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Abstract 

i 
 

Abstract 
This thesis has two aims: i) an investigation of the effect of acid treatment on C/N, δ13C 

and δ15N of organic materials and; ii) the reconstruction of palaeoenvironmental change 

from a lake sediment sequence from south China, using geochemical proxies. To 

address these aims, a systematic comparative study was developed to examine the three 

most common acid treatment methods (capsule method; rinse method; fumigation 

method) and a range of acid reagents (HCl; H2SO3; H3PO4), on a range of terrestrial and 

aquatic, modern and geological sample materials. Acid treatment is a necessary step in 

the analysis of organic matter (OM) due to the distinct δ13C of inorganic carbon (IC) 

relative to the δ13C of OM; however, there is no consensus on “best practice”.  

 

I find that C/N, δ13C and δ15N values of OM are not just dependent upon environmental 

processes but also on acid treatment method, which adds significant non-linear biasing 

to the OM signal several orders of magnitude above instrument precision. This biasing 

is caused by the inefficient removal of IC from sample materials and the alteration of 

OM by the acid treatment process. Consequently, this can significantly alter the 

environmental interpretation of these proxies, for example, in determining OM 

provenance, indicating that the assumption that the effect of acid treatment on sample 

OM is either negligible or systematic, is flawed, with biasing in C/N ~ 1 – 100; δ13C ~ 

0.2 – 7.2 ‰ and; δ15N ~ 0.2 – 1.7 ‰ in my range of samples.  

 

In addition, a long lake sediment sequence was cored from Lake Tianyang, Leizhou 

Peninsula, south China (20o31’1.11” N, 110o18’43.02” E) to reconstruct 

palaeoenvironmental variability using a suite of geochemical proxies (δ13C of bulk OM; 

XRF elemental ratios, magnetic susceptibility). The Tianyang δ13C record and elemental 

ratios (MIS 9 through MIS 6) show a strong glacial – interglacial imprint, providing 

evidence for periods of aridity during interglacial/interstadial periods in south China. 

The elemental ratios lose this imprint during MIS 5, likely due to an increase in 

catchment erosion (captured in the La, Nb, Ni, Th and Au records). Additionally, I 

tested the hypothesis that Ti concentrations reflect winter AM variability and showed 

that, whilst this may be valid, a robust interpretation is not possible due to the dilution 

of sedimentary Ti concentrations by local sources. A regional comparison of the 

Tianyang records appears to suggest a change in the strength of the land-sea thermal 

contrast in south China, implying a shift in mosiutre source region. 



 

 
 

 
 
 

A comparative study on the effect of acid preparation 

methodologies on bulk organic materials, and a long-

core geochemical palaeoenvironmental reconstruction 

from South China. 
 
 

 
 

 
 
 
 
 
 
 

Christopher Richard Brodie 
 

Ustinov College 
 

 
 
 
 
 
 
 

Thesis submitted for the degree of Doctor of Philosophy 
 

Department of Geography 
 

May 2011 



Acknowledgments 

                                                                                                    iii 

Acknowledgments 
 
My first thanks are offered to Dr. Dave Evans, Prof. Colm O’Cofaigh and Dr. Zong 

Yongqiang, who, in April 2007, offered me the opportunity to undertake a PhD at 

Durham University.  Financial support for this research, in the form of tuition fees, 

living expenses and some field and laboratory expenses were provided through the 

NERC (studentship NE/F007264/1). Additional support was granted through the NERC 

isotope facility (IP/1047/0508; IP/1165/0510), the NERC Radiocarbon Facility 

(1423/1009) and the Dudley Stamp Memorial Fund.  

 

I thank my supervisors, Dr. Jeremy Lloyd, Dr. James Casford and Dr. Zong Yongqiang, 

whose support, encouragement, expertise, advice, friendship and faith in my ability, has 

led to the completion of this PhD. Their willingness to discuss my work and give 

unselfishly of their time is something I am eternally grateful and thankful for – a simple 

acknowledgement here does not do them justice at all! This is extended to Prof. Melanie 

Leng (NIGL, UK). I am truly indebted to Mel for “takin’ a punt” on a rookie academic, 

providing fantastic academic support which has subsequently led to a substantial 

amount of the material presented within this thesis. In addition, I extend thanks to the 

Department of Geography laboratory staff (Frank, Martin, Amanda, Neil, Kathrine) for 

providing access to preparation and analytical equipment, and training in relevant 

analytical techniques (e.g. XRF), and to Jean for the morning coffee and toast! 

 

The support for my friends, both at “home” and in Durham, largely through excessive 

evenings in the pub, mindless stupidity in the office, or just letting me “let off steam” in 

the form of some incoherent rant, has helped enormously: thanks Ash, Anne, Rob, 

Robin, Patrick, Vicky, Ed, Dave McC, Nick, Ladan, Rushil, Dianna, Banks, Fluff and 

Giro for cheering me up, or getting my plastered, when I was in need of it! 

 

Finally, I thank my family for their support and encouragement over the last few years. 

In particular I thank my parents, Richard and Anne Brodie, my sister Emma Brodie, and 

my girlfriend, Rachel Finch (and Joe, of course!). Without their encouragement, support 

and guidance over the years, especially during my younger years from my parents, my 

life may not have taken me to this point. My final words here go to my grandmother, 

Jane Simpson, who passed away on 31st August 2010 after a long battle with Dementia 

and Alzheimer’s: you will always have a special place in, and bearing on, my life.  



Dedication 

                                                                                                    iv 

Dedication 
 
This thesis is dedicated to my family, primarily my parents Richard and Anne Brodie, 

and to my girlfriend, Rachel Finch. I also dedicate this Ph.D. thesis to “my only lassie”; 

my grandmother Jane Simpson (1935 – 2010), who passed away before I could 

complete my research.  

 



Declaration and Statement of Copyright 

                                                                                                    v 

 
I declare that the material presented in this Ph.D. thesis is the result of my own research, unless 

otherwise cited. Further, I confirm that no part of this thesis has been submitted for any other 

degree at this university, or for consideration at any other degree awarding institution.  

 

The copyright of this thesis rests with the author. No quotation from it should be published 

without prior written consent and information derived from it should be acknowledged. 

 

 

 

 

Christopher Richard Brodie B.Sc (Hons) 

31st May 2011 



Table of Contents 

                                                                                                    vi 

Table of Contents 
 
Abstract          i 
Acknowledgments         iii 
Dedication          iv 
Declration and Statement of Copyright      v 
Table of Contents         vi 
List of Tables          ix 
List of Figures         x 
 
CHAPTER 1: Introduction 
 
1.1 Introduction         1 
1.2.  Regional Setting        2 

1.2.1 Climate and Palaeoclimate       2 
1.3 Proxies                    4 
1.4 Application of stable isotope geochemistry                5 
1.5 Instrument analysis        6 
1.6 δ13C Pilot Study        8 
1.7 Thesis aims         9 
1.8  Thesis outline         11 
 
Chapter 2: Evidence for bias in C and N concentrations and δ13C composition of 
terrestrial and aquatic organic materials due to pre-analysis acid treatment 
methods  
 
2.1 Introduction         13 
2.2 Sample materials        15 
2.3 Sample preparation methods       17 

2.3.1 Cleaning protocol       17 
2.3.2 Acid reagents        17 

2.4 Acidification methods        18 
2.4.1 Rinse method        19 
2.4.2 Capsule method       19 
2.4.3 Fumigation method       20 

2.5 Analytical methods        21 
2.5.1 C/N and δ13C        21 
2.5.2 Supernatant analysis       22 

2.6 Data analysis         23 
2.7 Results          23 

2.7.1 Determination of carbon blank                23 
2.7.2 Effect of sample size on %C and %N                23 
2.7.3 Small versus normal sample sizes in our sample materials             24 
2.7.4 Sample material results                 26 

2.7.4.1 Materials from known values                26 



Table of Contents 

                                                                                                    vii 

2.7.4.2 Other sample materials              27 
2.8 Discussion                  38 

2.8.1 Method offsets                38 
2.8.2 Effect of capsule                40 
2.8.3 Small versus normal sample size              41 
2.8.4 Proportionality                41 
2.8.5 Dissolution of IC                42 
2.8.6 C/N ratio                 44 

2.9 Summary and Recommendations               46 
2.9.1 Recommendations                47 

 
CHAPTER 3: Evidence for bias in measured δ15N values of terrestrial and aquatic 
organic materials due to pre-analysis acid treatment methods. 
     
3.1 Introduction                  51 
3.2 Sample materials and acid treatment methods             53 

3.2.1 Sample materials                53 
3.2.2 Acid treatment methods               53 

3.3 Analytical methods                 54 
3.4 Data analysis                  55 
3.5 Results                   55 
3.6 Discussion                  62 

3.6.1 Methodological differences in δ15N              62 
3.6.2 Effect of capsule type                63 
3.6.3 Coupled offsets in δ13C and δ15N              64 
3.6.4 δ13C and δ15N cross-plots               65 
3.6.5 Inorganic nitrogen                65 

3.7 Summary and recommendations               70 
 
CHAPTER 4: Evidence for bias in C/N, δ13C and δ15N values of bulk organic 
matter, and on environmental interpretation, from a lake sedimentary sequence by 
pre-analysis acid treatment methods. 
 
4.1 Introduction                 72 
4.2 Unresolved issues                75 
4.3 Materials and methods               76 

4.3.1 Core material                76 
4.3.2 Preparation methods               77 

4.3.2.1 Cleaning protocol              77 
4.3.2.2 Rinse method               77 
4.3.2.3 Capsule method              77 
4.3.2.4 Untreated               77 

4.3.3 Analytical methods               77 
4.3.3.1 C/N and δ13C               77 
4.3.3.2 δ15N                78 

4.3.4 Data analysis                78 



Table of Contents 

                                                                                                    viii 

4.4 Results                 78 
4.4.1 %C and %N               78 
4.4.2 C/N and δ13C               79 
4.4.3 δ15N                79 

4.5 Discussion                84 
4.5.1 Methodological differences             84 
4.5.2 Artificial concentration of %C and %N           87 
4.5.3 Implications for the interpretation of C/N, δ13C and δ15N          88 

4.6 Implications for accuracy and precision            90 
4.7 Summary and recommendations             93 
 
CHAPTER 5: Down core palaeoenvironmental reconstruction from Lake 
Tianyang 
 
5.1 Introduction               95 
5.2 Lake setting               97 

5.2.1 Past research on Lake Tianyang           98 
5.3 Materials and methods             100 

5.3.1 Sedimentology             100 
5.3.2 C/N and δ13C of organic matter           102 
5.3.3 XRF elemental analysis            102 
5.3.4 Core scanning              103 
5.3.5 14C analysis                103 

5.4 Results and discussion             104 
5.4.1 Chronology              104 
 5.4.1.1 Radiocarbon Datings             104 
 5.4.1.2 Tuned Age Model             106 
5.4.2 C/N and δ13C              109 
5.4.3 XRF elemental ratios             112 
5.4.4 Magnetic Susceptibility (χ)            116 

5.5 Glacial – Interglacial change: A Synthesis           117 
5.6 Winter monsoon proxy             122 
5.7 Regional comparison              125 
5.8 Synthesis and conclusions             129 
 
CHAPTER 6: Summary 
 
6.1 Thesis aims              132 
6.2 Effect of acid treatment on C/N and δ13C of organic material       132 
6.3 Effect of acid treatment on δ15N of organic material         133 
6.4 Effect of acid treatment on C/N, δ13Cand δ15Non organic materials in a down 
core sequence               134 
6.5 Multi-proxy palaeoenvironmental reconstruction from Lake Tianyang  135 
 
References               136 
 



List of Tables 

                                                                                                    ix 

List of Tables 
Chapter 1 

 
Table 1.1 Comparison of St. Andrews and NIGL δ13C results   9 
 

Chapter 2 
 

Table 2.1 Description of sample materials     16 
Table 2.2 Acid strength conversion      18 
Table 2.3 ANOVA results for “small” versus “normal” analyses  25 
Table 2.4 Limitations of acid treatment methods and solutions   49 
 

Chapter 3 
 

Table 3.1 Mean ± standard deviation for SOILB, BROC and TYC  61 
Table 3.2 ANOVA results for δ15N from SOILB, BROC and TYC  62 
 

Chapter 4 
 

Table 4.1 ANOVA results for C/N and δ13C from Lake Tianyang samples 82 
Table 4.2 ANOVA results for δ15N from Lake Tianyang samples  84 
Table 4.3 Summary of bias on C/N, δ13C and δ15N in down core records 93 
 

Chapter 5 
 

Table 5.1 XRF Standard values       103 
Table 5.2 New AMS 14C dates from Lake Tianyang               104 
Table 5.3 Previously reported 14C datings from Lake Tianyang              106  
Table 5.4 Age model: 14C datings and SPECMAP “tie-points”   108 
Table 5.5  Elemental concentrations of Lake Tianyang catchment rock  115 
    



List of Figures 

                                                                                                    x 

List of Figures 

Chapter 1 
 

Figure 1.1 Lake Tianyang location map      1 
Figure 1.2 Schematic illustration of Asian monsoon    4 
Figure 1.3 Schematic illustration of EA-IRMS     7 
Figure 1.4 Theoretical representation of bias on C/N, δ13C and δ15N  10 
 

Chapter 2 
 

Figure 2.1 Changes in %C and %N as a function of sample size  24 
Figure 2.2 %C, %N, C/N and δ13C results for SOILB    28 
Figure 2.3 %C, %N, C/N and δ13C results for BROC    29 
Figure 2.4 %C, %N, C/N and δ13C results for ALGAE    30 
Figure 2.5 %C, %N, C/N and δ13C results for NEW    31 
Figure 2.6 %C, %N, C/N and δ13C results for TYC    32 
Figure 2.7 %C, %N, C/N and δ13C results for GRN    33 
Figure 2.8 %C, %N, C/N and δ13C results for MOR    34 
Figure 2.9 %C removed from total organic C in rinse method   35 
Figure 2.10 AAS results of rinse method supernatant    36 
Figure 2.11 Relative proportional offset in %C, %N and C/N   43 
Figure 2.12 Bi-plots of C/N versus δ13C for SOILB and BROC   45 
 

Chapter 3 
 

Figure 3.1 C/N, δ13C and δ15N results for SOILB    58 
Figure 3.2 C/N, δ13C and δ15N results for BROC    59 
Figure 3.3 C/N, δ13C and δ15N results for TYC     60 
Figure 3.4 Bi-plots of δ13C versus δ15N for SOILB, BROC and TYC  67 
Figure 3.5 SOILB bootstrap estimate of %C versus %N bi-plot   68 
Figure 3.6 BROC bootstrap estimate of %C versus %N bi-plot   69 
Figure 3.7 TYC bootstrap estimate of %C versus %N bi-plot   69 
 

Chapter 4 
 

Figure 4.1 Partial core lithology for Lake Tianyang    77 
Figure 4.2 %C, %N, C/N and δ13C down core comparison records  81 
Figure 4.3 δ15N down core comparison records     84 
 

Chapter 5 
 

Figure 5.1 Map of Leizhou Peninsula and Lake Tianyang contour map  97 
Figure 5.2 Cross section of Lake Tianyang      98 
Figure 5.3 Previous reconstructions on Lake Tianyang    99 
Figure 5.4 Lake Tianyang core lithology for upper 40.00 m   101 
Figure 5.5 Age-depth plot of new Tianyang chronology    109 
Figure 5.6 Correlation of pollen data with SPECMAP stacked δ18O  110 
Figure 5.7 Lake Tianyang δ13C, XRF and χ records    113 
Figure 5.8 Regional comparison of Tianyang records    128 



 

 
 

 
 
 
 
 
 

Chapter 1 
 
 
Introduction



Chapter 1: Introduction 

                      1 
 

1.1. Introduction 

The climate of South China is strongly seasonal, owing to the dominant influence of the 

Asian monsoon (AM), the associated summer precipitation of which is vital to the 

livelihoods of several billions of people.  Therefore understanding the variability of the 

AM, and how it may change in the future, is vital, but requires an understanding of 

palaeo-AM changes. However, the spatial resolution of long term palaeoclimatic 

records of the AM is currently very low in south Asia, especially from terrestrial 

archives (Wang et al, 2005). In an attempt to improve the scientific understanding of 

palaeoclimatic change in South China, a long sedimentary sequence was sampled from 

Lake Tianyang, Leizhou Peninsula, south China (Figure 1.1), for organic and inorganic 

geochemical analyses.  

 

 
Figure 1.1: Location map of Lake Tianyang, south China (Adapted from Yu et al., 

2006: 357). 

 

20o31’1.11” N 
110o18’43.02” E 
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1.2. Regional Setting 

Lake Tianyang is situated to the south of Leizhou Peninsula, ~80 – 100m above mean 

sea level with a catchment surface area of ~7.3 km2. There is currently no standing 

water body due to the drainage outlet to the southeast of the basin and the infilling of 

the lake by sedimentation (Zheng and Lei, 1999). The peninsula is characterised by a 

flat volcanic topography, with ~39 volcanic craters (Mingram et al, 2004) that form 

small catchment maar lakes, the main deviation from this flat topographical setting. 

Given the typically small catchment area and deep profile of maar lakes (e.g. 

Hutchinson, 1957), like Lake Tianyang, they respond relatively quickly to changes in 

climate. The signature of such changes is recorded in the long sedimentary record 

constrained by the crater rim (i.e. small area). Previous low resolution research on Lake 

Tianyang indicates that the sedimentary record spans several glacial-interglacial cycles 

(e.g. Chen et al., 1990; Zheng and Lei, 1999). A detailed investigation of the 

sedimentary record can, therefore, contribute an important palaeoenvironmental 

reconstruction to the literature in a key climatic area. 

 

The geology of the Leizhou Peninsula is dominated by basalt, dating from the early 

Pleistocene, and is part of the Leiqiong formation which covers an area of ~ 7000 km2 

(Ho et al, 2000). Specifically, Lake Tianyang is part of the middle Pleistocene 

Shimaoling formation and is a maar crater lake typical of the region (e.g. Mingram et al, 

2004). Ho et al (2000) presented a key geochemical summary and volcanic history of 

the Leizhou Peninsula, and indicated the main period of volcanic activity was the early 

– middle Pleistocene. The basalts in Leizhou Peninsula are rich in olivine and quartz 

tholeiites, with coexisting titanomagnetite (~50 wt% Fe and ~24 wt % Ti) and ilmenite 

(~ 40 wt% Fe and ~51  wt% Ti)(Ho et al, 2000) and have typically high concentrations 

of Aluminum (Al), Iron (Fe), Magnesium (Mg), Titanium (Ti), Niobium (Nb), Nickel 

(Ni), Lanthanum (La), Barium (Ba) and Gold (Au). 

1.2.1. Climate and Palaeoclimate 

The character of the regional climate is strongly seasonal, with warm, wet summers 

(June - August) and cool, dry winters (December - February). This phenomenon, known 

as the Asian monsoon (AM), has been generally described as a large “land-sea breeze” 

system (e.g. Webster, 1998), the strength and intensity of which is primarily controlled 

by regional land-sea thermodynamics and seasonal changes in insolation within the 

tropics (e.g. Gao et al., 1962; Ramage, 1971; Webster, 1987; 1998; An et al., 2000; 
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Wang et al., 2005; Nakagawa et al., 2006). Through the boreal summer, the insolation 

maximum moves northward, strengthening the north-south land-sea thermodynamic 

contrast across Asia resulting in increased (and rapid) sensible heating across the 

Tibetan plateau and continental Asia. This develops continental low pressure systems 

(with coexisting high pressure systems over the adjacent oceans). This results in wind 

patterns blowing predominantly from a south/south-westerly direction and increasing 

evaporation across moisture source regions (Indian Ocean, South China Sea (SCS), 

Western Pacific Warm Pool (WPWP) and Western Pacific). The summer AM initiates 

over west Asia (India) first (in May) which is not paralleled over east Asia (e.g. China) 

until late May/early June, when insolation maxima causes increased moisture flux over 

SCS and WPWP. In China, this broadly results from the pressure gradient force 

between the Australian high, Western Pacific high and the Asian continental low 

propagating cross-equatorial flow over Indonesia which interacts with the Intertropical 

Convergence Zone (ITCZ; or monsoon trough) leading to the onset of monsoon 

precipitation. As East Asia does not have the orographic barrier in the Himalayas, the 

rain-bearing front (Mei-Yu front) can reach farther north (~ 30oN) than the south-

western front, which is blocked by the Himalayas. This causes Asia to experience warm, 

wet summer periods, and cold, dry winter periods. By September/October the insolation 

maxima begin to move southwards, and with it the ITCZ. This results in reduced 

sensible heating across the Asian continent which, over the boreal winter months, 

causes continental high pressure cells to form in contrast to the low pressure cells over 

the adjacent oceans. This causes cold, dry winds to flow from a north-easterly direction 

cross the Asian continent (see Figure 1.2).  

 
The AM is an important inter-hemispheric land-sea-air system connected to global and 

regional climate at orbital and sub-orbital timescales (e.g. Ramage, 1971; Kutzbach, 

1981; Webster, 1998; An, 2000; Wang et al., 2005; Nakagawa et al., 2008). For 

example, changes in the intensity of the Siberian high and westerly jet stream have been 

invoked as a possible mechanism that strengthens the winter monsoon and weakens the 

summer monsoon during cold periods (e.g. An, 2000; Wang et al, 2001; Yancheva et al, 

2007; Nakagawa et al, 2008). Research on cave speleothem records in sub-tropical 

China (e.g. Wang et al, 2001; Yuan et al 2004; Cheng et al, 2009), Qinghai-Tibetan 

Plateau ice core records (Thompson et al, 1997), loess/palaeosol sequences from central 

and northern China (e.g. Porter and An, 1995; Chen et al, 1999; An et al, 2000; Porter, 

2000), a lake sequence from Japan (Nakagawa et al, 2008) and from sedimentary 
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sequences from the South China Sea (Wang et al, 1999; Sun et al, 2003) has improved 

our understanding of orbital scale variability of the Asian monsoon (AM) over the past 

two glacial – interglacial cycles. In general, they focus on summer AM variability 

(commonly discussed as changes in precipitation), and broadly agree that the summer 

AM is dominated by a ~23 ka cycle which is synchronous with northern hemisphere 

summer insolation at 65oN, implying a direct link to solar forcing. These records lend 

support to the theory for direct solar modulation of the AM region by the precession 

cycle (~ 23 – 19 ka) (Kutzbach, 1981; Kutzbach and Street-Perrot, 1985; Kutzbach and 

Guetter, 1986; Prell and Kutzbach, 1987; Rossignol-Strick et al, 1998; Ruddiman, 2006) 

and suggest a weakening of the summer AM during glacial/stadial periods and a 

strengthening during interglacial/interstadial periods. 

 

 
Figure 1.2: Generalised schematic of Asian summer (a) and winter (b) monsoon. 

 

1.3. Proxies 

The reconstruction of palaeoenvironmental and palaeoclimatic change from lacustrine 

sediment sequences is commonly achieved through the measurement and interpretation 

of organic and inorganic proxies (e.g. Meyers, 1994; Burnett et al, 2010; Scholz et al, 

2010). For example, C/N, δ13C and δ15N values from bulk organic matter (OM)  have 

been commonly employed to understand OM provenance and vegetation type (e.g. C3 v 

C4 plants)(e.g. Talbot and Johannessen, 1992; Meyers, 1997; Street-Perrot et al., 1997, 

2004; Turney, 1999; Scholz et al, 2010; Yu et al, 2010). Consequently, they have 

become an important tool for understanding biogeochemical processes at a variety of 

spatial and temporal scales during the last two decades (e.g. Altabet et al, 1995; Meyers, 
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1997; Sharpe, 2007; Zong et al, 2006; Galy et al, 2008; Langdon et al, 2010; Yu et al, 

2010). Research based on these proxies underpins the understanding of past climate 

variability and has helped interpret centennial to glacial-interglacial timescale shifts 

outside of high-latitude regions (e.g. Street-Perrot et al, 1997, 2004; Turney, 1999; 

Lucke et al, 2003; Baker et al, 2005; Mampuku et al, 2008; Scholz et al, 2010; Wei et al, 

2010). Elemental ratios in lake sediments have also been used to increase the 

understanding of within catchment processes, such as redox changes (e.g. Fe, Mn, Cu), 

catchment erosion (Sr, Rb, Ti, Nb, La) and lake productivity (U, Th, Ba)(e.g. Davison, 

1993; Boyle 2001). Therefore, this study will employ C/N and δ13C and heavy metal 

elemental ratios as proxies to reconstruct the palaeoenvironment of Lake Tianyang. 

 

1.4. Application of stable isotope geochemistry 

The application of stable isotopes as a means of understanding environmental processes 

matured from the seminal work of Urey (1947) who presented the theoretical grounds 

for isotopic fractionation and suggested such fractionations could be related to 

environmental processes. Fractionation of stable isotopes refers to the natural chemical 

and/or physical process(es) which lead to the division of isotopes of an element within a 

substance (e.g. photosynthesis). For example, Carbon has three isotopes; two stable 

isotopes, 12C (the most abundant) and 13C, and one radioactive isotope (14C). However, 

it is the fractionation between 12C and 13C that has been largely adopted to investigate 

environmental processes. For example, during photosynthesis plants preferentially 

diffuse 12C into their structure by assimilation of atmospheric or dissolved CO2. 

However, two major photosynthetic pathways exist: the Hatch-Slack photosynthetic 

pathway, broadly utilised by C4 plants; and the Calvin-Benson photosynthetic pathway, 

commonly utilised by C3 plants. This fundamental genetic difference represents a 

measureable fractionation process in the environment resulting in C3 plants typically 

with δ13C values in the range of –22 to –35 ‰, and C4 plants with δ13C values in the 

range of –6 to –15 ‰. 

 

The organic carbon signature is, however, potentially contaminated by the presence of 

inorganic carbon (IC; e.g. calcite, dolomite, siderite) due to the significantly different 

δ13C signature of IC (–15 to + 10 ‰; e.g. Hoefs, 1973; Sharpe, 2007). For a 

hypothetical sample with 1% IC (δ13C ≈ –3 ‰) and 12% OC (δ13C ≈ –25 ‰), δ13C 

would be enriched by 1.8 ‰. Therefore, prior to the analysis of organic C, it is 



Chapter 1: Introduction 

                      6 
 

necessary to remove the contaminating IC from the sample material. This is commonly 

achieved by acid treatment (e.g. Froelich, 1980; Verardo et al, 1990; Nieuwenhuize et al. 

1994; Meyers, 1997; King et al, 1998; Lohse et al, 2000; Leng et al, 2005; Larson et al, 

2008; Fernandes and Krull, 2008). A number of fundamentally different pre-analysis 

acid treatment methods are clear from the literature, using a variety of different acid 

reagents and strengths: (i) the “rinse” method, which involves acid digestion of the 

sample for ~ 24 h followed by sequential water rinses; (ii) the “capsule” method, which 

involves the in-situ acidification of the sample material in a silver capsule and; (iii) the 

“fumigation” method, which involves the exposure of sample aliquots to acid fumes for 

~8 h or more. However, no consensus on “best practice” is evident in the literature. 

 

1.5. Instrument analysis 

The measurement of C/N, δ13C and δ15N values of bulk OM is commonly achieved in 

palaeoenvironmental studies by Elemental Analyser Isotope Ratio Mass Spectrometry 

(EA-IRMS), a technique today that provides extremely high accuracy and precision 

(Figure 1.3). The EA-IRMS analytical process undertakes five primary steps (e.g. 

