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ABSTRACT 

Improved drilling technology and favorable energy prices have contributed to the rapid 

pace at which the exploitation of unconventional natural gas is taking place across the 

United States. As a natural gas well is being drilled, reserve pits are constructed to hold the 

drilling fluids and other materials returned from the drilling process. These reserve pits 

can fail, and when they do, plant and animal life of the surrounding area may be adversely 

affected.  This project develops a screening tool for a suitable location for a reserve pit. This 

work will be a critical piece of the Infrastructure Placement Analysis System (IPAS) created 

by the Low Impact Natural Gas and Oil (LINGO) project.  

A terrestrial spill model was developed that can be used as a decision support system in the 

Fayetteville Shale Play. There is currently no hydraulic model built with oil and gas 

production sites in mind. The model was developed by using equations describing shallow 

water flow and the transport of pollutants and sediments. Mass and momentum 

conservation laws together with physically reasonable assumptions were used in deriving 

these equations. The equations were solved numerically using the MacCormack time-

splitting finite difference scheme. Novel techniques allowed us to solve the shallow water 

equations over very steep slopes (>30%) and starting with very low fluid depths without 

encountering unrealistically high values of velocities or negative flow depths.  

The model takes as input the following: the Digital Elevation Model (DEM) of the terrain, 

predominant soil type, amount or rate of spill and initial concentration of pollutant species. 

The model gives as output the following: flow depth, flow velocities, the areal extent of 

pollutant contamination and the amount of sediment run-off. Data from the Fayetteville 



 

 
 

Shale Play was used in testing the model and the results were as expected. The computer 

program implementing the model is written in MATLAB. If the program is translated into a 

more optimally efficient language and run on a supercomputer, it would be 

computationally fast and still accurate enough to make its use in a real-time decision 

support system justified.  
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CHAPTER 1 

INTRODUCTION 

1.1  World Energy Outlook 

As the world crosses the 7 billion population mark, energy is needed more than ever. 

Energy is needed to grow food, provide drinkable water, power industries and sustain 

societies. The rise of the middle class in BRIC (Brazil, Russia, India and China) countries 

also places an unprecedented demand on the world’s supply of energy (Bhar and Nikolova, 

2009; Tamazian et al, 2009). One way to meet this demand is to develop renewable sources 

of energy. Energy sources such as wind, solar, biofuels and geothermal are called 

renewable because they can be replenished as opposed to fossil fuels that cannot be 

replaced once withdrawn. But renewable sources of energy have not gained as much 

traction as fossil fuels because they often do not meet the basic criteria of energy supply 

which is that in addition to being clean, it must be cheap, abundant and reliable (Friedman, 

2008). Renewable sources of energy leave a lower carbon footprint than fossil fuels but 

until the economics of the process makes sense it is unlikely to replace the world’s 

dependence on fossil fuels. A study by Royal Dutch Shell estimates that renewable sources 

of energy would make up at most 30% of total world primary energy by 2050 while fossil 

fuels would be at least 55% (Shell, 2011).  

Two other ways the high demand for energy is being met are intensified exploration efforts 

and improvements in the production rates of existing wells. The energy industry is now 

actively drilling in frontier areas – for instance, ultra-deep water and the Arctic – which 
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they have shunned for a long time.  Enhanced Oil Recovery (EOR) techniques enable 

existing wells to recover more of their reserves and produce for longer periods.  

 

1.2 Natural Gas 

Natural gas is now virtually tied with coal – both contribute 22% – as the United States’ 

largest domestic energy resource. It accounts for 25% of the US energy consumption, 

second only to petroleum (AEO, 2011).  Natural gas is mostly methane (CH4) and it is the 

cleanest burning fossil fuel. It has risen in importance because in addition to being clean, it 

is also abundant, cheap and reliable. Once liquefied, its volume shrinks to about 1/600 of 

its original size and so vast amounts of it can be transported just as easily as, if not as 

safely, oil (Vargaftik, 1975; Thomas and Dawe, 2002).  

 

1.3 Conventional vs. Unconventional Gas 

Natural gas that occurs in discrete oil and gas reservoirs is termed “conventional” gas. It is, 

just like oil, trapped in porous sedimentary rocks (Compton, R.R., 1985). It is produced by 

drilling vertical wells into the structural or stratigraphic traps which hold it in place. The 

majority of gas produced in the US is conventional gas (AEO, 2011).  

Gas found in other geologic formations is termed “unconventional.” There is no universal 

definition for unconventional formations (Coleman, 2011). They are generally defined as 

gases that are produced or extracted with techniques other than the traditional vertical 

drilling of wells. Examples of unconventional gases include: are shale gas, tight gas sands, 
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coalbed methane and Arctic and sub-sea hydrates (Johnson and Dore, 2010). Shale gas 

forms the bulk of unconventional gas produced in the US because it is found in vast 

amounts and also because favorable of economics and advanced drilling technology. The 

technology is horizontal drilling and hydraulic fracturing.  

 

1.4 Hydraulic Fracturing 

Hydraulic Fracturing is the process where large amounts of water under high pressure are 

forced down a well to crack or fracture gas-bearing shales so that the rock can release its 

gas (Howarth et al, 2011). The amount of water used depends on the nature of the sub-

surface. A well can require between 2 and 8 million gallons of water for a fracturing job. 

10,000 pounds per square inch is the typical level of pressure needed to fracture a shale 

rock (Linkov, 2012).  

Fracturing is not new. The first fracture job dates back to 1858 – a mere 23 years after the 

first recorded US gas well was drilled. The fracturing was done then using black powder as 

explosives. It would take close to a century however before engineers in Halliburton 

working out of Velma, OK in 1949 could use water to fracture rocks. There was a marked 

increase in the use of hydraulic fracturing in the 1980s when it was successfully combined 

with horizontal drilling in the Barnett Shale (Gidley et al, 1990 and Cooke et al, 2010).  

Hydraulic fracturing is essentially an EOR technique. It can be used to stimulate production 

in wells experiencing declining output. Its promise though is that it can also be used to 

produce gas from formations that would not yield to conventional methods. Hydraulic 
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fracturing is a costly process. Cheap gas prices in the 1990s made it uneconomical to 

exploit for gas at that time. Higher gas prices in the mid-2000s and improved horizontal 

drilling techniques are factors that made hydraulic fracturing a practical approach to 

exploiting natural gas. As a process, it has delivered its promises. It is currently the topic 

that receives the most attention from the academy, industry and government in energy 

outlook discussions (see for example, Williamson, 2012; Egan, 2012 and Osborn, 2012).  

One major concern of the public about hydraulic fracturing is the surface impacts on the 

environment (Cupas, 2009). Hydraulic fracturing often takes place within city limits and 

residents want to know how these drilling activities are going to impact their land, water 

and way of life.  

 

1.5 Reserve Pit Failures 

1.5.1 What is a Reserve Pit? 

Figure 1.1 shows the picture of a site that has been prepared for hydraulic 

fracturing. A reserve pit can be seen close to the drilling rig. A reserve pit, 

sometimes called a mud pit or an earthen pit, is an excavation near a well. It can be 

used to store drilling fluids prior to a fracture job but it is more commonly used to 

store drilling waste following a fracture job. In the case of a blowout of a wellhead, it 

can also serve as an initial containment of the spilled drilling mud (Leuterman et al, 

1988). The size of reserve pits varies. Their sizes depend on the amount of fluid 

needed to drill a well. A deeper well requires more drilling fluid than a relatively 
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shallow one. The average volume for a reserve pit can range from 3,600 barrels for a 

well that is less than 4,000ft deep to 15,000 barrels for a well that is deeper than 

15,000ft (USOTA, 1992).  

 

1.5.2 Contents of a Reserve Pit 

A reserve pit stores drilling fluids and produced water. The drilling fluids used 

consist of water, sand and chemical additives. Water and sand make up nearly 98% 

of a typical drilling fluid. Water is the most common drilling base or carrier fluid but 

oil or a synthetic compound can also be used where water fails to perform well. 

Water can even cause the bore to collapse in some shales. The chemical additives 

optimize fluid flow and help prevent corrosion, formation of scales and scouring 

(Fink, 2003). Examples of the main compounds used as additives, their purpose as a 

fracturing fluid additive and their everyday use is given in Table 1.5. Some of the 

contents of the drilling fluids are not published because oil servicing companies 

manufacturing and using them see it as a trade secret. There is increasing pressure 

on the industry however to disclose all chemicals used during hydraulic fracturing. 

Produced water is water coming out of a well during production. This is water that 

has been in close contact with the formation for centuries and it contains a lot of 

brine and possibly hydrocarbons. Some contain naturally occurring radioactive 

material (NORM) (Veil et al, 2004). Flowback water is also sometimes loosely 

referred to as produced water. Flowback water is the water that “flows back” after 

being injected under high pressure to crack a well. The amount of flowback water  
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 Table 1.5: FRACTURING FLUID ADDITIVES, MAIN COMPOUNDS, AND COMMON USES 

 Adapted from Shale Gas Primer, GWPC (2009) 

Additive 

Type 

Main Compound(s) Purpose 

Diluted Acid 

(15%) 

Hydrochloric acid or 

muriatic acid 

Help dissolve minerals and 

initiate cracks in the rock 

Biocide Glutaraldehyde Eliminates bacteria in the 

water that produce 

corrosive byproducts 

Corrosion 

Inhibitor 
N,n-dimethyl formamide Prevents the corrosion of 

the pipe 

Crosslinker Borate salts Maintains fluid viscosity as 

temperature increases 

Gel Guar gum or hydroxyethyl 

cellulose 
Thickens the water in order 

to suspend the sand 

Surfactant Isopropanol Used to increase the 

viscosity of the fracture 

fluid 
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depends on the geology of the area; usually between 30% and 70% of the fracturing 

fluid can return as flowback water (Gupta and Hlidek, 2009). The flowback water 

thus contains all the constituents of a drilling fluid plus other chemicals it comes in 

contact with in the well. These chemicals vary from well to well and an exhaustive 

list of what may be in flowback water is currently not available.  

 

1.5.3   Failure of Reserve Pits 

Hydraulic fracturing is a water intensive procedure and so its associated reserve pit 

usually contains hundreds of thousands of gallons of drilling mud and flowback 

water. These earthen-walled pits can fail. Improper pit designs, poor maintenance 

and wrong pit locations are factors that can cause failure (EPA, 2000). During a 

storm event, for instance, snowmelt or rain fall exceeding 0.5 inches, reserve pits 

can also overflow. An outright failure can cause up to 100,000 gallons of toxic 

fracturing fluids to be spilled. When these happen, the physical, chemical and 

biological integrity of both land and nearby waters are compromised. Some of the 

chemicals used in drilling have known harmful health effects, for instance, benzene 

– a chemical additive – causes cancer (Cox and Ricci, 2006). Even if the chemicals 

used are not harmful, their non-disclosure has the public concerned. There is the 

fear of the unknown and the public do not trust that the companies will protect 

them.  
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Figure 1.1:  A drilling site where hydraulic fracturing is taking place. A reserve pit the size 

of a swimming pool is seen adjacent to the drilling rig. The trucks pump in millions of 

gallons of fracturing fluid under high rate to crack the dense organic gas-bearing shale rock 

several thousands of feet below. Drilling mud is stored in the reserve pit. If the reserve pit 

overflows due to excessive rainfall or one of its earthen walls collapses, there can be severe 

environmental consequences. (Photo courtesy: Tom Hayes of Gas Technology Institute) 

 

 

1.6 Fayetteville Shale Play 

The Fayetteville Shale Play (FSP) is an unconventional natural gas resource that lies in 

Central Arkansas (Figure 1.2). It was discovered in 2002 by geologists from Southwestern 

Energy and has since become the nation’s third largest producing shale play 

(Southwestern, 2003). It is one of the six active shales in the US. The other producing shales 

in the US to date are the Barnett Shale, Marcellus Shale, New Albany Shale, Antrim Shale 

and Haynesville Shale. Large scale development of the FSP began in 2005 and production 

has grown rapidly since then (Figure 1.2). Less than 50 wells were drilled in 2005; by the 
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end of 2010, over 3,000 wells had been drilled (Powers, 2011). This rapid increase in the 

number of wells drilled and the associated number of reserve pits that are being 

constructed has the public worried about what the consequences of a large spill would be 

and what safety measures are in place to deal with such incidents. News of polluted 

springs, wetlands and water wells resulting in death of animals and damaged vegetation 

abound in the media. This project aims to address the concerns of the major stakeholders 

in the FSP and provide a sustainable solution to the problem of a reserve pit failure and its 

consequences.  
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Figure 1.2: Producing wells in Arkansas by location. A black dot represents a producing   

         well. Most of the development of the FSP has taken place in Central Arkansas.  

Source: Arkansas Geology Survey, 

http://www.geology.ar.gov/fossilfuel_maps/fayetteville_play.htm Accessed on 02/06/12 

 

 

http://www.geology.ar.gov/fossilfuel_maps/fayetteville_play.htm


 

11 
 

1.7 Aim 

The aim of this work is to develop a sustainable solution to the potential environmental 

impact of a spill. A sustainable solution would make economic sense, be environmentally 

friendly and socially responsible. It has to be cost-effective to the companies that would be 

implementing it, be a safer alternative to current approaches and be transparent to the 

public so that they are in the know. This work does all that and more.  

A mathematical model is developed to simulate the overland flow of a spilled fracturing 

fluid. The model uses a minimum of input and is computationally fast enough to make its 

use as a real time screening tool justifiable. The model will be integrated into the 

Infrastructure Placement Analysis System (IPAS) where it will serve as a decision support 

system for key stakeholders. The IPAS is a Geographic Information System (GIS) based 

platform created by the Low Impact Natural Gas and Oil (LINGO) project. LINGO is an 

initiative of a partnership between the University of Arkansas’ Chemical Engineering 

Department, Center for Advanced Spatial Technology (CAST) and Argonne National 

Laboratory (ANL). The IPAS is a web-based resource. The website also contains 

information about the Fayetteville Shale and resources the public can use to acquaint 

themselves with the process. Fear of the unknown risks caused by the exploration and 

exploitation of gas is a major reason for the concerns raised by the public; it is the aim of 

this work to address those fears. The FSP is the case study for this work. The result of this 

project can be applied – with some modifications – in other shale basins.  
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1.8 Objectives of this Project 

This project will answer the question of where do I put my reserve pit? Should it be to the 

left or right of the well pad? How far should it be from a water body or a protected species? 

The project will help decision makers in screening for suitable locations to site a reserve 

pit. A suitable location is one that has the least potential impact on the environment in the 

case of a reserve pit failure.  

This work is going to be a piece of the LINGO IPAS. The overall decision support system will 

help not only in siting reserve pits but in screening for the best sites to prepare for drilling. 

By reducing the number of detailed physical on-site surveys that need to be carried out 

before deciding on an area for gas drilling, this work should save gas producers both time 

and money.  

The results from this work will also help evaluate the cost associated with the Best 

Management Practices (BMPs) of reserve pit construction. Questions such as:  

1. Should a double berm be constructed?  

2. Do you take the risk of siting the well and its reserve pit in an area?  

3. What additional control should be put in place?  

are answered from a practical standpoint. For instance, if the clean-up cost in an area will 

be minimal and no protected class of species is going to be affected in the case of a spill, a 

gas producer may decide to go ahead and drill and put in a reserve pit. This work can help 

such a producer know this ahead of time.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The 2010 BP Deepwater Horizon oil spill at the Gulf of Mexico has renewed the public 

interest in the safety of oil and gas exploration and production process. The Macondo oil 

well blowout disaster has already eclipsed the (in-) famous Exxon Valdez oil spill of 1989 

both in terms of volume spilled and the environmental impact (Sylves & Comfort, 2012). 

There is no dearth of oil spills models in the literature. Oil spill models are usually 

developed for use in marine environments (Fingas, 2010); to the best of the author’s 

knowledge, there is no oil spill model for use on land.  

Onshore spill models are rare to come by whether the fluid of concern is oil, fracturing 

fluids or drilling mud from a reserve pit failure. In order to develop a spill model for the 

LINGO IPAS, physical relationships would be developed from the fundamental principles of 

mass and energy balance.  

 

2.2 The Shallow Water Equations (SWEs) 

At the core of our flow model is a set of governing equations referred to as the Shallow 

Water Equations (SWEs). They are sometimes called the St. Venant equations after the late 

19th century French mathematician who first derived them (see St. Venant, 1871). Motion 

of objects is guided by Newton’s 2nd law. If we apply Newton’s 2nd law to the motion of fluid 

particles and make assumptions such as fluid stress is proportional to the gradient of 
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velocity and add a pressure term, we arrive at the Navier-Stokes equations.  The Navier-

Stokes equations completely describe the motion of fluids in three dimensions (3-D). 

Solution to the Navier-Stokes equation gives the velocity field. Once the velocity field is 

found, other quantities of interest such as the drag force or the mass flux can be 

determined. The Navier-Stokes equation is a numerically challenging problem to solve and 

that is why Computational Flow Dynamics (CFD) software packages are written for it. We 

can customize the Navier-Stokes equation for overland flow by making some simplifying 

assumptions such as (Lai, 1986, Strelkoff, 1970; Iwasa, 1988; Zhang and Cundy, 1989): 

1. Hydrostatic pressure distribution i.e. the vertical acceleration of a fluid particle is 

very small compared with the acceleration of gravity g and hence can be neglected; 

2. The density of the water is fairly constant throughout (incompressible); 

3. The bed slope is small, small enough to make the assumption of            a 

valid one; 

4. The channel bottom is immovable or relatively stable and so fixed with respect to 

time; 

5. Only shear stresses arising from the horizontal components of the velocity are 

significant and therefore considered, shear stresses due to the vertical velocity 

components are neglected and 

6. The coefficient of hydraulic resistance for unsteady flow is the same as that for 

steady flow, and so it can be estimated from Darcy-Weisbach, Chezy or Manning 

equations. 
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The St. Venant equations result when the 3-D Navier Stokes equations are vertically 

averaged over depth in their full dynamic form, the St. Venant equations can be written as 

(Garcia and Kahawita, 1986): 
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where    (     )    (     )       (     ) are the fluid depth, velocity in the x-

direction and velocity in the y-direction respectively. Equation 1 is a statement of mass 

conservation while Eqns. 2 & 3 are derived from the momentum conservation principle. 

Other terms such as diffusion, Coriolis acceleration and wind-induced shear stresses can be 

added to the right hand side (RHS) of the momentum equations. See Appendix A for the 

derivation of the St. Venant equation from first principles. 

The equations allow us to compute the flow depth and flow velocity field of an area under 

unsteady precipitation and infiltration and given realistic upstream and downstream 

boundary conditions. Knowing the flow depth and velocity field can help answer questions 

such as: How much discharge can we expect from overland sections of an area? How much 

sediment and/or pollutant will be washed off and where will they be deposited? What does 

the time-space evolution of transported pollutants look like in surface waters? More 
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importantly, the model can help us run what-if scenarios. Being a physical model, it will 

enable us to see how the relationship between topography, bed roughness, soil hydraulic 

properties, man-made features and rainfall impact the hydrologic and hydraulic behavior 

of an area.  

 

2.3 Solving the SWEs 

The first serious attempts to apply the SWEs to practical hydrologic and hydraulic 

problems were made when computers came to be used for numerical computation. Before 

then, analytical and graphical techniques were employed. Analytic solutions have been 

restricted to limited regions of the solution domain or to special cases where suitable 

simplifications can be made. Even for these special cases, graphical techniques are 

prohibitively slow (e.g. Massau, 1889). The full SWEs are too complicated to be solved 

analytically hence approximate forms have been developed. These simplifications are used 

when physical field parameters show that accuracy is not seriously compromised 

(Govindaraju, 1988a). Two main models of the St. Venant equations arose from such 

efforts: the kinematic wave model and the diffusive wave model.  

 

2.4 Kinematic Wave Model 

Henderson and Wooding (1964) developed the kinematic wave model by equating the 

friction slope to the bed slope and neglecting all other terms in the momentum equations.  
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In the Kinematic Wave approximation:                           therefore Eqns. 1 – 3 

becomes: 
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This huge simplification of the SWEs made it amenable to analytical solution. Using the 

Method of Characteristics (MOC), Woolhiser and Liggett (1967) showed that for a rising 

hydrograph, the kinematic wave model approaches the solution for the full St. Venant 

equation. Other workers (e.g. Woolhiser, 1974; Hjelmelt, 1981; Parlange et al, 1981) 

extended the scope of overland flow problems that can be solved using the kinematic wave 

assumption.  All these solutions are based on the MOC so it is not possible to obtain 

analytical solutions when the characteristic curves intersect within the flow domain. 

Therefore, the kinematic wave model fails when spatially non-uniform rainfall or 

infiltration rate or initial conditions cause variations in the wave speed and make these 

characteristic curves meet. Mathematics aside, the kinematic wave model is simply not 

valid for highly subcritical flows and for flows where the downstream boundary is an 

important factor. 
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2.5 Diffusion Wave Model 

To overcome the shortcomings of the kinematic wave model, Morris and Woolhiser (1980) 

introduced the diffusion wave model. The diffusion wave approximation of the SWEs uses 

the full continuity equation but simplifies the momentum equations by considering the 

friction slope to be the sum of bed slope and flow depth gradient and neglecting other 

terms at the RHS of Eqns. 2 & 3.  

In the diffusion wave approximation:          
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of Eqns. 2 & 3 can be written as 
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Equations 1-3 thus become: 
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The diffusion wave model performed as well as the kinematic wave model in all the cases 

studied by Ponce et al (1978). The model is superior to the kinematic wave model in that it 

allows for physical attenuation and hence better able to handle the dissipative tendencies 
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found in the full dynamic form.  The diffusion wave model also has the added advantage of 

being able to compute backwater effects i.e. it allows backfacing slopes in flow fields.  

However, by neglecting convective acceleration terms in the momentum equation, both the 

kinematic and diffusion wave model have limited practical application. We will be solving 

the full dynamic form of the St. Venant equations so that no important terms will be left 

out.  

 

2.6 Hydraulic Resistance Parameters 

One important aspect of simulating the SWEs is the description of velocity of flow which is 

often described by resistance equations (Horton, 1938). Some earlier equations for flow 

and resistance coefficients are given in Table 2.6.1. The resistance to flow in these 

equations is typically caused by the soil surface, vegetative cover and man-made structures 

and it is accounted for by a coefficient of hydraulic resistance. A reliable estimation of this 

coefficient is difficult since its value varies with the type and density of soil cover, the 

condition of the surface, and the flow depth relative to bed roughness (Christensen, 1985). 

Thus, the relation derived for a site may not be generally applicable for other sites and may 

not even be applicable at the same site when some flow conditions changes.  

A large number of studies (e.g. Williams, 1970; Turner, 1978; Sweeten, 1969) have been 

carried out so that a general understanding of the variation of hydraulic resistance has 

been developed. The studies can generally be classified into three: empirical, theoretical 

and semi-empirical (ASCE, 1963 and Kadlec, 1990). Experience shows that the best 
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resistance equations are semi-empirical: they are grounded in hydrodynamic principles 

and have parameters that need to be determined experimentally (Schmitz, 1985). 

The Chezy equation, Manning equation and the Darcy-Weisbach equation are the common 

resistance equations in use. In all the equations, an empirical coefficient is defined which is 

not constant but depends on the shape of the channel cross-section, boundary roughness, 

flow velocity and depth (Manning, 1889). Their coefficients are related as: 
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where C, n and f are the Chezy, Manning and Darcy-Weisbach coefficients respectively, R is 

the hydraulic radius and g is the acceleration due to gravity. The Chezy equation is more 

applicable to flows in rivers and other deep water flows where the assumption of the 

resisting force being proportional to the square of velocity holds true (Kao, 1978). We 

define deep water flows as flows where the ratio of fluid depth to equivalent roughness 

height is greater than 20 (Ree et al, 1977). Overland flow typically involves shallow water 

movements and so I did not use the Chezy equations. The Darcy-Weisbach equations are 

most suitable for laminar flows and are not the best choice for transitional 

(laminar/turbulent) flows commonly encountered in practice. The Manning equation has 

found widespread acceptance in hydrology because it can deal with laminar, transient and 

turbulent flows (Dooge, 1989). Consequently, the Manning coefficient, n, has been 

estimated for a number of surfaces (Table 2.6.2). 
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  Table 2.6.1: Some Earlier Equations for Flow and Resistance Coefficients (Source: Maheshwari, 1992) 
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Table 2.6.2: Manning coefficient values, n, for some typical surfaces. Values were compiled 

from Cowan (1956), Chow (1959), Henderson (1966) and Chaudhry (1993) 

 

  

Material/Surface n Material/Surface n 
Natural Streams Metals 
Rivers 0.030 Brass 0.011 
Deep Pools 0.040 Cast Iron 0.013 
Straight and Clean 0.035 Smooth Steel 0.012 
  Corrugated Metal 0.022 
    
Floodplains Non-Metals 
Pasture, Farmland 0.035 Glass 0.010 
Light Brush 0.050 Clay Tile 0.014 
Heavy Brush 0.075 Brickwork 0.015 
Trees 0.15 Asphalt 0.016 
  Masonry 0.025 
  Finished Concrete 0.012 
Excavated Earth Channels Unfinished Concrete 0.014 
Clean 0.022 Gravel 0.029 
Gravelly 0.025 Earth 0.025 
Weedy 0.030 Planed Wood 0.012 
Stony, Cobbles 0.035 Unplaned Wood 0.013 
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It must be kept in mind that these estimates are just that – an educated guess. As has been 

emphasized, any hydraulic coefficient relies on a number of factors and surface or bed 

roughness is just one factor. Arcement and Schneider (2012) provide a guide on what value 

of n to choose as well as a comprehensive review of the Manning equation.   

Since we are not using either the kinematic wave or diffusion wave approximation, the 

friction slope or energy, Sf, has to be calculated. This is where having a value for n is needed 

to calculate the energy slope using the following relation: 
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2.7 Infiltration Model 

The RHS of the continuity equation (Eqn. 2.1) in the SWEs contain the rate of infiltration 

term, dI/dt. Infiltration is the term used to describe the process of water entry into the soil 

and the rate of infiltration is the flux passing through soil surface and flowing into the 

profile (Hillel, 1971). The infiltration rate is initially high if the soil is dry but as water 

supply to the surface continues, the rate reduces until it tends to the hydraulic conductivity 

of the soil (Phillip, 1973). A typical infiltration moisture profile is shown in Figure 2.7.  

Heber Green and Gussy Ampt were among the first to relate soil properties to the rate at 

which water infiltrates. The now famous Green-Ampt (1911) model assumes an 

instantaneous change in water content at the wetting front from a uniform     to the water 

content at natural saturation     (Figure 2.1) 

 

 

 

 

 

 

 

 

 
θi  - Initial Moisture 
θs  - Saturated Moisture Content 
Figure 2.7:  A Water-Content vs. Depth curve. A typical infiltration profile is shown. The 

Green-Ampt model is superimposed to show how their assumption of 

instantaneous change in moisture content deviates from reality. The model is 

useful though for most practical purposes. 

θi  θs  
θ,  water content  

z,  soil depth  

Green-Ampt model  

Typical profile  
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The physics of soil water movement is still an area of active research (Ebel et al, 2012). In 

the century following the publication of the Green-Ampt model, many researchers have 

sought to deepen our understanding of the phenomenon by either showing the limits of the 

Green-Ampt model (e.g. Ghosh, 1980; Youngs, 1987; Swartzendruber & Youngs, 1974), 

developing better ways to estimate its parameters (e.g. Rawls et al, 1981; Morel-Seytoux & 

Khanji, 1974; Brakensiek, 1977) or coming up with a new infiltration model altogether (e.g. 

Richards, 1931; Horton, 1940; Barry et al, 1995). Table 2.7 shows some of the common 

infiltration models in use today. 

Clausnitzer et al (1998) compared the precision and accuracy of estimated parameter 

confidence intervals of common infiltration models. On an order-of-magnitude basis, the 

level of accuracy of these models is virtually the same whereas the more sophisticated ones 

require higher computing cost. The simple Green-Ampt model as modified by Smith and 

Parlange (1978) is thus adequate for our purpose. Groves (1989) expressed this modified 

model as: 
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where    (    ) and      is the suction head at the wetting front,    is soil water 

content,    is soil water content at saturation, I is the cumulative infiltration depth and    is 

the hydraulic conductivity of the soil. 
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Table 2.7  Common Infiltration Models (Modified from Clausnitzer et al., 1998) 

Model Equation 
Classification 

Parameters 

to fit  

Horton (1940)          
  

  
      (   )  Empirical          

Mezenecev (1948)          
  

     
        Empirical          

Philip (1957c)              Semi-Analytic     

Swartzendruber 

(1987) 
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2.8 Pollutant Transport Model 

The hydrodynamic transport of pollutants is the result of the interaction between 

differential advection and turbulent diffusion both of which are dependent upon the flow 

velocity field (Cunge et al, 1980). The solution to the SWEs gives the flow velocity field. A 

pollutant transport model is therefore coupled to the SWEs to show the temporal and 

spatial evolution of concentration in the flow.  Advection is the more dominant transport 

mechanism for most natural flows (Liang et al, 2010).  The model is an advection-diffusion 

equation derived (see Appendix B for its derivation) from the principle of mass 

conservation and Fick’s law. 

Guymer et al (2005) renders this relationship as: 
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where C is the concentration of the pollutant and Dx and Dy are the mixing coefficients.  

Pollutant transport models vary in the way Dx and Dy are determined and in what the 

sources and/or sinks are. The mixing coefficients are a combination of the depth-averaged 

longitudinal dispersion coefficients, turbulent diffusion coefficients and molecular 

diffusivities. Some models (e.g. Rodi, 1984) neglect molecular diffusion altogether because 

it is usually several orders of magnitude smaller than turbulent diffusion while others (e.g. 

Falconer, 1991) include it because it may be significant if flow turns laminar. Both the 

depth-averaged longitudinal dispersion coefficients and turbulent diffusion coefficients are 

dependent on flow properties (Hayter & Pakala, 1989) and there are physical models 

available to determine them separately (Huang, 2009). Separate estimation of the depth-
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averaged longitudinal dispersion coefficients, turbulent diffusion coefficients and 

molecular diffusivities result in cumbersome transport models (e.g. Murillo et al, 2006) 

that may be of research utility but grants no practical advantage over simpler ones where a 

lump-sum mixing coefficient is used (Tsanis & Boyle, 2001). We have therefore refrained 

from such models. Landmark results however have been obtained by the semi-empirical 

determination of the mixing coefficients themselves. Elder (1959) gives the mixing 

coefficient as               and             where w is the vertical component of 

the velocity which we neglect in our case. Mingham (2008) suggested that the values of 

5.93 and 0.12 for Dx and Dz are too low and should be closer to 12.1 and 1.2 respectively. In 

any case, the D’s are empirical constants that can be calibrated based on field data in our 

model.  

The source/sink term on the RHS of equation (14) may represent pollutants entering from 

the boundaries or may be due to pollutant decay/growth, biological transformation, 

chemical reaction or a combination of these processes. Most pollutant transport models are 

used in estuaries, lakes, rivers and other water bodies and the source/sink term is omitted. 

We have included the term in our model so that it can be applied in a variety of spill 

scenarios. It can be set to zero if not needed in a particular situation.  

 

2.9 Erosion and Sediment Transport Models 

One of the objectives of this project is to know how much sediment is picked up and 

delivered to a stream or water body in an event. A list of the most used erosion-sediment 

transport models is given in Table 2.9.1. Following Wheater et al (1993), models are 
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classified as empirical, conceptual or physics-based. As Table 2.9.1 shows, this classification 

is not perfect as there are some hybrid models where a couple of modules would be 

empirical and others would be conceptual and/or physics-based.  

Empirical models are generally the simplest of the three types and their data and 

computational requirement is usually small (Haan et al, 1994). However, they tend not to 

be event-responsive (Rose, 1993) since they are based on the assumption that conditions 

remain unchanged throughout the period under study. Being statistical models, they tend 

not to show causation and their parameters have no physical meaning (Jakeman & 

Hornberger, 1993). They are also very site-specific so that extensive calibration has to be 

carried out if they are to be used on a new site (Bull and Kirkby, 1997).  

Conceptual models are suited for catchment scale modeling (Prosser and Rustomji, 2000). 

They divide a catchment into subdivisions (internal storages). The erosion processes of 

detachment, transport and deposition are determined both empirically and physically for 

each of the internal storages and the outputs are lumped (see Bear, 1987; Sorooshian, 1991 

and Spear, 1995 for details).  

Physics-based models are results of considering the physical conservation laws of mass and 

momentum both of the flow and sediment (Bennett, 1974). They show the cause-effect 

relationship between parameters that this makes them attractive as a decision-support 

tool. These models incorporate the sediment transport capacity formula and their output is 

quite sensitive to which formula is used (Persons et al, 2001; Singh& Singh, 2001). The  
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Table 2.9.1:  Examples of Erosion/sediment transport models (Source: Merritt et al, 2003) 
Model Typea  Scale  Input/output  Reference 

Water quality 
AGNPS  

Conceptual  Small 
catchment  

Input requirements: High Output: 
runoff volume; peak rate, SS, N, P, 
and COD concentrations 

Young et al. (1987) 

ANSWERS  Physical  Small 
catchment  

Input requirements: High Output: 
sediment, nutrients  

Beasley et al. (1980) 

CREAMS  Physical  field 40–400ha  Input requirements: High Output: 
erosion; deposition  

Knisel (1980) 

EMSS  Conceptual  Catchment  Input requirements: Low Output: 
runoff, sediment loads, nitrogen 
loads and phosphorus loads 

Vertessey et al. (2001) 
Watson et al. (2001) 

HSPF  Conceptual  Catchment  Input requirements: High Output: 
runoff, flow rate, sediment load, 
nutrient concentration 

Johanson et al. (1980) 

IHACRES-WQ  Empirical/ 
Conceptual 

Catchment  Input requirements: Low Output: 
runoff, sediment and nutrients  

Jakeman et al. (1990, 
1994a,b), Dietrich et al. 
(1999) 

IQQM  Conceptual  Catchment  Input requirements: Moderate 
Output: many pollutants including 
nutrients, sediments, dissolved 
oxygen, salt, algae.  

