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ABSTRACT 

The scientific and industrial demand for controllable thin gold (Au) film and Au 

nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS 

devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this 

study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate 

uniform Au thin films in ambient condition. The enhanced local mass transfer rate and 

continuous deposition resulting from CF-EL plating improved physical uniformity of deposited 

Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved 

optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to 

batch immersion EL (BI-EL) plating. Suggested mass transfer models of Au mole deposition are 

consistent with optical feature of CF-EL and BI-EL films. 

The prototype CF-EL plating system is upgraded an automated scalable CF-EL plating 

system with real-time transmission UV-vis (T-UV) spectroscopy which provides the advantage 

of CF-EL plating, such as more uniform surface morphology, and overcomes the disadvantages 

of conventional EL plating, such as no continuous process and low deposition rate, using 

continuous process and controllable deposition rate. Throughout this work, dynamic 

morphological and chemical transitions during redox-driven self-assembly of Ag and Au film on 

silica surfaces under kinetic and equilibrium conditions are distinguished by correlating real-time 

T-UV spectroscopy with X-ray photoelectron spectroscopy (XPS) and scanning electron 

microscopy (SEM) measurements. The characterization suggests that four previously 

unrecognized time-dependent physicochemical regimes occur during consecutive EL deposition 

of silver (Ag) and Au onto tin-sensitized silica surfaces: self-limiting Ag activation; transitory 



 
 

Ag NP formation; transitional Au-Ag alloy formation during galvanic replacement of Ag by Au; 

and uniform morphology formation under controlled hydraulic conditions.  

 A method to achieve the time-resolved optical profile of EL Au plating was devised and 

provided a new transitional EL Au film growth model which validated mass transfer model 

prediction of the deposited thickness of ≤100 nm thin films. As a part of the project, validation of 

mass transfer model, a spectrophotometric method for quantitative analysis of metal ion is 

developed that improves the limit of detection comparable to conventional instrumental analysis. 

The present work suggests that modeling, fabrication and characterization of this novel 

CF-EL plating method is performed to achieve an ultimate purpose: developing a reliable, 

inexpensive wet chemical process for controlled metal thin film and nanostructure fabrication. 
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CHAPTER ORGANIZATION 

 

This dissertation consists of five chapters. The first chapter introduces an overview of 

plasmonic metal nanostructure using conventional deposition and electroless plating. It discusses 

the overall goals and objectives of the project. In chapter two, the modeling of electroless Au 

deposition is described to provide unsteady (batch immersion) and steady flow enhanced 

(continuous flow) metal ion diffusion features during thin film formation. Several mass transfer 

models are suggested to predict the deposited amount and thickness. Chapter three highlights the 

fabrication of surface plasmon resonance (SPR) enhanced Au nanostructures via continuous flow 

(CF-EL) plating. Thin film, thermal transformed nanoparticle (NP) and regular NP array are 

fabricated by CF-EL plating and electron beam lithography. In Chapter four, four important 

characteristic achievement are described; 4.1 Characterization of uniformity enhanced EL Au 

film, 4.2 Quantitative detection of Au(I) concentration for EL Au deposition, 4.3 Metal 

disposition and dynamics during EL metal thin film synthesis, 4.4 Prediction of EL Au 

deposition on silicate surface at unsteady and steady condition. Chapter five concludes the 

dissertation and proposes suggestions and plans for future work. 
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OVERALL INTRODUCTION 

 

  Predictable deposition of uniform metal thin films with consistent physical and chemical 

features at ever-decreasing scales is vital in microelectronics, photovoltaics, photocatalytic 

coatings, and spectroscopic platforms. A desire to improve control over the kinetic and 

equilibrium processes governing the nanoscale structure of as-deposited film motivates improved 

understanding of film growth mechanisms at the atomic scale. Metal thin film deposition in 

aqueous solution by electroless (EL) plating has been utilized to fabricate microelectrodes, and 

electronics, catalyst because of the simplicity and utility of the operation. Although it requires no 

external source of current and no sophisticated equipment, EL plating can provide uniform 

surface coverage on multidimensional surfaces without the directional limitations encountered 

during sputtering or evaporation. But while kinetics and thermodynamics of metal thin film 

growth via vapor phase have been extensively studied as instrumental technologies which control 

extreme conditions (e.g. vacuum and high temperature) have advanced, the study of metal ion 

diffusion during thin film formation in aqueous phase has not been investigated from an atom-

scale perspective since the 1990s due to diminished industrial and scientific demand resulting 

from limited scalability of bench bath systems. In particular, a fundamental mechanism 

describing EL metal thin film growth that allows its control at the nano-scale, including 

consideration of internal and interfacial substrate-film structures, remains underdeveloped due to 

a lack of time-resolved data collection and corresponding structural characterization. 

  Due to extensive demand for thin film applications in photovoltaic devices, 

photocatalytic coating, fuel cells, batteries, and electronics, “top-down” physical vapor 

deposition, chemical vapor deposition, and vacuum evaporation are being rapidly advanced to 

meet stringent requirements for more sophisticated engineered nano–and micro-structures. 
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However, top–down technologies are limited by essentially one–dimensional deposition, which 

prevents their application in structures that require uniform, multi-dimensional thin metal film 

formation such as through–holes for 3D integrated circuits and probe tip coatings. Top down 

deposition does not form stable, uniformly deposited ultrathin film structures on non–conductive 

substrates due to lattice mismatch between deposited metal and substrate. Recently EL gold (Au) 

deposition has been shown to overcome many limitations of conventional vapor deposition 

methods by allowing fabrication of size controllable Au nanoparticles (NPs) on nonconductive 

glass substrates, deposition on optical capillary internal walls, more uniform thin film and NPs, 

uniform spheroid Au NP arrays with and without thermal annealing, Au coated nanorods and 1–

D nanostructure in porous templates. EL deposition of Au occurs through galvanic displacement 

of Ag which has been reduced onto tin (Sn)–sensitized ceramic or polymer substrates. 

Controlling kinetics of galvanic replacement reaction of Ag by Au allow synthesis of optically 

unique bimetallic nanostructure. 

  Metal thin film formation by physical vapor deposition has been described 

mechanistically as adsorption and diffusion of adatoms in non-equilibrium steps of nucleation, 

coalescence, and subsequent thickness growth driven by an external electron donor. Descriptive 

kinetic models illustrate deposition behavior at conditions of high gas pressure and temperature 

Due to atomic scale control of thin film microstructure and industrial demands for lowering 

processing temperature, vapor deposition often produce polycrystalline thin films. 

Polycrystalline film structure has been correlated to deposition parameters using temperature-

dependent structure zone models. In-situ time-resolved micrographs corroborate kinetic 

simulations and corresponding film growth models. As a representative “bottom-up” method, 

electroplating is a well characterized method; however it usually produces non-uniform metal 
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thin films which are dependent on substrate geometry and plating conditions and requires 

conductive substrates such as Au, Ag, Cu, nickel, carbon steel and indium-tin-oxide. General 

reaction rate models for electroplating systems use current density to predict the final film 

thickness. However, it is difficult to control deposition rates for nano-scale deposition and 

uniform thin film coatings on three dimensional substrates due to edge effects, current variations 

associated with deposited film thickness, and variations in the electrodes with time. 

 In contrast to physical vapor deposition and electroplating, EL synthesis of metal films 

exposes a substrate to a series of solutions containing metal ions that may be covalently bound to 

the surface or to existing metals via redox reaction without application of external electrical 

energy. Depending on the source of donated electrons, film formation is mechanistically 

classified into 1) substrate dehydration and sensitization 2) metal catalyzed reduction 3) galvanic 

replacement reduction and 4) autocatalytic reduction. However, morphological and chemical 

transitions that accompany these consecutive mechanisms and their respective contributions to 

metal thin film growth on silica substrates remain unclear because time-resolved characterization 

of transitory physicochemical features has not been performed. In particular, the nature of 

interface between metal film and non-conductive glass substrate remains poorly characterized. 

Moreover, the kinetics of thin film growth and physicochemical transitions via reduction are still 

not well understood due to a lack of time-resolved characterization of the heterogeneous redox 

reactions involved. EL Au films grow via a complicated, multistep redox process influenced by 

metallic complexes and reductant ion diffusion to catalytic surfaces and subsequent reaction on 

these surfaces. Improved understanding of fundamentals of each of these influences in EL Au 

plating could allow prediction and control of EL Au plating and improve resulting physical and 

optical film characteristics. 
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   Recently, an equilibrium metal deposition system referred to as continuous flow EL (CF–

EL) Au plating was developed. This system allowed control of metal film growth rate at steady 

deposition conditions with a constant equilibrium driving force. CF-EL plating differs from 

metal deposition by conventional batch immersion EL processes in which a transient, decreasing 

thermodynamic force drives metal ions dissolved in a bulk medium to diffuse through a stagnant 

thin boundary layer toward a substrate onto which deposition occurs. Continuous depletion of 

metal ions from solution produces a time-dependent molecular diffusive flux. But in CF–EL 

plating, bulk metal ion solutions at constant composition flow continuously past a substrate, 

producing a larger, time-invariant metal deposition rate. This rate is due to a higher average 

steady concentration driving force across a narrower stagnant boundary layer adjacent to the 

surface. Continuous, enhanced deposition in CF-EL plating has been shown to improve physical 

uniformity of deposited Au films and thermally transformed NPs. However, EL Au plating is not 

adequately described by one-dimensional unimolecular diffusion due to the heterogeneous 

character of four constituent chemical reactions; Sn sensitization, Ag activation on Sn, galvanic 

displacement of Ag by Au, and Au deposition. Furthermore, few generally applicable or specific 

standards have been applied to ascribe morphologies (e.g. shape, thickness, continuity, overall 

uniformity at nanoscale) or chemical composition of EL deposited structures, or to provide 

control for commercialized continuous operation. Moreover, for EL plating, the rate-limiting step 

of thickness growth is the subject of controversy, because deposition rates are extremely 

sensitive to bath composition (including concentration) and operation conditions (temperature, 

mechanical stirring rate, etc.) Previous reports developing kinetic models for EL Au deposition 

lacked accompanying experimental validation for prediction of nano-scale thickness growth. 

Limited recent experiments by us with EL Au plating indicated that modifying mass transfer 
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rates can improve uniformity and optical properties of thin EL Au film characteristics.  

  In this work, dynamic physical and chemical disposition of Ag and Au during EL metal 

thin film growth at equilibrium hydraulic conditions will be evaluated in situ by real-time T-UV 

spectral measurement, time-resolved scanning electron microscopy (SEM) characterization and 

X-ray photoelectron spectroscopy (XPS) depth profiling. Such geometric- and dielectric-

dependent optical features allow real-time T–UV spectral measurements to provide a fast, 

effective analytical method to evaluate surface morphology and chemistry during EL deposition 

of metal thin films. Also, the real-time T-UV spectra measurement correlated with 

photoluminescence (PL) of EL Au film evaluates the mass deposition rate of Au in EL thin films 

and validates a diffusion-limited model of mass transfer in EL plating. By performing 

experiments at constant hydraulic conditions, variations in composition of reagents and 

reductants are eliminated. Real-time PL and plasmon spectral characterization at constant 

hydraulic conditions allowed previously unrecognized time-dependent physicochemical 

transitory regimes of EL Au plating to be identified: self-limited Ag activation; Ag NP formation; 

Au-Ag alloy formation during galvanic displacement of Ag by Au.  It distinguishes particular 

time frames for each regime, which allows the deposition rate of submicron scale Au thin films 

to be described using a diffusion-limited model of mass transfer. Use of in situ kinetic, rather 

than more common equilibrium transmission profiles allows time frames for complex 

heterogeneous chemical reactions and physical transformation during EL film formation to be 

distinguished. The description is validated using complementary measures of nanoscale 

thickness obtained using XPS and SEM. The resulting description for EL deposition allows 

precise prediction of deposited thickness for nano-scale films (≤ 100 nm) on scalable substrates. 
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CHAPTER 1 

1. Plasmonic metal nanostructure using electroless plating 

Plasmonic metal nanostructures such as thin metal films, nanoparticles (NP) and nanorods 

are important in developing opto-electronics, MEMS devices, photovoltaic solar cells, 

diagnostics, spectroscopic biosensors, and microscopic surfaces and probes. The advance 

research of the plasmonic nanostructures requires better control over the precise fabrication to 

maximize the interaction between photon and electron in less than 100 nm scales. Thus, 

understanding the fundamentals of metal deposition in atomic view is one of most essential steps 

to manipulate the precise structural dimensions. Also, classifying advantage and disadvantage of 

conventional fabrication methods is necessary to either optimize these processes for specific 

nanostructures such as NP arrays or develop a novel instrument. This chapter is organized as 

follows: Section 1.1 describes fundamental optical features of plasmonic structures such as thin 

film, a NP and ordered NP arrays as application of plasmonics. Section 1.2 summarizes 

conventional top-down and bottom-up fabrication methods for plasmonic metal structures with 

describing growth mechanism. Section 1.3 identifies present advantage and disadvantage of 

conventional fabrication method. Section 1.4 lists the motivation and objectives of the present 

work. 

1.1 Fundamentals of plasmonic nanostructure 

1.1.1 Surface plasmon resonance (SPR) 

SPR is the coherent excitation of conduction electrons at the interface of a metal and a 

dielectric substrate caused by incident, resonant light in planar surface. Surface plasmons, or 

surface plasmon polaritons, are collective charge density oscillations that propagate in a direction 

parallel to the metal/dielectric interface when light is reflected at the metal interface under 
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resonant conditions.
1
 Figure 1.1 shows a schematic of the SPR phenomenon in Au thin film. 

When a p-polarized incident light beam propagates through a higher refractive index medium (n1) 

and meets an interface at a medium of lower refractive index (n2), the incident light is totally 

reflected at the interface and, then, propagated back into the high refractive index medium. The 

evanescent field wave, E, decays exponentially from the interface. 

       However, when a thin noble metal layer with suitable thickness (~50 nm) is located between 

two media, E penetrates the metal layer and excites electromagnetic surface plasmon waves, ksp, 

that propagate along the metal surface. When E is in resonance with ksp, the surface plasmon 

wave will create an enhanced evanescent wave, or a surface plasmon. The resonance is a result 

of energy and momentum being transformed from incident photons into surface plasmons, and is 

sensitive to the refractive index of the medium on the opposite side of the film from the reflected 

light. Due to these optical features, SPR has been used to enhance the surface sensitivity of 

several spectroscopic measurements such as fluorescence, Raman scattering, and second 

harmonic generation. As their simplest approach, SPR reflectivity measurements are used as a 

platform of biomolecular sensors. Recent works report that the improved uniformity of deposited 

nanostructure can enhance SPR and surface enhanced Raman scattering.
2
 Especially, uniformity 

enhanced EL Au films also can be used as the platform. 

1.1.2 Localized Surface Plasmon Resonance (LSPR) 

LSPRs are charge density oscillations confined to metallic NPs and metallic 

nanostructures.
3
 Figure 1.2. shows the schematic of SPR in a nanosphere

3
 and experimental 

spectra of LSPR from a random Au NP array. When resonant light irradiates a metallic NP, the 

conduction electrons in electron field excite and oscillate coherently due to displacement of  
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Figure 1.1. The mechanism of surface plasmon resonance in Au thin film.
1
 

 

Figure 1.2. (a) Schematics of localized surface plasmon oscillation (adopted from Schatz
3
) 

(b) SEM image of thermally transformed NPs  from EL Au film, Inset is extinction spectra of 

Au NP. 
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electron cloud and its restoring force. The resonance effect results in strong light scattering, the 

appearance of intense surface plasmon absorption bands, and an enhancement of the local 

electromagnetic fields. The optical features of the surface plasmon absorption band such as 

frequency, absorption maxima, and intensity are characteristic of the type of material and 

structural features such as the size, size distribution and shape of NPs. Also, the optical response 

is a strong function of the surrounding environments. 

1.1.3 Enhanced synchronous SPR 

Due to synchronous plasmon-photon coupling between scattering light and excited 

plasmon on NPs,
4,5

 two dimensional (2D) regular NP arrays are important in bio-molecular 

sensing devices using surface enhanced Raman scattering
3

 and
 

LSPR,
6
 integrated circuit 

waveguides,
7
 photovoltatics,

8
 and antennas. Particularly, tuning wavelength of SPR peak into the 

near infrared (NIR), around 650 - 900 nm, has drawn attention to improve detection efficiency of 

optical sensor because low scattering and absorption from intrinsic chromophore exhibit the 

highest tissue transmissivity in the NIR.
9
 

        The optical responses, intensity and wavelength, are tuned by adjusting particle size, shape, 

and inter-particle spacing between NPs in a 2D lattice. For example, Figure 1.3. shows how the 

electromagnetic coupling peak that originates from orientation of particles with respect to 

incident electromagnetic excitation is shifted by varying the interparticle spacing in a 2D square 

NP array.
5
 But tuning the wavelength by adjusting particle size, shape, or inter-particle spacing 

requires expensive and laborious fabrication. Additionally, as shown in the Figure 1.3, only a 

specific geometry of array exhibits the highest optical sensitivity, higher peak height and 

narrower full-width half maxima (FWHM) at the specific wavelength. Tuning the wavelength to 

other target frequency requires attenuated peak feature due to dispersion.
5 
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Figure 1.3. Extinction spectra for square 2D grating of Au NPs on an ITO coated quartz 

substrate (d ; grating constant) (Adopted from Lamprecht
5
) 
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1.2 Conventional Fabrication Methods for Au nanostructures 

1.2.1 Top-down metal thin film deposition 

Metal thin films and nanostructures are generally fabricated by physical vapor deposition 

(PVD), vacuum evaporation,
10

 sputtering,
11

 and chemical vapor deposition (CVD)
12

. These top-

down approaches have been successfully used to fabricate metal thin films on an industrial scale 

with a standardized characterization method for thickness. For example, quartz crystal 

microbalances (QCM) have been incorporated into sputtering instrumentation to determine 

specific thickness of deposited thin films.
13 

 

The mechanism of metal thin film formation by PVD was generally described as 

adsorption and diffusion of adatoms in an extremely non-equilibrium process starting with 

nucleation, coalescence, and subsequent thickness growth with external electron donor.
14

 The 

descriptive kinetic models illustrate the deposition behavior in high gas pressure and temperature 

condition.
15

 Due to atomic scale control of thin film microstructure and industrial demands for 

lowering processing temperature, vapor deposition often produces polycrystalline thin films. 

Thus, extensive studies have been carried out to define the correlation between polycrystalline 

film structure and deposition parameters using temperature dependent structure zone models.
14,15

 

Especially, recent advanced microscopic characterization validates these film growth models and 

kinetic simulations comparing with in-situ time-resolved micrographs.
15

   

1.2.2 Bottom-up metal thin film deposition 

Electroplating, also called electrolytic plating, is a representative bottom-up metal 

deposition using external electrical current to reduce cations of a desired metal from a solution 

onto conductive substrates.
16

 It is similar to a galvanic cell acting in reverse. Two half-cells 
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(anode and cathode) are immersed in a solution called an electrolyte containing other conductive 

ions and one or more dissolved metal salts. The cathode is to be plated by the dissolved metal via 

reduction while the anode is to be plated out with the same rate of plating. It has been used to 

improve corrosion resistance and coat on various shapes and sizes of substrates. This 

electroplating is a well characterized method. However it usually produces non-uniform metal 

thin films depending on substrate geometry and plating condition and needs conductive 

substrates such as Au, Ag, Cu, nickel, carbon steel and indium-tin-oxide.
16

 Furthermore, 

hazardous plating bath waste is produced. Although general reaction rate models and current 

density (J) have been used to predict the final film thickness,
17

 it is still difficult to control 

deposition rate and nano-scale deposition. 

Electroless (EL) plating is auto-catalytic chemical deposition of a desirable metal from an 

aqueous solution of a metal salt without external electric current. Before describing the plating, it 

is necessary to define the terminology “electroless plating” because there are three fundamentally 

different types of chemical plating performed without supply of an external current source. 

(1) Galvanic displacement 

Galvanic displacement plating, often called immersion, is the deposition of a more noble 

metal on a less noble metal substrate without external electron donor.
18

 An example is the plating 

of zinc with copper in an acidified copper sulfate solution. When zinc metal is immersed in the 

solution, the zinc atoms (less noble) dissolve and are spontaneously replaced by copper atoms 

from the solution. The two redox reactions can be described as follows: 

Oxidation:    Zn
0
   →   Zn

2+
 + 2e

-
  (Anodic)     E

0
=0.76 V 

Reduction:    Cu
2+

+ 2e
-
  →   Cu

0
   (Cathodic)  E

0
=0.34 V 
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Overall reaction:  Zn
0
   +   Cu

2+
  →   Zn

2+
   +   Cu

0
,   E

0
=1.1 V 

When the entire substrate is fully cover with copper, the displacement effectively ceases and no 

further thickness increases. Thus, the chemical plating yields deposits limited to a few micron in 

thickness, usually 1 to 3µm.
18

 For gold (Au) plating, the available substrates are silver (Ag), 

copper, brass, nickel, tin or mild steel. The adhesion is not satisfactory. 

(2) Autocatalytic plating 

Autocatalytic plating is the desirable metal deposition by the chemical reduction of 

metallic ions in an aqueous solution containing a reducing agent.
18

 Due to the reducing agent, the 

deposition is controllable to few hundred microns in thickness. The metal salt and reductant 

usually react in the presence of a catalyst, i.e. the part to be plated. The reductants are hydrazine, 

sodium hypophosphite, sodium borohydride, amine borane, titanium chloride, and 

formaldehyde.
19

 The available metal salts are nickel, copper, tin (Sn), Ag and Au. The term 

“electroless plating” only describes the autocatalytic plating.  

(3) Substrate-catalyzed processes 

The substrate-catalyzed processes are similar to autocatalytic plating because of the 

presence of reducing agent. Considering the solution composition, it is not possible to distinguish 

between two processes. Thus, it can be categorized by the material of catalysis. For Au plating, 

the substrate-catalyzed plating performs Au deposition on a different substrate, while 

autocatalytic plating allows plating on a Au substrate.
19
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1.2.3 Bottom-up EL Au plating 

It is widely reported that conventional EL Au deposition using Au(I) consists of four 

chemical regimes
20

: Sn sensitization, substrate catalyzed Ag activation, galvanic displacement of 

Ag by Au, and autocatalytic Au film growth. Figure 1.4 shows SEM images from the first three 

regimes with corresponding chemical reaction and T-UV spectra inset on the bottom LHS and 

top RHS, respectively. In the Sn sensitization process of Figure 1.4(A), a target surface is wetted 

by an acid solution of SnCl2. The SnO2 generated in the solution from the hydrolysis of stannous 

ion (Sn
2+

 (II)) adsorbs on the surface and Sn
2+

 act as molecular anchors for subsequent 

adsorption of catalytic nuclei.
21

 Possible surface reaction mechanisms that have been suggested 

for Sn sensitization on SiO2 glass substrate are:
21 

  

 

The Sn sensitized silicate substrate, as indicated in the transmission spectra in Figure 1.4(A), 

exhibited no observable spectral features relative to a referential bare glass substrate (overlapped 

Sn spectra). Its corresponding SEM image shows no recognizable specific features due to 

electron charging effects on semi conductive thin SnO2 layer and nonconductive silicate glass. 

