vital while pulp 

tissue of conventional rats became necrotic and infected, causing apical periodontitis.  This was 

later supported by Sundqvist (1976) who compared human necrotic traumatized teeth with and 

without apical periodontitis and found that bacteria culture was present only in teeth with apical 

periodontitis.  In addition, Moller et al. (1981) in their study on monkeys found that sterile 

necrotic pulps did not develop apical periodontitis while infected necrotic pulps had periapical 

inflammation.  

 Proper mechanical instrumentation facilitates removal of microorganisms and its 

substrate and creates a space for irrigant penetration (Schilder, 1974).  Mechanical 

instrumentation alone was shown to reduce bacterial load by 100 to 1000 fold (Bystrom & 

Sundqvist et al., 1981), but studies have shown that complete canal instrumentation cannot be 

achieved; according to a micro CT study, 35% of the canal walls remain untouched with current 

instrumentation techniques (Paque et al., 2010, Rodig et al., 2002).  Thus, chemomechanical 

instrumentation with the use of a disinfecting irrigant is essential for greater bacterial reduction 

(McGurkin-Smith et al., 2005).   

 Irrigation has mechanical, chemical, and biological objectives.  The mechanical and 

chemical objectives are to (1) flush out debris, (2) lubricate the canal, (3) dissolve organic and 

inorganic tissue, and (4) prevent or dissolve a smear layer during instrumentation.  The biological 
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objectives are to (1) have an antimicrobial effect against anaerobic and facultative 

microorganisms in both planktonic and biofilm state, (2) inactivate endotoxin, (3) have non-

toxicity when in contact with periodontal tissues, and (4) have little or no potential to cause 

anaphylactic reaction (Basrani et al., 2012).  

 One of the most frequently used disinfecting irrigants that achieves many of the above 

objectives is sodium hypochlorite (NaOCl).  NaOCl dissolves proteins and has an antimicrobial 

effect against microorganisms due to its high pH and its ability to form chloramine (Basrani et al., 

2012).  Clegg et al. (2006) found that 6% NaOCl to be the only agent capable of both physically 

removing biofilm and killing bacteria.  The study also showed that a lower percentage of NaOCl 

was equally effective if continuously replenished or given more time to take full effect.  

Moreover, NaOCl is an effective organic tissue dissolvant as 2.6% of NaOCl solution at 37°C 

was an equally effective collagen-dissolving solution as 5.2% NaOCl at either 21°C or 37°C 

(Cunningham and Balekjian et al., 1980).   

 Another popular irrigant that aids in removing the bacteria is Ethylenediaminetetraacetic 

acid (EDTA).  Although lacking an antimicrobial effect, EDTA effectively removes the smear 

layer by chelating the inorganic component of dentin and aids disinfecting irrigants like NaOCl to 

take effect in deeper layers of infected dentin (Haapasalo et al., 2005).  Studies have shown that 

combined use of NaOCl and EDTA resulted in more efficient elimination of bacteria compared to 

NaOCl without EDTA (Bystrom & Sundqvist et al., 1985, Baumgartner et al., 2007).        

 There has been debate regarding the appropriate size of apical preparations for successful 

root canal therapy.  According to Salzgeber and Brilliant (1977), the apical preparation should be 

above size 35 for irrigant to penetrate the apical third of the canal.  Abou-Rass (1982) showed 

that a 30 gauge needle was able to be placed in the apical third of the canal when the apex was 

prepared to size 30.  This was important because irrigant reached the working length only when 

the side-vented irrigation needle was placed 1 mm from the working length (Boutsioukis et al., 

2010).  However, some authors claim that there is no significant difference in apical debris 
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removal and intracanal bacterial reduction with or without apical size enlargement if there was 

suitable coronal taper and shape (Albrecht et al., 2004, Coldero et al., 2002). 

 Despite the debate on apical size, the general consensus is that cleaning and shaping of 

the canals to a continuous taper from access cavity to the apical foramen while maintaining the 

original canal path and apical foramen in its original position are important aspects of successful 

chemomechanical debridement (Schilder, 1974, Peters et al., 2011).  

 However, the difficulty arises as the root canal morphology is more complex than 

portrayed on the 2 dimensional radiograph; unlike curvatures in the mesiodistal plane, curvatures 

in the faciolingual plane are not apparent on clinical radiographs (Cunningham et al., 1992).  In 

addition, numerous isthmuses, fins, and webs exist between canals as well as variable canal 

configurations (Hess, 1921).  Such a complex and curved nature of canal anatomy may lead to an 

incidence of iatrogenic complications like ledging, zipping, and canal transportation especially if 

stiff stainless steel files are used entirely during the canal debridement.  Eldeeb et al. (1985) 

reported that stainless file size 25 or larger has increased risk of zipping and transportation.  Other 

studies have also shown remarkably decreased torsional properties and flexibility on bending of 

stainless steel files size 35 and larger (Craig et al., 1968).  