DLWC (1995) 

LASCAM  Conceptual  Catchment  Input requirements: High Output: 
runoff, sediment, salt fluxes 

 Viney and Sivalapan 
(1999) 

SWRRB  Conceptual  Catchment  Input requirements: High Output: 
streamflow, sediment, nutrient and 
pesticide yields 

USEPA (1994) 

Erosion  
GUEST  

Physical  Plot  Input: High Output: runoff; sediment 
concentration  

Yu et al. (1997)  
Rose et al. (1997) 

LISEM  Physical  Small 
catchment  

Input: High Output: runoff; sediment 
yield  

Takken et al. (1999) De 
Roo and Jetten (1999) 

PERFECT  Physical  Field  Input: High Output: runoff, erosion, 
crop yield  

Littleboy et al. (1992b) 

SEDNET   Empirical/ 
Catchment  

Input requirements: Moderate 
Output: suspended Conceptual 
sediment, relative contributions 
from overland flow, gully and bank 
erosion processes 

Prosser et al. (2001c) 

TOPOG  Physical  Hillslope  Input: HighOutput: water logging, 
erosion hazard, solute transport  

CSIRO Land and Water, 
TOPOG Homepage; 
Gutteridge Haskins and 
Davey (1991) 

USLE  Empirical   Hillslope  Input: High Output: erosion 
Wischmeier and Smith (1978) 

 

WEPP  Physical  Hillslope/ 
catchment  

Input: High Output: runoff; sediment 
characteristics; form of sediment 
loss 

Laflen et al. (1991) 

In-stream 
transport   
MIKE-11  

Physical  Catchment  Input: High Output: sediment yield, 
runoff  

Hanley et al. (1998) 

a Model classification refers to the over-arching process representation of the model. Model components 
generally contain a mix of empirical, conceptual and physics-based algorithms. 
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sediment transport algorithms employed in popular physic-based models are described in 

Table 2.9.2 Physics-based model can be used effectively for small areas i.e. plot scale 

(Hudson, 1975) unlike empirical and conceptual models that are better suited for basin and 

catchment scale prediction (Loch & Silburn, 1996).  

Many of the erosion-sediment transport models available have been developed by agencies 

who are more interested in what effect land management practices would have over time – 

usually years – and what best procedures to adopt (Hairsine & Rose, 1992a; Nearing et al, 

1994). Their focus is mainly agricultural farmlands and the slopes considered are not very 

steep. A majority of them are also 1-D and the assumptions underlying their derivation e.g. 

uniform steady flow are not valid in our case.  

Our erosion/sediment transport model is physics-based. It is an extension of Foster’s 

equation in 2-D. Assuming the main erosion processes take place in the rills, we have (see 

Appendix C for derivation): 

   

  
 

   

  
                                                                                                                           (    ) 

where                      are the sediment load (kg.s-1.m-1) in the x- and y- 

directions respectively; Df is the net detachment rate (kg.s-1.m-2) which is negative for 

sediment deposition and positive for sediment detachment and Cs is the concentration of 

the sediment (kg.m-3) in the flow.  
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Table 2.9.2:  Some commonly used algorithms for sediment transport in physics-based 
erosion models                                         (Source: Merritt et al, 2003) 

 

Name  Algorithm  Example model 

Foster’s 
equations  

Steady state continuity equation for rill and interill 
detachment and/or deposition  
 

   

  
          

where 
   

  
 is the sediment rate per unit width of rill 

channel, Dr and Di are the rill and interill net detachment 
or deposition rate, respectively 
 

WEPP  
NSERL (1995) 
CREAMS 

Engelhund 
and Hansen 
(1968)   

Fundamental energy transport equation for transport and 
deposition of sediments along a movable bed  
 

        
(  )   

(   )      
   

       (
  

 
)   

(  )   

(   )      
   

 

 
qT is the amount of transported sediment (m3 m_1 s_1), S 
is the energy slope, s is the ratio of the specific weight or 
density of sediment to water, v is flow velocity (ms_1), h is 
water depth (m), F is the roughness coefficient, d50 is the 
median grain diameter (m), q is runoff (m3 m_1 s_1) and g 
is acceleration due to gravity. 

TOPOG 
http://www.clw.csir
o.au/topog/user/ 

   
Rose  Steady state sediment flux equation, (1) in the absence of 

rills, and (2) when rills are present.  
 

  

  
  

(   )

  
[    

 (     )

 
]  

 

 
 

 
c is the equilibrium sediment concentration, q is the 
volumetric flux of water per unit width of plot, Q is the 
runoff rate per unit area, P is measured rainfall rate, a is a 
rainfall related erodibility parameter, F is a constant 
relating to the fraction of the excess streamflow power 
effective in re-entrainment of sediments  
 

  

  
  

 

  
[{(    )     } {    

 (     )

 
}      

     ]  
 

 
 

 
N is the number of rills per unit width of erosion plot, G is 
the discharge rate, Hr is the effective surface on which a 
deposited layer can form, qsli is a lateral sediment flux to 
the rill from the interill area, Wx is the rill width, Ws 
represents the vertical component of the wetted 
perimeter, and a Wu denotes the sediment contribution 
by rainfall detachment at a potentially maximum rate from 
the unshielded potion of the rill sidewall. 

GUEST  
Misra and Rose 
(1996)  
Ciesiolka et al. 
(1995)  
Rose et al. (1997)  
Hairsine and Rose 
(1991)  
Hairsine and Rose 
(1992a)  
Rose (1993) 
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2.10 Numerical Methods for Solving the Shallow Water Equations 

Before the advent of computers, the St. Venant equations used to be solved analytically or 

graphically (Iwasa, 1988). Hydraulics research proceeded purely on the basis of theoretical 

assumptions refined by experimental studies (Lai, 1986). The time it takes to solve a set of 

shallow water equations (SWEs) of any appreciable complexity is therefore usually long 

and even at that the solutions obtained are very site-specific (Vreugdenhil,1989) and not 

generally applicable. The only situations that yielded to analytical treatment are 1-D 

uniform steady flows that admit no hydraulic jumps (Liang, D. et al, 2007).  

The digital age brought about the field of computational hydraulics. Hydraulic problems 

were solved quickly numerically and modelers were able to address a broader range of 

scenarios (Wu, 2008). The SWEs are partial differential equations (PDEs) that can be 

solved by a variety of numerical methods. The Method of Characteristics, Finite Element 

Method and Finite Difference Method are popular solution methods for PDEs (Strang, 

1986). The SWEs are hyperbolic PDEs. An overview of classes of PDEs is given in Appendix 

D. A review of these numerical methods and their range of applicability is given below. 

 

2.11 Finite Element Method (FEM) 

FEM’s basic idea is that a solution domain can be subdivided into smaller domains or finite 

elements (Rao, 1999) and so by assuming a simple form of solution for each subdomain we 

can approximate the solution to the entire domain (Reddy, 1993). It is used in solving 

boundary-value problems numerically (Cooley and Moin, 1976). Popular Computational 
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Fluid Dynamics (CFD) packages like FLUENT and COMSOL use the FEM as solution 

technique because of the range of complex scenarios they can simulate. Other well known 

finite-element software packages include ANSYS, ADINA and NASTRAN (Rao, 2002). The 

superiority of the FEM over other numerical methods shows when working in three-

dimensions (Hicks and Steffler, 1995; Franca, 2002) as it can model domains with complex 

bathymetries, moving boundaries and irregular boundaries (Le Roux et al, 1998). Overland 

flow is mainly a 2-D problem so Finite Difference schemes are preferred since they are 

computationally less expensive and give comparable results to FEM in 2-D (Szymkiewicz, 

2010).  

 

2.12 Method of Characteristics (MOC) 

The MOC was first developed as a graphical solution to PDEs by Massau in 1889 (Massau, 

1900). Dronkers and Schonfeld (1955) built on this development to lay the groundwork for 

modern hydraulic computation. The MOC was heavily relied on (e.g. Lai, 1965a; Liggett and 

Woolhiser, 1967) as a way to solve the unsteady flow equations numerically at the dawn of 

the digital computer era. The MOC caught the attention of earlier researchers because it 

gives an excellent way to investigate the properties of the solution of a hyperbolic PDE 

since it preserves directional information and so the physical meaning of the wave-like 

nature of the result is apparent.  

For 1-D flow, a characteristic is a path in the distance-time plane along which a certain 

quantity is conserved (Vreugdenhil, 1989). In 2-D space, which is the case considered here, 

characteristics are lines in the solution domain along which signals, or information, 
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propagate. In other words, information propagates through the solution domain along the 

characteristic curves (Ralston and Rabinowitz, 1978). Discontinuities in the derivatives of 

the dependent variable - if they exist – also propagate along the characteristic curves. If a 

PDE possesses real characteristics, then information propagates along these 

characteristics. If no real characteristics exist, then there are no preferred paths of 

information propagation. Consequently, the presence or absence of characteristics has a 

significant impact on the solution of a PDE (Hoffman, 1992).  

The method involves transforming an original set of governing PDEs into characteristic 

equations. Characteristic equation is the differential equation of the characteristic curve. A 

suitable numerical scheme is then used to solve these characteristic equations (Abbott, 

1966).  

The method has some drawbacks. When convection and diffusion are both present in a 

physical process, information propagates by both convection and diffusion. The MOC gives 

large errors when handling the diffusive terms in such convection-diffusion equations 

(Stanoyevitch, 2005). The form of the SWEs we are solving has diffusive terms and so 

treating it with the MOC will yield poor results. The MOC works well with non-stiff 1-D flow 

problems. When flow is 2-D however or if shock waves are present, developing a MOC is 

difficult and in cases of severe non-linearity, the method fails (Basco, 1983). Rarefaction 

can also occur with this method. Rarefaction is when characteristics fail to cover part of the 

solution domain of the PDE.  

A good understanding of the MOC is essential to the development of finite difference 

methods for solving hyperbolic PDEs. Physical paths of propagation of information through 
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the solution domain are present. Proper account of these paths of propagation must be 

taken in order to obtain physically correct numerical solutions of hyperbolic PDEs.  

 

2.13 Finite Difference Method 

A FD method transforms a PDE into a set of algebraic equations by discretizing the 

continuous physical domain, approximating the exact partial derivatives by algebraic finite 

difference approximations (FDAs) and substituting these FDAs into the PDE to get an 

algebraic finite difference equation (Burden and Faires, 2011). 

FD schemes are broadly divided into two: implicit schemes and explicit schemes (Smith, 

1985). An explicit FD scheme is when a variable can be computed forward in time using 

quantities from previous time steps. In explicit FD schemes, the new value of the variable at 

time n+1 depends explicitly on its value at time n. In implicit FD schemes however, the 

output of the time-updated variable depends – at least partially – on itself (Hoffman, 1992).  

Examples of explicit FD schemes are Lax-Wendroff type methods and the MacCormack 

method while examples of implicit FD schemes are the Crank-Nicholson method and the 

Preissmann schemes. 

Propagation problems – like the one we are considering in this project - are initial-

boundary-value problems in open domains in which the solution in the domain of interest 

is marched forward from the initial state, guided and modified by the boundary conditions. 

Propagation problems are governed by parabolic or hyperbolic partial differential 
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equations. A complex problem will have both. The SWEs is primarily hyperbolic by nature 

and secondarily parabolic due to the diffusion terms.  

The major similarity between both explicit and implicit FD schemes is that both march the 

numerical solution forward from one time level to the next. The major difference is that the 

numerical signal propagation speed for explicit marching methods is finite, whereas the 

numerical signal propagation speed for implicit marching methods is infinite.  

Explicit methods are computationally faster than implicit methods, because there are no 

systems of equations to solve. Thus, explicit methods might appear to be superior to 

implicit methods. However, the finite numerical signal propagation speed of explicit 

methods does not model the infinite physical signal propagation speed associated with 

parabolic PDEs, whereas the infinite numerical signal propagation speed of implicit 

methods correctly models the infinite physical signal propagation speed of parabolic PDEs. 

Thus, implicit methods appear to be well-suited for solving parabolic PDEs, and explicit 

methods might appear to be unsuitable for solving parabolic PDEs. In actuality, only an 

infinitesimal quantity of information propagates at the infinite physical signal propagation 

speed of a parabolic PDE; the bulk of the information travels at a finite physical signal 

propagation speed. Experience has shown that explicit methods can be employed to solve 

parabolic PDEs (Fennema and Chauhdry, 1990). Explicit methods match the physics more 

accurately, and the majority of numerical methods for solving hyperbolic PDEs are explicit 

methods. 

Implicit FD schemes are more computationally stable than explicit ones. Implicit schemes 

do not place a restriction on the size of time step that can be taken and so it allows for 
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larger time steps. They however require a large set of algebraic equations to be solved 

iteratively and so can be computationally expensive (Liang et al, 2007). Explicit FD schemes 

are fast and well suited for the wavelike phenomena observed in hyperbolic PDEs but they 

can be unstable. Stability analysis (e.g. von Neumann, 1951; Courant et al, 1928) on the 

linearized form of the St. Venant equation shows that explicit schemes can be stable if the 

time step taken satisfies the Courant condition. The Courant condition is: 

      (
   

(   )   
 

   

(   )   
)                                                                                       (    ) 

             are the size of the time step and grid sizes respectively while  

   √        (2. 17)     is the celerity or speed of propagation. 

Explicit FD schemes are thus the most suitable way to solve the St. Venant equation 

(Esteves et al, 2000). An adaptive time step routine that increases the time step as the 

solution progresses and checks if the Courant condition is still satisfied can make explicit 

schemes even more computationally efficient.  

 

2.14 Fractional Step Methods 

Fractional step methods, proposed by Yanenko (1971), have the advantage of reducing the 

multi-dimensional matrix inversion problem of the SWEs into an equivalent one-

dimensional problem, so the technique becomes very simple and attractive to apply 

(Yakimiv and Robert, 1986). They also have the advantage of solving the SWEs without the 

iterative steps involved in the multi-dimensional interpolation problem. No iteration is 
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required since only two time levels are used to advance the equations in time. The absence 

of iteration greatly reduces numerical diffusion and therefore makes it suitable for 

problems in which small times steps are taken or where small grid sizes are required 

(Shoucri, 2006). The linear analysis of the SWEs for the fractional step method shows the 

method is unconditionally stable.   

We will be using the MacCormack explicit time-splitting FD scheme to solve the St. Venant 

equation by adapting the method described by Garcia and Kahawita (1986).  The scheme 

has all the advantages of an explicit FD scheme and so it can handle properly the hyperbolic 

nature of the SWEs. The time-splitting technique – which is a fractional step method – 

improves accuracy of the scheme. By writing the SWEs in their conservative form, the 

scheme can also capture shocks (Yost and Rao, 1998).  
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CHAPTER 3 

METHODOLOGY 

3.1 Discretizing the Shallow Water Equations 

In order to use the MacCormack scheme, the shallow water equations (SWEs) will be 

written in the conservative form i.e. in forms that readily show the mass and momentum 

conservations: 

Conservation of Mass Equation: 

  

  
  

  

  
  

  

  
    

  

  
                                                                                                      (   )    

Conservation of momentum equation in x-direction: 

  

  
  

  

  
  

  

  
                                                                                                               (   ) 

Conservation of momentum equation in y-direction: 

  

  
  

  

  
  

  

  
                                                                                                           (   ) 

Where  x and y are the orthogonal horizontal co-ordinates, 

H = H(x, y, t) is the flow depth (m), 

U = U(x, y, t) = uh and V = V(x, y, t) = vh are the unit width discharges in x- and y- 

directions respectively and u and v are the flow velocities in the x- and y- directions 
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respectively.  Unit width discharge is the amount of fluid crossing a plane per unit 

width per unit time. It has units of m-2s (see Fig. 3.1). 

 

 

 

 

 

Fig. 3.1: U is the amount of fluid flowing in the x-direction per unit time per unit width of y. 

Its unit is m3/(m.s) or m2/s. V is the amount of fluid flowing in the y-direction per unit time 

per unit width of x. Its unit is m3/(m.s) or m2/s. 

  = Spill Rate (m/s) 

  

  
 = Infiltration Rate (m/s) 

F, G, and S are conservation variables defined as: 

      (     )                                                                                                             (   ) 

     (     )                                                                                                                          (   ) 

      (     )                                                                                                              (   ) 

g is the acceleration due to gravity (ms-2),      and      are the convective acceleration in 

the x- and y- directions respectively,       is the gravity force term and     is the 

momentum term in a direction due to movement of fluid in an orthogonal direction.  
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  x and   y are source terms defined as: 

      (     )    (       )  
 

  
(  

  

  
)  

 

  
(  

  

  
)                                                 (   ) 

and  

     (     )    (       )  
 

  
(  

  

  
)  

 

  
(  

  

  
)                                                 (   ) 

where: 

             are the bottom bed slopes defined as: 

      
  

  
                                                                                                                                              (   ) 

      
  

  
                                                                                                                                            (    ) 

  (m) is the bottom elevation from a datum, usually the sea level is used as the datum 

              are the energy or friction slopes in the x- and y- directions respectively and 

when approximated by the Manning formula take the form: 

     
   (     )

 
 ⁄  

 
  

 ⁄
                                                                                                                  (    ) 

and 

     
   (     )

 
 ⁄  

 
  

 ⁄
                                                                                                               (    ) 

where      n is an empirically determined constant called the Manning Coefficient 



 

43 
 

                          is assumed,    is the coefficient of turbulent viscosity (m2s-1)and  

  ρ is the density of water (kgm-3) and it is assumed constant. 

 

3.2 The MacCormack Method 

The MacCormack method is very popular for solving both parabolic and hyperbolic PDEs 

because it can solve both linear and non-linear PDEs and a system of PDEs with equal ease. 

MacCormack (1969) proposed a two-step predictor-corrector FD method that uses the 

same grid spacing as the Lax-Wendroff (1960) one-step method. Details of the method can 

be found in standard texts on Numerical Methods.  

 

3.3 The Time-Splitting Technique 

Time-splitting belongs to a general class of numerical solutions methods called fractional-

step methods. Yanenko (1971) developed the “method of fractional steps” which made it 

possible to reduce a computational solution of an initial many-dimensional problem to the 

consecutive solution of a number of one-dimensional problems. This turned out to be 

highly effective and reduces the length of time on an electronic computer by several orders 

of magnitude. Such a “splitting” is a reflection of the additivity of physical processes and of 

the spatial operators describing them. The splitting process reduces the number of 

calculations during each time step and achieves second order accuracy in space and time 

when a symmetric sequence is used.  
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3.4 The Numerical Grid 

In order to numerically integrate the SWEs, the physical continuum region of interest is 

overlaid with a computational grid where all dependent variables are defined at the cell 

centers (fully dense grid), these values being taken to represent average cell properties.  

Most previous two-dimensional models for the shallow water equations use staggered 

grids (e.g. Katapodes & Strelkoff, 1978; Meselhe & Holly, 1993) in which the dependent 

variables are defined at different points in the computational cell. Fig 3.4(a) shows an 

example of a typical staggered grid. Staggered grids usually generate excessive numerical 

diffusion compared to fully dense schemes. This artificial diffusion can create numerical 

circulation as well as smearing of shocks or discontinuities. Moreover, fully dense grids are 

conceptually more consistent than staggered grids. Fig 3.4(b) shows the fully dense grid 

used in the MacCormack scheme. 

 

 

 

 

 

Figure 3.4(a): Typical staggered grid used in most 2-D overland flow models. 
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Figure 3.4(b): Fully-dense grid used in this MacCormack time-splitting scheme. 

 

3.5 The MacCormack Time-Splitting Scheme 

The MacCormack method has a slight bias in the solution due to the unidirectional nature 

of the backward and forward differences. This bias can be reduced by alternating the 

direction of the predictor and corrector differences from one time level to the next. 

Solution at time level (n+1)  , for the computational point (i,j), is obtained through a 

sequence of 1-D FD operators (     ) as follows: 

    
      (   )  (   )  (   )  (   )    

                                                                                      (    ) 

        
 

 
   in our model, in any case,            . 

The derivatives are performed as follows: 

First    operator:   Predictor: Backward differences 

Corrector: Forward differences 

i, j i+1, j 

i, j+1 

i, j-1 

i-1, j 

  u, v, h, Z 
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First    operator:   Predictor: Backward differences 

Corrector: Forward differences 

Second    operator:   Predictor: Forward differences 

Corrector: Backward differences 

Second    operator:   Predictor: Forward differences 

Corrector: Backward differences 

As applied to the SWEs, this procedure is: 

The first    operator for the SWEs can be written as follows: 

Predictor Sequence (using backward differences) 

    
      

    
   
  

(    
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Note that R and 
  

  
 are not discretized because they do not lie on the x-y plane. They are 

vertical quantities in the z-direction. 
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The “o” signifies old or previously calculated values and the “p” signifies the predicted 

values. 

Corrector Sequence (using forward differences) 
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The “c” depicts the corrected values 

The first    operator for the SWE can be written as follows: 

Predictor Sequence (using backward differences) 
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Corrector Sequence (using forward differences) 
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The second    operator: 

Predictor Sequence (using forward differences) 
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Corrector Sequence (using backward differences) 
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The second    Operator 

Predictor Sequence (using forward differences) 
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Corrector Sequence (using backward differences) 
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3.6 Courant Condition 

One drawback of explicit FD schemes is that they are prone to instability. An unstable 

solution is one that grows in an unbounded fashion. To assure stability of the scheme, the 

size of the time step is checked at each run to make sure it satisfies the Courant condition.  

The Courant condition can be stated as 

    
                    

                       
  

| |   

  
  ⁄

                                                                        (    ) 

                                                                                                                                         (    ) 

   is the Courant number. The relation above is for the x-direction; the y-direction can be 

similarly stated.  
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The wave celerity, c, is the velocity of a small gravity wave in the flow. For a shallow-water 

free-surface flow: 

  √                                                                                                                                       (    ) 

It can be seen as the speed at which a disturbance will travel through still water. If you 

stand at the bank of a flowing stream of water, the velocity you will observe is, for a 1-D 

flow,  

  

  
                                                                                                                                      (    ) 

If the magnitude of the flow velocity u is greater than c, the flow is “super-critical,” if it is 

less than c it is “sub-critical” and if it is equal to c it is “critical.” These distinctions are 

important because it shows us the dominant direction of flow. For instance, for super-

critical flows(| |   ), the flow direction is always downstream since      . This 

means super-critical flow is not influenced by any downstream feature hence no need to 

specify downstream boundary conditions in such a case (see Table 3.7).  

 

3.7 Initial and Boundary Conditions for the Numerical Scheme 

Hadamard (1923) states that a physical problem is well-posed if its solution: exists, is 

unique, and depends continuously on the boundary data and (for propagation problems) 

the initial data. Without a consistent set of initial and boundary conditions, no correct 

solution for the SWEs can be obtained. These initial and boundary conditions should be 

accounted for in the numerical formulation. 
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3.7.1 Initial Conditions 

For t=0 the velocity field and the water depths should be specified everywhere in the 

numerical domain. When simulating an initially dry slope h, the flow depth, is set to a 

minimum value, hmin, rather than to zero because h0 = 0 leads to numerical singularities. A 

value of 10-6m is fairly common in literature as the minimum flow depth and is used here. 

Any cell with a lower value than hmin is referred to as “dry” and the flow out of such a cell is 

set to zero.  

 

3.7.2 Boundary Conditions 

There are several types of boundary conditions depending on the physical problem to be 

simulated. The two main types of boundaries we consider are Closed boundaries and Open 

boundaries. A problem can have both. For instance, the upstream may be an open 

boundary while the downstream has closed boundaries. Geometrically (or geographically) 

upstream is toward the – x or – y (upland) direction and downstream is toward the + x or +y 

(river mouth) direction; whereas, physically, upstream is the direction from which the flow 

is coming and downstream is that toward which the flow is going. Unless otherwise stated, 

the former convention is used throughout this project. Upstream and downstream waves 

correspond to the direction of the slope of the channel and not to the direction of water 

flow. 
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Closed Boundaries: 

In the grid system used in this work the cell “faces” rather than the cell centers (or grid 

points) are aligned along solid boundaries. Therefore external fictitious points should be 

defined outside the numerical model (See fig 3.7.2a). 

 

 

 

 

Figure 3.7.2 (a): Fictitious points along boundaries 

 

When the coefficient of turbulent viscosity,   is set equal to zero, slip boundary conditions 

should be imposed. This is accomplished using the so-called reflection technique [Insert 

citation] shown graphically in Fig 3.7.2(b) 

 

 

 

Figure 3.7.2(b): Reflection boundary condition used for slip boundaries when   = 0 
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When   is not zero, non-slip boundary conditions are imposed at solid “walls.” This is 

approximated in the manner indicated in Fig 3.7.2(c) 

 

 

 

 

Figure 3.7.2(c): Non-slip boundary condition used when   ≠ 0 

 

This approximately sets the tangential velocity equal to zero at the cell face. However, in 

order to correctly treat the momentum flux terms in the conservative variables (F, G, S), 

terms such as u2h and v2h are expressly equated to zero at the walls. This implies zero flux 

of momentum across closed boundaries. 

 

Open Boundaries: 

Flow enters and leaves the computational domain at open boundaries. Open boundary 

conditions are discretized in such a way as to follow as much as possible the requirements 

given in Table 3.7. The requirements are best seen as guidelines given by researchers (e.g. 

Stoker, 1957; Daubert & Graffe, 1967; Verboom et al, 1982) who have studied the 

mathematical basis for specifying the boundary conditions for the SWEs. For example, in a  
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Table 3.7:  Minimum Required number of boundary conditions at open or ‘ocean’ 
boundaries  (Source: Rene & Kawahita, 1986) 

 Subcritical flow Supercritical flow 
 Inflow b.c.s Outflow b.c.s Inflow b.c.s Outflow b.c.s 

     

1-D problems 1 1 2 0 

2-D problems 2 1 3 0 

 

two-dimensional sub-critical-flow problem for which the inflow volume flux is known, both 

velocity components can be specified at points located along inflow boundaries, while the 

water depth can be imposed at outflow boundaries. 

Various types of outflow boundary conditions have been tried and will be discussed in the 

next Chapter on Results and Analysis.  The complete listing of the programs that implement 

this procedure is included in the Appendix E. 

 

3.8 Artificial Viscosity 

The truncation errors associated with the FD solutions of PDEs often exhibit dispersive 

behavior. Pure dispersion propagates waves in space and changes the wave shape 

(Hoffman, 1992). At or near the sharp gradients, the dispersive errors associated with the 

MacCormack FD scheme produce high frequency oscillations. These oscillations have 

nothing to do with the physical phenomenon being simulated; they are solely due to 

numerical errors. By adding an explicit damping term, we may smooth these oscillations 

and assure good shock-capturing properties of the scheme. Jameson et al, (1981) 
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developed a method that can dampen these oscillations. The procedure, as adapted by 

Anderson et al (1984), is used in this work and it is as follows.  

Compute the following parameters using the computed values of h at n+1 time level 

     
  

|                      |

|       |  |      |  |       |
                                                                                                (    ) 

     
  

|                      |

|       |  |      |  |       |
                                                                                               (    ) 

  can be seen as the normalized form of the gradients of variable h  

At the points where         does not exist, use 

     
  

|             |

|      |  |     |
                                                                                                                      (    ) 

and where        does not exist, use 

     
  

|             |

|      |  |     |
                                                                                                                      (    ) 

 

Similarly, at the points where         does not exist, use 

     
  

|             |

|       |  |     |
                                                                                                                    (    ) 

and where         does not exist, use 

     
  

|             |

|       |  |     |
                                                                                                                   (    ) 
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then determine from the following equations 

  
  

 
 
  

      (        
      

)                                                                                                       (    ) 

  
    

 
 

      (        
      

)                                                                                                     (    ) 

where κ is a constant used to regulate the amount of dissipation. These artificial dissipative 

terms are used to compute the final values of the variable f at the new time step as follows: 
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where f is the dependent variables h, u, and v. The terms are added after a predetermined 

number of time steps using the latest values of h, u and v. The equation should be viewed as 

a MATLAB replacement statement. The procedure described above is like adding second-

order dissipative terms to the SWEs. Since they are second-order, their addition does not 

reduce the accuracy of the MacCormack scheme. The eddy viscosity coefficient due to the 

numeric of the scheme in the x-direction, for instance, is of the order of
      

  
.  

This shows that how much the results rely on κ depends on both the gradients in the fluid 

depth and on the size of grid chosen.  As can be seen from the equations, this κ’s influence 

on results in the relatively smooth regions is minimal since ν tends to be zero in such a 

case. κ is chosen by trial-and-error: you want to select the minimum value possible that can 
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smoothen the wiggles near the bore. A value of κ between 0.5 and 3 is typical (Fennema & 

Chaudhry, 1986).   

 

3.9 Negative Flow Depths 

The SWEs are a set of constrained equations in the sense that although components of 

velocity can be positive or negative, the flow depth has to be positive. This physically 

obvious criterion is not without numerical complications. A typical contentious scenario 

can be seen by examining the mass conservation equation, re-written below as: 

          (
  

  
 

  

  
)    (  

  

  
)                                                                                      (    )  

For the sake of argument, let us assume   
  

  
    

If    (
  

  
 

  

  
)    and the|  (

  

  
 

  

  
)|    , then      can be negative (i.e. <0) for a 

very small   .  

This problem of inadvertent negative flow depths was fixed by implementing the following 

procedure. If  ∑                 |    |, the negative depth is set to zero i.e.        and the 

flow depth of each neighbor is reduced by the product of      and the ratio of the cell’s 

flow depth to ∑               . If ∑                 |    |, the difference is distributed 

among the four diagonal nodes using the same procedure. The negative cell is only set to 

zero when all eight of its neighbors cannot supply the amount needed to make it zero. This 

way, the procedure does not lead to severe mass generation.  
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This method is illustrated in Figure 3.9 for a case where the flow depth of computational 

point (i,j) is negative and water is being drawn from three of its adjacent cells.  

 

 

 

 

 

 

Figure 3.9: The procedure to assure a non-negative flow depth is illustrated here for a case of 
a cell with negative flow depth with three of its adjacent neighbors draining into it. This 
procedure also conserves mass. Source: Esteves et al (2000) 

 

3.10 Bed Friction Slope 

The procedure described above ensures non-negative fluid depth results after each time 

step but very small fluid depths can still be present. When the flow depth is very small, bed 

friction slope becomes very large. This process is self-aggravating: the large friction term 

changes the sign of the corresponding velocity component at each time step and 

simultaneously increases its magnitude causing some numerical instability in the solution. 

This is a well known problem in the literature called the “small depth anomaly” (Tchamen 

& Kahawita, 1998). Finding solutions to this problem is still an active area of research. One 

way the situation is dealt with is to make approximations to the full St. Venant equation by 
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using the kinematic wave model or the diffusive wave model. As discussed in Chapter 2, we 

cannot use this simplistic approach in our case. Another common approach is to apply an 

appropriate control over the velocity in these cells e.g. setting it to zero. This however, 

raises the question of accuracy of the control. Some authors set the flow depth to a 

minimum value before momentum calculations can occur. Any small depth below this 

present value is “raised” to the minimum value which causes severe mass generation. 

We use two original methods in dealing with these friction terms and both are explained 

here. 

1. Avoiding division by h in the momentum equations 

The reason large value of the friction slope result is because of division by h, the 

flow depth. If we use the Darcy-Weisbach resistance equation instead of the 

Manning equation, the RHS of the momentum equations changes from: 
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since Darcy-Weisbach formula is       
  (     )
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                                                             (    ) 
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where u and v are the flow velocities in the x- and y- directions respectively and f is the 

Darcy-Weisbach coefficient. The y-direction formula can be similarly derived. The Manning 

coefficient n is easily available for a variety of flow scenarios. The challenge with this 

approach is to find reliable estimates of f. Such estimates can be known during model 

calibration.  

2. Another way to deal with the numerical difficulty encountered in very shallow flows 

is to appeal to the physics of the flow. We know that the unit width discharge has to 

be very small (although not zero) if flow depth is very low. The procedure is as 

follows:  

Assume the momentum equation to be solved is: 

  

  
                                                                                                                                (    ) 

For shallow flows, this is a valid assumption because the friction term dominates all 

other terms by several orders of magnitude and so they can be safely neglected. 

Discretize this equation using an implicit scheme: 

       

  
  (     )

 
                                                                                            (    ) 

Where n refers to this time step (known values) and n+1 refers to the next time step 

(unknown values). The operator splitting technique does not lend itself to implicit scheme 

so we re-arrange the equation as: 

  
    

  
 

    (     )
                                                                                                                    (    ) 

So that when Sfx is large, the resulting unit width discharge is small to the same degree.  
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The two new procedures described above do not follow strict mathematical derivations but 

they are physically sensible and will be shown to be reliable in practical simulations. 

 

3.11 Infiltration Model 

The   
  ⁄  term at the RHS of the conservation of mass equation in the SWEs represent rate 

of infiltration of water into the soil. Only vertical infiltration is considered in this work. The 

infiltration rate is given by the Green-Ampt model. Groves (1989) expressed a modified 

form of this model as 

  

  
 

  

[     ( 
 

    
)]

                                                                                                             (    ) 

where    (    ) and      is the suction head at the wetting front,    is soil water 

content,    is soil water content at saturation, I is the cumulative infiltration depth and    is 

the hydraulic conductivity of the soil at saturation. 

This is an Ordinary Differential Equation (ODE) within a set of PDEs. One problem 

encountered with incorporating the rate of infiltration is the usually high initial value of the 

rate. This results in negative h (flow depth) for very low initial fluid depths. This problem is 

solved by prescribing a minimum value of the water depth below which infiltration cannot 

take place: 

         
  

  
                                                                                                                        (    ) 
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[     ( 
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                                    (    ) 

A value of 10-3m for hmin is common and has been used in this work. 

The suction head at the wetting front,   , is calculated as: 

     (
    

     
)

  
 ⁄

                                                                                                                   (    ) 

where   is the air entry suction head (m),   is the pore-size distribution index and    is the 

residual moisture content. Default values of the saturated hydraulic conductivity, Ks, 

saturated soil moisture content,     residual moisture content,     air entry suction head, 

     and the pore-size distribution index,   are given in Table 3.11 (from Groves, 1984). By 

supplying these values, the user only needs to input the value of the initial soil moisture 

content,    and the soil type to run the infiltration model. If specific field measurements of 

these soil properties are available, these default values can be overridden in the model. The 

Courant condition determines the time step to be used for the SWEs to assure stability.  

However, the linear mathematical analysis that yields the Courant condition neglects the 

effect of source/sink terms like infiltration rate. Consequently, the time step chosen by the 

Courant condition for the entire SWEs may not be the best to assure the accuracy of the 

outputs of the infiltration model. For the Infiltration Rate routine to give accurate results, it 

should be able to use a time step independent of that given by the Courant condition for the 

full St. Venant equations. This is intuitive: being an ODE, the infiltration model needs its 

own time step for numerical integration. To make sure that the physics (of both the 

infiltration model and the SWEs) match at each computational point and at the boundaries, 
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the time step,     of the SWEs is passed into the ODE solver written for the infiltration 

model. The solver then integrates the ODE from      to      at each time step.    is 

seen by the solver as the run time and the solver routine can choose any time step that 

assures accuracy.  

 

Table 3.11:  Default Values for Soil Hydraulic Parameters. (Source: Groves, 1989) 

 

3.12 Pollutant Transport Model 

An advection-diffusion equation is used to show the temporal and spatial evolution of the 

concentration of pollutants in the flow. Guymer et al (2005) renders this relationship as: 
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                                      (    )     

where C is the concentration of the pollutant species,  Dx and Dy are the mixing coefficients 

(m2s) in the x- and y- direction respectively.  