The feature in the upper LHS of the SEM image is a contaminant particle used to focus the  
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Figure 1.4. Images of products from three regimes of conventional EL deposition procedure: (A) 

Sn sensitized substrate (B) Ag activated substrate (C) Au deposited substrate after galvanic 

displacement of Ag by Au (batch immersion plating for 5 min: BI-5) 
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electron beam on the surface. Generally, SnO2 thin film is considered to be optically transparent. 

The transparency of SnO2 has been investigated in application of transparent conductor
22

 and 

electrode of transparent dye-sensitized solar cell.
23

 

After sensitization by Sn, the substrate is exposed to ammoniacal silver nitrate solution. 

The higher galvanic potential of Ag relative to Sn enables metallic Ag to cover the Sn layer via a 

rapid redox reaction. During Ag activation (Figure 1.4(B)), the adsorbed Sn(II) is oxidized to 

Sn(IV) concurrent with Ag(I) being reduced to elemental Ag(0), which adheres strongly to the 

surface. The suggested mechanism is shown in equations (4-5):
21

 

 

The reduced Ag adheres strongly to the Sn sensitized surface in the form of metallic Ag islands. 

Figure 1.4(B) shows that after 2 min of Ag reduction, the reduced Ag formed a thin island 

structure on the Sn sensitization layer. The T-UV spectra in the inset of Figure 1.4 (B) show a 

broad transmission valley with a minimum at ~500 nm. This decrease in transmission is 

attributable to deposition of thin metallic Ag island layer. An unannealed 2-nm thick mass of Ag 

island film was previously reported to exhibit absorption maxima at ~510 nm.
24 

In separate work, 

an unannealed 5-nm thickness Ag island film showed a broad resonance peak around 520 nm.
25 
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The metallic Ag is galvanically displaced by more noble metal Au
+
 ions as illustrated by 

Figure 1.4 (C). In subsequent reduction of Au
+
 ions onto the galvanically substituted Au film, a 

reducing agent, HCHO, plays the role of an electron donor to reduce Au(I) to Au(0). The 

galvanically substituted Au particle acts as a catalytic site after Au particles entirely cover with 

the substrate.
26

 The proposed mechanism for galvanic replacement (Eq. 6) and autocatalytic Au 

film growth (Eq.7) can be represented as follows:
26

 

 

The SEM image of Figure 1.4 (C) shows EL deposition of Au form for 5 min results in a 

relatively continuous film structure. The film exhibits a spectroscopic PL feature at ~500 nm. 

The PL peak of EL Au thin film increased from 490 nm to 504 nm with increasing deposition 

time between 2 min and 6 min.
20

 

1.2.4 Conventional nanopattern fabrication 

     Diverse nanofabrication techniques are being developed to meet scientific and industrial 

demand for highly ordered metal NP arrays. Namely, electron beam lithography (EBL) is 

commonly used to create precise nanopatterns with resolution on the order of several 

nanometers.
4,5

  EBL works by tracing an electron beam in a specifically designed pattern across a 

surface coated with a thin film of polymer electron resist. The exposed regions of resist are then 

chemically removed in a process called “development”, leaving the substrate exposed. Then thin 
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film evaporation or sputtering is performed on the developed pattern. Finally, the remaining 

resist region is lifted-off by chemical solvents to obtain the designed metal pattern.    

1.3 Existing advantage/limitation of suggested fabrication methods 

      Conventional top-down metal depositions such as physical sputtering and chemical 

evaporation methods must be operated under highly-controlled conditions such as high 

temperature, pressure and vacuum necessitating costly sophisticated instrumentation. They share 

the limitation of one-dimensional deposition preventing their application in structures that 

require multi-dimensional deposition such as the internal walls of optical capillaries and three 

dimensional coatings on probe tips. Furthermore, these metal depositions require a conductive 

substrate, such as indium tin oxide (ITO), to create uniformly deposited films and regular arrays. 

Nonetheless, for non-pretreated substrate, the weak bonding between substrate and metal 

particles induced by lattice mismatch still results in discontinuous island structures. Technically, 

the discontinuity of island structures on the non-conductive substrate can be improved by ultra-

thin (~5 nm) Cr pre-coating procedure. However, the Cr addition to the substrate is problematic 

to well-ordered nanostructures for applying biomolecular sensing, because the thin Cr layer may 

weaken sensitivity.
6,27

 The developed particle shapes in EBL are limited to polycrystalline 

cylindrical structures due to characteristics of the electron beam and strong bonding between the 

deposited metal and Cr coated substrate. Additionally, the metal ion diffusion into the undercut 

between the polymer resist layer and the substrate surface is a common problem resulting in 

background metal residue. However, as an alternative plating method, conventional batch 

immersion EL (BI-EL) Au plating, using aqueous metallic solutions at ambient conditions, 

allows to satisfy the specific scientific demand for fabrication of various nanostructures without 

the need for an external electric energy source or a conductive substrate. Moreover, BI-EL 
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plating could develop an Au film with improved uniformity relative to top-down sputtering and 

evaporation. The uniformity of deposition still can be improved by a different mass 

transportation. 

Figure 1.5 shows SEM images of four different Au films deposited on conductive 

substrates: BI-EL plating (a), evaporation (b) and sputtering (c,d). The BI-EL film exhibits a 

uniformly distributed, dense film with a thickness of approximately ~80 nm. Evaporated Au 

films on < 5 nm thick Cr pre-coated layer show randomly-sized particles and a less uniform 

morphology. The 8 nm sputtered film without Cr pre-coating shows distinguishable separated 

island features and the 80 nm sputtered film shows gaps between islands and distinct Au pillars 

of irregular shape. Also, Sn sensitization of BI-EL plating induces moderate bonding between 

deposited Au and the substrate which allows the creation of thermally transformed NP platforms 

over a range of thicknesses at the nanoscale.  

Moreover, BI-EL plating mitigates health and safety issues by avoiding hazardous 

reagents like cyanide and hydrofluoric acid and eliminating hazardous plating solution wastes 

which are usually generated with electroplating. Optimized bench-scale BI-EL plating conditions 

such as plating solution composition, temperature, pH, agitation rate, reducing agent, bath 

stability, deposition rate and resulting crystal structure have been well characterized.
18

 

1.4 Motivation and Objectives 

In spite of these promising advantages of BI-EL Au plating, a suitable process for 

continuous operation on an industrial scale has not been developed and commercial BI-EL 

plating remains limited to bench-scale with micro-thickness structures.
18

 To date, Roper’s lab has 

focused on characterizing and fabricating Au nanostructures by BI-EL Au plating. Still, further  
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Figure 1.5. SEM images of diverse metal thin film. (a) EL Au film by BI-EL plating (b) 

Evaporated 50 nm Au film with 5 nm Cr coating (c) 8 nm- and (d) 80 nm-thick sputtered Au 

film without Cr coating (Adopted from Ahn
28 

). 
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study is required to improve the precision of nanostructure and understand the chemistry. 

Technically, the uniformity of BI-EL Au film may be more improved by changing the present 

mass transportation mechanism, in which unsteady state mass transportation of BI-EL plating 

induced by decreasing concentration of metallic solution during plating forms non-uniform 

surface morphology. This presents one of the critical limitations to developing scale-able 

uniform metal thin films and nanostructures. Also, immersing a whole target substrate in the BI-

EL solution bath can lead to unwanted surface plating, which is costly and labor-intensive. 

Furthermore, there are no generalized standard methods to characterize overall thickness and 

physical features of nanoscale EL thin film. Standard profilometer cannot measure less than a 

hundred nanometers and AFM is a time consuming, complicated method which is only available 

to local areas.  

Therefore, based on understanding about the unsteady state diffusion of BI-EL plating, 

novel steady state diffusion system is developed to overcome suggested disadvantages. Then, the 

scalability of the novel plating system is validated by various micro- and spectroscopic 

characterization. As fundamental study, the film growth mechanism and diffusion phenomenon 

at steady and unsteady conditions are investigated using time-resolved characterization along 

with mass transfer models. For scale-up continuous EL plating system, the fast liquid and solid 

Au analysis approaches are studied using T-UV spectroscopy and spectrophotometric methods. 

Then, as application of novel plating system, the order Au NP arrays are fabricated. 
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 The specific objectives of this work are described as follows; 

I. Modeling (Chapter 2) 

(1) Develop mass transfer models of EL Au plating and related correlations which allow 

characterizing metal film growth mechanism and predicting deposited amount of metal 

ion.  

II. Fabrication (Chapter 3) 

(1) Fabricate uniformly deposited EL Au thin films and thermally transformed random 

NPs using CF-EL plating system. 

(2) Optimize Au chemistry of EL plating solution and hydraulic operation of CF-EL 

plating for uniform thin film 

(3) Fabricate scalable CF-EL thin films using a flexible CF-EL Au plating system with 

real-time T-UV spectroscopy for quantitative, in-situ evaluation of dynamic 

spatiotemporal effects during Au deposition. 

(4) Fabricate regular Au NP array via combination of EBL and CF-EL plating  

III. Characterization (Chapter 4) 

(1) Characterize structural and spectroscopic feature of CF-EL and BI-EL films and their 

NPs via micro-/spectroscopic analysis.  

(2) Characterize balancing redox activity of Au(I) using TMB and develop a novel 

spectrophotometric Au ion assay for CF-EL plating solution.  

(3) Characterize dynamic physical and optical features of EL metal deposition on silicate 

surface at steady and unsteady conditions measured using real-time T-UV spectroscopy, 

SEM and XPS. 

(4) Characterize physicochemical sequential steps in EL Au deposition and validate 

possible mass transfer models predicting precise deposition rates and specific deposition 

amount. 
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CHAPTER 2 

2. Modeling of Electroless Au deposition

 

The significance of the present work is described in Section 2.1 regarding mass transfer 

models in EL Au deposition. In section 2.2, mathematical deposition rate equations for BI-EL 

plating is described to predict deposition amount on a substrate. The Au ion transfer rate of CF-

EL Au plating is described in Section 2.3. Applicable mass transfer models for scalable CF-EL 

plating and considerations with relevant quantitative mass balance equations are present in 

Sections 2.4. and 2.5. The concluding statement for this chapter follows in Section 2.6 

2.1 Significance of the Present Work 

A conventional EL Au plating has been performed by immersing a target substrate in 

working metallic solution baths. Due to no external driving force for deposition, the lower 

plating rate relative to electroplating was a challenging technical issue for microstructure 

development. Thus, many studies had focused on either optimizing thermo-mechanical 

conditions or controlling chemical composition to improve deposition rate in stable operation 

condition. However, the low deposition rate and non-uniform surface morphology formation are 

still problematic due to the fundamental mass transfer issue, depletion of metal ion solutions 

during batch immersion (BI) plating. Thus, less industrial and scientific demand resulting from 

the limited scalability of bench scale, the study of metal ion diffusion for thin film formation at 

an atomic view in aqueous phase had not investigated since 1990s. In this work, novel CF-EL 

plating system is developed to overcome the unsteady mass transportation of BI-EL plating. In 

                                                           
 Adapted in part with permission from Jang, G.G.; Roper, D.K. J. Phys. Chem. C, 2009, 113 

(44), pp 19228–19236. Copyright 2009 American Chemical Society 
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particular, various mass transfer models are studied to interpret the Au diffusion in these two 

different system, BI-EL and CF-EL Au deposition.    

This study of Au ion diffusion in EL Au plating is important to develop a future industrial 

continuous process and control over ultra-thin film formation. Particularly, the calculation of 

deposited amount enables not only to predict the physical dimension of deposited solid Au such 

as thickness, but also to suggest optimal operating conditions for various dimension substrates. 

Controlling steady (CF-EL) and/or unsteady state (BI-EL) diffusion conditions also allow 

improving the opto-physical feature of deposited EL Au film by involving the surface 

morphology formation and continuity of deposited Au clusters.   

2.2 Mass transport in conventional BI-EL plating 

To date, EL Au deposition has been performed by immersion of a substrate into a series 

of metal ion solutions. Figure 2.1 shows a schematic of the hypothesized mass transfer model 

during BI-EL plating. In BI-EL plating, Au ions in a stagnant medium diffuse toward and deposit 

onto the substrate wall during incubation. The mass transfer model of BI-EL plating via 

unsteady-state molecular diffusion considers the depletion of species with respect to time in a 

unit volume through which the species are diffusing. Unsteady diffusion from a semi-infinite 

medium, rather than a finite slab, best describes this system since DABt/a
2
< 1/16 where a = half 

the thickness of the flow channel, and other parameters are defined following equation 1. Thus, 

the instantaneous rate of molar transfer (n) of immersion plating on a wall is described by :
1
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D
n AB
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   (2.1) 
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Figure 2.1. Schematics of a mass transfer model in BI-EL Au plating. 
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where A = the area of substrate, t = elapsed time, DAB = diffusivity of A ions in an aqueous 

solution(B) and ΔC= concentration difference between Au ion in bulk solution and at the surface 

of substrate.  

        Au film morphology and thickness depend on the total number of Au ions deposited onto 

the substrate. For BI-EL plating, the total number of solute ions (MA) transferred into the semi-

infinite medium is determined by integrating equation (2.1) with respect to time:  

NC
tD

AM
AB

A 
















2    (2.2) 

where N is the number of immersions onto an open substrate. 

For scalable BI-EL plating, we also suggest a finite one-dimensional, unsteady-state 

diffusion model
1
 to predict Au deposition in a confined system. The instantaneous rate of mass 

transfer (nA) across the surface of either unsealed face of the medium (i.e., at z = ±a) is  
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where CAs= Concentration at surface, CA0=Concentration in bulk 

The total number of moles transferred across either unsealed face is determined by integrating 

equation (2.3) with respect to time. Thus, 
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2.3 Mass transport in CF-EL plating 

Due to improved optical and physical features and compatible engineering scale-up 

possibility, CF-EL plating is a more effective process to continuous industrial fabrication relative 

to BI-EL plating. Thus, developing a mass transfer model for CF-EL plating is an essential step 

to be fulfilled in advance.  

  CF-EL plating occurs via steady deposition from an adjacent bulk in laminar flow. In CF-

EL plating, the developed mass transfer coefficient is different from BI-EL due to continuous 

laminar flow which decreases the stagnant boundary layer adjacent to the wall and provides 

time-invariant Au concentration and Au deposition rate. The mass transfer rate of CF plating has 

been defined using the two-compartment and effective rate models which use a first-order 

transfer coefficient to account for diffusive mass transfer resistance to the functionalized silica 

substrate.
2,3

 In brief, solutes at uniform concentration equal to the injection concentration flow in 

an outer compartment at a constant rate (F) parallel to the surface in an open channel while 

solute concentration in an inner compartment increases at rates due to mass transfer from the 

outer compartment (km) and desorption from the interface of compartment (kr). Simultaneously, 

inner compartment solute concentration decreases at a rate due to deposition onto the substrate 

surface (kf). The forward and reverse mass transfer coefficient (km) is related to flow cell length 

(L), width (w) and flow thickness (h), operational flow rate (F) and molecular diffusivity (DAB) 

by :
2,3
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where γ = 6F/(h
2
w) is the wall shear rate. 
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Figure 2.2. shows the entire procedure of CF-EL Au plating. Overall CF-EL plating 

procedure is a combination of both steady state mass transfers during laminar flow and unsteady 

state diffusion during post injection incubation. In the CF-EL plating, metal ion solutions are 

continuously injected into a confined rectangular substrate channel to produce a higher, time-

invariant Au deposition rate via a higher, steady concentration driving force across a narrower 

stagnant boundary layer adjacent to the surface. In the incubation, Au ions in a stagnant medium 

diffuse toward, and deposit onto the substrate wall during incubation. In the washing, the 

continuous flow plating is applicable. Thus for CF-EL, the total moles of mass transferred solute 

ions, MA, is obtained by adding the semi-infinite mass transfer solution (2.2) and the steady state 

mass transfer solution (2.5), resulting in: 

 















1

2 2
tD

tkCAM AB

mAB     (2.6) 

where t1 and t2 are the time of batch immersion and continuous flow, respectively.  

2.4 Mass transport model for fully developed laminar flow  

Two other mass transfer models were compared to determine the better models for CF-

EL plating in the scalable rectangular channel. When solutes are passed into a confined flow 

channel, the developed concentration profile yields calculable expression for the mass-transfer 

coefficient and the Sherwood number. For a long length of flow channel, the concentration 

profile is fully developed and the local Sherwood number, Nsh, approaches a limiting value of 

3.656. The constant dimensionless local mass transfer coefficient suggests that a steady amount 

of introduced solutes deposit along the inside surface of a channel. Thus, a uniformly deposited 

Au film overall substrate could be formed by performing EL plating  
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Figure 2.2. Schematics of entire CF-EL plating procedure. (1) Substrate Sn sensitization, 

activation with Ag and galvanic replacement of Ag by Au are performed with a series of 

injections of metallic solutions (Sn, Ag, Au) during CF-EL plating; (2) Incubation period 

while the Au syringe was exchanged with a syringe containing H2O; and (3) Thorough rinse 

with H2O.  
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in a fully developed laminar flow. The empirical expression for the average Sherwood number 

proposed by Hausen
1
 is 

3/2)]//([04.01
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where x= length of flow channel. dH= hydraulic diameter of channel. This correlation is based on 

a log-mean concentration driving force. 

A general empirical film-model correlation can suggest typical mass-transfer coefficients 

for a channel flow with membrane separation. The model may be applicable to define Au ion 

deposition on the selective substrate in EL plating. The dimensionless mass transfer coefficient 

for laminar flow (NRe <  2,100) is: 

3/1

Re62.1/ 
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where )/( 
AuSc DN  , )/(Re cH AQdN  , μ = dynamic viscosity, ν = kinematic viscosity, Q 

= volumetric flow rate (m
3
/s), Ac = cross sectional area of flow channel, ρ = density, dH = 

hydraulic diameter(2hw/(h+w)), and ki = mass transfer coefficient at interface.  

2.5 Consideration of CF-EL plating in scalable deposition substrate 

Momentum and mass transfer affect the scale-ability of the CF-EL method. In an ideal 

channel, a hydrodynamic entrance region length, xh, required to achieve fully developed laminar 

flow is given by
1
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where C is an empirical constant whose recommended value is 0.05
1
. 
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The mass transfer coefficient in (2.7) is valid for thin concentration boundary layers that 

occur before the concentration profile is fully developed, at which point the local Sherwood 

number reduces to its lower limiting value of 3.656.
1
  

For introducing a fully developed laminar flow in the channel, the second consideration is 

that the mass of Au
 
ion entering the channel must meet or exceed the mass deposition. Based on 

the assumption that the concentration of Au ion at the substrate interface is zero due to Au 

crystallization, the limitation of entire mass-transfer deposition, with fully developed laminar 

concentration profiles, are constrained by 

)ln( 0

xA

A

savg

C

C

Ak
F      (2.10) 

where F= volumetric flow rate, As = surface deposition area, kavg= average mass transfer 

coefficient, CA0= Au concentration at inlet, and CAx= Au concentration at outlet. 

After calculating mass transfer coefficients (km and ki) in the models, the average 

concentration of Au ion in the out-flowed solution (  ̅ ) can be predicted by the mass flux 

balance relationship using log-mean concentration driving force.
1
 Then the total deposited 

amount of Au ion (MA) to the surface (cAo) can be determined by integrating mass flux balance 

equation with respect to time (t):
1
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where F = volumetric flow rate, A = deposition area, cAi = concentration of the in-flowed solution, 

cAo is the concentration at the surface, and Axc  is the average concentration at a distance x along 

the flow channel. 

These predicted mass transportation values will be validated by experimental Au assay for out- 

flowed solution and dissolved Au deposited film. 

2.6 Conclusion 

In summary, a semi-infinite diffusion model and a finite slab model are described to 

interpret mass transfer rate in BI-EL plating. Three different mass transfer models such as two-

compartment with effective rate, fully developed laminar flow, and general empirical thin film, 

are suggested to predict Au deposition amount on the substrate channel during CF-EL plating. 

The relevant entrance region expressions and mass balance equations for limitation of entire 

uniform CF-EL plating will be a standard to determine an optimal CF-EL plating condition. The 

mass flux balance correlations allow predicting the total deposited amount of Au ion after CF-EL 

plating and suggest a guideline for an Au assay which validates the best fitted CF-EL model.   
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CHAPTER 3 

3. Fabrication of SPR Enhanced Au nanostructure via CF-EL plating 

A novel CF-EL plating system is developed by integrating a syringe, a syringe pump, 

connecting tubes and a flow cell, which allow enhanced mass deposition rate in equilibrium 

diffusion condition. Combining this system with EBL, CF-EL plated Au films and 

nanostructures were fabricated for enhancing surface plasmon resonance features. Especially, a 

novel automated CF-EL plating system integrated with a real-time T-UV spectroscopy enable us 

not only to fabricate scalable uniform EL thin film but also to characterize the transitory optical 

transformation regimes during EL Au film growth. This chapter is organized as follows: The 

significance of this work is illustrated in Section 3.1 regarding the advantage of CF-EL plating. 

Section 3.2 describes simple fabrication procedure and its results of uniformity enhanced EL Au 

thin film via a novel CF-EL plating system. Section 3.3 demonstrates fabrication procedure of 

2D ordered NP arrays via CF-EL plating on EBL sample. The scalable CF-EL films fabricated 

by a novel automated CF-EL plating system with a built in real-time T-UV spectroscopy are 

described in Section 3.4. Section 3.5 illustrates optimization of Au solution chemistry and 

hydraulic operation conditions for scalable CF-EL plating. Concluding statement for this chapter 

follows in Section 3.6.  

3.1     Significance of the Present Work 

In this work, a steady state Au deposition system, so called CF-EL Au plating system, is 

developed as a novel EL Au plating method which allows controlling deposition rate at 

equilibrium condition. As described in Chapter 2, while the control of mass transfer rate in BI-

EL plating is limited to the closed system due to no external metal ion source, the CF-EL plating 

enables us to control local mass transfer rate with varying operating conditions such as injection 
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flow rate due to supply of metal ion from an outer system. Furthermore, it is expected that the 

steady deposition rate resulting from CF improve physical surface uniformity of deposited Au 

films and easier prediction of mass transferred amount relative to unsteady deposition of BI-EL 

plating. 

In this chapter, uniform enhanced EL Au thin film and NPs are fabricated by a prototype 

of EL plating system and following thermal treatments. As a comparison, EL Au thin film and 

NPs are fabricated using BI-EL plating method. Regular Au NP arrays are developed by 

combining EBL and CF-EL plating for an application. For scalable EL Au film and time-

resolved characterization of EL Au thin film growth, a novel automated CF-EL plating system is 

developed with integrating a real-time T-UV spectroscopy.   