 Factors that attribute to apical blockage, ledge formation, and transportation include 

instrumentation technique, canal location, tooth type, and canal curvature (Jafarzadeh et al., 

2007).  Among those factors, canal curvature seems to be the most significant variable affecting 

the incidence of ledge formation (Kapalas et al., 2000, Greene et al., 1990), which is an artificial 

irregularity on the root canal surface that impedes the apical advancement of instruments to the 

otherwise patent canal (AAE Glossary, 2015). Canal transportation may result as the outer wall 

structure of the canal is removed due to the tendency of stiff stainless files to restore their original 

linear shape during canal preparation (AAE Glossary, 2015, Jafarzadeh et al., 2007).   

 Inability to maintain canal anatomy prevents effective bacterial reduction and seal in 

uninstrumented areas (Jafarzadeh et al., 2007).  A systematic review of the literature by Ng et al. 
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(2007) concluded the 4 significant factors that affect the endodontic outcome as absence of 

pretreatment apical radiolucency, root filling within 2 mm from the radiographic apex, root filling 

with no voids, and satisfactory coronal restoration.  Chugal et al. (2003) also noted that absence 

of chronic apical periodontitis, working length maintenance, root canal filling length, and root 

canal filling density were the main outcome predictors.  The study found that teeth with necrotic 

pulp had the best outcome when the root fillings are 0.55 mm short of the radiographic apex and 

had no voids, and that a 1 mm loss in working length increased the chance of treatment failure by 

14%.   

 While the search for ideal instruments has continued, it was not until 1988 when the 

introduction of Nickel-Titanium (NiTi) alloy as an endodontic instrument by Walia et al. (1988) 

led to a revolution in canal instrumentation.  NiTi alloy was first described by W.F. Buehler et al. 

(1968) in the early 1960s and has been used as orthodontic wires.  Later, Walia et al. (1988) 

reported that size 15 files fabricated from Nickel-Titanium orthodontic alloy (Nitinol) was 2-3 

times more flexible in bending and had superior torsional properties than the stainless steel files 

of the same size and file design.  Superior mechanical properties of NiTi alloy showed promise 

for the instrumentation of the complex root canal system (Schafer et al., 2003).   

 NiTi alloy can exist as three crystal phases; austenite, martensite, and intermediate R 

phase (Shen et al., 2013).  At high temperature, the alloy exists as the austenite phase, which is a 

stable, body-centered cubic lattice.  When the alloy is cooled through a transformation 

temperature range, it transforms to a twinned martensitic phase, which is a closely packed 

hexagonal lattice. Although the change from austenite to twinned martensite is not 

macroscopically detectable, twinned martensite is more ductile than austenite because it can be 

easily deformed to detwinned martensite through a single orientation (Thompson, 2000).   Unique 

phase transitions between austenite and martensite renders NiTi its shape memory and 

superelasticity.  Shape memory comes from the fact that NiTi can exist as 2 temperature-

dependent crystal structures- monoclinic B19’ for martensite at lower temperature and B2 cubic 
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crystal structure of austenite at high temperature.  When NiTi is heated, it transforms from 

martensite to austenite; the temperature at the start of the austenite transition is called austenite 

start temperature (As), and temperature at the end of transformation is called austenite finish 

temperature (Af), and vice versa for martensite start and finish temperatures upon cooling 

(Buehler et al., 1968, Thompson, 2000).  In addition, superelasticity happens when austenite 

transforms to stress-induced martensite during loading and spontaneously recovers back to 

austenite when unloaded within a specific temperature range above Af (Kuhn & Jordan, 2002, 

Duerig et al., 2015).  In this state, the application of stress does not result in proportional strain as 

seen in other metals because superelastic properties of NiTi allows its deformations to be elastic 

and reversible up to 8% strain compared to a maximum strain of 1-2% with stainless steel (Shen 

et al., 2013, Thompson, 2000).   

 NiTi’s superior flexibility allows it to be used as an engine-driven rotary file.  In 1992, 

John McSpadden introduced the first rotary 0.02 taper NiTi files into the market.  Subsequently, 

Ben Johnson developed larger taper 0.04 and 0.06 ProFile instruments and orifice openers to 

compensate for frequent file separation of 0.02 files as well as for improving instrumentation 

efficiency compared to hand filing with stainless steel hand files (Haapasalo et al., 2013).  Studies 

have supported the use of NiTi files as being more efficient and more centered in the canal 

compared to stainless steel hand files (Kuhn et al., 1997, Esposito et al., 1995).  