Sharpe, 2007; Muccio and Jackson, 2009):  

i) Combustion: combustion of sample and conversion to gas phase in a 

combustion furnace of an EA (CO2 for analysis of carbon; N2 for nitrogen 

analysis);  

ii) Ionisation: ionisation of the sample gas (in the ion source module of the 

mass spectrometer). In the ion source, ions are formed from the sample gas, 

accelerated and focussed into a narrow high energy beam;  

iii) Mass Analysis: separation of these ions by deflection into a circular path by 

discrimination of mass to charge ratio under an electromagnetic field (in the 

mass analyser module of the mass spectrometer);  

iv) Ion detection: measurement of separated ions which allows the abundance of 

each ion present to be measured (in the detector module of the mass 

spectrometer) and;  

v) Ion separation and measurement: collection of separated ions in ion detectors, 

which converts the ions into an electrical impulse signal and amplifies it, 

before the resultant signal is processed into mass spectra.  



Chapter 1: Introduction 

                      7 
 

 
Figure 1.3: Schematic of EA-IRMS analytical setup. Sample materials are loaded into the autosampler, normally in a foil capsule for solid samples (i.e. 
sediments), and dropped sequentially into a combustion furnace in a flow of helium gas. The sample is combusted to CO2 (for carbon), and N2 (for 
nitrogen) in the reduction oven from nitrous oxides with the concomitant removal of excess O2. The chemical and moisture trap then removes H2O 
before the sample gas is separated by gas chromatography into CO2 and N2. The sample gas analyte is then transferred “on-line” to the IRMS for 
analysis where it is ionised, followed by an ion separation and detection of the separated ions (after electrical amplification of the ions). The resultant 
electrical impulse that is detected is processed into mass spectra of relative abundance of isotopes in the sample gas. 
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The stable isotope δ13C and δ15N values of analysed sample material are derived relative 

to isotopic standard reference materials to eliminate any potential systematic error or 

bias from analytical measurements. Values are then quoted with reference to 

internationally recognised standards such as Vienna Pee Dee Belemnite (V-PDB) for 

carbon and atmospheric air for nitrogen (IAEA, 1995). Measured isotope ratios are 

derived as a ratio of a low abundance isotope to the high abundance isotope (e.g. 
13C/12C and 15N/14N) and reported in the delta (δ) notation (Coplen, 1996) as parts per 

thousand (‰): 

 

δ Rsample-standard (‰) = [ (RSample / RStandard) - 1] x 1000 

 

where R = the measured ratio of the sample and standard respectively. Instrument 

precision is expressed as the standard deviation (σ) of replicate analysis of standard 

reference materials.  

 

1.6. δ13C Pilot Study 

An initial pilot dataset for C/N and δ13C values of bulk OM from the Lake Tianyang 

sediment was analysed at the School of Geography and Geosciences at St. Andrews 

University followed by detailed analysis at the NERC Isotope Geoscience Laboratory 

(NIGL), Keyworth. I cross-validated δ13C measurements acquired at St Andrews 

University at NIGL (Table 1.1) prior to undertaking this detailed analysis. This cross-

validation showed considerable differences in δ 13C values in the range of ~ 0.1 – 3.5 ‰; 

these differences are significantly greater than instrument precision (from St. Andrews 

and NIGL ≤ 0.2 ‰) and represent additional imprecision of the measured δ13C values. 

The pre-analysis acid treatment method at both laboratories fundamentally differed: St. 

Andrews University Geoscience Laboratory followed the “capsule” method using 10% 

HCl as the acidifying reagent, whereas NIGL followed the “rinse” method using 5% 

HCl as the acidifying reagent. However, an inherent assumption of this acid treatment 

approach, regardless of the method or acid reagent used, is that there is no bias to OM 

and, if there is, it is at least systematic and proportional between acid treatment methods. 

Given the widespread application and measurement of C/N, δ13C and δ15N values of 

bulk OM geochemistry in palaeoenvironmental research (and across other disciplines), 

the lack of a robust systematic comparison and understanding of the potential for bias 

on measured C/N, δ 13C and δ15N values from pre-analysis acid treatment methods 
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undermines a rigorous scientific approach. This thesis, therefore, presents a 

reassessment of the accuracy and precision on C/N, δ13C and δ15N values on organic 

materials prior to undertaking a palaeoenvironmental reconstruction of the Lake 

Tianyang sedimentary record.  

 

Table 1.1: Comparison of measured δ13C values from St. Andrews University and 
NERC Isotope Geosciences Laboratory 

 
Sample Depth (m) St. Andrews δ13C (‰) NIGL δ13C (‰) Difference (‰) 

8.76 -9.93 -7.24 2.69 
9.08 -25.05 -24.24 0.81 
9.56 -19.62 -17.97 1.65 
10.36 -25.64 -25.01 0.63 
10.52 -23.57 -24.50 0.93 
12.28 -19.04 -20.31 1.28 
12.44 -17.09 -20.63 3.54 
12.60 -17.79 -15.37 2.42 
12.76 -20.04 -18.94 1.10 
12.92 -24.60 -24.68 0.08 
14.20 -25.595 -25.70 0.10 

 

 

1.7. Thesis aims 

The aims of this thesis are: 

1. To investigate the effect of pre-analysis acid treatment methods on C/N and δ13C 

values of OM in a range of environmental materials. (Chapter 2) 

2. To investigate the effect of pre-analysis acid treatment methods on δ15N values of 

OM in a range of environmental materials. (Chapter 3) 

3. To investigate the effect of pre-analysis acid treatment methods on C/N, δ13C and 

δ15N values of OM in a down-core sedimentary sequence. (Chapter 4) 

4. To develop of multi-proxy record of environmental change from Lake Tianyang. 

(Chapter 5) 
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Figure 1.4: Theoretical representation of potential source of bias on C/N, δ13C and δ15N values. 
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1.8. Thesis outline 

Chapter 2 addresses the first research aim and presents the results of a comprehensive 

systematic comparative study of pre-analysis acid treatment methods on a suite of 

environmental organic materials.  I show that elemental C and N composition varies in a 

nonlinear and disproportionate manner within and between methods, but does not 

necessarily result in an isotopic shift. Further, the δ13C of sample OM can vary 

significantly within and between acid treatment methods. This biasing is unpredictable. 

 

Chapter 3 takes this systematic method of investigation a step further by investigating 

δ15N of OM and presents the results of a smaller comparative study, guided by the 

results from chapter 2. I illustrate that measured δ15N values vary significantly within 

and between acid treatment methods, and in different proportions to δ13C. This biasing 

too is unpredictable. 

 

Based on the findings of chapters 2 and 3, and in the context of reconstructing the Lake 

Tianyang palaeoenvironmental history, chapter 4 presents a comparative study of these 

pre-analysis acid treatment methods on a sedimentary sequence of samples from Lake 

Tianyang. I show that there are inconsistencies in the application of any single method 

down-core, and significant differences within and between methods in C/N, δ13C and 

δ15N values. This significantly reduces the accuracy and precision of measured C/N, 

δ13C and δ15N values and can influence environmental interpretation. 

 

Chapter 5 presents results and discussion of a geochemical analysis of the upper 40 m 

section of sediment from Lake Tianyang, based primarily on δ13C and XRF elemental 

data. I report evidence of glacial-interglacial scale variability in our multi-proxy record 

alongside evidence questioning the validity of sedimentary Ti concentrations as a proxy 

for winter monsoon wind strength variability. 

 

Finally, chapter 6 concisely summarises the primary findings of the preceding chapters. 



 
 
 
 
 
 
 

CHAPTER 2 
 
 
Evidence for bias in C and N concentrations and 

δ13C composition of terrestrial and aquatic 

organic materials due to pre-analysis acid 

treatment methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Brodie, C.R., Leng, M.J., Casford, J.S.L., Kendrick, C.P., Lloyd, J.M., Zong, Y.Q., and 

Bird, M.I. (2011) Evidence for bias in C and N concentrations and δ13C composition of 

terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. 

Chemical Geology. 282, 67 – 83.   
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2.1 Introduction 

The accurate determination of the concentrations of carbon [C] and nitrogen [N] (from 

which C/N is derived) and carbon isotopic composition (δ13C) of organic matter (OM) 

have been regarded as key proxies for our interpretation of environmental processes. 

C/N ratios are widely used to examine OM source mixing and alteration in sediments 

(e.g. Meyers, 1997; Baisden et al, 2002) and δ13C to identify carbon sources and 

photosynthetic pathways in plants (e.g. C3 and C4 plant differentiation; Meyers, 2003; 

Sharpe, 2007). They are used to assess carbon reservoir turnover times and soil C 

dynamics (e.g. Harris et al, 2001); determine trophic levels in environmental systems 

(Bunn et al, 1995; Pinnegar and Poulnin, 1999; Kolasinski et al, 2008); for primary 

productivity reconstructions and estimation of carbon burial rates; and to understand 

mineralisation processes (e.g. Midwood and Boutton, 1998; Freudenthal et al, 2001; 

Leng and Marshall, 2004). These interpretations are grounded in the assumption that we 

can reliably determine C/N and δ13C concentrations in OM. It is common place to 

consider carbon in two major forms; organic (OC) and inorganic (IC), and either one 

can act as a contaminant in the measurement of the other because of their distinct 

isotopic signatures. The accurate determination of C/N and δ13C composition of OM 

must involve the complete removal of the contaminating IC fraction from the total 

carbon, which is achieved by acid treatment. An inherent assumption of these acid 

treatment methods is that any offsets in C/N and δ13C are linear and proportional. 

 

There are a small number of focussed studies which have investigated the effects of 

acidification methods and acid types on specific terrestrial or aquatic materials, though 

with contradictory results regarding the offsets to C/N and δ13C values (e.g. Gibbs, 1977; 

Froelich, 1980; King et al. 1998; Lohse et al. 2000; Harris et al. 2001; Kennedy et al. 

2005; Schmidt and Gleixner, 2005; Fernandes and Krull, 2008). The results of these 

studies show that the acidification method can influence the elemental and isotopic 

signatures of C and N and suggests that offsets in C/N and δ13C due to acid treatment 

methods can be significant. Losses of C and N from OM from different acid treatments 

have previously been reported ranging from 5 to 78% and 0 to 50% respectively (e.g. 

Froelich, 1980; Yamamuro and Kayanne, 1995; Bunn et al, 1995; King et al. 1998; 

Lohse et al. 2000; Schubert and Nielsen, 2000; Ryba and Burgess et al, 2002; Schmidt 

and Gleixner, 2005). The extent of losses from sample OM appears to vary within and 

between methods and environments, and with IC content (Froelich, 1980). Results for 
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shifts in δ13C value are contradictory, indicating enrichments in δ13C of 0.2 – 8.0 ‰ (e.g. 

Schubert and Nielsen, 2000; Kolasinski et al. 2008), or depletions in δ13C of 0.1 – 1.9 ‰ 

(Kennedy et al; 2005; Komada et al. 2008) as well as no change (e.g. Midwood and 

Boutton, 1998; Kennedy et al, 2005). Enrichment in δ13C value is widely interpreted to 

be through residual IC in sample material (e.g. Kolasinski et al. 2008). In addition, 

Hydrochloric (HCl), sulphurous (H2SO3), and phosphoric (H3PO4) acid, at varying 

strengths, have all been used as the acidifying reagent.  

 

Thus I infer that changes in %C and %N (and therefore C/N values) are not necessarily 

linear or proportional and may show significant within and between method variability 

in results from the same sample material (e.g. King et al, 1998; Lohse et al, 2000; 

Schubert and Nielsen, 2000; Ryba and Burgess, 2002; Schmidt and Gleixner, 2005; 

Fernandes and Krull, 2008). Schmidt and Gleixner (2005) calculated relative change in 

C/N values of bulk OM before and after acidification by Hydrofluoric acid on 20 

different soils and shales. They reported that acid treatment altered the chemical 

composition of bulk OM through hydrolysis, changing C/N values in a range of +1 to 

+19%, concluding that this was driven primarily by loss of N-rich materials (e.g. 

proteins, amino acids and polysaccharides): this conclusion is similar to that of Ostle et 

al (1999). These compounds are typically enriched in 13C, and their loss would 

inevitably lead to a depletion of δ13C. These inconsistencies suggest there is a need for a 

systematic study to investigate within and between method variability on C/N and δ13C 

values from different environmental materials.  

 

C/N ratios tend to range from 3 to 9 (aquatic; protein rich), 10 to 20 (aquatic/terrestrial 

sources) and > 20 (terrestrial biomass; protein poor) and are widely interpreted as an 

indicator for fraction of terrestrially derived OC in marine systems and changes in 

allochthonous and autochthonous OC in freshwater systems (e.g. Meyers, 1997; Sharpe, 

2007). Specifically, C/N ratios are more likely indicators of terrestrially derived organic 

N in these environments (cf. Perdue and Koprivnjak, 2007). Isotope values (δ13C) of 

OM can range from ≈ –6 to –35 ‰ (see overviews in Tyson, 1995; Meyers, 1997; 

Sharpe, 2007), and can differentiate between C3 (δ13C ≈ –22 to –35 ‰) and C4 plants 

(δ13C ≈ –6 to –15 ‰) in certain environments (e.g. lakes, soils) whilst IC is enriched in 
13C relative to OC with values ranging from –15 to +10 ‰ (freshwater to Proterozoic 

marine IC, Hoefs, 1973; Sharpe, 2007). Larson et al. (2008) noted that even minor 

amounts of IC (less than 1% by mass) could lead to an overestimation of % C and 
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significantly enrich δ13C in the sample measured for OC. For a hypothetical sample with 

1% IC (δ13C ≈ –3 ‰) and 12% OC (δ13C ≈ –25 ‰), δ13C would be enriched by 1.8 ‰ 

which is significantly greater than instrument precision, the offset increasing with 

increasing amounts of IC. In addition, algae, for example, preferentially utilise 12C to 

produce organic matter that averages 20 ‰ lower than IC δ13C forming from the same 

dissolved inorganic carbon pool (Leng et al. 2005).  

 

This chapter presents the results of the first systematic comparison of the three most 

common acid treatment methods on a range of terrestrial and aquatic materials, from 

modern and geological settings. I examine the effect of acid treatment on the reliability 

of C/N and δ13C values from these environments and test the null hypothesis that there 

is no significant difference in C/N and δ13C results between acid treatment methods. 

The three most common methods are:  (1) acidification followed by sequential water 

rinse (“rinse method”; e.g. Midwood and Boutton, 1998; Ostle et al. 1999; Schubert and 

Nielsen 2000; Galy et al, 2007); (2) acidification in silver capsules (“capsule method”; 

e.g. Verardo et al. 1990; Nieuwenhuize et al. 1994a; 1994b; Lohse et al. 2000; Ingalls et 

al, 2004); and (3) acidification by exposure of the sample to an acid vapour 

(“fumigation method”; e.g. Harris et al. 2001; Komada et al. 2008). In contrast, 

measurements for N (elemental and isotopic) are commonly undertaken on untreated 

sample material (e.g. Muller, 1977; Altabet et al, 1995; Schubert and Calvert, 2001; 

Sampei and Matsumoto, 2008).  

 

2.2 Sample materials 

For this study 7 environmental materials were selected that represent both aquatic 

(marine and freshwater) and terrestrial settings (Table 2.1). Modern and geological 

samples which vary in their IC, OC and total nitrogen content were used, giving a range 

of refractory OC and total nitrogen content as well as different δ13C values. All sample 

materials were freeze dried and freeze milled in a Spex Centriprep 6850 freezer miller 

impact grinder (cooled by liquid nitrogen). Freeze-drying reduces the likelihood of the 

volatile organic losses possible from oven drying (e.g., Talbot, 2001). Freezer milling, 

relative to ball milling and hand grinding, reduced the likelihood of loss of volatile 

organic materials and the generation of black carbon, and negates the effect of poor 

homogenisation of C and N within the sample (e.g. Baisden et al, 2002). All samples 

were finely ground to achieve grain size ≤ 63 μm. 
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Table 2.1: Description of sample materials. Values for %C, %N, C/N value and δ13C are reported where known. 1International organic soil standard 
from LECO corporation (part no. 502 – 308). 2Internal NIGL laboratory standard. 3,4Measured on untreated sample material. Values are calibrated to 

V-PDB against standards NBS-18 and NBS-19, and crossed checked with NBS-22. 

 

Sample 
Identifier Location Description %C %N C/N δ13C (‰) 

SOILB1 – 
International soil standard from LECO corporation (Soil 

502-308; LECO, 2010) 
3.00±0.05 0.20±0.01 15.0 –24.3±0.1 

BROC2 
52o49’51.69” N,  
-1o15’10.61” E 

Brassica oleracea (broccoli). Plant grown in 
Nottingham University field trials at Sutton Bonnington 

41.8±0.05 4.4±0.01 9.5 –27.4±0.1 

ALGAE3 
52o54’22.93” N,  
-1o13’52.57” E 

Filamentous green algae Cladaphora from 
Attenborough Ponds, Nottingham. 

16.2±0.05 1.7±0.01 9.5 –26.9±0.2 

NEW 
53o04’5.04” N,    
-1o13’17.05” E 

Surface sediment sample from carbonate rich Newstead 
Abbey lake 

- - - - 

TYC4 
20o31’1.11” N, 

110o18’43.02” E 
Down-core lake sediment sample from maar Lake 

Tianyang, south China (6.62 m depth). 
5.82±0.05 0.14±0.01 41.6 –16.8±0.2 

GRN 
68o58’0.77” N, 
53o11’1.19” E 

Marine surface sample from Egedesminde Dyb, Disko 
Bugt, Greenland (846 m below sea level). 

- - - - 

MOR 
38o01’56.34” N, 
14o50’39.67” E 

Middle Miocene marine marl sediment (coccolith 
dominated) from Moria, Itlay. 

- - - - 
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2.3 Sample preparation methods 

2.3.1 Cleaning protocol 

Prior to sample preparation, stainless steel sampling equipment and glassware (e.g. 

beakers; volumetric flasks) were acid washed in 1% nitric acid, rinsed in deionised 

water, then washed in 2% neutracon® solution, followed by a final rinse in deionised 

water before being heated to 550oC for 3 h. For the capsule and fumigation methods, Ag 

capsules were pre-combusted (550oC for 3 h) to remove organic contaminants. For the 

fumigation method, the desiccator was bathed in neutracon® for 24 h and then 

preleached in the chosen acid for each individual experiment. It is imperative that any 

grease sealant on the desiccator rim is removed using an acetone followed by deionised 

water rinse prior to cleaning. Schubert and Nielsen (2000) reported that the grease 

sealant can significantly shift isotopic values (up to –12 ‰), particularly in samples 

with low OC, because it is readily volatilised by acid vapour. Laboratory gloves were 

worn throughout the cleaning and sampling procedures to minimise the risk of 

contamination. 

2.3.2 Acid reagents 

The three acid reagents chosen for this study (HCl, H2SO3, H3PO4) represent those most 

commonly used for IC dissolution and are all non-oxidising reagents. Acid 

concentration is reported in % w/w but molarity and normality equivalents are given in 

Table 2.2. The HCl was Fisher Trace Analysis Grade (H/1190/PB17) which has a stock 

concentration of 36%. The concentration of HCl reported in the literature varies 

significantly (in the range of 1 – 36% w/w) (e.g. Froelich, 1980; Bird et al. 1994; 

Schubert and Nielsen, 2000). For the capsule and rinse methods, 5%, 10% and 20% 

w/w HCl concentrations diluted into pre-cleaned volumetric flasks were used. The 20% 

HCl treatment was selected as Larson et al (2008) reported it to be an effective agent for 

the dissolution of siderite. The fumigation method was undertaken using 20% and 36% 

w/w HCl as it readily volatilises at these strengths and can therefore develop and 

maintain a more strongly acidic vapour relative to weaker solutions. HCl is widely 

reported to react quantitatively with IC fractions but can also affect OM (e.g. King et al, 

1998; Lohse et al, 2000). 

 

The H2SO3 used was Fisher Laboratory Grade (J/8500/17) with a stock of 6% w/w 

concentration. McNicholl et al (1994) and Caughey et al (1995) noted that 
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commercially available H2SO3 can contain measurable amounts of C because chemical 

production companies do not generally assay H2SO3 for C. Caughey et al (1995) further 

noted for 6% w/w H2SO3, a minimum of 1 ml was required to dissolve 0.36 mg of 

calcite. Although H2SO3 does not readily react with labile organic compounds, it is 

significantly less corrosive to robust IC minerals such as dolomites and siderites (e.g. 

Chang et al, 1996). Losses of C using H2SO3 have been reported at < 2% (Gibbs, 1977; 

Caughey et al, 1995). H3PO4 used was Fisher Trace Analysis Grade (O/0503/PB17) 

with a stock of 98% w/w concentration from which a 6% w/w concentration was diluted. 

Losses of OC (from ~2% to 45%) for all acids used in this study have been reported (e.g. 

Gibbs, 1977; Froelich, 1980; King et al, 1998; Lohse et al, 2000) with drying cycles 

proposed to exacerbate these losses through volatilisation (Bisutti et al, 2004).  

 
Table 2.2: Acid strength conversion 

Acid Molarity Normality 
HCl % w/w   
36% stock 11.64 11.64 

20% 6.02 6.02 
10% 2.87 2.87 
5% 1.40 1.40 

H2SO3 % w/w   
6% stock 0.73 1.46 

H3PO4 % w/w   
98% stock 18.44 55.32 

6% 0.63 1.89 
 

2.4 Acidification Methods 

Before the three sample treatment methods were tested, an estimation of %C was made 

on NEW, TYC, GRN and MOR by acidifying samples with 5% HCl and analysing 

them by elemental analyser. An investigation into the effect of sample size on %C 

and %N values was also undertaken on a range of untreated sample weights on SOILB 

and BROC, chosen due to the abundance of material, their known composition and their 

negligible IC content. Together, this allowed for a sufficient weight of sample to be 

weighed out and treated for ‘small’ (~90 µg C for the capsule and fumigation methods) 

and ‘normal’ (~500 μg C for all 3 methods) C/N and δ13C analysis. All acidifications for 

each method were carried out in triplicate to ensure accurate and precise analytical data. 

A description of the acidification methods is provided below. 
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2.4.1 Rinse Method 

Approximately 250 mg of sample material was placed in a 500 ml beaker and 50 ml of 

the chosen acid reagent added and left for 24 h. Depending on the IC content, additional 

acid was added to maintain an acidic solution (checked with litmus paper) and left for a 

further 24 h if necessary. An aliquot was collected to assess the amount of solubilised 

OM by UV-Vis analysis and to characterise the IC chemistry by analysis of the Ca, Mg, 

Mn, and Fe concentrations by Atomic Absorption Spectrophotometry (AAS). After 24 h, 

the beaker was topped up to 500 ml with deionised water and the sample material 

allowed to settle for a further 24 h. Once settled, the supernatant was decanted, ensuring 

minimal disturbance of the remaining material, and the beaker then topped up again to 

500 ml with deionised water. Dilution was repeated 3 times in total with an overall 

minimum of 1200 ml of deionised water used. After the final decanting, the excess 

water (50 to 100 ml) was allowed to evaporate in a drying oven at ~50oC. Once dry, the 

sample was loosened from the base of the beaker with a clean plastic spatula and 

transferred to an agate pestle and mortar, ground, and a known quantity weighed into a 

tin (Sn) capsule (~500 μg C after IC treatment in all rinse samples). Capsules were then 

crimped. During the decanting process, where any visible sample loss occurred, these 

samples were discarded and the treatment repeated.  

2.4.2 Capsule Method 

This method involved in-situ acidification of sample material within a silver (Ag) 

capsule (the receptacle into which the sample is introduced to the elemental analyser) 

and is adapted from the method described by Verardo et al (1990). Acidification was 

carried out in Ag capsules with additional samples further wrapped in Sn (designated 

Ag+Sn). The lower melting point of Sn (232oC) relative to Ag (962oC) may help 

improve the combustion of samples in the reaction tube due to a momentary exothermic 

flash combustion from Sn capsules. 

 

The samples were weighed into open Ag capsules (to provide ~90 μg “small” and ~500 

μg “normal” C after acidification) and recorded. The capsules were then transferred on a 

metal tray to a cold hotplate in a fume cupboard and 10 μl of distilled water was added 

to moisten the samples. This reduces the potential of an initial vigorous reaction from 

IC bearing materials that can lead to sample spitting or rapid capillary action causing 

effervescing material in the capsules to overflow. After moistening, 10 μl of the chosen 

acid reagent was added to the cold sample before the hotplate temperature was slowly 
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increased to ~50oC. Additional acid was then added in steps of 10 μl, 20 μl, 30 μl, 50 μl 

and 100 μl without allowing the sample to dry out between additions. The samples were 

monitored for signs of effervescence indicating an IC reaction. Monitoring was initially 

achieved by visual inspection but as the effervescence reduced, the reaction was 

checked using a binocular microscope at 50x magnification. The stepped addition of 

acid described here reduced problems associated with the ambiguous effervescence end-

point; however, a final 200 μl of acid was added to act as a “fail safe”. Lukasewycz and 

Burkhard (2005) reported that results for %C in surficial sediment from Lake Michigan 

varied between 3.3 and 4% as a result of the subjective nature of the effervescence end-

point.  

 

After the addition of the final aliquot of acid the capsules were left on the hotplate for 

~1 h to dry thoroughly. Depending on the acid used and the IC content of the material, 

hygroscopic salt deposition was observed during this stage (e.g. Larson et al, 2008), 

particularly on samples with appreciable IC content (e.g. MOR). Once dry, the capsules 

were removed from the hotplate and left to cool before being crimped. Occasionally, 

there was sample loss from the capsule, especially at the reaction stage on samples with 

IC, due to “spitting” or rapid capillary action over spilling the capsule rim; these 

samples were discarded and the treatment repeated.  

 

2.4.3 Fumigation method 

The fumigation method involved placing the sample in an Ag capsule that was 

subjected to continuous acidic vapour (e.g. Harris et al, 2001). The samples were 

weighed into open Ag capsules (to provide ~90 μg “small” and ~500 μg “normal” C 

after IC treatment) and recorded and then transferred to a sample tray. Approximately 

50 μl of deionised water was added to each capsule – this allowed acid fumes to 

dissolve into the water creating an acidic solution to attack sample IC (cf. Yamamuro 

and Kayanne, 1995; Harris et al, 2001; Komada et al, 2008). The fumigation method 

can be less effective on dry materials, particularly those high in IC, where salt 

crystallisation may encapsulate unreacted IC (e.g. Hedges and Stern, 1984). 

Approximately 50 ml of the chosen acid was added to a prepared glass container and 

placed in the base of the desiccator.  A mass balance was calculated to ensure enough 

acid was available to neutralise sample IC, assuming 100% IC in each sample. An acid 

proof shelf (thoroughly rinsed in deionised water) was placed in the desiccator and the 
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sample tray was rested on top.  The desiccator was placed under vacuum and the 

samples left to fumigate for ~6 h (after Harris et al, 2001). Komada et al (2008) reported 

an increase in contaminant C by up to ~50% with fumigation times greater than 10 

hours. After ~6 h, the sample tray was removed and samples were allowed to dry over a 

hotplate at ~50oC. Once dry, capsules were crimped.  