3.2     Uniformity Enhanced EL Au thin film by a novel CF-EL plating 

3.2.1  Experimental Method for BI and CF-EL plating 

Au thin film coating onto the internal surface of borosilicate glass capillaries was 

performed by the immersion method and CF-EL deposition method. Figure 3.1 shows a CF-EL 

plating system developed by integrating a syringe, a syringe pump, connecting tubes and a flow 

cell. The detailed procedure of BI-EL method and CF-EL method are well described in the 

published paper .
1
 

3.2.2 Results of fabricated BI-EL and CF-EL films 

CF-EL plating improves continuity of Au thin films. Figure 3.2  shows SEM images of Au thin 

films produced by CF-EL plating at various flow rates (A,B); BI-EL plating with different 

substrates (C,D); Au evaporation (E); and sputtering (F). In EL plating, dissolved Au(I) reduces 

to surface-associated Au(0) by galvanically displacing Ag, producing a Au island film due to  
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Figure 3.1 Schematic of a prototype CF-EL plating system showing syringe pump, glass syringe, 

and (inset) optical capillary. 
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Figure 3.2. SEM images of Au thin films deposited by EL plating via CF, BI, evaporation, and 

sputtering. (A) CF-EL plating in rectangular capillary for 2 min at 800µl/h followed by 1 min 

incubation, (B) CF-EL plating for 2 min at 1000µl/h followed by 1 min incubation, (C) BI-EL 

plating in capillary for 4 min total, (D) BI-EL plating on fused quartz slide for 4 min total (from 

Ahn
4
, 2008), (E) Evaporation on fused quartz slide at 20 nm/min for 0.33 min (from Ahn

5
, 2010), 

(F) Sputtering on ITO glass for 20 min. Insets are T-UV spectra corresponding to each image.  
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weak binding on the silica substrate. The EL Au films in Figure 3.2.A and B were deposited in 

borosilicate capillaries at flow rates of 800 µl/hr (CF-EL 800) and 1000 µl/hr (CF-EL 1000), 

respectively. Total plating time for CF-EL films was 3 min: two minutes of continuous flow 

plating was followed by 1 min of static incubation during which the Au and H2O syringes were 

exchanged. Rectangular capillaries were subsequently split along the narrow wall to observe 

each primary wall separately by SEM. Figure 3.2.C shows Au film from BI-EL plating inside a 

borosilicate capillary for 4 min. The SEM images of Figure 3.2.D and E represent a 4 min 

immersed deposited Au film on quartz slide and Au evaporated on quartz slide at 20 nm/min for 

0.33 min, respectively. A sputtered film on ITO glass is shown in Figure 3.2F.   

        Comparing SEM images in Figure 3.2. shows that Au films produced by CF-EL appear 

continuous and relatively uniform compared to films obtained by BI-EL plating on quartz slides, 

evaporation, and sputtering. In particular, the sputtered film (Figure 3.2.F) shows discrete island 

structures with diameters up to ~150 nm. The surface morphology of the evaporated film in 

Figure 3.2.E exhibits discontinuous island structures. The higher density of dark grooves and 

holes on the surface indicate a lack of continuity, compared with CF-EL films and a BI-EL film 

(Figure 3.2.A, B and C). The BI-EL films on capillaries and quartz slides (Figures 3.2.C and D, 

respectively) appear less uniform and continuous than Au thin films deposited by CF-EL. The 

Au film deposited via BI-EL plating on quartz slide in Figure 3.2.D appears more discontinuous 

than the BI-EL film deposited on internal surfaces of a capillary (Figure 3.2.C). 
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3.3     Two dimensional regular arrays fabricated by combination of CF-EL plating and 

EBL 

3.3.1  Experimental Method for BI and CF-EL plating 

Substrate Preparation: Indium tin oxide (ITO) coated polished glass slides (SPI Supplies, 

West-Chest, PA) were used to provide electrical conductivity for electron beam lithography 

(EBL) operation in SEM. ITO slides ( 8 × 8 mm, thickness 0.8 mm) were cut for CF-EL plating. 

Before Au EL plating was performed on the EBL substrate, the bare ITO substrate was pre-

treated. The ITO slides were tin pre-sensitized by immersion in Sn solution for 4 min to improve 

uniformity and circularity of deposited particles.
2
 The Sn pre-sensitized ITO substrate was spin-

coated using a CEE 100 spin coater (Brewer Science, Inc., MO) with 950 kamu PMMA and 

baked at 150 °C for 1 min. Rotational speed was 4,000 rpm with 3 % poly(methyl methacrylate) 

(PMMA) concentration to produce a PMMA thickness of  approximately 250 nm. 

Pattern Creation by Electron Beam Lithography: EBL was performed using a Philip XL 

30 Environmental scanning electron microscopy (ESEM) (FEI, Hillsboro, OR) installed with a 

Nanometer Pattern Generation System (NPGS, Bozeman, MT) to create patterns, control 

electron beam dosage, and use stage movement. Square arrays of holes in the PMMA were 

created with an electron beam dose of 2.9 ~ 29.0 µC/cm
2
 for ITO slides with a PMMA thickness 

of 250 nm. After beam exposure, the sample was developed in a room temperature mixture of 

methyl isobutyl ketone (MIBK) and isopropyl alcohol (IPA) (1:3 vol.) for 1 min, rinsed with IPA, 

and then immersed in IPA for 2 min with gentle agitation. In this work, 100.5 ×100.5 µm
2
 square 

arrays were prepared with lattice spacing of 670 nm.  
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Creation of Uniform Au NP Arrays by CF-EL Au plating: Figure 3.3. shows the 

combined procedure of CF-EL Au plating on EBL-produced patterns. Injection of metallic 

solution for EL Au plating was performed by utilizing a CF-EL plating system. Transparent flow 

channel frames (1.2 × 9 × 9 mm) and covers were designed using cut slides, epoxy and silicon. A 

channel was left at one corner to allow fluid egress. Hot wax was used to seal the edge of E-

beam patterned ITO glass and fix on the surface of bottom flow channel. The cover was sealed 

with silicone rubber. Sodium Au sulfite solution was purchased from Oromerse Part B and was 

diluted to 0.00153 M for plating. The activation of ammoniacal AgNO3 for 2+1 min (2 min 

continuous flow and following 1 min incubation), and galvanic replacement of Au for 15+1 min 

were performed on the substrate by injecting each metallic solution through a micro syringe 

system. In order to compare with spectral feature of regular array, the random arrays of Au NPs 

were fabricated on the bare ITO glass by the same plating procedure. After then, Au plated EBL 

substrate was immersed to dissolve the remaining PMMA in 50 °C acetone for 5 min. The lift-

off resulted in uniform arrays of Au cylinders from 250 nm-thick-PMMA slides. Repeated flash 

thermal annealing for both regular and random Au island film was performed at 850 °C for 90 

second to form spherical Au NPs and long term annealing was followed at 350 °C for 100 hrs to 

improve sphericity.  

3.3.2  Results of fabricated Au NP array via CF-EL plating 

Using CF-EL Au plating on a Sn pre-sensitized EBL patterned substrate, we successfully 

fabricated highly ordered arrays of Au NPs with varying size, shape, and pattern. Figure 3.4 

shows the SEM images of the resulting film patterns after lift-off and thermal transformed NP 

arrays. Adopting Sn pre-sensitization substrate with CF-EL plating and EBL could deposit 

completely filled Au nano-cylinders due to the enhanced mass transfer rate. The subsequent flash  
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Figure 3.3. Schematic of fabrication process of CF-EL plating on tin pre-sensitized EBL 

pattern.  
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Figure 3.4. SEM images of regular array fabricated by EBL and CF-EL Au plating; (A) Square 

array, (B) Hexagonal array, (C) Size controlled square Array, (D) Size controlled hexagonal 

Array, (E) Annealed square array, (F) Annealed hexagonal array. 
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thermal annealing transforms the deposited polycrystalline nano-cylinder to a single-crystallized 

nanosphere. Our novel approach enables the fabrication of high resolution, ordered regular metal 

NP array which would allow improved optical and plasmonic features in sensing and imaging 

devices, as well as reduced fabrication cost and effort. 

3.4     Scalable CF-EL Au thin film fabrication via automated CF-EL plating system 

with real-time T-UV spectroscopic measurement  

3.4.1  Experimental Method  

Scalable EL Au deposition and simultaneous optical monitoring were performed by 

automated CF-EL plating system with real-time T-UV spectroscopy (Figure 3.5). The T-UV 

spectroscopy measured time-resolved spectra variations during the procedure of CF-EL 

deposition from Ag activation and Au deposition. The injection of metallic solution was semi-

automated by each flow pump. BI-EL plating was performed in the automated CF-EL plating 

system to characterize spectra variation. The detailed procedure of CF-EL deposition is well 

described in the published papers.
3
 

3.4.2  Optimization of Au solution chemistry and hydraulic operation condition for         

scalable CF-EL plating 

Table 3.1 compares the deposited surface morphology of CF-EL film with varying a final 

Au solution concentration in the mixture of sodium gold sulfite, Na2SO3 and HCHO via diluting 

stock sodium gold sulfite solution with D
3
-H2O at a determined ratio and then mixing the diluted 

sodium gold sulfite solution with Au reducing reagent (Na2SO3 and HCHO) at 1:6 of dilution 

ratio. The CF-EL plating was performed on ITO glass with 3 ml/hr for increasing plating time. 

At 0.0157M of Au, 10 min plating, as shown, produces irregular flakes deposited film.  
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Figure 3.5. The automated CF-EL Au plating system with real-time T-UV spectroscopy. The 

upper diagram represents the cycle of EL plating with real-time monitoring. Inset is the cross 

section of flow cell with spectra system. 
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Table 3.1. Optimization of Au concentration conditions vs CF-EL plating time. 
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Interestingly, as the Au concentration decreases to 0.0078M, the SEM image shows well defined 

Au grains deposited to form a continuous film. However, 5 min plating appears to produce 

irregular surface morphology with a part of side-reacted contamination. The further decreased 

Au concentrations to 0.0052 and 0.0022 M deposited similar well-packed Au grains films. At 

0.0052 M, the deposited Au film exhibits similar surface morphology despite of broad range of 

plating time from 5 min to 20 min. Based on this observation, the chemistry of Au solution was 

determined to be 0.0052 M for scalable CF-EL plating.   

Table 3.2 compares the surface morphology of EL film with varying hydraulic condition 

via increasing flow rate. The hydraulic condition was evaluated by Reynolds number because of 

various dimensional flow cells. The dimensionless Reynolds number (NRe=QdH/(νAc) Q = 

volumetric flowrate, dH = hydraulic diameter, Ac = cross sectional area of flow cell) can be used 

to determine hydrodynamic similarities between different experimental cases. For a Reynolds 

number of 0, in other word, BI-EL plating, the deposited film appears to form nucleated NP for 1 

min. As increasing to 2 min, the nucleated NP film grows to discontinuous island structure. 

Further deposition to 5 min and 10 min, BI-EL plating produce well packed continuous Au film. 

At 0.13 Reynolds number, 1 min CF-EL plating appears to produce similar nucleated NPs, but its 

density and size are higher than 1 min BI-EL film. Interestingly, the 2 min CF-EL plating 

produce more continuous thin film relative to 2 min BI-EL film. At higher 0.66 Reynolds 

number, the intermediate plating time produce well packed continuous Au grains films. The 

steady higher mass transfer of CF-EL plating produce more continuous EL Au film at short time 

plating while intermediate plating time for > 5 min produce similar surface morphology.    
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Table 3.2. Flow rate effects in EL Au plating (BI-EL vs CF-EL plating). 
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 3.5     Conclusion 

In summary, the developed novel continuous flow plating system allows fabrication of 

more uniform thin film relative to BI-EL film. The CF-EL plating is applicable to fabricate 

advanced Au nanostructure by integrating with EBL. The scalable CF-EL thin films are 

fabricated by a novel automated CF-EL system. The time-resolved optical features are 

successfully measured in this system. The more optical and physical characterization of 

fabricated sample will be discussed in Chapter 4: Characterization.  

       
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

3.6     Reference          

(1) Jang, G.; Roper, D.K. J. Phys. Chem. C 2009, 113, 19228-19236. 

(2) Blake, P.; Ahn, W.; Roper, D. K. Langmuir 2010, 26(3), 1533-1538. 

(3) Jang, G.; Hawkridge, M.; Roper, D.K J. Mater. Chem., 2012, DOI:10.1039/c2jm34208a 

(4) Ahn, W.; Taylor, B, Dall’Asen, A.; D, K, Roper. Langmuir. 2008, 24, 4174-4184. 

(5) Wonmi Ah, Ph.D. Dissertation, Novel electroless gold nano-architectures to enhance photon-

plasmon coupling, University of Utah, 2010 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

CHAPTER 4 

4. Characterization of SPR Enhanced Au nanostructure and relevant materials 

 

Various Au nanostructures, scalable thin films and thermal transformed random NP 

arrays, fabricated by a novel CF-EL plating system were characterized by microscopic and 

spectroscopic measurement. These Au structures exhibit improved surface plamson feature due 

to enhanced surface uniformity. The quantitative Au(I) characterization method was developed 

by using balancing redox activity of Au(I) via control of reductant, oxidant, and indicative color 

reagent. This simple, straightforward method improves the limit of detection (LOD) which is 

comparable to more elaborate analytical instrument. The real time T-UV measurement built in 

the automated scalable CF-EL plating system allow time-resolved characterization of  transitory 

EL thin film growth regimes and physicochemical surface, internal and interface structure of Au 

film on silicate substrate. The characterized optical kinetics during Au deposition validates the 

mass transfer limited EL Au reaction. The developed mass transfer correlations allow precise 

control of structural dimension design at the nano-scale. 

 This chapter is organized as follows: Section 4.1 describes characterization of uniformity 

enhanced Au thin film and thermal transformed NPs using microscopic and spectroscopic 

measurements correlated with mass transfer models. Novel spectrophotometric characterization 

method of detecting Au(I) ion concentration for EL Au deposition is described in Section 4.2. 

Noble metal disposition and dynamics during EL metal thin film synthesis are depicted by time-

resolved spectroscopic and microscopic measurement in Section 4.3. The kinetics of Au film 

growth and its mass transfer interpretation are illustrated in Section 4.4. 
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4.1     Characterization of uniformity enhanced EL Au thin film

 

4.1.1 Significance of this work 

This study examines a novel CF method for EL plating that deposits uniform, continuous 

Au thin films with improved physical and optical properties. CF-EL films with different flow-

rates are compared with BI-EL films fabricated by increasing immersion times. Physical surface 

morphology of CF and BI-EL films is evaluated by SEM and AFM. PL features characterized by 

T-UV spectra show that CF-EL films are more opaque and less dispersive in spite of shorter 

plating times. The extinction spectra of NP ensembles, transformed from CF and BI-EL films by 

successive heating, exhibits enhanced LSPR extinction peaks compared to BI-EL. SEM image 

analysis of NP sizes and particle densities of the ensembles shows that CF-EL NP ensembles 

exhibit a more monomodal particle size distribution, resulting in enhanced LSPR extinction 

spectra compared to BI-EL NP ensembles. A mathematical model for mass transfer in CF-EL 

plating shows steady state deposition driven by the higher transport driving force increases the 

total number of Au ions accumulated on the substrate, which correlates with improved film 

morphology and optical features including PL, SPR, and LSPR spectra. 

4.1.2 Experimental Characterization method 

T-UV spectroscopy, SEM and AFM were performed to characterize fabricated EL Au 

thin films and their thermal annealed NPs. The detailed procedures are described in the published 

paper.   

                                                           
 Adapted with permission from J. Phys. Chem. C, 2009, 113 (44), pp 19228–19236. Copyright 

2009 American Chemical Society." 
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4.1.3 Characterization Results 

4.1.3.1.     Improved microscopic and spectroscopic feature of CF-EL Au thin films 

The CF-EL plating deposits Au films that exhibit increased continuity and uniformity 

relative to BI-EL as measured by SEM and AFM shown in Figure 4.1.1. The plating conditions 

of CF-EL films are 2+1 min (CF plating + incubation) with injection flow rate of 800 µL/hr, 

whereas the BI-EL film was fabricated by immersion followed by 4 min incubation. 

Theoretically, the deposited mole amount calculated by mass transfer models is similar for both 

methods. The 2D AFM images show that the CF-EL film’s surface morphology is formed by 

uniformly close-packed island structures whereas the BI-EL film exhibits wide-ranging peaks 

and crevices. The cross-sectional profiles shown below the AFM images compare uniformity and 

smoothness of CF-EL and BI-EL films. CF-EL film has an average total roughness of 0.64 nm, 

compared with 0.97 nm for BI-EL film. The surface morphology shown in the AFM image and 

the SEM image (Figure 3.2A) are in good agreement. 

The transmission peak around 480 nm is a PL peak which is directly related with the 

surface roughness. The PL feature is primarily caused by electron transitions from the top d-band 

to the Fermi-level conduction band followed by radiative recombination as well as collective 

optical absorption induced by SPR coupling inside cavities and between surfaces on both sides of 

the island structures.
1,2,3

 PL at ~500 nm increases with increasing thickness for films less than 60 

nm, but PL decreases when increasing film thickness over 60 nm.
4
 A smooth surface not only 

diminishes scattering, but also narrows the PL feature.
5
 The phenomenon is especially observed 

at energies lower (e.g., longer wavelengths) than the interband adsorption edge. Evaporation 

plating is capable of developing less rough surface than sputtering deposition. The PL optical 

density at ~500 nm of evaporated Au thin films are 5 times lower than rough, sputtered 20 nm  
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Figure 4.1.1. Microscopic/spectroscopic comparison between CF-EL nanostructure, A, and 

BI-EL, B. A, B and A’, B’ are AFM and SEM images, respectively. Cross-sectional diagram 

below AFM image represent the roughness of both films. The NPs in A’ and B’ are thermally 

transformed from deposited film structure. Insets are transmission (film) and extinction (NP) 

spectra. 
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Au films.
6
 It is reported that PL intensity of sputtered Au films sharpen and decrease in intensity 

as sputtering time increases to yield more uniform and smooth films, while EL Au plating forms 

more rough morphology as deposit time increases.
5
 

Furthermore, the SEM images of thermally transformed NPs show that the CF-EL 

particle size is more uniform and its particle distribution density is higher than BI-EL. CF-EL 

extinction spectra from thermally transformed NPs exhibit higher PH and narrower FHWM –

enhanced LSPR than NPs transformed from BI-EL films. This is due to the more uniformly 

formed NP and higher particle density. 

4.1.3.2.   Quantitative microscopic feature of EL NPs 

CF-EL films yield larger particles at comparable densities than BI-EL at comparable 

plating times. The extinction maxima and intensity of LSPR absorption bands of metallic nano-

island films are sensitively affected by the particle size, size distribution, and densities, as well as 

by the surrounding conditions.
7
 Figure 4.1.2. shows particle size distributions determined by the 

image analysis from inset SEM images for 800 °C heated EL Au films. BI-EL NP ensembles of 

1, 2, and 4 min and CF-EL 800 (flow rate 800 mL/hr) NP ensembles are shown in Figure 4.1.2A.  

Figure 4.1.2B shows BI-EL 6 min NPs ensembles, Ahn
5
 and CF-EL 1000 (1000 mL/hr) NPs. BI-

EL films of Figures 4.1.2.A and B show that as immersion time increases from 1 to 2 to 4 to 6 

min, average particle diameters produced by successive annealing and heating change from 13.8 

± 6.2 to 19.6 ± 8.7 to 35.6 ± 14.6 to 48.6 ± 23.2 nm, particle densities changes from 1163 to 654 

to 173 to 87.6 counts per µm
2
, particle distances (center to center) change from 20.1 to 28.7 to 

56.7 to 78.5 nm. Increasing deposition time enlarges Au NPs size and broadens the size 

distribution and distance between particles. CF-EL films of Figure 4.1.2.A and B show that as  
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Figure 4.1.2. Distributions of NP diameters acquired from SEM images of Au films annealed at 

350˚C for 3hr, followed by annealing at 800˚C for 30 min. (A) Shows BI-EL 1 min, BI-EL 2 min, 

BI-EL 4 min, and CF-EL 800 (2+1 min) (B) Shows Ahn
5
 (2 min), BI-EL 6 min and CF-EL 1000 

(2+1 min).  
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the flow rate increases from 800 to 1000 μl/hr, average particle diameters produced by 

successive heat treatment increased from 38.5 ± 19.4 to 54.6 ± 21.2 nm, particle density 

decreased from 190 to 89.3 counts per µm
2
, particle distances (center to center) change from 

51.7 to 82.4 nm. This result suggests increasing flow rate enlarges Au NPs and broadens the size 

distribution and distance between particles as seen in BI-EL. Even though overall CF plating 

time is only 3 min, particle size and density of CF-EL 800 are higher than BI-EL 4 min and CF-

EL 1000 is higher than BI-EL 6 min. The total number of Au ions deposited on the silica 

substrate in CF-EL 800 and 1000, respectively, appears to be higher than 4 min and 6 min BI-EL. 

Even though the average particle size of CF-EL 1000 (54.6  ± 21.2 nm) is much larger than that 

of BI-EL 6 min (48.6 ± 23.2 nm), the size distribution in figure 4.1.2.B shows not only clear 

better monomodal NP distributions, but also a lower standard deviation, indicating the surface 

morphology of CF-EL1000 film is more uniform than BI-EL 6 min film. The reference particle 

size (Ahn) is much smaller than CF-EL films. We attribute the higher peak intensity and 

narrower FWHM of CF-EL 1000 extinction spectra compared to BI-EL 4 min and BI-EL 6 min 

to the significantly higher number of NPs in the range of 60~100 nm. The monomodal NP 

distribution for CF-EL transformed films enhances the LSPR. 

4.1.3.3.   Correlation of optical features and mass transfer model 

CF-EL enhances Au deposition relative to BI-EL plating. Mass transfer rate in CF plating 

is enhanced due to steady, laminar introduction of fresh bulk Au solution. Based on derived 

models, the total number of deposited Au ions on a wall may be calculated for each plating 

condition and incubation time. The calculable scaled value of the total number of deposited Au 

moles, MAu /(ACAu), shown on the x-axes of Figure 4.1.3. was obtained by rearranging  
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Figure 4.1.3. Variation of optical features – PH (A,D), λmax (B,E), and fwhm (C,F) -- with 

increasing time-integrated mass transport coefficient (MAu /ACAu) from T-UV of thin Au films 

(A,B,C) and thermally-transformed Au NP (D,E,F). Data are for BI-EL (open squares), CF-EL 

(solid triangles) and Ahn
5
 (open circle). Lines show linear least squares fit to BI-EL data.  

Measured PH, λmax, and fwhm values increase in proportion to calculated Au deposition values.  