Texture 
Group 

Saturated 
Hydraulic 

Conductivity 
Ks 

cm/min 

Saturated 
Soil 

Moisture 
Content 

     
cm/cm 

             

Residual 
Soil 

Moisture 
Content 

cm/cm 
           

Air Entry 
Suction 

Head 
 

cm 

Pore-Size 
Distribution 

Index 
 

    

1. Loamy sand 0.1667 0.43 0.04 5.0 0.43 
2. Sandy loam 0.0583 0.45 0.05 7.5 0.38 
3. Loam 0.0108 0.47 0.08 13.5 0.31 
4. Sandy clay 
loam 

0.0217 0.42 0.10 7.5 0.23 

5. Silty clay 
loam 

0.0013 0.48 0.08 40.0 0.23 

6. Silty clay 0.0005 0.49 0.11 65.0 0.20 
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The equation is discretized the same way as the SWEs using the MacCormack time-splitting 

scheme. The concentration profile of a pollutant is strongly dependent on the flow velocity 

field. The mixing coefficients are calculated as (Elder, 1959; Mingham, 2008): 

                                                                                                                                              (    ) 

                                                                                                                                             (    ) 

  and   are parameters that will be determined empirically. An initial value of   = 12.1 and 

  = 1.2 is suggested. This value can be refined during model calibration. 

The source/sink term on the RHS of the equation represent pollutants entering from the 

boundaries or may be due to pollutant decay/growth, biological transformation, chemical 

reaction or a combination of these processes. It is generally known and supplied by the 

user.  

 

3.13 Erosion-Sediment Transport Module 

Solving the hydrodynamic equations give the flow depth and flow velocity fields needed in 

an erosion model to compute sediment discharge. Suspended sediment concentration is 

assumed small enough to not affect flow dynamics hence the flow velocity is taken to be the 

same as the sediment particle velocity in erosion modeling (Foster & Meyer, 1972; 

Govindaraju & Kavvas, 1991).  
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3.13.1  Sediment Continuity Equation 

The main idea behind modeling upland erosion is that the sediment load is controlled by 

either the amount of available detached sediment or by the transport capacity of the flow. 

Bennett (1974) used the conservation of mass of sediment to derive the sediment 

continuity equation in 1-D. Foster (1982) modified the equation by assuming quasi-steady 

sediment movement: 

  

  
                                                                                                                                            (    ) 

where 

G  = sediment load (kg.s-1.m-1) 

Df  = rill erosion rate (kg.s-1.m-2). It is positive for detachment and negative for deposition.  

Di  = interrill sediment delivery to the rill  (kg.s-1.m-2) 

Foster’s equation is used in many physically based erosion models like WEPP, NSERL and 

CREAMS (Merritt et al, 2003). The sediment delivery from the interrill areas is strongly 

dependent on rainfall intensity (Foster et al, 1981). This is because the impact of raindrops 

loosens the soil and the detached soils are carried off by excess rainfall. Our proposed 

model neglects this contribution from the interrill areas because zero raindrop impact is 

assumed. Tayfur (2001) justifies this approach of dropping Di in the absence of high rainfall 

intensity or other processes, for example soil tillage, that may aid sediment detachment. 

Moreover, surface water flows are concentrated in rills and a reliable result can still be 

obtained by neglecting this contribution from interrill areas (Johnson & Julien, 2000; An & 
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Liu, 2009). Another assumption of the model is that the change in bed elevation is small so 

a bed update (Exner) equation is not necessary (see Abderrezzak & Paquier, 2011).  

The model is: 

   

  
 

   

  
                                                                                                                                       (    ) 

The model can be seen as the Foster’s equation in 2-D with the interrill sediment delivery 

to the rill contribution neglected. Gx and Gy are the sediment loads in the x- and y- directions 

respectively. A derivation from mass conservation principles can be found in Appendix C. 

The eroding capacity of a flow depends on how much sediment is in it – the sediment load – 

compared to the maximum sediment it can hold under the same hydraulic conditions – i.e. 

its sediment transport capacity. If the sediment load is greater than the sediment transport 

capacity, deposition (of sediment) occurs; whereas if it is less, detachment (of sediment) 

occurs. Deposition and detachment often occur simultaneously in natural flows and so 

what we usually calculate is the “net deposition” and “net detachment.” The 

micromechanics of soil erosion is still a poorly understood phenomenon (Tang et al, 2012) 

and estimating net effects is standard procedure.  

 

3.13.2  Calculation Procedure 

Step 1: Compute Sediment Transport Capacity (Tc) 

Of the several sediment transport formulas available, the Yalin equation (Yalin, 1963) has 

been found to give the most reliable estimates of transport capacity for overland flow 
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(Alonso et al, 1981). Finkner et al (1989) simplified the Yalin equation by identifying the 

key parameters that the transport capacity depends on.  They reduced the equation to: 

       
   

                                                                                                                                    (    ) 

where:  

Tc is the sediment transport capacity (kg.s-1.m-1) and Kt is the transport coefficient (m1/2 

.s2.kg-1/2) that depends on the shear stress on the soil.   is the flow shear stress (Pa) acting 

on the soil: 

                                                                                                                                               (    ) 

where: 

       is the specific weight of water (kg.m-2.s-2),   is water density (kg.m-3) and g is the 

acceleration due to gravity (m.s-2). 

 

Step 2: Compare the magnitudes of the Sediment Load to the Sediment transport Capacity 

i.e. is G > Tc? If Yes, Compute Net Deposition (Go to Step 4) 

If No, Compute Net Detachment (Go to Step 3) 
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Step 3: Compute Net Detachment 

Detachment occurs when the flow shear stress is greater than the critical shear stress 

holding the soil particles together. It is calculated as: 

     (  
 

  
)                                                                                                                               (    ) 

where: 

Df  is the net detachment by rill flow (kg.s-1.m-2) and  

     (     )                                                                                                                            (    ) 

where: 

Kr is the rill erodibility parameter (s.m-1) and    is the critical shear stress (Pa) of the soil. 

No detachment occurs if         

 

Step 4: Compute Net Deposition 

Net deposition is computed as: 

      (    )                                                                                                                                (    ) 

where: 

Df is the net deposition rate (kg.s-1.m-2) and   is a first-order reaction coefficient (m-1). For 

overland flow, Foster (1982) estimated   as: 
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                                                                                                                                                (    ) 

where: 

  is a turbulence coefficient, in the WEPP model, it is assigned a value of 0.5 for raindrops 

impacting rill flows (after Davis, 1978) and 1.0 for other cases like snow melting or furrow 

irrigation (after Einstein, 1968) so we take it to be 1.0 in our model; q is the unit width 

discharge (m2s-1) and Vf is fall velocity that can be calculated from any standard 

relationships, for example, the Rubey equation (Rubey, 1933).  

 

Step 5: Update the value of the Sediment Load, G 

Update the value of the sediment load using Eqn (3.66) with the computed value of Df along 

each Cartesian coordinate. 

These steps are illustrated in the flowchart shown in Fig. 3.13.  

Most upland erosion schemes found in the literature are 1-D, the few available 2-D 

algorithms (e.g. Johnson & Julien, 2000; Tayfur 2001 and An & Liu, 2009) assume either the 

kinematic or diffusive wave model in solving the St. Venants equations. Their models 

therefore cannot handle steep slopes typically encountered in oil and gas production sites.  
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Figure 3.13:  A flowchart showing how the value of the sediment load, G , is 

updated. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter seeks to answer the question of reliability of the model developed using the 

methods described in the previous chapter. For the model to be adopted in the real world, 

it has to perform as intended. Verification ensures that the model is programmed correctly 

and implemented properly and that the model captures the key features of the system 

being modeled. One way to verify the output of a numerical model is to compare it with 

analytical results. Analytical results are exact; they are the true answers to a given problem 

and so by seeing how a model’s outputs match up with them we can assess the degree of 

accuracy of a numerical algorithm.  

Two test problems for which the analytical solutions are known are presented in the first 

sections of this chapter. The performance of the model against these analytical solutions is 

also presented and the results are discussed. For 2D cases where the analytical solutions do 

not exist, Lane & Richards (2001) note that a shallow water model can be verified both 

numerically – for instance, by ensuring the output is independent of the size of the time 

step taken – and qualitatively (e.g. visualization). I relied on these two approaches in 

verifying the model for the more complex cases. The computer programs implementing the 

solutions found in this chapter can be found in the appendices.  
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4.2 Test Problem 1: A 1D Steady State Problem with no Shocks or Discontinuities  

A channel of constant width of 10m and discharge 20 m3/s is chosen. The channel is 1km 

long. A sketch of the problem is shown in Figure 4.2(a)  

 

 

 

 

 

 

 

The flow is subcritical at inflow and is subcritical at outflow with depth 0.748409m. The 

Manning roughness coefficient for the channel is 0.03. The analytical solution to this 

problem is given by the bed slope function: 
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Fig. 4.2 (a): Sketch (not drawn to scale) of the 1D Steady State Problem with no Hydraulic Jump 
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and  
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The solution to the problem is given by h(x) = ĥ(x) where x is the distance in meters along 

the channel bottom. h(x) is the flow depth profile and ĥ(x) is the hypothetical flow depth 

profile used in deriving the analytical solution (MacDonald et al, 1995).   

Figure 4.2 (b) shows the depth profile given by the analytical solution. The boundary 

conditions fix the depth at 0.748409m at both ends. The depth peaked at 1.1052m midway 

through the channel. The flow depth rises gradually from the value at the inlet boundary to 

this peak and falls in a similar fashion to the value at the outlet boundary. The critical flow 

depth value is calculated and displayed also to show that the flow is subcritical. The flow is 

subcritical throughout as there are no hydraulic jumps along the entire channel. Hydraulic 

jumps are flow control structures or natural barriers that cause flow regime to change from 

sub-critical to super-critical or vice versa. Hydraulic jumps introduce shocks into the 

solution. A shock is a mathematical discontinuity. The bed slope changes smoothly from a 

maximum of about 1.2% to about 0.3% midway through the channel and rises smoothly 

back to about 1.2%. The slope has been exaggerated a hundred times for easy display in 

Figure 4.2(b).  

The bed level (Z), that is, the channel bottom, shown in Figure 4.2 (c) is calculated from the 

slope function. Since  

    
  

  
                                                                                                                                                   (4.1) 



 

75 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flow Depth 

Critical Depth 

_________

_  

Bed Slope  x 100 

h
 (

m
) 

x (m) 

Fig. 4.2 (b): The analytical solution to Test Problem 1 is shown. The slope is 

magnified a hundred times for easy display.  
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Fig. 4.2 (c): The free surface profile and bed level for Test Problem 1  
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Z(x) is found by numerically integrating eqn. (4.1) and using a starting value such as       

Z(L) = 0. Adding the flow depth to the bed level gives the free surface profile and adding the 

critical depth to the bed level gives the critical surface profile. It is important to reconstruct 

the bed elevation, Z, from the analytical solution because it is a required input in the 

Shallow Water Equations (SWEs) numerical model developed here.  

 

4.3 Numerical Solution to Test Problem 1  

If a transient model like mine is given steady boundary conditions, the limiting steady state 

solution can be compared against the analytic steady state solution. For the problem stated 

in the section 4.2 above, the numerical solution is plotted and compared with the analytical 

solution in Figure 4.3. The numerical algorithm settings are: 

                            

                                                  ⁄  is the space between one 

computational point and the next or the grid size. The grid size is uniform throughout the 

computational domain and does not change with time.  

   is the time step used in the model. The time step is chosen to ensure that it does not 

impact the solution in any way. The biggest time step to give the accurate answer is 0.1s. 

Numerical experiments show that the result is independent of the time step used below 

and up to this value of 0.1s for this particular problem.   

T is the time it took to reach a steady solution. Beyond 800s there is no change in the result 

no matter how long the simulation was left to run.  
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The Courant number, Cn, for the scheme is calculated as  

     
(| |   )   

  
  ⁄

                                                                                                                             (   ) 

where c, the celerity, is √  . For stability,     .  

x (m) 

h 

(m

) 

Analytical Solution 

Numerical Solution 

Bed Slope x 100 

Fig. 4.3: The numerical steady solution is compared with the analytical steady 

solution for Test Problem 1.  The bed slope is placed in the figure to show the 

correlation between the magnitude of the slope and the error in the numerical results.  
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The Courant number for the given solution is 0.55 since         .  

Numerical experiments show that the scheme was unstable when         – an outcome 

that is expected since       when         

When          was used, the scheme gave a stable solution since the stability criterion is 

not violated (       ). Although stable, the solution given at this value of    was not 

accurate. I know this value is not accurate because I have a true answer – the analytical 

solution – to compare it with and also because the solution kept changing as the size of the 

time step used changed. This shows that stability does not ensure accuracy. A scheme may 

return a stable but inaccurate solution. Stability means that the error inherent in the 

numerical solution is not growing out of bounds but it says nothing of the accuracy of the 

solution itself. An accurate solution though must necessarily be a stable one. Hence, we say 

that stability is a necessary but insufficient condition when checking for the accuracy of a 

numeric scheme.  

The numerical experiments conducted here to test the stability of the SWEs model has 

shown that the scheme employed behaved in mathematically consistent ways thus 

increasing the confidence we can place in its predictive ability.  

The maximum relative error in the result is 1.4% and this occurs midway through the 

channel. The relative error was calculated as follows:   
(                            )

          
        

This means that even at its worst, the model was over 98% accurate for the given problem. 

The overall accuracy though is above 99%.  
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4.4 Test Problem 2: A 1D Steady State Problem with Discontinuities  

4.4.1    Introduction 

The previous example was important in that it shows that the model was programmed 

correctly, contained no bugs and that the key physics of shallow water flow were captured. 

The problem however is a relatively simple one because the solution was smooth; there 

was no discontinuity in it. Many flow problems have shocks or discontinuities because a 

natural or man-made barrier along the channel can cause a transition from a sub-critical 

flow to a super-critical one or vice versa. Critical flow occurs when Froude number is 1. The 

critical depth is calculated as    √
  

   ⁄  where Q is the discharge in m3/s and W is the 

channel width in m and g is the acceleration due to gravity in m/s2.  In this section, a test 

problem with its analytical solution is given. In the next section, the numerical solution is 

compared is with the analytical solution and then the role of artificial viscosity is 

investigated and discussed.  

4.4.2    Problem Description and its Analytical Solution 

The sketch of the problem is given in Figure 4.4.2 (a). The channel is still 1km long with a 

constant width of 10m and a constant discharge of 20m3/s. The flow is subcritical at inflow 

with depth 0.543853m and is supercritical at outflow with depth 1.334899m. The cause of 

the sudden change in flow regime here is due to a sudden change in the bed slope. The 

Manning roughness coefficient for the channel is 0.02. The analytical solution to this 

problem is given by the bed slope function: 
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Fig. 4.4.2 (a): Sketch (not drawn to scale) of the 1D steady state problem with an hydraulic jump.  
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With a1 =-0.348427, a2 = 0.552264, a3 = -0.555580.  

The solution to the problem is given by h(x) = ĥ(x) where x is the distance in meters along 

the channel bottom. h(x) is the flow depth profile and ĥ(x) is the hypothetical flow depth 

profile used in deriving the analytical solution (MacDonald et al, 1995).   

Figure 4.4.2 (b) shows the depth profile given by the analytical solution. The boundary 

conditions imposed have the depth at 0.543853m for the inlet boundary and 1.334899m 

for the outlet boundary. The flow depth rises smoothly from the value imposed at the inlet 

until halfway through the channel (       ). There was a sudden jump caused by 

abrupt change of bed slope midway through the channel. The depth then rises smoothly 

again from this point till the end of the reach (          ).  The critical flow depth 

value is calculated and displayed to show the transition from sub-critical to super-critical 

flow. The bed slope changes smoothly from about 1.3% at the inlet boundary to about 

0.80% midway through the channel and then it changes rapidly from 0.80% to 0.35% (an 

over 55% change in magnitude) over a relatively short distance before it tapers off to 

0.13% at the outlet boundary. Figure 4.4.2(c) shows the bed profile and the free surface 

profile.  
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Fig. 4.4.2 (b): The analytical solution to Test Problem 2 is shown. The slope is 

magnified a fifty times for easy display. The abrupt change in slope caused a 

corresponding change in flow regime.  

x (m) 

h 

(m) 

Free Surface Profile 

Critical Surface Profile 

Bed Level 

Fig. 4.4.2 (c): The free surface profile and bed level for Test Problem 2. Notice how the 

free surface profile became greater than the critical level midway through the channel  
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4.4.3 Numerical Solution to Test Problem 2  

The numerical solution from the SWEs model is plotted and compared with the analytical 

solution in Figure 4.4.3. The numerical algorithm settings are: 

                               

   is the space between one computational point and the next or the grid size. It is constant 

and does not change during the simulation.  

   is the time step used in the model. Numerical experiments show that the result is 

independent of the time step used below and up to this value of 0.001s for this particular 

problem.   

T is the time it took to reach a steady solution. Beyond 2000s, numerical experiments show 

that there is no change in the result no matter how long the simulation was left to run.  

The initial conditions are: 

                        (       )                                        (          )   

   
 

          
     (       )            

 

          
          (          ) 

The relative error from between        m is almost constant at 4.7%. Right after the 

hydraulic jump, the error rose to a maximum of 8.2% and then falls gradually to almost 

zero at the boundary. It is worth noting that even with a big abrupt change – over 55% - in 

the slope magnitude, the model was still over 91% accurate in the vicinity of the jump. The 

model results were above 95% accurate over the entire domain.  
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This shows the ability of the model to capture shocks and its ability to handle supercritical 

and subcritical flows simultaneously. Although the model was reasonably accurate for this 

difficult problem, the result was plagued with high frequency oscillations that were purely 

h 

(m

) 

x (m) 

Analytical Solution 

Numerical Solution 

Bed Slope x 50 

Fig. 4.4.3: The numerical steady solution is compared with the analytical steady solution for 

Test Problem 2.  High frequency oscillations are seen at the points of abrupt changes in the 

depth profile. The bed slope is placed in the figure to show the correlation between the 

magnitude of the slope and the error in the numerical results.  
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due to the numeric of the MacCormack scheme. At transitions points in the depth profile, 

these oscillations can be clearly seen producing the thick black regions observed in Fig. 

4.4.3. These spurious oscillations can be observed along the entire depth profile although it 

is more pronounced at points where the flow regime changes.  

4.4.4 Artificial Viscosity applied to the Numerical Solution to Test Problem 2  

“Artificial viscosity” is a term first used by von Neumann & Richtmyer (1950) to allow for 

calculation of shock waves in inviscid gas dynamic equations. It is a term explicitly added to 

the governing equations to correct for the dispersive errors that arise due to truncation of 

the Finite Difference Equations (FDEs). It is needed especially in problems with shocks to 

smoothen out the high frequency oscillations usually observed in the solution. Roache 

(1972) noted that most popular numerical methods touted as having no artificial viscosity 

actually do have one when applied to steady-state problems.  

The way artificial viscosity was calculated in this project was detailed in Chapter 3. The 

dependent variables are updated as follows: 

       ( )                                                                                                                                    (   ) 

       ( )                                                                                                                                    (   ) 

where   is the constant used to regulate the amount of dissipation and   is the artificial 

viscosity operator. Figure 4.4.4 shows the result when artificial viscosity is applied to the 

numerical algorithm for solving Test Problem 2. A value of       was used in the 

simulation. The lowest value of   to give a smooth solution is chosen for a given simulation. 

When    is below 0.1, some oscillations were still seen in the numerical solution.  
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Analytical Solution 

Numerical Solution 

Bed Slope x 50 
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Fig. 4.4.4: The numerical steady solution with artificial viscosity is compared with the 

analytical steady solution for Test Problem 2.  The high frequency oscillations seen in Fig. 

4.4.3 are virtually gone here showing both the usefulness and efficacy of the artificial 

viscosity algorithm. The bed slope is placed in the figure to show the correlation between the 

magnitude of the slope and the error in the numerical results.  
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4.4.4.1 Choice of    when using Artificial Viscosity in a Simulation 

As has just been shown artificial viscosity can be very useful in smoothing out all the 

oscillations that arise in a problem with shocks. It should be kept as small as possible by 

choosing the minimum possible   that can smear out the fluctuations. By adding artificial 

viscosity to the original governing equations, we are modifying the physical process so that 

it can be more easily computed (Guermond et al, 2011). This is why it has to be kept to the 

barest minimum because a large value of   can fundamentally change the numerical 

method (Kurganov & Lin, 2007).  

How does one know which value of   to use for a given problem? The following is 

suggested: 

1. Run the simulation without the artificial viscosity term (i.e. with    ). If you get a 

smooth solution like I did in Test Problem 1 above, then artificial viscosity is not 

needed.  

2. If there are some oscillations in the solution like in Test Problem 2, start with a very 

low value of   and test to see if the oscillations will go away. If oscillations remain, 

start increasing   gradually till you arrive at the minimum value needed to 

smoothen out the high frequency oscillations. I suggest a starting value of        . 

Values as high as     has been reported in the literature (for instance, Hartmann 

& Houston, 2002). The danger in using large values of artificial viscosity is that it can 

hide serious errors in your numerical algorithm: the oscillations are due to 

instability and the instability may be due to an error in the computer program. 



 

88 
 

Artificial viscosity should not be used to gloss over flaws in the algorithm (Shu, 

2009). I will be wary of using any value of   greater than 1.  

3. In some difficult flow problems, the program would not run with    . In these 

instances, choose the lowest possible value of   that would get the simulation going.  

I ran the simulation of Test Problem 2 with increasing values of   to see how it affects 

the result. The time it took to reach the steady state solution decreased with increasing 

value of  . This is to be expected because larger   values meant the oscillations were 

smoothening out faster and hence the solution converged much earlier than with lower 

  values. The highest value of   to return a solution is 3.7. For         the program 

became too unstable to run. This shows that at its best, “artificial viscosity trades 

accuracy for stability as the final solution is a smeared-out version of the true solution; 

at its worst, increasing artificial viscosity completely destroys the accuracy or even 

destabilizes the calculation” (Laney, 2001). 

 

4.5 Discussion of Model Performance based on the two Test Problems 

Taken together, the two test problems for which known analytic solutions exist has helped 

in accessing the performance of the model. I have shown that for relatively easy flow 

problems, the accuracy of the model is over 99%.  The model has also been shown to 

handle discontinuities reasonably accurately. For the problem with hydraulic jump, the 

accuracy of the results was over 91% at the vicinity of the jump and more than 95% over 

the entire domain. The importance and efficacy of artificial viscosity was also seen as it 
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helped in smearing shocks introduced by the rapid change of slope encountered in Test 

Problem 2. Lastly, some guidelines on the choice of   was given.  

In the following sections, 2D cases will be investigated. There are no known analytical 

solutions for any 2D flow problem (MacDonald et al, 1995). But since I have shown that the 

scheme employed gives acceptable performance over some test 1D problems, even though 

there may be no theory guaranteeing good results for the more practical 2D problems, we 

can have some confidence in the method.  

4.6 Introduction to 2D problems 

The general behavior of the model was tested with different numerical experiments. The 

first class of experiments was carried on a frictionless flat surface so that fundamental 

characteristics of the scheme could be demonstrated. A real terrain from an oil and gas 

drilling site was then used to assess the performance of the model and investigate its 

adaptability to real-life scenarios.  

 

4.7 Influence of Boundary Conditions 

We examine the effects of boundary conditions on the behavior of the set of coupled 

equations. Boundaries are important because they continuously affect the nature of the 

solution (Hadamard, 1923). We demonstrate the effects of boundary conditions on the 

model in three different ways. The number of boundary conditions required depends on 

whether the flow is sub-critical or super-critical and on whether the boundary is closed i.e. 

reflective or open i.e. freely transmitting (Verboom et al, 1982). For all the cases shown in 
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Figure 4.7, we assumed a frictionless flat impermeable surface (So = Sf = dI/dt = 0), and a 

constant spill rate of 2x10-5 m/s at the centre of the computation domain. The simulated 

time was 15mins, the time step was 3s and the grid size was           

The initial conditions are:  u(x,y,0) = 0;  v(x,y,0) = 0 ; h(x,y,0) = 0.1m.  

An initial flow depth of 0.1m may seem unreasonable at first glance but it is much lower 

than what other works use in validating their models. The premier Hydro-environmental 

Research Centre at Cardiff University, UK use an initial water level of 1.0m when solving 

the St. Venant’s equations numerically (see, for example, Liang et al, 2007, 2010) and the 

most cited paper – Garcia and Kahawita (1986) – on solving the Shallow Water Equations 

(SWEs) using the MacCormack scheme started with an initial water level of 2.0m in one 

numerical experiment and a 10.0m initial level in another. The reason for these arbitrarily 

high starting water levels is not far-fetched.  Explicit FD schemes are the most suited for 

solving hyperbolic PDEs like the SWEs because they closely match the physics of the 

situation but explicit schemes are prone to instability. To assure stability, the Courant 

number has to be less than 1. The Courant number is calculated as: 

    
                    

                       
  

| |  √  

  
  ⁄

                                                                       (   ) 

The closer Cn is to 1, the nearer it is to becoming unstable. So there is an inherent trade-off 

in all explicit schemes between robustness and computational speed. You cannot start with 

a very low value of h and have a fast numerical solver or vice versa without compromising 

stability.  
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MATLAB was used in displaying the results. The flow depths are color coded. This means 

that cells with the same flow depth have the same color. They can be viewed as contour 

lines in a physical map. 

In Figure 4.7(a), a reflecting boundary was imposed on all sides of the system. This is the 

same as having solid “walls” on both the upstream and downstream boundaries. This 

means that flow was not allowed out of the computational domain and is thus “reflected” 

back. Calculations showed that mass was conserved as no mass was lost through the 

boundaries. Figure 4.7(b) depicts a non-reflecting boundary condition at both upstream 

and downstream boundaries. Here, mass (or any disturbance) generated within the 

computational domain can leave. This is also called an “ocean” or “freely transmitting” 

boundary. Numerical tests showed that there was loss of mass. Figure 4.7(c) is a hybrid of 

reflecting and freely transmitting boundary condition.  The upstream is closed while the 

downstream is open.  

 Fig.4. 1(a) 
Fig. 4.7(b) Fig. 4.7(a) 



 

92 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In all three cases, flow starts from the center of the computational domain and proceeds 

radially outward until it reaches the boundary where it is either reflected back or 

propagated out. This result shows that the SWEs are a well-posed posed problem with 

unique non-trivial solutions.  

 

4.8 Sub-Critical Flow Problem 

The problem here is similar to the freely transmitting boundary case in the previous 

section with one important difference: the spill source was turned off after one minute. The 

behavior of the propagating wave was then observed to test the ability of the model to 

Fig. 4.7(c) 

Figure 4.7: The influence of boundary conditions is seen affecting the nature of the solution 

continuously throughout the domain as a well-posed problem with an equally efficient solution 

should. (a): the closed boundaries reflect waves and flow is not allowed out of the 

computational domain giving the flow pattern seen (b): all four boundaries are open i.e. 

transmit waves and therefore no reflection can be observed (c) is a hybrid of (a) and (b) in 

which the upstream is closed and the downstream is open. 
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handle sub-critical flows. The problem is subcritical because c, the wave celerity, is greater 

than the flow velocity:   √            whereas the velocities both in the x and y-

directions are of the order 10-5 m/s. The velocities are justifiably small because in SWEs, 

flows are primarily gravity driven and since the surface is flat, there is no gravity force due 

to bottom slope. The actual movement of fluid taking place is due to a combination of 

convective acceleration (u2h or v2h) and pressure force (1/2 gh2) and these are miniscule 

for a fluid initially at rest. Figure 4.8 (a) shows the flow pattern of the simulation by 

displaying the quiver plot of the velocities. The computational domain size is (208,208) 

which means there are over 40,000 cells in it. Arrows representing the magnitude of the 

velocity of each cell are thus too small to be appreciated. To correct this problem, we 

developed a routine that reduced the size from (208,208) to (26, 26) in which each new 

pixel is the arithmetic average of eight neighboring pixels in the old array. A general 

procedure of how to do this is in Appendix F.  

The length of each arrow in Fig. 4.8 (a) indicates the magnitude of the velocity. The greater 

the magnitude of the velocity, the longer the arrow. The arrow head shows the direction of 

flow. It can be seen that disturbance has virtually left the center of the computational 

domain and it is spreading outwards. The wave front has not reached the distant corners of 

the domain because it moves in a circular fashion. The wave is moving in both   - and   - 

direction as it should be because the velocity seen by a stationary observer is u or v   . At 

the crest of the wave front the velocity is zero and velocities of unequal magnitude in 

opposite directions are seen at both sides of it. This is not unlike what is observed when a 

wave passes through a string. This problem shows why the MacCormack method is  
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preferred when solving the SWEs because few other schemes can show the direction of 

propagation as explicitly as displayed in the figure (Vreughendil, 1989). Fig. 4.8 (b) shows 

the surface profile of the flow depth. This aids in the visualization of the result just 

discussed. The wave front raises the flow depth and is differently colored than the rest of  

Figure 4.8 (a): Quiver plot of a flow whose spill source was turned off after a minute. The 

flow field shows that the disturbance has left the source (center of domain) and is heading 

out demonstrating the ability of the scheme to handle sub-critical flows. 
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the domain. The size of the domain in Fig. 4.8(b) has not been reduced like in Fig. 4.8 (a) 

since there is no need to do so. 

A pollutant model was coupled with the SWEs. The pollutant concentration was 20 parts 

per million (ppm) and it also continued for a minute before it was shut off. The location of 

the source of the pollutant is at the centre of the domain. Fig. 4.8(c) shows the surface 

profile of the concentration. Data from this experiment shows that no pollutant species was 

seen elsewhere in the domain apart from the cell where the source took place. This is 

reasonable given that the actual velocity of the flow (as opposed to the celerity of the wave 

passing through the flow) is of the order 10-5 m/s so that in 15mins, the actual displacement 

is still much less than a meter. It can be argued that the velocity of the flow is not the only 

y x 

Fig. 4.8(b): Flow wave pattern after 15mins. The spill was initially generated at the 

center of the domain and continued for 1min. Waves can be seen propagating out of the 

system 



 

96 
 

factor affecting the movement of pollutant species. The mixing coefficients Dx and Dy are 

also important in this regard. However, the mixing coefficients are themselves strongly 

dependent on the velocity (       and       , where         are constants) so that a 

low value of velocity will give a correspondingly small value of mixing coefficient. The size 

each cell is 5m by 5m so it is not surprising that all of the pollutants released are still within 

the vicinity of their origin.  

 

 

 

 

 

 

 

 

 

By accurately handling sub-critical flows and pollutant transport in sub-critical flows, our 

confidence in the predictive ability of the model is increased.  

 

 

y 

x 

Fig. 4.8(c): The surface profile of the pollutant concentration at the end of the 15min simulation. 

All the released pollutants are still at the origin cell as physically expected. This shows the 

pollutant model was successfully coupled with the rest of the SWEs 
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4.9 Flow Over Infiltrating Surfaces 

The cases considered so far involved flow over an impermeable surface in which no 

infiltration occurs. We now turn our attention to the problem of flow over an infiltrating 

surface. The domain dimensions and boundary conditions are the same as before. Sand, 

loam and clay are the three different soil types considered in this simulation. The values of 

the soil properties such as pore-size distribution index, air entry suction head, moisture 

content at saturation and residual moisture content were taken from Groves (1984).  

The same value of initial moisture content was used in all three cases. The simulated time 

was 1min and a constant spill of 4 x 10-5 m/s throughout the simulation was assumed. The 

added complexity of an infiltration model to the SWEs makes the numerical scheme less 

robust. To assure a stable solution therefore, the time step was reduced from 1s that was 

used in the last section to 0.05s. The rate of infiltration was set to zero if the fluid depth or 

the velocity is below a certain minimum value to speed up the computation and to improve 

accuracy. The results are as shown in Figs. 4.9 and compared in Table 4.9. To obtain these 

plots, the initial flow depth was subtracted from the final flow depth so that the vertical 

infiltration into the soil can be readily seen. An initial infiltration depth of 0.01mm was is 

used for the three soil type.  

Fig. 4.9 (a) is the result obtained for flow over sand, fig. 4.9 (b) is for flow over loam and fig. 

4.9 (c) is for flow over clay. Since the initial moisture content and starting infiltration depth 

are the same in the three situations, the rate of infiltration became strongly dependent on 

the pore-size distribution index. The pore-size distribution index is an empirically derived 
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constant that relates the pore-size distribution of a soil to its ability to retain water 

(Assouline, 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 

-1 

-2 

-3 

-4 

-5 

-6 

x 10-3 

z 

y 
x 

Figure 4.9 (a): Vertical infiltration profile in 3-D. The flow is over sand.  
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Figure 4.9 (b): Vertical infiltration profile in 3-D. The flow is over loam.  
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Table 4.9: Comparing the relative values of the pore-size distribution index with the 
numerical results given for the rate of infiltration and cumulative infiltration depth for 
three different soil textures. The results show an expected trend of sand having a greater 
infiltration rate and cumulative infiltrative depth than loam which in turn is greater than 
clay.  

 Sand Loam Clay 

Pore-Size Distribution Index ,λ 0.592 0.220 0.081 

Rate of Infiltration, dI/dt (m/s) 13. 7 x 10-5 3.69 x 10-5 2.85 x 10-5 

Cumulative Infiltration Depth, I (m) 0.0105 0.0029 0.0023 

 

The results of the model again conform to what we know of vertical infiltration through 

soils.  The rate of infiltration initially rises and as water supply continues and cumulative 

depth increases, it reduces and tends towards the hydraulic conductivity of the soil. Each 
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Figure 4.9 (c): Vertical infiltration profile in 3-D. The flow is over clay. Note the axis 

of this figure is to a different scale (10-4) from those of Figs. 4.3 (a) and (b) which are 

10-3 
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plot of the change of infiltration rate over time shows this trend. This shows that the 

infiltration model works well with the SWEs and that our numerical algorithm can handle 

problems of this nature.  

 

4.10 Sediment Delivery 

It is worth noting that in the case of a frictionless flat surface, the sediment load G in both 

directions is zero. This is because flow shear stress,   , is due to bed friction, Sf, and hence it 

is zero when there is no friction.  

Mathematically:  

                                                                                                                                        (   ) 

           

       

 
                                                                                                                                  (   ) 

           

Tc is the sediment’s transport capacity. From the flowchart in Figure 3.13, G = 0 is not 

greater than Tc = 0 hence no net deposition can take place.      is also not greater than 

the critical shear stress of the soil,      since ,      thus net detachment is set to zero and 

the update on G results in no change in value. Once again the model give result which 

accords to both physical and mathematical reasoning. We now turn to cases where there is 

bottom slope and friction slope in the computational domain.  
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4.11 Flow in a Real Terrain with Steep Gradients 

Elevation data of a typical gas drilling location in Central Arkansas was obtained so that the 

performance of the model can be assessed. The elevation data is stored in a Digital 

Elevation Model (DEM). A DEM is a digital file consisting of terrain elevations for ground 

positions at regularly spaced horizontal intervals (USGS, 2012). The DEM used in this 

model is a 5 x 5 DEM which means each entry in the file represent the average elevation of 

a square area of ground whose side length is 5m. An area of 50,000m2 (250m by 200m) is 

randomly selected for analysis (Fig. 4.11a).  