 

2.5 Analytical methods 

2.5.1 C/N and δ13C 

%C, %N and 13C/12C ratios (δ13C values) of sample OM were analysed using an online 

system comprising a Costech ECS4010 elemental analyser (EA), a VG TripleTrap, and 

a VG Optima mass spectrometer at the NERC Isotope Geosciences Laboratory, with 

data reduction carried out using DataApex Clarity ver 2.6.1 software package. The 

samples in the Sn (rinse method) or Ag±Sn (capsule/fumigation method) were placed in 

the carousel of the elemental analyser. The samples are sequentially dropped, in a 

continuous flow of helium carrier gas, into a 1020oC furnace (to promote rapid and 

complete sample and capsule combustion). A pulse of oxygen gas promotes exothermic 

flash oxidation of the foil capsules, and the product gases are further oxidised by 

chromium and silver cobaltous oxide (CoO) in the lower part of the EA furnace. After 

removal of excess oxygen and water by passage through hot copper and magnesium 

perchlorate (which reduces nitrogen oxides to N2 and removes water), the remaining 

CO2 and N2 then pass through a GC column to separate them prior to quantification 

using a thermal conductivity detector. The Clarity software package acquires and 

evaluates this information, producing %C and %N data for the sample. The helium 

stream then carries the CO2 and N2 through a trap at –90oC (for complete removal of 

water), before reaching the Triple Trap held at –196oC. Here the CO2 is frozen, allowing 

the N2 and helium to vent to atmosphere. The TripleTrap is then evacuated before 

warming and expanding the sample CO2 into the inlet of the Optima. For very small 

samples (within the capsule and fumigation methods described here), a secondary 

cryogenic trap in the mass spectrometer was used, which introduces the CO2 directly 

into the source. Each run contains 10 replicates of the laboratory primary standard 

(BROC) and a secondary standard. From knowledge of the laboratory standard’s δ13C 

value versus V-PDB (derived from regular comparison with international calibration 

and reference materials NBS-18 and NBS-19 and cross checked with NBS-22), the 
13C/12C ratios of the unknown samples were converted to δ13C values versus V-PDB as 
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follows: δ = [(Rsample/Rstandard) – 1].103 (‰), where R = the measured ratio of the sample 

and standard respectively. 

 

Three control materials were included in each analytical run: external standard SOILB 

(2 replicates; see Table 2.1), internal NIGL standard BROC (10 replicates; see Table 2.1) 

and independent external standard SOILC (2 replicates; LECO corporation organic 

standard, part no. 502 – 062). SOILC is a low organic standard reference material with 

known values: 0.83±0.02% for %C, 0.1±0.002% for %N and –17.3±0.2 ‰ for δ13C. All 

standards returned values that were statistically insignificant from known sample values 

(p-value > 0.05) indicating that our analytical measurements were accurate and precise.  

 

2.5.2 Supernatant analysis 

The supernatant collected from the rinse method was analysed for dissolved 

components. An aliquot from the first 400 ml was analysed for %OC using a Cary 50-

Bio UV-Vis Spectrometer. Samples were scanned at the 254 nm wavelength following 

standard aqueous analysis methods (Eaton et al., 1995) and used as an indicator of % 

total dissolved OC. Measurements were calibrated against a Potassium Hydrogen 

Phthalate standard (stock produced as 2.1254 g in 1000 ml). Samples were measured 

four times and an average derived and reported in mg/l. The %C removed from the total 

sample OC was estimated as: 

 

%C removed from the total available OC = (mg OC in supernatant / weight of sample 

material treated (mg)) * 100 

 
where “mg OC in supernatant” is taken from the calibrated UV-Vis measurement. The 

supernatant was further analysed for Ca, Mg, Fe, and Mn using a Varian Spectra 220 FS 

AAS spectrometer and the SpectraAA software package. Concentrations were 

calculated following an integration procedure and measured in triplicate for 5 s each 

with a 5 second delay between measurements. Mg samples were spiked with 1000 μg 

ml-1 Lanthanum Chloride to reduce molecular interferences due to the proximity of the 

Mg wavelength to 200 nm. Measurements for UV-Vis and AAS were corrected for 

matrix effects of the acid reagents. 
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2.6 Data analysis 

Acid treatments within each sample material were compared with one another, and 

where applicable assayed or untreated sample values by one-way analysis of variance 

(ANOVA) at the α = 0.05 significance level. All data were checked for normality using 

a Shapiro-Wilk test prior to analysis, and where non-normally distributed were log10 

transformed before analysis. A p-value < 0.05 is used to indicate a statistically 

significant difference.  An assessment of the % relative proportional change of %C, %N 

and C/N was derived from 

 
% Proportional change = ((Xacidified – X)/X )*100 

 
where X = known (SOILB), untreated (BROC, ALGAE), or mean values (NEW, TYC, 

GRN, MOR) of sample materials.   

 

2.7 Results 

2.7.1 Determination of carbon blank 

Capsule and acid blanks were analysed to test for C and N contamination. Ag capsules 

were acid treated in triplicate with an additional batch prepared to further wrap in Sn 

capsules. I also measured untreated Ag, Sn and Ag+Sn capsules. Blanks were measured 

using the same analytical procedure as the samples. Capsule and acid blanks recorded 

values below machine detection limit. However, 6% H3PO4 significantly elevated blank 

values (22 μg of C and 17 μg N) suggesting a source of contamination. 

 
2.7.2 Effect of sample size on %C and %N 

Untreated samples of SOILB and BROC with a range of weights from 10 to 450 μg C 

and 1 to 60 μg of N were analysed for %C and %N respectively. The data (Figure 2.1) 

show relatively consistent %C and %N values down to 120 μg C (1σ = 0.14) and 10 μg 

N (1σ = 0.04) for SOILB and 80 μg C (1σ = 1.0) and 10 μg N (1σ = 0.7) for BROC 

(Kendrick, 2009). Below these sample weights, %C and %N values are overestimated 

by up to 1.2% for C (1σ = 6.9) and 0.6% for N (1σ = 0.4) for SOILB and 15.3% for C 

(1σ = 6.9) and 51.2% for N (1σ = 17.1) for BROC, thus returning inaccurate results. 

This analytical artefact is the result of the difficulty distinguishing the CO2 and N2 

measured peak areas generated from the sample relative to the baseline conditions. This 

problem will vary between instruments and therefore the accuracy of small sample 

analysis could differ significantly between laboratories and have implications for “dual-
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mode” analysis (simultaneous measurement of C and N). Our analysis here has shown 

that the extent of overestimation can vary significantly between sample materials (e.g. 

between environments). 

 
 

Figure 2.1: Changes in %C and %N in SOILB (A) and BROC (B) as a function of 
sample size 

2.7.3 Small versus normal sample sizes in our sample materials 
 
Where sample sizes approach the threshold limit (see Figure 2.1)(“small” sample sizes) 

any reactive loss of C and N may move these samples across the threshold. Normal 

sample sizes (~ 500 µg C) are deemed safely removed from the threshold. ANOVA 

results of ‘small’ and normal’ analyses data from the capsule method are in Table 2.3. 

For %C, %N, C/N and δ13C, the majority of the data were significantly different (p < 

0.05; highlighted in grey boxes). Generally, ‘small’ sample size data consistently 

overestimated %C and %N with offsets in δ13C upwards of 0.6 ‰ (with no clear trend 

in either enrichment or depletion). Therefore, the %C, %N, C/N and δ13C values for 

each sample material, across all methods and acids presented in Figures 2.2 – 2.8, are 

plotted from ‘normal’ sample size data. Data are reported as the mean ± standard 

deviation (σ) and C/N data is reported as a mass ratio.  
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Table 2.3: Results of ANOVA for “small” versus “normal” sample size analysis in capsule method. Comparisons are significantly different where P-
value < 0.05 (highlighted in grey boxes). 

 
  5%  HCl 10% HCl 20% HCl 6% H2SO3 6% H3PO4 

  %C %N C/N δ13C %C %N C/N δ13C %C %N C/N δ13C %C %N C/N δ13C %C %N C/N δ13C 
BROC P-value 0.04 0.00 0.00 0.08 0.08 0.01 0.00 0.30 0.03 0.05 0.02 0.04 0.18 0.06 0.04 0.88 0.31 0.25 0.00 0.06 

 R-squ 49.85 79.05 88.41 37.90 38.61 62.83 81.12 10.62 51.26 44.30 59.72 50.38 23.37 44.88 50.71 0.00 9.92 15.10 72.60 44.41 
ALGAE P-value 0.01 0.67 0.01 0.06 0.04 0.22 0.00 0.01 0.00 0.01 0.01 0.04 0.02 0.01 0.01 0.76 0.00 0.00 0.09 0.00 

 R-squ 69.93 0.00 62.37 43.35 46.02 18.44 93.94 47.85 73.66 64.79 70.47 50.57 60.02 64.92 64.70 0.00 97.22 94.71 35.94 76.65 
SOILB P-value 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.21 0.03 0.00 0.00 0.03 0.06 0.04 0.01 0.00 0.01 0.01 0.04 

 R-squ 73.32 92.78 67.87 76.96 82.63 96.42 75.83 81.42 19.05 52.65 78.87 84.64 50.66 46.71 47.53 64.72 80.15 67.85 60.69 79.82 
NEW P-value 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.13 0.00 0.00 0.00 0.01 0.01 0.70 0.04 0.00 0.11 0.23 0.24 0.57 

 R-squ 83.96 47.08 84.53 93.90 66.11 94.97 94.91 29.59 82.84 75.18 78.83 63.57 67.82 0.00 49.80 78.19 31.98 17.24 16.78 0.00 
TYC P-value 0.33 0.00 0.62 0.39 0.00 0.00 0.01 0.08 0.53 0.35 0.02 0.00 0.00 0.19 0.01 0.02 0.01 0.20 0.00 0.09 

 R-squ 8.73 77.10 0.00 3.50 75.94 76.34 61.75 31.52 0.00 6.80 55.75 81.04 78.18 21.57 61.18 57.21 62.44 20.55 87.58 37.12 
GRN P-value 0.24 0.30 0.00 0.00 0.14 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.13 0.00 0.07 0.00 0.00 0.01 0.00 

 R-squ 16.83 11.26 83.25 81.45 27.92 85.46 95.03 92.12 58.25 87.63 89.43 71.36 89.34 28.95 81.36 41.37 95.44 86.86 69.00 95.06 
MOR P-value 0.00 0.91 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.765 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 

 R-squ 71.39 0.00 36.78 79.97 75.13 84.60 71.36 74.34 81.34 87.29 0.00 89.35 94.75 95.57 93.44 99.44 77.08 72.44 51.58 94.20 
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2.8 Sample material results 

2.8.1 Materials from known values 

The external C certified international soil standard, SOILB, and internal standard 

material, BROC, show significant variability within and between methods. For 

SOILB, %C and C/N showed the greatest variability within and between methods, 

particularly in the capsule method (Figure 2.2). The C/N values ranged from 13.2 to 

19.3 calculated from %C and %N of acidified samples and from 9.1 to 17.3 calculated 

from %C of acidified samples and %N from untreated samples (p-value < 0.01). The 

known C/N value is 15.0. δ13C ranged from –24.1 to –25.3 ‰ (known value –24.3 ‰), 

with the rinse method data higher relative to known values, and the capsule and 

fumigation method data. ANOVA between the acid treatment methods confirm that 6% 

H3PO4 capsule was significantly lower than all other treatments and known values 

for %C (p-value = 0.03), %N (p-value = 0.01), C/N (p-value = 0.02) and δ13C (p-value 

< 0.01). The 20% HCl capsule for δ13C was also significantly lower (p-value < 0.01) 

and the 36% HCl fumigation method was significantly higher for C/N (p-value < 0.01). 

Comparison of acid reagent strength within methods (e.g. 5% HCl versus. 10% HCl 

versus 20% HCl) showed 20% HCl to produce lower values for C/N and δ13C relative to 

other acid reagents within and between methods (p-value < 0.01). Samples in Ag only 

capsules generally produce lower values relative to samples in Ag+Sn capsules 

for %C, %N, C/N, but higher values for δ13C (Figure 2.2 and Table 2.4 for ANOVA p-

value summary for all materials). Loss of OM following the rinse method ranged from 

1.1 to 4.0% of the available sample organic carbon with 20% HCl resulting in greatest 

loss (Figure 2.9). AAS analysis (Figure 2.10) shows Fe as the dominant metal mobilised 

during acid treatment (~139 mg/l).  
 

BROC showed greatest variability within and between methods for %C and %N (Figure 

2.3). The rinse method %C, %N and C/N values were on average higher than the 

capsule and fumigation results, with the highest mean for %C (42.7%; ~ 4% higher than 

the capsule and fumigation methods, and ~1% higher than the known value). The 6% 

H3PO4 capsule method gave significantly lower values from all other treated values and 

untreated values for %C, %N, C/N, but higher δ13C as found for SOILB. C/N values on 

acidified samples ranged from 7.2 to 13.1 and from 6.1 to 9.6 using measured %C and 

untreated %N. δ13C ranged from –28.4 to –27.0 ‰, compared with the untreated value 

of –27.4 ‰ with the rinse method results approximately 1 ‰ more depleted than known, 
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capsule and fumigation results. UV-Vis data indicated a loss of OM from 3.4 to 25.5% 

(Figure 2.9) of the available OM pool. AAS analysis showed a small flux of Ca and Mg 

(mean of 13.5 mg/l and 6.5 mg/l respectively)(Figure 2.10). 

2.8.2 Other sample materials 

Our other sample materials also show significant within and between method variability. 

For ALGAE, the capsule method showed significantly lower %C and %N values 

compared with the rinse and fumigation methods (mean difference of c.13% and c.1% 

respectively; p-value <0.01) and greatest variability for %C, %N and C/N (Figure 2.4). 

C/N values ranged from 5.9 to 10.8 calculated from %N of acid treated samples, with 

the capsule method producing values < 10. C/N values calculated from treated %C and 

untreated %N ranged from 4.3 to 13.6. δ13C ranged from –27.2 to –27.9 ‰  across all 

methods, largely influenced by the 6% H3PO4 method (0.7 ‰ depletion) and 20% HCl 

rinse method (0.5 ‰ depletion), with all other measurements within 0.4 ‰. Acid 

comparison of δ13C values indicate results using the same strength acid but in a different 

method were significantly different (e.g. 20% HCl capsule, 20% HCl rinse and 20% 

HCl fumigation; p-value < 0.01). The effect of capsule type in the 20% HCl fumigation 

method was particularly pronounced for δ13C (0.8 ‰ difference). Loss of OM from the 

available sample OM pool following the rinse method ranged from 1.8 to 3.1% (Figure 

2.9). AAS analysis indicated a small amount of leaching of Ca followed by Mn (Figure 

2.10).  
 

In NEW, %C, C/N and δ13C showed the greatest variability within the fumigation 

method (Figure 2.5). The mean values of %C and %N in the rinse method were notably 

higher than for the capsule and fumigation methods by ~7% and ~0.8% respectively. 

C/N values ranged from 7.1 to 13.1, principally influenced by the 6% H3PO4 capsule 

method (driving %N change) and the 20% HCl fumigation method (driving %C change), 

and were statistically different (p-value = 0.02). Otherwise, C/N values were more 

consistent than in other materials tested. The range of δ13C was from –28.5 to –26.8 ‰, 

largely influenced and weighted by the 20% HCl fumigation method that was ~1.2 ‰ 

depleted from the mean (p-value < 0.01). For %C and %N, samples in Ag+Sn capsules 

showed relatively higher values (except for 6% H3PO4 which showed slight decreases) 

and depleted δ13C values (as much as 0.7 ‰). Loss of OM following the rinse method 

ranged from 0.6 to 4.0% of the available OM pool (Figure 2.9).  AAS results (Figure 

2.10) showed a significant amount of Ca after treatment (from 330 to 730 mg/l).  
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Figure 2.2: SOILB %C, %N, C/N and δ13C values for each method and acid. 

Horizontal solid grey lines indicate mean values for each acid treatment method, and 

perforated grey lines 1σ. Horizontal grey boxes indicate known values. Vertical 

perforated lines split the capsule, rinse and fumigation methods. 
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Figure 2.3: BROC %C, %N, C/N and δ13C values for each method and acid. Horizontal 
solid grey lines indicate mean values for each acid treatment method, and perforated 
grey lines 1σ. Horizontal grey boxes indicate known values. Vertical perforated lines 
split the capsule, rinse and fumigation methods. 

 



Chapter 2: Acid treatment bias on C/N and δ13C in organic materials 

30 
 

 
Figure 2.4: ALGAE %C, %N, C/N and δ13C values for each method and acid. 
Horizontal solid grey lines indicate mean values for each method, and perforated grey 
lines 1σ. Vertical perforated lines split the capsule, rinse and fumigation methods. 
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Figure 2.5: NEW %C, %N, C/N and δ13C values for each method and acid. Horizontal 

solid grey lines indicate mean values for each acid treatment method, and perforated 

grey lines 1σ. Vertical perforated lines split the capsule, rinse and fumigation methods. 
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Figure 2.6: TYC %C, %N, C/N and δ13C values for each method and acid. Horizontal 

solid grey lines indicate mean values for each acid treatment method, and perforated 

grey lines 1σ. Vertical perforated lines split the capsule, rinse and fumigation methods. 
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Figure 2.7: GRN %C, %N, C/N and δ13C values for each method and acid. Horizontal 

solid grey lines indicate mean values for each acid treatment method, and perforated 

grey lines 1σ. Vertical perforated lines split the capsule, rinse and fumigation methods. 
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Figure 2.8: MOR %C, %N, C/N and δ13C values for each method and acid. Horizontal 

solid grey lines indicate mean values for each acid treatment method, and perforated 

grey lines 1σ. Vertical perforated lines split the capsule, rinse and fumigation methods. 
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Figure 2.9: %C removed from available C in sample material from rinse method supernatant. Mean values are plotted ±1σ. 
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Figure 2.10: SOILB, BROC, ALGAE, NEW, TYC, GRN, MOR AAS values from 

rinse method supernatant. The graph shows Ca (black infilled circle), Fe (black outlined 

circle), Mn (black infilled upturned triangle) and Mg (black outlined triangle). All data 

are reported as mg/L. 
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For TYC, the highest 1σ for %C and δ13C were within the fumigation method and for 

C/N within the capsule method (Figure 2.6). C/N values ranged from 13.8 to 78.7 

(based on %N from acidified samples), though this range was significantly affected by 6% 

H3PO4 capsule due to low %N (p-value < 0.01); all other measurements lie closer to the 

mean value of 37.7. Using treated %C and untreated %N, C/N values ranged from 19.9 

to 43.4. With the exception of the 6% H3PO4 capsule and 36% HCl fumigation methods, 

all other differences in %C, %N and C/N were statistically insignificant from one 

another and untreated values. The range of δ13C is –16.5 to –17.9 ‰, primarily through 

slightly enriched rinse method data relative to other measured data, and 6% H3PO4 

capsule and 36% HCl fumigation samples. For C/N, samples in Ag+Sn capsules showed 

lower values whilst for δ13C there was no clear trend in the offsets. Within the 

fumigation method, Ag+Sn capsule samples had higher %C and %N values and 

depleted δ13C values. Loss of OM following the rinse method ranged from 0.7 to 7.5% 

of the available OM pool (Figure 2.9). AAS analysis (Figure 2.10) showed Fe to be the 

most significant element mobilised during acidification (from 24.0 mg/l to 119.1 mg/l).  

 

In GRN, C/N ratio and δ13C showed greatest variability, with the highest 1σ from the 

rinse and fumigation methods (Figure 2.7). Across all methods C/N values ranged from 

6.4 to 8.0 and δ13C from –20.5 to –21.9 ‰. Within the rinse method, %C and %N were 

relatively higher (though C/N was slightly lower) with enriched δ13C values. Results 

across all methods were significantly different for %C (p-value < 0.01), C/N (p-value = 

0.01) and δ13C (p-value < 0.01). There is a systematic offset between Ag and Ag+Sn 

samples: for %C and %N samples in Ag+Sn capsules returned relatively higher values 

of ~ 0.2 – 0.6% (%C) and ~0.05 – 0.1% (%N) with 20% HCl fumigation higher than the 

rest. For δ13C, results for Ag+Sn capsules were consistently depleted by 0.3 – 1.0 ‰ 

(Figure 2.7). These data follow similar trends, though of greater magnitude, to those 

detected in NEW and SOILB. Loss of OM following the rinse method ranged from 1.2 

to 15.9% of the available OM pool (Figure 2.9). AAS data (Figure 2.10) indicate Ca and 

Mg were mobilised in small concentrations.  

 

Finally, %C, C/N and δ13C data for MOR were highly variable within and between 

methods, with the highest 1σ within the fumigation method (Figure 2.8). C/N values 

ranged from 8.1 to 113.0 across all methods, most notably for 6% H2SO3 capsule and 20% 

HCl fumigation. δ13C ranged from –20.1 to –27.2 ‰ and varied most notably within the 



Chapter 2: Acid treatment bias on C/N and δ13C in organic materials 

38 
 

capsule and fumigation methods (p-value < 0.01). Acid reagents between methods 

showed clear significant differences (e.g. 20% HCl; p-value < 0.05). The effect of 

capsule type on δ13C showed depleted isotopic values by as much as ~7 ‰ for Ag+Sn 

samples treated with HCl. The loss of OM following the rinse method ranged from 0.8 

to 3.0% of the available OM pool (Figure 2.9). The AAS results (Figure 2.10) showed 

very high levels of Ca (from 382.2 mg/l to 2279.1 mg/l). 

 

2.9 Discussion 

2.9.1 Method Offsets 

It is an implicit assumption of the acid methods investigated in this study that (any) 

alterations during sample preparation to the C and N pools are systematic and 

proportional regardless of acid reagent or method used. Any alterations that do occur 

should be in the same direction (i.e. gain or loss of both C and N). It therefore follows 

that, within instrument precision, results from each method should be indistinguishable 

from one another. Our results show significant variations within and between methods. 

The reliability of results within specific environments (materials) are also highly 

variable. Measurements of background C and N concentrations from capsules and acid 

reagents were insignificant suggesting contamination did not contribute to variability 

within our results (except for 6% H3PO4). The reproducibility of standard reference 

materials for C/N and δ13C within and between analytical runs indicates that the 

variability shown is real bias associated with the acid method. 

 

In general, samples treated with HCl in the capsule method appear relatively coherent, 

though internal imprecision on C/N and δ13C was still significant in some environments 

(e.g. ALGAE, NEW, GRN, MOR). The 6% H3PO4 in the capsule method generally 

produced aberrant results with losses of %C and %N across all sample materials ranging 

from 51 to 60%, and 38 to 94% respectively. This appears to be the case on samples 

with no, or low, IC content (e.g. SOILB, BROC, ALGAE) but appears a more effective 

reagent on high IC samples (e.g. NEW and MOR). The difficulty in volatilising H3PO4, 

and therefore completely drying the sample material prior to analysis, appears to be the 

primary cause of bias in low IC samples. The results from 6% H3PO4 capsule are given 

no further consideration in this discussion and I do not recommend this as a suitable 

pre-treatment reagent for samples intended for OM analysis in the capsule method on 

low IC materials. Capsule method results on ALGAE were significantly lower 
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for %C, %N and C/N relative to the rinse and fumigation methods. The capsule and 

fumigation methods largely circumvent the loss of OM compared with the rinse method 

(Verardo et al, 1990; Nieuwenhuize et al, 1994a, 1994b; Harris et al. 2001) though 

volatile organic carbon and nitrogen losses can occur (up to 78% and from 11% to 40% 

respectively) during the acid treatment and the drying down process (Cutter and 

Radford-Knoery, 1991; Newton et al. 1994; King et al. 1998; Lohse et al. 2000; Ryba 

and Burgess, 2002). It is possible that ALGAE contained a greater proportion of readily 

volatile OC compounds that were lost through volatilisation in the capsule method 

drying phase (e.g. Ryba and Burgess, 2002; Komada et al. 2008), which is longer in the 

capsule method relative to the fumigation method. This loss will likely vary depending 

on the amount and state of lignin and cellulose compounds in the sample bulk OM (e.g. 

Turney et al. 2006; Gani and Naruse, 2007) and their response to acidification and 

heating, though a concomitant shift in δ13C was not evident. In the capsule and 

fumigation methods, salt formation during the drying down phase was noted (cf. Larson 

et al. 2008). This phenomenon is common to all our samples with IC content, apparently 

increasing with increasing amounts of sample IC.  

  

In the rinse method, all sample materials showed a loss of OC likely due to 

solubilisation (Figure 2.9), though this did not necessarily translate into lower %C 

or %N values, or indeed a shift in δ13C. For BROC, losses in OC during the decanting 

phase of the rinse method were significant in our HCl treatments. However, these 

samples indicated an elevation in %C after treatment of ~4%, and a depletion of ~1.2 ‰ 

in δ13C (an ~ 4.5% offset relative to known values). This may be an artificial apparent 

elevation of C and N in the treated material due to the loss of inorganic components (e.g. 

fine colloids (organic and inorganic)) to the supernatant (e.g. Froelich, 1980; Harris et al, 

2001). It has been shown that different fractions of sample material can have 

significantly different organic compositions (e.g. Basiden et al 2002), and therefore the 

loss of fine materials could ultimately bias the acquired data towards the signal from the 

coarser fraction. Therefore, our UV-Vis data indicating a loss of water-and acid-soluble 

fractions (e.g. some lipids, amino acids, proteins, polysaccharides; hydrolysed labile 

OM e.g. Ostle et al. 1999; Schubert and Nielsen, 2000; Galy et al, 2007) that are 

concomitant with a consequent fractionation in δ13C (~0.9 – 1.2 ‰) are most probably 

correct.  
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Similar trends are also clear in NEW, GRN and MOR, suggesting that in samples with 

an IC component there is potential for artificial enrichment of C and N in the sample by 

weight after treatment. In TYC and GRN  there is a clear relative enrichment in δ13C 

likely due to a loss of 12C rich organic material, suggesting a preferential preservation of 
13C-depleted compounds (e.g. lipids and lignins; e.g. Benner et al; 1987). Fernandes and 

Krull (2008) also observed this trend in their soils and sediments. It may be possible to 

reduce the loss of fine colloidal particles by introducing a centrifugation step to the 

rinse method, though this does not imply that potential biasing towards the coarse 

fraction of the sample will be eliminated. 

 

The most variable results across all samples were from the fumigation method.  %C 

and %N results were least accurate and precise relative to other methods, resulting in 

least internal accuracy in C/N values and δ13C. Compared with the capsule and rinse 

methods, fumigation samples were least reproducible on our samples, though no clear 

trend in either elevated or depleted values was clear. However, on some samples (e.g. 

ALGAE and GRN) the variability was comparatively small for C/N, but not for δ13C. 

The difficulty in reproducing reliable values in this study suggests that the fumigation 

technique is not the most appropriate method to follow. 

 

In contrast to Midwood and Boutton (1998) and Kennedy et al (2005), our results 

suggest a clear differential environmental effect from the acid method on C/N and δ13C 

of bulk OM. There is significant variability within and between methods alongside 

reproducibility problems within and between samples (e.g. different environments). 