The least squares fit for Fig 4.1.3B excludes the BI-EL 1 min data point for λmax which is not 

clearly distinguishable.   
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Equations (2.2) and (2.6) in Chapter 2 to obtain a time-integrated mass transfer coefficient. The 

infinite-dilution diffusion coefficient (DAB) of Au ions in aqueous solution is estimated by the 

Nernst-Haskell equation.
8
 The calculated Au ion diffusivity is 1.063 × 10

-5
 cm

2
/s. For BI-EL 

plating, the total number of Au ions transferred to the wall increases with the square root of 

immersion time. For CF-EL plating, the mass transfer rate is dependent on the flow rate, so the 

number of Au ions deposited increases in proportion to the incubation time, as well as increasing 

flow rate and decreasing capillary dimensions. Although overall plating time of CF-EL films was 

3 min, the overall Au moles transferred for CF-EL films are more than BI-EL 4 min film. The 

calculated mass transfer rate of CF-EL 1000 over 30 s is 78.3 ± 1.6% higher than BI-EL plating 

for each 30-second interval. This is due to enhanced mass transfer rate and the steady-state 

diffusion condition.  

Optical features of transmission T-UV of CF-EL and BI-EL Au films are consistent with 

models for mass transfer of Au mole deposition. Optical properties of CF-EL and BI-EL films 

measured by transmission T-UV in Figure 4.1.3A to C change linearly in proportion to the total 

number of deposited Au moles. PH, λmax, and FWHM versus the scaled value of the total number 

of deposited Au ions, Ma/AΔC, are plotted in Figure 4.1.3. The total number of Au ions deposited 

via CF-EL 800 and 1000 is slightly more than the number deposited via BI-EL 4 min. Figure 

4.1.3A and B show PH and λmax of CF-EL films are close to BI-EL 4 min because the number of 

Au ions deposited via mass transfer is comparable for 4 min of immersion, via unsteady 

diffusion from a stagnant bulk (BI-EL), and for 2 min continuous flow, via steady deposition 

from an adjacent bulk in laminar flow followed by 1 min of stagnant incubation (CF-EL). 

On the other hand, FWHM values are lower for CF-EL films than for BI-EL films with 

comparable numbers of Au ions deposited (Figure 4.1.3C). The lower values of FWHM suggest 
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that CF-EL 800 and 1000 are smoother than BI-EL 4 min and 6 min despite similar deposited 

total number of Au ions. Figure 4.1.3 showed that the values of % transmission at 350 nm of CF-

EL 800 (31.3%) and CF-EL 1000 (25.7%) are much lower than BI-EL 4 min (38.3%), which 

might suggest that CF-EL films could be thicker than BI-EL 4 min. However, since the number 

of Au ions transferred is similar for CF-ELs and BI-EL 4 min, this suggests that the opaqueness 

is due to different deposition pattern. A steady high local concentration of Au ions in CF-EL 

plating appears to yield uniform, continuous, evenly packed Au deposits, while unsteady-state 

diffusion of BI-EL plating, yields relatively non-uniform, discontinuous, inconsistently packing 

structures as local Au concentration is depleted in proportion to (time)
1/2

.  One reason may be 

that the high mass transfer rate of CF-EL plating removes galvanically displaced Ag
+
 ions from 

the surface at a faster rate, which may reduce effects of local variation in tin or silver content at 

the wall. Thus, both the steady state diffusion induced by the high concentration in the outer 

compartment of CF-EL plating and the rapid substitution between Au and Ag due to an enhanced 

mass transfer rate increase uniformity and smoothness of deposited Au. 

Optical properties of Au NP ensembles that were thermally transformed from CF-EL and BI-

EL films and measured by extinction T-UV in Figure 4.1.3D to F also change relatively linearly 

in proportion to the total number of deposited Au ions. Optical features repeated in Figure 4.1.3D, 

E and F are based on the extinction peak induced by LSPR of NPs. Figure 4.1.3D, E and F show 

that the PH, wavelength maximum and FWHM of CF-EL 800 are slightly higher than BI-EL 4 

min. In particular, note that the PH of CF-EL 1000 exceeds BI-EL 6 min while the FWHM is 

much smaller. We hypothesize that although the total number of transferred Au ions of BI-EL 6 

min is higher than CF-EL 1000, the rough and inconsistent deposition results in a wide size 

distribution of NPs which deteriorate LSPR intensity and sharpness. The steady state deposition 
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in CF-EL 1000 with high uniform concentration develops more uniform and smooth packed 

deposition structures which are transformed to more monodisperse distributed particles 

compared to BI-EL 6 min. The uniformity of NP ensembles improves LSPR extinction spectra, 

such as enhanced peak intensity and narrow peak width.    

4.1.3. Conclusions 

A method to deposit uniform, smooth Au films via EL plating using a CF micro syringe 

system has been developed and characterized. SEM and AFM images of CF-EL films show Au 

films deposited via CF-EL plating exhibit increased uniform and continuity relative to films 

deposited via BI, consistent with narrower FWHM and lower PH for CF-EL films, measured by 

T-UV spectroscopy. Successive heat treatment of CF-EL Au films yield NP with higher T-UV 

PH and narrower FWHM compared to NP from corresponding BI-EL films. Monodispersity and 

particle density of NP from CF-EL films measured via SEM is also increased relative to BI-EL 

NPs. Magnitudes of optical features [PH, FWHM, and resonant extinction wavelength (max)] 

increase in proportion to the time-integrated mass transfer coefficient for both batch and 

continuous plating systems, suggesting improved mass transfer rate, which yields a steady, 

higher average local Au ion concentration during continuous plating, increases uniformity and 

continuity of EL Au films. 
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4.2 Quantitative detection of Au(I) concentration for EL Au deposition

 

In this chapter, a novel spectrophotometric detection method is developed to measure low 

Au(I) concentration for application of EL Au deposition. The importance of ionic Au 

characterization is described in Section 4.2.1. The novelty of this work is summarized in Section 

4.2.2. Summarized experimental methods for balancing redox activity of Au(I) as a color 

indicator of  Tetramethylbenzidine Dihydrochloride (TMB) are described in Section 4.2.3. The 

mechanism of balancing redox activity and its correlated sensitivity improvement are described 

in Section 4.2.4. In Section 4.2.5 future work is addressed with a concluding statement. 

4.2.1.   Importance of ionic Au characterization 

Au(I) compounds have attracted recent interest due to their unique biological activity
1
 

and their industrial utility as catalysts and as oxidation agents in EL plating.
2
 For instance, Au(I) 

phosphine complexes have been studied to treat breast cancer
3
 and to catalyze oxidation of CO 

gas.
4
 EL plating of Au(I) from aqueous solution has been used to fabricate solid-state islands, 

films, and particles of Au(0).
5-9

 A method to measure Au(I) concentration in situ quantitatively 

and dynamically would be useful to characterize and control Au(I) content in EL plating, 

catalysis, and in vivo therapies, just as several analytic methods have been employed to analyze 

Au(III) and Au(0) content in various applications. Instrumental methods to determine Au(III) 

content in aqueous and geological samples after thermo-chemical pretreatment were reviewed by 

Barefoot (1999).
10

 These include atomic absorption spectroscopy (AAS), atomic emission 

spectroscopy (AES), inductively coupled plasma mass spectrometry (ICP-MS), voltammetry, as 

well as hyphenated (e.g. ICP-AES) approaches. Spectrophotometric methods to determine Au(III) 

in aqueous solution using color reagents were summarized by Zaijun (2003)
11

 and by Kamble 

                                                           
 Adapted with permission from Jang, G.G.; Roper, D.K. Anal. Chem., 2011, 83 (5), pp 1836–

1842. Copyright 2011 American Chemical Society." 
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(2010),
12

 who reviewed new synthetic reagents for spectrophotometry of Au(III). Techniques to 

measure Au(III) have also been used to quantatively determine Au(0) concentration in NPs: 

MS,
13

 direct amperometric methods,
14

 fast-scan cyclic voltammetry,
15

 ICP-MS,
16

 and UV-vis 

spectroscopy.
17,18 

These techniques are supplemented by particle counting
19

 to characterize 

distributions of NP populations. While it is possible to distinguish between various ionization 

states of Au using MS, extension of facile spectrophotometric methods to quantitatively measure 

Au(I) or to distinguish Au(0), Au(I), and Au(III) has not been reported. 

4.2.2.    The novelty of the present work 

This work introduces a direct spectrophotometric method to quantitatively determine 

Au(I) concentration in acidic aqueous solutions by balancing redox activities of a strong 

reductant (formaldehyde, HCHO) and a strong oxidant (N-bromosuccinimide, NBS). The 

reductant and oxidant are added successively, in varying amounts, to a solution of Au(I), which 

is then exposed to an oxidizable color reagent (3,3’,5,5’-tetramethylbenzidine dihydrochloride, 

TMB). At low reductant levels, NBS oxidizes Au(I), which linearly suppresses subsequent 

oxidation of TMB by NBS to its distinctive blue charge-transfer complexes of diamine and 

diimine.
20

 At high initial HCHO reductant levels, Au(I) is reduced to Au(0),
21

 then subsequently 

oxidized to Au(III) by NBS.
22

 Upon addition of TMB, Au(III) is reduced to Au(0) accompanying 

oxidation of TMB to its spectrophotometrically detectable blue complexes, facilitated by the 

high HCHO level. This note identifies levels of reductant, oxidant, and colorimetric agent which 

allow quantitative measurement of Au(I) to detection limits (LOD) of 0.0025 and 0.05 mgL
-1

 

using low and high levels of reductant, respectively. Defining this straightforward spectroscopic 

method that uses commercially available redox reagents to measure Au(I) without surfactants or 
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organic solvents permits rapid, accurate, and sensitive detection of Au ions for applications such 

as electroless plating, catalysis, and in in vivo therapies.   

4.2.3.    Experimental Method 

Scheme 4.2.1 shows the procedure to determine Au(I) content in aqueous solutions at 

high and low values of the reductant HCHO by subsequent addition of NBS, adjustment of pH to 

3.00, and addition of TMB color indicator which is monitored spectroscopically. This procedure 

was used to generate data shown in Figures 4.2.2 and 4.2.3 in which spectral peak heights of 

TMB were measured at 370 nm. The detailed procedure is described in the published paper. 

4.2.4.     Results and Discussion 

4.2.4.1    pH-dependent feature of the colorimetric reagent TMB.  

The modest oxidation potential of TMB and its unique fluorescence and colorimetric 

features have made it valuable for analysis of nitrophenols,
23

 various heavy metals such as 

Cr(VI)
24

 that have high reduction potentials, and trace Au(III) levels in natural sea water.
25

 Two 

differently-colored oxidation products of TMB may be obtained in aqueous solution, depending 

on pH,
20

 as illustrated in Figure 4.2.1. The single-electron oxidation product obtained at pH~3 

consists of a blue charge-transfer complex of the parent diamine and diimine which exists in 

rapid equilibrium with the radical cation. This blue charge-transfer complex exhibits two peaks 

at 370 and 652 nm, respectively, in the UV-visible wavelength range. The two-electron oxidation 

product obtained at pH<2 is a diimine complex that exhibits yellow color at λmax = 458 nm. It has 

been reported that oxidation of TMB by Au(III) forms a yellow diimine product which absorbs 

strongly at 458 nm (1.1 × 10
4
 cm

-1
mol

-1
L).

25
 In this note, the blue charge-transfer complex of  
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Figure 4.2.1. The basic procedure of determination Au(I) content in TMB aqueous solution at 

high and low molar ratio of reductant HCHO and oxidant NBS. Au reducing reagent (AuRR) is a 

mixture of HCHO and Na2SO3. 
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oxidized TMB is detected, rather than the previously reported yellow oxidation product
25

 in 

order to improve the sensitivity and range of Au ion detection. In this work it was found that the 

first charge-transfer complex at λmax= 370 and 652 nm was stable at pH 2.0 ~ 3.5 with a molar 

absorption coefficient of 6.17 × 10
4
 cm

-1
mol

-1
L at 370 nm, which is approximately 6 times 

higher than the yellow diimine state which was previously used as a reference. Figure 4.2.3 

shows that using the pH-stabilized blue charge-transfer complex extended the linear Au(III) 

detection range to between 0.025 and 4.0 mgL
-1

. The previous range reported using the yellow 

diimine complex was from 0.1 to 2.0 mgL
-1

. Furthermore, the LOD obtained by detecting the 

blue complex was 0.025 mgL
-1

, lower than the value of  0.05 mgL
-1 

reported for the diimine 

reference complex formed at pH<2.
25

  

4.2.4.2   Effect of redox-dependent Au(I) to TMB oxidation  

The redox-dependent ability of Au(I) to affect spectroscopically-detectable oxidation of 

TMB is the basis for the proposed method. Au(I) alone does not oxidize TMB to blue charge-

transfer complex in aqueous solution in spite of its large reduction potential (E
0 

= +1.68 V) 

relative to that of Au(III), (E
0 

= +1.50 V). This happens in spite of modest reduction potentials 

reported for TMB in acetonitrile (~0.1), in methanol/benzene mixtures (~0.7), and in 

voltammogram simulation (0.254), which suggests that TMB should be oxidizable via reduction 

of Au(I) alone. However, in the presence of a stronger oxidizing agent NBS (E
0 

> 1.68 V), Au(I) 

reduces oxidation of TMB by NBS due to preferential oxidization of Au(I) in solutions with low 

to moderate reducing power. This is illustrated by the decreasing absorbance values at 370 nm in 

section I of Figure 4.2.2, where the mole ratio of HCHO to NBS is less than 7. In solutions 

where reducing and oxidizing power is balanced, low to moderate levels of Au(I) result in 

oxidation of TMB in a time-dependent manner after Au(I) has been reduced to Au(0) and 



69 
 

 

Figure 4.2.2. The Au(I) is quantitatively detected by effect of TMB oxidation in various mole 

ratios of HCHO/NBS and its association with Au(I). The error bars represent the standard 

deviation of peak variation (n=8) after mixing from 30 min to 60 min. The inset figures are 

suggested mechanisms of Au(I) detection in the matrix of Au, HCHO, NBS (SucBr) and TMB. 

(Solid blue diamond, solid green triangle and solid red circle represent each calibration curves in 

Figure 4.2.3.) 
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subsequently oxidized to Au(III). This is illustrated by the increasing absorbance values at 370 

nm in section II/III of Figure 4.2.2, where the mole ratio of HCHO to NBS is greater than 13.   

The method described herein identifies molar ratios of strong reducing agent HCHO and 

strong oxidizing agent NBS which are balanced with levels of Au(I) to allow quantitative, 

spectroscopically-detectable oxidation of color reagent TMB to its blue charge transfer complex. 

The capacity of Au(I) to kinetically modulate oxidation of TMB in the presence of selected 

values of HCHO and NBS was quantified by examining colorimetric products obtained from 

combining mixtures of each redox reagent alone, and in various combinations, with an aqueous 

solution of the TMB color reagent.  

4.2.4.3    Effect of molar ratio of HCHO to NBS on determining Au ion content. 

 The quantitative effect of Au ions on spectrophotometric oxidation of TMB depends on 

the HCHO/NBS mole ratio. NBS is strong enough to completely oxidize both Au(0) in NPs to 

Au(III) ions
22

 and TMB to blue charge transfer complex due to its strong positive reduction 

potential of succinimidyl radical (E
0 

> +1.83 V (NHE)). The strong reducing reagent, HCHO (E
0 

=-1.07 ~ -3.00 V; -1.07 (SHE), ~-3.00 (KOH/KCl)), can suppress the oxidation of TMB by NBS. 

Figure 4.2.2 shows that at a molar ratio of HCHO/NBS=0, 3 mg of NBS oxidized TMB to its 

blue complex resulting in a peak height (PH) at 370 nm above 2.0. As the HCHO/NBS mole 

ratio increased, the PH of 0 mgL
-1

 Au decreased, ultimately reaching 0 above a molar ratio of 

18.9.  

A value of 3 mg of NBS was selected after observing that at a level of 0.0 mgL
-1

 of Au(I)  

in Step 1 of the procedure, when 600 µL of stock HCHO solution was added at Step 2, as shown 

in Figure 4.2.1, both 6 and 9 mg of NBS oxidized TMB to blue complex (observed 
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spectroscopically), whereas neither 1 nor 3 mg of NBS oxidized TMB to a measureable extent, 

which resulted in a transparent final solution at Step 6. This suggested that 3 mg of NBS oxidant 

was just balanced by 600 µL of stock HCHO reductant solution, so that the final mixture yielded 

no measurable oxidation of TMB.  

The optimal molar ratio of HCHO/NBS = 22.7 for re-oxidized Au(III) was identified by 

holding 3 mg of NBS constant and varying the HCHO:NBS ratio from 0 to 26.5. Adding Au(I) 

oxidant at this defined HCHO:NBS ratio of 22.7 resulted in oxidation of TMB to its blue charge 

transfer complexes with a monotonic, essentially linear response function. Whereas, adding Au(I) 

under non-reducing conditions depleted the availability of NBS to oxidize the TMB completely. 

These PHs decrease monotonically as Au(I) content increases at molar ratios of HCHO reductant 

relative to NBS oxidant less than 7, as illustrated by a blue diamond (HCHO/NBS = 0.0) and a 

green triangle (HCHO/NBS = 2.27) in Figures 4.2.1 and 4.2.2. In contrast, at molar ratios of 

HCHO reductant relative to NBS oxidant greater than 13.3, these PHs increase monotonically, as 

illustrated by red circles (HCHO/NBS = 22.7) in Figures 4.2.1 and 4.2.2. At HCHO:NBS > 22.7, 

the range of values over which 370 nm peak height increased in proportion to added Au(I) 

ceased to become larger.   

 In Steps 2 and 3 of the procedure, as shown in Figure 4.2.1, Au(I) ions were reduced to 

Au(0) by adding HCHO, then oxidized to Au(III) by subsequent addition of NBS. This occurred 

before the solution was introduced to aqueous TMB. Interestingly, Au ion changed from a 

reducing agent to an oxidizing agent, depending on the HCHO content. In the non-reducing 

environment produced by no HCHO addition, Au was preferentially oxidized by NBS, which 

interfered with oxidation of TMB in a proportional fashion as initial Au(I) content increased 

from 0.0 to 2.0 mgL
-1

. The range over which this low-reductant level mechanism appears valid is 
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identified as region I on the left hand side of Figure 4.2.2 and the suggested redox Mechanism I 

is shown in the inset of Figure 4.2.2. It is useful that the blue color of the TMB charge transfer 

complex is quantitatively regained with decreasing Au(I) ion, because this permits sensitive 

detection of dilute Au ion at an improved LOD. Increasing the molar ratio of HCHO/NBS to 

11.4, decreases TMB oxidation at Au(I)  0.5 mgL
-1

 but increases it at Au(I)  1.0 mgL
-1

. 

Further increasing the molar ratio of HCHO/NBS to 13.3 or above permits monotonically 

increasing oxidation of TMB by Au(I). This appears due to the reduction of Au(III), since a 

constant, approximately proportional relationship between amount of NBS oxidized and Au 

content occurs, beginning at ca. 18.9 mole ratio of HCHO/NBS. The range over which this high-

reductant level mechanism appears valid is identified as region II/III on the right hand side of 

Figure 4.2.2, and the suggested redox steps II and III are shown in the inset of Figure 4.2.2. 

Between HCHO/NBS molar ratios from 7 to 13.3, the role of Au ion shifts from being 

preferentially oxidized, to that of an oxidizing agent, depending on Au concentration. This 

feature is attributed to the moderate reduction potential of TMB color reagent (E
0 

= + 0.22 ~ 0.7 

V) relative to HCHO (E
0 

= -1.07 ~ -3.00 V), Au(III) (E
0 

= +1.50 V), Au(I) (E
0 

= +1.68 V), and 

NBS (E
0 

> +1.83 V). The dual-mechanism behavior illustrated in Figure 4.2.2 allowed two 

distinct calibration curves to be employed to detect Au(I) using either low (0<2.27<7) or high 

(13<22.7) molar ratios of HCHO/NBS.  

4.2.4.4    Calibration curve for ionic Au determination  

Adjusting the redox potential balance in determining Au(I) content  allows enhancement 

of the linear range of detection at high reductant levels, as well as improved LOD at low 

reductant levels. Figure 4.2.3 shows two Au(I) calibration curves at low reductant levels (blue 

diamonds, green triangles), one curve at high reductant level (red circles), and a reference curve  
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Figure 4.2.3. Balancing reduction potential improves the LOD of Au(I) determination. 

Comparison of calibration curves between Au(III) reference experimental result and re-oxidized 

Au(III) are well matched. The two Au(I) determination at low reluctant levels exhibit improved 

accuracy for detecting Au(I). The trend lines in inset are in the range of 0.00 - 0.10 mgL
-1
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obtained using stock Au(III) solution (black squares). To ensure a valid comparison, the 

absorption data were collected every 3 minutes from 30 to 60 minutes after the reaction 

commenced. Direct measurement of Au(I) via interference with TMB oxidation by NBS at 0 

mole ratio of HCHO/NBS (blue diamonds) yielded a Beer’s law relationship over the 

concentration range of 0.005 - 1.00 mgL
-1 

(R
2
=0.988) with a molar absorption coefficient of 2.75 

× 10
5
 cm

-1
mol

-1
L calculated by subtracting the peak observed at a particular concentration from 

the peak observed at 0.0 mgL
-1

 Au(I). The LOD was 0.0025 mgL
-1

, a value lower than all but 

one previously reported method for colorimetric detection of Au(III).
25

 The RSD calculated from 

8 repetitions for determining 0.52 mgL
-1

 of Au(I) was 0.60%. The standard deviation of 

absorption values at low Au(I) concentrations from 0.005 to 0.08 mgL
-1

 were relatively higher 

than values in other systems. This was attributed to peak noise that occurred at low Au(I) 

concentrations which produced spectra near the maximum spectrophotometric UV absorption 

limit of 2.0. Increasing reducing agent HCHO to a mole ratio of HCHO/NBS = 2.27 (green 

triangles) decreased the measured UV absorption at 0.0 mgL
-1

 Au(I) from 2.0 to 1.70 and 

improved peak symmetry, both of which reduced the standard deviation. The linear 

concentration range in this case was from 0.01 to 1.00 mgL
-1

 (R
2
=0.995) with a molar absorption 

coefficient of 1.91 × 10
5
 cm

-1
mol

-1
L.     