 Among the first generation of NiTi files is ProFile Series 29 (Tulsa Dental Products, 

Tulsa, OK, USA), which is characterized by a constant 29.17 % increase of dimension at d1 

between every successive file compared to standard ISO-sized instruments which have variable 

percent increase at d1; for example, at the beginning of the series from ISO size 10 to 25, the 

incremental changes at d1 is too large.  The disadvantage of ProFile Series 29 was that, even 

though the progression to the next larger instrument was easy in smaller sizes, it was more 

difficult to progress in the larger sizes especially during instrumentation of curved canals (Schafer 

et al., 1999).   
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 Then, came second generation files, including K3 (Sybron Endo, Orange, CA), 

Endosequence (Brasseler, Savannah, GA, USA), and ProTaper (Dentsply Tulsa).  Unique features 

of K3 include a slightly positive rake angle for better cutting efficiency, wide radial lands, 

peripheral blade relief for reduced friction, and variable pitch and core diameter which makes it 

stronger close to its apical tip (Haapasalo et al., 2013).  However, Chow et al. (2005) examined 

both K3 and Profile file systems and concluded that all tested K3 files were determined to have 

negative rake angles and that no studies have evaluated cutting efficiency solely on the criteria of 

rake angles.  Further research is needed to support any benefit of files of a positive or negative 

rake angle. 

 Despite the advantages of NiTi instruments, the possibility of file separation, ledge 

formation and transportation still exist.  One of the common iatrogenic errors is file separation, 

which happens due to torsional failure and cyclic fatigue (Shen et al., 2009).  Torsional fracture 

can happen when the apical portion of the instrument is bound in the canal while the remaining 

file continues to rotate.  Cyclic fatigue is caused by repeated compressive and tensile stress on a 

rotating file in a curved canal, usually at the maximum point of flexure (Kramkowski et al., 

2009).  Overall, the incidence of file separation happens about 3-5% of the time (Spilli et al., 

2005, Shen et al., 2009, Alapati et al., 2005), and there is a slightly higher prevalence of torsional 

failure (56%) compared with cyclic fatigue (44%) (Sattapan et al., 2000).  The separation of the 

instrument alone does not affect the endodontic outcome, rather it depends on the location and 

time of the fracture and whether there is the presence of a pre-operative periapical lesion (Crump 

and Natkin et al., 1970, Spilli et al., 2005).  Meta analysis by Panitvisai et al. (2010) showed that 

the overall prognosis of the root canal therapy with a retained instrument fragment was 91%, 

which was not significantly different from the outcome without a retained instrument.   

  Although file separations and ledge formations heavily depend on operator experience 

and technique (Shen et al., 2009, Jafarzadeh et al., 2007), numerous attempts have also been 

made by manufacturers to improve NiTi’s properties to reduce iatrogenic errors.  One of the 
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methods proposed is surface finishing via electropolishing.  The concept behind it was that 

polishing or removal of the surface defects like pitting and grooves, which can act as stress 

concentrators favorable to crack initiation and fracture, would lead to improved resistance to 

torsional stress and cyclic fatigue (Barbosa et al., 2008).  Some authors observed a more regular 

surface and higher resistance to torsional stress and flexural fatigue after electropolishing (Silva 

et al., 2011, Anderson et al., 2007).  However, other studies have shown that elelctropolishing did 

not offer significant advantages of microfracture inhibition, cyclic fatigue, cutting efficiency, and 

torsional resistance (Cheung et al., 2007, Herold et al., 2007, Barbosa et al., 2008, Bui et al., 

2008). 

 In addition, changes in file design, taper and cross-sectional shape can affect the 

mechanical properties of the file (Camps et al., 1995, Kazemi et al., 2000, Schafer et al., 2003).  

Cross-sectional geometry, especially, has been shown to be one of the major factors to affect 

torsion and bending properties (Camps et al., 1995, Xu et al., 2006).  Baek et al. (2011) reported 

that torsional stiffness was increased by cross-sectional geometry, increased cross-sectional area, 

and reduced pitch (more threads) rather than a difference in inner core area using finite element 

analysis.  The authors noted that a cross-sectional geometry of a rectangle had better torsional 

properties than a triangle with the same cross-sectional area and larger inner core area.  A higher 

bending moment (less flexibility) was observed for files with a rectangular cross-sectional design 

than a triangular cross-sectional design, and for files with increased cross-sectional area than 

smaller cross-sectional area (Camps et al., 1995, Schafer et al., 2003).  Also, more residual stress 

and deformation, which could lead to increased risk of fracture, was observed during simulated 

shaping of the curved canals for rectangle-based cross-sectional designs compared to triangle-

based files (Kim et al., 2009).  On the contrary, according to Hayashi et al. (2007), rectangular 

files were shown to be more flexible than triangular files.  