Using the same reagent (e.g. 20% HCl) across different methods can also produce 

significantly different results (e.g. BROC, ALGAE, NEW, TYC, MOR). This 

variability suggests that the use of the same method and reagent does not necessarily 

translate into reproducible and reliable results. However, HCl treated samples in the 

capsule method appears most accurate and precise, whereas the rinse and fumigation 

methods show much less internal accuracy and precision.  

 

2.9.2 Effect of capsule 

An apparent systematic pattern in δ13C results for Ag+Sn samples in NEW (range 

~1.8 ‰), GRN (range ~1.7 ‰) and MOR (range ~7 ‰) was clear from our aquatic 

samples with an IC component, particularly under HCl treatment. These samples show a 
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depletion in δ13C , with concomitant increases in both %C and %N. Whilst an increase 

in %C could point towards inefficient removal of an IC component from the sample (e.g. 

Fernandes and Krull, 2008), the shift towards depleted δ13C values suggests that the 

observed offsets are caused by organic components. A momentary “flash” combustion 

of the Sn capsules, which may briefly elevate EA furnace temperatures, but a slower 

‘burn’ for Ag capsules, was noted. This factor may have allowed for more complete 

combustion of less thermally labile compounds more depleted in 13C (e.g. lignin(-like) 

compounds; sensu Benner et al. 1987; Turney et al. 2006; Gani and Naruse, 2007).  

 

2.9.3 Small versus Normal sample size 

Significant differences between ‘small’ and ‘normal’ sample size data (Table 2.3) 

suggest an acidification induced offset in sample bulk OM. The ‘small’ sample sizes 

consistently overestimated %C and %N, producing relatively inaccurate results (see 

SOILB and BROC results). This variability cannot be explained by sample size (i.e. 

enough C and N was weighed out for analysis before acid treatment) but is more likely 

a function of the loss of measurable OM during the acid treatment. This loss increased 

the difficulty with which subsequent CO2 and N2 concentrations could be differentiated 

from baseline conditions. However, some ‘small’ samples produced reliable results, 

which suggest a non-systematic and non-linear response between different 

environments to acid treatment. This acid-induced bias is likely to be amplified in small 

samples, which may be problematic given that the capsule and fumigation methods 

begin with a limited amount of starting material. Thus the simultaneous measurement 

of %C, %N and δ13C (and even δ15N) from the same sample (“dual-mode” analysis) 

could be analytically problematic. 

 

2.9.4 Proportionality 

A comparison between sample materials (Figure 2.11) suggests that the accuracy and 

precision of methods between environments are highly variable and can respond in 

different proportions (i.e. significantly outside instrument precision). The proportions 

of %C and %N lost within and between samples are highly variable within and between 

methods, with no clearly emergent trend. This non-linear, disproportional offset under 

different acid methods is clearly evident in SOILB and BROC, our standard materials. 

Calculated %C and %N losses for SOILB are estimated at 1 – 23% and 2 – 24% 
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respectively, and are larger in the capsule and fumigation methods than for the rinse 

method for this sample and calculated losses of %C and %N for BROC are estimated at 

8 – 51% for %C and 4 – 38% for %N and were greatest in the capsule and rinse 

methods. Internal incoherencies are also evident within and between sample types (e.g. 

BROC, GRN, TYC), and the offsets between methods and between sample types are 

significantly disproportionate. However, some methods appeared to produce relatively 

reproducible results (e.g. BROC and ALGAE in the capsule method under HCl, NEW 

in the rinse method and possibly in Midwood and Boutton, 1998; Kennedy et al, 2005). 

However, the emergence of repeatability is unpredictable and not subject to correction. 

Alterations in % C and % N, or both, are not always in the same direction (gain or loss) 

or of the same proportion, nor does either one preferentially control C/N values.  

 

2.9.5      Dissolution of IC 

A comparison between mean values of C/N and δ13C for acidified and untreated 

samples could not be made on NEW, TYC, GRN and MOR due to the likely presence 

of IC in these sample materials. Our AAS data indicates elevated Ca in NEW and MOR, 

probably indicative of IC in the form of calcium carbonate (Figure 2.10) that vary 

considerably in their concentration between acids suggesting a nonlinear leaching. 

Consistency of results in NEW suggests a robust IC removal, though in MOR there may 

be some bias in δ13C from residual IC. The elevated values of Ca and Mg in GRN 

suggest the presence of calcium carbonate and dolomite in the sample. Disproportionate 

removal of dolomite may be a factor in the enrichment of δ13C in this sample. For 

SOILB, BROC, ALGAE and TYC, the leaching of metals is relatively low, though Ca 

is slightly high in ALGAE and Fe in TYC. In these samples, nearly 100% of C is in OC. 

We suggest that this indicates leaching from sample OM or an inorganic component 

within the sample matrix (e.g. clays) though the concentrations are comparatively small.  
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Figure 2.11: Relative proportional offset in %C, %N and C/N for all sample materials. 
Infilled black circle represents %C, void circle %N and infilled triangle C/N. SOILB 
and BROC are relative to known values based on long term untreated values. ALGAE, 
NEW, TYC, GRN and MOR are plotted relative to their overall means of all measured 
acidified samples. 
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2.9.6 C/N ratio 

It has been shown that changes of C/N values in bulk OM can vary through acid 

treatment methods. This variability biases C/N values at 1σ for SOILB (~ 14 to 18; 

proportional change of –14% to +3%), BROC (~ 7 to 13; proportional change of –27% 

to +11%), ALGAE (~6 to 11; proportional change of –36% to +4%), NEW (~7 to 13; 

proportional change of –26% to +2%), TYC (~ 14 to 79; proportional change of –32% 

to +110%), and MOR (~ 8 to 113; proportional change of –25% to +104%). C/N values 

can vary substantially when calculated from %N from treated or untreated samples (e.g. 

SOILB, BROC, ALGAE), significantly influencing interpretation. These different 

ranges illustrate the direct response of the OC to acidification that varies within and 

between methods. This finding is important as there is no consensus in the literature on 

whether %N (and indeed N isotopes) should be measured from treated or untreated 

samples (e.g. Newton et al. 1994; King et al. 1998; Kennedy et al. 2005; Lu et al. 2010). 

 

These offsets could be a function of the amount, type and nature of refractory OC (and 

its subsequent lability) within sample material that is a function of the environmental 

setting; the heterogeneity of C and N within the sample OM; and the homogeneity of 

sample material. Further, the bias on C/N values from %C and %N determined on the 

same acidified sample will vary depending upon the degree to which C and/or N 

concentrations are altered in the OM by acid type and method. This variability raises 

cause for concern on the interpretative nature of C/N ratios and their support for carbon 

isotopic concentrations, but also for the comparability of C/N ratios between 

laboratories (different preparation methods), environmental settings (type and nature of 

OM) and their representation within and between down-core studies (changing amounts 

and types of OM down-core). C/N ratios, as indicators for OM source and, in down-core 

studies, could easily produce significant scatter as an artefact of method rather than 

environmental process.  

 

Carbon bi-plots have been used to interpret OM provenance by cross plotting C/N ratio 

and δ13C (e.g. Thornton and McManus. 1994; Meyers, 1997; Meyers, 2003; Lamb et al. 

2006; Zong et al. 2006; Mackie et al, 2007) to determine a terrestrial (e.g. C3/C4 land 

plants) or aquatic (marine/lacustrine algae) source. Figure 2.12 shows carbon bi-plots of 

SOILB and BROC that clearly demonstrate procedural bias on data that is equal in 

magnitude to shifts between terrestrial and aquatic environments. SOILB is more 
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coherent than BROC, indicating a differential environmental response to acidification. 

The need to fully understand (at the molecular and macromolecular level) the nature of 

the sample material and system from which it was derived is imperative. In addition, 

offsets in C/N are not necessarily concomitant with shifts in δ13C and can add 

significant bias to bi-plot interpretation. Shifts in C/N and δ13C across different 

environments and different types of OM can therefore be difficult to predict. This 

suggests that the implicit assumption that bulk C and N of sample OM responds linearly 

and proportionally to acidification is flawed. 
 

 
Figure 2.12: Bi-plot of δ13C and C/N values of SOILB(A) and BROC(B) data (mean ± 
1σ) for rinse, capsule and fumigation methods 
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2.10      Summary and Recommendations 

This study is the first systematic comparison of the three most common acid treatment 

methods on a range of terrestrial and aquatic materials, from modern and geological 

settings. The findings of this study are important to a cross-disciplinary audience of 

investigators analysing C and N concentrations, and δ13C from OM, to understand 

environmental processes and mechanisms. The key findings are summarised below: 
 

1. We identify that the %C,  %N,  C/N and δ13C values of OM show significant non-

linear and disproportionate variability within and between acid treatment methods 

and sample materials. These findings strongly suggest that comparisons between 

laboratories are highly problematic, particularly in light of an inability to correct for 

these offsets and identify the underlying mechanisms. Additionally, an alteration 

in %C does not necessarily manifest itself in fractionation of δ13C, though specific 

methods can induce such fractionation (e.g. rinse method in BROC, TYC, GRN). 

This indicates the implicit assumption that the effect of acidification on sample OM 

is either negligible or systematic is flawed.  

2. Of the methods tested, the capsule method with HCl appears to provide the most 

coherent and consistent results. However these still show significant within and 

between sample variability. For different capsule types, HCl treated materials 

showed a clear systematic offset in δ13C, though further research is required to 

elucidate the underlying causes of these capsule associated offsets. Additionally, the 

use of H3PO4 in the capsule method appears to consistently produce aberrant results, 

especially on low IC materials, due to difficulties volatilising the acid residue.  

3. The rinse method can artificially elevate %C and %N values, and also significantly 

offset δ13C. This occurs due to the loss of fine-grained materials (e.g. such as clays) 

and the removal of IC. Losses of the soluble organic fraction from the sample 

material also occur (which varies significantly from sample to sample, and therefore 

within and between environmental settings). Differences in %C and %N are not 

necessarily systematically related to shifts in δ13C. 

4. The variability in our results from the fumigation method, within and between 

sample materials, is too significant to produce consistently reliable results (see 

method summary in Table 2.4). 

5. Small sized samples after acidification can lead to the production of unreliable data. 

6. The interpretation of C/N values and their support for the interpretation of δ13C 

values is significantly affected by acid method (Figure 2.12). This additional 
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imprecision from acid-treated samples (even when using untreated %N) should 

preclude the use of C/N ratios as an indicator for OM provenance and alteration, 

especially where the amount, type, nature and origin of sample OM differs 

significantly (sensu Fernandes and Krull, 2008). These findings have important 

implications for down-core studies of C/N and δ13C especially, where the type of 

organic matter and matrix change. For example, the amount of acid/water soluble 

and acid/water insoluble compounds may vary from sample to sample leading to 

highly unpredictable offsets. The application of one, or more, acid methods, without 

an understanding of the nature of C and N within the sample material or system 

involved has clear inherent limitations. I re-iterate that the use of a consistent 

method and acid reagent does not guarantee reliability of results in changing 

environmental settings (e.g. across down-core sedimentary units). 
 

2.10.1 Recommendations 

I provide recommendations for researchers investigating C and N concentrations and 

δ13C of organic materials: 

1. Avoid the use of H3PO4 in the capsule method and avoid the fumigation method. 

2. For the rinse method, it could be beneficial to include a centrifugation step to 

minimise the loss of fine colloidal components of the sample material (e.g. fine 

organic fragments and clays) and reduce potential biasing towards coarser 

grained fractions.  

3. It is important that sample sizes be significantly above the machine baseline 

conditions prior to acidification, to ensure that any alterations to the sample OM 

fraction do not result in sample peaks becoming near indistinguishable from 

baseline conditions. This does not imply subsequent data are accurate and 

precise in the context of the method offsets discussed here. 

4. Exercise extreme caution in the interpretation of C/N values, and in their use in 

support of δ13C value interpretation in the context of OM provenance (e.g. 

aquatic versus terrestrial source) where acidification methods are used to derive 

C/N and δ13C of OM. 

5. To avoid the issues identified here with the acid methods, investigators can 

measure total C by elemental analyzer (yielding N also), and IC by colourometry, 

and derive OC by difference. Note, however, this is only appropriate for %C 

and %N (and hence C/N values), and not for δ13C. This assumes a negligible 

influence on %N from inorganic nitrogen. 
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Table 2.4: Summary of limitations and recommendations identified for each acid treatment method 

 
Methodology Limitations Justification Possible solutions 

Rinse 

Sample material can remain in suspension 
and/or remain attached to meniscus; 
 
Leaching of acid and water soluble 
organic components; 
 
Loss of non-organic components to 
supernatant (e.g. fine colloids); 
 
Artificial concentration of C and N 
(possibly due to loss of colloidal 
components). 

Visual observation (e.g. BROC, NEW, 
GRN);  
 
UV-Vis data (Figure 3); 
 
 
Visual observation (e.g. BROC, NEW, 
GRN); 
 
Elevated C and N values (e.g. BROC). 

Filter (e.g. 50 µm or less) material 
attached to meniscus. Very fine colloids 
may still be washed away, however. 
Measure C and N content of rinse (e.g. 
Caughey et al, 1995; Galy et al, 2007); 
 
Consider introducing a centrifugation 
step; 
 
 
Consider use of capsule method (if sample 
is not high in IC). 

Capsule 

Limited amount of starting material in 
capsule; 
 
Prone to spits and spills, especially on 
high IC samples (e.g. MOR); 
 
Formation of CO2 bubble within sample 
on materials with IC leading to 
“protection” of material from acid; 
 
On drying, significant hygroscopic salts 
build up (e.g. CaCl2), increasing with IC 

Capsule dimensions (commonly 5x9 mm); 
 
 
Visual observation; 
 
 
Visual observation (eg. NEW, MOR); 
 
 
 
Visual observation (e.g. NEW, MOR); 
 

 
 
 
Initially add 10-20 µl deionised water. 
Make several small additions of acid in 
the first instance(e.g. 10µl, 20µl); 
Make several small additions of acid in 
the first instance(e.g. 10µl, 20µl); 
 
 
This is an unavoidable by-product of the 
acidification 



Chapter 2: Acid treatment bias on C/N and δ13C in organic materials 

49 
 

 content (Van Iperen and Helder, 1995; 
Larson et al. 2008) 
 
Losses of C and N concentrations during 
acidification can significantly influence 
results; 
 
H3PO4 is difficult to volatilise, 
particularly on low IC materials; 
 
Ag capsule tends to ‘burn’ slowly relative 
to Sn capsules. 

 
 
 
‘small’ versus ‘normal’ sample size 
comparison. 
 
 
Visual observation (e.g. BROC, TYC); 
aberrant data; 
 
Visual Observation. 

 
 
 
Avoid using close to the minimum 
amount of C and N concentrations. 
 
 
Avoid H3PO4; 
 
 
Further wrap Ag capsules in Sn capsules. 

Fumigation 

Limited amount of starting material in 
capsule; 
 
On drying, significant hygroscopic salts 
build up (e.g. CaCl2), increasing with IC 
content; 
 
Inefficient IC removal, especially on 
samples with >30% IC (e.g. Harris et al, 
2001), but not linked with lack of acid; 
 
Ag capsules tend to ‘burn’ slowly relative 
to Sn capsules; 
 
Accuracy and precision of results on very 
low IC samples is poor. 

Capsule dimensions (commonly 5x9 mm); 
 
 
Visual observation (e.g. NEW, MOR); 
 
 
 
Investigated using quality control batch 
which was treated with 10% HCl after 
fumigation cycle to check for 
effervescence (e.g. NEW, MOR); 
Visual observation; 
 
 
SOILB, BROC and ALGAE data. 

 
 
 
This is an unavoidable by-product of the 
acidification; 
 
 
Consider processing high IC samples with 
the rinse or capsule method (cf. Harris et 
al, 2001); 
 
Further wrap Ag capsules in Sn capsules; 
 
 
Consider rinse or capsule method. 



 

 
 

 
 
 

CHAPTER 3 
 
 
 
Evidence for bias in measured δ15N values of 

terrestrial and aquatic organic materials due to 

pre-analysis acid treatment methods. 
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3.1 Introduction 

The analysis of stable isotope ratios of nitrogen (δ15N) provides valuable information on 

the complex processes within the global nitrogen cycle. δ15N has been used to 

understand trophic pathways in food webs (e.g. Bunn et al, 1995; Pinnegar and Polunin, 

1999; Ng et al, 2007; Kolasinski et al, 2008), organic matter (OM) provenance and 

degradation (e.g. Thornton et al, 1994; Meyers, 1997; Hu et al, 2006; Barros et al, 2010), 

denitrification in the water column and nitrate utilisation in ocean sedimentary records 

(Altabet et al, 1995) and eutrophication (Owens, 1987; Voss et al, 2005). C/N ratios 

(weight ratios of the elements) have been widely used to support δ15N (and δ13C) by 

broadly distinguishing between terrestrial and aquatic sourced OM. The N composition 

of aquatic derived OM (protein and lipid rich) is considerably greater than for that of 

terrestrial OM (cellulose and lignin rich) dependent upon the availability of N in the 

environment. In addition, δ13C of OM has been employed to identify carbon sources and 

photosynthetic pathways in plants (e.g. C3 and C4 plant differentiation; Meyers, 1997; 

2003; Sharpe, 2007), assess C dynamics in soil systems and study trophic levels in 

environmental systems (Bunn et al, 1995; Pinnegar and Polunin, 1999; Kolasinski et al, 

2008; Harris et al, 2001), and understand C mineralisation processes (Midwood and 

Boutton, 1998; Freudenthal et al, 2001; Leng and Marshall, 2004).  

 
These interpretations assume that C/N ratios, δ13C and δ15N of OM can be reliably 

determined. For C/N ratios and δ13C, this relies upon the complete removal of inorganic 

carbon (IC) from the sample total carbon pool, typically achieved through acid pre-

treatment, without alteration of sample OM (see Chapter 2; Brodie et al, 2011a). In 

contrast, measurements of %N and δ15N are commonly made on untreated sample 

material, on the assumption that inorganic nitrogen (IN) does not contribute to the total 

sample N (though this may not be valid in all environments (Muller, 1977; Schubert and 

Calvert, 2001; Sampei and Matsumoto, 2008)). However, it is becoming increasingly 

common to measure C/N ratios, δ13C and δ15N as part of a single, “dual-mode” analysis 

(Kolasinski et al, 2008; Kennedy et al, 2005; Jinglu et al, 2007; Bunting et al, 2010). In 

this case, if IC must be removed by acid treatment, it is necessary to establish that this 

treatment does not affect the %N or δ15N of OM. 

 

The effect of pre-analysis acid treatment methods on %N and δ15N can be significant 

(Bunn et al, 1995; Ng et al, 2007). Losses in %N have been reported in the range of 0 – 
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50% (King et al, 1998; Lohse et al, 2000; Ryba and Burgess, 2002; Brodie et al, 2011a) 

alongside artificial gains of ~ 20 % (see Chapter 2; Brodie et al, 2011a). In addition, and 

like known variabilities in δ13C previously reported (see Chapter 2; Brodie et al, 2011a), 

results for shifts in δ15N are variable, indicating an increase of 0.1 – 3 ‰ (Bunn et al, 

1995), a decrease of 0.2 –1.8 ‰ (Bunn et al, 1995; Midwood and Boutton, 1998; 

Kennedy et al, 2005; Ng et al, 2007; Fernandes and Krull, 2008), and no significant 

change (Jaschinski et al, 2008; Serrano et al, 2008), with no apparent trend in the size of 

offset related to the type of material (i.e. modern or ancient, terrestrial or aquatic). In 

addition, disproportionate and non-systematic offsets in C and N of OM due to acid 

treatment contribute to this variability (Schmidt and Gleixner, 2005; Brodie et al, 

2011a), and could preclude interpretation of sedimentary δ15N records with a range of ~ 

1 – 4 ‰ (Waples, 1985; Schubert and Calvert, 2001; Altabet, 2007; Galbraith et al, 

2008). An investigation into the effects of pre-analysis acid treatment methods on δ15N 

of OM is therefore justified. 

 
This chapter aims to investigate the effect of pre-analysis acid treatment methods on 

measured δ15N values of OM. We test the hypothesis that the measured δ15N values are 

not different between pre-analysis acid treatment methods. I compare untreated material, 

and material acid treated in the two most common methods; (i) the capsule method and; 

(ii) the rinse method; and use HCl as the acidifying reagent. I also independently 

investigate the effect of capsule type. These methods all use different capsules; the rinse 

method and untreated method use tin (Sn) capsules, whereas the capsule method uses 

silver (Ag) capsules; thus an investigation into the influence of different capsules is 

necessary (see Brodie et al, 2011a).  Specifically, the following research questions are 

addressed: 

 

1. Are there significant differences in measured δ15N values of OM between methods?  

2. Does capsule type affect measured δ15N values? 

3. Does acid treatment method influence environmental interpretation of measured δ15N 

values? 
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3.2 Sample materials and Acid treatment methods 

3.2.1 Sample materials 

A recent comprehensive study into the effects of acid treatment methods on OC in OM 

of different sample materials showed significant differences in C/N and δ13C of sample 

materials that were prepared in different ways (see Chapter 2; Brodie et al, 2011a). As a 

follow on from this study, three sample materials were selected for this study from those 

previously analysed which represent different environments and which showed 

considerably different treatment effects for C/N and δ13C values between them. These 

samples are BROC, SOILB and TYC (a plant, a modern soil and an ancient lake 

sediment, see Table 2.1). As these sample materials represent three very different 

environments, and hence different amounts and composition of OM (e.g. terrestrial, 

freshwater, marine, plant or animal; modern or ancient), and show differences in C/N 

and δ13C between acid treatment methods (Brodie et al, 2011a), δ15N might also be 

expected to be biased by acid treatment. All sample materials were freeze dried and 

freeze milled to a flour (grain size ≤ 63μm ) prior to analysis. None of these sample 

materials contain an IC component (so a comparison between untreated and treated 

sample aliquots could be made). 

 

3.2.2 Acid treatment methods 

 
Prior to sample preparation, all sub-sampling equipment and glassware were thoroughly 

washed in 1% nitric acid, rinsed in deionised water, followed by a wash in 2% 

neutracon® solution, a final deionised water rinse and then fired at 550oC for 3 h. Ag 

capsules were fired at 550oC for 3 h prior to use. HCl was the only reagent selected for 

removing IC, because it produced more coherent δ13C and C/N data within and between 

methods than 6% H2SO3 and 6% H3PO4 (Brodie et al, 2011a). Two strengths of HCl 

were tested, 5% w/w and 20% w/w, based on findings in (Brodie et al, 2011a). Sample 

materials were prepared as follows: 

 

Untreated samples: Samples were weighed directly into Sn capsules.  

Capsule method: Samples were weighed into open Ag capsules, transferred to a metal 

tray on a hotplate and 10 μl of distilled water was added to moisten the samples. After 

moistening, 10 μl of the chosen acid reagent was added to the cold sample before the 
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hotplate temperature was slowly increased to ~50oC. Additional acid was then added in 

steps of 10 μl, 20 μl, 30 μl, 50 μl and 100 μl, followed by a final 200 μl, without 

allowing the sample to dry out between additions.  

 

Rinse method: Sample material was mixed with excess acid in a beaker and allowed to 

stand for 24 h. The beaker was topped up to 500 mls with deionised water and the 

sample material allowed to settle for a further 24 h. Once settled, the supernatant was 

decanted, ensuring minimal disturbance of the remaining material, and the beaker then 

topped up again to 500 mls with deionised water. Dilution was repeated 3 times in total 

with an overall minimum of 1200 mls of deionised water used. After the final decanting, 

the excess water (50 – 100 mls) was allowed to evaporate off in a drying oven at ~50oC, 

and the sample transferred to a Sn capsule.  

 

The capsule method uses Ag capsules, because they are resistant to acid attack whereas 

Sn capsules disintegrate under acidification, especially with HCl. Unlike Sn, however, 

Ag does not oxidise exothermally in the elemental analyser, so that sample combustion 

temperatures in Ag are lower than in Sn. I therefore also analysed samples with their Ag 

capsules further wrapped in tin (Ag+Sn) to test whether this significantly affected δ15N 

values. The rinse method traditionally uses Sn capsules, and these were replicated by 

wrapping in silver (Sn+Ag). All treatments were performed in triplicate. 

 

3.3 Analytical method 

Nitrogen isotope analyses were performed using an elemental analyser linked to an 

isotope ratio mass spectrometer (EA-IRMS). Samples were loaded into an autosampler 

and dropped into a 1.6 ml sec-1 stream of helium in a FlashEA 1112 elemental analyser. 

The combustion column contained copper oxide and silvered cobaltous oxide at 900oC, 

and combustion products were cleaned of oxygen and nitrogen oxides by passage 

through copper at 680oC, and of water and carbon dioxide by passage through 

magnesium perchlorate and carbosorb before passage through the GC column. The 

helium stream with sample N2 was led via a Conflo III interface to a Delta+XL mass 

spectrometer for determination of the 15N/14N ratio. In order that all treatments of a 

particular sample material could be analysed in a single run, correction of the measured 

sample 15N/14N ratios to δ15N values was not based on comparison with internal 

standard samples (the normal procedure) but rather on comparison with a reference gas 
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whose δ15N value versus atmospheric N2 had been determined in separate runs. The 

quoted δ15Nvalues are therefore correct relative to one another for the same sample 

material, but only approximately correct in absolute terms versus atmospheric N2. 

Limits on analytical precision are mainly determined by conditions of combustion and 

chromatography in the elemental analyser. For organic materials containing a few %N 

(e.g. BROC) within-run precision for δ15N is better than 0.3‰ (1σ for n = 10 samples). 

Measurements of background C and N concentrations from capsules and acid reagents 

were below instrument detection limits, suggesting that contamination did not 

contribute to variability within our results (Brodie et al, 2011a). 

3.4 Data analysis 

All data are plotted as mean ± standard deviation (1σ). Our data were analysed by One-

Way ANOVA using Minitab 15.0 (MINITAB Inc. 2007). Data were tested for 

normality using an Anderson-Darling normality test (all p-values > 0.05) and 

homogeneity of variances using a Bartlett’s Test (assumes normality within each factor 

level) and Levene’s Test (does not assume normality within each factor level) (Fox et al, 

2007; Terwilliger et al, 2008). For our data, the p-value for the Bartlett and Levene tests 

were all above 0.05, indicating that the variances are the same for each factor. These 

tests validate the use of ANOVA on our data. I test the null hypothesis that there is no 

significant difference in measured δ15N values between treatment methods, capsule type 

and acid reagent strength (i.e. within method variability). The results for C/N and δ 13C 

have been previously reported (Brodie et al, 2011a) and were measured on different 

sample aliquots than those for δ 15N. 

3.5 Results 

Results for δ 15N for SOILB, BROC and TYC are presented in Figures 3.1 – 3.3 and are 

reported as mean ± standard deviation (Table 3.1), alongside previously reported C/N 

and δ13C (see Chapter 2; Brodie et al, 2011a). Results from the one-way ANOVA are 

presented in Table 3.2. There is a statistically significant difference between pre-

analysis acid treatment methods, and within and between sample materials (Table 3.2) 

that is significantly greater than instrument precision (~0.3 ‰).  In SOILB and TYC, 

measured values of δ 15N in acid treated are lower than for untreated samples (Figures 

3.1 and 3.3; Table 3.2). For SOILB, the precision of δ15N determinations was better for 

untreated and rinse method samples than for capsule method samples (value represented 

graphically by horizontal grey bars on Figure 3.1). In TYC precision was marginally 
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better for acid treated samples than for untreated samples (untreated sample in the Ag 

capsule significantly influenced this; see Figure 3.3). There is a slight depletion in δ13C 

and lower C/N in SOILB, with a relatively depleted δ15N (to untreated samples). In 

TYC, the rinse method show enriched δ13C and higher C/N values, concomitant with a 

relatively depleted δ15N. 