 

 

 

 

 

 

 

 

 

 

Figure 4.11 (a): A mesh plot of the elevation data obtained from the DEM of a gas 

drilling area in Central Arkansas. Terrains such as this have steep slopes that make 

solving the SWEs over them a vexing problem 
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Given our DEM size, this area corresponds to a computational array of 50 rows and 40 

columns. The key features of this terrain are given below: 

Highest point: 117.134m 

Lowest Point: 100.032m 

Steepest Slope in the x-direction, So,x: 0.3200 

Steepest Slope in the y-direction, So,y: 0.2400 

Steep gradients increase the non-linearity of coupled hyperbolic PDEs describing overland 

flow and make them less robust to solve numerically. This is why many works assume the 

kinematic or diffusive wave model when solving the SWEs. Even among those who employ 

the full dynamic form of the St. Venant equation, a small slope of about 0.01 is usually used 

to verify their models. To the best of the author’s knowledge, this is the first work that will 

attempt to tackle a bed slope of this magnitude. 

For the simulation carried out, the size of the time step,   , was 10-4s. Such a small time 

step makes the computation run for a longer period but it also makes the solution grow in a 

bounded fashion and hence stable. The initial and boundary conditions are the same as 

those of the frictionless flat surface case. Some algorithms exist in the literature which 

claims to be able to solve the SWEs over a “dry” bed. On closer examination however, they 

always specify a minimum positive flow depth below which the bed is assumed dry. A 

starting value of h = 0 will simply lead to mathematical singularities. 

The free surface profile of the flow after 4s is shown in Fig. 4.11(b). The flow is very gravity 

driven as per the source terms in the momentum equations:  



 

103 
 

  (     ) and since we started with a high value of h, the friction slope term is relatively 

small compared to bed slope term.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11(b): The free surface profile of the flow right after the start of the simulation 

(t = 4s). Water can be seen here quickly moving from high elevation areas (see Fig. 4.9) 

and flowing into the lowlands.  
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The free surface profile of the flow after 30s is shown next in Fig. 4.11(c). The figure shows 

that water has almost completely drained from the areas with higher elevation and is 

moving towards the boundaries through areas of lower elevation. One common misreading 

of free surface profiles is to see water as climbing uphill because an area of the 3-D plot is 

more elevated than another. A correct interpretation is that these show the depth of fluid 

on each cell. Cells that receive more fluid because of their elevation relative to their 

neighbors are expected to have greater fluid depth and thus appear higher in a 3-D profile.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11(c): The free surface profile of the flow right after 30s. The high elevation 

areas are left with very little water while water continues to drain through areas of low 

elevation as it makes its way to the boundaries 
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Figs. 4.11 (d) and (e) show the result in 2-D. The DEM of the area and the flow depth are 

both shown in 2-D and placed side-by-side to aid in visualizing the results. The color 

gradient is such that red represents the highest values and blue represents the lowest 

values and there is a spectrum of colors to depict the various depths between these two 

extremes. The lower right corner of Fig. 4.11 (d) is where the highest elevation of the 

domain occurs. The corresponding area in Fig. 4.11 (e) has the lowest fluid depth because 

the water there has flowed downhill. The downstream boundary in both the x- and y-

direction in Fig. 4.11 (d) has low elevation and fluid drains into and through it as seen in 

Fig. 4.11 (e). The lowest fluid depth of 0.0234m occurred at position (21, 8) in the 

computational domain. This is because the steepest descent in the entire domain is 

between cells (22, 8) and (21, 8).  

The data values from these numerical experiments are too large to be put in a table and 

even if we do put them in a table, it will be hard for readers to make sense of them. This is 

why we have resorted to mesh plots of the data in explaining these results. Nevertheless 

we have included the data results in the Appendix  for the sake of completeness and to help 

in further research.  

The pronounced bed slopes in the terrain are such that flow was remarkably 

unidirectional. Water movement was always towards the +x and +y- direction. Fig. 4.11 (f) 

shows the velocity plot of the flow. All the values of velocities in both horizontal directions 

are positive.  
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Figure 4:11(d):  A 2-D view of the mesh plot of the DEM showing the relative elevation 

of the cells. Cells with high elevation are red and those with low elevations are blue. 

Figure 4:11(e):  A 2-D view of the free-surface profile of the water depth after 30s of 

simulation.  Notice how the low water depths correspond to the high elevation areas in 

Fig. 4.11 (d) above.  
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Even though all the velocities in this example were positive, this should not be taken as a 

general rule. Velocities, unlike fluid depth or pollutant concentration, can take negative 

values. The negative sign indicates the direction of flow and has nothing to do with its 

magnitude. The size of the computational domain was reduced to a fourth of its original 

size using the procedure mentioned in Section 4.7. The reduction is necessary to enhance 

the visualization of the quiver plot. The quiver plot of the original domain was compared to 

the abridged version in Fig. 4.11(f) and the comparison showed that no significant 

information was lost using this procedure.  

 

Figure 4.11(f):  The flow field shows the magnitude and direction of the velocity. 

Increased momentum as flow moves downhill caused increase in the velocity as 

depicted by the longer arrows at and near the downstream boundary 
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4.12  Pollutant Transport over Real Topography 

We have shown that the model gives expected results despite the occurrence of steep 

gradients in the computational domain. The flow depth and velocity field are important 

because they help us calculate discharge and also because they are what the pollutant 

transport model and the erosion/sediment transport model relies on. 

The pollutant transport model was tested for this problem using the following values: 

Initial conditions: 

C0 (x, y, 0) = 0 

C0 (25, 20, 0) = 38 ppm  

After 10s: 

C (25, 20, t > 10) = 0 

Boundary conditions: 

   

  
                                                                                                                              (   )  

   

  
                                                                                                                             (   )  

The zero-gradient concentration imposed at the boundary will allow pollutant species to 

leave the domain if they reach the downstream boundary. The result of this simulation is 

shown in Figs. 4.12. Fig. 4.12 (a) is a longitudinal profile of the pollutant concentration. The 
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position is at y = 20 or the center of the y-axis while Fig. 4.12 (b) is the 3-D plot of surface 

profile of pollutant concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 (a): A 1-D plot of pollutant concentration profile. The source of 

the pollutant is at the middle (the peak of the figure). Pollutant species is 

seen migrating towards the downstream as they are carried by the flow.  
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Figure 4.12 (b): A mesh plot of pollutant concentration profile. The profile is 

dictated by the flow field.  
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The plot in Fig. 4.12 (a) shows that the peak has reduced significantly from 38ppm to less 

than 2.5ppm in the time after the source was turned off. The pollutant flows towards the 

downstream boundary. As the velocity plot (Fig. 4.11f) indicated, flow was towards the +x 

and +y –direction. The concentration recorded at the upstream of the domain is due to 

round-off errors. In reality, there should be zero concentration at the upstream. The 

concentration profile was – as expected – dictated by the slopes in the terrain.  Figure 4.12 

(b) shows the 3-D plot of the concentration profile at the end of the 30s simulation. It was 

greatest at the source, virtually zero at the upslope and barely reaching the downslope 

during that period.  

The flow in this simulation is mainly supercritical as most of the velocities have magnitudes 

greater than the critical velocity. There are some regions in the domain however that 

experienced subcritical flows. This is true for most practical flows: there will be regions of 

subcritical and supercritical flows and even a region with subcritical flow in one time 

instance may change to one with supercritical flow at another point in time. By giving 

reasonable results, the model has shown its ability to handle both subcritical and 

supercritical flows simultaneously.  

 

4.13  Sediment Delivery over Real Topography 

Erosion/sediment transport model was coupled with the SWEs in this simulation to give 

the sediment loads on each cell. Figs. 4.13 show the result of the simulation. Fig. 4.13 (a) 

shows the sediment delivery in the x-direction while fig. 4.13(b) shows the delivery in the 
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y-direction. The shape of the terrain (Fig. 4.11a) and the flow field (Fig. 4.11f) are key in 

interpreting the results of the erosion/sediment transport model.  
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Figure 4:13(a): Mesh plot of Sediment load in the x-direction, Gx. The cells with 

the high loads are where the gradient is at the steepest hence more detachment 

of soil occurs there. 
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Figure 4:13(b): Mesh plot of Sediment load in the y-direction, Gy. The sediment 

delivery at the downstream boundary is greater because interior cells are 

pouring into it 
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The initial conditions were: 

Gx(x,y,0) = 0 and 

Gy(x,y,0) = 0 

Sediments can be detached, transported or deposited. These three processes can occur 

simultaneously within the same cell so that what we usually discuss – and what the model 

computes – are net detachment, net transport and net deposition. The steep gradients at 

the upstream cells in the x-direction cause rapidly varied flows which erode soil quickly. 

The sediment load from these cells is therefore relatively high. The highest value calculated 

was 0.0008 kg/m/s. The downstream in the x-direction also has significant sediment loads 

because of deposition from the interior cells. The total sediment discharge can be 

calculated by summing all the sediment loads from a boundary and multiplying by the 

width of the boundary and the length of time under consideration.  

The model we have for solving SWEs has been tested both for a simple ideal surface and for 

a complex real terrain. We have examined its ability to handle gradually varied and rapidly 

varied flows. We also ran simulations to ensure that other models such as infiltration, 

pollutant transport and 2-D erosion/sediment transport was successfully coupled to the 

SWEs. In the next chapter, we will discuss the conditions under which the model can be 

expected to give bankable results as well as the limitations of the model. We will also give 

recommendations for further research in this area.   
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This work addressed the problem of reserve pit failures encountered in gas drilling sites in 

the Fayetteville Shale Play. By knowing the potential impact of a spill following a pit failure, 

better management decisions can be made that will limit the potential environmental 

damage that can be caused. This work will help in the screening of suitable locations to 

locate a reserve pit and it can also help in shaping best management practices (BMPs) 

when it comes to oil and gas infrastructure development.  

At the core of the decision support system we created is a mathematical model that 

describes the overland flow of fluid. An infiltration model that describes the vertical 

infiltration of water into the soil, a pollutant transport model that shows the spatial-

temporal evolution of pollutant species concentration and an erosion/sediment transport 

model that gives the sediment delivery from a given event were coupled with the Shallow 

Water Equations (SWEs) that govern overland flow to give a more complete description of 

the flow dynamics we will encounter in reality.  

Oil spills in marine environments have been well studied and there exist a number of spill 

models suitable for aquatic conditions. Terrestrial spill models – to the best of the author’s 

knowledge – do not exist. This work is a first in that regard. The SWEs together with the 

various models coupled with it form a system of highly non-linear hyperbolic PDEs that 
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only yield to numerical solutions. A number of novel approaches were developed to handle 

the non-linearities encountered in the model.   

A novel semi-implicit approach was developed inside the MacCormack explicit scheme to 

deal with the “shallow depth problem.” At shallow depths, frictional forces tend to become 

very large giving unrealistically large values of velocities and negative fluid depths. The 

new approach developed in this work solved the problem so that when fluid depths are 

shallow, the frictional forces are correspondingly low. This closely matches the physics of 

the situation.  

A new erosion/sediment transport model was derived from first principles and reasonable 

assumptions about the nature of the problem. The only 2-D surface runoff model in the 

literature is CASC2D developed by Julien & Saghafian (1991). Johnson & Julien (2000) 

added an upland erosion subroutine to CASC2D and called it CASC2D-SED.  CASC2D-SED 

uses the kinematic wave approximation to the St. Venant’s equation in getting values of 

flow depth and flow velocities and also assumes gentle slopes (<5%) in the terrain. This 

project looked at terrains with steep slopes (>30%) and uses the fully dynamic form of the 

St. Venant’s equation to obtain the flow variables so, in that sense, it is better than CASC2D-

SED.  

The ability to handle very shallow water depths and highly steep slopes in a topography 

while giving information about flow discharge, areal distribution of pollutant concentration 

and sediment delivery simultaneously is the new knowledge this dissertation brings to the 

field of environmental protection and shale gas development. It is an advancement of the 

modeling capabilities on real topography for surface fluid transport of finite volume spills. 
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5.2 Limitations of the Model 

1. Computational Speed 

The MacCormack explicit scheme used in solving the set of equations describing the 

various aspects of the flow has been shown to be the best available scheme for such 

purposes (Hoffman, 1992). The scheme’s major con though is that it is prone to instability. 

To assure a stable solution, a limit is placed on the size of time step that can be taken from 

one time level to the next. To successfully deal with the steepness encountered in the 

model, very small time steps (~10-4s) were taken. This gave a solution that is reliable and 

stable but it takes a long time for the program to return a result. The steeper the slopes, the 

smaller the time steps that must be taken.  

 

2. Raindrop Impact 

The impact of raindrops was neglected in formulating the erosion/sediment transport 

model. Raindrops loosen a compact soil making it more susceptible to detachment and so 

erosion models typically include a term to account for this phenomenon.  The reason for 

neglecting this dynamic here is that this project is primarily focused on what happens in 

the event of a single incident involving a large spill. But if a reserve pit overflows and spills 

its contents because of a highly intense rainfall or if a spill incident coincides with a highly 

intense rainfall, then the assumption of zero raindrop impact becomes invalid. The model 

will thus underestimate sediment yield in these scenarios.  
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5.3 Recommendations 

1. Computational Speed 

To make the model useful for real-time decision making, its computational speed has to be 

greatly improved. There are two ways to accomplish this.  

First, the computer program should be translated from MATLAB into a faster programming 

language. The computer model was written in MATLAB because it is an ideal language for 

developing and debugging programs. MATLAB prioritizes usability over optimal program 

efficiency. To obtain results on time however, a much faster and more efficient optimized 

code should be used.  

Second, the program’s backend calculations need to be run on a supercomputer with 

powerful processor speeds and bigger memory. The user will input values from a desktop 

but the real computations will be taking place on the supercomputer. Other fast computing 

alternatives can be explored, for example, parallel micro-computers may be used instead of 

one big supercomputer.  

 

2. Erosion/Sediment Transport Model 

The default value of the soil erodibility parameter, kt, and the soil critical shear stress,   , 

were taken from the Water Erosion Prediction Project (WEPP) model. WEPP arrived at the 

value of 0.0115s/m for kt and 3.1Pa for    by assuming a soil sample with equal ratio of 

different soil textures and by assuming moderate vegetative cover and soil organic content. 

If the soil texture in a particular application is known, and some other information about 
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the vegetation and soil organic content is also known, the kt and    values for that specific 

application should be used in place of the default. Appendix G gives the guideline on how to 

determine the kt and   value for a given set of soil conditions.  

The model neglects the impact of raindrops as a detachment process. If the land is bare 

with no vegetative cover or if it is the site of a new construction with lots of loose soils and 

a storm event occurs, the actual sediment yield will be significantly greater than that 

predicted by the model. One way to ameliorate this problem is to increase the value of kt 

and reduce the value of    so that soil detachment can be greater. The increased 

detachment can then be seen as resulting from raindrop impact.  

 

5.4 Areas of Further Research 

1. Continued research is necessary in the area of computational speed. Ways to make 

the program run faster should be investigated. We developed a model that is as 

parsimonious as possible. We captured the key (but not all of the) physics that can 

occur in a spill event. As the model becomes more complex to closely match reality, 

the need for a faster program will become even more important.  

2. The pollutant transport model should be improved so that it can handle chemical 

reaction among the pollutant species or between the species and soil sediments. It 

should also be able to treat pollutant (biological) decay and adsorption onto soil 

particles.  

3. The erosion/sediment transport model can only address one class of soil texture at 

a time. The model should be modified so that it can handle a mixture of soil classes. 
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The ratio of each soil class would be known and the soil mixture would have an 

aggregate soil properties value that would be a mean of the different values of its 

constituent parts.  
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Appendix A    

Derivation of the St. Venant Equations 

Consider the unit cube system 

 

 

 

 

Continuity Equation ( from Navier-Stokes) 
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Integrate the continuity equations over depth, term by term 

 

      
∫

  

  
  

  

  

 
 

      

  

  
 |

  

  

  
  

  
                                                                                        

y, v 

z, w 

x,u 

R 

I 



 

134 
 

 

      
∫

  

  
  

  

  

 
 

      

  

  
 |

  

  

  
  

  
                                                                                       

For the third term, we need the Kinematic boundary conditions 
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We regroup the equation, by letting h = z2 – z1 with velocity constant with depth 
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Momentum Equations ( Navier- Stokes x-direction) 

 
  

  
  

  

  
  

  

  
  

  

  
   

  

  
                                                                                       

Performing a term by term integration 

First:    
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Fourth:  we employ the kinematic boundary conditions  
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The left side of the momentum equation becomes 
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In terms of shear stress, the right side is written as 

 
  

  
 

    

  
 

    

  
  

    

  
                                                                                                                

Assume horizontal shear components are small 

 
  

  
  

    

  
                                                                                                                                           

The first term is the unbalanced pressure force; when vertically averaged: 
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The second term must be vertically integrated: 
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Shear stress at the water surface is zero 

The third term is the gravitational force: 
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Combining and multiplying by depth 
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Combining all terms, the x-direction momentum equation for overland flow is 
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Similarly, the y-direction equation is 
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With some substitutions: 
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The resulting equations may be written in the conservation form as follows: 

Conservation of mass equation 

  

  
 

  

  
  

  

  
                                                                                                                                

Conservation of momentum equation in x-direction 

  

  
 

  

  
  

  

  
                                                                                                                                      

Conservation of momentum equation in y-direction 

  

  
 

  

  
  

  

  
                                                                                                                                    

Here x and y are horizontal co-ordinates, t is time and the conservation variables are 

   (     )             (     ) (     )                         (     ) (     )                          

       
 

 
                                                                                                                                         

                                                                                                                                                            

       
 

 
                                                                                                                                         

   and    are source terms defined as 

  (     )    (       )                                                                                                                 

  (     )    (       )                                                                                                                  
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Appendix B  

Derivation of the advection-diffusion equation describing pollutant transport 

Many physical problems involve simultaneous combinations of convection, diffusion, and 

dispersion. Advection is used to model transport of the conserved quantity through the 

domain by the action of some velocity field i.e. the bulk un-deformed transport of energy 

through a domain as a result of a pressure or head gradient. Diffusion on the other hand, is 

the phenomenon whereby energy spreads out spatially as time increases. It is a process 

whereby energy flows from places of high density to places of lower density, and the rate of 

energy flux is proportional to the spatial gradient of the energy density. 

The rate of pollutant transport that occurs by advection is given by the product of the 

solute concentration c and the components of the fluid velocity while the rate of pollutant 

transport that occurs by diffusion is given by Fick’s Law.  

Transport of a solute by advection can be described by the equation: 

  

  
   

  

  
  

  

  
  

  

  
                                                                                                                          

which is equivalent to                                                                                                                          

where   u = u, v, w  represents the velocity in vector form and  

c = concentration of quantity that is being advected 
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Fick’s Law of diffusion is stated as: 
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)                                                                                                                      

which is equivalent to                                                                                                                      

where   D represents the Diffusion coefficient. 

When modeling phenomena in which both advection and diffusion occur, for example, a 

chemical that is being advected by the bulk motion of the fluid in which it is dissolved and 

is also diffusing through the fluid, according to Fick’s law, we obtain a new constitutive law 

for the process simply by adding together the advection constitutive law and the diffusion 

constitutive law. 

 The advection-diffusion constitutive law is thus: 

                                                                                                                                                            

Since this constitutive law represents the flux of the quantity, substituting for flux in the 

continuity equation yields the advection-diffusion equation which describes solute or 

pollutant transport of a quantity through a fluid. 
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Where qc is the pollutant source/sink term. 
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Csv|x 
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Appendix C   

Derivation of the Sediment Transport/Erosion Model 

The model is an extension of Foster’s equation       
  

  
         in 2-D 

System: The fluid above the erodible bed 

 

 

 

 

 

 

There can be no net accumulation in the fluid layer so 

        (   |     |    )       (   |     |    )               

                                                                                                     

   
 (    )

  
  

 (    )

  
                                                                                                              

Where E and D have units of 
  

    
 (

    

                   
) 

And Cs is the sediment concentration in mass of sand (kg)/m3 of fluid 

Deposition 

from the 

layer into the 

bed below. 

Detachment 

from the bed 

below into 

the layer. 
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or 

   

  
  

   

  
                                                                                                                                   

Where 

                                                                                                                                  

And                        

Which is positive for detachment and negative for deposition 
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Appendix D  

An Overview of Classes of PDEs 

Physical problems are governed by many different partial differential equations. The 

classification of partial differential equations was formally developed by utilizing the 

theory of characteristics as outlined by Crandall. The development provides considerable 

insight into the theoretical foundations of the classification.  Partial differential equations 

are classified as parabolic, hyperbolic or elliptic based on the properties of the equations.  

Hyperbolic Equations 

Consider the generalized second order differential equation in the function u for two 

independent variables x and y stated below. 

  (   )
   

   
  (   )

   

    
  (   )

   

   
  (      

  

  
 
  

  
)    

The equation is classified as hyperbolic in a region B if the discriminant b2 – 4ac is positive 

everywhere within the region. Equations of this type require both initial and boundary 

conditions. The boundary conditions may consist of the value of the function (Dirichlet 

type), its normal derivative (Neuman type), or a combination of the function and its normal 

derivative (mixed type) on the region of definition. The initial conditions are the values of 

the function u and its first time derivative defined at some time to. An example of this is the 

one dimensional wave equation.  
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Parabolic Equations 

We consider again the generalized second order differential equation stated in the 

hyperbolic section. A parabolic partial differential equation is characterized by a zero 

discriminant at all points within the region B over which the equation is defined i.e. b2 – 4ac 

=0. Initial and boundary values are also required for a properly posed problem and just as 

in the hyperbolic case; the boundary conditions can be the function value, its normal 

derivative or a linear combination of the function and its normal derivative. An important 

type of a parabolic equation is the one-dimensional heat flow equation as well as the 

potential flow equation in saturated porous media. 

Elliptic Equations 

For the case of an elliptic partial differential equation, the discriminant of the generalized 

second order partial differential equation described in the preceding sections over a region 

B is negative. In contrast to parabolic and hyperbolic equations which require an open 

domain, elliptic equations require boundary conditions specified over a closed boundary of 

the region B. It requires that a value of the function, its normal derivative or a combination 

of both be specified to assure a unique solution. An important equation of this form is the 

Poisson equation 

   

   
 

   

   
  (   ) 

An equivalent expression of this where the source term goes to zero is the Laplace equation 

which describes the steady state temperature profile in two dimensional space. 
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Appendix E 

Computer Programs 

E.1  Program that generated Figures 4.2 (b) and (c)  

%{ 
This script file is going to run the analytical solutions to the Steady 
State St. Venant equations. The solutions were got from a Numerical 
Analysis Report (3/95) from the University of Reading, UK. Title of the 
Report is "Steady Open Channel Test Problems with Analytic Solutions" by I 
MacDonald, M J Baines, N K Nichols and P G Samuels.  
%} 
% To make sure the previous run is not interfering with this run: 
clear all 
close all 
clc 
  
% Define the channel reach 
x = linspace(0,1000,1001); % x is the distance along the channel.  
g = 10; % acceleration due to gravity 
Fluid_Depth = (4/g)^(1/3).*(1 + 0.5*exp(-16*(0.001* x - 0.5).^2)); % this is the 
hypothetical depth profile 
hold on 
plot(x, Fluid_Depth,'k') 
yprimex = -(4/g)^(1/3).*(2/125)*(0.001* x - 0.5).*exp(-16*(0.001* x - 0.5).^2); 
  
% Slope function as given in the report 
Slope = (1- 4./(g*Fluid_Depth.^3)).*yprimex + 0.36*((2* Fluid_Depth+ 10).^(4/3)./(10* 
Fluid_Depth).^(10/3)); 
plot(x, 100*Slope, 'k--') 
  
%As given in the example: 
Q = 20; % Q is the discharge 
T = 10; % Channel width 
  
Critical_Depth = (Q^2/(g*T^2))^(1/3); % The critical depth occurs when Froude number = 
1 
Critical_Depth = Critical_Depth*ones(1,length(x)); % turning it into an array 
plot (x, Critical_Depth, 'k-.') 
  
hold off 
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% To get the bed profile, you integrate the slope of the bed:  
% Slope = -dz/dx 
  
Bed_Level = zeros(1,length(x)); % preallocating for speed. Z is the bed level 
Bed_Level(1,length(x)) = 0; %This is an abritrary boundary condition.  
% I could put whatever value here instead of zero and it wont make a difference in the 
argument 
Grid_size = x(3) - x(2); % I could have used any two successive elements in x. The idea is to 
get the grid size 
for i = length(x):-1:2 
    Bed_Level(1,i-1) = Bed_Level(1,i)+ Slope(1,i)*Grid_size;  
end 
  
figure    
%This creates a new figure window. I don't want to have the two plots on 
%the same figure because it is much better to display in Microsoft Word 
%this way. I will add the legend and axis label in Word also 
  
hold on 
plot (x,Bed_Level, 'k', 'LineWidth', 2) 
  
Free_Surface = Bed_Level+Fluid_Depth; 
  
plot(x,Free_Surface,'k') 
  
Critical_Surface = Bed_Level + Critical_Depth; 
  
plot(x, Critical_Surface, 'k-.') 
  
hold off 
  
  
 
E.2  Program that generated Figures 4.3 

%{ 
This script file calls the 1-D MacCormack function file and displays the 
result. It is where the input values are set. 
%} 
clc 
clear all 
close all 
tic 
%% This section prepares the visualization of results 
scrnsz = get(0,'ScreenSize'); 
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figure('Position',[1 1 scrnsz(3) 0.9*scrnsz(4)]) 
  