 At high reductant levels typified by the optimized molar ratio of HCHO/NBS = 22.7, the 

re-oxidized Au(III) system obeyed Beer’s law over a wider concentration range than at lower 

reductant levels: 0.05 - 2 mgL
-1 

( R
2
=0.998). The molar absorption coefficient was 6.07 × 10

4 
cm

-

1
mol

-1
L. Interestingly, as shown in Figure 4.2.3, the calibration curve of the re-oxidized Au(III) 

matched well with the stock solution of Au(III). This supports a mechanism at this optimized 

high molar ratio in which initial Au(I) ions are reduced to Au(0) and then re-oxidized to Au (III).  
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4.2.5.     Conclusions 

Adjusting the balance of redox activity in acid solution allows sensitive spectrometric 

analysis of Au(I) via oxidation of the color reagent TMB. Methods were developed at both low 

and high reductant conditions which were simple, reproducible, and sensitive. The promising 

features of this novel approach are (i) improved LOD of 0.0025 mgL
-1

at low reductant levels, 

which is comparable to more elaborate analytical instruments; (ii) improved linear detection 

range of 0.05 - 2.00 mgL
-1 

at high (balanced) reductant levels; (iii) ability to cross-check Au(I) 

content in different redox environments; (iv) potential to extend to the detection of other metal 

ion concentrations spectrophotometrically may be possible; and (v) the method is simple, 

straightforward and economical, since all key redox reagents are commercially available and 

readily available spectrophotometric determination obviates the need for expensive capital 

equipment. The proposed approach could also allow Au(I) to be distinguished quantitatively 

from Au(III) in solutions since the latter (but not the former) can be reduced in acidic aqueous 

solutions to oxidize TMB to its blue charge-transfer complex.  
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4.3 Metal disposition and dynamics during EL metal thin film synthesis 

In this chapter, a novel real-time T-UV spectroscopy, SEM and XPS were used to 

characterize dynamic morphological and physicochemical disposition of metal during redox-

driven self-assembly of EL metal thin film on silica surfaces under equilibrium and non-

equilibrium hydraulic condition. Optical features consistent with LSPR, SPPs, and PL from Ag 

and related Au nanoarchitectures that included clusters, particles, and films were identified in 

time-resolved T-UV spectra obtained in situ using a novel EL metal deposition system. Kinetic 

changes in plasmon features suggested that four previously unrecognized time-dependent 

physicochemical regimes occur during consecutive EL deposition of Ag and Au onto tin-

sensitized silica surfaces: self-limiting Ag activation; transitory Ag NP formation; transitional 

Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform metal deposition 

under controlled hydraulic conditions. Physicochemical features of Ag and Au at the surface, 

interior, and interface of the resulting thin metal films consistent with growth mechanisms 

inferred from real-time T-UV measurements were characterized by the depth profile XPS 

analysis. The importance of this work is described in Section 4.3.1. Summarized experimental 

characterization method is illustrated in Section 4.3.2. The revealed mechanism of metal 

disposition and dynamics during EL metal thin film growth is described in Section 4.3.3. In 

Section 4.3.4 future work is addressed with a concluding statement. 

4.3.1 Significance of this work 

Growth of uniform metal thin films with controlled thickness is vital for fundamental 

science and technical applications. Understanding film growth mechanism at the atomic scale 

provides a strong impetus for obtaining better control over the dynamics of process governing 

the nanoscale structure of as-deposited film. Technology of Au thin film deposition in aqueous 
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solution, specifically EL Au deposition, has been utilized to fabricate microelectrodes
1,2 

and 

electronics
3,4

 because of the simplicity of the operation (i.e., requiring no external source of 

current and no sophisticate equipment). However, although kinetics and thermodynamics of 

metal thin film growth via vapor phase have been extensively studied along with the advance of 

instrumental technologies controlling extreme conditions such as vacuum and high temperature, 

the study of metal ion diffusion for thin film formation at an atomic view in aqueous phase had 

not been investigated since 1990s due to less industrial and scientific demand resulting from 

limited scalability of bench bath system.
6
 A fundamental mechanism of EL Au thin film growth 

and its control at a nano-scale view and internal and interfacial structure between substrates and 

Au films remain unclear because time-resolved characterization of transitory physicochemical 

features has not been performed. 

4.3.2 Experimental Characterization method 

Real-time T-UV spectral measurement was recorded in a 350–800 nm wavelength range 

during overall EL metal plating. D
3
-H2O filled Sn-sensitized flow channel cells were used as a 

reference blank spectra. Spectra were fit to Gaussian curves [Origin(Pro) 7.5, OriginLab Corp., 

Northampton, MA] to calculate relative peak height (PH) and the minimum extinction as a 

baseline offset, yo. SEM was performed using a Philips XL-30 ESEM FEG (FEI, Hillsboro, 

Oregon). XPS data were acquired by using the PHI Versaprobe XPS (Physical Electronics Inc, 

Chanhassen, MN) equipped with a monochromated Al-Kα source (hν =1486.6 eV). The 

spherical capacitance analyzer was operated at a constant pass energy of 23.5 eV in fixed 

analyzer transmission mode with a take-off angle of 46.7⁰. Depth profiling was performed using 

an Ar
+
 ion gun at 2 keV with a corresponding Au sputtering rate of 20 ~ 40 nm/min. Peak fitting 

was performed using the PHI Multipak program (Physical Electronics Inc, Chanhassen, MN). 
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Spin-orbit doublets were related using the appropriate area and separation relationships after 

applying a Shirley background correction. 

4.3.3 Results and Discussion 

4.3.3.1   Dynamics and disposition of Ag during EL Ag thin film formation 

Ag reduction is light-sensitive and appears Sn
2+

-limited. Figure 4.3.1(A) shows four T-

UV spectra taken in real time during Ag reduction onto Sn-sensitized silica. The initial spectra 

(0s) show the surface is transparent prior to D
3
-H2O wash or Ag addition. The reduced-

transparency three spectra were obtained during three subsequent periods identified in Figure 

4.3.1(D): D
3
-H2O wash of Sn-sensitized silica (for 113 sec; no shading), Ag reduction (for 120 

sec; red shading), and subsequent D
3
-H2O wash of Ag reduced on Sn (for 105 sec; no shading). 

The three representative spectra shown were captured at 120 s, 270 s, and 338 s after the initial 

wash began, respectively, or in other words 7 seconds after Ag reduction began, 37 seconds after 

Ag reduction ended, and at the point the 2
nd

 water wash ended, respectively. The first two spectra 

were selected from spectra taken every 30 seconds during initial wash, silver reduction, and 37 

seconds into the subsequent wash. Thirty-second intervals between T-UV measurements were 

necessary to minimize interference by in situ photochemical reduction of Ag ions on Sn
2+

-driven 

reduction of Ag
+
 onto the surface. Exposure to a broadband light source induces photochemical 

reduction of light-sensitive Ag ions to metallic Ag clusters in the presence of trace halide in 

solution. For example, photochemical reduction of Ag ions by UV exposure is a basis for light 

photography.
12

 Experimentally, light-induced reduction of dissolved Ag ions was observed to 

preclude Sn
2+

-catalyzed reduction of these ions onto the surface. Blackish powders, spots and 

irregular gray color that occasionally appeared on reduced-Ag substrates, even after reducing T-

UV measurement intervals to 30 sec, was indicative of agglomeration of UV-reduced Ag  
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Figure 4.3.1 Real-time spectra monitored from Sn sensitization, through Ag activation, to Au 

reducing agent (HCHO) treatment at 3 ml/hr. (A) Ag reduction for 2 min (i.e. between 60 s 

and180 s) , (B) HCHO reductant exposure for 23 sec  (i.e. between 308 s and 331 s)  (C) HCHO 

reductant exposure for additional 2 min (i.e. between 331 s and 490 s)  (4) Corresponding kinetic 

profile of % transmission at 425 nm (the Ag LSPR feature). Colored arrowheads on (D) shown 

when each spectra in (A-C) were taken.   
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clusters by attractive van der Waal forces and their association with free hydroxyl (-OH) group 

found on silicate glass.   

The initial spectra at 0 sec in Figures 4.3.1(A) and (D) (corresponding black empty 

square profile) shows 100% transmission, as anticipated for Sn-sensitized silicate substrate 

corresponding to complete optical transparency in Figure 1.4.(A). The silica had been sensitized 

by dropwise addition of SnCl2 solution followed by 10-min incubation. Subsequent T-UV 

spectra in Figure 4.3.1(A) show transmission rapidly changes from 100% for Sn sensitized 

surface to ~95% with a broad valley at ca. 500 nm at about 7 seconds after ammoniacal silver 

nitrate was introduced to the substrate. This appears consistent with a rapid formation of Ag 

island thin film illustrated in Figure 4.3.1(B). There was a volumetric holdup of ~89 μl in the 

injection system between glass syringes containing ammoniacal Ag solution and the 

spectroscopic flow cell (see Figure 3.5.). At the 3 ml/hr flowrate, this resulted in a theoretical lag 

of ~106 seconds. This corresponded to the 106 s period of initial water wash during which 

injected Ag solution flushed water out of the volumetric holdup.  

To dynamically follow transformation of Ag thin film to Ag particles, Figure 4.3.1(D) 

plots three time-course profiles of % transmission values at 425 nm only vs. plating time 

throughout the pre- and post-silver reduction D
3
-H2O washes (no shading), Ag reduction (red 

shading), as well as subsequent exposure to aqueous HCHO reductant (green shading) with 

varying broadband light exposure time. Black empty squares (30s+1s) represent spectra 

measured at 30-second intervals during Ag reduction (120 sec) and 1-second intervals during 

HCHO treatment (240 sec). Measurements at 1-second intervals produced continuous broadband 

light exposure to the sample. Red empty circles (30s) profile spectra measured at 30-second 

intervals during the entire Ag reduction and HCHO treatment procedure. Blue empty triangles 
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represent average spectral values obtained at 300 sec (after Ag reduction; n=8) and 590 sec (after 

HCHO treatment; n=3) with no broadband light exposure, thus providing a negative control for 

exposure to broadband light exposure. Error bars show one standard deviation from the mean. At 

a wavelength of 425 nm, these dynamic profiles track the maximum wavelength of the LSPR 

feature for Ag NP. Colored arrowheads to black-squares in Figure 4.3.1(D) show when 

individual spectra in Figure 4.3.1(A-C) were taken. Spectra of data points that lack arrowheads 

are not shown in Figures 4.3.1(A-C), for clarity.  

Significantly, the three profiles for 0 ~ 338 sec indicate that reduction of ammoniacal 

AgNO3 to Ag island film at constant, equilibrium conditions provided by the continuous-flow 

conditions appears complete in  30 s. Further exposure to ammoniacal AgNO3 did not 

discernibly decrease overall transmissivity or enhance Ag island film PL. This result, and the 

transmittivity of the resulting reduced Ag film, did not change appreciably with exposure to light 

at intervals  30 sec, within measured data error. Specifically, 2-min Ag activation in darkness 

(blue empty triangle at 300 sec) reduced transmission to 92.5±3.7 %, consistent with results 

obtained during 30-sec exposure intervals. Morphological effects during Ag reduction to Ag 

island film are limited due to fast, Sn
2+

-limited redox reaction. More frequent exposure to light 

during Ag reduction induced visible formation of black powders, spots, and irregular gray color 

indicative of in situ photochemical Ag reduction and agglomeration of resulting clusters. A small 

change in overall transmission during a subsequent 105-s wash with D
3
-H2O, as shown in Figure 

4.3.1(A), was attributable to replacement of the ammoniacal AgNO3 solution by D
3
-H2O. Silver 

reduction onto Sn-sensitized silica to form Ag island film in the absence of external reducing 

agent appears limited by the availability of Sn
2+

 on the surface, in contrast to the previous 
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report.
15

 Reduction of Ag redox-catalyzed by Sn-sensitizer apparently ceases when these electron 

donors are consumed despite a steady, continuous supply of Ag ions in the bulk  

Exogenous reductant forms Ag NP from Ag film. Galvanic replacement of Ag by Au
+
 

conventionally occurs in the presence of the exogenous reductant, a mixture of sodium sulfate 

and HCHO. Formaldehyde (HCHO), a strong electron donor, has been used to reduce Au(I) to 

Au(0) as well as Ag(I) to Ag(0).
13,14

 It was previously shown in our lab that aqueous Au ion can 

be shifted between +3, +1, or 0 oxidation states by adjusting the balance of HCHO reductant and 

N-bromosuccinimide oxidizing agent as indicated by a dissolved colorimetric reagent.
13 

Reductant has been added to aqueous Ag
+
 to deposit Ag island or NP on surface with varying 

reaction time and formulation,
15

 but effects of reducing agent added to  Ag film already reduced 

onto Sn
4+

 do not appear to have been investigated.  

Figure 4.3.1, panels B and C show representative real-time T-UV spectra taken at 1-sec 

intervals during additional 68 sec D
3
-H2O wash and 202 sec exposure to formaldehyde (HCHO) 

reductant at 0.63 (M) molar concentration.Volumetric holdup (~60 μl) in the injection system 

between glass syringes containing HCHO solution and the spectroscopic flow cell (see Figure 

3.5) produced a theoretical ~72 s lag at 3 ml/hr. Real-time transmission spectra in Figure 4.3.1(B) 

show that equilibrating the reduced Ag film with a continuous flow of HCHO-containing 

reductant decreases transmittance and briefly appears to enhanced thickness of the Ag island film, 

since the transmission minima remains near 500 nm. But in  10 sec the minima blueshifted 

rapidly toward the LSPR of Ag NP (410 nm) and sharply drops between 338 s and 361 s. The 

transmittivity decrease and minima blueshift are attributed to dynamic Ag NP aggregation via 

reduction of active Ag ions remaining at the Ag island surface and/or produced by concomitant 

reduction from Sn(IV) to Sn(II). Mie theory predicts that an aqueous suspension of 50-nm 
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diameter Ag NP exhibits a LSPR at 410 nm,
20

 while 15±10 nm diameter Ag NP thermally 

annealed from a 3-nm Ag island film, exhibit an absorption maxima at ~430 nm wavelength
10

 

which is similar to the spectra at 361sec. The high optical cross section of Ag LSPR contributes 

to an overall reduction in transmission. 

Exogenous reductant with concomitant light exposure removes Ag from Sn
2+

-sensitized 

surface. Prolonging exposure to reductant past 23 sec reverses the preceding dynamic: 

transmission increases and the LSPR feature slightly blue-shifts. Interestingly, Figure 4.3.1(C) 

and corresponding black square profile in Figure 4.3.1(D) shows that transmissivity rapidly 

recovers with continuous blueshifting of the LSPR minima from 410 nm to 405 nm during the 

first 49 sec after the reversal (between 361 s and 410 s). After 410 s, transmission increases only 

slightly for 130 sec (between 410 s and 540 s) and the transmission baseline stabilized to ~95%. 

During this regime, Ag film appears to leave the surface and larger particulates are ostensibly 

washed out of the spectroscopic field of view leaving behind smaller particles associated to the 

surface. This may occur concurrent with further HCHO reduction of Sn(IV) to Sn(II) at the 

substrate and continuous photochemical reaction due to exposure to broad band light source at 1 

sec intervals. Mie theory suggests the transmission LSPR minima at ~400 nm correspond to ~40-

nm diameter Ag NP.
20

 

Exposure to light during HCHO reduction affects Ag nanoparticle morphology. Figure 

4.3.1(D) shows that exposure to light at 1-sec (black squares) to 30-sec (red squares) intervals 

produces similar transmittivity profile features: a rapid decrease corresponding to fast NP 

formation followed by a slower recovery corresponding to NP disappearance. Decreasing or 

eliminating exposure to light substantially decreased transmittivity at 425 nm during and after 

HCHO reduction. The Ag LSPR of 30 sec interval exposure was stabilized the lower value of 
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~82 % compared to 92% for 1 sec interval exposure in spite of the higher initial transmissivity of 

the former sample. Complete darkness further reduced transmittivity to 60% after producing an 

optical profile similar to 30-second exposure at the conclusion of Ag reduction.  

This result appears attributable to Ag NP self-association without light-induced erosion. 

Figure 4.3.2(A) is an SEM image of sample (corresponding blue triangle) after exposure to 

HCHO in dark. It shows the Ag island film from Figure 1.4(B) has been largely aggregated to 

spherical Ag NPs of diameter >100 nm. Individual NPs (inset lower LHS) are coated with ~10 

nm Ag NPs that appear to nucleate at the surface of the larger particle core.. Application of such 

nucleated Ag NPs to thin film solar cells has been shown to improve light trapping effects.
21

 This 

results from excitation of the dipolar and quardropolar plasmonics mode for longer wavelength 

due to large core and large angle scatters for shorter wavelength light due to the small nucleated 

particle. The T-UV spectra inset on the upper RHS of SEM obtained was identical to the blue 

triangle profile spectra at 590s in Figure 4.3.1(D). Self-assembled Ag NP reduced by HCHO 

from Ag film without exposure to light exhibit a broad transmission valley with a minima at 

~425 nm. Mie theory suggests the transmission Ag LSPR minima corresponds to a ~220-nm 

diameter Ag NP.
20

 Figure 4.3.2(B) shows that continuous light exposure during HCHO treatment 

results in a distribution of smaller NPs, most of which are < 10 nm with scattered, larger 50-nm 

particles. Their corresponding transmittivity is blue-shifted, narrower, and higher. Mie theory 

predicts a transmission LSPR minima at ~400 nm corresponds to ~40 nm diameter Ag NP.
20

 

Inset in the lower LHS of Figure 4.4.2(B) is a schematic that indicates HCHO reduction of Ag 

film may covalently bind Ag to Sn(IV) or physically adsorb reduced Ag NP onto 
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Figure 4.3.2 SEM images of wideband light exposure effect to HCHO treated Ag film on silicate 

substrate:  (A) dark condition (B) continuous light exposure. 
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 Sn(II). The schematic also indicates vacancies on the Sn-sensitized substrate due to HCHO-

induced Ag film removal and washout of smaller Ag NP. 

Previously, high temperatures were applied to thermally transform Ag island film to 

surface-associated NP. The data in Figures 4.3.1 and 4.3.2 indicate it is possible to transform Ag 

island film into nucleated Ag NP associated with a planar substrate using a strong reducing agent 

in the dark without energy intensive thermal treatment. Concomitant UV exposure appears to 

induce reduction of light sensitive Ag ions in solution, which interferes with aggregation into 

larger particles on the surface and apparent surface nucleation. 

4.3.3.2    Dynamics and disposition of Ag and Au during EL Au thin film formation 

Novel time dependent regimes are revealed in EL Au film growth. Dynamic, real-time T-

UV spectroscopy revealed additional, previously-unrecognized time-dependent regimes during 

Au reduction, which occurs subsequent to Sn sensitization and Ag reduction. These successive 

regimes are transitory Ag NP formation, and transitional Ag and Au alloy formation, followed by 

self-catalyzed Au film growth. EL plating has the advantage of being able to uniformly coat a 

substrate without consideration of geometry (e.g. in recesses or holes), since the reducing 

potential is equal over the entire surface. However, it has also been reported that very thin films 

of EL coatings are not uniform because the initial deposition is confined to discrete nucleation 

sites that grow laterally and coalesce into a continuous film.
22

 This motivates improved 

understanding of the nucleation regime to control nucleation rate and coverage in order to 

deposit uniform, ultra-thin film. While it has been reported that the nucleation of EL Au plating 

is initiated by galvanic displacement of Ag by Au, further characterization of transition steps 

between galvanic replacement of Ag by Au has not been performed. 
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Figure 4.3.3(A-B) show individual real-time T-UV spectra during an entire EL Au 

deposition, beginning with a baseline spectra for Sn sensitized substrate, and proceeding through 

a 2 min Ag activation and 5 min rinse, to a final 5 min Au deposition. Figure 4.3.3(B) expands 

the spectra obtained during an especially dynamic period between 0 sec and 70 sec for clarity. 

Notable in the spectra of Figure 4.3.3(A-B) are a transmission valley at ~425 nm corresponding 

to plasmon resonant Ag absorption and scattering, and a transmission peak at ~500 nm 

corresponding to Au PL. Figure 4.3.3(C) plots changes in the central wavelength (top panel) and 

amplitude (PH, bottom panel) for each feature as a function of deposition time. The Sn spectra 

captured after 10 min sensitization provides a transparent, reference silicate substrate with 100% 

transmission. Real time spectra were then in situ measured throughout Ag deposition at 30-sec 

intervals, consecutive D
3
-H2O washing and Au deposition at 1-sec intervals. The sample was 

designated CF-3-5 based on this hydraulic condition (3 mL/hr) and deposition time (5 min). The 

transmission spectra at 0 sec, selected after 2 min Ag activation and successive 5 min H2O 

washing, exhibited transmissivity decreased to about 95% overall with a broad valley at ~495 

nm. Consistent with the spectra of Ag island film in Figure 1.4(B)[Chapter 1] and 4.3.1(B), the 

transmission decrease due to reduction of Ag islands onto Sn
2+

 was completed in ≤30 s and the 

spectral features stabilized during subsequent 90 sec Ag injection and successive 5 min H2O 

washing (data not shown). Overlapping spectra were omitted and specific time spectra were 

selected for clarity in Figure 4.3.3(A-B).  

Transitory Ag NP formation. Upon introduction of the Au solution, a mixture of sodium 

Au(I) sulfite and HCHO, the transmission minima, as shown in Figure 4.3.3(B), rapidly 

blueshifted from 490 nm to 425 nm with increasing intensity between 0 s and 10 s as the mixture 

first contacted the Ag activated substrate. The transition of this optical feature was similar to  



90 
 

 

 

   

Figure 4.3.3 (A) Time resolved transmission spectra during a whole procedure of CF-EL Au 

deposition; Sn sensitization, Ag activation, galvanic replacement of Ag by Au, and Au film 

growth. The Ag spectral transmission was captured after 2 min CF deposition. The Au plating 

was performed at a flowrate of 3 ml/hr for 5 min. (B) Blow-up of spectra for 0-70 sec (C) 

Corresponding plasmon peaks (Ag Valley, Au PL) shift and peak height profile during EL Au 

deposition. Optical feature may represent physical transitions: Ag NP formation (I), Au/Ag alloy 

formation (II), Au film formation (III), and uniform Au film growth (IV) 
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isolated HCHO treatment of a Ag activated substrate as shown in Figure 4.3.2(B). It is attributed 

to Ag NP aggregation resulting from 2-fold faster axial diffusion of HCHO ions in the advancing 

front in addition to 2-fold faster lateral diffusion of HCHO ions through the stagnant boundary 

layer adjacent to the surface, respectively, relative to Au(I) sulfite complex. Reductant may 

contact reduced Ag film in advance of Au(I) ion due to the lower diffusivity of the latter ion 

through a stagnant boundary layer of H2O. The binary aqueous diffusion coefficient of methylene 

glycol, a major hydration form of HCHO,
16

 (CH2(OH)2; 1.6×10
-5

 cm
2
/s) is ~2.7 times larger than 

that for Au(I)-sulfite complex ion (Au(SO3)3
2-

; 0.6×10
-5

 cm
2
/s) as calculated from Wilke-Chang 

and Nernst-Haskell equation
17

 at 18 ºC, respectively. The diffusivity of Au(I) complex in 

aqueous solution was measured 0.7×10
-5

 cm
2
/s at kinematic viscosity of 0.011 cm

2
/s for 0.05 

mol/L.
18

 From mass transfer principles
16

 and hydraulic properties of diluted HCHO at 18 ºC, the 

theoretical mass transfer rate of CH2(OH)2 (6.2×10
-4

 cm/s) is therefore ~2 times higher than 

Au(I) complex (3.2 × 10
-4

 cm/s) in the CF-EL system. It has been reported that Au(I)-sulfite 

complex dissociates to Au(I), which is reduced to Au(0) in the presence of exogenous electrons 

supplied by galvanic displacement, electrical current, or strong reductant.
19

 Using Mie theory, the 

transmission minima, Ag LSPR absorption, at ~423 nm is attributable to a 40-nm diameter Ag 

NP.
20

 

Transitional Au and Ag alloy formation. At 20 sec, the transmission minima red-shifted as 

the width of the underlying spectral feature increased. This corresponded to Au(I) ions 

penetrating the stationary boundary layer, contacting the Ag activated surface, and initiating 

galvanic displacement of Ag by Au. The bulk Au solution contacting the surface includes Au(I) 

ions, displaced Ag ions, and/or metallic NPs, all of which may contribute to the observed 

variation in transmission features during this transition period. Between 20 sec and 70 sec, 
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redshifting and peak broadening proceeded with decreasing overall transmissivity as galvanic 

formation of alloy NP and metallic island film layer progressed. Redshift and peak broadening 

are attributable to the formation of Ag/Au (core/shell) NP and/or Ag-Au alloy during the 

galvanic displacement of Ag by Au. Increasing the Au content of Ag/Au (core/shell) NPs and 

nano Ag-Au alloy in aqueous media is known to red-shift and increased damping of the plasmon 

spectra relative to pure Ag NPs.
23,24

 Au-Ag alloy island film exhibits similar optical red-shifting 

and peak broadening with increasing Au content.
11,25

 Decrease of overall transmissivity after 40 

sec was attributable to additional Au deposition relative to the concurrently displaced Ag amount. 