 

In BROC, the measured δ15N values were generally better for acid treated samples than 

for untreated samples (value represented graphically by horizontal grey bars on Figure 

3.2), though the rinse method samples produced the lowest δ15N values of all methods 

for this material. This poor sample precision contributed to no statistical differences 

being detected between untreated and acid treated sample means. However a significant 

difference between data in the capsule and rinse methods of ~ 1.2 ‰ exists (Figure 3.2), 

with the rinse method data showing relatively higher δ15N, concomitant with depleted 

δ13C and higher C/N relative to known values (Brodie et al, 2011a).  

 

Comparisons of results within the same method but combusted in different capsules 

showed significant differences (Table 3.2). In particular, untreated samples analysed 

only in Ag capsules showed significantly lower results in all materials (see unfilled 

circles in Figures 3.1 – 3.3). In the capsule method, there was no common trend in data 

for samples further wrapped with a Sn capsule, though for TYC δ15N were depleted by 

~0.5 ‰ relative to other samples within the capsule method. For the rinse method, 

across all sample materials, samples further wrapped in an Ag capsules showed higher 

δ15N values of between 0.4 – 0.8 ‰. 
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Figure 3.1: SOILB C/N, δ13C and δ15N values for each method and acid. Horizontal 
solid grey lines indicate mean values for each method, and perforated grey lines 1σ. 
Vertical perforated lines split the untreated, capsule and rinse methods. The horizontal 
grey bar on the C/N and δ13C plots represents known values. Error bars are calculated as 
one standard deviation (1σ) of replicate measurements. Unfilled circles represent 
samples analysed in Ag capsules only. 
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Figure 3.2: BROC C/N, δ13C and δ15N values for each method and acid. Horizontal 
solid grey lines indicate mean values for each method, and perforated grey lines 1σ. 
Vertical perforated lines split the untreated, capsule and rinse methods. The transparent 
grey bar on the C/N and δ13C plots represents known values. Error bars are calculated as 
one standard deviation (1σ) of replicate measurements. Unfilled circles represent 
samples analysed in Ag capsules only. 
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Figure 3.3: TYC C/N, δ13C and δ15N values for each method and acid. Horizontal solid 
grey lines indicate mean values for each method, and perforated grey lines 1σ. Vertical 
perforated lines split the untreated, capsule and rinse methods. Error bars are calculated 
as one standard deviation (1σ) of replicate measurements. Unfilled circles represent 
samples analysed in Ag capsules only. 
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Table 3.1: Mean and standard deviation (1σ) for δ15N values in SOILB, BROC and TYC. 
 

 SOILB BROC TYC 
Untreated (Ag) 4.11 ± 0.46 0.98  ± 0.14 2.75 ± 0.11 

Untreated (Ag+Sn) 4.56 ± 0.43 1.52  ± 0.40 3.65 ± 0.11 
Untreated (Sn) 4.69 ± 0.22 1.58 ± 0.22 3.59 ± 0.27 

Untreated (Sn+Ag) 4.79 ± 0.27 1.80 ± 0.34 3.93 ± 0.29 
    

5% HCl Capsule (Ag) 3.90 ± 0.17 0.73 ± 0.12 2.69 ± 0.11 
5% HCl Capsule (Ag+Sn) 3.63 ± 0.35 1.03 ± 0.34 2.21 ± 0.27 

20% HCl Capsule (Ag) 3.62 ± 0.34 1.21 ± 0.18 2.99 ± 0.37 
20% HCl Capsule (Ag+Sn) 1.95 ± 0.36 1.12 ± 0.19 2.36 ± 0.28 

    
5% HCl Rinse (Sn) 3.76 ± 0.83 1.70 ± 0.92 2.34 ± 0.36 

5% HCl Rinse (Sn+Ag) 4.16 ± 0.28 2.16 ± 0.06 2.97 ± 0.48 
20% HCl Rinse (Sn) 3.77 ± 0.30 1.65 ± 0.15 2.46 ± 0.29 

20% HCl Rinse (Sn+Ag) 4.14 ± 0.20 1.96 ± 0.12 2.98 ± 0.17 
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Table 3.2:  Results of ANOVA analysis for each sample material for untreated, capsule and rinse methods. Data were tested at the 0.05 significance level. 
  SOILB BROC TYC 

Analysed 
Factor 

ANOVA 
Parameter 

Statistical 
Results Difference Statistical 

Results Difference Statistical 
Results Difference 

METHOD 

P-value 0.03 

Capsule method 
lover δ15N values 

than untreated 

0.06 
Capsule method 

δ15N values lower 
than rinse and 

untreated method 
values 

0.02 
Untreated δ15N 

values higher than 
samples from both 

acid treatment 
methods R-Squ (%) 42.59 61.26 47.84 

ACID 

P-Value 0.07 

nd 

0.97 

nd 

0.02 Untreated values 
produce higher δ15N  

than 5% HCl and 
20% HCl in either 

acid method R-Squ (%) 33.42 0.00 48.17 

CAPSULE 
P-Value 0.53 

nd 
0.00 

Samples in Ag and 
Ag+Sn capsules 

produce lower δ15N 
values compared to 
samples in Sn and 
Sn+Ag capsules 

0.652 
nd 

R-Squ (%) 0.00 78.84 0.00 
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3.6 Discussion 

3.6.1 Methodological differences in δ15N 

As reported for C/N and δ13C data (Chapter 2; Brodie et al., 2011a), the measured δ15N 

values show evidence of significant within (effect of acid reagent strength and capsule 

type) and between (untreated versus capsule method versus rinse method) method 

differences. Across all sample materials, the differences in sample data between 

methods (up to ~1.5 ‰) are significantly greater than the instrument precision (~ 

0.3 ‰). The untreated method is the most common approach in the literature (Kennedy 

et al, 2005; Kolasinski et al, 2008), though simultaneous δ13C and δ15N measurements 

(“dual-mode” analysis), which require acid removal of carbonate, are increasingly 

common (Jinglu et al, 2007; Galbraith et al, 2008; Kolasinski et al, 2008; Bunting et al, 

2010). Our results show significant differences in measured δ15N value between acid 

treatment methods and within untreated samples (Figures 3.1 – 3.3). For example, data 

for SOILB and TYC from acid pre-treated samples were significantly different from 

untreated by up to ~1.5 ‰, with the overall range in the untreated method ~0.5 ‰ 

(excluding the samples combusted only in Ag capsules). In the rinse method, δ15N may 

be biased by the loss of soluble organic and/or inorganic N species (Froelich, 1980; 

Bebout et al, 2006), or very fine particles (Froelich, 1980; Ostle et al, 1999; Schubert 

and Nielsen, 2000; Harris et al, 2001; Galy et al, 2007; Brodie et al, 2011a). For 

example, the loss of 14N rich species (e.g. protein; ammonium) would increase the δ15N 

value (Bebout et al, 2006). This suggests problems of reliability on δ15N measurements, 

particularly from acid treated samples. This has implications for the applicability of any 

one method in a short or long core, where type, amount and nature of OM can vary 

significantly, and on modern organic materials. 

 

These findings partly agree with Kennedy et al (2005) and Fernandes and Krull (2008), 

who find that the precision of acid treated samples was equal to or less than that of 

untreated samples. Interestingly, Kennedy et al (2005) find no significant difference 

between results, and suggest that measurements of δ15N on acid treated samples as an 

appropriate method, whereas Fernandes and Krull (2008) report differences of up to 2 ‰ 

(offsets due to volatilisation (capsule method) and solubilisation (rinse method)), and 

suggest measurement on untreated material. Such variability suggests the different 

organic chemical composition of sample materials from different environments can 
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influence the reliability of isotopic C and N values obtained using these acid treatment 

procedures, necessitating an understanding of the complexities of sample OM within 

and between environments (Fernandes and Krull, 2008; Brodie et al., 2011a). This has 

significant interpretative implications for δ15N in sedimentary records. Published studies 

have reported δ15N data ranges in the order of ~1 – 5 ‰, on surface samples, short cores 

(Schubert and Calvert, 2001; Hu et al, 2006; Jinglu et al, 2007; Lambert et al, 2008; Lu 

et al, 2010), and long cores (Waples, 1985; Yoshii et al, 1997; Wolfe et al, 1999; 

Freudenthal et al, 2001; Altabet et al, 2007; Bunting et al, 2010). The differences 

reported here for BROC (~ 0.1 – 1.2 ‰), SOILB (~ 0.2 – 1.3 ‰) and TYC (~ 0.8 – 

1.6 ‰) are only a function of pre-analysis acid treatment (i.e. an artefact), and therefore 

have the potential to significantly influence environmental interpretation of the data. 

Where different sample preparations (e.g. untreated versus acid treated) or analytical 

methods (e.g. “single” versus “dual” mode isotope analysis) are followed, this will 

preclude the comparison of δ15N from different down-core records. 

 

3.6.2 Effect of capsule type 

It has been shown that there is a systematic depletion in δ13C in aquatic material within 

the capsule method for samples further wrapped in Sn (Ag+Sn)(Brodie et al, 2011a). I 

therefore test whether capsule type influenced measured δ15N results. For all sample 

materials, untreated sample aliquots wrapped only in an Ag capsule showed 

significantly lower δ15N values in comparison to all other untreated sample aliquots 

(unfilled circles on Figures 3.1 – 3.3). The absence of Sn in the combustion process has 

an influence on the overall combustion temperature as there is no additional exothermal 

heat supply through the Sn oxidative reaction. This, combined with the 900oC 

combustion temperature, which is lower than traditionally used in C/N and δ13C 

analysis of OM (~ ≥ 1000oC), likely has a direct influence on the ease with which labile 

and recalcitrant components of the sample materials react. The presence of Sn appeared 

to have less marked influence on results for acid treated samples, but this might be due 

to the acidification process obscuring differences between labile and recalcitrant 

components (Fernandes and Krull, 2008; Brodie et al, 2011a).  

 

Alongside the potential for offsets in elemental and isotopic C and N due to the acid 

reagent and/or method followed, it appears that the capsule material, in which the 

sample is combusted, may also influence data distribution. This has implications for the 
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comparison of data between methods, and between laboratories (because the rinse 

method uses Sn capsules and the capsule method Ag capsules) in addition to the 

likelihood for offsets linked to the type, amount and nature of OM (Fernandes and Krull, 

2008).   

3.6.3 Coupled offsets in δ13C and δ15N 

A comparison of δ13C and δ15N within and between methods clearly indicates that 

method-induced alterations of the sample OM can influence measured δ13C and δ15N 

values in a disproportionate and non-linear fashion. δ13C and δ15N shifts are not 

consistent or in the same direction across the methods in any one material analysed 

(Figures 3.1 – 3.3). For BROC, relative to untreated samples, the capsule method 

showed a slight enrichment in δ13C of ~0.2 ‰ (and slight increase in C/N value) 

coupled with a depletion in δ15N of ~0.6 ‰ relative to untreated. This is in contrast to 

the results in the rinse method, which show a depletion in δ13C of ~1.2 ‰ (C/N value 

increased by ~3 – 6), and an enrichment in δ15N of ~0.7 ‰ relative to untreated. For the 

capsule method, the results suggest a loss of 15N enriched compounds and no significant 

change in δ13C but for the rinse method, a loss of 13C enriched compounds, but no 

differential loss of 15N compounds (which is not too dissimilar to untreated values). 

 

The differential loss of 15N rich compounds has previously been reported from pre-

analysis acid treatment methods (Bunn et al, 1995; Pinnegar and Polunin, 1999; Ng et al, 

2007; Kolasinski et al, 2008), through solubilisation or volatilisation (Goering et al, 

1990; Lohse et al, 2000; Ryba and Burgess, 2002; Fernandes and Krull, 2008; Brodie et 

al, 2011a). It has been proposed that losses or alterations to proteins, nucleic and amino-

acids are the primary cause (Goering et al, 1990; Lohse et al, 2000). These compounds 

also tend to be relatively deficient in 13C, suggesting the trends noted in BROC in the 

rinse method are from these nitrogenous compounds with losses greater than for the 

capsule method. Fernandes and Krull (2008) also reported greater losses in the rinse 

method by at least double. The capsule method showed a depleted δ15N signature, but 

no significant change in δ13C from known values. This clearly indicates that both δ13C 

and δ15N can be significantly affected by acid pre-treatment, but more importantly can 

also vary independently of one another (i.e. in significantly different proportions). The 

different types of N (and C) within a sample (organic and inorganic, and there relative 

proportions) can respond variably suggesting that the magnitude of the method affect 

will vary considerably between sample materials (i.e. different environments 
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representing different OM provenance and composition). I therefore warn of the dangers 

of using ‘dual-mode’ analysis without a robust understanding of sample OM in the 

context of pre-analysis acid treatment effects on N (and C). Additionally, where sample 

size of C and N of OM is small, acid treatment induced alterations of OM can promote 

less reliable data, which further undermines a “dual-mode” analysis approach (Brodie et 

al, 2011a). Sample mineralogy may also influence the precision of C and N data 

(Fernandes and Krull, 2008). 

 

3.6.4    δ13C and δ15N cross-plots 
Cross plots of δ13C and δ15N have been used to indicate OM provenance (Meyers, 1997; 

Hu et al, 2006) in a similar fashion to C/N and δ13C (Wilson et al, 2005; Zong et al, 

2006; Yu et al, 2010), though the extent to which acid treatment method could influence 

the distribution of data on these plots has not been discussed. Brodie et al (2011a) 

reported this method bias on C/N and δ13C cross-plots, illustrating the method and acid 

used could dictate the spread of data and subsequent environmental interpretation. This 

provides justification for examining δ13C against δ15N. Our δ13C and δ15N cross-plots 

for each material similarly illustrate this bias (Figure 3.4). This may consequently 

preclude a robust interpretation, especially in environments where the amount, type and 

nature of OM varies and, there is more than one OM end member (i.e. rivers, estuaries, 

lakes, marine environments).  

 

3.6.5    Inorganic nitrogen 

An important assumption underpinning the interpretation of %N, C/N and δ15N values 

of OM is that all sample N is OM bound, and that any IN component is insignificant in 

terms of error on data and subsequent interpretation (Sampei and Matsumoto, 2008). 

However, it is not common place to quantify IN of sample materials, despite the 

potential influence on organic %N and C/N values, especially in samples containing low 

OC (Stevenson et al, 1972; Muller, 1977; Waples, 1985; Schubert and Nielsen, 2001; 

Schmidt and Gleixner, 2005; Sampei and Matsumoto, 2008). For example, Schubert and 

Calvert (2001) reported C/N values of Arctic Ocean surface sediments from total N 

ranging from 4 – 8, and from organic N from 8 – 15. This represents a clear shift in 

interpretation from OM dominated by aquatic biomass to OM with an increasing 

terrestrially sourced component. Despite this, measurements for %N and δ15N are 

commonly reported, whether on treated or untreated samples.  
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Figure 3.4:  Bi-plots of δ13C and δ15N values of SOILB, BROC and TYC. The filled 
circle represents untreated samples; the unfilled circle represents rinse method samples 
and; the filled triangle capsule method samples. Error bars represent the standard 
deviation (1σ) of triplicate treatments for δ13C and δ15N.  
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In lieu of IN quantification, it has been proposed that the IN content can be estimated 

through a regression of %C and %N values, assuming a  perfect linear relationship and 

using the calculated r2 value. The estimation of IN content as a percentage deviation 

from that perfect linear relationship is calculated from (1 – r2) x 100 (Muller, 1977; 

Meyers, 1997; Hu et al, 2006). The approach of Muller, Meyers and Hu et al is the 

regression of a number of samples within a large system (e.g. lacustrine and estuarine 

surface samples), whereas my approach is sample specific (i.e. one sample rather than 

numerous spatial distributed samples). This IN estimation method is employed here for 

the analysed sample materials by linearly regressing data from all methods for each 

material (providing one r2 statistic for the data – the “best fit”) and then bootstrapping 

the data (i.e. computing 2000 iterations of the linear regression model on the data to 

assess the distribution of the r2 statistic across the data set; this allows an assessment of 

the influence of acid treatment method on the spread of the data relative to the “best 

fit”). If acid treatment method has little to no influence on the spread of the %C and %N 

data, there should be little deviation from the “best fit” scenario, and hence little to no 

change in the estimation of IN.  

 

Based on our bootstrapped r2 estimates, and subsequent calculation of percentage IN, 

~60 – 86% of BROC, ~27 – 49% of SOILB and ~ 55 – 75% of TYC may be attributed 

to IN (i.e. variation in %N explained by the regression model). The spread of data 

shown in Figures 3.5 – 3.7 represents (i) method bias and (ii) the true C and N 

distribution, and indicates a limitation to the interpretation of C/N values. These 

estimation ranges for IN content point toward an emergent linearity within our sample 

data, suggesting that the data be non-normally distributed either by nature, or by bias 

due to acid treatment method. This violates the key assumption of normality in the 

linear regression model and suggests an analysis of numerous spatially distributed 

samples (Muller, 1977; Hu et al, 2006) will propagate significant (but unrecognised) 

bias onto the interpretation of %C, %N and C/N values. 

 

The overall statistical approach  is misleading, and assumes (i) a dependence of %N 

on %C in sample OM within and between environments; (ii) a systematic and 

proportional co-variability of both pools within sample OM during sample pre-

treatment and; (iii) the offsets from this are related to intrinsically non-linear IN 

processes. In the context of different formation, transportation and diagenesis processes, 

across significantly different environments, an emergent linearity from a complex C and 
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N system is unlikely to be real, particularly across diverse systems where the OM 

composition and structure varies. There is no apparent mechanism promoting linearity 

of C and N in a specific sample or indeed in a system, suggesting that the emergent 

linearity reported here can be substantially dictated by method. In addition, the 

disproportionate and non-systematic variability in elemental C and N concentrations 

previously reported (Brodie et al, 2011a) suggests that this procedure of estimation is 

further undermined, even if a non-linear relationship is assumed (which would likely 

lead to significantly greater bias). The idea that the emergent linearity can be used to 

derive an understanding of the non-linear IN pool based on the deviation from the 

presumed perfect linear relationship is incorrect, especially in the context of a down-

core profile. Further, it does not reliably improve the understanding of the sample OM. 

Even if the prescribed linear fit was correct, the assumptions made are seriously flawed. 

It is concluded that the application of this statistical technique for IN estimation, in the 

context of method bias and the complexity of C and N in the environment, is an 

aberration and should be abhorred. I recommend that IN be quantified following an 

organic N digestion process (e.g. KOBr-KOH: Schubert and Calvert, 2001; Sampei and 

Matsumoto, 2008). 

 

 

 

 
Figure 3.5: Bi-plot of %C and %N values of SOILB data for untreated (diamond); 
capsule (square) and; rinse methods (circle), with error bars representing 1σ. Blue lines 
are bootstrapped estimations of the data and red-dashed lines 95% confidence intervals. 
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Figure 3.6: Bi-plot of %C and %N values of BROC data for untreated (diamond); 
capsule (square) and; rinse methods (circle), with error bars representing 1σ. Blue lines 
are bootstrapped estimations of the data and red-dashed lines 95% confidence intervals. 

 
 
 

 
 
Figure 3.7: Bi-plot of %C and %N values of TYC data for capsule (square) and rinse 
methods (circle), with error bars representing 1σ. Blue lines are bootstrapped 
estimations of the data and red-dashed lines 95% confidence intervals. 
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3.7 Summary and Recommendations 

1. These results show clear evidence for significant differences in measured δ15N 

values between pre-analysis acid treatment methods and between untreated samples. 

The bias is of the order of ~1.5 ‰. 

2. Differences between δ13C and δ15N on acid treated samples are non-linear and 

disproportionate. This implies that the type, amount and nature of OM, and its 

potential alteration during pre-analysis acid treatment methods, is an important 

factor underpinning the reliable determination of C/N, δ13C and δ15N of sample OM. 

Importantly, these offsets can significantly undermine environmental interpretation 

of δ15N values. 

3. Capsule type can have a significant influence on the reliability of δ15N in sample 

OM. Untreated samples combusted only in Ag capsules particularly produce 

aberrant results (exclusive of bias linked to acidification). I therefore recommend 

further wrapping capsule method samples (which traditionally only use Ag capsules) 

in Sn capsules after acid treatment, as this increases the combustion temperature in 

the reactor column. This is recommended with the codicil that the affect of 

acidification could obscure the affect of the capsule. 

4. I do not recommend “dual-mode analysis” of sample materials due to these 

unpredictable, non-linear differences, which suggest its inapplicability. Samples 

should be processed and analysed for C and N on separate aliquots, in the 

knowledge of the potential for acid-induced offsets. It should be noted that 

measurement of N on untreated samples does not guarantee reliable results. 

5. The estimation procedure used for IN, namely linear regression, is seriously flawed, 

and provides no sensible or reliable information on the influence of IN on 

measured %N (and hence influence on C/N values) or δ15N values of OM. IN 

should therefore be quantified on separate sample aliquots, and a correction applied 

(Schubert and Calvert, 2001; Sampei and Matsumoto, 2008). 
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4.1 Introduction 

Bulk organic matter (OM) in lacustrine sediments is a heterogeneous composition of 

organic materials derived from aquatic (e.g. phytoplankton; macrophytes) and terrestrial 

origins (e.g. trees; shrubs; grasses; animals)(see reviews in Meyers and Ishiwatari, 1993; 

Meyers, 1997; Sharpe, 2007). A number of factors contribute to the structure and 

isotopic composition of OM in lake sediment: the contribution of C and N from 

different source end-members; the state and availability of C and N in the environment; 

carbon fixation pathways; lake productivity; pre- and post-burial diagenetic processes 

(aerobic and anaerobic); dissolved CO2 concentration and; changes in 

palaeoenvironmental controls on OM C and N budgets (e.g. Stuiver, 1975; Meybeck, 

1982; Hedges et al, 1986; Hayes, 1993; Meyers and Ishiwatari, 1993; Meyers, 1994, 

1997; Krishnamurthy et al, 1999; Turney, 1999; Lehmann et al, 2003; Lucke et al, 2003; 

Perdue and Kopribnjak, 2007). Collectively, these factors make the evaluation of the 

palaeoenvironmental and palaeoclimatic influence on sedimentary OM difficult. 

However, the investigation of lake sediment sequences with highly resolved age-depth 

models and high signal-to-noise ratios can still provide high amplitude 

palaeoenvironmental information (e.g. Lucke et al, 2003; Wei et al, 2010). 

 

Despite the complexity of these processes on sediment OM, weight ratios of elemental 

carbon to nitrogen (C/N), and stable isotope ratios of C and N (δ13C and δ15N) from 

bulk OM, have been successfully and widely used to interpret OM provenance (e.g. 

aquatic versus terrestrial source) and vegetation type (e.g. C3 versus C4 plants; Meyers 

and Ishiwatari, 1993; Thornton and McManus, 1994; Meyers, 1997; Sampei and 

Matsumoto, 2001; Lamb et al 2004, 2006; Street-Perrott et al. 2004; Wilson et al. 2005; 

Zong et al. 2006). These proxies have subsequently underpinned palaeoenvironmental 

research and been used as a tool for understanding biogeochemical processes in a range 

of sedimentary sequences (Talbot and Johannessen, 1992; Street-Perrot et al., 1997; 

Turney, 1999; Huang et al, 2001; Fuhrmann et al., 2003; Lucke et al., 2003; Baker et al, 

2005;  Lamb et al., 2007; Galy et al., 2008; Mampuku et al., 2008; Domingo et al., 2009; 

Langdon et al., 2010; Scholz et al., 2010; Yu et al, 2010; Wei et al, 2010).  

 

In general, C/N ratios of OM tend to range from 3 – 9 (dominated by aquatic biomass; 

protein rich, lignin poor), 10 – 20 (admix of aquatics, including emergent aquatics, and 

terrestrial sources) and > 20 (dominated by terrestrial biomass; protein poor; lignin rich) 
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(e.g. Meybeck, 1982; Hedges et al, 1986; Tyson, 1995; Meyers, 1997; Sharpe, 2007). 

The δ13C of OM is broadly used as an indicator for carbon sources, productivity and 

photosynthetic pathways in plants. Values for land plants range from ≈ –6 to –35 ‰ 

(see overviews in Tyson, 1995; Meyers, 1997; Sharpe, 2007), and can differentiate 

between C3 plants (δ13C ≈ –22 to –35 ‰) and C4 plants (δ13C ≈ –6 to –15 ‰) in certain 

environments (e.g. estuaries, sea floors, lakes, soils; e.g. Smith and Epstein, 1971; 

O’Leary, 1988; Tyson, 1995; Meyers, 2003; Street-Perrot et al, 2004; Sharpe, 2007; 

Mampuku et al, 2008; Scholz et al, 2010). The δ13C of OM has also been used for a 

range of other investigations including; (1) assessment of carbon reservoir turnover 

times and soil C dynamics (Harris et al, 2001); (2) determination of trophic levels in 

environmental systems (Bunn et al, 1995; Pinnegar and Poulnin, 1999; Kolasinski et al, 

2008); (3) primary productivity reconstructions and estimation of carbon burial rates 

and; (4) to understand mineralisation processes (Midwood and Boutton, 1998; 

Freudenthal et al, 2001; Leng and Marshall, 2004). δ 15N has been used to understand 

trophic pathways in food webs (Bunn et al, 1995; Pinnegar and Polunin, 1999; Ng et al, 

2007; Kolasinski et al, 2008); OM provenance and degradation (Thornton and 

McManus, 1994; Meyers, 1997; Hu et al, 2006; Barros et al, 2010); denitrification in 

the water column (Altabet et al, 1995; Ganeshram et al, 2000); nitrate utilisation 

(Calvert et al, 1992; Teranes and Bernasconi, 2000); N2-fixation (Haug et al, 1998) and; 

eutrophication (Owens, 1987; Vob et al, 2005). In addition, C/N values are used to 

support δ13C and δ 15N, for example through bi-plots providing a structure within which 

OM provenance and type can be broadly identified (e.g. Talbot and Johannessen, 1992; 

Thornton and McManus, 1994; Meyers, 1997; Meyers and Teranes, 2001; Krull et al, 

2002; Lucke et al, 2003; Wilson et al, 2005; Lamb et al. 2006; Zong et al. 2006; Mackie 

et al. 2007; Sharpe, 2007; Yu et al, 2010). Investigators have subsequently deduced 

changes in environmental and/or climatic processes through interpretation of changing 

states of the system under investigation (e.g. terrestrial vs. aquatic biomass; C3 vs. C4 

vegetation). 

 

However, interpretations of C/N, δ13C and δ15N are predicated on the production of 

reliable proxy data, and the ability to disentangle the complex processes leading to OM 

preservation in the sedimentary record. This necessitates a complete understanding of 

the precision of the raw data, which, for C/N, δ13C and δ15N values from bulk sediment 

OM, are not widely discussed in the literature beyond instrument precision (reported as 
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the standard deviation (σ) of replicate runs of standard reference materials). Further, the 

instrument precision on C/N values is rarely (if at all) discussed.  