 The properties of NiTi are very sensitive and can be affected by chemical composition, 

manufacturing processes, and heat treatment (Miyazaki et al., 1982, Thompson, 2000).  
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Thermomechanical processing at about 400°C, especially, was reported to be effective at 

reducing work hardening, optimizing microstructure, and transformation behavior of NiTi (Kuhn 

& Jordan et al., 2002).  Several recent studies examined the effect of heat treatment on the 

transformation behavior of the alloy via differential scanning calorimetry (DSC) and found that 

heat treatment increased the transformation temperature; DSC measures martensitic and reverse 

transformation temperatures and associated phase transformations between austenite and 

intermediate R phase and martensite under controlled cooling and heating.  The elastic modulus 

of martensite is lower than austenite, and R phase has an even lower modulus than martensite.  

Using cantilever bending tests, studies have shown that NiTi instruments with a higher Af have 

better flexibility because they exist as either a mixture of austenite and R phase or martensite in 

the oral environment compared with files with a lower Af that exist as austenite (Yahata et al., 

2009, Miyai et al., 2006, Hayashi et al., 2007, Ebihara et al., 2011).  

 Proprietary heat treatment can produce instruments with significantly different Af 

temperatures and thus improved mechanical properties (Zhou et al., 2012).  In 2008, Johnson et 

al. showed in their experiment that ProFile 25/.04 rotary files manufactured via M-wire 

technology (Dentsply Tulsa Dental Specialties) had markedly improved cyclic fatigue of up to 

390% and equivalent torsional resistance compared with the same instrument design produced 

from Nitinol SE508 stock.  Through this proprietary method of drawing the raw wire under 

specific tension and thermal treatment at various temperatures, the M-wire alloy includes some 

portions of both martensite and R-phase while maintaining a pseudoelastic state (Alapati et al., 

2009).  Soon after, ProFile GTX was introduced as the first commercially available endodontic 

rotary file using the M-wire technology (Shen et al., 2013).  The next generation of M-wire 

instruments were ProFile Vortex (Dentsply Tulsa Dental Specialties), which showed superior 

cyclic fatigue and flexibility over conventional NiTi and stainless steel alloy (Johnson et al., 

2008, Gao et al., 2012).  This contrasted with other studies that showed that M-wire did not 
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perform better than conventional superelastic NiTi (SE-wire) (Gambarini et al., 2008, Al-Sudani 

et al., 2012).   

 Later, Vortex Blue (Dentsply Tulsa Dental Specialties) was brought into the market.  

ProFile Vortex and Vortex Blue have an identical geometric design and differ only in 

manufacturing process, which results in the blue color of the visible titanium oxide layer.  The 

hardness of the titanium oxide may compensate for the loss of hardness of ProFile Vortex while 

improving cutting efficiency and wear resistance.  Vortex Blue showed a 40% longer fatigue life 

than M-wire, while M-wire showed 250% better cyclic fatigue than SE-wire.  In addition, Vortex 

Blue was about 13% more flexible than ProFile Vortex, while exhibiting 20% lower maximum 

torque value (Gao et al., 2012).  Plotino et al. (2014) supported this finding as Vortex Blue 

showed a significantly increased number of cycles to failure when compared with the same size 

of ProFile Vortex except for the size 15/.04.  

 Soon after the introduction of the ProFile GTX series, Gambarini et al. (2008) proposed a 

new manufacturing method of twisting NiTi alloy to produce more flexible and fatigue-resistant 

NiTi instruments.  Prototype Twisted Files (Sybron Endo, Orange, CA) were manufactured by the 

combination of a special R-phase heat treatment and twisting of metal wire (Hou et al., 2011).  

Unlike SE wire that cannot maintain its permanent deformation of spiral configuration, R phase 

wire can be twisted because the transformation strain of R phase is less than one tenth of 

martensite transformation (Wu et al., 1990, Otsuka et al., 1998).  Studies have shown that 

Twisted Files were significantly more flexible than conventional NiTi files of the same taper and 

tip size (Gambarini et al., 2008, Hou et al., 2011).  An example of recent R-phase technology is 

K3XF (Sybron Endo, Orange, CA), which has the identical design as K3 but differs in 

manufacturing process.  Studies have shown that K3XF has better fatigue resistance than K3 

while maintaining comparable torsional properties as conventional NiTi (Fernandes et al, 2015, 

Lopes et al., 2013, Shen et al., 2015).  
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 In 2010, HyFlex CM (Coltène/Whaledent Inc., Cuyahoga Falls, OH) files were 

developed via controlled memory (CM) wire technology, a special heat treatment to render files 

extremely flexible (Shen et al., 2013).  According to the manufacturer, CM wire technology 

enables the HyFlex files to stay bent without rebounding to its original shape.  In addition, 

HyFlex CM files exhibit lower percent by weight nickel (52 Ni wt%) compared to most 54-57 Ni 

wt% files on the market.  However, the potential role of different percentage in nickel remains 

uncertain because this compositional deviance comes from raw material variations during 

manufacturing and thermal processing (Zinelis et al., 2010, Testareli et al., 2011).  HyFlex CM 

files display a mixture of martensite, R-phase, and a small amount of austenite at room and oral 

temperature, which attributes to superior flexibility and cyclic fatigue resistance compared to 

conventional NiTi (Testarelli et al., 2011, Zhou et al., 2012).  Compared to M-wire, HyFlex has 

better flexibility, less torque resistance, and higher angles of rotation before fracture.  High angle 

of rotation before fracture may be clinically beneficial because it may indicate imminent fracture 

by showing visible signs of plastic deformation/unwinding (Ninan & Berzins, 2013).    