%% 
t = 0;          % Initialize time 
T = 800;      % Simulation Time in seconds 
del_t = 0.1;     % Time step 
grid_size = 1;  % channel length chopped into 1m intervals 
g   = 10;     % Acceleration due to gravity 
%% DEM, Z, will be used here to test the code 
Z = 
[7.23051126373644,7.21888464542185,7.20726338179063,7.19564754326263,7.18403
720092306,7.17243242652359,7.16083329248348,7.14923987189050,7.137652238501
78,7.12607046674453,7.11449463171661,7.10292480918701,7.09136107559620,7.079
80350805632,7.06825218435126,7.05670718293662,7.04516858293947,7.0336364641
5805,7.02211090706129,7.01059199278816,6.99907980314692,6.98757442061420,6.9
7607592833389,6.96458441011597,6.95309995043509,6.94162263442902,6.93015254
789697,6.91868977729769,6.90723440974747,6.89578653301792,6.88434623553358,6
.87291360636940,6.86148873524801,6.85007171253682,6.83866262924491,6.8272615
7701984,6.81586864814414,6.80448393553172,6.79310753272405,6.78173953388611,
6.77038003380227,6.75902912787183,6.74768691210447,6.73635348311547,6.725028
93812070,6.71371337493146,6.70240689194910,6.69110958815941,6.6798215631268
4,6.66854291698851,6.65727375044799,6.64601416476888,6.63476426176819,6.6235
2414380949,6.61229391379588,6.60107367516270,6.58986353187003,6.57866358839
505,6.56747394972406,6.55629472134439,6.54512600923603,6.53396791986305,6.52
282056016483,6.51168403754702,6.50055845987234,6.48944393545111,6.478340573
03156,6.46724848178996,6.45616777132051,6.44509855162494,6.43404093310205,6.
42299502653684,6.41196094308956,6.40093879428448,6.38992869199845,6.3789307
4844922,6.36794507618362,6.35697178806541,6.34601099726302,6.33506281723699,
6.32412736172727,6.31320474474024,6.30229508053557,6.29139848361288,6.280515
06869811,6.26964495072980,6.25878824484507,6.24794506636545,6.2371155307825
3,6.22629975374331,6.21549785103553,6.20470993857262,6.19393613237860,6.1831
7654857271,6.17243130335394,6.16170051298528,6.15098429377789,6.14028276207
500,6.12959603423576,6.11892422661880,6.10826745556574,6.09762583738442,6.08
699948833210,6.07638852459846,6.06579306228838,6.05521321740473,6.044649105
83089,6.03410084331321,6.02356854544330,6.01305232764026,6.00255230513271,5.
99206859294078,5.98160130585794,5.97115055843278,5.96071646495065,5.9502991
3941524,5.93989869553004,5.92951524667977,5.91914890591167,5.90879978591685,
5.89846799901139,5.88815365711757,5.87785687174493,5.86757775397136,5.857316
41442412,5.84707296326082,5.83684751015043,5.82664016425424,5.8164510342067
8,5.80628022809685,5.79612785344841,5.78599401720162,5.77587882569380,5.7657
8238464047,5.75570479911644,5.74564617353688,5.73560661163850,5.72558621646
078,5.71558509032723,5.70560333482679,5.69564105079520,5.68569833829661,5.67
577529660515,5.66587202418667,5.65598861868063,5.64612517688200,5.636281794
72337,5.62645856725722,5.61665558863824,5.60687295210586,5.59711074996698,5.
58736907357876,5.57764801333168,5.56794765863272,5.55826809788879,5.5486094
1849030,5.53897170679498,5.52935504811189,5.51975952668561,5.51018522568080,
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5.50063222716679,5.49110061210260,5.48159046032209,5.47210185051944,5.462634
86023484,5.45318956584048,5.44376604252680,5.43436436428910,5.4249846039142
9,5.41562683296809,5.40629112178249,5.39697753944343,5.38768615377896,5.3784
1703134758,5.36917023742700,5.35994583600317,5.35074388975972,5.34156446006
770,5.33240760697568,5.32327338920020,5.31416186411662,5.30507308775029,5.29
600711476814,5.28696399847057,5.27794379078383,5.26894654225270,5.259972302
03358,5.25102111788799,5.24209303617644,5.23318810185276,5.22430635845873,5.
21544784811922,5.20661261153767,5.19780068799202,5.18901211533105,5.1802469
2997110,5.17150516689325,5.16278685964091,5.15409204031782,5.14542073958647,
5.13677298666699,5.12814880933636,5.11954823392819,5.11097128533277,5.102417
98699771,5.09388836092883,5.08538242769162,5.07690020641306,5.0684417147838
5,5.06000696906112,5.05159598407149,5.04320877321460,5.03484534846705,5.0265
0572038675,5.01818989811768,5.00989788939506,5.00162970055094,4.99338533652
020,4.98516480084694,4.97696809569125,4.96879522183645,4.96064617869662,4.95
252096432459,4.94441957542032,4.93634200733959,4.92828825410316,4.920258308
40618,4.91225216162813,4.90426980384294,4.89631122382960,4.88837640908305,4.
88046534582545,4.87257801901775,4.86471441237164,4.85687450836176,4.8490582
8823830,4.84126573203987,4.83349681860667,4.82575152559398,4.81802982948595,
4.81033170560961,4.80265712814926,4.79500607016102,4.78737850358773,4.779774
39927405,4.77219372698182,4.76463645540565,4.75710255218878,4.7495919839391
0,4.74210471624543,4.73464071369395,4.72719993988492,4.71978235744948,4.7123
8792806670,4.70501661248077,4.69766837051836,4.69034316110614,4.68304094228
840,4.67576167124488,4.66850530430866,4.66127179698418,4.65406110396540,4.64
687317915400,4.63970797567773,4.63256544590882,4.62544554148241,4.618348213
31511,4.61127341162360,4.60422108594322,4.59719118514668,4.59018365746270,4.
58319845049475,4.57623551123975,4.56929478610676,4.56237622093571,4.5554797
6101607,4.54860535110546,4.54175293544832,4.53492245779444,4.52811386141748,
4.52132708913342,4.51456208331893,4.50781878592967,4.50109713851849,4.494397
08225356,4.48771855793634,4.48106150601952,4.47442586662476,4.4678115795603
2,4.46121858433860,4.45464682019352,4.44809622609765,4.44156674077935,4.4350
5830273962,4.42857085026882,4.42210432146320,4.41565865424124,4.40923378635
985,4.40282965543026,4.39644619893382,4.39008335423751,4.38374105860927,4.37
741924923309,4.37111786322387,4.36483683764205,4.35857610950798,4.352335615
81610,4.34611529354877,4.33991507968997,4.33373491123858,4.32757472522156,4.
32143445870675,4.31531404881539,4.30921343273448,4.30313254772869,4.2970713
3115209,4.29102972045959,4.28500765321802,4.27900506711697,4.27302189997932,
4.26705808977142,4.26111357461304,4.25518829278691,4.24928218274808,4.243395
18313283,4.23752723276735,4.23167827067606,4.22584823608963,4.2200370684527
0,4.21424470743118,4.20847109291936,4.20271616504659,4.19697986418364,4.1912
6213094884,4.18556290621372,4.17988213110846,4.17421974702693,4.16857569563
144,4.16294991885718,4.15734235891620,4.15175295830126,4.14618165978918,4.14
062840644394,4.13509314161943,4.12957580896187,4.12407635241194,4.118594716
20651,4.11313084488007,4.10768468326593,4.10225617649691,4.09684527000590,4.
09145190952597,4.08607604109021,4.08071761103126,4.07537656598051,4.0700528
5286698,4.06474641891593,4.05945721164711,4.05418517887271,4.04893026869510,
4.04369242950410,4.03847160997412,4.03326775906089,4.02808082599796,4.022910
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76029291,4.01775751172321,4.01262103033189,4.00750126642284,4.0023981705559
3,3.99731169354179,3.99224178643629,3.98718840053489,3.98215148736657,3.9771
3099868761,3.97212688647505,3.96713910291998,3.96216760042049,3.95721233157
442,3.95227324917192,3.94735030618766,3.94244345577297,3.93755265124756,3.93
267784609122,3.92781899393514,3.92297604855312,3.91814896385251,3.913337693
86501,3.90854219273720,3.90376241472091,3.89899831416342,3.89424984549743,3.
88951696323090,3.88479962193665,3.88009777624187,3.87541138081736,3.8707403
9036674,3.86608475961535,3.86144444329913,3.85681939615328,3.85220957290081,
3.84761492824090,3.84303541683721,3.83847099330598,3.83392161220407,3.829387
22801681,3.82486779514584,3.82036326789672,3.81587360046654,3.8113987469313
5,3.80693866123355,3.80249329716917,3.79806260837508,3.79364654831604,3.7892
4507027185,3.78485812732421,3.78048567234370,3.77612765797658,3.77178403663
158,3.76745476046668,3.76313978137573,3.75883905097514,3.75455252059047,3.75
028014124301,3.74602186363634,3.74177763814282,3.73754741479015,3.733331143
24778,3.72912877281347,3.72494025239973,3.72076553052026,3.71660455527651,3.
71245727434409,3.70832363495930,3.70420358390565,3.70009706750037,3.6960040
3158101,3.69192442149201,3.68785818207132,3.68380525763705,3.67976559197425,
3.67573912832155,3.67172580935806,3.66772557719018,3.66373837333851,3.659764
13872489,3.65580281365934,3.65185433782729,3.64791865027668,3.6439956894052
9,3.64008539294805,3.63618769796450,3.63230254082631,3.62842985720488,3.6245
6958205908,3.62072164962306,3.61688599339414,3.61306254612090,3.60925123979
123,3.60545200562065,3.60166477404063,3.59788947468713,3.59412603638915,3.59
037438715751,3.58663445417370,3.58290616377890,3.57918944146309,3.575484211
85436,3.57179039870828,3.56810792489753,3.56443671240155,3.56077668229644,3.
55712775474498,3.55348984898676,3.54986288332857,3.54624677513484,3.5426414
4081833,3.53904679583095,3.53546275465474,3.53188923079305,3.52832613676188,
3.52477338408138,3.52123088326753,3.51769854382408,3.51417627423453,3.510663
98195443,3.50716157340377,3.50366895395963,3.50018602794898,3.4967126986416
8,3.49324886824370,3.48979443789049,3.48634930764058,3.48291337646941,3.4794
8654226329,3.47606870181363,3.47265975081135,3.46925958384146,3.46586809437
795,3.46248517477876,3.45911071628109,3.45574460899683,3.45238674190823,3.44
903700286381,3.44569527857448,3.44236145460984,3.43903541539477,3.435717044
20616,3.43240622316993,3.42910283325824,3.42580675428692,3.42251786491317,3.
41923604263340,3.41596116378140,3.41269310352664,3.40943173587292,3.4061769
3365707,3.40292856854810,3.39968651104637,3.39645063048318,3.39322079502041,
3.38999687165057,3.38677872619695,3.38356622331406,3.38035922648831,3.377157
59803889,3.37396119911896,3.37076988971697,3.36758352865829,3.3644019736070
5,3.36122508106827,3.35805270639011,3.35488470376649,3.35172092623984,3.3485
6122570416,3.34540545290831,3.34225345745946,3.33910508782692,3.33596019134
603,3.33281861422247,3.32968020153667,3.32654479724852,3.32341224420232,3.32
028238413192,3.31715505766619,3.31403010433459,3.31090736257313,3.307786669
73043,3.30466786207412,3.30155077479742,3.29843524202595,3.29532109682483,3.
29220817120594,3.28909629613549,3.28598530154175,3.28287501632309,3.2797652
6835618,3.27665588450446,3.27354669062686,3.27043751158669,3.26732817126085,
3.26421849254916,3.26110829738402,3.25799740674024,3.25488564064511,3.251772
81818871,3.24865875753441,3.24554327592968,3.24242618971699,3.2393073143450
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7,3.23618646438030,3.23306345351836,3.22993809459610,3.22681019960362,3.2236
7957969658,3.22054604520872,3.21740940566457,3.21426946979244,3.21112604553
759,3.20797894007557,3.20482795982585,3.20167291046561,3.19851359694377,3.19
534982349518,3.19218139365510,3.18900811027377,3.18582977553133,3.182646190
95279,3.17945715742335,3.17626247520376,3.17306194394606,3.16985536270936,3.
16664252997589,3.16342324366727,3.16019730116089,3.15696449930658,3.1537246
3444339,3.15047750241657,3.14722289859481,3.14396061788756,3.14069045476262,
3.13741220326384,3.13412565702909,3.13083060930827,3.12752685298165,3.124214
18057831,3.12089238429470,3.11756125601347,3.11422058732243,3.1108701695336
3,3.10750979370269,3.10413925064822,3.10075833097142,3.09736682507585,3.0939
6452318738,3.09055121537420,3.08712669156711,3.08369074157984,3.08024315512
960,3.07678372185771,3.07331223135044,3.06982847315993,3.06633223682527,3.06
282331189371,3.05930148794199,3.05576655459784,3.05221830156156,3.048656518
62773,3.04508099570706,3.04149152284834,3.03788789026049,3.03426988833480,3.
03063730766713,3.02698993908039,3.02332757364697,3.01965000271137,3.0159570
1791288,3.01224841120835,3.00852397489508,3.00478350163375,3.00102678447148,
2.99725361686494,2.99346379270353,2.98965710633266,2.98583335257705,2.981992
32676417,2.97813382474766,2.97425764293082,2.97036357829025,2.9664514283993
7,2.96252099145215,2.95857206628675,2.95460445240930,2.95061795001764,2.9466
1236002512,2.94258748408440,2.93854312461133,2.93447908480877,2.93039516869
045,2.92629118110487,2.92216692775913,2.91802221524284,2.91385685105195,2.90
967064361261,2.90546340230502,2.90123493748720,2.89698506051882,2.892713583
78491,2.88842032071962,2.88410508582985,2.87976769471889,2.87540796411004,2.
87102571187005,2.86662075703265,2.86219291982191,2.85774202167554,2.8532678
8526816,2.84877033453445,2.84424919469220,2.83970429226530,2.83513545510661,
2.83054251242072,2.82592529478664,2.82128363418028,2.81661736399693,2.811926
31907352,2.80721033571080,2.80246925169532,2.79770290632134,2.7929111404125
4,2.78809379634359,2.78325071806157,2.77838175110715,2.77348674263572,2.7685
6554143825,2.76361799796196,2.75864396433084,2.75364329436600,2.74861584360
571,2.74356146932531,2.73848003055693,2.73337138810891,2.72823540458502,2.72
307194440351,2.71788087381581,2.71266206092510,2.70741537570454,2.702140690
01526,2.69683787762418,2.69150681422140,2.68614737743747,2.68075944686029,2.
67534290405174,2.66989763256406,2.66442351795588,2.65892044780798,2.6533883
1173875,2.64782700141929,2.64223641058827,2.63661643506637,2.63096697277051,
2.62528792372761,2.61957919008812,2.61384067613918,2.60807228831738,2.602273
93522125,2.59644552762330,2.59058697848177,2.58469820295201,2.5787791183974
0,2.57282964440003,2.56684970277085,2.56083921755959,2.55479811506414,2.5487
2632383965,2.54262377470718,2.53649040076195,2.53032613738120,2.52413092223
163,2.51790469527644,2.51164739878194,2.50535897732375,2.49903937779259,2.49
268854939961,2.48630644368132,2.47989301450412,2.47344821806829,2.466972012
91169,2.46046435991293,2.45392522229408,2.44735456562305,2.44075235781539,2.
43411856913576,2.42745317219890,2.42075614197012,2.41402745576544,2.4072670
9325118,2.40047503644316,2.39365126970543,2.38679577974854,2.37990855562739,
2.37298958873856,2.36603887281731,2.35905640393398,2.35204218049007,2.344996
20321376,2.33791847515509,2.33080900168058,2.32366779046748,2.3164948514975
8,2.30929019705048,2.30205384169653,2.29478580228927,2.28748609795744,2.2801
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5475009654,2.27279178235998,2.26539722064978,2.25797109310686,2.25051343010
085,2.24302426421955,2.23550363025793,2.22795156520669,2.22036810824044,2.21
275330070548,2.20510718610713,2.19742981009667,2.18972122045794,2.181981467
09344,2.17421060201014,2.16640867930484,2.15857575514917,2.15071188777423,2.
14281713745485,2.13489156649346,2.12693523920364,2.11894822189329,2.1109305
8284744,2.10288239231077,2.09480372246975,2.08669464743441,2.07855524321992,
2.07038558772768,2.06218576072621,2.05395584383172,2.04569592048838,2.037406
07594821,2.02908639725085,2.02073697320289,2.01235789435704,2.0039492529909
6,1.99551114308591,1.98704366030505,1.97854690197158,1.97002096704663,1.9614
6595610688,1.95288197132201,1.94426911643189,1.93562749672361,1.92695721900
829,1.91825839159769,1.90953112428066,1.90077552829940,1.89199171632554,1.88
317980243613,1.87433990208938,1.86547213210033,1.85657661061635,1.847653457
09254,1.83870279226697,1.82972473813589,1.82071941792870,1.81168695608299,1.
80262747821934,1.79354111111618,1.78442798268446,1.77528822194231,1.7661219
5898966,1.75692932498282,1.74771045210891,1.73846547356045,1.72919452350973,
1.71989773708331,1.71057525033642,1.70122720022741,1.69185372459219,1.682454
96211867,1.67303105232124,1.66358213551528,1.65410835279171,1.6446098459915
1,1.63508675768043,1.62553923112365,1.61596741026051,1.60637143967935,1.5967
5146459244,1.58710763081091,1.57744008471989,1.56774897325363,1.55803444387
082,1.54829664452996,1.53853572366486,1.52875183016031,1.51894511332777,1.50
911572288131,1.49926380891366,1.48938952187231,1.47949301253594,1.469574431
99081,1.45963393160749,1.44967166301763,1.43968777809094,1.42968242891240,1.
41965576775957,1.40960794708014,1.39953911946964,1.38944943764939,1.3793390
5444459,1.36920812276268,1.35905679557185,1.34888522587978,1.33869356671261,
1.32848197109416,1.31825059202527,1.30799958246347,1.29772909530284,1.287439
28335410,1.27713029932495,1.26680229580061,1.25645542522467,1.2460898398801
2,1.23570569187066,1.22530313310225,1.21488231526492,1.20444338981482,1.1939
8650795653,1.18351182062563,1.17301947847153,1.16250963184057,1.15198243075
936,1.14143802491837,1.13087656365587,1.12029819594201,1.10970307036329,1.09
909133510718,1.08846313794714,1.07781862622777,1.06715794685036,1.056481246
25858,1.04578867042457,1.03508036483522,1.02435647447874,1.01361714383148,1.
00286251684509,0.992092736933869,0.981307946962432,0.970508289233634,0.9596
93905476765,0.948864936836017,0.938021523859212,0.927163806486807,0.9162919
24041158,0.905406015216056,0.894506218066528,0.883592669998896,0.8726655077
61104,0.861724867433307,0.850770884418717,0.839803693434710,0.8288234285041
94,0.817830222947222,0.806824209372874,0.795805519671379,0.784774285006497,0
.773730635808146,0.762674701765274,0.751606611818984,0.740526494155895,0.729
434476201749,0.718330684615255,0.707215245282175,0.696088283309634,0.684949
923020680,0.673800287949058,0.662639500834225,0.651467683616581,0.640284957
432932,0.629091442612173,0.617887258671182,0.606672524310942,0.595447357412
867,0.584211875035347,0.572966193410496,0.561710427941111,0.550444693197830,
0.539169102916495,0.527883769995709,0.516588806494595,0.505284323630740,0.49
3970431778338,0.482647240466510,0.471314858377819,0.459973393346962,0.44862
2952359640,0.437263641551605,0.425895566207888,0.414518830762184,0.40313353
8796417,0.391739793040467,0.380337695372055,0.368927346816795,0.35750884754
8395,0.346082296889022,0.334647793309805,0.323205434431502,0.31175531702529
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9,0.300297537013760,0.288832189471916,0.277359368628486,0.265879167867241,0.
254391679728496,0.242896995910728,0.231395207272325,0.219886403833456,0.208
370674778067,0.196848108455985,0.185318792385150,0.173782813253951,0.162240
256923675,0.150691208431069,0.139135751990996,0.127573970999203,0.116005948
035187,0.104431764865156,0.0928515024450876,0.0812652409238769,0.0696730596
465781,0.0580750371577313,0.0464712512047745,0.0348617787415392,0.023246695
9318254,0.0116260781530549,0;]; 
  
%Slope = ones(1,length(Z)); % pre-allocating the Slope array for speed 
  
for i = 1:length(Z)-1 
    Slope(i) = - (Z(i+1)-Z(i))/grid_size;  
end 
  
Slope = [Slope Slope(end)]; % this ensures the pre-allocation doesn't affect the boundary 
value of the Slope 
  
%% Initial conditions of fluid depth and velocity as given in the Test Problems 
h_o = 0.748409*ones(1,length(Z));        % initial flow depth (in metres) 
u_o = 2/0.748409*ones(1,length(Z));      % velocity 
  
%% 
t = t + del_t; 
n = 0; %start counter 
while t < T 
    % The MacCormack Method is used to solve the Shallow Water equations 
        
    [h_c,u_c] = NumericalSolution(h_o,u_o,del_t,grid_size,Slope); 
     
    %The output serve as input at the next time step 
    h_o = h_c; u_o = u_c; 
     
    % Advance one time step 
    t = t + del_t; 
     
    n= n+ 1; %increase counter by 1 
     
    %% Movie of the Simulation 
     
    plot(h_o) 
    xlim([0 1000]); ylim([0.3 1.3]) 
    drawnow 
    pause(0.01) 
end 
toc 
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 E.3  Program that generated Figures 4.4.2 (b) and (c)  

%{ 
This script file is going to run the analytical solutions to the Steady 
State St. Venant equations. The solutions were got from a Numerical 
Analysis Report (3/95) from the University of Reading, UK. Title of the 
Report is "Steady Open Channel Test Problems with Analytic Solutions" by I 
MacDonald, M J Baines, N K Nichols and P G Samuels. 
%} 
% To make sure the previous run is not interfering with this run: 
clear g n i t T Slope Z  
close all 
clc 
  
%% Define the channel reach 
  
x = linspace(0,1000,1001); % x is the distance along the channel. 
g = 10; % acceleration due to gravity 
a = [-0.348427 0.552264 -0.555580]; % Vector containing terms required for calculation of 
fluid depth 
  
%% Calculate the Fluid depth and its derivative 
  
Fluid_Depth = zeros(1,length(x)); % preallocating for speed. 
yprimex = zeros(1,length(x)); % preallocating for speed. 
for i = 1:length(x) 
    if x(i) >= 0 && x(i) <= 500 
        Fluid_Depth(i) = (4/g)^(1/3)*(0.9 - 0.1667*exp(-0.004*x(i))); % this is the 
hypothetical depth profile 
        yprimex(i) = (4/g)^(1/3)*(0.000667*exp(-0.004*x(i))); 
    else 
        Summation = 0; Summationprime = 0; 
        for k = 1:3 
            Summation = Summation + a(k)*exp(-20*k*(0.001*x(i) - 0.5)); 
            Summationprime = Summationprime + k*a(k)*exp(-20*k*(0.001*x(i) - 0.5)); 
        end 
        Fluid_Depth(i) = (4/g)^(1/3)*(1 + Summation + (0.8*exp(0.001*x(i) - 1))); 
        yprimex(i) = (4/g)^(1/3)*(-0.02*Summationprime + (0.0008*exp(0.001*x(i) - 1))); 
    end 
end 
%% Plotting Section 
hold on 
plot(x, Fluid_Depth,'k') 
  
% Slope function as given in the report 
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Slope = (1- 4./(g*Fluid_Depth.^3)).*yprimex + 0.16*((2* Fluid_Depth+ 10).^(4/3)./(10* 
Fluid_Depth).^(10/3)); 
plot(x, 50*Slope, 'k--') 
  
%As given in the example: 
Q = 20; % Q is the discharge 
T = 10; % Channel width 
  
Critical_Depth = (Q^2/(g*T^2))^(1/3); % The critical depth occurs when Froude number = 
1 
Critical_Depth = Critical_Depth*ones(1,length(x)); % turning it into an array 
plot (x, Critical_Depth, 'k-.') 
  
hold off 
  
% To get the bed profile, you integrate the slope of the bed: 
% Slope = -dz/dx 
  
Bed_Level = zeros(1,length(x)); % preallocating for speed. Z is the bed level 
Bed_Level(1,length(x)) = 0; %This is an abritrary boundary condition. 
% I could put whatever value here instead of zero and it wont make a difference in the 
argument 
Grid_size = x(3) - x(2); % I could have used any two successive elements in x. The idea is to 
get the grid size 
for i = length(x):-1:2 
    Bed_Level(1,i-1) = Bed_Level(1,i)+ Slope(1,i)*Grid_size; 
end 
  
figure 
%This creates a new figure window. I don't want to have the two plots on 
%the same figure because it is much better to display in Microsoft Word 
%this way. I will add the legend and axis label in Word also 
  
hold on 
plot (x,Bed_Level, 'k', 'LineWidth', 2) 
  
Free_Surface = Bed_Level+Fluid_Depth; 
  
plot(x,Free_Surface,'k') 
  
Critical_Surface = Bed_Level + Critical_Depth; 
  
plot(x, Critical_Surface, 'k-.') 
  
hold off 
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E.3  Program that generated Figure 4.4.3 and 4.4.4 

function [h_c,u_c] = NumericalSolution4(h_o,u_o,del_t,grid_size,Slope) 
%{ 
This function solves the Shallow Water Equations in One-D using the 
MacCormack Scheme. The results from here would be compared with the 
analytical solutions. 
%} 
  
%% Boundary Conditions for the Predictor Part 
h_o(1) = 0.543853; h_o(end) = 1.334899; % As given in the analytical version of the 
problem 
%u_o(1) = 2/0.748409; u_o(end) = 2/0.748409; % Velocity BCs, again it is as stated in the 
problem 
  
%% CONSTANTS 
g = 10 ;              % acceleration due to gravity 
n = 0.02;               % n is the Manning coeeficient taken from Chaudhry (1993) 
k = 3.7;   % is a parameter used to regulate the amount of dissipation, will be determined by 
trial-and-error 
  
Sfx = n^2*u_o.^2./h_o.^(4/3); % Friction slope calculated from the Manning equation. 
Strictly speaking, 
% the numerator ought to be u.*abs(u) but we know u is all positive in this example so it 
doesn't matter here 
U_o = u_o.*h_o;  % The Unit width discharge 
F_o = u_o.^2.*h_o + 0.5*g*h_o.^2; % F is a conservation variable. It is called a "conservation" 
variable because the St. Venant 
% equation is cast in the conservation form and it is one of those variables that makes the 
momentum equation fit into a nice matrix 
  
%% The predictor step (backward difference) 
% h_p = zeros(1,length(Slope)); 
 U_p = 2*ones(1,length(Slope)); 
for i = 2:length(Slope) 
    h_p(i) = h_o(i) - (del_t/grid_size)*(U_o(i)-U_o(i-1)); 
    U_p(i) = U_o(i) - (del_t/grid_size)*(F_o(i)-F_o(i-1))+ del_t*g*0.5*(h_o(i)+h_o(i-
1)).*(Slope(i-1) - Sfx(i)); 
end 
h_p = [0.543853 h_p(2:end)]; 
%U_p = [2.0 U_p(2:end)]; 
%h_p(1) = 0.748709; h_p(end) = 0.748709; % this removes the zero introduced at the 
boundary due to pre-allocation 
%U_p(1) = 2.0; U_p(end) = 2.0; 
u_p = U_p./h_p;        % backing out u 
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%% Boundary Conditions for the Corrector Part 
  
% Calculate Intermediate Values to be used in the Corrector Part 
  
F_p = u_p.^2.*h_p + 0.5*g*h_p.^2; 
Sfxp = n^2*u_p.^2./h_p.^(4/3); 
  
%% The corrector step (forward difference) 
% h_c = zeros(1,length(Slope)); 
 U_c = 2*ones(1,length(Slope)); 
  
for i = 1:length(Slope)-1 
h_c(i) = 0.5 * (h_o(i) + h_p(i) - (del_t/grid_size) * (U_p(i+1)-U_p(i))); 
U_c(i) = 0.5 * (U_o(i) + U_p(i) - (del_t/grid_size) * (F_p(i+1)-F_p(i)) + 
del_t*g*0.5*(h_p(i+1)+h_p(i)).*(Slope(i+1) - Sfxp(i))); 
end 
h_c = [h_c(1:end) 1.334899]; 
%U_c = [2.0 U_c(2:end)]; 
%h_c(1) = 0.748709; h_c(end) = 0.748709; % this removes the zero introduced at the 
boundary due to pre-allocation 
%U_c(1) = 2.0; U_c(end) = 2.0; 
u_c = U_c./h_c; %backing out u 
%% Computing variables to be used in handling steep gradients (see the note in the 
"artificialviscosity" file for details): 
  
[eps_back_x_hc,  eps_for_x_hc] = artificialviscosity1D(h_c,k); 
[eps_back_x_uc,  eps_for_x_uc] = artificialviscosity1D(u_c,k); 
  
% Update the INTERIOR values of h and U: 
for i = 2:length(Slope)-1 
h_c(i) = h_c(i) + eps_for_x_hc(i).*(h_c(i+1) - h_c(i)) - eps_back_x_hc(i).*(h_c(i) - h_c(i-1)); 
u_c(i) = u_c(i) + eps_for_x_uc(i).*(u_c(i+1) - u_c(i)) - eps_back_x_uc(i).*(u_c(i) - u_c(i-1)); 
end 
% Note that since boundary conditions are "imposed," the boundary values don't need to 
be updated because we don't want them to change. 
 
 
E.4  Function file called by Programs in E.1 to E.3 

function[eps_back_x, eps_for_x] = artificialviscosity1D(h_o,k) 
%{ 
 ARTIFICIAL VISCOSITY COMPUTATION   1D Saint Venant Equation 
 Jameson, et al. 1981 developed a procedure to dampen the high frequency oscillations 
observed near steep gradients. 
 These oscillations are  produced as a result of dispersive errors in the MacCormack 
Scheme. 
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 Details about this procedure can be found in Chaudhry (1993), Chapter 8: Computation of 
Rapidly Varied Flows,In: 
 "Open-Channel Flow". It is strongly recommended that this reference chapter in the book 
be read before attempting 
 to use - or debug - this  function file. 
  
Please keep in mind that changes in the x-Cartesian cordinates affect columns (y) in 
MATLAB while changes along the 
y-Cartesian cordinates affect rows(x) in MATLAB. This dichotomy between the Cartesian 
cordinate system and how MATLAB 
inteprets rows and columns is a common cause of confusion when computing gradients in 
more than one-dimension. 
Thankfully, this function file is for 1D cases so we don't need to be "careful" in one sense. 
%} 
  
%% Pre-process Data 
h_visc = h_o; % Set Initial value of testing array h_visc from input array h_o provided. 
N_Cols = length(h_o); 
viscos_x = zeros([1 N_Cols]);      
  
%% Viscosity Calculation 
  
viscos_x(1) = abs(h_visc(2)- h_visc(1))/(abs(h_visc(2))+ abs(h_visc(1)));   
viscos_x(end) = abs(h_visc(end)- h_visc(end-1))/(abs(h_visc(end))+ abs(h_visc(end-1))); 
  
for i = 2:N_Cols-1; % This loop accounts for operations carried out on all   internal rows of 
the matrix. 
   viscos_x(i) = abs(h_visc(i+1)- 2*h_visc(i)+ h_visc(i-1))/(abs(h_visc(i+1))+ 
abs(2*h_visc(i))+ abs(h_visc(i-1)));    
end 
  
eps_back_x(1) = k*viscos_x(1); % This is like a boundary condition of some sort since 
there's no "zeroth" element to compare the first one with 
  
for i = 2:N_Cols;     
    eps_back_x(i) = k*max(viscos_x(i-1), viscos_x(i));     
end 
  
eps_for_x(N_Cols) = k*viscos_x(N_Cols); % This is like a boundary condition of some sort 
since there's no "outside" element to compare the last one with 
  
for i = 1:N_Cols - 1;     
    eps_for_x(i) = k*max(viscos_x(i), viscos_x(i+1)); 
end 
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E.5  Program that generated Figures 4.7 through 4.13 

%{ 
This script file calls the other function files of this program. It will later be a function file 
itself that will be called in some way. We make it a script file for now for debugging 
purposes. 
Units are MKS throughout meaning i.e. time is in seconds, lengths are in meters etc. 
%} 
clc 
clear all 
close all 
tic 
%% This section prepares the visualization of results 
scrnsz = get(0,'ScreenSize'); 
figure('Position',[1 1 scrnsz(3) 0.9*scrnsz(4)],'Name','Video of Fluid 
Depth','NumberTitle','off') 
% h = waitbar(0,'1','Name','We keep getting better...',... 
%             'CreateCancelBtn',... 
%             'setappdata(gcbf,''canceling'',1)'); 
% setappdata(h,'canceling',0) 
  
%% 
t = 0;          % Initialize time 
T = 40;      % Simulation Time in seconds 
del_t = 0.0001;     % A first estimate, the model should adapt this size as it runs 
grid_size = 3;  % the DEM data we have a 5m-resolution 
g   = 9.81;     % Acceleration due to gravity 
%% DEM, Z, will be used here to test the code 
%Obtained from Judsonian data Set (51:100 41:80) 
%Z = ones(209,209); 
%gently sloping surface 
% xsc = linspace(109,9,211); 
% Z = xsc(ones(1,211),:); 
%Z = 
[113.734,113.534,113.334,113.034,112.834,112.633,112.433,112.333,112.133,111.833,11
1.333,110.733,110.233,109.733,109.233,108.633,107.933,107.433,107.133,106.833,106.5
33,106.333,105.933,105.632,105.332,105.032,105.232,105.432,105.732,105.732,105.732,
105.632,105.532,105.432,105.132,104.832,104.732,104.732,104.932,105.132;114.134,11
3.934,113.734,113.434,113.234,113.133,112.933,112.833,112.633,112.333,111.933,111.4
33,110.933,110.433,109.933,109.033,108.133,107.633,107.133,106.833,106.533,106.333,
106.233,105.932,105.632,105.432,105.332,105.532,105.732,105.732,105.732,105.632,105
.632,105.532,105.332,105.132,104.932,104.932,104.932,105.132;114.434,114.234,114.03
4,113.834,113.634,113.533,113.333,113.233,113.133,112.833,112.533,112.133,111.733,1
11.233,110.433,108.933,107.933,107.633,107.133,106.733,106.533,106.333,106.233,106.
232,105.932,105.732,105.632,105.632,105.832,105.832,105.832,105.832,105.832,105.832
,105.632,105.332,105.232,105.132,105.132,105.132;114.734,114.634,114.434,114.234,11
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4.034,113.833,113.733,113.633,113.533,113.433,113.133,112.833,112.333,111.633,110.4
33,108.833,107.833,107.533,107.133,106.733,106.533,106.433,106.333,106.333,106.232,
106.032,105.932,105.932,105.932,105.932,105.832,105.832,105.932,105.932,105.832,105
.532,105.332,105.332,105.332,105.332;115.134,114.934,114.734,114.534,114.334,114.13
3,114.033,113.933,113.933,113.933,113.833,113.333,112.633,111.333,110.133,108.933,1
07.933,107.433,107.133,106.833,106.633,106.633,106.533,106.333,106.332,106.232,106.
132,106.132,106.132,106.032,106.032,105.932,105.932,106.032,105.932,105.632,105.432
,105.332,105.332,105.432;115.434,115.234,115.034,114.734,114.534,114.334,114.233,11
4.133,114.133,114.333,114.433,113.733,112.733,111.433,109.933,108.733,107.933,107.5
33,107.133,106.833,106.633,106.633,106.633,106.533,106.432,106.432,106.432,106.432,
106.432,106.332,106.232,106.132,106.032,106.132,106.032,105.832,105.632,105.532,105
.532,105.632;115.734,115.534,115.234,115.034,114.734,114.534,114.333,114.233,114.23
3,114.233,114.333,114.033,113.033,111.833,110.333,108.833,108.033,107.533,107.133,1
06.833,106.633,106.733,106.733,106.633,106.632,106.632,106.632,106.732,106.732,106.
732,106.632,106.432,106.332,106.332,106.232,106.132,105.932,105.832,105.832,105.932
;115.934,115.734,115.534,115.234,114.934,114.634,114.333,114.233,114.033,113.933,11
3.833,113.733,113.233,111.933,110.633,109.033,108.033,107.633,107.233,106.933,106.7
33,106.733,106.833,106.733,106.732,106.732,106.832,106.932,107.132,107.132,107.032,
106.932,106.732,106.632,106.632,106.532,106.332,106.232,106.232,106.332;116.134,11
5.934,115.734,115.434,115.034,114.634,114.333,114.033,113.833,113.533,113.333,113.0
33,112.733,111.833,110.533,109.133,108.133,107.633,107.233,107.033,106.833,106.833,
106.833,106.933,106.933,106.832,106.932,107.132,107.332,107.632,107.532,107.432,107
.232,107.032,107.032,107.032,106.932,106.832,106.732,106.732;116.334,116.134,115.93
4,115.534,115.134,114.734,114.333,113.933,113.533,113.133,112.833,112.533,112.133,1
11.433,110.433,109.033,108.133,107.633,107.333,107.133,106.933,106.933,106.933,107.
033,107.033,107.032,107.132,107.332,107.532,107.832,107.932,107.732,107.532,107.432
,107.432,107.432,107.532,107.432,107.232,107.232;116.434,116.334,116.034,115.634,11
5.134,114.634,114.134,113.733,113.333,112.833,112.433,112.133,111.733,111.033,109.9
33,108.933,108.033,107.633,107.333,107.233,107.033,107.033,107.033,107.133,107.133,
107.132,107.232,107.532,107.832,108.132,108.232,108.032,107.832,107.632,107.632,107
.832,107.932,108.132,107.932,107.532;116.534,116.534,116.134,115.634,115.134,114.53
4,114.034,113.533,113.133,112.633,112.333,112.133,111.833,110.833,109.733,108.633,1
08.033,107.633,107.333,107.233,107.033,107.033,107.033,107.133,107.133,107.132,107.
332,107.632,107.832,108.232,108.332,108.232,108.132,107.932,107.932,108.132,108.232
,108.432,108.332,108.032;117.134,116.834,116.234,115.634,115.034,114.434,113.934,11
3.433,112.933,112.533,112.333,112.233,112.133,110.833,109.733,108.633,107.933,107.7
33,107.433,107.233,107.033,106.833,106.833,106.933,106.933,107.332,107.532,107.832,
108.032,108.032,108.232,108.332,108.232,108.232,108.232,108.332,108.432,108.832,108
.832,108.632;116.734,116.534,116.034,115.434,114.834,114.334,113.734,113.233,112.73
3,112.333,112.133,112.133,112.133,110.833,109.633,108.533,107.933,107.733,107.433,1
07.233,107.033,106.833,106.733,106.833,107.033,107.333,107.632,107.832,108.032,108.
132,108.232,108.232,108.432,108.432,108.332,108.432,108.832,109.232,109.232,109.132
;116.134,115.934,115.634,115.134,114.634,114.034,113.534,113.033,112.533,112.133,11
1.833,111.633,111.533,110.833,109.633,108.533,107.833,107.533,107.333,107.033,106.8
33,106.733,106.633,106.733,106.933,107.133,107.432,107.732,107.932,108.032,108.132,
108.332,108.532,108.732,108.632,108.632,108.932,109.532,109.732,109.532;115.434,11
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5.334,115.034,114.734,114.234,113.834,113.334,112.834,112.333,111.833,111.433,111.1
33,110.933,110.333,109.433,108.333,107.733,107.433,107.133,106.933,106.733,106.633,
106.633,106.733,106.733,107.033,107.332,107.632,107.932,108.032,108.232,108.432,108
.532,108.732,108.932,108.832,109.032,109.632,110.132,110.032;114.634,114.534,114.43
4,114.134,113.934,113.634,113.234,112.734,112.233,111.633,111.133,110.833,110.533,1
09.933,109.133,108.133,107.433,107.233,107.033,106.633,106.533,106.633,106.633,106.
733,106.733,106.833,107.132,107.432,107.732,108.032,108.232,108.532,108.632,108.732
,108.932,109.032,109.132,109.532,110.132,110.632;113.834,113.834,113.734,113.734,11
3.634,113.534,113.234,112.734,112.133,111.533,111.033,110.633,110.233,109.633,108.8
33,107.833,107.133,106.933,106.833,106.533,106.333,106.433,106.533,106.633,106.733,
106.833,106.932,107.332,107.632,107.932,108.232,108.532,108.632,108.732,108.832,108
.932,109.332,109.732,109.932,110.432;113.134,113.134,113.234,113.334,113.534,113.63
4,113.334,112.734,112.133,111.533,110.933,110.433,109.933,108.933,108.133,107.533,1
06.933,106.633,106.433,106.333,106.133,106.233,106.333,106.533,106.633,106.733,106.
933,107.232,107.532,107.932,108.232,108.532,108.732,108.732,108.832,108.932,109.232
,109.832,110.132,110.232;112.634,112.634,112.734,112.934,113.234,113.534,113.434,11
2.634,112.033,111.533,110.833,110.133,109.433,108.433,107.633,107.033,106.633,106.3
33,106.233,106.033,106.033,106.133,106.133,106.333,106.533,106.633,106.833,107.132,
107.532,107.832,108.132,108.532,108.732,108.732,108.932,109.032,109.332,109.932,110
.332,110.432;112.134,112.334,112.334,112.434,112.634,112.334,112.234,112.334,111.73
4,111.333,110.633,109.733,109.033,108.333,107.533,106.833,106.333,106.033,105.933,1
05.933,105.933,106.033,106.033,105.933,106.233,106.633,106.833,107.032,107.432,107.
732,108.132,108.432,108.632,108.632,108.832,109.232,109.532,110.132,110.532,110.632
;111.734,112.034,111.934,111.834,111.934,111.634,111.534,111.634,111.634,111.133,11
0.633,109.733,108.733,108.033,107.333,106.633,106.233,105.933,105.733,105.733,105.8
33,105.933,105.933,105.933,106.033,106.433,106.733,106.932,107.232,107.632,107.932,
108.232,108.532,108.532,108.732,109.132,109.532,110.132,110.732,110.932;111.634,11
1.734,111.634,111.234,111.234,111.434,111.334,111.334,111.334,111.233,110.733,110.0
33,109.033,107.833,107.133,106.533,106.033,105.833,105.733,105.833,105.833,105.833,
105.933,105.733,105.933,106.333,106.633,106.833,107.132,107.532,107.832,108.032,108
.232,108.432,108.632,109.132,109.532,109.932,110.532,111.132;111.434,111.434,111.43
4,110.934,110.834,111.034,111.134,111.134,111.034,110.933,110.633,109.933,108.933,1
07.833,107.033,106.333,105.933,105.733,105.633,105.733,105.733,105.733,105.833,105.
733,105.833,106.233,106.433,106.733,107.032,107.432,107.732,107.932,108.032,108.232
,108.532,109.032,109.432,109.832,110.232,110.832;110.834,110.934,110.934,110.734,11
0.534,110.734,110.834,110.734,110.734,110.533,110.233,109.733,108.733,107.433,106.6
33,106.333,105.933,105.733,105.633,105.433,105.533,105.433,105.533,105.633,105.733,
106.133,106.433,106.633,106.932,107.332,107.632,107.832,107.932,107.932,108.232,108
.732,109.232,109.732,110.132,110.432;110.434,110.434,110.434,110.234,110.034,110.23
4,110.234,110.134,110.034,109.934,109.533,109.133,108.533,107.133,106.333,105.933,1
05.633,105.533,105.433,105.333,105.333,105.233,105.333,105.433,105.633,105.933,106.
333,106.533,106.732,107.132,107.432,107.632,107.832,107.832,108.032,108.532,109.032
,109.532,110.032,110.332;110.034,109.934,109.834,109.734,109.634,109.434,109.434,10
9.234,109.134,108.934,108.633,108.333,107.733,106.833,106.033,105.733,105.433,105.1
33,105.133,105.033,105.033,105.033,105.133,105.233,105.433,105.733,106.133,106.333,
106.632,106.932,107.232,107.532,107.632,107.732,107.932,108.332,108.832,109.532,109
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.932,110.132;109.534,109.434,109.234,109.134,108.834,108.734,108.734,108.434,108.23
4,108.034,107.733,107.433,106.933,106.133,105.733,105.433,105.233,105.033,104.833,1
04.833,104.833,104.833,104.933,105.133,105.333,105.633,105.933,106.233,106.433,106.
732,107.032,107.232,107.432,107.532,107.732,108.132,108.732,109.332,109.632,109.832
;108.834,108.734,108.634,108.534,108.334,107.634,107.634,107.734,107.434,107.234,10
6.933,106.633,106.233,105.733,105.333,105.233,105.033,105.033,104.833,104.733,104.7
33,104.733,104.833,105.033,105.233,105.333,105.733,106.033,106.333,106.532,106.732,
106.932,107.132,107.232,107.532,108.032,108.532,108.932,109.232,109.332;108.234,10
8.134,108.134,108.034,107.834,107.134,107.034,107.134,106.734,106.434,106.233,105.9
33,105.933,105.433,105.033,104.933,104.833,104.833,104.733,104.633,104.633,104.733,
104.933,105.033,105.233,105.433,105.433,105.833,105.933,106.132,106.532,106.732,107
.132,107.232,107.532,108.032,108.332,108.632,108.832,108.832;107.634,107.634,107.63
4,107.534,107.334,107.034,106.834,106.434,106.034,105.634,105.334,105.233,105.233,1
05.233,104.833,104.733,104.733,104.633,104.633,104.533,104.533,104.633,104.833,105.
233,105.333,105.433,105.533,105.533,105.633,105.632,105.932,106.432,106.832,107.432
,107.732,108.032,108.232,108.432,108.432,108.332;107.234,107.134,107.134,107.134,10
7.034,106.634,106.134,105.634,105.334,104.934,104.834,104.733,104.633,104.633,104.6
33,104.533,104.433,104.333,104.333,104.333,104.433,104.533,104.933,105.233,105.533,
105.633,105.633,105.633,105.633,105.532,105.932,106.432,106.932,107.532,107.732,107
.932,108.132,108.232,108.332,108.232;106.934,106.734,106.634,106.634,106.434,106.13
4,105.634,104.834,104.534,104.334,104.234,104.333,104.233,104.133,104.133,104.133,1
04.033,103.933,103.933,104.033,104.133,104.533,104.833,105.433,105.733,105.933,105.
933,105.933,105.833,105.733,106.132,106.832,107.432,107.632,107.732,107.832,108.032
,108.232,108.332,108.532;106.534,106.134,105.734,105.734,105.734,105.434,105.134,10
4.334,103.934,103.734,103.734,103.933,104.033,103.933,103.833,103.833,103.733,103.7
33,103.733,103.733,104.033,104.333,104.833,105.333,105.833,106.033,106.233,106.133,
106.133,106.033,106.132,106.932,107.332,107.432,107.532,107.632,107.832,108.132,108
.432,108.932;105.834,105.234,104.834,104.534,104.534,104.534,104.234,104.034,103.53
4,103.434,103.434,103.633,103.733,103.733,103.733,103.833,103.733,103.633,103.633,1
03.633,103.933,104.233,104.733,105.333,105.733,106.133,106.233,106.333,106.333,106.
433,106.532,106.732,107.032,107.132,107.232,107.432,107.632,107.932,108.432,109.132
;105.234,104.634,104.334,104.034,103.834,103.834,103.834,103.634,103.334,103.334,10
3.334,103.434,103.633,103.633,103.633,103.733,103.833,103.733,103.633,103.733,103.9
33,104.333,104.733,105.333,105.633,105.933,106.133,106.233,106.233,106.333,106.532,
106.832,106.832,106.932,106.932,107.032,107.232,107.632,108.232,109.032;104.234,10
4.134,103.834,103.834,103.734,103.834,103.734,103.734,103.534,103.334,103.334,103.3
34,103.633,103.933,103.933,103.933,103.933,103.833,103.833,103.833,104.033,104.433,
104.933,105.433,105.733,105.733,105.933,105.933,106.033,106.033,106.232,106.532,106
.532,106.532,106.532,106.632,106.832,107.232,107.932,108.732;103.734,103.534,103.43
4,103.534,103.534,103.534,103.634,103.634,103.534,103.334,103.234,103.334,103.533,1
03.833,103.933,103.933,103.933,103.933,103.933,103.933,104.233,104.633,105.033,105.
533,105.833,105.833,105.733,105.733,105.733,105.733,105.833,106.132,106.132,106.132
,106.132,106.132,106.332,106.732,107.332,108.032;103.434,103.434,103.334,103.334,10
3.334,103.234,103.334,103.434,103.334,103.234,103.234,103.234,103.433,103.633,103.7
33,103.633,103.733,103.733,103.733,103.833,104.233,104.933,105.233,105.533,105.833,
105.833,105.733,105.433,105.433,105.433,105.533,105.632,105.732,105.732,105.732,105
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.732,105.932,106.232,106.532,106.832;103.134,103.134,103.134,103.134,103.134,103.03
4,103.134,103.234,103.134,103.034,103.034,103.034,103.133,103.333,103.433,103.333,1
03.533,103.533,103.533,103.633,104.133,104.833,105.333,105.633,105.733,105.833,105.
733,105.433,105.333,105.333,105.333,105.432,105.432,105.432,105.432,105.432,105.632
,105.832,105.932,105.932;102.934,103.034,103.034,103.034,102.934,102.834,102.934,10
2.834,102.834,102.734,102.734,102.734,102.733,102.833,102.933,103.133,103.233,103.4
33,103.433,103.333,103.833,104.833,105.333,105.433,105.533,105.633,105.533,105.333,
105.233,105.233,105.233,105.232,105.232,105.232,105.232,105.232,105.432,105.532,105
.532,105.232;102.734,102.734,102.834,102.834,102.834,102.734,102.634,102.534,102.53
4,102.434,102.534,102.534,102.434,102.533,102.833,102.933,103.033,103.233,103.333,1
03.233,103.633,104.633,104.933,105.133,105.233,105.433,105.433,105.233,105.033,105.
133,104.933,104.832,105.032,105.132,105.132,105.132,105.232,105.232,105.032,104.732
;102.434,102.434,102.434,102.534,102.534,102.534,102.434,102.334,102.234,102.234,10
2.334,102.434,102.334,102.333,102.533,102.933,103.033,103.133,103.233,103.133,103.5
33,104.133,104.433,104.733,104.933,105.133,105.233,105.033,104.933,104.833,104.633,
104.233,104.432,104.832,104.832,104.832,104.932,104.632,104.432,104.232;102.134,10
2.134,102.134,102.234,102.334,102.334,102.234,102.134,102.034,102.034,102.034,102.1
34,102.234,102.133,102.333,102.733,103.033,103.033,103.133,103.133,103.433,103.733,
104.033,104.333,104.533,104.733,104.833,104.633,104.433,104.333,104.133,103.733,103
.632,104.032,104.232,104.232,104.232,103.932,103.932,103.732;102.134,102.034,101.93
4,101.834,101.934,102.034,102.034,101.934,101.834,101.834,101.834,101.934,101.934,1
01.933,102.133,102.433,102.633,102.933,103.033,103.233,103.333,103.533,103.733,104.
033,104.233,104.433,104.333,103.933,103.733,103.333,103.133,102.833,102.732,102.932
,103.132,103.132,103.132,103.132,103.132,103.532;102.134,102.034,101.734,101.634,10
1.734,101.834,101.834,101.734,101.734,101.734,101.734,101.734,101.734,101.733,101.9
33,102.233,102.433,102.733,102.933,103.033,103.233,103.433,103.633,103.833,104.033,
104.033,103.733,103.333,103.033,102.733,102.533,102.233,102.132,102.332,102.332,102
.332,102.332,102.232,102.432,102.732;102.334,102.034,101.834,101.434,101.434,101.63
4,101.634,101.734,101.634,101.634,101.634,101.634,101.634,101.534,101.733,102.133,1
02.433,102.733,102.833,102.833,103.033,103.233,103.333,103.533,103.633,103.333,103.
033,102.633,102.333,102.033,101.933,102.033,101.832,101.832,101.832,101.632,101.632
,101.632,101.732,102.232;102.434,102.134,101.734,101.334,101.234,101.334,101.434,10
1.534,101.534,101.534,101.534,101.434,101.334,101.334,101.233,101.633,102.033,102.2
33,102.433,102.433,102.533,102.733,102.933,103.033,103.033,102.733,102.533,102.133,
101.833,101.533,101.433,101.533,101.533,101.532,101.332,101.132,101.032,101.032,101
.232,101.732;102.234,102.134,101.734,101.234,101.034,101.134,101.234,101.334,101.33
4,101.334,101.334,101.234,101.134,101.034,100.933,100.933,101.233,101.533,101.633,1
01.733,101.833,101.833,102.133,102.333,102.333,102.233,102.033,101.733,101.433,101.
333,101.133,101.133,101.233,101.132,100.932,100.632,100.532,100.432,100.732,101.232
;101.934,101.834,101.634,101.134,100.834,101.034,101.034,101.134,101.034,101.034,10
1.034,101.034,100.934,100.834,100.733,100.633,100.633,100.933,101.033,101.133,101.2
33,101.333,101.333,101.533,101.633,101.533,101.533,101.233,101.133,100.933,100.733,
100.733,100.733,100.732,100.532,100.132,100.032,100.032,100.132,100.732;]; 
 