This is consistent with the report by Ahn, et al.
7
, that EL Au thin film formation is characterized 

by the formation of metallic nuclei and their subsequent annealing from discontinuous to 

continuous island structure. Au(I) ions diffusing through the boundary layer reduce metallic 

clusters as nuclei via galvanic displacement on available Ag NPs bound to Sn sensitizer. Ag NPs 

and Au NPs momentarily coexist until completion of galvanic displacement when deposited Au 

entirely covers the substrate.  

Self-catalyzed Au film growth. Figure 4.3.3(A) shows that at 80 sec, the minima of 

transmission valley red-shifted to 530 nm in wavelength and a new transmission peak feature 

arose at ~430 nm. This feature is consistent with PL from Au thin films.
7,8

 At 90 sec, the PL 

feature became distinguishable at a wavelength of 442 nm. Subsequently, it redshifted with 

sharpening PH as alloyed Ag was replaced by Au. In this kinetic period, galvanic displacement 

slows as the driving force of Au thin film growth switches to external electron donation from the 

reductant. HCHO reduces Au
+
 to Au

0
 on the galvanically formed Au nuclei which play the role 

of catalyst. As Au deposition time increased between 90 sec and 180 sec, the PH of Au PL 

dramatically increased and the peak position also red-shifted. This can be attributed to growth of 
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island film structure to a reported percolation threshold thickness
9
 where coalescence creates a 

continuous path for electrons through the network with dramatically changing optical and 

electrical properties. In particular, the PL feature profile (blue triangles) in Figure 4.3.3(C) shows 

that after 180 sec, peak position and PH remained relatively constant while the overall 

transmission continued to decrease. This suggests that steady state Au deposition via CF 

increases the film thickness while sustaining the surface morphology.  

These dynamic spectroscopic data during deposition, corroborated by opto/electronic 

microscopic and spectroscopic observations, suggest physical deposition of metal ions during EL 

Au film growth procedures, as shown in Figure 4.3.3(C), occurs during four dynamic regimes: 

(I) initial Ag NP formation via fast diffusing HCHO, (II) transitory Au/Ag alloy formation, (III) 

continuous Au film formation through percolation thickness, (IV) autocatalytic uniform Au film 

growth. This expanded understanding of transitional regimes in the initial EL Au film growth 

could improve control of continuity and surface uniformity of EL thin coating, and allow 

implementation of measures to control the size and coverage of nucleation clusters for 

coalescence of film formation.   

4.3.3.3     Microscopic characterization of EL Au thin film 

Intermediate deposition times produce continuously deposited films with packed uniform 

grains. Steady diffusion in equilibrium hydraulic conditions (i.e. CF) has been shown to produce 

EL Au films at short deposition times that exhibit more uniform surface morphology and optical 

features than EL films formed by unsteady-state diffusion in batch immersion (i.e. BI), or by 

vacuum vapor-deposited films. For deposition times in the range of 20 sec, 60 sec and 4 min, BI-

EL plating yields discrete nucleated Au NPs, separated island, and discontinuous island films on 

quartz slides, respectively.
7
 Without surface pretreatment and conductive substrate, vapor 
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deposition usually produces separate island thin film structure due to lattice mismatch. 

Equilibrium, steady diffusion via a constant concentration driving force in CF-EL plating 

improves continuity and uniformity of EL film for 2 min deposition relative to BI-EL film for 2 

min.
8 

The steady, higher mass transfer rate improved the surface morphology and uniformity, 

however the effect of extended plating time and different hydraulic conditions on film thickness 

and surface morphology have not been investigated for CF-EL thin films.  

In this work, EL Au thin films were produced at longer deposition times of 5 min and 10 

min, respectively, at both unsteady and steady hydrodynamic conditions. For 5 min BI deposition 

time, the EL Au film, as shown in SEM image of Table 3.2, exhibit uniformly close packed grain 

structures with less than 50 nm diameter. Increasing BI deposition time to 10 min (BI-10) and 

performing continuous, equilibrium deposition at similar hydraulic conditions of about 3 mL/hr 

(CF-3-5, CF-3-10) also exhibit very similar close packed grain structure. It appears that the 

HCHO driven autocatalytic Au reduction on nucleated Au NPs form uniform Au grains during 

intermediate deposition.  

4.3.3.4      XPS interpretation of the EL Au thin film structure 

Despite its relevance to a variety of optical and spectroscopic applications, the interface 

and internal physicochemical structure of EL deposited metal films does not appear to have been 

previously investigated. Extensive use has been made of X-ray photoelectron spectroscopy (XPS) 

in similar applications to quantify chemical composition and grain size of metal thin film 

structures at surfaces and to characterize solid inter-diffusion interactions at metal/oxide 

interfaces.
26,27

 XPS has also been used to characterize chemical compositions of EL Au film 

surfaces, but without depth profiling.
28,29 

In this work, XPS depth profiling indicates that the as-

deposited EL Au film structure consists of a eutectic Au-Sn alloy and SnO2 layer at the interface 
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between the metal film and silicate substrate upon which an internal Au film is deposited, with 

bulk Au grains and trace Ag debris at the upper metal-air surface. 

Reduced Au ions appear to form bulk Au grains at interface and internal structure as 

deposited EL thin films. Application of XPS to characterize EL Au deposition suggests deposited 

EL Au exists as bulk grains (> 4 nm) at the interface accompanied by various internal structures. 

Electron microscopic images show that EL deposition at intermediate times forms Au bulk 

grains with ~50 nm diameter on the film surface. Figure 4.3.4(A) shows spectra of Au in CF-3-

10 film at sputtering time intervals between 0 and 140 sec. The bulk Au in the Au 4f level 

exhibits two photoemission peaks, 4f7/2 (84.0 ± 0.2 eV) and 4f5/2 (87.65 ± 0.2 eV), with intensity 

ratio of 4:3 and energy difference, the spin-orbit splitting, of 3.65 eV.
30

 When the uncorrected 

raw data from which Figure 4.3.4(A) was obtained were corrected for charging effects using the 

peak from carbon contamination at the surface, an Au photoemission peak at the surface for 0 

min sputtering of 83.7 eV was obtained(See Table 4.3.1). This indicates as-deposited EL Au thin 

film forms a bulk elemental Au-Au bond at the surface. It also suggests that Au ions deposited 

by EL Au plating form bulk Au grains with larger than 4 nm diameter, since large metal clusters 

whose diameters exceed 4 nm have BE values that closely approximate the bulk metal value. 

When the size of deposited Au cluster decreases to less than 2 nm, the observed core-level Au 

4f7/2 BE increases by a maximum of 0.8 – 1.2 eV. This increase is attributed to effects of 

decreased core-hole screening by the conduction band, as a result of the discretization of the 

conduction band.
31,32,33 

The SEM images of four different EL Au films, in Table 3.2, also 

confirm that the grain size of deposited Au NPs are larger than ~50 nm. This reaffirms the 

observed Au peak is the 4f7/2 Au-Au bulk peak (~84.0 eV) and validates spectral corrections for 

charging effects.  
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Figure 4.3.4 The XPS depth profiles of CF-3-10 for main chemical components: A) Au4f7; B) 

Ag3d; C) Sn3d; D) Si2p 
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Table 4.3.1. Peak position of XPS analysis for CF-3-10. The number in bracket is the corrected 

value after considering charging effect via Au reference. 
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The observed Au4f7/2 peak positions below the surface (0 sec) were also corrected to the 

reference Au-Au bulk values (~84.0 eV). For CF-3-10 in Figure 4.3.4(A), the Au4f7/2 peak 

intensity increased dramatically after the first sputtering, reaching a maximum between 20 and 

60 sec, and decreasing at  80 sec. The intensity increase was attributable to removal of 

contamination layers associated with disappearance of the carbon peak during the first 20-sec 

interval of Ar
+
 sputtering. Values of FWHM for 20, 40, 60 and 80 sec were 0.76, 0.76, 0.77 and 

0.77, respectively. Consistency of the peak intensity and FWHM values indicates the uniformity 

of reduced metallic Au grains that form the internal structure of CF-EL Au film. The Ar
+
 

sputtering rate for Au depth profiling was 0.3 ~ 0.7 nm/sec. While bombardment with Ar
+
 ions 

can promote Au diffusion and aggregation and transform Au-Au cluster to Au-Au bulk due to 

transfer of kinetic energy of the ion to the surface atom, the consistency of the spectral features 

suggest the bulk elemental Au-Au bond is inherent to the film itself. 

The above microscopic characterization indicates that the EL deposited Au form bulk 

grain with ~50 nm of diameter at the surface. However, the interface and internal Au structure in 

as-deposited films are not investigated. XPS has been used extensively to investigate chemical 

composition and grain size of metal thin film structures at surfaces and solid inter-diffusion 

interaction at metal/oxide interface. The XPS interpretation suggest the deposited Au exist as 

bulk grains ( > 4 nm) at the interface and internal structure. 

Sensitized Sn forms Au-Sn alloy and SnO2 at the interface between silicate and Au.  

Sensitization by Sn via dehydration of surface hydroxyl groups provides catalytic sites which are 

a path for the initiation of EL plating of other metals. Stannous ion (Sn(II)) is usually used as a 

sensitizer for Au film growth. SnCl2 sensitization also provides better uniform coverage on 

hydrophobic surfaces than SnCl4. In addition to redox mechanisms for stannous ion illustrated in 
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 Eqs. (4-7) time-resolved XPS profiles suggest that sensitized Sn reacting with Au and silicate 

results in heterogeneous AuSn alloy and SnO2 at the interface.  

In Figure 4.3.4(A) a new peak appeared at ~85.0 eV on the shoulder of Au4f7/2 

photoemission peak after 100 sec sputtering (depth 50 ±17nm). It is attributed to the existence of 

eutectic Au-Sn alloy at the interface between Au film and silicate glass substrate. The BE of 

Au5Sn at ζ’(composition based on Au5Sn) phase was reported at 84.14 eV.
34

 AuSn at ζ’ and δ 

(composition AuSn) phases were 84.30 eV and 84.9 eV, respectively.
27

 The alloy of Au4Sn 

shows a shoulder peak at ~85.0 eV.
30

 This suggests that during EL Au plating, deposition of 

reduced metallic Au completely replaces Ag clusters and anchors onto Sn layer in the form of 

Au-Sn alloy. For the as deposited Au-Sn thin film system, the phase formation via interfacial 

reaction between Au and Sn is easily performed at room temperature.
27,34,35

 Due to faster 

diffusivity of Au atoms compared to Sn atoms, Au atoms rapidly diffuse into the Sn layer 

through the Sn grain boundaries, resulting in Au5Sn, Au2Sn AuSn, AuSn2 and AuSn4.
27

 The 

Sn3d depth profile in Figure 4.3.4(C) after 80 s sputtering confirms the existence of Sn at the 

interface between the Au film and the silicate substrate.  

After EL Au deposition, the sensitized Sn presents as eutectic Au-Sn alloy and putative 

oxidized tin (SnO2) at the interface. Fig. 4.3.4(C) shows no observable Sn3d peaks in the 

uppermost layer of Au thin film during 0~40 sec of sputtering. After 60 sec, two noticeable 

peaks appeared 495 eV and 487 eV and the intensity intensely increased at 80 sec. The peak 

intensities decrease after 120 sec. The observed Sn3d5/2 peak at 486.8 eV is attributed to either 

oxidation states of the bound Sn or oxidized Au-Sn alloy.
34

 The observed Sn3d5/2 peaks during 

80-140 sec are well matched with the reported Sn peak at ~486.5 eV after Sn sensitization. 

Previous literature reports distinguished SnO and SnO2 via the O1s core level XPS spectra 
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assigning 529.9 and 529.7 eV for SnO and 530.3 and 530.5 eV for SnO2. The BE of Sn3d5/2 from 

oxidized Au-Sn alloys is basically similar to the oxidation of metallic Sn because a thin Sn 

oxides skin preferentially forms in oxidation of Au-Sn alloys.
34

 Whole CF-EL deposition was 

performed in open environmental condition. Specifically, Sn sensitization was performed by 

dropwise deposition to reduce possible Au deposition inside of flow tubes of CF-EL plating 

system and then the Sn sensitized substrate was installed in CF-EL plating system. During this 

brief time, surface oxidation of the bound Sn and unbounded residual Sn on the glass substrate is 

likely to occur due to exposure to air and water containing dissolved oxygen. Thus, two forms of 

Sn, oxidized Au-Sn alloys and SnO2 may be present in heterogeneous mixing condition at the 

interface layer which was reached after 80 sec Ar sputtering. The adjacent peak appearing at 

~498.0 eV was assigned to Na which may be a component of soda lime silica substrate. 

Various Ag forms exist in surface and internal thin film. The Ag 3d5/2 spectrum at the 

surface, 0 min sputtering, in Figure 4.3.4(B) show a peak at ~367.80 eV -- a value lower than BE 

of bulk elemental Ag (368.2 eV) that could assigned to AgOx (367.3-368.0 eV),
30

 which may be 

due to exposure to air. However, the internal Ag after 20~80 sec are 368.0, 368.1, 368.0 and 

368.0 eV which are close to bulk elemental Ag. The previous study reported that in Ag activation, 

deposited Ag is bound to the surface as metallic silver, not through an oxygen atom to Sn. The 

real-time transmission spectra show galvanically replaced Ag NPs temporarily form Au-Ag alloy 

state. Therefore, the appearance of metallic Ag during 0–80 sec of depth profiling could be 

attributed to continuous bulk displacement of Ag NPs from upstream by the hydraulic conditions 

and subsequent deposition to form a mixture of Ag and Au during film growth. Interestingly, no 

observable Ag peaks were found at 100 sec and 120 sec when the sputtering reached to the 
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interface between Au and silicate glass. It suggests that the galvanic displacement completely 

removes Ag at the interface and then forms a Au and Sn interface. 

Si indicates the thickness of as deposited EL Au film. The Si2p XPS spectrum, shown in 

Figure 4.4.5(D), suggests information about EL deposited Au film thickness by indicating the 

boundary between Au and SiO2 glass substrate. After 100 sec of sputtering, a peak at 103.7 eV, 

corresponding to Si2p in SiO2 (~103.5 eV) appeared. Based on this observation and a sputtering 

rate of Au (0.3 ~ 0.7 nm/sec), the Ar sputtering reached the interface after 80 sec and the 

corresponding thickness is between about 30 and 70 nm. This observation corresponds to other 

depth profiling, which shows a sudden decrease in Au peak intensity and Ag peak disappearance 

at 80 sec.  

Quantitative XPS analysis allows identifying CF effect and deposition time. Figure 4.3.5 

compares the quantitative atomic percent composition of CF-EL and BI-EL film during 

intermittent 20 sec depth profiling for a total of 150 sec. For CF-3-5, as shown in Figure 4.3.5(C), 

at the surface (0 min sputtering), the Au content is ~15.2 %, 50.2% of C due to organic carbonate 

and 24.8% of O, 1.6% of Ag. After 20 seconds sputtering, the Au concentration dramatically 

increased to 83.7 %, whereas C and O contents decrease to 9.9 and 4.1%, respectively. The 

further 40 second sputtering exhibited improved Au content to 89.7 % with further decrease to 

5.5% of C and 3.5 % of O, which represents the chemical composition of internal structure of EL 

Au film. After 60 seconds, the Au content decreased to 81.5% due to increase in oxygen content 

to 7.9% which may originate from metal oxides such as Au, Ag (0.8%) and Sn (3.4%). The Sn 

content was suddenly increased from 0.3 % at 40 second of sputtering. No Si was detected at this 

sputtering step. At 80 second, the Au content decrease to 44.7 %, while O, Si and Sn increase 

34.0%, 10.4% and 4.6%, respectively. After 100 seconds, the content of O(59.5%) and Si(20.4%) 
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Figure 4.3.5 Quantitative chemical component characterization of XPS depth profile of two 

different CF and BI deposited film for 5 and 10 min. Target chemical components are C1s, O1s, 

Ag3d, Au4f7, Sn3d3 and Si2P. 
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exceeded the Au content (14.6%).  Interestingly, the Sn content decreased to 2.5 %. Based on 

this observation, the interface of the CF-3-5 film may be revealed after 80 ~ 100 second of Ar 

sputtering. The interface area is indicated by dot box in Figure 4.3.5(C). After 120 seconds, the 

O, Si, and Na content are stabilized at 64.4 ± 0.9%, ~27.3 ± 0.2%, and 2.3± 0.3% until 240 

seconds. These three main components are contributed to soda lime silica glass substrate.  

Other EL film’s atomic concentration profile also exhibit similar pattern for 

distinguishable structural features such as surface, internal structure of Au film, interface and 

SiO2 substrate. However, the interface locations or film thickness are dependent on different Au 

mass transferred amount induced by varying deposition time and hydrodynamic conditions. 

Considering main components distribution, Au, O and Si, the location of interface composition 

was assigned to below 10% of Au and more than 30% and 15% of O and Si. Based on this 

standard the interface of BI-5, BI-10, CF-3-5 and CF-3-10 are assigned to ~55, ~100, ~110 and 

~130 sec. The hydrodynamic comparison clearly shows that the thickness of CF-EL films is 

higher than BI-EL films at the same deposition time. The increased mass transfer rate and steady 

higher average local concentration during CF increase the deposited amount relative to batch 

immersion, resulting in thicker films. 

4.3.3.5     Mechanism of EL Au thin film growth 

Novel EL Au film growth mechanism. Figure 4.3.6 describes a new physicochemical EL 

Au film growth mechanism based on time-resolved T-UV spectra and XPS characterization. 

Specifically, new physical transformation procedures at equilibrium hydrodynamic condition, 

diffusion and corresponding driving force are included in the new scheme. The growth 

mechanism could be categorized as followed: Sn sensitization [3], self-limited Ag activation[6], 

instant Ag NP formation[9], galvanic displacement of Ag by Au[10], transitory Au/Ag alloy 
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formation during displacement [11], autocatalytic Au thin film deposition[12]. In step [12], the 

gray dots between Au NPs and internal Au film indicate displaced Ag clusters whose existence 

confirmed by XPS profiling.    

4.3.4 Conclusion 

Time resolved spectroscopic plasmon resonance measurements extend the description of Ag 

disposition during EL deposition to include formation of EL Ag nanostructures including island 

film, NPs, and nucleated NPs based on exposure to broadband light and exogenous reductant. 

These kinetic data show that such Ag nano-architecture may be self-assembled onto planar 

ceramic substrates without energy intensive control processes that have been used previously. 

Kinetic monitoring of plasmon profiles during EL Ag and Au deposition reveals previously 

unrecognized transitory physicochemical Ag states that include self-limited Ag activation, 

temporary Ag NP aggregation by HCHO, transitional Ag-Au alloy formation during galvanic 

displacement, and autocatalytic uniform Au film growth after Ag replacement. XPS depth 

profiling provides corresponding surface, internal and interface physicochemical structural 

characterization of Ag disposition after EL Au deposition that supports optical characterization of 

EL Au film growth mechanisms. These new methods enhance understanding of dynamics and 

disposition of metal ions during EL plating and improve control over particle nucleation and 

coalescence as well as morphology and continuity of ultra-thin films at the atomic scale. 
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Figure 4.3.6 The physicochemical procedure of CF-EL Au deposition on silicate substrate: Sn 

sensitization, Ag activation on Sn, galvanic displacement of Ag by Au, Au film growth. Star 

marks(*) indicate revealed transitional physicochemical reactions from this work.  
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4.4 Prediction of EL Au deposition on silicate surface at unsteady and steady condition 

4.4.1.   Significance of this work 

A kinetic study of EL noble metal deposition on silica surfaces at unsteady and steady 

conditions measured using real-time T-UV spectroscopy, SEM and XPS shows consistency with 

metal ion Fickian diffusion predicted in batch immersion and CF flow channel systems. The 

time-resolved kinetic transmission profiles enable to characterize time frame of heterogeneous 

physicochemical regimes during EL Au film deposition and validate possible CF (steady) and 

batch immersion (unsteady) mass transfer models. The developed correlations between models 

and kinetic optical features, decreasing slope and transmission drop of profile, predict precise 

deposition rates and specific deposition amounts in scalable flow cell substrates. Good 

correspondence between film thickness measured by XPS depth profiling and SEM cross-section 

analysis with computed values for 5 min and 10 min deposition in scalable flow cells suggest the 

rate limiting step of EL Au film thickness growth is limited by flow-enhanced diffusion for 

deposited thicknesses ≤ 100 nm.   

4.4.2.   Characterization Results and Discussion 

4.4.2.1.   Mass transfer limited EL Au deposition 

Mass transfer description predicts thin film thicknesses ≤ 100 nm. The total deposited 

amount of Au ions was predicted using mass transfer coefficients, a diffusivity of Au(I) sulfite 

complex of 0.6×10
-5

 cm
2
/s, eqn (2.2)-(2.8) and mass flux correlation eqn (2.11). This quantity 

was converted to thickness values using Au’s density and the area of deposition. The predicted 

values were compared to actual thicknesses measured by cross sectional SEM image analysis 

and XPS depth profiling.  
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Figure 4.4.1. Cross-sectional SEM image of wide flow channel CF-EL films (CFw) deposited 

with increasing flowrates from 2 mL/hr to 5 mL/hr for 10 min. (A) CFw-2-10, (B) CFw-3-10, (C) 

CFw-4-10, (D) CFw-5-10. 
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CF-EL Au films were deposited with increasing flowrates between 2 and 5 mL/hr for 10 min in a 

0.3-cm-wide flow channel (designated to CFw-(flow rate)-10, wide channel). Figure 4.4.1 shows 

SEM images of the cross sections of deposited CFw-EL Au films: (A) CFw-2-10, (B) CFw-3-10, 

(C) CFw-4-10,  (D) CFw-5-10. The backscattered electron detector represents the Au thin film as 

brighter than the silicate substrate due to higher atomic number. The deposited EL Au film 

thickness increased with increased flowrate. The average thicknesses of four samples, CFw-2-10, 

CFw-3-10, CFw-4-10 and CFw-5-10, were measured as 46.0±8.6, 58.0±14.7, 69.2±10.5 and 

88.9±23.1 nm, respectively. The average thickness (n=50) was obtained from individual 

thickness measurements at ~30 nm-intervals along a 2 µm length of film in each SEM image. 