 

The accurate determination of C/N and δ13C composition of OM requires the complete 

removal of any IC from the total carbon, commonly achieved through acid treatment. 

There is a variety of pre-analysis acid treatment methods that have been used in the 

published literature, from which it is clear there is no consensus on standard practice. 

Research has shown significant non-linear bias on measured C/N, δ13C and δ15N values 

directly associated with pre-analysis acid treatment methods, which can undermine an 

environmental interpretation of the data (Froelich, 1980; Yamamuro and Kayanne, 1995; 

Bunn et al, 1995; King et al. 1998; Lohse et al. 2000; Schubert and Nielsen, 2000; Ryba 

and Burgess et al, 2002; Kennedy et al, 2005; Schmidt and Gleixner, 2005; Galy et al, 

2007; Fernandes and Krull, 2008; Brodie et al, 2011a). For example, Brodie et al. 

(2011a) noted a C/N value range of ~6 – 13 for a terrestrial land plant (Broccoli) across 

pre-analysis acid treatment methods. These C/N values suggest OM derived largely 

from aquatic sources, or from an admixture of aquatic and terrestrial sources. More 

importantly, these offsets have been shown to be non-linear and unpredictable within 

and between pre-analysis acid treatment methods (Brodie et al, 2011a).  

 

Differences in %C have been reported at 5 – 78 % and for %N at 0 – 50% on modern 

and ancient sedimentary materials, either as a loss of C and N (Froelich, 1980; 

Yamamuro and Kayanne, 1995; Bunn et al, 1995; King et al. 1998; Lohse et al. 2000; 

Schubert and Nielsen, 2000; Ryba and Burgess et al, 2002; Schmidt and Gleixner, 2005) 

or as an artificial gain in C and N (Brodie et al, 2011a). Shifts in δ13C are variable, 

ranging from enrichment in δ13C of 0.2 – 8.0 ‰ (e.g. Schubert and Nielsen, 2000; 

Kolasinski et al. 2008; Brodie et al, 2011a), a depletion in δ13C of 0.1 – 1.9 ‰ 

(Kennedy et al; 2008; Komada et al. 2008; Brodie et al, 2011a) and no change (e.g. 

Midwood and Boutton, 1998; Kennedy et al, 2005). This is similar for δ15N, where 

results range from an enrichment of 0.1 – 3 ‰ (Bunn et al, 1995; Brodie et al, 2011b), 

to a depletion of 0.2 –1.8 ‰ (Bunn et al, 1995; Harris et al, 2001; Kennedy et al, 2005; 

Ng et al, 2007; Fernandes and Krull et al, 2008), and no significant change (Serrano et 

al, 2008). The bias on OM from acid treatment, alongside the complex processes that 

can influence OM prior to, and during, sedimentary preservation, suggests that reliance 

on the commonly reported instrument precision alone is unrealistic for robustly 

interpreting measured C/N, δ13C and δ15N values. 
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4.2 Unresolved Issues 

Despite the considerable potential for acid treatment method to alter the bulk OM signal 

prior to C/N, δ13C and δ 15N analysis, the potential bias in a sedimentary sequence of 

samples has hitherto never been investigated. In addition, the influence of inorganic 

carbon (IC) and inorganic nitrogen (IN)(Hoefs, 1973; Sharpe, 2007); sample 

homogenisation (Baisden et al, 2002; Hilton et al, 2010) and sample size (Brodie et al, 

2011a) can contribute additional inaccuracy and  imprecision to measured data. There is 

an increase in the application of “dual-mode” isotope analysis (where C/N, δ13C and δ 

15N are measured simultaneously from the same pre-treated sample), implying an 

acidification of sample material prior to analysis. It is not common to acidify samples 

prior to δ 15N analysis, but acidification is required for dual δ13C and δ15N analysis. It is 

clear, therefore, that the assumption that instrument precision alone accounts for the 

absolute imprecision on measured C/N, δ13C and δ 15N values is questionable. Moreover, 

assumptions on the accuracy of the measured C/N, δ13C and δ 15N are also questionable. 

 

The aim of this study was to compare, for the first time, the effect of pre-analysis acid 

treatment methods on C/N, δ13C and δ 15N of OM from a sedimentary sequence. An 

ancient lake cored sequence is analysed using the capsule and rinse methods alongside 

that of untreated materials. I test the null hypothesis that there is a significant difference 

between methods on the same sample horizon, implying that data precision exceeds the 

commonly discussed instrument precision. Specifically, the following research 

questions are addressed: 

 

1. Are there significant differences between the results of pre-analysis acid treatment 

methods for C/N, δ13C and δ15N of bulk OM on a stratigraphical sequence of samples? 

2. Do pre-analysis acid treatment methods add negligible imprecision to measured C/N, 

δ13C and δ15N values?  

3. Can different pre-analysis acid treatment methods influence environmental 

interpretation of C/N, δ13C and δ15N of bulk OM? 
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4.3 Materials and Methods 

4.3.1 Core material 

A sedimentary sequence was extracted from Lake Tianyang (20o31’1.11” N, 

110o18’43.02” E), south China, in January 2008, for multi-proxy palaeoenvironmental 

reconstruction, including C/N, δ13C and δ15N of OM. For this comparison, 20 horizons 

were sub-sampled in the core from 7.00 – 10.24 m (16 cm resolution). This section of 

the core material was selected due to the significant change in the lithology (Figure 4.1) 

from a brown clayey silt unit, with few very fine sands and silts, and a low organic 

content (10.24 m to 8.06 m), to an organic rich (amorphous) clay unit (8.06 m to 7.09 

m). In addition, the δ13C of bulk OM derived from some pilot samples showed that this 

section produced an overall δ13C range of ~ 15 ‰ and, in particular, there is a ~12 ‰ 

shift across the lithologic boundary. Unfortunately, low levels of N precluded a full 

δ15N record across the selected sample horizons so δ15N values are only reported from 

7.00 m to 7.46 m.  

 

 

 
 

Figure 4.1: Lake Tianyang core lithology and description from 7.00 m to 10.20 m. The 
14C age is reported in 14C yrs BP (uncalibrated). 
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4.3.2 Preparation methods 

4.3.2.1 Cleaning Protocol 

Prior to sample preparation, all sub-sampling equipment and glassware were thoroughly 

washed in 1% nitric acid, rinsed in deionised water, followed by a wash in 2% soap 

solution (neutracon®), a final deionised water rinse and then fired at 550oC for 3 h. Ag 

capsules were fired at 550oC for 3 h prior to use and Sn capsules were submerged in 

methanol for 24 h and then air dried. Cleaned capsules were then sealed in pre-cleaned 

containers and stored until use. 

 

4.3.2.2 Rinse Method 

The rinse method involves the acidification of sample materials for ~ 24 h followed by 

sequential rinsing with deionised water (See section 2.3.1). 

 

4.3.2.3 Capsule Method 

The capsule method is an in-situ acidification of sample material in a silver capsule, 

followed by drying down (See section 2.3.2). 

 

4.3.2.4 Untreated 

Sample δ 15N is traditionally measured on untreated sample material (e.g. Muller, 1977; 

Altabet et al, 1995; Schubert and Calvert, 2001; Sampaei and Matsumoto, 2008), 

assuming a negligible influence from inorganic nitrogen (e.g. nitrates, ammonia; e.g. 

Sampei and Matsumoto, 2008). Therefore, in addition to the rinse and capsule methods 

untreated sample materials for C/N, δ13C and δ15N analysis were also prepared, which 

involved directly weighing an untreated sample aliquot (500 µg for C/N and δ13C and 

15 µg for δ15N) into a prepared Sn capsule, crimping and analysing.  

 

4.3.3 Analytical methods 

4.3.3.1 C/N and δ13C 

The %C, %N and δ13C values of sample OM were analysed using an online system 

comprising a Costech ECS4010 elemental analyser (EA), a VG TripleTrap, and a VG 

Optima mass spectrometer at the NERC Isotope Geosciences Laboratory (NIGL), with 
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data reduction carried out using DataApex Clarity ver 2.6.1 software package. See 

section 2.4.1 for full details. 

4.3.3.2 δ15N 

Nitrogen isotope analyses were performed using a FlashEA 1112 elemental analyser 

linked to a Delta+XL isotope ratio mass spectrometer (EA-IRMS) via a Conflo III 

interface. Samples were combusted at 900oC with all samples acidified in the capsule 

method further wrapped in Sn capsules. Limits on analytical precision are mainly 

determined by conditions of combustion and chromatography in the elemental analyser. 

For organic materials containing a few %N (e.g. BROC), within-run precision for δ15N 

is better than 0.13 ‰ (1σ for n = 13 samples). See Section 3.2 for further details. 

 

4.3.4 Data Analysis 

The data were compared using a one-way ANOVA, at the 95% confidence limit, to 

determine differences within (i.e. acid reagent) and between (i.e. untreated versus 

capsule method versus rinse method) the pre-analysis treatment methods, and take a p-

value < 0.05 to indicate a significant difference. All data were tested for normality using 

an Anderson-Darling normality test, and tested for homogeneity of variances using a 

Bartlett’s test (which assumes data are normally distributed) and a Levene’s test (which 

assumes data are non-normally distributed). Comparisons were not made between acid 

treated and untreated samples for C/N and δ13C. 

 

4.4 Results 

The %C, %N, C/N and δ13C data are presented in Figure 4.2 and ANOVA comparisons 

for C/N and δ13C data from each method and reagent investigated are presented in Table 

4.1. 

 

4.4.1 %C and %N 

From 7.00 to 7.52 m, the core material is characterised by high %C and %N values 

relative to the sample horizons below 7.52 m, where %C and %N are very low. For %C 

and %N, the rinse method samples above 7.52 m are consistently ~20% higher than 

capsule and untreated method samples. With the exception of the 5% HCl capsule 
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method samples at 8.76 m for %C, and 20% HCl capsule method sample from 7.80 – 

8.60 m for %N, the data below 7.52 m are relatively coherent. 

 

4.4.2 C/N and δ13C 

C/N ratios between methods are highly variable within specific sample horizons, 

especially within the capsule method samples (e.g. 7.48 m, 8.76 m, 9.24 m for 5% HCl 

capsule method; 8.12 m, 8.60 m for 20 % HCl capsule), and between the capsule 

method samples and rinse method samples. An overall range of ~1 – 100 was evident 

between methods on some sample horizons. For example, at 8.76 m the capsule method 

samples returned C/N values of 81 to 122, whilst the rinse method samples returned 

C/N values of ~34. At 9.08 m, samples in the capsule method return C/N values of ~19, 

and rinse method samples ~ 11. In general, data from the rinse method appear more 

coherent than data from the capsule method.  

 

δ13C data from samples between 7.00 m and 7.64 m across all methods tested are 

indistinguishable from one another (i.e. appear to be within instrument precision limits). 

Similar coherence between the methods is evident in samples between 9.00 m and 9.24 

m. However, our data also show sample horizons with incoherency between the 

methods (i.e. greater than instrument precision by a minimum of ~0.2 ‰), in particular 

from 7.64 m to 8.12 m and 8.60 m to 9.00 m. The greatest divergence in the data are 

from 7.64 m to 8.12 m and between the 20% HCl capsule method and 20 % HCl rinse 

method (~2.5 ‰ (7.64 m)), and from 8.60 m to 9.00 m which is caused by the 5 % HCl 

capsule method (~6 – 7 ‰ (8.60 m)). Between the remaining three methods at 8.60 m, 

the difference range is between 0.4 – 3.5 ‰. The divergence in δ13C data, within and 

between methods, appears to become more evident in samples with relatively lower %C, 

but not in all instances (e.g. 9.00 m to 9.24 m). In general, given the differences 

between methods on any one sample horizon, a general trend in C/N and δ13C values 

between methods is apparent. 

 

4.4.3 δ15N 

δ15N values were only measureable between 7.09 m and 7.46 m due to extremely 

low %N. The δ15N data and ANOVA comparisons for each method and reagent are 

shown in Figure 4.3 and Table 4.2 respectively. Our results show that all acid treated 
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samples produced lower δ15N in comparison to untreated samples, with the largest range 

in values between methods of ~0.8 ‰ (at 7.16 m). In general, capsule method samples 

produced lower values than rinse method samples, with the exception of 5% HCl 

capsule samples at 7.09 m and 7.16 m. Overall, the rinse method samples produced 

more coherent results than the capsule method (< 0.2 ‰ overall range for all rinse 

method samples). ANOVA results indicated statistically significant differences between 

all methods for all sample materials, but highlighted no differences within the rinse 

method (i.e. no difference between samples acidified in 5% HCl or 20% HCl within the 

rinse method). We note a fractionation in δ15N in all sample horizons, within and 

between methods, but no concomitant change in mass %N.  

  

 
Figure 4.2: Down-core plots of %C, %N, C/N and δ13C for data derived from the 

capsule method, rinse method and untreated samples. The solid red line represents 

untreated sample materials, the black dotted line represents 5% HCl capsule method 

data, the black short perforated line represents 20% HCl capsule method data, the black 

perforated and dotted line represents 5% HCl rinse method data and the black long 

perforated line represents 20% HCl rinse method data. 
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Table 4.1: ANOVA comparison results for C/N and δ13C for all tested sample horizons. 

 
 δ13C C/N 

Depth (m) P-value  
(R-Squ) Difference (‰) Cause P-value          

(R-Squ) Difference Cause 

7.09 0.197 
(20.98) nd - 0.00 

(74.05) 3 – 4 5% and 20% HCl capsule 
higher than 5% HCl rinse  

7.16 0.183 
(22.52) nd - 0.18 

(23.18) nd - 

7.32 0.04 
(49.01) 0.2 5% HCl more enriched than 

20% HCl in rinse method 
0.29 

(11.69) nd - 

7.48 0.55 
(0.00) nd - 0.143 

(27.67) nd - 

7.64 0.00 
(94.69) 1.0 

20% HCl capsule sample more 
enriched than 20% HCl rinse 

sample 

0.97 
(0.00) nd - 

7.80 0.00 
(98.25) 0.6 – 1.5 

All samples differ over 1.5 ‰ 
range, with more enriched 

values in the capsule method. 

0.00 
(95.63) 22 5% HCl capsule higher than all 

other samples 

7.96 0.01 
(64.38) 0.3 – 0.7 5% HCl capsule more enriched 

than all other methods 
0.94 

(0.00) nd - 

8.12 0.01 
(60.68) 0.4 

Capsule method samples more 
enriched than rinse method 

samples 

0.02 
(58.67) 4 – 6 

5% and 20% HCl capsule 
method different from 20% 

HCl rinse samples 

8.28 0.00 
(87.85) 0.2 Capsule method slighted more 

depleted than rinse method 
0.08 

(38.60) nd - 

8.44 0.01 
(65.66) 0.4 – 0.6 20% HCl capsule more 

enriched all other samples 
0.52 

(0.00) nd - 

8.60 0.00 
(98.83) 0.4 5% HCl capsule more enriched 

than 20% HCl capsule, and 
0.00 

(87.59) 16 Capsule method samples 
higher than rinse method 
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both rinse samples samples 

8.76 0.00 
(95.72) 1.2 – 6.8 

5% HCl capsule more enriched 
than all other samples. 20% 
HCl capsule most depleted. 

0.00 
(66.52) 98 – 103 

5% HCl and 20% HCl capsule 
method higher than rinse 

method samples. 

8.92 0.01 
(81.77) 2.6 – 3 5% HCl more enriched than all 

other samples. 
0.00 

(94.19) 20 – 25 5% HCl capsule higher than 
other samples 

9.08 0.00 
(97.53) 0.6 – 1.0 

Capsule samples more depleted 
than rinse samples. 5% HCl 

rinse more enriched than 20% 
HCl rinse. 

0.00 
(87.87) 7 

Capsule method samples 
higher than rinse method 

samples 

9.24 0.00 
(97.71) 1.0 5% HCl capsule more enriched 

than all other samples 
0.04 

(47.69) 20 5% HCl capsule higher than 
other samples 

9.40 0.07 
(40.58) nd - 0.03 

(54.35) 10 5% and 20% HCl capsule 
method samples different 

9.56 0.74 
(0.00) nd - 0.31 

(9.77) nd - 

9.72 0.00 
(88.05) 1.0 – 1.2 

Rinse method samples more 
depleted than capsule method 

samples. 20% HCl capsule 
more enriched than all other 

samples 

0.06 
(41.74) nd - 

9.88 0.09 
(35.93) nd - 0.04 

(49.52) 7 5% HCl capsule different from 
20% HCl rinse 

10.02 0.00 
(94.86) 1.0 – 1.8 

Rinse samples more depleted 
than capsule samples. 5% HCl 

rinse most depleted 

0.04 
(49.95) 8 5% HCl different from both 

rinse samples 

10.20 0.00 
(94.72) 0.3 – 0.6 Rinse method sample more 

depleted than capsule samples 
0.00 

(74.84) 6 – 8 5% HCl capsule higher than 
other samples 
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Figure 4.3: Down-core plots of δ15N for data derived from the capsule method, rinse 

method and untreated samples. The solid red line represents untreated sample materials, 

the black dotted line represents 5% HCl capsule method data, the black short perforated 

line represents 20% HCl capsule method data, the black perforated and dotted line 

represents 5% HCl rinse method data, and the black long perforated line represents 20% 

HCl rinse method data. 

 
Table 4.2: ANOVA comparison results for δ15N for all tested sample horizons. 

 
 δ15N 

Depth (m) P-value 
(R-Squ) Difference (‰) Cause 

7.09 0.00 
(84.07) 0.46 

Acid treated samples lower 
than untreated samples. 20% 

HCl rinse lowest. 

7.16 0.00 
(89.14) 0.77 Acid treated samples lower 

than untreated samples 

7.32 0.02 
(51.33) 0.46 

Acid treated samples lower 
than untreated samples. 

Capsule method samples 
lowest. 

7.48 0.00 
(79.94) 0.42 

Capsule method and 5% HCl 
rinse lower than untreated 

samples and 20% HCl rinse. 
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4.5 Discussion 

4.5.1 Methodological differences 

The pre-analysis acid treatment approach is underpinned by the assumption that the OM 

fraction is either unaltered during the process, or that any changes are at least systematic 

and proportional (i.e. predictable). This clearly suggests that, within instrument 

precision, results from any method followed should be indistinguishable from one 

another. Our results from the Lake Tianyang sedimentary sequence indicate an 

inconsistency in the application of any single pre-analysis acid treatment method in a 

down-core context for C/N, δ13C and δ15N. There is evidence for significant differences 

in measured C/N, δ13C and δ15N values within and between pre-analysis acid treatment 

methods (Tables 4.1 and 4.2). Differences between each acid treatment method in C/N, 

δ13C and δ15N values within and between sample horizons are highly variable, and not 

always in the same direction. For some sample horizons, differences between acid 

preparation methods for C/N values can be as high as ~90 (e.g. at 8.76 m) and as low as 

0.2 (e.g. at 7.32 m; 8.44 m). Likewise, differences in δ13C between acid treatment 

methods can be as high as 6.8 ‰ (e.g. 8.76 m) but for other horizons be within 

instrument precision (e.g. < 0.2 ‰; 7.09 m – 7.48 m). This may, in part, be a function of 

the %C and %N of the sample material. For example, our δ13C data are generally in 

good agreement with high %C. However, the imprecision on the data tends to increase 

within and between methods as %C in the sample material becomes lower (e.g. 7.64 m 

to 9.00 m), but this is not always the case (e.g. 9.00 m to 9.24 m). This suggests sample 

materials with low %C may be more susceptible to acid method bias (and of greater 

magnitude), but this is not a general rule (Brodie et al, 2011a). The type of organic 

compounds in each sample and how they vary between samples, or within and between 

samples after acidification, have not been characterised. 

 
Where there is a high range of C/N values apparent between methods, this can 

fundamentally alter the support for δ13C and δ15N from cross-plots of these data. For 

example, at 7.80 m, the 5% HCl capsule method points towards an environment 

dominated by terrestrially sourced OM (C/N value ~32), whereas C/N values from all 

other methods suggest an environment with a significant aquatic biomass contribution 

to total OM (C/N value ~12). This contradictory position clearly indicates a serious 

discrepancy regarding the interpretation of elemental and isotopic C and N proxies of 

OM from these cross–plots and in a down-core context. It also suggests that the 
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assumptions underpinning acid pre-treatment methods are invalid (Brodie et al, 2011a; 

2011b). In addition, there are known biases from IN contamination, which can lower 

C/N values below the true organic C/N value (e.g. Muller, 1977; Schubert and Calvert, 

2001; Sampei and Matsumoto, 2001; Meyers, 2003; Mampuku et al, 2008). For 

example, Muller (1977) reported C/N values <4 from deep sea sediments as a 

consequence of inorganic ammonia. Furthermore, the range of C/N values, as discussed 

in the context of marine versus terrestrial source, is also more complex than the standard 

interpretation detailed. For example, C/N values (weight ratio) of submerged aquatic 

macrophytes have documented ranges of 6 – 60 (e.g. Atkinson and Smith, 1983) and  

macroalgae can range from 16 – 68 (brown macroalgae; Fenchel and Jørgensen, 1977). 

Brodie et al. (2011a) also report C/N range of ~ 6 – 13 for broccoli (a terrestrial plant) 

which has a typical C3 δ13C value of –27.4 ‰. Collectively, these factors point to a 

serious problem in the general theory on OM provenance as interpreted through C/N 

and δ13C values. 

 

In addition to the problems highlighted for C/N values, at 8.60 m, the 5% HCl capsule 

method returned a δ13C value of –12.5 ‰, ~6.8 ‰ more enriched than data from all 

other acidification methods (δ13C range between methods is –21.3 to –12.5 ‰). Our raw 

data from untreated material show that this sample material has a major IC component 

(δ13C = –1.6 ‰), suggesting the 5% HCl capsule method is less efficient at IC removal 

in comparison to other methods for this sample, although it is widely assumed 5% HCl 

should efficiently remove calcite. Between all other methods at 8.76 m, the difference in 

δ13C value was ~ 2 – 3 ‰. However, in the context of the overall data  trend (e.g. the 

~12 ‰ shift from 7.00 m to 7.52 m; see Figure 4.2), the value returned for the 5% HCl 

capsule method would not look out of place had this been the only method followed. 

This, subsequently, could have led to a misinterpretation of the core data in the context 

of sample OM: the 5% HCl capsule data at 8.76 m suggest an environment dominated 

by C4 type vegetation (both high C/N and δ13C values), whereas the three other acid 

treatment methods tested produced more consistent results (though still potentially 

imprecise), suggesting a C3 dominated environment. I therefore do not recommend the 

use of 5% HCl in the capsule method. These differences between the acid reagents and 

methods investigated here have two possible explanations: (i) the different effect of acid 

treatment on the IC components within the sample material and; (ii) non-linear and 

unpredictable offset on the OC components within the sample material. At 8.76 m, the 
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offset in δ13C value is caused by inefficient removal of IC (see above), an offset not 

recorded in the other methods. This suggests that different methods and reagents (even 

at 5% HCl) have differential rates of removal of what is probably calcite (i.e. 5% HCl 

appeared to remove the IC in the beaker method, likely due to the increased time of 

exposure of the sample to the acid in this method relative to the capsule method). 

Therefore, this problem is likely to be exacerbated where less soluble forms of IC exist 

in sample materials, such as dolomites and siderites, which can produce as large an 

offset to the δ13C value as calcite.  Moreover, an admixture of different IC components 

can further complicate the digestion process due to different rates of removal (i.e. 

stoichiometry of each IC component and combined stoichiometry, relative to dissolution 

reagent) and IC component grain size (Al-Aasm et al, 1990; Yui and Gong, 2003). 

Where there is an IC contamination on δ13C values, enrichment is usually expected in 

the δ13C value; however, some freshwater and diagenetic carbonates can have very 

negative δ13C values (Hoefs, 1973; Sharpe, 2007). In addition, our data illustrate offsets 

in the opposite direction (i.e. a depletion of the δ13C value; e.g. 7.64 m – 7.80 m) which 

suggests that the data are not only affected by the inefficient (and disproportional) 

removal of IC from the sample, but also by the effect of acidification on the OC 

component. I therefore suggest that the sample IC component should be identified and 

quantified to ensure no residual IC remains after treatment, or, where the IC exists as a 

more robust form (e.g. siderite), the size of the offset can at least be partly accounted for. 

 

The structure and composition of C and N in OM from a down-core sedimentary 

sequence can vary substantially (e.g. relative proportions of lipids, lignins, proteins and 

cellulose; Fernandes and Krull, 2008), and may subsequently respond 

disproportionately under different acid treatment methods. This suggests that C/N, δ13C 

and δ15N values are likely to be a relative proxy for the overall chemistry of the core 

material, but the degree with which it reflects the true OM value of the core is highly 

variable. In addition, where sample material is low in %C and %N, the effect of 

acidification on δ13C and δ15N could be significantly magnified (e.g. Brodie et al, 2011a; 

2011b) which may be due to C and N isotopes becoming highly heterogeneous within 

the OM at these low levels. These factors add unpredictable, non-linear biasing to the 

dataset within sample horizons and with varying magnitude and proportions between 

sample horizons (i.e. suggesting the underlying trend of the data can be biased in a non-

systematic fashion). 
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For δ15N, a fractionation between untreated and acid treated samples, and between acid 

treated samples, is noted but with no concomitant loss in %N (no difference in values 

between treated and untreated data). The mechanisms for this are unclear; however, 

there seems to be a systematic shift across all acid treated samples towards lower δ15N 

with samples in the rinse method tending to produce the lowest δ15N. The 

environmental interpretation of elemental and isotopic analysis of OM can be 

significantly affected by both IC and IN, pre-analysis acid preparation method and the 

structure and composition of OM across the land-sea gradient. Additionally, the isotopic 

signature of IN is not significantly dissimilar to that of organic N, making the overall 

interpretation of the δ15N of OM in the presence of IN difficult (e.g. Knies et al, 2007). 

This illustrates the importance of fully understanding OM structure and composition, 

and the IC and IN components, within the system under investigation where a bulk 

organic matter approach is adopted. 

4.5.2 Artificial concentration of %C and %N 

I also find that %C and %N are artificially concentrated (but not proportionally) in 

samples from 7.00 m to 7.52 m analysed from the rinse method relative to untreated 

values and capsule method samples. Brodie et al (2011a) suggested that this was 

probably a function of the loss of fine grained inorganic material (e.g. clays) in the 

supernatant relative to the amount of sample material treated with respect to that in 

other methods, despite the inherent losses of C and N through solubilisation (e.g. 

Schubert and Nielsen, 2000; Galy et al, 2007) and absorption onto fine grained particles. 

There is no concomitant shift in δ13C values, though C/N values are disproportionally 

increased. Within the 20% HCl rinse method, and for %N only (from 8.12 m to 8.60 m), 

the %N values are substantially higher (Figure 4.2). Given the very low amounts of N 

within sample material, and the biasing effect of the acid preparation, the results are 

likely to be unreliable as %N is very close to machine baseline conditions. 

 
These findings have significant implications for the comparison of records that are (i) 

derived in different laboratories following differing pre-treatment methods (or 

variations of the same method), and (ii) derived from different environments where the 

amounts and relative proportions of C and N in sample OM varies, and the amount, type 

and nature of OM and IC and IN varies. The assumption that data are reliable (and the 

subsequent interpretation robust) because of our ability to produce extremely high 
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instrument accuracy and precision is a non sequitur. Our data suggest the necessity to 

account for the acid treatment bias in full and determine the size of the offset to ensure 

that our scientific approach is robust and acknowledge the full range of error in the 

analysis. It is suggested that the biasing of the true OM signature during pre-analysis 

acid treatment is inevitable, but unpredictable. It is imperative that the effect of pre-

analysis acid treatment methods on δ13C and δ15N values be pursued at the molecular 

level to improve our understanding of the mechanisms controlling the bias evident in 

our data (and most likely in other down-core records).  