% Data Preprocessing: Addition of Fictitious Boundaries 
[n_rows n_cols] = size(Z); 
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zprime = ones(n_rows+2, n_cols+2); 
zprime(2:n_rows+1, 2:n_cols+1) = Z; 
zprime(1, :) = zprime(2, :); zprime(end, :) = zprime(end-1, :); 
zprime(:, 1) = zprime(:, 2); zprime(:, end) = zprime(:, end-1); 
Z = zprime; %we have now added a fictitious boundary all around the elevation data 
%% Initial conditions of fluid depth, velocities, Rainfall and Infiltration 
h_o = 0.1*ones(size(Z)); % initial flow depth (in metres) 
u_o = zeros(size(Z));      % fluid initially at rest 
v_o = zeros(size(Z));      % fluid initially at rest 
R   = zeros(size(Z));      % "rainfall" may not be the right term to use here as rain cannot just 
be falling on a sinlge pixel! 
% there's no source anywhere at the start 
Sourcesink   = zeros(size(Z)); 
[N_Rows N_Cols] = size(Z); 
C_o   = zeros(size(Z)); 
% G_x = 0.0015*ones(size(Z)); 
% G_y = 0.0023*ones(size(Z)); 
G_x_o = zeros(size(Z)); 
G_y_o = zeros(size(Z)); 
%R(round(N_Rows/2+1),round(N_Cols/2)) = 2e-5; % assuming a spill source at the middle 
(X mm/hr = X/(36e5) m/s) 
R(10,50) = 2e-3;% a big spill before the bump 
Sourcesink(round(N_Rows/2+1),round(N_Cols/2)) = 3.8e-5; 
  
%% This section calculates the rate of Infiltration in the into the soil surface. 
 dIdt = zeros(size(Z)); 
% dIdt   = 1e-4*ones(size(Z)); %assuming constant infiltration, infiltration rates too are in 
mm/hr (very small) REF: http://www.fao.org/docrep/S8684E/s8684e0a.htm 
% InfilDepth = 1e-5*ones(size(Z)); %Cumulative Infiltration Depth 
% Soiltype = 'clay'; 
% % Choosing soil type 
% if Soiltype == 'sand',         soil_type = 1; 
% elseif Soiltype == 'lmsy',     soil_type = 2; 
% elseif Soiltype == 'sdlm',     soil_type = 3; 
% elseif Soiltype == 'loam',     soil_type = 4; 
% elseif Soiltype == 'stlm',     soil_type = 5; 
% elseif Soiltype == 'sdcm',     soil_type = 6; 
% elseif Soiltype == 'cllm',     soil_type = 7; 
% elseif Soiltype == 'stcm',     soil_type = 8; 
% elseif Soiltype == 'sdcl',     soil_type = 9; 
% elseif Soiltype == 'stcl',     soil_type = 10; 
% elseif Soiltype == 'clay',     soil_type = 11; 
% end 
  
%% Check that the CFL condition is satisfied, this - theoretically - ensures the stability of 
the algorithm: 
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while del_t > max(2*grid_size./max(max(u_o + sqrt(g*h_o))),2*grid_size./max(max(v_o + 
sqrt(g*h_o))))  %this is the Courant condition, may need to revise this or derive mine 
    del_t = del_t/2; 
end 
%% 
t = t + del_t; 
n = 0; %start counter 
while t < T 
    %% The main gist of the program is here 
    % The MacCormack Method is used to solve the Shallow Water equations 
     
%     [dIdt, InfilDepth] = InfiltrationModel(InfilDepth, soil_type, del_t);%this updates the 
value of the infiltration rate dIdt at each time step 
%     if n == 0, dIdt = zeros(size(Z));end % Initial values of dIdt are unreasonable for 
computational purposes. 
%     %h_previous = h_o; u_previous = u_o; v_previous = v_o;%stores the result of h at this 
time step 
%     uabs = abs(u_o); vabs = abs(v_o); % Set a tolerance value for velocities at which 
infiltration can occur 
%    % dIdt(uabs==0|vabs==0) = 0; % Infiltration doesn't take place where there's no flow 
%    % dIdt(h_o < 0.001) = 0; % No infiltration where the flow is less than a minimum value. 
In this case, 1mm.  
%     dIdt(uabs<=1e-5|vabs<=1e-5) = 0; %Infiltration doesn't take place where there's slow 
flow 
         
[h_c,u_c,v_c,C_c,G_x,G_y] = 
CompletewithErosionModel(h_o,u_o,v_o,C_o,R,dIdt,del_t,grid_size,Z,t,Sourcesink,G_x_o,G_y_
o); 
    h_o = h_c; u_o = u_c; v_o = v_c; C_o = C_c; G_x_o = G_x; G_y_o = G_y; %The output serve as 
input at the next time step 
     
    t = t + del_t; 
     
        %we should turn off the source at some point just to see what happens 
                                if t> 60 
                                    R(round(N_Rows/2+1),round(N_Cols/2)) = 0; 
                                end 
    n= n+ 1; %increase counter by 1 
    % Check that the CFL condition is satisfied, this - theoretically - ensures the stability of 
the algorithm: 
     
    %     while del_t > max(2*grid_size./max(max(u_c + 
sqrt(g*h_c))),2*grid_size./max(max(v_c + sqrt(g*h_c))))  %this is the Courant condition, 
may need to revise this or derive mine 
    %         del_t = del_t/2; 
    %     end 
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    % 
    
    %% Movie of the Simulation 
    %Stripping the data of fictitious boundary values before displaying 
    udisplay = u_o(2:N_Rows-1,2:N_Cols-1); 
    vdisplay = v_o(2:N_Rows-1,2:N_Cols-1); 
    mesh(h_o(2:N_Rows-1,2:N_Cols-1)) 
    hold on 
    quiver(udisplay,vdisplay) 
    hold off 
    %     axis([0 N_Cols 0 N_Rows 0.10 .2]) % to prevent the plot from resizing itself 
    xlim([0 N_Cols]);ylim([0 N_Rows]); zlim([0 0.15]); % to prevent the plot from resizing 
itself 
    xlabel('x'); ylabel('y'); 
    % Check for Cancel button press 
    %     if getappdata(h,'canceling') 
    %         break 
    %     end 
    % Report current estimate in the waitbar's message field 
    Percentage = (t/T)*100; 
    Time_so_far = t; 
    % waitbar(t/T,h,sprintf('%5.0f %%  Elapsed time=%4.0f s',Percentage,Time_so_far)) 
    top = title('Persistence pays'); 
    set(top,'string',sprintf('Percentage Complete=%3.0f %%, Elapsed time=%4.0f 
s',Percentage,Time_so_far)) 
    drawnow 
    pause(0.01) 
end 
%delete(h)       % DELETE the waitbar; don't try to CLOSE it. 
toc 
 

E.5.1  Function files associated with the main Program in E.5 

function [h_c,u_c,v_c,C_c,G_x,G_y] = 
CompletewithErosionModel(h_o,u_o,v_o,C_o,R,dIdt,del_t,grid_size,Z,t,Sourcesink,G_x_o,G_y_
o) 
%{ 
This function file is the only one needed to solve the St. Venant equations in the sense that 
it does not use the time-split scheme. 
When split along x- and y-directions, the results are identical to those obtained here. I have 
merged all the four 1-D operators in the paper [Rene & Kahawita (1986)] 
I adopted because of ease of debugging. The infiltration model and 2-D Erosion Model 
would be called at some point. They are coupled with the St. Venant equation. 
This function file solves in both x and y-direction at the same time as opposed to uni-
directional fractional step schemes 
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%} 
%% Boundary Conditions for the Predictor Part 
u_o(:,1)= u_o(:,2); v_o(1,:)= v_o(2,:); % "Open" Boundary at the Upstream  
u_o(:,end)= u_o(:,end-1); v_o(end,:)= v_o(end-1,:); % "Closed" or Reflecting Boundary at the 
Downstream 
h_o(:,1)= h_o(:,2); h_o(1,:)= h_o(2,:); % zero-depth gradient condition i.e. specifying the 
fluid-depth to be constant at the Upstream 
h_o(:,end)= h_o(:,end-1); h_o(end,:)= h_o(end-1,:); % zero-depth gradient condition i.e. 
specifying the fluid-depth to be constant at the Downstream 
C_o(:,1)= C_o(:,2); C_o(1,:)= C_o(2,:); % No Concentration gradient across the Upstream 
boundary 
C_o(:,end)= C_o(:,end-1); C_o(end,:)= C_o(end-1,:);% No Concentration gradient across the 
Downstream boundary 
  
%% CONSTANTS 
g = 10 ;              % acceleration due to gravity 
n = 0.02;               % n is the Manning coeeficient taken from Chaudhry (1993) 
eddy = 0.2;             % coefficient of eddy viscosity 
k = 0.1;   % is a parameter used to regulate the amount of dissipation, will be determined by 
trial-and-error 
[N_Rows N_Cols] = size(h_o); 
Manning_o = (g*n^2)./h_o.^(1/3); 
Manning_o(h_o<=0) = 0;  % treating zero fluid depth and/or negative depths 
%del_t = del_t/2;       % we take half of a time-step each time (needed when we split the 
operator) 
% Sourcesink = zeros(size(Z));  %assume no source or sink to the concentration profile 
% Sourcesink(106,107) = 3.8e-5; 
if t>10 
    Sourcesink(106,107) = 0; % assume the source of pollutants was turned after t secs 
end 
  
U_o = u_o.*h_o; 
V_o = v_o.*h_o; 
F_o = u_o.^2.*h_o+0.5*g*h_o.^2; 
G_o = u_o.*v_o.*h_o; 
S_o = v_o.^2.*h_o + 0.5*g*h_o.^2; 
UC_o = u_o.* C_o; 
VC_o = v_o.*C_o; 
  
Diffx = 5.93*U_o; Diffy = 5.93*V_o; % 5.93 is the value, not zero. Mixing coeffcients as 
suggested by Elder (1959). You can refine with Calibration 
[Uoxgrad Uoygrad] = backdiffe(U_o,grid_size); 
[Voxgrad Voygrad] = backdiffe(V_o,grid_size); 
[Foxgrad Foygrad] = backdiffe(F_o,grid_size); 
[Goxgrad Goygrad] = backdiffe(G_o,grid_size); 
[S_oxgrad S_oygrad] = backdiffe(S_o,grid_size); 
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[Coxgrad Coygrad] = backdiffe(C_o,grid_size); 
[Cu_oxgrad Cu_oygrad] = backdiffe(UC_o,grid_size); 
[Cv_oxgrad Cv_oygrad] = backdiffe(VC_o,grid_size); 
[Soxgrad Soygrad] = backdiffe(-Z,grid_size); 
Soxgrad(Soxgrad<1e-5)= 0; Soygrad(Soygrad<1e-5)=0; %very small slopes should be 
treated like a flat surface 
  
%% The predictor step 
h_p = h_o - del_t*(Uoxgrad + Voygrad - (R-dIdt)); 
h_p = MassConservation(h_p); % this fills in any negative depth using fluid from adjacent 
cells 
U_p = U_o - del_t*(Foxgrad + Goygrad)+ del_t*(g*h_o.*Soxgrad - 
Manning_o.*u_o.*sqrt(u_o.^2+v_o.^2)) + eddy*del_t*backdiffe(Uoxgrad,grid_size)+ 
eddy*del_t*backdiffe(Uoygrad,grid_size); 
V_p = V_o - del_t*(S_oygrad+ Goxgrad)+ del_t*(g*h_o.*Soygrad - 
Manning_o.*v_o.*sqrt(u_o.^2+v_o.^2)) + eddy*del_t*backdiffe(Voxgrad,grid_size)+ 
eddy*del_t*backdiffe(Voygrad,grid_size); 
C_p = C_o + del_t.*(Sourcesink + (Diffx.* backdiffe(Coxgrad,grid_size))+(Diffy.* 
backdiffe(Coygrad,grid_size))-Cu_oxgrad - Cv_oygrad); 
  
%% Calculating Intermediate values to be used in the corrector part 
u_p = U_p./h_p;        % backing out u 
u_p(h_p < 0.0001) = 0; % for really small fluid depths, assume the velocity is nil 
v_p = V_p./h_p;        % backing out v 
v_p(h_p < 0.0001) = 0; % for really small fluid depths, assume the fluid is not moving at all 
  
%% Boundary Conditions for the Corrector Part 
u_p(:,1)= u_p(:,2); v_p(1,:)= v_p(2,:); % "Open" Boundary at the Upstream  
u_p(:,end)= u_p(:,end-1); v_p(end,:)= v_p(end-1,:); % "Closed" or Reflecting Boundary at the 
Downstream 
h_p(:,1)= h_p(:,2); h_p(1,:)= h_p(2,:); % zero-depth gradient condition i.e. specifying the 
fluid-depth to be constant at the Upstream 
h_p(:,end)= h_p(:,end-1); h_p(end,:)= h_p(end-1,:); % zero-depth gradient condition i.e. 
specifying the fluid-depth to be constant at the Downstream 
C_p(:,1)= C_p(:,2); C_p(1,:)= C_p(2,:); % No Concentration gradient across the Upstream 
boundary 
C_p(:,end)= C_p(:,end-1); C_p(end,:)= C_p(end-1,:);% No Concentration gradient across the 
Downstream boundary 
  
F_p = u_p.^2.*h_p + 0.5*g*h_p.^2; 
S_p = v_p.^2.*h_p + 0.5*g*h_p.^2; 
G_p = u_p.*v_p.*h_p; 
UC_p = u_o.* C_p; 
VC_p = v_o.*C_p; 
Diffx = 5.93*U_p; Diffy = 5.93*V_p; % 5.93 is the value, i just put zero here temporarily, as 
suggested by Elder (1959). You can refine with Calibration 
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Manning_p = (g*n^2)./h_p.^(1/3); 
Manning_p(h_p<=0) = 0; %treating zero fluid depth and/or negative depths 
[Upxgrad Upygrad] = fordiffe(U_p,grid_size); 
[Vpxgrad Vpygrad] = fordiffe(V_p,grid_size); 
[Fpxgrad Fpygrad] = fordiffe(F_p,grid_size); 
[Gpxgrad Gpygrad] = fordiffe(G_p,grid_size); 
[S_pxgrad S_pygrad] = fordiffe(S_p,grid_size); 
[Cpxgrad Cpygrad] = fordiffe(C_p,grid_size); 
[Cu_pxgrad Cu_pygrad] = fordiffe(UC_p,grid_size); 
[Cv_pxgrad Cv_pygrad] = fordiffe(VC_p,grid_size); 
  
  
%% 2-D EROSION MODEL MODULE 
x_Energy_Slope = Manning_p.*u_p.*sqrt(u_p.^2+v_p.^2)/g; %dividing by g because 
x_Energy_Slope means g*h*Sfx whereas we only need h*Sfx here 
y_Energy_Slope = Manning_p.*v_p.*sqrt(u_p.^2+v_p.^2)/g; %dividing by g because 
y_Energy_Slope means g*h*Sfy whereas we only need h*Sfy here 
  
for i = 1:N_Rows 
    for j = 1:N_Cols 
        x_Slope = x_Energy_Slope(i,j); 
        y_Slope = y_Energy_Slope(i,j); 
        [G_x(i,j), G_y(i,j)] = Two_D_erosion_model(G_x_o(i,j), G_y_o(i,j), grid_size, x_Slope, 
y_Slope); 
         
    end 
end 
  
%% The corrector step 
h_c = 0.5*(h_o + h_p - del_t*(Upxgrad + Vpygrad - (R-dIdt))); 
h_c = MassConservation(h_c); % this fills in any negative depth using fluid from adjacent 
cells 
U_c = 0.5*(U_o + U_p - del_t*(Fpxgrad + Gpygrad) + del_t*(g*h_p.*Soxgrad - 
Manning_p.*u_p.*sqrt(u_p.^2+v_p.^2))+ eddy*del_t*backdiffe(Upxgrad,grid_size)+ 
eddy*del_t*backdiffe(Upygrad,grid_size)); 
V_c = 0.5*(V_o + V_p - del_t*(S_pygrad+ Gpxgrad) + del_t*(g*h_p.*Soygrad - 
Manning_p.*v_p.*sqrt(u_p.^2+v_p.^2))+ eddy*del_t*backdiffe(Vpxgrad,grid_size)+ 
eddy*del_t*backdiffe(Vpygrad,grid_size)); 
C_c = 0.5*(C_o + C_p + del_t.*(Sourcesink + (Diffx.* fordiffe(Cpxgrad,grid_size))+(Diffy.* 
fordiffe(Cpygrad,grid_size))- Cu_pxgrad - Cv_pygrad)); 
%% Computing variables to be used in handling steep gradients (see the note in the 
"artificialviscosity" file for details): 
[hcx_for_grad hcy_for_grad] = fordiffe(h_c); [hcx_back_grad hcy_back_grad] = 
backdiffe(h_c); 
[Ucx_for_grad Ucy_for_grad] = fordiffe(U_c); [Ucx_back_grad Ucy_back_grad] = 
backdiffe(U_c); 
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[Vcx_for_grad Vcy_for_grad] = fordiffe(V_c); [Vcx_back_grad Vcy_back_grad] = 
backdiffe(V_c); 
[Ccx_for_grad Ccy_for_grad] = fordiffe(C_c); [Ccx_back_grad Ccy_back_grad] = 
backdiffe(C_c); 
[eps_back_x_hc, eps_back_y_hc, eps_for_x_hc, eps_for_y_hc] = artificialviscosity(h_c,k); 
[eps_back_x_Uc, eps_back_y_Uc, eps_for_x_Uc, eps_for_y_Uc] = artificialviscosity(U_c,k); 
[eps_back_x_Vc, eps_back_y_Vc, eps_for_x_Vc, eps_for_y_Vc] = artificialviscosity(V_c,k); 
[eps_back_x_Cc, eps_back_y_Cc, eps_for_x_Cc, eps_for_y_Cc] = artificialviscosity(C_c,k); 
% Update the values of h, U and V: 
h_c = h_c + (eps_for_x_hc.*hcx_for_grad - eps_back_x_hc.*hcx_back_grad)+ 
(eps_for_y_hc.*hcy_for_grad - eps_back_y_hc.*hcy_back_grad); 
U_c = U_c + (eps_for_x_Uc.*Ucx_for_grad - eps_back_x_Uc.*Ucx_back_grad)+ 
(eps_for_y_Uc.*Ucy_for_grad - eps_back_y_Uc.*Ucy_back_grad); 
V_c = V_c + (eps_for_x_Vc.*Vcx_for_grad - eps_back_x_Vc.*Vcx_back_grad)+ 
(eps_for_y_Vc.*Vcy_for_grad - eps_back_y_Vc.*Vcy_back_grad); 
C_c = C_c + (eps_for_x_Cc.*Ccx_for_grad - eps_back_x_Cc.*Ccx_back_grad)+ 
(eps_for_y_Cc.*Ccy_for_grad - eps_back_y_Cc.*Ccy_back_grad); 
u_c = U_c./h_c; %backing out u 
u_c(h_c < 0.0001) = 0; %we assume fluid isn't moving when h is small e.g. less tham 1 mm 
v_c = V_c./h_c; %backing out v 
v_c(h_c < 0.0001) = 0; %we assume fluid isn't moving when h is small e.g. less tham 1 mm 
%% 2-D EROSION MODEL MODULE 
Manning_c = (g*n^2)./h_c.^(1/3); 
Manning_c(h_c<=0) = 0; %treating zero fluid depth and/or negative depths 
x_Energy_Slope = Manning_c.*u_c.*sqrt(u_c.^2+v_c.^2)/g; % dividing by g because 
x_Energy_Slope means g*h*Sfx whereas we only need h*Sfx here 
y_Energy_Slope = Manning_c.*v_c.*sqrt(u_c.^2+v_c.^2)/g; % dividing by g because 
y_Energy_Slope means g*h*Sfy whereas we only need h*Sfy here 
  
for i = 1:N_Rows 
    for j = 1:N_Cols 
        x_Slope = x_Energy_Slope(i,j); 
        y_Slope = y_Energy_Slope(i,j); 
        [G_x(i,j), G_y(i,j)] = Two_D_erosion_model(G_x_o(i,j), G_y_o(i,j), grid_size, x_Slope, 
y_Slope); 
         
    end 
end 
 

function [dIdt, InfilDepth] = InfiltrationModel(InfilDepth, soil_type, del_t) 
%{ 
This function file helps to compute the Rate of Infiltration, dIdt, and  
the cumulative Infiltrative Depth, InfilDepth. Its input is Initial  
Infiltration Depth (at the start of the time step), the soil type and time  
step. The parameters for a given soil type has been hardwired into the  
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code. Soil data was obtained from Rawls, W.J., and D.L.Brakensiek. 1983. A  
proceedure to predict Green and Ampt. infiltration parameters. In Advances 
in infiltration. Proc. of the Nat'l Conference on Advances in  
Infiltration. Dec. 12-13. Parameters for each soil type are hardwired  
and can be changed based on observation or sound science e.g. Sensitivity  
Analysis. The simple Infiltration Model can be found in Groves (1989): 
Groves, J. R. (1989), A Practical Soil Moisture Profile Model, Journal  
of the American Water Resources Association, 25, 4, 875-880. The model is 
an ordinary differential equation so ode45 was used in solving it. 
%} 
  
%Antecedent Moisture can be any value, 0.3 is used as an example 
AntecedentMoisture = 0.3*ones(size(InfilDepth));  
Lambda = 0.23; 
  
%% Soil Parameters 
if soil_type == 1 
    SatMoisture = 0.437*ones(size(InfilDepth)); 
    ResidMoisture = 0.02*ones(size(InfilDepth)); 
    AirEntry = 0.0495; 
    HydCond = 3.2984e-5; 
elseif soil_type == 2 
    SatMoisture = 0.437*ones(size(InfilDepth)); 
    ResidMoisture = 0.036*ones(size(InfilDepth)); 
    AirEntry = 0.0613; 
    HydCond = 8.372e-6; 
elseif soil_type == 3 
    SatMoisture = 0.453*ones(size(InfilDepth)); 
    ResidMoisture = 0.041*ones(size(InfilDepth)); 
    AirEntry = 0.1101; 
    HydCond = 3.052e-6; 
elseif soil_type == 4 
    SatMoisture = 0.463*ones(size(InfilDepth)); 
    ResidMoisture = 0.029*ones(size(InfilDepth)); 
    AirEntry = 0.0889; 
    HydCond = 9.52e-7; 
elseif soil_type == 5 
    SatMoisture = 0.501*ones(size(InfilDepth)); 
    ResidMoisture = 0.015*ones(size(InfilDepth)); 
    AirEntry = 0.1668; 
    HydCond = 1.82e-6; 
elseif soil_type == 6 
    SatMoisture = 0.398*ones(size(InfilDepth)); 
    ResidMoisture = 0.068*ones(size(InfilDepth)); 
    AirEntry = 0.2185; 
    HydCond = 4.2e-7; 
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elseif soil_type == 7 
    SatMoisture = 0.464*ones(size(InfilDepth)); 
    ResidMoisture = 0.155*ones(size(InfilDepth)); 
    AirEntry = 0.2088; 
    HydCond = 2.8e-7; 
elseif soil_type == 8 
    SatMoisture = 0.471*ones(size(InfilDepth)); 
    ResidMoisture = 0.039*ones(size(InfilDepth)); 
    AirEntry = 0.273; 
    HydCond = 2.8e-7; 
elseif soil_type == 9 
    SatMoisture = 0.43*ones(size(InfilDepth)); 
    ResidMoisture = 0.109*ones(size(InfilDepth)); 
    AirEntry = 0.239; 
    HydCond = 1.68e-7; 
elseif soil_type == 10 
    SatMoisture = 0.479*ones(size(InfilDepth)); 
    ResidMoisture = 0.056*ones(size(InfilDepth)); 
    AirEntry = 0.2922; 
    HydCond = 1.4e-7; 
elseif soil_type == 11 
    SatMoisture = 0.475*ones(size(InfilDepth)); 
    ResidMoisture = 0.09*ones(size(InfilDepth)); 
    AirEntry = 0.3163; 
    HydCond = 8.4e-8; 
end 
  
%% The model is applied below. 
  