 Of clinical significance, and where a gap in the literature exists, is examining the bending 

properties of different nickel-titanium rotary files at intracanal temperatures.  Intracanal 

temperature ranges between 31-35°C (Cunningham and Balekjian et al., 1980, Hemptinne et al., 

2015); while cantilever-bending tests were done at 37°C (Miyai et al., 2006, Hayata et al., 2007, 

Yahata et al., 2009, Ebihara et al., 2011), bending tests following the ISO 3630-1 guideline using 

a torsiometer have been conducted at room temperature (23±2°C) or appear in the literature 

without specifying the testing temperature.  

 Studies showed that altered transformation behavior of NiTi alloy at 37°C affected cyclic 

fatigue resistance for all tested files to a different degree.  Overall, there was a decrease in 

number of cycles to fracture (NCF) but heat-treated files with higher Af temperatures were not as 

significantly affected as the conventional NiTi files (Vasconcelos et al., 2016, Plotino et al., 2017, 

Dosanjh et al., 2017).  The presence of intracanal irrigant like NaOCl during canal 
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instrumentation is favored by some authors because the irrigant can absorb heat generated by the 

device, lower the intracanal temperature, improve cutting efficiency by removing intracanal 

debris, and result in an increased number of cycles to failure (NCF) (Mousavi et al., 2012, 

Vasconcelos et al., 2016).  This is contrasted by some studies that claim that longer exposure to 

NaOCl may reduce the number of rotations to failure due to corrosion of NiTi (Mize et al., 1998, 

Peters et al., 2007).  However, NiTi alloy has better corrosion resistance compared to stainless 

steel alloy, and immersion of NiTi in NaOCl has a negligible effect on its mechanical properties 

(Barbosa et al., 2007, Huang et al., 2017).  Further, Haapasalo et al. (2012) evaluated the effect of 

environmental conditions on fatigue behavior of controlled memory NiTi wire instruments and 

found that the type of NiTi alloy - CM files versus SE files - influences cyclic fatigue resistance 

in different environments but also CM files have longer fatigue life in liquid media than in air.   

 The scope of this study includes six commercially available NiTi rotary instruments with 

different manufacturing processes, thus having different austenite finish temperatures (Af). The 

Af of each file was obtained from internal experiment.  The hypothesis of this research was that 

the bending properties of the files will be temperature dependent. 
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CHAPTER 3 

MATERIALS AND METHODS 

 Six commercially available NiTi files were selected for this experiment.  The tested files 

included K3 40/.04 (Sybron Endo, Orange, CA), ProFile Series 29 Green Size 6 (Dentsply Tulsa 

Dental Specialties), K3XF 40/.04 (Sybron Endo, Orange, CA), Vortex Blue 40/.04 (Dentsply 

Tulsa Dental Specialties), ProFile Vortex 40/.04 (Dentsply Tulsa Dental Specialties), and HyFlex 

CM™ 40/.04 (Coltène/Whaledent Inc., Cuyahoga Falls, OH).  The Austenite finish temperatures 

of the files were 9.6 ± 0.5, 17.6 ± 0.6, 24.9 ± 1.1, 35.4 ± 1.2, 45.7 ± 0.9, and 60.3 ± 3.1, 

respectively (data obtained internally).  The bending properties of the files were measured using a 

torsiometer (Figure 1; Sabri Dental Enterprises, Inc. Downers Grove, IL) in accordance with ISO 

3630-1 guidelines. 

 For the flexibility test, the tip of each file (3 mm) was placed in the jaws of the chuck 

perpendicular to the axis of the motor (Figure 2).  The catch pin on the motor shaft was mounted 

and rotated in the clockwise direction until the catch pin was lightly touching the file.  The 

bending moment display was reset to zero, then the motor was activated to rotate 45 degrees and 

stopped.  Finally, the measured peak bending moment was recorded in g.cm.   

 Twelve of each file type were grouped into three groups based on temperatures.  Each 

temperature group had a total of 72 files.  Group 1 measured the bending moment at 9±2°C, 

group 2 at 23±2°C, and group 3 at 35±2°C.  

 For group 1, each file was placed in the jaws of the chuck and the catch pin was rotated to 

touch the file without applying any force.  Then, the files in the chuck were stored in a 

refrigerator for 4 minutes at 9±2°C.  The file in the chuck was quickly put back to its position 

within 10 seconds, and the motor was activated to measure the bending moment of the file when 

positioned at 45 degrees.   