4.5.3 Implications for the interpretation of C/N, δ13C and δ15N of bulk OM 

Our findings have significant implications for the interpretation of measured C/N, δ13C 

and δ15N values of bulk OM in the context of the established theory in the literature (e.g. 

OM provenance and vegetation type). It has been shown that the interpretation of C/N 

and δ13C data is not just dependant on an environmental shift, but can also be dependent 

on the bias due to pre-analysis acid treatment method. This is likely to be underpinned 

by the complexities in the structure and composition of OM within and between 

environments. Specifically, it suggests that small changes in the down-core records (i.e. 

< 4 ‰) may provide less reliable interpretations in comparison to much larger  shifts 

(i.e. of the order of 10 ‰, or greater).  Interpretations of C/N, δ13C and δ 15N values 

have been underpinned by the assumption that we can reliably determine C/N, δ13C and 

δ 15N of sample OM. This chapter has shown that this assumption is highly problematic, 

and that a detailed discussion and investigation on the potential source of bias, above 

that of the standard instrument precision, is essential for a robust interpretation of the 

data. It is clear that additional bias on C/N, δ13C and δ 15N measurements in OM can 

derive from inorganic carbon (IC) and inorganic nitrogen (IN) content, pre-analysis acid 

treatment method followed and OM composition of the sample material.  

 

However, our data also show sample horizons with no difference in results within and 

between methods, highlighting the inconsistency in any one method down-core. This 

suggests that the accuracy and precision with which C/N, δ13C and δ15N values from 

any one acid treatment method reflects sample OM is highly variable and unpredictable. 

Therefore, instrument precision should be interpreted as an absolute minimum precision 

on measured data (e.g. Brodie et al, 2011a; 2011b). The fact that pre-analysis treatment 

method can significantly influence the environmental interpretation of sedimentary OM 

is worrying, and cautions against the over interpretation of the minutiae of the data 
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acquired. For example, here I report differences within and between methods on our 

down-core record in the region of 2 – 3.5 ‰ for δ13C (excluding the excursion at 8.76 m 

which has a substantial IC contamination signal). A precision range of this magnitude 

can account for the overall range of some down-core studies (e.g. Turney et al, 1999; 

Zong et al, 2006; Scholz et al, 2010; Yu et al, 2010). It is therefore critical the extent of 

bias due to acid treatment on elemental and isotopic measurements in OM is understood 

to ensure that any interpretation is grounded on a robust dataset reflecting sample OM, 

especially where inferences on climate variability and mechanisms are being proposed. 

In addition, these findings suggest that the correlation of C/N and δ13C values of bulk 

OM derived from different sedimentary archives is highly problematic. 

 

Given the current drive in the community to derive annual – centennial resolution 

down-core records of past environmental change, and in the context of increasing use of 

data transformation techniques, such as spectral and wavelet transforms used to 

understand periodicities (e.g. Baker et al, 2005), it is imperative that the inaccuracy and 

imprecision of the data is fully understood and the subsequent limitations to 

interpretation acknowledged. For example, differences within and between methods of 

the order of ~2 – 3.5 ‰ significantly alter the amplitude and potentially change the 

frequency of a down-core record, which may be misinterpreted as being 

environmentally significant (i.e. the amplitude of environmental variability compared 

with the amplitude of variability in the data caused by inaccuracy and imprecision of the 

data). It may artificially cause high-frequency signals to manifest as significant 

periodicities in the core data during analysis, which may lead to incorrect interpretation. 

In addition, the bias due to acid treatment can also affect the underlying trend in the 

record, which can further undermine the analysis. This suggests C/N and δ13C values 

from bulk OM are a less reliable tool for reconstructing environmental events with low 

amplitude variability. This is likely to have implications for the high resolution, high 

frequency reconstructions favoured in the recent literature. Time-series analysis was not 

undertaken on this data – the analysis itself, in addition to the acid treatment bias, would 

have been undermined by the low resolution sampling and poor dating constraint across 

the data in the first instance, and made a priori assumptions about the system and 

climatic processes responsible for the geochemical OM signature (e.g. Wunsch, 2010).  
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4.6 Implications for accuracy and precision 

Based on the findings of this chapter, I preliminarily assess the inaccuracy and 

imprecision on C/N (ΣE), δ13C (ΣC) and δ15N (ΣN) values from sample bulk OM as 

follows: 
 
ΣE (on individual C/N values) = ed +epic + epin + esh + ess + ean  
 
ΣC (on individual δ13C values) = cd +cic + csh  + css + can  
 
ΣN (on individual δ15N values) = nd + nin + nsh + nss + nan  
 
The inaccuracy and imprecision associated with each component of the above equations 

are presented in Table 4.3. The diagenesis component (ed; cd; nd) can contribute a 

significant bias relative to the organic signal of the original source OM from pre- and 

post deposition processes, such as oxidation and microbial reworking (e.g. bacterial 

breakdown or by detritivores), the extent of which will vary depending on the length of 

time OM takes to reach the sediment, the productivity in the water column and 

dissolved oxygen concentrations (Meyers, 1994; Krull et al, 2002; Lehmann et al, 2003). 

For example, Meyers and Ishiwatari (1993) noted that a diagenetic decrease in C/N 

values could occur in lake sediments of the order of ~ 26. A loss of non-lignin 

compounds from a C4 marsh plant depleted δ13C by ~4 ‰ (Benner et al, 1987), though 

in sediments evidence for diagenetic bias is contradictory. Spiker and Hatcher (1984) 

noted a 4 ‰ depletion in lake sediments which they attributed to the loss of 13C-rich 

carbohydrates, whereas Rea et al (1980) and Jasper and Gagosian (1989) noted no bias 

due to diagenesis. For δ15N, the effect of diagenetic processes on the primary 

sedimentary OM signal is also contradictory. Altabet and Francois (1994) reported a 5 ‰ 

enrichment in δ15N and Sigman et al (1999) noted an increase of ~4 ‰ in δ15N from 

Southern Ocean sediments. However, de Lange et al (1994) reported a decrease of ~1 ‰ 

in δ15N, and Freudenthal et al (2001) noted a ~1 ‰ bias in eastern Atlantic Ocean 

sediments with no clear trend towards an increase or decrease in δ15N. The degradation 

of organic compounds, which have distinctive isotopic signatures, appears to be non-

discriminatory, implying that diagenetic processes must be accounted for on a system 

by system basis. For example, the loss of readily degradable amino acids and 

hydrocarbons, relative to terrestrially sourced compounds such as lignins and lipids, 

would deplete δ15N (loss of 15N and 13C). These contradictory results clearly imply that 

there is no emergent generalised affect on the δ13C and δ15N signature of bulk OM, and 
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this can differ markedly between oxic and anoxic conditions (Tyson, 1995). However, a 

detailed molecular level investigation may allow the estimation of this bias on bulk OM.  
 
The influence of IC and/or IN (epic; epin; cic; nin) is dependent upon the efficiency of 

removal during acid treatment, and the structure and composition of the inorganic 

component (e.g. Al-Aasm et al, 1990; Yui and Gong, 2003; Knies et al, 2007), the bias 

for δ13C in this study shown to be ~6.8 ‰ at 8.76 m. However, the extent of the bias on 

δ15N is less obvious owing to the similar values in both organic and inorganic N (Knies 

et al, 2007). The homogeneity of the sample material (esh; csh; nsh) can also contribute 

additional imprecision, likely increasing substantially on samples poorly homogenised 

or with significantly low amounts of C and N (e.g. Basiden et al, 2002). Sample size can 

also contribute significant bias, particularly those low in C and N before acid pre-

treatment is undertaken (ess; css; nss). Where sample size becomes very small (especially 

in conjunction with an acid pre-treatment), %C and %N can increase by over 50% (see 

Brodie et al, 2011a) and δ13C and δ15N values tend to become more positive, suggesting 

at least a ~1 ‰ deviation in the OM value (our analysis were carried out on sample 

sizes significantly above machine baseline conditions and therefore do not carry this 

additional inaccuracy). Finally, the analytical term (ean; can; nan), comprising the bias 

from acid treatment and the instrument precision. Pre-analysis acid treatment has been 

shown here, and elsewhere, to substantially bias the elemental C and N values of sample 

OM through degradation of the OC fraction and/or inefficient removal of the IC fraction 

(and differential rates of removal linked to IC stoichiometry). For this core, the error is 

estimated to be in the region of ~ ± 2 – 3.5 ‰ associated with the OC fraction and ~6.8 ‰ 

(enrichment) associated with the IC fraction. The instrument precision, which is 

inherent to all measurements in this study, is of the order of ± 0.5 for C/N values, ± 0.1 ‰ 

for δ13C values and ± 0.15 ‰ for δ15N values.  
 
I caution, however, that whilst this equation is more representative of the absolute 

inaccuracy and imprecision on measured C/N, δ13C and δ15N values than instrument 

precision alone, the terms are by and large inherently non-linear and unpredictable, 

implying that absolute inaccuracy and imprecision is unobtainable. An assumption of 

linearity of these terms would be seriously flawed. It is concluded that the unpredictable, 

non-linear biasing to the data within sample horizons and with varying magnitude and 

proportions within and between sample horizons can undermine a robust interpretation 

of the data, with the size of bias varying considerably between different cores. 
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Table 4.3: Summary of inaccuracy and imprecision on C/N, δ13C and δ15N values measured from bulk OM. 

Process  C/N Bias δ13C Bias δ15N Bias 

Diagenesis 

Bias variable ed cd nd 

Explanation 
Bias associated with breakdown, 

oxidation and reworking of primary 
OM.  

Bias associated with breakdown, 
oxidation and reworking of primary 

OM. 

Bias associated with breakdown, 
oxidation and reworking of primary 

OM. 
Size of Bias ~5 – 26 ~ 0.2 – 4 ‰ ~ 0.1 – 5 ‰ 

Inorganic Carbon 

Bias variable epic cin 

N/A Explanation 
Bias associated with the structure, 

composition and quantity of sample 
IC. 

Bias associated with the structure, 
composition and quantity of sample 

IC. 
Size of Bias ± 1 – 60 ± 3.4 ‰ 

Inorganic Nitrogen 

Bias variable epin 

N/A 

nin 

Explanation 
Bias  associated with the structure, 
composition and quantity of sample 

IN. 

Bias associated with the structure, 
composition and quantity of sample 

IN. 
Size of Bias ± 1 – 5 indefinable 

Analytical Bias 

Bias variable ean can nan 

Explanation Bias associated with acid treatment 
of sample and instrument precision. 

Bias associated with acid treatment 
of sample and instrument precision. 

Bias associated with acid treatment 
of sample and instrument precision. 

Size of Bias ± 0.5 – 15 (± 0.4) ± 4 ‰ (± 0.2 ‰) ± 0.7 ‰ (± 0.3 ‰) 

Sample Size 

Bias variable ess css nss 

Explanation Bias associated with the amount of 
C and N supplied for analysis. 

Bias associated with the amount of 
C and N supplied for analysis. 

Bias associated with the amount of 
C and N supplied for analysis. 

Size of Bias ± 0.5 – 100 0.5 ‰ (or greater) 0.5 ‰ (or greater) 

Sample Homogenisation 

Bias variable esh csh nsh 

Explanation 
Bias associated with 

homogenisation of sample material 
prior to treatment 

Bias associated with 
homogenisation of sample material 

prior to treatment 

Bias associated with 
homogenisation of sample material 

prior to treatment 
Size of Bias ± 0 – 0.2 ± 0.0 – 0.1 ‰ ± 0.0 – 0.1 ‰ 
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4.7 Summary and Recommendations 

 
1. This study has clearly demonstrated significant bias on bulk C/N, δ13C and δ15N 

values of OM associated with pre-analysis acid treatment method in a stratigraphical 

sequence of samples. I have shown that there is an inconsistency in the use of any 

one method within and between sample horizons and that where this bias is evident 

it is significantly above instrumental precision. The differences appear to be the 

result of (i) differential rates of removal of IC and (ii) disproportionate biasing to 

OC fraction of the sample material. 

2. In light of my findings, it is recommended that researchers do not interpret the 

minutiae of the bulk δ13C and δ15N of OM data, but restrict interpretations and 

discussions to those shifts significantly greater than a robust estimate of the 

inaccuracy and imprecision on the data (i.e. ~ 4 ‰ on this down-core data). The 

estimation presented here is considerably greater than is normally assumed (i.e. 

standard instrument precision) and underlines the importance of determine the size 

of the bias on C/N, δ13C and δ15N data in a down-core record. Consequently, δ13C 

data should be used as a first-order indication of potential changes in sample OM, 

which could be further investigated for environmental and climatic change at the 

molecular level.  

3. The biases discussed here make the environmental interpretation of C/N values (e.g. 

terrestrial versus aquatic) and δ13C values (C3 versus C4 vegetation) problematic. For 

example, at 7.80 m C/N values range from 12 – 32 between methods and at 8.60 m 

δ13C values range from –21.3 to –12.5 ‰. 

4. The rinse method can artificially elevate %C and %N values and significantly 

undermine the integrity of C/N values. I recommend including a centrifugation step 

in this method, but warn that this will not guarantee resolution of the problems 

associated with decanting. 

5. The 5% HCl capsule method appears to be less efficient in the removal of IC 

leading to more enriched δ13C values, and I therefore do not recommend the use of 

this reagent within the capsule method. 

 



 

 
 

 
 
 

 
 
Chapter 5 
 
 
 
 
 

Down core palaeoenvironmental reconstruction 
from Lake Tianyang, south China 
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5.1 Introduction 
Asia is home to a large portion of the world's population and a region of central 

importance to the global hydrologic cycle and atmospheric circulation patterns (e.g. 

Ramage, 1971; Webster 1998; An et al, 2000; Wang et al, 2005; Nakagawa et al, 2008). 

However, the mechanisms that control palaeoenvironmental change across several 

glacial – interglacial cycles in Asia are poorly understood owing to a lack of long-

timescale records, particularly from a terrestrial perspective (e.g. Wang et al, 2005). 

Research on cave speleothem records in sub-tropical China (e.g. Wang et al, 2001; 

Yuan et al 2004; Cheng et al, 2009), Qinghai-Tibetan Plateau ice core records 

(Thompson et al, 1997), loess/palaeosol sequences from central and northern China (e.g. 

Porter and An, 1995; Chen et al, 1999; An et al, 2000; Porter, 2000), a lake sequence 

from Japan (Nakagawa et al, 2008) and from sedimentary sequences from the South 

China Sea (Wang et al, 1999; Sun et al, 2003) has improved our understanding of 

orbital forcing of the Asian monsoon (AM) over the past two glacial cycles. These 

references broadly suggest that the summer AM precipitation pattern is dominated by a 

~23 ka cycle which is synchronous with northern hemisphere summer insolation, 

implying a direct link to solar forcing and lend support to the theory for direct solar 

modulation of the AM regime by the precession cycle (~23 – 19 ka) (Kutzbach, 1981; 

Kutzbach and Street-Perrot, 1985; Kutzbach and Guetter, 1986; Prell and Kutzbach, 

1987; Rossignol-Strick et al, 1998; Ruddiman, 2006). This is in contrast with the theory 

that AM variability, at the precession and obliquity cycles, is linked to latent heat 

transport from the southern hemisphere which lags northern hemisphere July insolation 

by ~ 6 ± 1 kyr (e.g. Clemens et al., 1991; Morely and Heusser, 1997; Clemens and Prell, 

2003). 

 
However, these records focus on variability controlled primarily by summer-time 

temperature and precipitation. Palaeoclimate reconstructions suggest that the amount of 

precipitation associated with the summer monsoon was significantly lower during 

northern hemisphere cold phases (e.g. stadial/glacial periods; Wang et al, 2001; Yuan et 

al, 2004; Dykoski et al, 2005; Nakagawa et al, 2008; Clemens et al, 2008). During these 

cooler periods, the mean annual position of the inter-tropical convergence zone (ITCZ) 

is proposed to have been more southerly (e.g. Hughen et al, 1996; Haug et al, 2001; 

Wang et al, 2004; Yancheva et al, 2007), when the strength of the winter AM wind field 

is proposed to have been stronger (e.g. Wang et al, 2001; Yuan et al, 2004; Dykoski et 

al, 2005; Yancheva et al, 2007). However, the variability of the Asian winter monsoon 
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during these cooler periods is poorly understood for two primary reasons: (i) there is no 

comparable signature of the winter monsoon in the hydrological cycle and (ii) there is 

no robust proxy for the reconstruction of winter monsoon wind strength from terrestrial 

archives.  

 
A recent study by Yancheva et al (2007) attempted to address this issue, reporting 

winter monsoon wind strength variability over the last 16 ka BP using magnetic 

properties and Titanium (Ti) concentrations in a sedimentary record from Lake 

Huguangyan, Leizhou Peninsula. They proposed the mechanism controlling the 

sediment magnetic properties and Ti concentrations were directly linked to changes in 

the strength of winter winds carrying Ti laden dust from the central and northern China 

loess plateaus. This implies Ti concentrations (and/or magnetic susceptibility) increased 

during times of greater winter monsoon activity (e.g. during the Younger Dryas; Middle 

and Late Holocene). This theory was supported by the correlation of their Ti record with 

redox sensitive S-ratio, χ, total OC and Fe/Mn ratio from the same core. For example, 

during the Younger Dryas period, Ti concentrations in the Lake Huguangyan sediment 

were higher, coincident with an increase in S-Ratio (indicating more magnetite 

suggesting preservation in oxic conditions), an increase in magnetic susceptibility 

(controlled by increased magnetite concentrations), an increase in Mn concentrations 

(suggesting oxygenation of the bottom waters) and low total OC (increased wind-driven 

lake mixing by winter monsoon winds also implying oxygen rich bottom waters). In 

addition, comparison with the well-dated Dongge and Hulu cave records (Wang et al, 

2001; Yuan et al, 2004; Dykoski et al, 2005) highlighted a coincidence of periods of 

weaker summer monsoon (i.e. lower precipitation; identified in the cave records by 

higher δ18O values) with high Ti concentrations in the Lake Huguangyan sediments, 

particularly for the Pre-Bølling – Allerød warming and the Younger Dryas period, but 

with a weaker overall correlation during the Holocene. This leads to the hypothesis that 

Ti concentrations should follow broad scale glacial – interglacial changes, with high Ti 

concentrations during glacial periods, implying winter AM variability may be 

reconstructed from lake sedimentary sequences in southern most China. 

 
This chapter presents a palaeoenvironmental record from a sedimentary sequence from 

Lake Tianyang, south China, southern Leizhou Peninsula. The aim of this research was 

to develop a high resolution multi-proxy sedimentary record from Lake Tianyang. 

Specifically, the following research questions are addressed: 
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1. Does the Lake Tianyang sediment record preserve a climate signal over several 

glacial – interglacial cycles? 

2. Can a robust winter monsoon wind proxy be derived from the Lake Tianyang 

sedimentary record and what are the implications for the Lake Huguangyan record? 

5.2 Lake Setting 

Lake Tianyang (20o31’1.11” N, 110o18’43.02” E) is an infilled maar crater lake located 

on the southern edge of the volcanic topography of Leizhou Peninsula, south China 

(Figure 5.1). The lake basin has a surface area of ~7.3 km2 and sits ~80 – 100 m above 

sea level, with a surface outflow to the southeast of the basin (Zheng and Lei, 1999) and 

lies ~100 km south of the Huguangyan crater lake (Mingram et al, 2004). The lake basin 

is proposed to have formed in the middle Pleistocene, ~480 ka BP (Chen et al, 1990) 

and is underlain by Cenezoic basalts of the Zanjiang formation, which are characteristic 

of the Leizhou Peninsula as a whole (e.g. Ho et al 2000; Mingram et al, 2004), 

belonging to the Lei Qiong volcanic field. The main period of volcanic activity was 

during the Quaternary, ~1.4 – 0.4 Ma, when local fault zones reactivated leading to the 

development of a number of volcanic craters, including Tianyang (Huang et al, 1993, 

Ho et al, 2000). 

 

 
Figure 5.1: Map of Leizhou Peninsula indicating location of Lake Tianyang (black star), 

and Lake Tianyang contour map. Adapted from Yu et al (2006: 357) and Zheng and Lei 

(1999: 341) 
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This area has a strongly seasonal climatic signal, with an annual precipitation range of 

1260 – 2280 mm as a result of the seasonal migration of the ITCZ, summer AM regime 

and typhoon activity. Average annual temperature range is approximately 22 – 24oC 

(SBG, 2000), and the natural vegetation of the region is tropical semi-evergreen 

seasonal rainforest (Zheng and Lei, 1999). Lake Tianyang has undergone extensive 

agriculture in the recent past resulting in the lake basin and crater slopes being turned 

over to arable pasture during the Late Holocene (Zheng and Lei, 1999). 
 

5.2.1 Past research on Lake Tianyang 

Since the 1980s, a number of cores have been sampled from Lake Tianyang for 

palynological and inorganic geochemical analysis (e.g. Chen, 1988; Chen and Yang, 

1989; Peng, 1989; Chen et al, 1990; Lei and Zheng, 1993; Zheng and Lei, 1999). 

Sedimentary deposits in the centre of the lake basin reach > 220m from the surface, and 

~90 – 120 m depth in the area near the centre, before rapidly thinning towards the lake 

margin (Figure 5.2; Zhang et al, 1980; Chen et al, 1988; Chen and Yang, 1989; Chen et 

al, 1990; Lei and Zheng, 1993).  

 
Figure 5.2: Cross section of Lake Tianyang (adapted from Zheng and Lei, 1999; 343). 

 

There are very few high resolution records in this area beyond ~70 ka BP (e.g. Mingram 

et al, 2004), and in particular from Lake Tianyang (e.g. Chen and Yang, 1989; Chen et 

al, 1990; Zheng and Lei, 1999). Chen et al (1990) and Zheng and Lei (1999) reported 

low resolution geochemical and palynological records, which according to them spans 

the last ~400 ka BP (from a ~220 m core), which indicate that Lake Tianyang 

sedimentation has undergone two major changes, at ~160 m and ~53 – 37 m (Figure 
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5.3). Prior to the first major change, the sediment was rich in diatoms (in the range of 55 

– 85%; diatomite), indicative of high lake levels relative to the catchment rim and high 

productivity, and very low in Al2O3 (an indicator of terrestrial runoff, with low values 

suggesting very low terrestrial sediment input). The first major change occurred at ~160 

m, where the diatom assemblage became deficient in planktonic species. The 

sedimentology changed to diatomacious clay and Al2O3 increased suggesting that lake 

levels were lower, probably exposing the crater rim and resulting in increased 

terrigenous run-off, fundamentally altering the lake sedimentary regime.  

 

 
Figure 5.3: Previous reconstructions on Lake Tianyang. Clay mineral components, 

Al2O3 (%), C/N ratio, fern spore (%), Pediastrum abundance and diatom assemblages. 

The scale on the diatom assemblage records are; 1 = 0.1 – 4%; 2 = 5 – 19%; 3 = 20 – 49% 

and; 4 = > 50%. The horizontal grey shaded zones represent major changes in the lake 

environment: (1) first major drop in lake level; (2) shallow lake and/or woodland 

swamp environment with increasing minerogenic sediment flux and; (3) dominated by 

terrestrial run-off, through intensive catchment erosion and alluvial input. Adapted from 

Zheng and Lei (1999: 358). 

 

The second major change occurred at ~53 – 37 m, and has attributed to a sudden 

lowering of the lake level, owing to the dramatic reduction in the abundance of littoral 

and planktonic diatom species (Huang, 1993; Zheng and Lei, 1999), before the eventual 
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disappearance of diatoms in the record at ~37 m. Across this section of core, and at ~42 

m, the sedimentology becomes increasingly minerogenic, with relatively high Al2O3 

concentrations and an increase in pollen spores, particularly pediastrum (an aquatic 

algae commonly found in swamp-like environments)(Chen et al, 1990; Zheng and Lei, 

1999). From ~40 m, the sedimentology becomes increasingly dominated by carbonized 

wood fragments and amorphous organic clay beds. Towards the top of the core, the 

sedimentology varies significantly in its minerogenic content, with significant increases 

in fine and coarse sands. This suggests that the environment became a woodland 

dominated swamp that changed gradually to an alluvial-based sediment regime. It is 

possible that these major changes in the Lake Tianyang sediment history are the result 

of neotectonic activities (e.g. Huang, 1993). These factors present an excellent 

opportunity for high resolution palaeoenvironmental reconstructions over several glacial 

cycles in Lake Tianyang, in a region where the spatial resolution of records and 

understanding of palaeoenvironmental change is currently lacking (Wang et al, 2005).  

5.3 Materials and Methods 

A 120 m long sedimentary sequence was sampled from the centre of Lake Tianyang in 

January 2008, from which the upper 40 m were analysed in this thesis. Cores were 

extracted using a Vibracorer, internally fitted with 2 mm thick PVC liner, and 

immediately wrapped and sealed in polythene packaging for shipping to cold storage at 

Durham University, UK. The upper 0.5 m of sediment was discarded due to evidence of 

a ploughed horizon. 

5.3.1 Sedimentology 

The description and macroscopic examination of the sediment is based on the 

classification system of Schnurrenberger et al (2003). The stratigraphic log shows 

significant macroscopic changes in the sedimentary regime (Figure 5.4). In general, the 

core material comprises homogenous grey and brown clays, interspersed with coarse-

grained particles. Two significant exceptions are thick biogenic units with amorphous 

organic content > 25%, from 39.60 m to 36.20 m (dominated by carbonised wood 

fragments) and from 8.10 m to 6.90 m (dominated by amorphous organics and fine 

clays). In addition, there is a thick unit of clastic material, with major contributions of 

medium to coarse grained quartz (angular and sub-angular) and magnetite (from ~23.70 

m to 21.00 m). Wood fragments are also relatively abundant in the record from 27.60 m 

to 26.50 m. 
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Figure 5.4: Lake Tianyang lithostratigraphy for upper 40.00 m. 
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5.3.2 C/N and δ13C of organic matter 

The sedimentary sequence was sub-sampled at 8 cm resolution from 18 – 0.5 m, giving 

a temporal resolution of ~640 yrs, and at 16 cm resolution from 40 – 18 m giving a 

temporal resolution of ~1280 yrs. Prior to δ13C analysis of bulk organic matter (OM), 

samples were acid treated with 20% HCl to remove the inorganic carbon fraction 

following the capsule method (see Section 2.2.1 for cleaning protocols and Section 

2.3.2 for a description of the capsule method). %C, %N and δ13C values of sample OM 

were analysed using an online system comprising a Costech ECS4010 elemental 

analyser (EA), a VG TripleTrap, and a VG Optima mass spectrometer at the NERC 

Isotope Geosciences Laboratory (NIGL)(see Section 2.4.1 for a full description). 