%Compute the Wetting Front suction head, wf 
wf =(AirEntry./((AntecedentMoisture - ResidMoisture)./... 
    (SatMoisture - ResidMoisture)).^(1/Lambda));  
  
% Convert the arrays into vectors so that they can be passed into ode45 
  
InfilDepth = InfilDepth(:); %this turns a matrix into a vector 
SatMoisture = SatMoisture(:); 
AntecedentMoisture = AntecedentMoisture(:); 
wf = wf(:); 
  
% Declare the function handle for the ODE solver 
Didt = @(t_inf, InfilDepth) HydCond./(1-exp(-InfilDepth./... 
    ((SatMoisture - AntecedentMoisture).*wf))); 
[~, InfilDepth] = ode45(Didt,[0 del_t],InfilDepth(:));  
  
% Only the last row of InfilDepth is needed 
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InfilDepth = InfilDepth(end, :); 
  
% Convert the vectors back into arrays 
  
InfilDepth = reshape(InfilDepth,size(ResidMoisture)); 
SatMoisture = reshape(SatMoisture,size(ResidMoisture)); 
AntecedentMoisture = reshape(AntecedentMoisture,size(ResidMoisture)); 
wf = reshape(wf, size(ResidMoisture)); 
  
% Compute the Rate of Infiltration using the simple model in Groves (1989) 
dIdt = HydCond./(1-exp(-InfilDepth./... 
    ((SatMoisture - AntecedentMoisture).*wf))); 
 
function [G_x, G_y] = Two_D_erosion_model(G_x_o, G_y_o, grid_size, x_Slope, y_Slope) 
  
% Developing the code for the 2-D Erosion Model 
  
% clc 
% close all 
% clear all 
  
% These are parameters that can be calibrated when data is available 
  
kt = 0.75; % kt is a transport coefficient [L^0.5 T^2 M ^-0.5]. Its value is usually between 
0.5 and 1.0 
kr = 0.0115; % rill erodibility parameter (s/m). Default value in WEPP is 0.0115 
gamma = 9807; % specific weigth of water (= density * g), N/m^3. i.e. [ML^-2T^-2] 
Tau_c = 3.1; % critical shear stress (N/m^2) 
  
% The following are commented out because they were only used in developing 
% the script file 
%h = 0.001; % fluid depth 
%grid_size = 5; % square grids are used so del_x = del_y = grid size 
%S_f_x = 0.002; % friction slope in x-direction 
%S_f_y = 0.004; % friction slope in y-direction 
%G_x = 0.0023; 
%G_y = 0.0015; 
  
alpha = 8;  
%{ 
alpha is a first order reaction coefficient for deposition. 
alpha = Vf/q where Vf is the particle fall velocity and q is the unit with 
discharge. Its unit is m^-1. I am choosing a value of 8 because it is the 
average value (3-13) observed by Foster, G.R. [Ref: Journal Title: Hydrologic 
modeling of small watersheds. Chapter 8. Modeling the erosion process. pp. 
297-360. 1982]. If I use the formula Vf/q, I arrive at unrealistically high 
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values for alpha because q is typically low. So I am making alpha a 
parameter to be calibrated to fit whatever problem at hand 
%} 
  
%{ 
If you decide not to make alpha a parameter but to calculate it, you can 
uncomment this section.  
u = 0.02; % x-direction velocity 
v = 0.01; % y-direction velocity 
sgs = 2.65; % specific gravity of sediment 
nu = 1e-6; % Kinematic viscosity 
g = 9.81; % acceleration due to the gravity 
d50 = 0.000707; % Median particle diameter, m 
% Calculate Fall velocity using Rubey's equation 
R1 = 36*nu^2/(g*d50^3*(sgs-1)); 
R2 = sqrt(2/3 + R1) - sqrt(R1); 
Vf = R2*sqrt((sgs-1)*g*d50); % Fall velocity 
  
qx = u*h; 
qy = v*h; 
  
alpha_x = Vf/qx; alpha_y = Vf/qy; 
%} 
% x_Slope is the product of the fluid depth and energy slope i.e. h*Sfx 
% y_Slope is h*Sfy 
% The flow shear stress is the product of the specific weight of water, the 
% flow depth and energy slope i.e. Tau_f = gamma*h*Sf 
Tau_f_x = gamma*abs(x_Slope); % flow shear stress acting on soil particles in the x-
direction (N/m^2) 
Tau_f_y = gamma*abs(y_Slope); % flow shear stress acting on soil particles in the y-
direction (N/m^2) 
  
T_c_x = kt*Tau_f_x^(3/2); 
T_c_y = kt*Tau_f_y^(3/2); 
D_c_x = kr*(Tau_f_x - Tau_c); % a variable that may be used later 
D_c_y = kr*(Tau_f_y - Tau_c); % a variable that may be used later 
  
% Solve for the x-direction 
if abs(G_x_o) > T_c_x 
    % compute net deposition 
    D_f_x = alpha*(T_c_x - abs(G_x_o)); % this value should be negative 
else 
    % compute net detachment 
    if Tau_f_x > Tau_c 
        D_f_x = D_c_x*(1 - abs(G_x_o)/T_c_x); 
    else 
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        D_f_x = 0; 
    end 
end 
  
% Update the value of the sediment load in the x-direction 
G_x = G_x_o + D_f_x*grid_size;  
  
% Solve for the y-direction 
if abs(G_y_o) > T_c_y 
    % compute net deposition 
    D_f_y = alpha*(T_c_y - abs(G_y_o)); % this value should be negative 
else 
    % compute net detachment 
    if Tau_f_y > Tau_c 
        D_f_y = D_c_y*(1 - abs(G_y_o)/T_c_y); 
    else 
        D_f_y = 0; 
    end 
end 
  
% Update the value of the sediment load in the y-direction 
G_y = G_y_o + D_f_y*grid_size;  
 

function h_o = MassConservation(h_o) 
%% Mass Conservation Subroutine. 
%{ 
This section seeks to conserve mass flow in the system by eliminating the 
appearance of negative depths. 
Details of the scheme can be found in the reference paper: OVERLAND FLOW 
AND INFILTRATION MODELLING FOR SMALL PLOTS DURING UNSTEADY 
RAIN:NUMERICAL RESULTS VERSUS OBSERVED VALUES  by ESTEVES, M et al, Journal of 
Hydrology Vol. 228, 265-282 (2000) 
The paper recalculates for the negative flow depths h_o by filling them in from the 
adjacent cells with non- negative depth. 
%} 
  
h_negative = h_o; %Set Initial value of testing matrix h_neg from input matrix h_o provided. 
[N_Rows N_Cols] = size(h_o); 
% This routine is only valid for interior points of the matrix. Results not 
% valid for matrix edges. 
for i = 2:N_Rows-1; % This loop accounts for operations carried out on the interior rows of 
the matix. 
    for j = 2:N_Cols-1; % This loop operates on the interior columns of the matrix. 
        if h_negative(i,j) < 0; % Test for negative depth in cell 
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            h_sum = h_negative(i-1, j)+ h_negative(i+1, j) + h_negative(i, j-1)+ h_negative(i, 
j+1);% Estimates the sum of the four adjacent cells to the test cell. 
            h_deficit = abs(h_negative(i,j))- h_sum; % Estimate Deficit/Surplus value Sum of 
Adjacent nodes is sufficient to fill the negative depth encountered. 
            if h_deficit <= 0; % h_sum sufficient to fill depth 
                h_negative(i-1, j)= h_negative(i-1, j)- abs(h_negative(i,j))*h_negative(i-1, j)/h_sum; 
% Update for cell depth based on cell's fractional contribution to the sum(h_sum) 
                h_negative(i+1, j) = h_negative(i+1, j)- abs(h_negative(i,j))*h_negative(i+1, 
j)/h_sum; % Update for cell depth based on cell's fractional contribution to the sum(h_sum) 
                h_negative(i, j-1) = h_negative(i, j-1)- abs(h_negative(i,j))*h_negative(i, j-1)/h_sum; 
% Update for cell depth based on cell's fractional contribution to the sum(h_sum) 
                h_negative(i, j+1)= h_negative(i, j+1)- abs(h_negative(i,j))*h_negative(i, 
j+1)/h_sum; % Update for cell depth based on cell's fractional contribution to the 
sum(h_sum) 
                h_negative(i,j) = 0; % Fill up cell from adjacent cell contributions. 
            else % if h_def > 0 i.e Positive Deficit still exists after withdrawal of h_sum 
                h_sum_diagonal = h_negative(i-1, j-1)+ h_negative(i-1, j+1)+ h_negative(i+1, j-
1)+h_negative(i+1, j+1);% Calculates the sum of the 4 diagonal cells to be used to fill in 
deficit depth (h_def) 
                h_negative(i-1,j) = 0; h_negative(i+1,j) =0;  h_negative(i,j-1)=0; h_negative(i,j+1)= 
0; % Zero values in adjacent cells showing that total withdrahal has been achieved. 
                h_negative(i-1, j-1)= h_negative(i-1, j-1)- h_deficit *h_negative(i-1, j-
1)/h_sum_diagonal; % Update for diagonal cell depth based on cell's fractional contribution 
to the sum(h_sum_diagonal) 
                h_negative(i+1, j-1) = h_negative(i+1, j-1)- h_deficit *h_negative(i+1, j-
1)/h_sum_diagonal;% Update for diagonal cell depth based on cell's fractional contribution 
to the sum(h_sum_diagonal) 
                h_negative(i-1, j+1) = h_negative(i-1, j+1)- h_deficit *h_negative(i-1, 
j+1)/h_sum_diagonal;% Update for diagonal cell depth based on cell's fractional 
contribution to the sum(h_sum_diagonal) 
                h_negative(i+1, j+1)= h_negative(i+1, j+1)- h_deficit *h_negative(i+1, 
j+1)/h_sum_diagonal;% Update for diagonal cell depth based on cell's fractional 
contribution to the sum(h_sum_diagonal) 
                h_negative(i,j) = 0; % Fill up cell from diagonal cell contributions 
            end 
        end 
    end 
end 
h_o = h_negative; % Return the value of h_o from the recalculated h_neg matrix. 
 

function [Ax, Ay] = backdiffe(A,grid_size) 
%{ 
We are employing the finite difference formula found in Hoffman (1992) 
"Numerical Methods for Engineers and Scientists" pg. 177 in place of using 
the "gradient" function or the earlier "shifting" method we adopted.  
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%} 
if nargin < 2, grid_size = 1; end 
spacing = grid_size; %we assume square grids so del_x=del_y and the formula  
                    %uses del_x and del_y as the spacing 
Ax = zeros(size(A)); 
Ay = Ax; 
% Backward Difference 
Ay(2:end,:) = A(2:end,:)-A(1:end-1,:); 
%the backward difference works up to the (end-1)th column so we employ the 
%forward difference to help us finish the job 
Ay(1,:)=A(2,:)-A(1,:); 
  
Ax(:,2:end)= A(:,2:end)-A(:,1:end-1);  
%the backward difference works up to the (end-1)th row so we employ the 
%forward difference to help us finish the job 
Ax(:,1) = A(:,2)-A(:,1); 
Ax = Ax/spacing; 
Ay = Ay/spacing; 
 

function [Ax, Ay] = fordiffe(A,grid_size) 
%{ 
We are employing the finite difference formula found in Hoffman (1992) 
"Numerical Methods for Engineers and Scientists" pg. 177 in place of using 
the "gradient" function or the earlier "shifting" method we adopted.  
%} 
if nargin < 2, grid_size = 1; end 
spacing = grid_size; %we assume square grids so del_x=del_y and the formula  
                    %uses del_x and del_y as the spacing 
Ax = zeros(size(A)); 
Ay = Ax; 
% Forward Difference 
Ay(1:end-1,:)= A(2:end,:)-A(1:end-1,:);  
%the forward difference works up to the (end-1)th row so we employ the 
%backward difference to help us finish the job 
Ay(end,:) = A(end,:)-A(end-1,:); 
Ax(:,1:end-1) = A(:,2:end)-A(:,1:end-1); 
%the forward difference works up to the (end-1)th column so we employ the 
%backward difference to help us finish the job 
Ax(:,end)= A(:,end)- A(:,end-1); 
  
Ax = Ax/spacing; 
Ay = Ay/spacing; 
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E.6  Program that generated Figures 4.14 through 4.18 

 

%{ 
This script file calls the other function files of this program. It will later be a function file 
itself that will be called in some way. We make it a script file for now for debugging 
purposes. 
Units are MKS throughout meaning i.e. time is in seconds, lengths are in meters etc. 
%} 
clc 
clear all 
close all 
tic 
%% This section prepares the visualization of results 
scrnsz = get(0,'ScreenSize'); 
figure('Position',[1 1 scrnsz(3) 0.9*scrnsz(4)],'Name','Video of Fluid 
Depth','NumberTitle','off') 
% h = waitbar(0,'1','Name','We keep getting better...',... 
%             'CreateCancelBtn',... 
%             'setappdata(gcbf,''canceling'',1)'); 
% setappdata(h,'canceling',0) 
  
%% 
t = 0;          % Initialize time 
T = 200;      % Simulation Time in seconds 
del_t = 0.0001;     % A first estimate, the model should adapt this size as it runs 
grid_size = 5;  % the DEM data we have a 5m-resolution 
g   = 9.81;     % Acceleration due to gravity 
%% DEM, Z, will be used here to test the code 
%Obtained from Judsonian data Set (51:100 41:80) 
%Z = ones(209,209); 
%gently sloping surface 
% xsc = linspace(109,9,211); 
% Z = xsc(ones(1,211),:); 
Z = 
[50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,5
0,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,
50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,5
0,50,50,50,50,50,50,50,50,50,50,50;49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,
49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.9
8,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.
98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,4
9.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,
49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.9
8,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.98,49.
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98,49.98,49.98;49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,4
9.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,
49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.9
6,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.
96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,4
9.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,
49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96,49.96;49.9
4,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.
94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,4
9.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,
49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.9
4,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.
94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,4
9.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94,49.94;49.92,49.92,49.92,49.92,
49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.9
2,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.
92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,4
9.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,
49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.9
2,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.92,49.
92,49.92,49.92,49.92,49.92,49.92,49.92,49.92;49.90,49.90,49.90,49.90,49.90,49.90,49.90,4
9.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,
49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.9
0,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.
90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,4
9.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,
49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.90,49.9
0,49.90,49.90,49.90,49.90;49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.
88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,4
9.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,
49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.8
8,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.
88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,4
9.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,49.88,
49.88;49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.8
6,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.
86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,4
9.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,
49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.8
6,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.
86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86,49.86;49.84,49.84,4
9.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,
49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.8
4,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.
84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,4
9.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,
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49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.8
4,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84,49.84;49.82,49.82,49.82,49.82,49.82,49.
82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,4
9.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,
49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.8
2,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.
82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,4
9.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,49.82,
49.82,49.82,49.82,49.82,49.82,49.82;49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.8
0,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.
80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,4
9.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,
49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.8
0,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.
80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,49.80,4
9.80,49.80,49.80;49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,
49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.7
8,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.
78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,4
9.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,
49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.7
8,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78,49.78;49.
76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,4
9.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,
49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.7
6,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.
76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,4
9.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,
49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76,49.76;49.74,49.74,49.74,49.7
4,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.
74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,4
9.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,
49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.7
4,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.
74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74,4
9.74,49.74,49.74,49.74,49.74,49.74,49.74,49.74;49.72,49.72,49.72,49.72,49.72,49.72,49.72,
49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.7
2,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.
72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,4
9.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,
49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.7
2,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.72,49.
72,49.72,49.72,49.72,49.72;49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,4
9.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,
49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.7
0,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.
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70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,4
9.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,
49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.70,49.7
0,49.70;49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.
68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,4
9.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,
49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.6
8,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.
68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,4
9.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68,49.68;49.66,49.66,
49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.6
6,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.
66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,4
9.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,
49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.6
6,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.
66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66,49.66;49.63,49.63,49.63,49.63,49.63,4
9.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,
49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.640,49.641,49.642,49.643,
49.644,49.645,49.646,49.647,49.648,49.64,49.651,49.651,49.652,49.654,49.654,49.655,49.
657,49.657,49.658,49.66,49.658,49.657,49.657,49.655,49.654,49.654,49.652,49.651,49.65
1,49.64,49.648,49.647,49.646,49.645,49.644,49.643,49.642,49.641,49.640,49.63,49.63,49.
63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,4
9.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63,49.63;49.61,
49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.6
1,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.
630,49.641,49.652,49.663,49.674,49.685,49.696,49.707,49.718,49.72,49.740,49.751,49.76
2,49.773,49.784,49.795,49.806,49.817,49.828,49.84,49.828,49.817,49.806,49.795,49.784,4
9.773,49.762,49.751,49.740,49.72,49.718,49.707,49.696,49.685,49.674,49.663,49.652,49.6
41,49.630,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,
49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.61,49.6
1,49.61,49.61,49.61;49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.
59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,4
9.59,49.59,49.59,49.59,49.625,49.651,49.677,49.703,49.72,49.755,49.781,49.807,49.833,4
9.85,49.885,49.911,49.937,49.963,49.98,50.015,50.041,50.067,50.093,50.11,50.093,50.067
,50.041,50.015,49.98,49.963,49.937,49.911,49.885,49.85,49.833,49.807,49.781,49.755,49.
72,49.703,49.677,49.651,49.625,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.
59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,49.59,4
9.59,49.59,49.59,49.59,49.59,49.59,49.59;49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,
49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.5
7,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.615,49.651,49.687,49.723,49.75,49.795,49.
831,49.867,49.903,49.93,49.975,50.011,50.047,50.083,50.11,50.155,50.191,50.227,50.263,
50.29,50.263,50.227,50.191,50.155,50.11,50.083,50.047,50.011,49.975,49.93,49.903,49.86
7,49.831,49.795,49.75,49.723,49.687,49.651,49.615,49.57,49.57,49.57,49.57,49.57,49.57,4
9.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,
49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57,49.57;49.55,49.55,49.55,49.55,49.5
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5,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.
55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,4
9.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,
49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.5
5,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.
55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,49.55,4
9.55,49.55,49.55,49.55,49.55,49.55,49.55;49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,
49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.5
3,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.
53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,4
9.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,
49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.5
3,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.53,49.
53,49.53,49.53,49.53;49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,4
9.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,
49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.5
1,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.
51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,4
9.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,
49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.51,49.5
1;49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.
49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,4
9.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,
49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.4
9,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.
49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,4
9.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49,49.49;49.47,49.47,49.47,
49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.4
7,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.
47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,4
9.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,
49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.4
7,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.
47,49.47,49.47,49.47,49.47,49.47,49.47,49.47,49.47;49.45,49.45,49.45,49.45,49.45,49.45,4
9.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,
49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.4
5,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.
45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,4
9.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,
49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.45,49.4
5,49.45,49.45,49.45,49.45,49.45;49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.
43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,4
9.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,
49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.4
3,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.
43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,4
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9.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,49.43,
49.43,49.43;49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.4
1,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.
41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,4
9.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,
49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.4
1,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.
41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41,49.41;49.39,4
9.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,
49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.3
9,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.
39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,4
9.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,
49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.3
9,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39,49.39;49.37,49.37,49.37,49.37,49.
37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,4
9.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,
49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.3
7,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.
37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,4
9.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,49.37,
49.37,49.37,49.37,49.37,49.37,49.37,49.37;49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.3
5,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.
35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,4
9.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,
49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.3
5,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.
35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,49.35,4
9.35,49.35,49.35,49.35;49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,
49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.3
3,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.
33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,4
9.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,
49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.3
3,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.33,49.
33;49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,4
9.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,
49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.3
1,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.
31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,4
9.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,
49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31,49.31;49.29,49.29,49.2
9,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.
29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,4
9.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,
49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.2
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9,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.
29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,4
9.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29,49.29;49.27,49.27,49.27,49.27,49.27,49.27,
49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.2
7,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.
27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,4
9.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,
49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.2
7,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.27,49.
27,49.27,49.27,49.27,49.27,49.27;49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,4
9.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,
49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.2
5,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.
25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,4
9.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,
49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.25,49.2
5,49.25,49.25;49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.
23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,4
9.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,
49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.2
3,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.
23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,4
9.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23,49.23;49.21,
49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.2
1,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.
21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,4
9.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,
49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.2
1,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.
21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21,49.21;49.19,49.19,49.19,49.19,4
9.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,
49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.1
9,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.
19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,4
9.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,
49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.19,49.1
9,49.19,49.19,49.19,49.19,49.19,49.19,49.19;49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.
17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,4
9.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,
49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.1
7,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.
17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,4
9.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,49.17,
49.17,49.17,49.17,49.17;49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.1
5,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.
15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,4
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9.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,
49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.1
5,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.
15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,49.15,4
9.15;49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,
49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.1
3,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.
13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,4
9.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,
49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.1
3,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13,49.13;49.11,49.11,49.
11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,4
9.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,
49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.1
1,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.
11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,4
9.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,
49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11,49.11;49.09,49.09,49.09,49.09,49.09,49.0
9,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.
09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,4
9.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,
49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.0
9,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.
09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,49.09,4
9.09,49.09,49.09,49.09,49.09,49.09;49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,
49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.0
7,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.
07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,4
9.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,
49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.0
7,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.07,49.
07,49.07,49.07;49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,4
9.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,
49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.0
5,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.
05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,4
9.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,
49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05,49.05;49.0
3,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.
03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,4
9.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,
49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.0
3,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.
03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,4
9.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03,49.03;49.01,49.01,49.01,49.01,
49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.0
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1,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.
01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,4
9.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,
49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.0
1,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.01,49.
01,49.01,49.01,49.01,49.01,49.01,49.01,49.01;48.98,48.98,48.98,48.98,48.98,48.98,48.98,4
8.98,48.98,48.98,48.98,48.98,48.98,48.98,48.98,48.98,48.98,48.98,48.98,48.98,48.98,48.98,
48.98,48.98,48.98,48.98,48.98,48.98,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.9
9,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.
99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,4
8.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,48.99,
48.99,48.99,48.99,48.99,48.98,48.98,48.98,48.98,48.98,48.98,48.98,48.98,48.98,48.98,48.9
8,48.98,48.98,48.98,48.98;48.978,48.978,48.978,48.978,48.978,48.978,48.978,48.978,48.9
78,48.978,48.978,48.978,48.978,48.978,48.978,48.978,48.978,48.978,48.978,48.978,48.97
8,48.978,48.978,48.978,48.978,48.978,48.978,48.978,48.97,48.97,48.97,48.97,48.97,48.97,
48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.9
7,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.
97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,48.97,4
8.97,48.97,48.97,48.97,48.97,48.97,48.97,48.978,48.978,48.978,48.978,48.978,48.978,48.9
78,48.978,48.978,48.978,48.978,48.978,48.978,48.978,48.978;48.958,48.958,48.958,48.95
8,48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,
48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,4
8.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,
48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.9
5,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.
95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.95,48.958,48.958
,48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,48.958,4
8.958;48.938,48.938,48.938,48.938,48.938,48.938,48.938,48.938,48.938,48.938,48.938,48.
938,48.938,48.938,48.938,48.938,48.938,48.938,48.938,48.938,48.938,48.938,48.938,48.9
38,48.938,48.938,48.938,48.938,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.
93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,4
8.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,
48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.93,48.9
3,48.93,48.93,48.93,48.938,48.938,48.938,48.938,48.938,48.938,48.938,48.938,48.938,48.
938,48.938,48.938,48.938,48.938,48.938;48.918,48.918,48.918,48.918,48.918,48.918,48.9
18,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.91
8,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,
48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,4
8.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.
918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.9
18,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.91
8,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918,
48.918,48.918,48.918,48.918,48.918,48.918,48.918,48.918;48.88,48.88,48.88,48.88,48.88,
48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.8
8,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.
88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,4
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8.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,
48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.8
8,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.88,48.
88,48.88,48.88,48.88,48.88,48.88,48.88;48.878,48.878,48.878,48.878,48.878,48.878,48.87
8,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,
48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,4
8.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.
878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.8
78,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.87
8,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,
48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878,4
8.878,48.878,48.878,48.878,48.878,48.878,48.878,48.878;48.858,48.858,48.858,48.858,48.
858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.8
58,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.85
8,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,
48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,4
8.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.
858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.8
58,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.85
8,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858,48.858;48.838,48.838,
48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,4
8.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.
838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.8
38,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.83
8,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,
48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,4
8.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.
838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.838,48.8
38;48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.81
8,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,
48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,4
8.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.
818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.8
18,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.81
8,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,
48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,48.818,4
8.818,48.818,48.818;48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,4
8.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,
48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.7
8,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.
78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,4
8.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,
48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.78,48.7
8;48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,
48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,4
8.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.
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778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.7
78,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.77
8,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,
48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,4
8.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.778,48.
778,48.778,48.778;48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.7
58,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.75
8,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,
48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,4
8.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.
758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.7
58,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.75
8,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,48.758,
48.758,48.758,48.758,48.758,48.758;48.738,48.738,48.738,48.738,48.738,48.738,48.738,4
8.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.
738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.7
38,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.73
8,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,
48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,4
8.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.
738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.738,48.7
38,48.738,48.738,48.738,48.738,48.738,48.738,48.738;48.718,48.718,48.718,48.718,48.71
8,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,
48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,4
8.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.
718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.7
18,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.71
8,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,
48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,4
8.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718,48.718;48.68,48.68,48.68
,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.6
8,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.
68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,4
8.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,
48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.6
8,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.
68,48.68,48.68,48.68,48.68,48.68,48.68,48.68,48.68;48.678,48.678,48.678,48.678,48.678,4
8.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.
678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.6
78,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.67
8,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,
48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,4
8.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.
678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.6
78,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678,48.678;48.658,48.658,48.65
8,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,
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48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,4
8.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.
658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.6
58,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.65
8,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,
48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,4
8.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658,48.658;48.
638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.6
38,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.63
8,48.638,48.638,48.638,48.638,48.638,48.638,48.637,48.636,48.635,48.634,48.633,48.632,
48.631,48.630,48.628,48.628,48.627,48.626,48.625,48.624,48.623,48.622,48.621,48.620,4
8.618,48.620,48.621,48.622,48.623,48.624,48.625,48.626,48.627,48.628,48.628,48.630,48.
631,48.632,48.633,48.634,48.635,48.636,48.637,48.638,48.638,48.638,48.638,48.638,48.6
38,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.63
8,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,48.638,
48.638,48.638;48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,4
8.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.
618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.608,48.597,48.586,48.575,48.5
64,48.553,48.542,48.531,48.520,48.508,48.498,48.487,48.476,48.465,48.454,48.443,48.43
2,48.421,48.410,48.38,48.410,48.421,48.432,48.443,48.454,48.465,48.476,48.487,48.498,4
8.508,48.520,48.531,48.542,48.553,48.564,48.575,48.586,48.597,48.608,48.618,48.618,48.
618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.6
18,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.618,48.61
8,48.618,48.618,48.618,48.618;48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.
58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,4
8.58,48.58,48.58,48.58,48.58,48.58,48.573,48.547,48.521,48.495,48.468,48.443,48.417,48.
391,48.365,48.338,48.313,48.287,48.261,48.235,48.208,48.183,48.157,48.131,48.105,48.0
78,48.105,48.131,48.157,48.183,48.208,48.235,48.261,48.287,48.313,48.338,48.365,48.39
1,48.417,48.443,48.468,48.495,48.521,48.547,48.573,48.58,48.58,48.58,48.58,48.58,48.58,
48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.5
8,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58,48.58;48.578,48.578,48.578,48.5
78,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.57
8,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,
48.578,48.578,48.543,48.507,48.471,48.435,48.38,48.363,48.327,48.291,48.255,48.218,48.
183,48.147,48.111,48.075,48.038,48.003,47.967,47.931,47.895,47.858,47.895,47.931,47.9
67,48.003,48.038,48.075,48.111,48.147,48.183,48.218,48.255,48.291,48.327,48.363,48.38,
48.435,48.471,48.507,48.543,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,4
8.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.
578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578,48.578;48.558,48.5
58,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.55
8,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,
48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,4
8.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.
558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.5
58,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.55
8,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,
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48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,48.558,4
8.558;48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.
538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.5
38,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.53
8,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,
48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,4
8.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.
538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.5
38,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.538,48.53
8,48.538,48.538,48.538;48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,
48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,4
8.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.
518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.5
18,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.51
8,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,
48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,4
8.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.518,48.
518,48.518,48.518,48.518,48.518,48.518;48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,
48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.4
8,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.
48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,4
8.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,
48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.4
8,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.48,48.
48,48.48,48.48,48.48;48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48
.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.4
78,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.47
8,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,
48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,4
8.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.
478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.4
78,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.478,48.47
8,48.478,48.478,48.478,48.478,48.478;48.458,48.458,48.458,48.458,48.458,48.458,48.458,
48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,4
8.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.
458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.4
58,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.45
8,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,
48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,4
8.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.458,48.
458,48.458,48.458,48.458,48.458,48.458,48.458,48.458;48.438,48.438,48.438,48.438,48.4
38,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.43
8,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,
48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,4
8.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.
438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.4
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38,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.43
8,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,
48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438,48.438;48.418,48.418,4
8.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.
418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.4
18,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.41
8,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,
48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,4
8.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.
418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.4
18,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.418,48.41
8;48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.
38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,4
8.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,
48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.3
8,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.
38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,4
8.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38,48.38;48.378,48.378,48.
378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.3
78,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.37
8,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,
48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,4
8.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.
378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.3
78,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.37
8,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378,48.378;
48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,4
8.357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.
357,48.357,48.357,48.357,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.3
58,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.35
8,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,
48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,4
8.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.358,48.
357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.357,48.3
57,48.357,48.357;48.337,48.337,48.337,48.337,48.337,48.337,48.337,48.337,48.337,48.33
7,48.337,48.337,48.337,48.337,48.337,48.337,48.337,48.337,48.337,48.337,48.337,48.337,
48.337,48.337,48.337,48.337,48.337,48.337,48.338,48.338,48.338,48.338,48.338,48.338,4
8.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.
338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.3
38,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.33
8,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,48.338,
48.338,48.338,48.337,48.337,48.337,48.337,48.337,48.337,48.337,48.337,48.337,48.337,4
8.337,48.337,48.337,48.337,48.337;48.317,48.317,48.317,48.317,48.317,48.317,48.317,48.
317,48.317,48.317,48.317,48.317,48.317,48.317,48.317,48.317,48.317,48.317,48.317,48.3
17,48.317,48.317,48.317,48.317,48.317,48.317,48.317,48.317,48.318,48.318,48.318,48.31
8,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,
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48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,4
8.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.
318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.318,48.3
18,48.318,48.318,48.318,48.318,48.317,48.317,48.317,48.317,48.317,48.317,48.317,48.31
7,48.317,48.317,48.317,48.317,48.317,48.317,48.317;48.27,48.27,48.27,48.27,48.27,48.27,
48.27,48.27,48.27,48.27,48.27,48.27,48.27,48.27,48.27,48.27,48.27,48.27,48.27,48.27,48.2
7,48.27,48.27,48.27,48.27,48.27,48.27,48.27,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.
28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,4
8.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,
48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.28,48.2
8,48.28,48.28,48.28,48.28,48.28,48.27,48.27,48.27,48.27,48.27,48.27,48.27,48.27,48.27,48.
27,48.27,48.27,48.27,48.27,48.27;48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.2
77,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.27
7,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.278,48.278,48.278,
48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,4
8.278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.
278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.278,48.2
78,48.278,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.27
7,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.277,48.277,
48.277,48.277,48.277,48.277,48.277,48.277,48.277;48.257,48.257,48.257,48.257,48.257,4
8.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.
257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.2
58,48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.25
8,48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.258,
48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.258,48.258,4
8.258,48.258,48.258,48.258,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.
257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.2
57,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257,48.257;48.237,48.237,48.23
7,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,
48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,4
8.237,48.237,48.238,48.238,48.238,48.238,48.238,48.238,48.238,48.238,48.238,48.238,48.
238,48.238,48.238,48.238,48.238,48.238,48.238,48.238,48.238,48.238,48.238,48.238,48.2
38,48.238,48.238,48.238,48.238,48.238,48.238,48.238,48.238,48.238,48.238,48.238,48.23
8,48.238,48.238,48.238,48.238,48.238,48.238,48.237,48.237,48.237,48.237,48.237,48.237,
48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,4
8.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237,48.237;48.
217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.2
17,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.21
7,48.217,48.217,48.217,48.217,48.218,48.218,48.218,48.218,48.218,48.218,48.218,48.218,
48.218,48.218,48.218,48.218,48.218,48.218,48.218,48.218,48.218,48.218,48.218,48.218,4
8.218,48.218,48.218,48.218,48.218,48.218,48.218,48.218,48.218,48.218,48.218,48.218,48.
218,48.218,48.218,48.218,48.218,48.218,48.218,48.218,48.218,48.217,48.217,48.217,48.2
17,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.21
7,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,48.217,
48.217,48.217;48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,4
8.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,
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48.17,48.17,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.1
8,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.
18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.18,48.17,4
8.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,
48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17,48.17;48.1
77,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.17
7,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,
48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,4
8.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.
177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.1
77,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.17
7,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,
48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,48.177,4
8.177,48.177;48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.
157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.1
57,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.15
7,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,
48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,4
8.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.
157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.1
57,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.157,48.15
7,48.157,48.157,48.157,48.157;48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,
48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,4
8.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.
137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.1
37,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.13
7,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,
48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,4
8.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.137,48.
137,48.137,48.137,48.137,48.137,48.137,48.137;48.117,48.117,48.117,48.117,48.117,48.1
17,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.11
7,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,
48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,4
8.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.
117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.1
17,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.11
7,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,
48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117,48.117;48.07,48.07,48.07,48.07
,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.0
7,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.
07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,4
8.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,
48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.0
7,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.07,48.
07,48.07,48.07,48.07,48.07,48.07,48.07,48.07;48.077,48.077,48.077,48.077,48.077,48.077,
48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,4
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8.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.
077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.0
77,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.07
7,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,
48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,4
8.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.
077,48.077,48.077,48.077,48.077,48.077,48.077,48.077,48.077;48.057,48.057,48.057,48.0
57,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.05
7,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,
48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,4
8.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.
057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.0
57,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.05
7,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,
48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057,48.057;48.037,4
8.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.
037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.0
37,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.03
7,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,
48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,4
8.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.
037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.0
37,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.037,48.03
7,48.037;48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,
48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,4
8.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.
017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.0
17,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.01
7,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,
48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,4
8.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.017,48.
017,48.017,48.017,48.017;]; 
% Data Preprocessing: Addition of Fictitious Boundaries 
% [n_rows n_cols] = size(Z); 
% zprime = ones(n_rows+2, n_cols+2); 
% zprime(2:n_rows+1, 2:n_cols+1) = Z; 
% zprime(1, :) = zprime(2, :); zprime(end, :) = zprime(end-1, :); 
% zprime(:, 1) = zprime(:, 2); zprime(:, end) = zprime(:, end-1); 
% Z = zprime; %we have now added a fictitious boundary all around the elevation data 
%% Initial conditions of fluid depth, velocities, Rainfall and Infiltration 
h_o = 0.1*ones(size(Z)); % initial flow depth (in metres) 
u_o = zeros(size(Z));      % fluid initially at rest 
v_o = zeros(size(Z));      % fluid initially at rest 
R   = zeros(size(Z));      % "rainfall" may not be the right term to use here as rain cannot just 
be falling on a sinlge pixel! 
% there's no source anywhere at the start 
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%Sourcesink   = zeros(size(Z)); 
[NRows NCols] = size(Z); 
%C_o   = zeros(size(Z)); 
% G_x = 0.0015*ones(size(Z)); 
% G_y = 0.0023*ones(size(Z)); 
%G_x_o = zeros(size(Z)); 
%G_y_o = zeros(size(Z)); 
%R(round(NRows/2+1),round(NCols/2)) = 2e-3; % assuming a spill source at the middle 
(X mm/hr = X/(36e5) m/s) 
R(10,50) = 2e-2;% a big spill before the bump 
%Sourcesink(round(N_Rows/2+1),round(N_Cols/2)) = 3.8e-5; 
  
%% This section calculates the rate of Infiltration in the into the soil surface. 
I = zeros(size(Z)); %I is rate!! 
% dIdt   = 1e-4*ones(size(Z)); %assuming constant infiltration, infiltration rates too are in 
mm/hr (very small) REF: http://www.fao.org/docrep/S8684E/s8684e0a.htm 
% InfilDepth = 1e-5*ones(size(Z)); %Cumulative Infiltration Depth 
% Soiltype = 'clay'; 
% % Choosing soil type 
% if Soiltype == 'sand',         soil_type = 1; 
% elseif Soiltype == 'lmsy',     soil_type = 2; 
% elseif Soiltype == 'sdlm',     soil_type = 3; 
% elseif Soiltype == 'loam',     soil_type = 4; 
% elseif Soiltype == 'stlm',     soil_type = 5; 
% elseif Soiltype == 'sdcm',     soil_type = 6; 
% elseif Soiltype == 'cllm',     soil_type = 7; 
% elseif Soiltype == 'stcm',     soil_type = 8; 
% elseif Soiltype == 'sdcl',     soil_type = 9; 
% elseif Soiltype == 'stcl',     soil_type = 10; 
% elseif Soiltype == 'clay',     soil_type = 11; 
% end 
  