Figure 4.4.2(A) shows the final theoretical thickness profile calculated using the 

empirical film model (eqn (2.8)-(2.11)) as a function of Reynolds number after a 10 min 

deposition time. These profiles were evaluated for narrow (w × h × l = 0.2×0.08×2.8 cm
3
; CF) 

and wide (w × h × l = 0.3×0.08×2.8 cm
3
; CFw) flow channel geometries to represent the flow cell 

dimensions used. The dimensionless Reynolds number (NRe=QdH/(νAc)), can be used to 

determine dynamic similitude between different experimental cases. Based on each actual CFw 

flow channel dimension (black square), Reynolds numbers are 0.31, 0.50, 0.60 and 0.90 with 

increasing flow rate 2 to 3 to 4 to 5 ml/hr. Reynolds number for CF-3-10 (red circle) is 0.66, 

because of the narrower channel width (~0.2 cm). Details of the cell dimensions and hydraulic 

conditions for calculation of Reynolds numbers are available in Table 4.4.1. As Reynolds 

number increases, the predicted thickness profiles increase. Significantly, it is shown that 

measured thicknesses for CF samples match well with the profiles of predicted thickness values.   

Figure 4.4.2(B) exhibits the predicted thickness profile for BI-EL deposition, semi- 
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Figure 4.4.2. Measured (data points) and predicted (lines and dots; film theory) thickness profile 

of EL Au deposition. (A) CF-EL deposited films with varying Reynolds numbers. (B) 

Comparison between BI and CF EL deposited films with varying time. The prediction was 

calculated based on a flowrate of 3 mL/hr and the flow cell dimension (0.08 x 0.2 x 3.2 cm
3
) 
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Table 4.4.1. A summary of cell dimensions, deposition conditions, Reynolds numbers and 

optical observation from each CF-EL deposition. 

 CFw-2-10 CFw-3-10 CFw-4-10 CFw-5-10 CF-3-10 

Cell dimension      

(W×H×L,  mm3) 

(measured width) 

2.7×0.8×31.2 

(2.76/2.65/2.82/2.82) 

2.3×0.8×31.8 

(2.35/2.35/2.41/2.35) 

2.8×0.8×31.5 

(2.88/2.94/2.94/2.88) 

2.3×0.8×31.2 

(2.23/2.23/2.29/2.29) 

1.8×0.8×32.0 

(1.64/1.71/1.70/1.76) 

Flowrate (Q, ml/hr) 2 3 4 5 3 

Re (QdH/νAc) 
~0.311     

(0.306~0.321) 

~0.500     

(0.495~0.505) 

~0.595    

(0.592~0.601) 

~0.904     

(0.895~0.913) 

~0.664               

(0.64~0.68) 

Slope(%/s) of 

transmission 

profile at 495nm 

(10~610s) 

-0.084 (R2=0.995) -0.090 (R2=0.996) -0.094 (R2=0.974) -0.121 (R2=0.963) 

-0.112 (R2=0.922) 

(26~626s)* 

Slope(%/s) of 

transmission 

profile at 495nm 

(50~300s)  

-0.089 (R2=0.993) -0.099 (R2=0.993) -0.127 (R2=0.993) -0.160 (R2=0.993) 

-0.143 (R2=0.995) 

(70~300s)* 

Drop(%) of 

transmission at 

495nm (10~610s) 

45.9 53.0 59.3 69.7 

64.9 

(26~626s)* 

Slope(%/s) of 

transmission 

profile at 425nm 

(10~610s) 

-0.098 (R2=0.992) -0.107 (R2=0.996) -0.120 (R2=0.966) -0.147 (R2=0.956) -0.120(R2=0.925) 

Drop(%) of 

transmission at 

425nm (10~610s) 

51.0 56.8 64.2 76.2 

60.5 

(26~626)* 

Teflon tape is compressible with the range of h= 0.70~0.85 mm, Kinematic viscosity(ν) of 

diluted Au solution is assumed to be 0.01004 cm
2
/s 

* For CF-3-10, the estimated time regime of Au related deposition is between 25 and 625 sec. 
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infinite (eqn (2.2)) and finite unsteady state diffusion model (eqn. (2.4)) and CF-EL deposition, 

two-compartment (eqn (2.5)) and film theory (eqn (2.8)), as a function of deposition time. These 

EL Au films were deposited on narrow channels. The predicted profiles of the CF-EL models, 

exhibit a linear thickness increase as a function of deposition time, while the growth of BI-EL 

models shows a less rapid, non-linear increase. The CF-EL profile of two compartment and 

effective rate model (red solid line) corresponds to empirical film model (red dot line). For our 

system, both the finite (blue dot line) and semi-infinite (blue solid line) models show consistency. 

For CF-EL deposited films, the thickness of CF-3-5, and CF-3-10 measured by SEM analysis 

(red solid circles) and XPS depth profiling (red empty circles), indicated in next square brackets, 

are 54.5±10.8 nm [55.0±18.3 nm] and 77.5±17.5 nm [65.0±24.7 nm]. For BI-EL deposition, 

SEM and XPS thickness, indicated in square brackets, of BI-5 and BI-10 (blue solid and empty 

diamonds) are 26.5±4.5 nm [27.5±9.2 nm] and 51.7±12.2 nm [50.0±16.7 nm], respectively. The 

thickness measured by XPS depth profiling corresponds with SEM image analysis. Predicted 

deposition rates based on flow-enhanced Fickian diffusion in Figure 4.4.2(B) are consistent with 

measured deposition rates. This agreement suggests that EL Au thin film growth under these 

hydraulic conditions is mass transfer limited and that the description developed for continuum, 

microscopic systems may be extended to nano-scale EL thin films with a thicknesses less than 

100 nm. 

4.4.2.2.   Quantitative kinetic characterization in EL Au plating reaction  

Kinetic profiles distinguish sequential physicochemical reactions of EL Au deposition. 

Au ion deposition has been correlated to optical plasmon transmission variations (opacity, peak 

position and peak height).
11

 Real-time measurement of dynamic transmission features at specific 

wavelengths provides information about the rate of accumulation of various forms of metal on 
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transparent surfaces. From this information, the rates of metal ion diffusion and its successive 

reduction to metallic Au film could be inferred in the absence of confounding transmission 

features. In general, transmission at a particular wavelength during EL Au deposition cannot be 

attributed solely to Au deposition or Au(I) diffusion because of potentially overlapping optical 

effects due to prior EL mechanisms such as HCHO driven Ag NP formation or formation of Ag-

Au alloy during galvanic displacement of Ag by Au, or subsequent mechanisms such as  

autocatalytic uniform Au film formation.
27

 Accurate inference of metal ion diffusion rates 

requires distinguishing particular time frames during EL Au deposition in which Ag NP 

formation and Ag-Au alloy formation occur in order to isolate dynamic transmission features 

relevant to Au deposition and diffusion rate. 

Figure 4.4.3 shows kinetic profiles which consist of discrete measures of transmission at 

425 nm (dotted lines) and 495 nm (solid lines) corresponding to the known Ag LSPR and Au PL 

feature, taken in real time during EL Au deposition. Blue and red lines correspond to plating by 

batch immersion for 10 minutes (BI-10) and by continuous flow plating at 3 mL/min for 10 

minutes (CF-3-10), respectively. Each temporally discrete measure of transmission was obtained 

from a real-time spectra from 330 to 750 nm obtained in situ.  For both CF-3-10 and BI-10, Ag 

was deposited for 2 min onto Sn-sensitized silicate glass (during which spectra not shown were 

obtained at 30-sec intervals) and washed for 5 min with H2O before initiating EL Au deposition 

at time 0 sec. BI-10 plating was performed in the same system as CF-3-10 by displacing the 

entire system volume of 0.5 mL in 1 sec with Au plating solution. Each kinetic profile consists of 

the period of 30 sec H2O washing before Au solution injection, consecutive 600 sec Au 

deposition and subsequent 100 sec H2O washing and incubation for 100 sec. Particularly, the 

observed longer profile of CF-3-10 than BI-10 is due to lateral diffusion of Au (I) ions and 
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HCHO ions in continuous flow during a lag time. There was a volumetric holdup of ~72 μL in 

the injection system between glass syringes containing Au solution and the spectroscopic flow 

cell. At 3 mL/hr flowrate, this resulted in a theoretical lag of ~87 seconds. 

SEM images in Figure 4.4.3 show representative morphologies of CF-EL thin metal films 

corresponding to time regimes of EL deposition at -10 sec (I), 27 sec (II) and 670 sec (III), 

respectively, or in other words 10 sec before Au deposition began, 27 sec after Au deposition 

began, and 70 sec after Au deposition ended. Representative images I and II are 2 min Ag 

activated film and HCHO driven Ag NP which were produced in separate Ag activation and post 

HCHO exposure experiments with the same hydraulic conditions. Image III is a 10 min EL Au 

deposited film. Figure 4.4.3 inset contains representative spectra for CF-3-10 at time points 

indicated by arrowheads on the profile in the main figure. The dot and solid lines in the inset 

indicate 425 nm (Ag LSPR feature point) and 495 nm (Au PL feature point) wavelengths, 

respectively. At time point I (-10 sec) in the CF-3-10 profile, transmission at 495 nm is ~90 %. 

This point corresponds to the inset transmission spectra at -10 and 0 sec (black) which exhibits a 

broad valley with a minimum at ~495 nm, attributable to deposition of thin metallic Ag island 

film which shows a broad absorption peak at ~500-520 nm.
3
 At time point II in the CF-3-10 

profile, transmission at 495 nm is ~69%. This point corresponds to the inset transmission spectra 

at 27 sec (pink), attributable to reduction of Ag thin film to Ag NP resulting from 2.7× faster 

diffusive flux of methylene glycol (hydrated HCHO) to the Ag surface, relative to the diffusion 

of Au(I) sulfite complex. Formaldehyde (HCHO), an electron donor for EL Au plating, reduces 

Au(I) to Au(0) and Ag(I) to Ag(0).
1,4

 Active Ag ions remaining at the Ag island surface reduce 

Ag(0) and lead to self-assembled Ag NPs via concomitant reduction from Sn(IV) to Sn(II) at the  
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Figure 4.4.3. Kinetic profiles of real-time Ag LSPR and Au PL transmission feature at 425 and 

495 nm for CF and BI-EL Au deposition. Inset are transmission CF-EL spectra taken at times 

indicated by the black arrows in the main figure. Dotted and solid lines in the inset identify 425 

nm and 495 nm wavelengths from which profiles in the main figure were derived. SEM images 

show representative EL metal film morphologies during three steps in EL Au plating: I. Ag 

cluster deposited film (-10 sec); II. HCHO-driven Ag NP formation (27 sec); III. EL Au 

deposited film (670 sec))  
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interface between Ag and Sn(IV) wetted substrates.
4
 The mass transfer rate calculated by eqn (5) 

for these hydraulic conditions for methylene glycol (~6.2×10
-4

 cm
2
/s) is 2- fold faster than Au(I) 

sulfite complex (~3.2×10
-4

 cm
2
/s). At time point III (670 sec), transmission at 495 nm is ~5%. 

The corresponding transmission spectra exhibit a peak at ~495 nm, similar to the feature 

observed at 200 sec. Continuous Au films have a characteristic photoluminescence (PL) 

transmission peak near 500 nm.
1,6

 

Analysis of characteristic profile features such as slope fluctuations allows the time-

scales of discrete EL film growth regimes to be identified and quantified. Similar kinetic profile 

trends, as shown in Figure 4.4.3, are observed during initial EL plating period (0~100 sec) for 

both CF-3-10 and BI-10. For CF-3-10, this period is characterized by a rapid decrease in 

transmission profiles at 495 nm (0~15 sec), followed by a steady decrease (16~36 sec), and 

finally another deep decrease of profiles (36~100sec). The transmission profile at 425 nm also 

shows three fluctuations such as a rapid drop (0~27 sec), a steady increase (28~84 sec), and a 

final decrease (85~100 sec). Similar fluctuation patterns are observed in the BI-10 transmission 

profile. The profile at 495 nm (blue) exhibits a rapid drop (0~5 sec), a steady decrease (6~20 sec) 

and another deep drop (21~100sec). For the profile at 425 nm, BI-10 also follows the trends of 

CF-3-10 which are characterized by drop, increase and another decrease during initial 100 sec 

deposition. These three distinctive fluctuations are indicative of three successive EL Au film 

formation regimes: HCHO driven Ag NP aggregation, Ag and Au alloy formation via galvanic 

displacement of Ag by Au and autocatalytic Au film growth.  

For CF-3-10, the kinetic transmission profiles at 425 nm and at 495 nm include Ag and 

Ag-Au alloy LSPR feature for 0 to 85 sec and Au PL feature after 85 sec. The transmission 
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profile at 425 nm decreases more rapidly than the transmission profile at 495 nm for 0 to 27 sec, 

the first regime, because of the appearance of an Ag LSPR absorption peak induced by Ag NP 

formation via HCHO reduction, as shown in Figure 4.4.3 SEM image II. Figure 4.4.3 inset 

shows the transmission spectra rapidly changed from an Ag film feature with a broad valley at 

circa 500 nm at 0 sec to an LSPR absorption feature of Ag NPs with a narrower, more intense 

valley at 425 nm at ~27 sec. During the second regime, between 28 sec and 85 sec, the 

transmission profile at 425 nm slowly increases and the transmission profile at 495 nm decreases 

with different slopes. The corresponding inset transmission spectra at 50 sec, 65 sec, and 75 sec 

indicates a redshift in the Ag LSPR absorption valley to 507 nm with broadening. This redshift 

and broadening of the Ag plasmon feature are attributed to Ag-Au alloy formation during 

galvanic displacement of Ag by Au.
7
 Clear indications of galvanic displacement termination is 

accompanied by a simultaneous rise in the Au PL peak at ~480 nm, as shown in the inset 

transmission at 85 sec. After this point, the transmission profile at 495 nm is indicative of a 

characteristic Au PL feature. The third regime, autocatalytic Au film growth, began with a 

smooth transmission profile decrease. The Au PL feature became distinguishable at a wavelength 

of ~480 nm and the overall valley feature dramatically transformed to peak feature at 108 sec. 

From this time, growth of the Au island film structure eventually results in island coalescence 

which creates a continuous path for electrons throughout the Au network, resulting in significant 

changes in the optical and electrical film properties.
8
 Further increases in deposition time 

resulted in a redshift of the Au PL peak to 495 nm with an increasing peak height, which is 

consistent with growth of an Au island film structure.
6 

At 108 sec, a peak appeared at 650 nm 

which has been attributed to surface plasmon polaritions (SPPs) due to increased film thickness 

up to 50 nm.  
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The kinetic profiles of BI-10 exhibit similar trends to those of CF-3-10, albeit within a 

shorter time period for the first (0-5 sec) and second (6-20 sec) regimes, suggesting the 

deposition mechanism is the same for both EL plating methods. The shorter time regime in BI-10 

is due to instant solution injection prior to 10 min incubation. Instant injection induces a brief CF 

effect, which leads to a faster initial mass transfer rate of HCHO and Au complex ions than for 

constant injection flow in CF-3-10. This results in faster HCHO-driven Ag NP formation and 

successive galvanic displacement of Ag by Au.  

Different hydraulic conditions affect initiation of EL deposition. Differences in the diffusion 

rate between CF and BI-EL samples affect the rates of reaction throughout the plating process. 

The shorter initial fluctuation period of BI-10 relative to CF-3-10 may be due to less activated 

Ag amount, which can be inferred by higher transmission value at 0 sec in Figure 4.4.3 for BI-10, 

and faster mass transfer rate during the initial instantaneous Au solution injection in 1 sec. Figure 

4.4.4 compares three different kinetic profiles of Ag LSPR transmission at 425 nm, CF-3-HCHO 

(square), CF-3-HCHO+Au (CF-3-10, circle) and BI-HCHO+Au (BI-10, triangle) to characterize 

hydraulic and chemical components effect during the early stages of EL deposition. For the CF-

3-HCHO profile, HCHO treatment of a Ag activated substrate with a flow rate of 3 ml/hr for 5 

min, shows three distinctive regimes which may be ascribed to Ag NP aggregation, Ag NP 

ripening and photosensitive Ag NPs erosion. The profile was captured between 0 and 80 sec for 

clarity. In complete dark treatment, the transmission reduced to 60 % after 5 min HCHO 

treatment. Light sensitive Ag ions are photochemically reduced to metallic Ag clusters in the 

presence of trace halides with UV exposure. UV exposure in wideband spectra light induces 

reduction of light sensitive Ag ion in bulk solution, which interferes with aggregation into larger 

particles on the surface. Therefore, the transmissivity of CF-3-HCHO recovered due to removal  
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Figure 4.4.4. Optical characterization of heterogeneous physicochemical reactions during initial 

EL Au deposition with varying diffusion conditions. The initial reaction may be categorized to 

Ag NP aggregation, Ag NP ripening, photosensitive displacement of Ag NP and galvanic 

replacement of Ag by Au. 
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of aggregated larger Ag NPs via UV-exposure and concomitant washing flow and leaving behind 

smaller particles associated to the surface. The CF-3-HCHO+Au profile exhibits similar trends to 

CF-3-HCHO with analogous slopes during the first two regimes. For the CF-3-HCHO+Au 

system, the reductant, HCHO, may contact reduced Ag film in advance of Au(I) complex ion due 

to the lower mass transfer rate of the latter ion through a stagnant boundary layer of H2O. From 

calculated diluted HCHO and Au(I) complex diffusivity, the theoretical mass transfer rate of 

CH2(OH)2, a hydration form of HCHO (6.2×10
-4

 cm/s), is ~2 times higher than Au(I) complex 

(3.2 × 10
-4

 cm/s) in the CF-3-HCHO+Au system. During the fast Ag aggregation regime via fast 

HCHO contact, the slope of CF-3-HCHO+Au (-1.24 %/sec) is similar to that of CF-3-HCHO 

deposition (-1.85 %/sec). For the ripening of Ag NP regime, the slope of CF-3-HCHO+Au (-

0.48 %/sec) is again comparable to the slope of CF-3-HCHO (-0.43 %/sec). The increased 

duration of the second regime for CF-3-HCHO+Au is due to an increased amount of activated 

Ag than the CF-3-HCHO sample. After the second regime, the successive Au(I) complex ions 

contact the Ag activated surface and initiated galvanic displacement of Ag by Au. The Ag and 

Au alloy formation results in a stable transmissivity for 60 sec.  

However, the profile of BI-HCHO+Au, which is governed by unsteady state diffusion, 

exhibits a sharper drop and faster upshift of transmission relative to CF-3-HCHO+Au and CF-3-

HCHO without a Ag NP ripening regime. The slope of Ag aggregation in BI-10 is -2.78 %/sec, 

which is ~1.5 times lower than CF-3-10. This is due to a faster mass transfer rate of HCHO 

induced by the near-instantaneous injection (~1 sec). For hydraulic condition of unsteady state 

diffusion for desired 10 min deposition, the 0.5 ml total mixture of Au solution and reducing 

agent was first injected into the flow cell for 1-sec and then incubated for 10 min. Due to rapid 

injection, the BI-EL mass transfer model needs to be modified to consider the instantaneous CF 
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effect at the early stage of EL deposition. In CF-EL deposition, as flowrate increases, the 

continuous laminar or turbulent bulk flow decreases the stagnant boundary layer adjacent to the 

wall, resulting in an increased mass transfer rate. In principle, the instantaneous injection (F=0.5 

ml/sec) at the beginning of BI-EL deposition induces an initially thinner stagnant boundary layer 

relative to CF-3-HCHO+Au (F=8.3× 10
-4

 ml/sec). This thinner boundary layer of BI-HCHO+Au, 

results in faster initial diffusion of the HCHO and Au(I) complex ions than for the CF-3-

HCHO+Au condition. The mass transfer coefficients of Au(I) and HCHO for instantaneous 

injection are 2.7×10
-3

 cm/sec and 5.3×10
-3

 cm/sec, which are ~8.5 times faster than in CF-3-

HCHO+Au deposition (3.2×10
-4

 cm/sec and 6.2×10
-4

 cm/sec). The instantaneous injection of 

Au(I) thus resulted in a galvanic displacement of Ag by Au earlier than that observed in CF-3-

HCHO+Au. The instantaneous injection may also displace some weakly bound Ag NPs and 

unbounded reduced Ag resting on the surface. 

Overall kinetic profile of CF-EL exhibits steady state deposition. The overall kinetic Au 

plasmon transmission profile in Figure 4.4.3, supports that the mass transfer rate of CF-EL 

deposition is consistently higher than BI-EL. BI-EL Au mass transfer is a time dependent 

diffusion model, because of species depletion over time. In principle, BI-EL deposition rate 

decreases exponentially as deposition time increases (see finite and semi-infinite BI profile in 

Figure 4.4.2(B)). The kinetic transmission profile at 425 nm and 495 nm of BI-10 clearly exhibit 

non-linear regressions corresponding with the BI mass transfer models. For the transmission 

profile at 425 nm, linear regression yields a decreasing slope between 6 and 606 sec of -

0.105 %/sec (R
2 

= 0.827). The first Ag LSPR feature regime (0~5 sec), specifically HCHO 

driven Ag NP formation region, was excluded from the regression. The second regime (6~20 

sec), Ag and Au alloy regime via galvanic displacement, was included in the regression because 
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of Au involvement. The linear slope between 6 and 606 sec in transmission profile at 495 nm 

was assigned to a Au PL feature profile which exhibits a similar value of -0.094 (R
2 

= 0.851). 

However, the kinetic profile of CF-3-10 is different from that of BI-10. The mass transfer rate for 

CF-EL Au deposition is steadily higher than BI-EL deposition due to adjacent, continuous 

laminar flow for 600 sec. This flow decreases the stagnant boundary layer thickness adjacent to 

the wall and provides a time-invariant Au concentration. Theoretically, the total deposited 

amount of Au ions is linearly increasing during Au deposition due to constant deposition rate 

(see the red line and dot in Figure 4.4.2(B)). The kinetic profiles of CF-3-10 at 425 nm and 495 

nm (Au PL) exhibit a more linear nature than BI-10 resulting in 425 nm transmission profile 

slope of -0.122 (R
2
=0.919) and an Au PL profile slope of -0.112 (R

2
=0.922) between 26 and 626 

sec. Similar to the BI samples, the HCHO driven Ag formation (0~25 sec) was excluded from 

the regression while the Ag and Au alloy regime (26~85 sec) was included These more linear 

and steeper slopes for CF-3-10 profiles appear to correlate with the proposed mass transfer 

model for CF-EL systems.  