 For group 2, the bending moment was measured at 23±2°C, room temperature. 
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 For group 3, a heater (Everstar HPV-25 ceramic heater; Home Depot USA, Inc., Atlanta, 

GA, USA) was utilized to keep the temperature near the torsiometer at 35±2°C, then the bending 

moment was measured. 

 All data was statistically analyzed by ANOVA and post hoc HSD with SPSS (SPSS Inc., 

Chicago, IL) and statistical significance was set at P<0.05. 

 

Figure 1. Torsiometer (Sabri Dental Enterprises, Inc. Downers Grove IL) 
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Figure 2. NiTi file set up for bending test in a torsiometer 
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CHAPTER 4 

RESULTS 

Table 1 shows the mean bending moment (g.cm) of all the tested files at 9°C, 23°C, and 

35°C.  For all temperatures, there was a general tendency that the lower the Af, the lower the 

flexibility of the files.  Table 1 shows that the most flexible file was HyFlex CM and the least 

flexible file was K3.  In addition, the rise in temperature resulted in decreased flexibility of the 

rotary files.  

 

Table 1. Mean (standard deviation) of bending moment (g.cm) of NiTi rotary files 

NiTi rotary file 

brands 

Temperature (°C) 

9°C 23°C 35°C 

K3 132 (14) 148 (18) 171 (14) 

K3XF 77 (5) 96 (10) 117 (12) 

ProFile Vortex 77 (11) 90 (16) 109 (12) 

Vortex Blue 78 (7) 97 (12) 118 (17) 

HyFlex CM 29 (4) 41 (4) 54 (5) 

ProFile Series 29 125 (14) 142 (9) 158 (21) 

 

  

Table 2 shows that there was a significant difference (p<0.001) in flexibility between 

brands and between temperatures.  There was no significant interaction (p>0.05) between brand 

and temperature. 

 

Table 2. 2-Way ANOVA tests between-subjects effects 

dependent variable: bending moment (g.cm) 

Source Type III 

Sum of 

Squares 

df Mean 

Square 

F Sig 

Brand 278610.986 5 55722.197 365.788 .000 

Temp 44904.861 2 22452.431 147.389 .000 

Brand*Temp 1091.861 10 109.186 .717 .708 
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Figure 3 shows again that, for all the file brands, an increase in temperature resulted in 

decreased flexibility, confirming that there is no significant interaction between the file brands 

and the temperatures.  High R2 values (0.97-0.99) confirmed that stiffness increases linearly with 

temperature.  

 

Figure 3. The relationship of the bending moment (g.cm) of the tested files in accordance 

with the rise in temperature (°C) 

 

 
 

  

According to Table 3, looking at the files as a whole, the files were significantly stiffer as 

the temperatures increased from 9 to 23 to 35°C.  In addition, Table 4 shows that, for all 
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temperatures, K3 had the highest bending moment (stiffer) followed by ProFile Series 29, Vortex 

Blue, K3XF, ProFile Vortex, HyFlex CM. 

 

Table 3.  Flexibiliy of NiTi files in relation to temperatures (°C) 

dependent variable: bending moment (g.cm) 

Temp (°C) Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

9.00 86.111 1.455 83.243 88.980 

23.00 102.292 1.455 99.423 105.160 

35.00 121.389 1.455 118.520 124.257 

 

 

 

Table 4. Flexibility of NiTi files in relation to brands 

dependent variable: bending moment (g.cm) 

Brand Mean Std. Error 95% Confidence Interval 

Lower Bound Upper Bound 

K3 150.389 2.057 146.332 154.445 

K3XF 96.833 2.057 92.777 100.890 

PV 91.667 2.057 87.610 95.723 

Vortex Blue 97.806 2.057 93.749 101.862 

HyFlex CM 41.278 2.057 37.221 45.334 

PS 29 141.611 2.057 137.555 145.668 

 

 According to Table 5, HyFlex CM was significantly (p<0.05) more flexible than all other 

files. K3XF and ProFile Vortex and Vortex Blue were not significantly different (p>0.05) from 

each other and collectively were significantly (p<0.05) more flexible than ProFile Series 29. 

ProFile Series 29 was significantly (p<0.05) more flexible than K3. 
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Table 5. Homogeneous subsets of PostHoc Tukey HSD for brands  

dependent variable: bending moment (g.cm) 

Brand N Subset 

1 2 3 4 

HyFlex CM 36 41.2778    

PV 36  91.6667   

K3XF 36  96.8333   

Vortex Blue 36  97.8056   

PS 29 36   141.6111  

K3 36    150.3889 

Significance  1.000 .286 1.000 1.000 

 

 According to Table 6, temperatures produced significantly different bending moments for 

all the file brands.  The files were significantly (p<0.05) more flexible at 9°C, followed by at 

23°C, and then at 35°C.  