%% Check that the CFL condition is satisfied, this - theoretically - ensures the stability of 
the algorithm: 
while del_t > max(2*grid_size./max(max(u_o + sqrt(g*h_o))),2*grid_size./max(max(v_o + 
sqrt(g*h_o))))  %this is the Courant condition, may need to revise this or derive mine 
    del_t = del_t/2; 
end 
%% 
t = t + del_t; 
n = 0; %start counter 
while t < T 
    %% The main gist of the program is here 
    % The MacCormack Method is used to solve the Shallow Water equations 
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    %     [dIdt, InfilDepth] = InfiltrationModel(InfilDepth, soil_type, del_t);%this updates the 
value of the infiltration rate dIdt at each time step 
    %     if n == 0, dIdt = zeros(size(Z));end % Initial values of dIdt are unreasonable for 
computational purposes. 
    %     %h_previous = h_o; u_previous = u_o; v_previous = v_o;%stores the result of h at this 
time step 
    %     uabs = abs(u_o); vabs = abs(v_o); % Set a tolerance value for velocities at which 
infiltration can occur 
    %    % dIdt(uabs==0|vabs==0) = 0; % Infiltration doesn't take place where there's no 
flow 
    %    % dIdt(h_o < 0.001) = 0; % No infiltration where the flow is less than a minimum 
value. In this case, 1mm. 
    %     dIdt(uabs<=1e-5|vabs<=1e-5) = 0; %Infiltration doesn't take place where there's 
slow flow 
     
    [h_c,u_c,v_c] = first_x_operator(h_o,u_o,v_o,del_t,grid_size,Z,R,I,NRows,NCols); 
    h_o = h_c; u_o = u_c; v_o = v_c;  %The output serve as input at the next time step 
    [h_c,u_c,v_c] = first_y_operator(h_o,u_o,v_o,del_t,grid_size,Z,R,I,NRows,NCols); 
    h_o = h_c; u_o = u_c; v_o = v_c;  %The output serve as input at the next time step 
     
    t = t + del_t; 
     
    %we should turn off the source at some point just to see what happens 
%                                     if t> 600 
%                                         R(round(NRows/2+1),round(NCols/2)) = 0; 
%                                     end 
    n= n+ 1; %increase counter by 1 
    % Check that the CFL condition is satisfied, this - theoretically - ensures the stability of 
the algorithm: 
     
    %     while del_t > max(2*grid_size./max(max(u_c + 
sqrt(g*h_c))),2*grid_size./max(max(v_c + sqrt(g*h_c))))  %this is the Courant condition, 
may need to revise this or derive mine 
    %         del_t = del_t/2; 
    %     end 
    % 
     
    %% Movie of the Simulation 
    %Stripping the data of fictitious boundary values before displaying 
    udisplay = u_o(2:NRows-1,2:NCols-1); 
    vdisplay = v_o(2:NRows-1,2:NCols-1); 
    mesh(h_o(2:NRows-1,2:NCols-1)) 
    hold on 
    quiver(udisplay,vdisplay) 
    hold off 
    %     axis([0 N_Cols 0 N_Rows 0.10 .2]) % to prevent the plot from resizing itself 
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    xlim([0 NCols]);ylim([0 NRows]); zlim([0.1 0.11]); % to prevent the plot from resizing 
itself 
    xlabel('x'); ylabel('y'); 
    % Check for Cancel button press 
    %     if getappdata(h,'canceling') 
    %         break 
    %     end 
    % Report current estimate in the waitbar's message field 
    Percentage = (t/T)*100; 
    Time_so_far = t; 
    % waitbar(t/T,h,sprintf('%5.0f %%  Elapsed time=%4.0f s',Percentage,Time_so_far)) 
    top = title('Persistence pays'); 
    set(top,'string',sprintf('Percentage Complete=%3.0f %%, Elapsed time=%4.0f 
s',Percentage,Time_so_far)) 
    drawnow 
    pause(0.01) 
end 
%delete(h)       % DELETE the waitbar; don't try to CLOSE it. 
toc 
 
 
E.6.1  Function files associated with the main Program in E.6 

function [h_c,u_c,v_c] = first_x_operator(h_o,u_o,v_o,del_t,grid_size,Z,R,I,NRows,NCols) 
%{ 
This function file is the First Lx operator. It advances the solution in 
the x-direction by half a time-step. Its output will serve as inputs to the 
First Ly operator(after Garcia & Kahawita, 1986. 
%} 
  
%% Boundary Conditions for the Predictor Part 
% The boundary is either closed or open. Only one can be used at a time. 
% This means we will have the closed boundary conditions commented out when 
% we need the program to model an open boundary and vice versa. 
g = 10 ;                             % acceleration due to gravity 
n = 0.03 ;                             % n is Manning coefficient 
%del_t = del_t/2;                       % we take half of a time-step each time 
  
F_o = u_o.^2.*h_o + 0.5*g*h_o.^2; 
G_o = u_o.*v_o.*h_o; 
Sfx_o = n^2*u_o.*sqrt(u_o.^2 + v_o.^2)./h_o.^(4/3); 
U_o = u_o.*h_o;  % The Unit width discharge in the x-direction 
V_o = v_o.*h_o;  % The Unit width discharge in the y-direction 
  
% This is the reflection (CLOSED) boundary condition where (i-1,j) is replaced by (i+1,j) 
and 
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% the sign of the normal velocity component is swicthed.  
  
% % I am wary of pre-allocating here because the values I used in 
% % pre-allocating will inadvertently be used in the computation causing 
% % errors. So I will trade speed (and memory) for accuracy.  
% for i = 1 
%     for j = 1:NCols 
%         h_p(i,j) = h_o(i,j) - (del_t/grid_size).*(U_o(i,j) + U_o(i+1,j)) + del_t.*(R(i,j)-I(i,j)); 
%         U_p(i,j) = U_o(i,j) - (del_t/grid_size).*(F_o(i,j) - F_o(i+1,j)) + del_t*g*0.5*(h_o(i,j) + 
h_o(i+1,j)).*(-(Z(i,j) - Z(i+1,j))/grid_size - Sfx_o(i,j)); 
%         V_p(i,j) = V_o(i,j) - (del_t/grid_size).*(G_o(i,j) + G_o(i+1,j)); 
%     end 
% end 
  
% This is the transmitting (OPEN) boundary condition where (i-1,j) is 
% replaced by (i+1,j) and the sign of the normal component of velocity is 
% unchanged 
  
for i = 1 
    for j = 1:NCols 
        h_p(i,j) = h_o(i,j) - (del_t/grid_size).*(U_o(i,j) - U_o(i+1,j)) + del_t.*(R(i,j)-I(i,j)); 
        U_p(i,j) = U_o(i,j) - (del_t/grid_size).*(F_o(i,j) - F_o(i+1,j)) + del_t*g*0.5*(h_o(i,j) + 
h_o(i+1,j)).*(-(Z(i,j) - Z(i+1,j))/grid_size - Sfx_o(i,j)); 
        V_p(i,j) = V_o(i,j) - (del_t/grid_size).*(G_o(i,j) - G_o(i+1,j)); 
    end 
end 
% Pre-allocate with boundary values. 
%Pre-allocating here fixes the size of the matrices and ensures they don't 
%change once they get inside the for loops below. If I don't pre-allocate 
%here, the first row would be replaced by zeros since I am starting the 
%computation at i = 2, so MATLAB simply fills i = 1 with zeros which I 
%don't want.I am using the first row to pre-allocate since that is the only known 
"Predicted" value so far  
  
h_p = repmat(h_p(1,:),NRows,1); % fill up with matrix with this boundary value 
U_p = repmat(U_p(1,:),NRows,1); % It is a nice way to pre-allocate also 
V_p = repmat(V_p(1,:),NRows,1);  
  
%% CONSTANTS 
k = 0.1;   % is a parameter used to regulate the amount of dissipation, will be determined by 
trial-and-error 
  
%% The predictor step (backward difference) 
% Calculate the interior parts 
  
for i = 2:NRows 
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    for j = 1:NCols 
        h_p(i,j) = h_o(i,j) - (del_t/grid_size).*(U_o(i,j)-U_o(i-1,j))+ del_t.*(R(i,j)-I(i,j)); 
        U_p(i,j) = U_o(i,j) - (del_t/grid_size).*(F_o(i,j)-F_o(i-1,j))+ del_t*g*0.5*(h_o(i,j)+h_o(i-
1,j)).*(-(Z(i,j)-Z(i-1,j))/grid_size - Sfx_o(i,j)); 
        V_p(i,j) = V_o(i,j) - (del_t/grid_size).*(G_o(i,j)-G_o(i-1,j)); 
    end 
end 
  
%% Calculate Intermediate Values to be used in the Corrector Part 
u_p = U_p./h_p;        % backing out u 
v_p = V_p./h_p;        % backing out v 
  
F_p = u_p.^2.*h_p + 0.5*g*h_p.^2; 
G_p = u_p.*v_p.*h_p; 
Sfx_p = n^2*u_p.*sqrt(u_p.^2 + v_p.^2)./h_p.^(4/3); 
  
%% The corrector step (forward difference) 
  
% % Calculate the Boundary values 
% % For the CLOSED Boundary condition. Always notice the sign changes in U and 
% %G but not F 
% for i = NRows 
%     for j = 1:NCols 
%         h_c(i,j) = 0.5 * (h_o(i,j) + h_p(i,j) - (del_t/grid_size).*(-U_p(i-1,j)-U_p(i,j)) + 
del_t.*(R(i,j)-I(i,j))); 
%         U_c(i,j) = 0.5 * (U_o(i,j) + U_p(i,j) - (del_t/grid_size).*(F_p(i-1,j)-F_p(i,j)) + 
del_t*g*0.5*(h_p(i-1,j) + h_p(i,j)).*(-(Z(i-1,j) - Z(i,j))/grid_size - Sfx_p(i,j))); 
%         V_c(i,j) = 0.5 * (V_o(i,j) + V_p(i,j) - (del_t/grid_size).*(-G_p(i-1,j)-G_p(i,j))); 
%     end 
% end 
  
% For the OPEN Boundary condition, no sign changes.  
for i = NRows 
    for j = 1:NCols 
        h_c(i,j) = 0.5 * (h_o(i,j) + h_p(i,j) - (del_t/grid_size).*(U_p(i-1,j)-U_p(i,j)) + del_t.*(R(i,j)-
I(i,j))); 
        U_c(i,j) = 0.5 * (U_o(i,j) + U_p(i,j) - (del_t/grid_size).*(F_p(i-1,j)-F_p(i,j)) + 
del_t*g*0.5*(h_p(i-1,j) + h_p(i,j)).*(-(Z(i-1,j) - Z(i,j))/grid_size - Sfx_p(i,j))); 
        V_c(i,j) = 0.5 * (V_o(i,j) + V_p(i,j) - (del_t/grid_size).*(G_p(i-1,j)-G_p(i,j))); 
    end 
end 
% Pre-allocate with boundary values. 
%Pre-allocating here fixes the size of the matrices and ensures they don't 
%change once they get inside the for loops below. If I don't pre-allocate 
%here, the resulting matrices from the for loops below would have a size of 
%[NRows - 1, NCols] instead of the normal [NRows, NCols]. I am using the 
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%last row (i = NRows)to pre-allocate since that is the only known "corrected" value so 
%far.  
  
h_c = repmat(h_c(NRows,:),NRows,1); % fill up with matrix with this boundary value 
U_c = repmat(U_c(NRows,:),NRows,1); 
V_c = repmat(V_c(NRows,:),NRows,1); 
  
for i = 1:NRows-1 
    for j = 1:NCols 
        h_c(i,j) = 0.5 * (h_o(i,j) + h_p(i,j) - (del_t/grid_size).*(U_p(i+1,j)-U_p(i,j)) + del_t.*(R(i,j)-
I(i,j))); 
        U_c(i,j) = 0.5 * (U_o(i,j) + U_p(i,j) - (del_t/grid_size).*(F_p(i+1,j)-F_p(i,j)) + 
del_t*g*0.5*(h_p(i+1,j) + h_p(i,j)).*(-(Z(i+1,j)-Z(i,j))/grid_size - Sfx_p(i,j))); 
        V_c(i,j) = 0.5 * (V_o(i,j) + V_p(i,j) - (del_t/grid_size).*(G_p(i+1,j)-G_p(i,j))); 
    end 
end 
  
u_c = U_c./h_c;        % backing out u 
v_c = V_c./h_c;        % backing out v 
%% Computing variables to be used in handling steep gradients (see the note in the 
"artificialviscosity" file for details): 
  
[eps_back_x_hc,  eps_for_x_hc] = artificialviscosity2D_x(h_c,k); 
% [eps_back_x_uc,  eps_for_x_uc] = artificialviscosity2D(u_c,k); 
% [eps_back_x_vc,  eps_for_x_vc] = artificialviscosity2D(v_c,k); 
  
% Update the INTERIOR values of h,u and v: 
  
for i = 2:NRows-1 
    for j = 1:NCols 
h_c(i,j) = h_c(i,j) + eps_for_x_hc(i,j).*(h_c(i+1,j) - h_c(i,j)) - eps_back_x_hc(i,j).*(h_c(i,j) - h_c(i-
1,j)); 
% u_c(i,j) = u_c(i,j) + eps_for_x_uc(i,j).*(u_c(i+1,j) - u_c(i,j)) - eps_back_x_uc(i,j).*(u_c(i,j) - 
u_c(i-1,j)); 
% v_c(i,j) = v_c(i,j) + eps_for_x_vc(i,j).*(v_c(i+1,j) - v_c(i,j)) - eps_back_x_vc(i,j).*(v_c(i,j) - 
v_c(i-1,j)); 
    end 
end 
  
end 
 
 

function [h_c,u_c,v_c] = first_y_operator(h_o,u_o,v_o,del_t,grid_size,Z,R,I,NRows,NCols) 
%{ 
This function file is the First Ly operator. It advances the solution in 
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the y-direction by half a time-step. Its output will serve as inputs to the 
Second Ly operator (after Garcia & Kahawita, 1986). 
%} 
  
%% Boundary Conditions for the Predictor Part 
% The boundary is either closed or open. Only one can be used at a time. 
% This means we will have the closed boundary conditions commented out when 
% we need the program to model an open boundary and vice versa. 
g = 10 ;                             % acceleration due to gravity 
n = 0.03 ;                             % n is Manning coefficient 
%del_t = del_t/2;                       % we take half of a time-step each time 
  
S_o = v_o.^2.*h_o + 0.5*g*h_o.^2; 
G_o = u_o.*v_o.*h_o; 
Sfy_o = n^2*v_o.*sqrt(u_o.^2 + v_o.^2)./h_o.^(4/3); 
U_o = u_o.*h_o;  % The Unit width discharge in the x-direction 
V_o = v_o.*h_o;  % The Unit width discharge in the y-direction 
  
% % This is the reflection (closed) boundary condition where (i,j-1) is replaced by (i,j+1) 
and 
% % the sign of the normal velocity component is swicthed.  
%  
% % I am wary of pre-allocating here because the values I used in 
% % pre-allocating will inadvertently be used in the computation causing 
% % errors. So I will trade speed (and memory) for accuracy.  
% for i = 1:NRows 
%     for j = 1 
%         h_p(i,j) = h_o(i,j) - (del_t/grid_size).*(V_o(i,j) + V_o(i,j+1)) + del_t.*(R(i,j)-I(i,j)); 
%         U_p(i,j) = U_o(i,j) - (del_t/grid_size).*(G_o(i,j) + G_o(i,j+1));  
%         V_p(i,j) = V_o(i,j) - (del_t/grid_size).*(S_o(i,j) - S_o(i,j+1)) + del_t*g*0.5*(h_o(i,j) + 
h_o(i,j+1)).*(-(Z(i,j) - Z(i,j+1))/grid_size - Sfy_o(i,j)); 
%     end 
% end 
  
% This is the transmitting (OPEN) boundary condition where (i,j-1) is 
% replaced by (i,j+1) and the sign of the normal component of velocity is 
% unchanged 
  
for i = 1:NRows 
    for j = 1 
        h_p(i,j) = h_o(i,j) - (del_t/grid_size).*(V_o(i,j) - V_o(i,j+1)) + del_t.*(R(i,j)-I(i,j)); 
        U_p(i,j) = U_o(i,j) - (del_t/grid_size).*(G_o(i,j) - G_o(i,j+1));  
        V_p(i,j) = V_o(i,j) - (del_t/grid_size).*(S_o(i,j) - S_o(i,j+1)) + del_t*g*0.5*(h_o(i,j) + 
h_o(i,j+1)).*(-(Z(i,j) - Z(i,j+1))/grid_size - Sfy_o(i,j)); 
    end 
end 
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% Pre-allocate with boundary values. 
%Pre-allocating here fixes the size of the matrices and ensures they don't 
%change once they get inside the for loops below. If I don't pre-allocate 
%here, the first column would be replaced by zeros since I am starting the 
%computation at j = 2, so MATLAB simply fills j = 1 with zeros which I 
%don't want.I am using the first row to pre-allocate since that is the only known 
"Predicted" value so far  
  
h_p = repmat(h_p(:,1),1,NCols); % fill up with matrix with this boundary value 
U_p = repmat(U_p(:,1),1,NCols); % It is a nice way to pre-allocate also 
V_p = repmat(V_p(:,1),1,NCols);  
  
%% CONSTANTS 
k = 0.1;   % is a parameter used to regulate the amount of dissipation, will be determined by 
trial-and-error 
  
%% The predictor step (backward difference) 
% Calculate the interior parts 
  
for i = 1:NRows 
    for j = 2:NCols 
        h_p(i,j) = h_o(i,j) - (del_t/grid_size).*(V_o(i,j)-V_o(i,j-1))+ del_t.*(R(i,j)-I(i,j)); 
        U_p(i,j) = U_o(i,j) - (del_t/grid_size).*(G_o(i,j)-G_o(i,j-1)); 
        V_p(i,j) = V_o(i,j) - (del_t/grid_size).*(S_o(i,j)-S_o(i,j-1))+ del_t*g*0.5*(h_o(i,j)+h_o(i,j-
1)).*(-(Z(i,j)-Z(i,j-1))/grid_size - Sfy_o(i,j)); 
    end 
end 
  
%% Calculate Intermediate Values to be used in the Corrector Part 
u_p = U_p./h_p;        % backing out u 
v_p = V_p./h_p;        % backing out v 
  
S_p = v_p.^2.*h_p + 0.5*g*h_p.^2; 
G_p = u_p.*v_p.*h_p; 
Sfy_p = n^2*v_p.*sqrt(u_p.^2 + v_p.^2)./h_p.^(4/3); 
  
%% The corrector step (forward difference) 
  
% % Calculate the Boundary values 
% % For the CLOSED Boundary condition. Always notice the sign changes in V and 
% %G but not S 
%  
% for i = 1:NRows 
%     for j = NCols 
%         h_c(i,j) = 0.5 * (h_o(i,j) + h_p(i,j) - (del_t/grid_size).*(-V_p(i,j-1)-V_p(i,j)) + 
del_t.*(R(i,j)-I(i,j))); 
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%         U_c(i,j) = 0.5 * (U_o(i,j) + U_p(i,j) - (del_t/grid_size).*(-G_p(i,j-1)-G_p(i,j)));  
%         V_c(i,j) = 0.5 * (V_o(i,j) + V_p(i,j) - (del_t/grid_size).*(S_p(i,j-1)-S_p(i,j))+ 
del_t*g*0.5*(h_p(i,j-1) + h_p(i,j)).*(-(Z(i,j-1) - Z(i,j))/grid_size - Sfy_p(i,j))); 
%     end 
% end 
  
% For the OPEN Boundary condition, no sign changes.  
for i = 1:NRows 
    for j = NCols 
        h_c(i,j) = 0.5 * (h_o(i,j) + h_p(i,j) - (del_t/grid_size).*(V_p(i,j-1)-V_p(i,j)) + del_t.*(R(i,j)-
I(i,j))); 
        U_c(i,j) = 0.5 * (U_o(i,j) + U_p(i,j) - (del_t/grid_size).*(G_p(i,j-1)-G_p(i,j)));  
        V_c(i,j) = 0.5 * (V_o(i,j) + V_p(i,j) - (del_t/grid_size).*(S_p(i,j-1)-S_p(i,j))+ 
del_t*g*0.5*(h_p(i,j-1) + h_p(i,j)).*(-(Z(i,j-1) - Z(i,j))/grid_size - Sfy_p(i,j))); 
    end 
end 
% Pre-allocate with boundary values. 
%Pre-allocating here fixes the size of the matrices and ensures they don't 
%change once they get inside the for loops below. If I don't pre-allocate 
%here, the resulting matrices from the for loops below would have a size of 
%[NRows, NCols - 1] instead of the normal [NRows, NCols]. I am using the 
%last column (j = NCols)to pre-allocate since that is the only known "corrected" value so 
%far.  
  
h_c = repmat(h_c(:,NCols),1,NCols); % fill up with matrix with this boundary value 
U_c = repmat(U_c(:,NCols),1,NCols); 
V_c = repmat(V_c(:,NCols),1,NCols); 
  
for i = 1:NRows 
    for j = 1:NCols-1 
        h_c(i,j) = 0.5 * (h_o(i,j) + h_p(i,j) - (del_t/grid_size).*(V_p(i,j+1)-V_p(i,j)) + del_t.*(R(i,j)-
I(i,j))); 
        U_c(i,j) = 0.5 * (U_o(i,j) + U_p(i,j) - (del_t/grid_size).*(G_p(i,j+1)-G_p(i,j)));  
        V_c(i,j) = 0.5 * (V_o(i,j) + V_p(i,j) - (del_t/grid_size).*(S_p(i,j+1)-S_p(i,j))+ 
del_t*g*0.5*(h_p(i,j+1) + h_p(i,j)).*(-(Z(i,j+1)-Z(i,j))/grid_size - Sfy_p(i,j))); 
    end 
end 
  
u_c = U_c./h_c;        % backing out u 
v_c = V_c./h_c;        % backing out v 
%% Computing variables to be used in handling steep gradients (see the note in the 
"artificialviscosity" file for details): 
  
[eps_back_y_hc,  eps_for_y_hc] = artificialviscosity2D_y(h_c,k); 
% [eps_back_x_uc,  eps_for_x_uc] = artificialviscosity2D(u_c,k); 
% [eps_back_x_vc,  eps_for_x_vc] = artificialviscosity2D(v_c,k); 



 

202 
 

  
% Update the INTERIOR values of h,u and v: 
  
for i = 1:NRows 
    for j = 2:NCols-1 
h_c(i,j) = h_c(i,j) + eps_for_y_hc(i,j).*(h_c(i,j+1) - h_c(i,j)) - eps_back_y_hc(i,j).*(h_c(i,j) - 
h_c(i,j-1)); 
% u_c(i,j) = u_c(i,j) + eps_for_x_uc(i,j).*(u_c(i+1,j) - u_c(i,j)) - eps_back_x_uc(i,j).*(u_c(i,j) - 
u_c(i-1,j)); 
% v_c(i,j) = v_c(i,j) + eps_for_x_vc(i,j).*(v_c(i+1,j) - v_c(i,j)) - eps_back_x_vc(i,j).*(v_c(i,j) - 
v_c(i-1,j)); 
    end 
end 
end 
 
 

function[eps_back_x, eps_for_x] = artificialviscosity2D_x(h_o,k) 
%{ 
 ARTIFICIAL VISCOSITY COMPUTATION   2D Saint Venant Equation for the 
 x-direction 
 Jameson, et al. 1981 developed a procedure to dampen the high frequency oscillations 
observed near steep gradients. 
 These oscillations are  produced as a result of dispersive errors in the MacCormack 
Scheme. 
 Details about this procedure can be found in Chaudhry (1993), Chapter 8: Computation of 
Rapidly Varied Flows,In: 
 "Open-Channel Flow". It is strongly recommended that this reference chapter in the book 
be read before attempting 
 to use - or debug - this  function file. 
  
Please keep in mind that changes in the x-Cartesian cordinates affect columns (y) in 
MATLAB while changes along the 
y-Cartesian cordinates affect rows(x) in MATLAB. This dichotomy between the Cartesian 
cordinate system and how MATLAB 
inteprets rows and columns is a common cause of confusion when computing gradients in 
more than one-dimension. 
%} 
  
%% Pre-process Data 
h_visc = h_o; % Set Initial value of testing array h_visc from input array h_o provided. 
[NRows NCols] = size(h_o); 
viscos_x = zeros([NRows NCols]);     % Pre-allocate the viscosity with zeros 
  
%% Viscosity Calculation 
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% For points where (i-1,j) doesn't exist, the viscosity is calculated as: 
for i = 1 
    for j = 1:NCols 
        viscos_x(i,j) = abs(h_visc(i+1,j)- h_visc(i,j))/(abs(h_visc(i+1,j))+ abs(h_visc(i,j))); 
    end 
end 
  
% For points where (i+1,j) doesn't exist, the viscosity is calculated as: 
for i = NRows 
    for j = 1:NCols 
        viscos_x(i,j) = abs(h_visc(i,j)- h_visc(i-1,j))/(abs(h_visc(i,j))+ abs(h_visc(i-1,j))); 
    end 
end 
  
% For all other interior points, the viscosity is calculated as: 
for i = 2:NRows-1 
    for j = 1:NCols 
        viscos_x(i,j) = abs(h_visc(i+1,j)- 2*h_visc(i,j)+ h_visc(i-1,j))/(abs(h_visc(i+1,j))+ 
abs(2*h_visc(i,j))+ abs(h_visc(i-1,j))); 
    end 
end 
  
% This is like a boundary condition of some sort since there's no "zeroth" element to 
compare the first one with 
for i = 1 
    for j = 1:NCols 
        eps_back_x(i,j) = k*viscos_x(i,j); 
    end 
end 
  
% For all other interior points, the epsilon is calculated as: 
for i = 2:NRows 
    for j = 1:NCols 
        eps_back_x(i,j) = k*max(viscos_x(i-1,j), viscos_x(i,j)); 
    end 
end 
  
% This is like a boundary condition of some sort since there's no "outside" element to 
compare the last one with 
for i = NRows 
    for j = 1:NCols 
        eps_for_x(i,j) = k*viscos_x(i,j); 
    end 
end 
  
for i = 1:NRows-1 
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    for j = 1:NCols 
        eps_for_x(i,j) = k*max(viscos_x(i,j), viscos_x(i+1,j)); 
    end 
end 
  
 
function[eps_back_x, eps_for_x] = artificialviscosity2D_x(h_o,k) 
%{ 
 ARTIFICIAL VISCOSITY COMPUTATION   2D Saint Venant Equation for the 
 x-direction 
 Jameson, et al. 1981 developed a procedure to dampen the high frequency oscillations 
observed near steep gradients. 
 These oscillations are  produced as a result of dispersive errors in the MacCormack 
Scheme. 
 Details about this procedure can be found in Chaudhry (1993), Chapter 8: Computation of 
Rapidly Varied Flows,In: 
 "Open-Channel Flow". It is strongly recommended that this reference chapter in the book 
be read before attempting 
 to use - or debug - this  function file. 
  
Please keep in mind that changes in the x-Cartesian cordinates affect columns (y) in 
MATLAB while changes along the 
y-Cartesian cordinates affect rows(x) in MATLAB. This dichotomy between the Cartesian 
cordinate system and how MATLAB 
inteprets rows and columns is a common cause of confusion when computing gradients in 
more than one-dimension. 
%} 
  
%% Pre-process Data 
h_visc = h_o; % Set Initial value of testing array h_visc from input array h_o provided. 
[NRows NCols] = size(h_o); 
viscos_x = zeros([NRows NCols]);     % Pre-allocate the viscosity with zeros 
  
%% Viscosity Calculation 
  
% For points where (i-1,j) doesn't exist, the viscosity is calculated as: 
for i = 1 
    for j = 1:NCols 
        viscos_x(i,j) = abs(h_visc(i+1,j)- h_visc(i,j))/(abs(h_visc(i+1,j))+ abs(h_visc(i,j))); 
    end 
end 
  
% For points where (i+1,j) doesn't exist, the viscosity is calculated as: 
for i = NRows 
    for j = 1:NCols 
        viscos_x(i,j) = abs(h_visc(i,j)- h_visc(i-1,j))/(abs(h_visc(i,j))+ abs(h_visc(i-1,j))); 
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    end 
end 
  
% For all other interior points, the viscosity is calculated as: 
for i = 2:NRows-1 
    for j = 1:NCols 
        viscos_x(i,j) = abs(h_visc(i+1,j)- 2*h_visc(i,j)+ h_visc(i-1,j))/(abs(h_visc(i+1,j))+ 
abs(2*h_visc(i,j))+ abs(h_visc(i-1,j))); 
    end 
end 
  
% This is like a boundary condition of some sort since there's no "zeroth" element to 
compare the first one with 
for i = 1 
    for j = 1:NCols 
        eps_back_x(i,j) = k*viscos_x(i,j); 
    end 
end 
  
% For all other interior points, the epsilon is calculated as: 
for i = 2:NRows 
    for j = 1:NCols 
        eps_back_x(i,j) = k*max(viscos_x(i-1,j), viscos_x(i,j)); 
    end 
end 
  
% This is like a boundary condition of some sort since there's no "outside" element to 
compare the last one with 
for i = NRows 
    for j = 1:NCols 
        eps_for_x(i,j) = k*viscos_x(i,j); 
    end 
end 
  
for i = 1:NRows-1 
    for j = 1:NCols 
        eps_for_x(i,j) = k*max(viscos_x(i,j), viscos_x(i+1,j)); 
    end 
end 
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Appendix F  

Procedure on how to Display the Quiver Plot when the number of cells is very large 

%{ 
The purpose of this script file is to show a neat way to display the quiver plot of the velocity 
field when the number of elements is large. 
If the number of elements in a martix is large (>1000), the arrows tend to be small and the 
directional information that a quiver plot is meant 
to show is lost. This program averages the values of neighboring cells so that the length of 
each dimension of a matrix is cut into two, four, eight 
etc. This will correspondingly reduce the number of elements exponentially. 
  
  
Lets say I have a (20,30) matrix that I want to reduce to a (10,15) by averaging values of 
neighboring cells. Note that this will reduce the 
numel of elements from 600 to 150. It is much clearer to display 150 arrows than 600 in a 
quiver plot! The procedure for the problem described 
is: 
  
X = rand(20, 30); % X is my matrix, a 2-D array 
R = reshape(X, 2, 10, 2, 15); % this turns X into a 4-dimensional array (Note that 2*10 = 20 
and 2*15 =30) 
S = sum(sum(R, 1), 3) * 0.25; % sum along the 1st and then 3rd dimensions then take the 
average by dividing by 4 (or multiply by 0.25) 
Y = reshape(S, 10, 15); % Reshape into the size you want i.e. a (10,15)matrix 
  
This can be written in one line as: 
Y = reshape(sum(sum(reshape(rand(20,30), 2, 10, 2, 15), 1), 3) * 0.25, 10, 15); % Cool, isn't 
it? :) 
  
If the matrix you are working with is big and you need to reduce by, say, 8(which will cut 
the number of elements down by 64) or 16  
(which will reduce the number of element by 256), a one-line command can achieve this 
also. 
  
Let's assume you are working with a (400,800): 
  
Y = reshape(sum(sum(reshape(rand(400,800), 8, 50, 8, 100), 1), 3) * 0.125,50, 100); 
% Note that 1, 8*50 = 400 and 8*100 = 800; 2, You now multiply by 0.125 (or divide by 8, 
whichever you want) 
  
To reduce each dimension by a factor of 16: 
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Y = reshape(sum(sum(reshape(rand(400,800), 16, 25, 16, 50), 1), 3) * 0.0625,25, 50); 
% Note that 1, 16*25 = 400 and 16*50 = 800; 2, You now multiply by 0.0625 (or divide by 
16, whichever you want) 
  
 You should get the gist by now.  
%} 
  
  
%For our St. Venant's equations, a (50,40) martix can be reduced to a (25,20) matrix 
similarly: 
  
udisplay_sum = reshape(sum(sum(reshape(udisplay, 2, 25, 2, 20), 1), 3) * 0.25, 25, 20); 
vdisplay_sum = reshape(sum(sum(reshape(vdisplay, 2, 25, 2, 20), 1), 3) * 0.25, 25, 20); 
quiver(udisplay_sum,vdisplay_sum) %this quiver is much clearer than if we didn't reduce 
the matrix 
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Appendix G  

Determining Soil Erodibility (kt) and Critical Shear Stress (  ) values for a given set of 

soil conditions 

Soil erodibility and critical shear stress are two of the most important property values 

required for physically-based soil erosion modeling. Erodibility (kt) is a soil property that 

quantitatively describes the erosion potential of a particular soil. Erosion occurs when a 

certain amount of shear stress needed to cause particle removal from the sides of a channel 

is reached.  The critical shear stress (τc) is the shear stress threshold at which hydraulic 

forces will begin to remove significant amounts of bank material.   According to Nearing et 

al (1989a), these two properties are related to the erosion rate by the equation: 

       (τ    ) (    
  

   
) 

where   Dr is rill detachment rate, kg m− 2 s− 1;  

τ is the shear stress of flowing water, N m− 2;  

τc is the critical shear stress of soil, N m− 2;  

q is unit flow rate, m3 s− 1 m− 1; and c is sediment concentration, kg m− 3;  

Tc is transport capacity of the flowing water, kg s− 1 m− 1; and  

Kt is the erodibility of soil, s m− 1. 
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This equation is made use of in the WEPP erosion model. More recent works by Hanson 

(1990a, b) however present a more simplified form which is used in erosion models such 

as HEC-6 and SWAT  

     (     )
  

Where  ε = erosion rate (m/s) 

kt = erodibility coefficient (m3/N·s) 

a = exponent typically assumed to be 1 

τa = applied shear stress on the soil boundary (Pa) 

τc = critical shear stress (Pa). 

Critical shear stress 

Critical shear stress of a soil is usually determined in flume studies. The estimation is based 

on soil parameters such as particle size and soil specific gravity. The empirical relations 

developed by Smerdon and Beasley (1961) are presented here: 

       (  )     

       (  )
      

                    

                     

Where   Iw = plasticity index 
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Dr = dispersion ratio 

D50 = mean particle size (m) 

Pc = percent clay by weight (%). 

The relations with Iw and Dr were considered the most reliable because the two parameters 

are directly related to cohesion properties of the soil. 

Soil erodibility  

Simple relations between kt and soil properties are not readily available so one relies on 

empirical relations between kt and τc for estimating erodibility. Two empirical methods 

exist for estimating kt if τc is known, the Osmorne and Thorne (1988) approach which 

calculated the erodibility as the initial lateral bank erosion (dB) divided by τc, the value of 

dB is specified by the relation: 

    
            

       

 
 

Where  dB = initial lateral bank erosion rate (m/min per unit area) 

τc = critical shear stress (dynes/cm2) 

γ = soil unit weight (kN/m3). 

 The second approach utilizes the work of Hanson and Simon (2001), in which they 

detected an inverse relationship between the two properties given by: 

        
     

Where  kt is the erodibility coefficient (cm3/N·s). 
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