The nonlinearity of CF-EL profile in the latter time zone (~350-626 sec) relative to the 

early time zone (26-350 sec) may be due to thickness and surface roughness dependent Au PL 

enhancement feature. PL intensity at ~500 nm increases in “very thin” (6.6, 9.9 and 19.5 nm) Au 

sputtered films with increasing thickness.
9
 Moreover, as the Au film surface roughness increases, 

the PL peak height increases. In our system, an increase in roughness of CF-EL Au film was 

observed with increased thickness at longer times in Figure 2(B); however, PL enhancement is a 

thickness limited feature. In separate work, the PL also linearly increased with increasing 

thickness in films ≤ 70 nm, but exhibited saturation at 90 nm on glass substrates.
10

 For thicker 

Au film, PL intensity of a 130 nm thick-film decreased ~3-fold when compared with a 60 nm 
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thick-film.
11

 In the system discussed herein, deposition times above 350 sec increase the 

thickness of EL film > ~ 60 nm (Figure 4.4.2 (B)). The nonlinearity of transmission profile in the 

latter time zone may correlate with the variation of PL enhancement feature above a certain 

limited thickness (~60 nm). The PL enhancement resulting from surface roughness may be offset 

by an increase in thickness. Other possible interpretations include the transition of deposition 

kinetics from galvanic displacement to autocatalytic deposition as well as concomitant decrease 

of effective catalytic site area for autocatalytic reduction with increasing thickness. For EL Au 

plating via galvanic replacement, once the substrate surface is covered with deposited film, the 

galvanic displacement is halted and the continuation of film growth relies on autocatalytic 

process. The autocatalytic plating is a deposition of a metallic coating by controlled chemical 

reduction which is catalyzed by the metal being deposited.
4
 For this system, the galvanic 

displaced Au nucleation site plays a role of catalyst for HCHO driven Au reduction.
4
 The 

effective surface area (ratio of surface area to volume) of EL Au thin film decreases with film 

growth from discrete nucleation, through discontinuous islands, to continuous films. This 

kinetics transition combined with a simultaneous decrease of effective catalytic surface area may 

be responsible for the non-linearity observed at longer deposition times. 

The linearity of transmission profile is related with the linearity of PL intensity profile. 

Figure 4.4.5 exhibits a comparison of kinetic transmission profiles at 495 nm (upper) and PL 

intensity profiles (lower) with increasing flowrates. The PL intensity profile is calculated as the 

transmission difference between 495 nm and 330 nm during EL deposition. Figure 4.4.6 (A-D) 

are time resolved transmission spectra of CFw-2-10, CFw-3-10, CFw-4-10 and CFw-5-10. In order 

to compare EL Au deposition profiles, the onset of EL Au plating for each profile was adjusted 

to a value of 100% transmission. In this experiment, Sn sensitization time was reduced to 5 min 
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Figure 4.4.5 Comparison of CFw-EL transmission kinetic profiles at 495 nm (upper) and PL 

transmission difference profile (lower) relative to transmission at 330 nm with increasing 

flowrate.  

 

 

 

 

 

 

 



126 
 

 

   

 

Figure 4.4.6 Time resolved transmission spectra during an entire plating of (A) CFw-2-10, (B) 

CFw-3-10, (C) CFw-4-10 and (D) CFw-5-10. Dotted lines indicate 495 nm position used for 

calculations. Inset is a close-up spectra between 0 s and 10 s. 
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to minimize heterogeneous Ag morphology formation such as black aggregated particles and 

their dark spots, during Ag activation which may contribute to longer Ag related regimes, Ag NP 

formation and Ag–Au alloy formation, in CF-3-10. Interestingly, the time period of convoluted 

Ag related regimes (Ag NP and successive Ag-Au alloy formation), as shown in Figure 4.4.6 (A-

D), are shortened by ~10 sec. For instance, for CFw-3-10, Ag LSPR appears to be enhanced via 

HCHO driven Ag NP formation at ~3 sec and the Ag LSPR intensity decreased with blue 

shifting and concomitant Au PL feature near ~457 nm arose at 8 sec. The Au PL peak intensity 

(~0.7%) exceeded the Ag LSPR (~0.6%) at 8 sec. For CFw-4-10, the Ag activation formed Ag 

nucleated particles with a peak at ~421 nm on Sn substrate and then Ag-Au alloy formed as soon 

as Au solution contacted. The Ag-Au alloy peak red-shifted to ~429 nm with decreasing peak 

intensity for 10 sec. The Au PL peak arose at ~460 nm with intensity of 0.7% at 8 sec. All 

transmission spectra exhibit clear Au PL features near 460 nm at 10 sec (in inset) which red-

shifts with further deposition. Figure 4.4.5 shows low flow rate samples, CFw-2-10 and CFw-3-10, 

exhibit better linearity for the overall profile during Au deposition relative to CF-3-10 in Figure 

4.4.3. For CFw-2-10 and CFw-3-10, these Au PL profiles linearly decreased between 10 sec and 

610 sec at a rate of -0.084 %/sec (R
2
=0.995) and -0.090 %/sec (R

2
=0.997) and then stabilized to 

transmissivity values of ~52.2% and 45.3 %, respectively, as Au deposition completed. However, 

the profiles of CFw-4-10 and CFw-5-10, i.e. high flow rates samples, exhibit distinctively less 

linear regression for overall profiles than the low flow rates. For CFw-4-10 and CFw-5-10, these 

Au PL profiles decreased between 10 sec and 610 sec at a rate of -0.094 %/sec (R
2
=0.973) and -

0.121 %/sec (R
2
=0.966) and then stabilized to transmissivity values of ~36.8% and 25.8 %, 

respectively. The decreased linearity, decrease of R
2
 values, for the faster flow rate samples is 

attributed to the latter time zone (300~600 sec) where Au deposition produces a Au film more 
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than 50 nm thick. It is observed that the thicker film formation decreases PL intensity with 

increasing film thickness. PL intensity profiles, as shown at the bottom of Figure 4.4.5, exhibits 

that PL intensity of low flow rate samples steadily increases until completion of 10 min plating 

whereas PL intensity of these high flow rate samples more rapidly increase in the early time zone 

between ~50 and 300 sec and then saturate and slightly decreased in the latter time zone.  

Interestingly, for high flow rate samples, the linear increase of PL intensity profile regime 

(50 sec~300 sec) corresponds to the regime of linear transmission profile at 495 nm; while the 

saturated PL intensity regime (300 sec~600 sec) corresponds to the non-linear regime. The time 

resolved transmission of CFw-3-10 in Figure 4.4.6(B) shows that the PL maxima red-shifted to 

490 nm for 600 sec. However, the PL maxima of CFw-4-10 in Figure 4.4.6(C) red-shifted to 495 

nm at 360 sec and appears to further red-shifted to ~500 nm at 600 sec. These optical features 

correspond to PL intensity saturation regimes in high flowrate samples. These kinetic features 

indicate that for high mass transfer rate samples, the deposition increases PL enlargement up to a 

certain limited thickness with a linear decrease of Au PL transmission, but further deposition 

over the limited thickness decreases PL intensity in a non-linear fashion. The better linearity of 

the transmission profile in the early time zone may represent the mass transfer feature during EL 

deposition. As flow rates increase from 2 to 3 to 4 to 5 mL/hr, the slopes of CFw in the early time 

zone (50 sec~300 sec) are 0.089 (R
2
=0.993), 0.099 (R

2
=0.993), 0.127 (R

2
=0.993) and 0.160 

(R
2
=0.993). 

4.4.2.3.     Optical correlations for prediction of EL Au deposition 

Correlation of transmission profile and model predicted features. In a typical BI-EL 

metal deposition system, deposition rate kinetics are correlated with solution constituents, pH, 
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and mechanical operating condition.
12,13

 The film growth rate limiting step in EL Au deposition 

is a complex interaction of mass transfer to the substrate and local reduction potential. For the 

system under consideration herein, dynamic optical feature variations during film growth depend 

on the amount of Au mass transferred to the substrate. Figure 4.4.7 and 4.4.8 show the 

correlation between mass transfer models and time-resolved optical features as a function of 

Reynolds number. The specific amount of Au deposition profile and mass transfer coefficient 

profile as a function of Reynolds number were predicted using a two compartment and rate 

model (red) and empirical film model (black). These profiles were evaluated for both narrow (CF: 

solid line) and wide (CFw: dot line) flow channel geometries to consider scalable flow cell 

dimensions. The mass transfer coefficients and specific amounts of Au deposited calculated by 

the two compartment and effective rate model are slightly higher than those of the film model 

because effects due to the geometry of the rectangular flow cell are considered. The applied 

optical features for correlations in Figure 4.4.7 are a drop in transmissivity at 495 nm for CF-EL 

transmission profiles during 600 sec Au related deposition and a decreasing slope of dynamic 

transmission profile at 495 nm as in the range of 10-610 sec. In Figure 4.4.8, the optical features, 

a drop and a decreasing slope, are determined in the range of 50-300 sec. 

  Figure.4.4.7(A) exhibits the profile of the specific amount of Au ion deposited as a 

function of Reynolds number correlates with the Au PL transmission drop. The correlation also 

suggests that the dynamic transmission drop in the range of 40–80 % represents the specific 

amount of Au ion deposited in the range of 1.00–2.25×10
-4

 g/cm
2
 for 10 min deposition, which 

easily converts to film thickness, during plating. BI-10, as indicated in the Figure 4.4.7(A), 

theoretically deposits ~1.00×10
-4

 g/cm
2 

of Au amount
 
(~40 nm thick film) in our system.  
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Figure 4.4.7 Correlations between coefficients of mass transfer model and dynamic optical 

features as a function of Reynolds number: (A) Correlation between specific deposition amounts 

and Au PL transmission drop values during 10 min Au plating; (B) Correlation between mass 

transfer coefficients and slopes of Au PL profiles during 10 min Au plating. 
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Figure 4.4.8 Correlations between coefficients of mass transfer model and dynamic optical 

features as a function of Reynolds number: (A) Correlation between specific deposition amounts 

and Au PL transmission drop values between 50 s and 300 s; (B) Correlation between mass 

transfer coefficients and slopes of Au PL profiles between 50 s and 300 s.   
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Based on these correlations and calculations, the rate of thickness growth during 10 min CF-EL 

deposition with increase of flow rate between 2 and 5 mL/hr are evaluated to ~6.0 – 10.5 nm/min. 

Both correlations indicate that the time-resolved optical features of CF-EL Au plating are 

dependent on Au ion mass transfer. The linear profiles represent the mass transfer of Au 

deposition. Figure 4.4.7(B) shows that the predicted mass transfer coefficients increase with 

increasing Reynolds number from 0.0 to 1.0. Interestingly, the correlation of negative slopes of 

Au PL profiles in the range of 0.00 – 0.13 %/s is well fitted for the profile of mass transfer 

coefficients in the range of 0.0 – 3.8×10
-4

 cm/s for both models.  

Figure.4.4.8(A) exhibits the Au PL transmission drop in the specific range of 50 sec -300 

sec, the early time zone, also represent  the specific amount of Au ion deposition. The correlation 

also suggests that the dynamic transmission drop in the range of 0–40 % represents the specific 

amount of Au ion deposited in the range of 3.00–9.00×10
-5

 g/cm
2
 for 250 sec deposition. BI-250 

sec, as indicated in the Figure 4.4.8(A), theoretically deposits ~3.00×10
-5

 g/cm
2 

of Au amount
 

(~25 nm thick film) in our system. The linear profiles in the early time zone represent the mass 

transfer of Au deposition. Figure 4.4.8(B) shows that the predicted mass transfer coefficients 

increase with increasing Reynolds number from 0.1 to 1.0. The correlation of negative slopes of 

Au PL profiles in the range of 0.03 – 0.18 %/s is well fitted for the profile of mass transfer 

coefficients in the range of 1.0×10
-4

 – 3.7×10
-4

 cm/s for both models. This suggests that the 

negative slope of Au PL profiles can be used to accurately represent mass transfer coefficients in 

CF-EL deposition. The abscissa error-bars are due to variations in flow cell dimension. 

Correlation of optical features with deposited mass and mass transfer rate as a function of 

Reynolds number provides a quick and facile means to confirm mass transfer rate and overall 
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deposited film thickness for scalable substrates. Quantifying mass transfer based on the Au PL 

profile slope allows for design and manufacture of EL metal deposition process equipment that 

can meet specified film requirements, in particular the final film thickness as a function of flow 

rate and substrate dimensions. The correlation between transmissivity profile drop and the 

amount of Au deposited suggests that real-time optical monitoring provides a fast, non-

destructive means of characterizing the deposited mass of Au and film thickness. 

4.4.3 Conclusion 

The kinetic transmission profiles in situ measured by real-time T-UV spectroscopy allow 

quantification of complicated heterogeneous chemical reactions and physical transformations, 

including previously unrecognized time-dependent transitory regimes of EL Au plating. The time 

frames of these regimes, which affect the final thin film morphology, was controllable by 

controlling of hydraulic conditions. Moreover, the developed correlations between mass transfer 

models and the optical features of the kinetic profiles validate that growth of EL Au plating is 

mass transfer-limited deposition. The actual Au film thickness measured by SEM image analysis 

and XPS depth profiling corresponds to the predicted thickness via unsteady and steady diffusion 

rate models. Significantly, the developed mass transfer correlations provide design guides of CF-

EL plating to control EL Au thin film growth ≤ 100 nm in scalable systems.  
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CHAPTER 5 

Concluding Remarks 

In this work, I developed a novel CF-EL plating system that provides the advantages of 

EL plating, such as more uniform surface morphology, and overcomes the disadvantages by 

using a scalable, continuous process and controllable deposition rate. Throughout this work, 

modeling, fabrication and characterization of this novel CF-EL plating method were performed 

to achieve an ultimate purpose: developing a reliable, inexpensive wet chemical process for 

controlled metal thin film and nanostructure fabrication. Opto-physically uniform EL Au thin 

films and NPs were fabricated by this novel wet-chemical process. As a part of the project, a 

spectrophoto- metric method for quantitative analysis of metal ion was developed that improves 

the limit of detection relative to conventional instrumental analysis. A method to achieve the 

time-resolved optical profile of EL Au plating was devised and provided a new transitional EL 

Au film growth model which validated mass transfer model prediction of the deposited thickness 

of ≤100 nm thin films. 

In Section 5.1 these important achievements are summarized according to the three 

research objectives presented in Chapter 1. Areas of future work for the development of more 

efficient scalable CF-EL plating and its application are suggested in Section 5.2    

5.1 Summary 

5.1.1  Modeling 

Developed mass transfer models for EL plating predict metal ion deposition amounts. EL 

synthesis of metal films exposes a substrate to a series of solutions containing metal ions that 

may be covalently bound to the surface or to existing metals via redox reaction without 
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application of external electrical energy. EL plating rates are affected by the rate of reduction of 

the dissolved reducing agent and the dissolved metal ions which diffuse to the catalytic surface 

of the object being plated. In the scalable EL Au plating system, I found the EL plating, 

specifically Au, is a diffusion-limited deposition. Two categorized mass transfer models are 

suggested to describe conventional BI-EL plating and novel CF-EL plating. For BI-EL Au 

deposition, Au ions in a stagnant medium diffuse toward and deposit onto the substrate wall 

during incubation. Thus, the deposition rate model of BI-EL can be described as unsteady-state 

molecular diffusion, resulting from the depletion of species with respect to time in a unit volume 

through which the specie is diffusing. In CF-EL plating, these metal ion solutions are 

continuously injected into a confined rectangular substrate channel to produce a higher, time-

invariant Au deposition rate via a higher, steady concentration driving force across a narrower 

stagnant boundary layer adjacent to the surface. Using models and mass balance correlations, the 

deposited thickness and metal ion concentration are predicted. 

 5.1.2 Fabrication 

In the initial research phase, EL Au thin films and NPs were fabricated by a prototype 

CF-EL plating system which consists of an injection syringe, a flow pump, a micro needle, and 

an optical capillary as a target substrate. In particular, this forced-diffusion system allowed 

uniform coating on challenging structures such as nonconductive planar substrates, internal 

surfaces of micro-capillaries and three dimensional tips which are not possible via top-down 

sputtering and evaporation. The deposited thin films can be thermally transformed to hemi-

spherical random Au NP arrays. In order to achieve continuous processing and in-situ 

characterization, the automated, scalable CF-EL plating system integrated with real-time T-UV 

spectroscopy was developed. This system is capable of depositing scalable thin films and 
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simultaneously probing the surface morphology and deposition. As an application of CF-EL 

plating for engineered nanostructures, ordered Au NP arrays with varying patterns and sizes were 

fabricated by EL plating on electron-beam lithographed ITO glass. Ordered nano-disk and 

spherical NP arrays were successfully fabricated. 

5.1.3 Characterization 

1) Opto-physical uniformity enhanced EL Au thin film 

The uniform and continuous CF-EL Au thin films with improved physical and optical 

properties were examined by microscopic and spectroscopic measurements. CF-EL films 

deposited with different flow-rates were compared with BI-EL films fabricated by increasing 

immersion times. AFM analysis showed that the CF-EL films are more uniform than BI-EL 

films due to steady state diffusion. PL features revealed by T-UV spectra showed that CF-EL 

films are more opaque and less dispersive than BI-EL films in spite of shorter plating times. The 

extinction spectra of NP ensembles, transformed from CF films by successive heating, exhibit 

enhanced LSPR extinction peaks compared to BI-ELs. SEM image analysis of NP sizes and 

particle densities of the ensembles shows that CF-EL NP ensembles exhibit more monomodal 

particle size distribution, resulting in enhanced LSPR extinction spectra compared to BI-EL NP 

ensembles. A mathematical model for mass transfer in CF-EL plating shows steady state 

deposition driven by the higher transport driving force increases the total number of Au ions 

accumulated on the substrate, which correlates with improved film morphology and optical 

features including PL, SPR, and LSPR spectra. 

 

2) Quantitative detection of Au(I) concentration for EL Au deposition 
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A novel direct spectrophotometric method was developed to quantitatively determine 

Au(I) concentration in acidic aqueous solutions by balancing redox activities of a strong 

reductant (HCHO) and a strong oxidant (NBS). The reductant and oxidant are added 

successively, in varying amounts, to a solution of Au(I), which is then exposed to an oxidizable 

color reagent (TMB). At low reductant levels, NBS oxidizes Au(I), which linearly suppresses 

subsequent oxidation of TMB by NBS to its distinctive blue charge-transfer complexes of 

diamine and diimine. At high initial HCHO reductant levels, Au(I) is reduced to Au(0), then 

subsequently oxidized to Au(III) by NBS. Upon addition of TMB, Au(III) is reduced to Au(0) 

accompanying oxidation of TMB to its spectrophotometrically detectable blue complexes, 

facilitated by the high HCHO level. This identifies levels of reductant, oxidant, and colorimetric 

agent and allows quantitative measurement of Au(I) to LOD of 0.0025 and 0.05 mgL
-1

 using low 

and high levels of reductant, respectively. Defining this straightforward spectroscopic method 

that uses commercially available redox reagents to measure Au(I) without surfactants or organic 

solvents permits rapid, accurate, and sensitive detection of Au ions for applications such as EL 

plating, catalysis, and in vivo therapies 

3) Metal disposition and dynamics during EL metal thin film synthesis   

Optical and physical transitional regimes throughout EL metal thin film growth at kinetic 

and equilibrium hydraulic conditions were evaluated in situ by real-time T-UV spectral 

measurement and time-resolved XPS depth profiling. Au and Ag thin films exhibit unique 

optical properties due to SPR which change with film morphology and refractive index. For 

example, T-UV spectra have shown PL of EL Au film which is directly correlated with thickness 

and surface morphology. These unique geometric and dielectric-dependent optical features allow 
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real-time T-UV spectral measurements to provide a fast, effective analytical method to evaluate 

surface morphology and chemistry during EL deposition of metal thin films. Specifically, the 

quantitative, real-time optical measurements first described distinguished four transitional 

physicochemical regimes during EL Au plating: self-limited Ag activation; Ag NP formation; 

Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform surface 

morphology formation during autocatalytic Au film growth. These kinetic features were 

correlated with time-resolved SEM microscopy and XPS depth profiling of the surface, internal 

and interface structure between metal films and silicate substrate.  

4) Prediction of EL Au deposition on silicate surface at unsteady and steady conditions 

The kinetic transmission profiles in situ measured by real-time T-UV spectroscopy 

allowed quantification of complicated heterogeneous chemical reactions and physical 

transformations including previously unrecognized time-dependent transitory regimes of EL Au 

plating. The time frames of these regimes, which affect on the final thin film morphology, were 

controllable by controlling of hydraulic conditions. Moreover, the developed correlations 

between mass transfer models and the optical features of the kinetic profiles validate that growth 

of EL Au plating is mass transfer-limited deposition. The actual Au film thickness measured by 

XPS depth profiling corresponds to the predicted thickness via unsteady and steady diffusion rate 

models. Significantly, the developed mass transfer correlations provide universal design guides 

of CF-EL plating for controllable scalable EL Au thin film with ≤ 100 nm thickness.  
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5.2  Future Work 

(1) Further expand the application of the CF-EL plating to create challenging plasmonic designs: 

plating inside micro-size capillary for nano ring and uniform thin coating on nano tips, nano ring 

array using dewetting mechanism. 

(2) Plans are underway to evaluate why Au(I), with a higher measured reduction potential than 

Au(III), appears unable to oxidize TMB in the absence of HCHO or NBS at the conditions 

studied. The extent to which such interferences impact use of this method for analyzing Au(I) as 

re-oxidized Au(III) is the subject of future work. Rigorous statistical validation of the method, 

including influence of foreign ions, interferences, matrix effects, sensitivity analysis, spike 

testing, and recovery testing is also the subject of future work. This would allow, for example, 

Au(I) determination in catalyst fabrication and EL Au plating and applications in cancer biology 

 (3) Apply our thin film and NP architectures to high throughput plasmonic devices such as 

optical antennae, biological sensors, plasmonic solar cells, surface enhanced Raman scattering 

(SERS) substrates, and near-field scanning optical microscopy based fabrication of nano-

structures. 

(4) Develop a scalable all-in-one CF-EL metal plating system combined with a metallic solution 

recycling system. 

 


	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	12-2012

	Modeling, Fabrication and Characterization of Scalable Electroless Gold Plated Nanostructures for Enhanced Surface Plasmon Resonance
	Gyoung Gug Jang
	Recommended Citation


	tmp.1472221806.pdf.nakbo