 

Table 6. Homogeneous subset for PostHoc Tukey HSD for temp (°C) 

dependent variable: bending moment (g.cm) 

Temp (°C) N Subset 

1 2 3 

9.00 72 86.1111   

23.00 72  102.2917  

35.00 72   121.3889 

Significance  1.000 1.000 1.000 
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CHAPTER 5 

DISCUSSION 

NiTi files undergo constant development, leading to new generations of NiTi files with 

different properties.  Therefore, it is important for clinicians to understand the characteristics of 

these new and conventional NiTi instruments before use.  

The current study aimed to test how different temperatures affect the bending properties 

of different NiTi files following the guidelines of ISO 3630-1.  The mechanical properties of the 

files will become more clinically relevant when measured at intracanal temperature because 

intracanal temperatures are 31-35°C (Cunningham and Balekjian et al., 1980, Hemptinne et al., 

2015), the heated or cooled intracanal irrigation solutions will return to equilibrium of body 

temperature in 1 minute (Hemptinne et al., 2015), and rotary instruments just after removal from 

a root canal have surface temperatures of 30.8°C-32.5°C (Vasconcelos et al., 2016).  

Previous studies showed that altered transformation behavior of NiTi alloy at 37°C 

reduced fatigue resistance of the files (Plotino et al., 2017, Dosanjh et al., 2017, Vasconcelos et 

al., 2016).  While cantilever-bending tests were done at 37°C (Miyai, et al., 2006, Ebihara et al., 

2011, Hayashi et al., 2007, Yahata et al., 2009), bending tests following ISO 3630-1 guideline 

using a torsiometer were conducted at room temperature (23±2°C) or without specifying the 

testing temperature (Gao et al., 2012, Testarelli et al., 2011, Gambarini et al., 2008).  Therefore, 

the current study aimed to test how different temperatures (including intracanal temperature) 

affect the bending properties of different NiTi files. 

  In the present study, six commercially available NiTi files were selected according to 

the range of austenite finish temperatures (Af) (internal data).  The Af of each instrument listed 

from lowest to highest are as follows: K3: 9.6°C, ProFile Series 29: 17.6°C, K3XF: 24.9°C, 

Vortex Blue: 35.4°C, ProFile Vortex: 45.7°C, HyFlex CM: 60.3°C.  K3 and ProFile Series 29 

have a lower Af than room and body temperature, meaning that they will exist as austenite at both 
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temperatures.  K3XF has an Af higher than room temperature but lower than body temperature, 

thus having a mixture of martensite (or R phase) and austenite at room temperature but existing as 

austenite clinically.  Vortex Blue has an Af similar to intracanal temperature, and it will contain a 

mixture of martensite and austenite clinically.  ProFile Vortex and HyFlex CM with an Af higher 

than 35°C will present as more martensite clinically.   

Martensite and R phase have a lower Elastic modulus than austenite, thus the higher 

percentage of martensite structure, the more flexible the alloy becomes (Thompson, 2000).  

Moreover, the existence of martensite has damping properties, having more resistance to crack 

propagation and fatigue (Shen et al., 2013).  Further, a study by Braga et al. (2014) offers the 

explanation that of the files tested, files with a hybrid austenite-plus-martensite microstructure 

like that of Hyflex, Profile Vortex, and Typhoon, showed favorable fatigue resistance by 

comparison with files of fully austenitic microstructure because of the significant number of 

interfaces. Interfaces have been seen to create secondary cracks which can exhaust the energy 

needed for crack propagation.  

In the present study, for all temperatures, there was a general tendency that the lower the 

Af, the lower the flexibility of the files.  The most flexible file was HyFlex CM and the least 

flexible file was K3.  One of the things that contrasted with previous studies (Gao et al., 2012) 

was that ProFile Vortex was more flexible than Vortex Blue.  Since Vortex Blue and ProFile 

Vortex have the same file design, it calls attention to other factors affecting flexibility.  Vortex 

Blue has a characteristic 'blue color' titanium oxide surface layer, due to the proprietary 

manufacturing process, which may compensate for the lack in hardness seen in ProFile Vortex, 

while also improving the wear resistance or cutting efficiency (Gao et al., 2012).  

 The result of the present study showed that temperature had a significant effect on the 

flexibility of all the tested files.  There was a direct correlation between temperature and 

flexibility; the stiffness increased with the rise in temperature.  This can be explained by the fact 

that the heating may cause the transition of the NiTi instruments toward the austenite phase, 
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which makes the alloy stiffer compared to the instruments predominantly in the martensite phase 

(Viana et al., 2010, Thompson, 2000).     

 However, the fact that the flexibility of K3 and ProFile Series 29 was reduced even 

though the crystal structure of the instruments were similar (austenite) at room and intracanal 

temperature, suggests that other factors may play a role in reducing bending properties.  Similar 

findings were reported for cyclic fatigue resistance at different temperatures (Vasconcelos et al., 

2016).  In addition, Iijima et al. (2002) showed that NiTi orthodontic wires exhibited higher 

bending loads for specific deflections as the testing temperature increased even if their wires were 

above their Af temperature.  The result of the present study supports that cyclic fatigue life would 

be extended at lower temperatures because, if the files are more flexible (less force needed to 

bend the same amount corresponds to less stress), the resultant lower stress would predict a 

longer fatigue life.  Jamleh, et al. (2016) conducted a similar study evaluating the influence 

of different surrounding temperatures on cyclic fatigue resistance and deflecting load of 

superelastic NiTi instrument performance. The study found that the mechanical properties of NiTi 

instruments were negatively affected at high temperatures and would accelerate instrument 

fracture and create the need for larger load force to deflect the instrument. The study concluded 

lower temperatures were found to favorably decrease the deflecting load and extend the lifetime 

of the superelastic NiTi instrument. The present study agrees with these findings and would 

further add that at lower temperatures the NiTi instrument is mostly composed of martensite 

phase which is more flexible and more fatigue resistant as an instrument (Santoro et al., 2001) 

and that if the instrument is more flexible, less force is needed to bend the instrument, then the 

reduced stress on the instrument would contribute to a longer cyclic fatigue life.  

 The result of this study confirms that understanding the transformation behavior with 

respect to temperature of NiTi is important for clinicians.  Previous studies mentioned that canal 

preparation in the presence of an irrigation solution like NaOCl resulted in reduced intracanal 

temperature, increased the number of cycles to failure (NCF), and improved cutting efficiency 
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(Mousavi et al., 2012, Vasconcelos et al., 2016).   Some studies suggested heating NaOCl in order 

to enhance its antimicrobial action as well as its tissue dissolving capacity via preheating the 

irrigant inside the syringe (Sirtes et al., 2005), heating the irrigant inside the canal with a System 

B plugger (Sybron Endo, Orange, CA) (Woodmansey, 2005), or using ultrasonic agitation 

(Zeltner et al., 2009).  However, cooling NaOCl can be an option during instrumentation of 

severely curved canals for improved flexibility of the NiTi instruments.  The antibacterial 

properties of NaOCl will not be affected as long as NaOCl is left to take its action because the 

temperature of the irrigant will return to equilibrium after 1 minute.  Moreover, ultrasonic 

agitation can be added at the final irrigation step for heating NaOCl and for effective cleaning of 

microorganisms and infected dentin (Huque and Iwaku et al., 1998), while some authors found no 

significant difference in intracanal bacterial reduction (Beus and Safavi et al.,2012) or periapical 

healing with or without ultrasonic activation (Liang et al., 2013).  

One of the limitations of this experiment was the in vitro nature of the study.  The present 

study was not conducted using extracted natural teeth to capture the variations in root anatomy, 

nor the extent and frequency of canal curvatures that may exist within a single canal.  The most 

important factor in the control of fatigue resistance is the diameter of the endodontic file at the 

point of maximum canal curvature (Braga et al., 2014).  Lack of data on file behavior within 

various curved canals at intracanal temperatures means care should be taken in extrapolating the 

present results for clinical use.  

The present study was conducted with the file allowed to run with no irrigant or use of 

water bath environment.  The study by Haapasalo et al. (2012) concluded that the type of NiTi 

metal alloy within controlled memory NiTi and conventional superelastic NiTi files influenced 

the cyclic fatigue resistance in different environments and that for CM files (NEYY and TYP of 

Clinicians Choice Dental), the fatigue life is longer in liquid media compared to air.  

Also, how the flexibility of the files would translate to actual iatrogenic events like ledge 

formation, zipping, transportation should be further investigated.  Moreover, the temperature 
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control relied on a crude method of heating the surrounding dry environment of the file and 

putting the file in refrigerator.  A more ideal setting would be a climate controlled facility such as 

those in libraries, museums, and historical sites.  

Although file design and cross-sectional geometry acted as variables (Camps et al., 1995, 

Kazemi et al., 2000, Schafer et al., 2003), some files possessed the same file design but with a 

different Af (K3 and K3XF, ProFile Vortex and Vortex Blue).  The change in bending properties 

according to different temperatures of these files showed that a change in transformation behavior 

can be a significant factor affecting bending properties.    
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CHAPTER 6 

CONCLUSIONS 

Within the limitation of this in vitro study, it can be concluded: 

1. The flexibility of the files decreased as the temperature rose from 9°C to 23°C to 35°C.  

2. Austenite finish (Af) temperature (transformation behavior) of the files is a major factor 

determining the flexibility.  

3. For Flexibility: HyFlex CM> ProFile Vortex, K3XF, Vortex Blue> ProFile Series 29> 

K3 at all temperatures. 
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