Instrument precision was ≤ 0.2 ‰  (1σ). However, the accuracy and precision of δ13C 

values of bulk OM from the Tianyang sediment archives is potentially of the order of up 

to ~4 ‰ on each individual sample as a result of pre-analysis acid treatment (see 

Chapter 4). In lieu of quantifying the inaccuracy and imprecision on each sample, we 

assume a conservative value of ~4 ‰ for the entire δ13C record. 

 

5.3.3 XRF elemental analysis 

X-Ray fluorescence (XRF) analyses were performed on 490 samples on a Spectro X-

Lab 2000 Energy Dispersive XRF (ED-XRF) in the Department of Geography, Durham 

University, UK. The sedimentary sequence was sub-sampled at 8 cm resolution 

(temporal resolution of ~600 yrs), from the same sample horizons as for C/N and δ13C 

analysis, to quantify Al, Au, Ba, Cu, Fe, K, La, Mn, Nb, Ti. Approximately 5 g of 

freeze-dried and ball-milled sediment was mixed with 1 g of FluXana Hoechstwax, and 

pelletised under 10 tonnes of pressure for 60 seconds. Pellets were then transferred to a 

sample tray for analysis. Instrument accuracy (long term averages) and precision (1σ of 

within run standard reference materials) was determined by analysis of a range of 

standard reference materials, in particular modern and ancient lake sediments, and 

within run accuracy and precision was monitored using sandy soil (7002) and a clay 

based marine sediment (NCS 74301)(Table 5.1). All elements are normalised to Al, 

which accounts for the effect of clay on the element concentrations. In Tianyang, clay is 

a dominant component of the sedimentary archive and therefore the Aluminium (Al) 

normalisation is justified.  
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Table 5.1: XRF Standard values. Precision ranges are several orders of magnitude 
lower than range in data. 

Elements 7002 NCS 74301 
 Certified values Measured Values Certified values Measured Values 

Al2O3 14.02 ± 0.5 13.7 ± 0.2 13.75 ± 0.40 13.73 ± 0.14 
Ba 987 ± 40 979 ± 15 0.44 ± 0.02 0.45 ± 0.02 
Cu - 0.028 ± 0.001 424 ± 8 426 ± 9 

Fe2O3 3.77 + 0.20 3.74 ± 0.03 6.26 ± 0.5 6.65 ± 0.1 
K2O 5.20 ± 0.20 5.23 ± 0.09 2.95 ± 0.1 2.91 ± 0.01 
La - 0.034 ± 0.0034 - 0.066 ± 0.004 
Mn 0.05 ± 0.04 0.06 ± 0.01 0.43 ± 0.03 0.41 ± 0.01 
Nb - 17.6 ± 0.9 15.1 ± 1.0 13.3 ± 1.2 
Ni 42.1 ± 1.80 43.2 ± 1.80 150 ± 4 154 ± 3 

TiO2 0.45 ± 0.01 0.45 ± 0.02 0.67 ± 0.02 0.68 ± 0.03 
 

5.3.4 Core scanning 

Sediment bulk density (ρ) and Magnetic susceptibility (χ) were measured on a 

GEOTEK multi-sensor core scanner at Durham University. The entire core length was 

measured at 5 mm resolution (implied sub-annual temporal resolution). χ was measured 

using a Bartington point sensor (MS2E), and is a measure of how easily a material can 

be magnetised upon exposure to a weak magnetic field (Sandgren and Snowball, 2001), 

and is reported in m3/kg. The resultant signal is a function of magnetic and diamagnetic 

minerals in the bulk sample material. χ was density corrected and calculated from χ = 

K/ ρ , where χ = volume susceptibility; K = dimensionless measure of magnetic 

susceptibility (in SI units); and ρ = sediment bulk density.  

 

5.3.5 14C analysis 

AMS (Accelerated Mass Spectrometer) 14C determinations were measured on plant 

macrofossils and on bulk sediments in the absence of macrofossil material, from the 

unlaminated Lake Tianyang core. AMS 14C analysis was undertaken at the Gaungzhou 

Radiocarbon laboratory, Guangzhou, China; the NERC Radiocarbon Laboratory, UK 

and; BETA Analytical, USA (see Table 5.2). All samples were pre-treated following the 

acid-base-acid method using 1 M HCl and KOH. 
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Table 5.2: Summary of new AMS 14C dates on sedimentary sequence from Lake 
Tianyang reported as 14C ages BP (uncalibrated). Error ranges are reported as 2σ 
calculated from instrument precision alone. 

Lab. No. Depth (cm) Analysed Material 14C yr BP 
SUERC – 30578 116 Bulk organics 11538 ± 49 
SUERC – 30579 268 Bulk organics 23962 ± 189 

GZ2665 587 Bulk organics 27670 ± 116 
BETA 282395 692 Plant fragment 30810 ± 160 
BETA 281924 692 Charcoal 29180 ± 140 

SUERC – 30580 693 Bulk organics 31470 ± 482 
GZ2666 746 Bulk organics 35148 ± 136 
GZ2667 1637 Wood 38209 ± 360 
GZ2668 1974 Wood 39011 ± 446 
GZ2669 2693 Wood 38395 ± 165 
GZ2670 2949 Plant Fragment 40010 ± 308 
GZ2671 3473 Wood 39040 ± 404 
GZ2672 3944 wood 38817 ± 269 

 

5.4        Results and Discussion 

5.4.1 Chronology 

5.4.1.1  Radiocarbon Datings  

A total of 13 new AMS 14C determinations for the Lake Tianyang maar are presented in 

Table 5.2 in radiocarbon years before present (14C yrs BP). With the exception of the 

datings at 1.16 m and 2.68 m, these 14C determinations lie outside of the widely 

accepted 14C age calibration range of 26 ka (Stuiver et al, 1998; Bronk Ramsey, 2001; 

Reimer et al, 2004), though a new, lower resolution calibration curve, INTCAL09, is 

available beyond 26 ka (calibration uncertainties are in the range of ±500 yrs, Reimer et 

al., 2009) which is used here. 

 

The 14C determinations from 1.16 m and 2.68 m may be contaminated by older and 

younger C as a result of sediment reworking, due to anthropogenic activities, and 

pedogenic processes (e.g. Peng, 1989; Chen et al, 1990; Zheng and Lei, 1999) implying 

the datings acquired from this material are potentially subject to greater imprecision 

than is quoted. In addition, these datings (along with those from 5.87 m and 6.93 m) are 

derived from bulk sediment OM (in lieu of terrestrial micro- or macro-fossils), and may 

have enhanced the uncertainty associated with (i) the hard water effect, a secondary 

source of 14C (i.e. catchment geology) that results in the lake water body becoming 

depleted in 14C relative to the atmosphere (e.g. Hajdas et al., 1995), (ii) influx of 
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carbonaceous materials, such as coal, charcoal and lignite, and which would bias any 

resultant 14C calculations towards older ages (e.g. Hajdas et al., 1995), (iii) variations in 

the relative proportions of OM end members and their 14C composition relative to the 

atmospheric reservoir during the lifespan of the material (i.e. authigenic organic carbon 

versus allochthonous organic carbon); (iv) the potential for acid treatment to bias OM 
14C in a non-linear and unpredictable manner, and in a non-linear and unpredictable 

manner with respect to 13C and 12C (sensu Brodie et al, 2011a). An insight on the affect 

of acid treatment bias on 14C datings can be gained by considering the isotope-

fractionation correction of these 14C datings using the Craig carbon fractionation 

correction (Craig, 1954). The correction is based around a δ13C value of –25 ‰ 

(representative of wood, and implies a direct link to the atmospheric 14CO2 reservoir 

and proportionality in the photosynthetic process) and is calculated from: 
13

PDB2(25δ C )1
1000c mA A

 +
= − 

 
 

where Ac is the 14C activity corrected for isotopic fractionation and Am is the measured 
14C activity of the sample (dpm/g of C). The constant “2” in the equation represents the 

difference in mass between 14C and 12C (representative of the fractionation factor 

between the two isotopes as a function of atomic mass, directly implying proportionality 

in the kinetic fractionation process). For a hypothetical sample of Am = 4.0 dpm/g of C, 

and a measured δ13C value of –25 ‰, Ac would yield no correction to the measured 14C 

activity. However, if δ13C was –15 ‰ in this hypothetical sample, Ac would reduce to 

3.92 dpm/g of C which equates to a 2% reduction in the measured sample activity. This 

10 ‰ difference in δ13C would result in an increase in the calculated 14C age by ~167 

years. By simple division, this implies that every 1 ‰ shift in δ13C equates to ~16 14C 

years (i.e. before calibration). Therefore, biasing to the δ13C value by acid treatment 

alone (i.e. assuming no biasing to 14C, but not proven) directly impacts upon the 

precision of 14C datings, and in addition suggests that the fractionation factor of “2” 

may not accurately reflect the isotopic proportionality of C in the measured sample. 

 
The 14C determinations below 16.37 m are infinite, and cannot contribute directly to the 

age-depth model of the Lake Tianyang maar archive. Despite the potential uncertainty 

on the 14C determinations through contamination, correction, uncertainties on 14C 

calibration frameworks, and acid treatment bias, the datings on these horizons appear to 

be in stratigraphic order (i.e. 2.68 m to 7.46 m) and collectively suggest this section of 
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the sedimentary record was deposited during Marine Isotope Stage 3 (MIS 3) with a 

sedimentation rate ~14 cm ka-1.  

 
The 13 new AMS 14C datings reported here suggest the Lake Tianyang maar 

sedimentary archive is considerably older than previously reported (i.e. outside of 14C 

dating capabilities, see Table 5.3; Peng, 1989; Chen et al, 1990). The previous 

chronology for Lake Tianyang maar was based on 16 14C ages (conventional 

measurement method; Peng, 1989; Cheng et al, 1990), 6 thermoluminescene ages (Chen 

et al, 1990) and low resolution palaeomagnetic data (Chen, 1988; Chen and Yang, 

1989). Zheng (2008, Pers. Comm.) suggest the sample handling and measurement 

protocols relating to the previously reported 14C determinations may have resulted in 

additional contamination suggesting the measurement inaccuracies are greater than 

reported. In addition, he also raised concerns over the reliability of the 

thermoluminescene ages due to the exposure of the sediment to natural light for long 

periods prior to sampling. In addition, the resolution of the palaeomagnetic data and 

lack of independent dating control, quash a potential palaeomagnetic chronology.  

 
Table 5.3: Previously reported 14C dates from Lake Tianyang sedimentary records. 

Lab. No. Depth (cm) Analysed Material 14C yr BP Reference 
CG-689 3.27 Black sandy clay 18030 ± 225 

Peng (1989) 

CG-676 4.46 Black sandy clay 25395 ± 630 
CG-678 14.67 Black mud 23445 ± 435 
CG-679 22.94 Black clay 21935 ± 435 
CG-680 24.98 Black clay 20745 ± 950 
CG-687 29.04 Black clay 22505 ± 435 
CG-681 34.12 Peat 28760 ± 880 
CG-683 35.25 Carbonized wood 28630 ± 925 
CG-684 38.10 Black clay 29635 ± 910 
CG-686 41.70 Black clay 34650 ± 1620 
GC 764 19.97 – 20.09 Black clay 15830 ± 620 

Chen et al 
(1990) 

GC 763 23.06 – 23.10 Peat 20730 ± 620 
GC 1010 28.74 – 28.83 Peat 30275 ± 1410 

SH-1 29.10 – 29.15 Carbonized wood 30310 ± 1200 
GC 1077 34.82 – 34.92 Carbonized wood 46270 ± 1480 
GC 1024 36.05 – 36.11 Carbonized wood 47700 ± 1280 

 
5.4.1.2     Tuned age model 
 
In an attempt to improve the accuracy of the Lake Tianyang maar chronology in light of 

the new 14C determinations, the newly developed NAP and AP pollen counts (both 

calculated as % total land pollen and provided by Prof. Zheng Zhuo, Sun Yat-sen 
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University, counted from sub-samples of the same core material, and sample horizons, 

analysed in this thesis), alongside the new δ13C are correlated to the SPECMAP δ18O 

benthic stack (Imbrie et al, 1984; Martinson et al, 1987). A principal reasoning of this 

tuning approach assumes that the intensity of the major palaeoclimate events proposed 

to be detected in the SPECMAP δ18O stacked benthic record (i.e. glacial – 

interglacial/stadial – interstadial shifts) were expressed in a vast spatial range of 

different proxy archives, including this new reconstruction from Lake Tianyang maar 

(e.g. Tzedakis et al, 1997; Bokhorst and Vandenberghe, 2009; Blaauw et al, 2010a; 

2010b). By implication, this line of reasoning, in the context of time, assumes (near) 

synchroneity of such events within and between the proxy archives allowing the 

coincidence of said events to be used as “isochrons” or “tie-points” with which to align 

the proxy events in the records of interest (N.B. the assumption of synchroneity 

diminishes an objective evaluation of relative timings of these events, precluding 

discussion of leads and/or lags). The “tie-points” are taken to be of equal age between 

the archives, and provide age-depth estimates for an undated, or poorly constrained 

archive (here the Lake Tianyang maar archive) based on the age model of a better dated 

archive (here the SPECMAP benthic δ18O stack, constrained itself by orbital tuning): in 

essence, an event-based chronostratigraphy. The SPECMAP δ18O stack has 

considerable chronological uncertainties per se, ~5000 yrs (Martinson et al., 1987) 

implying that the correlation to the Lake Tianyang maar record will necessarily contain 

larger uncertainties as a combination of the SPECMAP uncertainties, the tuning process, 

indefinable sedimentation rates between the tie-points (e.g. Blaauw et al, 2010) and age-

depth model development. 
 

In conjunction with the new 14C age estimations reported from 2.68 m, 5.87 m and 6.92 

m, which are in stratigraphic order and broadly indicate that the sediment was deposited 

during MIS 3 (providing some independent dating control), I establish a number of “tie-

points” between the SPECMAP δ18O benthic stack and the Lake Tianyang maar NAP, 

AP and δ13C records below ~7.50 m based on the coincidence of major event horizons 

(see Table 5.4). This assumes (i) the NAP, AP and δ13C records in Lake Tianyang maar 

have recorded significant shifts in vegetation from grassland to woodland that were 

associated and (near) synchronous with the relatively rapid shifts from glacial – 

interglacial conditions (Tzedikas et al, 1997; Blaauw, 2010), (ii) linearity in 

sedimentation rate between the established “tie-points” and, (iii) no major hiatus in 

sediment accumulation. The “tie-points” were defined as occurring at the point of 
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inflection (e.g. Casford et al., 2007) in the SPECMAP δ18O benthic stack at the 

beginning and end of major MIS changes, providing the “master” ages, and at the point 

of inflection in the Tianyang NAP, AP and δ13C records, providing the depths across 

these proxies. Identifying an event stratigraphy within the Tianyang archive by multi-

proxy comparison of the pollen and δ13C, two related proxies for vegetation which can 

be reasonably expected to respond similarly to change (i.e. following patterns of aridity), 

provides a more reliable, but not absolute, “tie-point” identification (e.g. Bokhorst and 

Vandenberghe, 2009). This is justified in the Tianyang archive as the pollen and δ13C 

show striking visual similarities in their oscillations, suggesting clear identification of 

regional to global scale oscillations (e.g. glacial – interglacial) over local oscillations 

(within the Tianyang catchment). 

Table 5.4: Age-depth model 14C cal yrs BP and SPECMAP “tie-points” 

TYC depth 
(cm) 

Depth uncertainty 
(cm) Age (ka BP) Age uncertainty    

(ka BP) 
Dating 

technique 
268 1 26891 519 14C 
587 1 29849 400 14C 

692.5 2 33125 442 14C 
716 1 63000 5000 SPECMAP 
780 1 78000 5000 SPECMAP 
940 1 98000 5000 SPECMAP 
1044 1 107000 5000 SPECMAP 
1260 1 121000 5000 SPECMAP 
1772 1 134000 5000 SPECMAP 
1820 1 151000 5000 SPECMAP 
2508 1 181000 5000 SPECMAP 
2684 1 194000 5000 SPECMAP 
2972 1 227000 5000 SPECMAP 
3052 1 237000 5000 SPECMAP 
3452 1 295000 5000 SPECMAP 
3740 1 309000 5000 SPECMAP 
3884 1 318000 5000 SPECMAP 

 
The vegetation – climate nexus has been exploited in this manner to develop a tentative, 

but relatively robust, chronostratigraphy for the Lake Tianyang maar archive (Figure 5.5) 

because, on glacial – interglacial timescales, the vegetation pattern tends to change from 

woodland (i.e. C3 vegetation cover) to open vegetation (grassland/savannah; C4 

vegetation; e.g. Tzedikas et al, 1997; 2003; Zheng and Lei, 1999; Bird et al, 2005). NAP 

is generally associated with cool temperate to arid environments, where precipitation is 

relatively low (i.e. first order indicator of aridity), whereas AP (e.g. woodland), 

representative of C3 vegetation, are generally associated with humid and wet 

environments, where precipitation is abundant (Zheng and Lei, 1999; Bird et al, 2005; 

Galy et al, 2007). This implies that grass-like vegetation is more likely to dominate 
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during glacial/stadial periods, in more arid conditions, and woodland-like vegetation 

during interglacial/interstadial periods. I suggest the age of the upper 40 m of the Lake 

Tianyang maar archive is ~325 ka (see age-depth model; Figure 5.5), which is 

considerably older than previous estimates (see Table 5.3: Chen et al, 1988; Peng, 1989). 

The age-depth model is based on a linear regression (N.B. a polynomial fit gave a near 

identical r2 value) across all identified age horizons. 
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Figure 5.5: Age-depth model for Lake Tianyang maar based on data in Table 5.4. 
Perforated lines represent 95% confidence intervals of the linear age-depth model. 

 

5.4.2 C/N and δ13C 
%C, %N and C/N values for the Tianyang sedimentary sequence are not reported based 

on the findings of Chapters 2 and 4. The δ13C values of bulk OM are presented in Figure 

5.6. The δ13C record has an overall δ13C value range of –11.6 ‰ to –30.2 ‰ and shows 

9 major shifts throughout the record, of the order of ~10 to 15 ‰ (i.e. above the 

inaccuracy and imprecision of the data; between 0.2 and 4 ‰; see Chapter 4). Between 

~145 ka BP m and ~65 ka BP the δ13C record is highly variable relative to the entire 

record, with an overall δ13C range of –15.4 ‰ to –30.1 ‰, the amplitude of which is 

internally similar with the rest of the Tianyang record. There are 3 major periods of 

relatively enriched δ13C values, between ~290 ka BP to ~245 ka BP (δ13C ≈ –17.4 to –

24.8 ‰), ~210 ka BP to ~140 ka BP (δ13C ≈ –13.0 to –19.5 ‰), and ~65 ka BP to 

present (δ13C ≈ – 11.6 to –19.0 ‰). From ~290 ka BP to ~245 ka BP, the δ13C values 

are more variable and are relatively slightly depleted in comparison with the two other 

major periods of enriched δ13C values.  
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Figure 5.6: Comparison of SPECMAP stacked δ18O with Lake Tianyang maar NAP and AP pollen counts, and δ13C record. Greyed out sections of 
SPECMAP record indicates inter-glacial/inter-stadial periods.
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Organic matter (OM) in lake sediments can be, and has been, used to reconstruct the 

palaeoenvironment of lake systems and their catchment areas (e.g. Meyers, 1984; 1997; 

Leng and Marshall, 2004). The source of OM in lake sediments can vary substantially, 

deriving from autochthonous sources (e.g. detrital fall-out of primary productivity in the 

water column; macrophytes) and/or allochthonous sources (e.g. terrestrial vegetation). 

C/N and δ13C values of OM have been broadly used to identify such changes in OM 

provenance (e.g. Section 4.1). However, the results of Chapters 2, 3 and 4 suggest that 

the application of C/N values to bulk OM as a tool for OM provenance is unreliable, 

and highly susceptible to producing aberrant data as a function of acid treatment and 

OM composition. However, δ13C values can still provide palaeoenvironmental 

information on high amplitude changes, which from bulk OM can be a function of 

temperature, light, moisture, pCO2, and changes in vegetation photosynthetic pathways 

(e.g. Ehleringer and Monson, 1993; Ehleringer et al., 1997; Kock et al., 2004). For 

example, δ13C has been used to broadly distinguish between C3 and C4 plant type’s 

consequent of the discrimination of 13C during photosynthesis, assuming a terrestrial 

source of bulk OM. C3 plants utilise the Calvin-Benson photosynthetic pathway which 

produce depleted δ13C values in the range of –22 to –35 ‰, whereas C4 plants utilise the 

Hatch-Slack photosynthetic pathway which tend to produce relatively enriched δ13C 

values in the range of –6 to –15 ‰ (Smith and Epstein, 1971; O’Leary, 1988; Meyers, 

1997; Talbot et al, 2006; Sharpe, 2007; Mampuku et al, 2008), however, these ranges 

with respect to C3 and C4 vegetation are not mutually exclusive (e.g. Tyson, 1995) and 

may not primarily reflect photosynthetic processes (e.g. Edwards et al., 2010). In 

general, this natural kinetic fractionation allows an interpretation of changes in 

vegetation type, which in this core, is broadly consistent with the NAP and AP data (see 

Figure 5.6).  

 

The NAP and AP data are indicative of two considerably different vegetation types. The 

NAP record is based upon pollen counts of grass-like vegetation, whereas the AP record 

is based upon pollen counts of woody vegetation, primarily trees. Together, these 

proxies can be used as a first-order assessment of changes in available moisture and 

humidity within the Tianyang catchment: for example, higher plants, such as trees, 

require an abundant source of moisture through precipitation and humidity, in order to 

survive. On the other hand, grasses are adapted to much lower precipitation and 

humidity amounts, different temperature and local – regional pCO2 variations all of 
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which have been argued to contribute to the evolution and spatial distribution of C4 

vegetation at intra-annual to glacial/interglacial timescales (e.g. Ehleringer et al., 1991; 

1997; Cerling et al., 1993; Collatz et al., 1998; Edwards et al., 2010). However, a robust 

understanding of pCO2 changes on the Tianyang palaeovegetation is not feasible owing 

to the volcanic nature of the Leizhou Peninsula, and the potential for locally sourced 

CO2 (by outgassing) from the geology through time. 

 
Given the tropical setting of the Lake Tianyang maar, significant shifts in NAP and AP  

probably indicate a local – regional shift in the primary precipitation regime, which is 

intimately linked to the seasonal AM and ITCZ movements. The striking variability in 

the pollen records is evident in the δ13C record, suggesting the underlying bulk OM 

signature is internally (i.e. within the Lake Tianyang maar sedimentary regime) 

dominated by past changes in catchment vegetation, implying broad scale changes in 

vegetation type (i.e. between C3 and C4 vegetation) are an important (and probably 

primary) control on the sedimentary OM isotopic signature, as a function of seasonal 

moisture variations. Specifically, I suggest that the new Tianyang δ13C record tracks 

changes in aridity during glacial/stadial periods, and periods of increased humidity 

during interglacial/interstadial periods (e.g. Galy et al., 2007). Furthermore, and 

notwithstanding the uncertainties on the δ13C reported here, the record shows significant 

variability in addition to the broad glacial-interglacial scale cycles indentified. For 

example, between ~285ka BP and ~250 ka BP and ~145 ka BP and ~65 ka BP, the δ13C 

has recorded variability likely associated with stadial/interstadial change, suggesting the 

Tianyang record (currently sampled at ~640 year resolution from ~145ka BP to present 

and ~1280 year resolution from ~325 – 145 ka BP) potentially contains a centennial 

scale record of regional – global palaeoclimate, a record with such resolution is 

currently absent in south continental China. 
 
5.4.3 XRF elemental ratios 
The XRF analysis quantified 47 elements (see data tables on CD), however, only those 

that contribute important information on the Tianyang palaeoenvironmental are 

presented (Figure 5.7). Elements are presented as a ratio to Aluminium (Al) to 

normalise for the clay content within the samples. XRF elemental ratios may be 

interpreted in a number of ways, for example as catchment erosion indicators, water 

column reduction-oxidation (redox) processes and dust flux. The interpretation of the 

elemental ratios therefore requires an understanding of their geochemical behaviour in a 

lake environment.  
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Figure 5.7: Lake Tianyang δ13C, XRF and χ records. Vertical grey bars indicate inter-
glacial/inter-stadial periods. 
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Fe and Mn concentrations in sediments of small lake catchments can be used to 

reconstruct transient changes in palaeo-redox conditions in both marine and freshwater 

systems (e.g. Edgington and Robbins, 1976; Farmer and Lovell, 1986; Davison, 1993; 

Matty and Long, 1995; Stumm and Morgan, 1996; Bryant et al, 1997; Schaller et al, 

1997; Kolak et al., 1998; Brown et al, 2000; Boyle, 2001; Koinig et al, 2003; Yancheva 

et al, 2007). In freshwater systems, it has been shown that redox sensitive metals, 

particularly Fe and Mn, can be used as an indicator of bottom water oxygenation 

changes (e.g. Davison, 1993; Schaller et al, 1997; Yancheva et al, 2007). Under anoxic 

conditions, Fe and Mn exist in reduced states, with primarily soluble Fe2+ and Mn2+ 

dominant in the water column. This can result in water column eddy diffusivity (i.e. 

bottom water flow turbulence) carrying these reduced forms of Fe and Mn across the 

redox boundary and back into the oxygenated zone where they may reform oxides or 

oxyhydroxides. Under oxic conditions, Fe and Mn form stable oxidised states; Fe3+ and 

Mn3+ and Mn4+ forming oxide/oxyhydroxide precipitates which can become 

incorporated into the sediment, though Mn4+ in the form on MnO2 is the 

thermodynamically stable form (Davison, 1993; Bryant et al, 1997). However, Fe and 

Mn precipitates can be diagenetically remobilised in the sediment by diffusion into 

sediment pore waters and then into the lake bottom waters, where anoxic conditions 

exist at or below the sediment – water interface. The position of this redox boundary is 

heavily influenced by seasonal changes in lake stratification and by changes in surface 

wind stress which can migrate from within the sediment into the water column and back 

again. Similarly, Cu is readily mobilised under changing oxygen conditions and may be 

reasonably expected to show some degree of coherency with Fe and Mn redox changes.  

 

The Fe/Al, Mn/Al and Cu/Al appear to be internally consistent at the glacial to 

interglacial timescale, with clear evidence of high resolution variability within 

alternating glacial/stadial and interglacial/interstadial periods (see Figure 5.7). However 

this is not a pervasive feature of these records. For example, from ~285ka BP to ~250 

ka BP, high concentrations of Fe, Mn and Cu suggest a well oxygenated water column, 

similar evidence for which occurs during MIS 6.  In the upper section of the core, Fe 

and Cu show a number of coincident high concentrations, between ~90 ka BP and ~ 12 

ka BP, whereas Mn is present in very low concentrations. This suggests that the Mn 

cycle may not responding as coherently to changes in water column oxygenation at 

these depths, and suggests a change in local processes that may not be directly 
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consequent of broad scale glacial-interglacial expression. Specifically, the internal 

coherence of the redox sensitive parameters, which is evident in the lower sections of 

the core, and throughout for Fe and Cu appears to diminish in the Mn record (lower 

amplitude and different phasing). This may be a function of the reduction in delivery of 

Mn-rich material to the lake (i.e. no Mn available for remobilisation) suggesting that 

Mn from MIS 5e to present may be a less reliable recorded of changes in water column 

oxygen conditions. 

 
Not all elements are susceptible to diagenetic remobilisation due to transient changes in 

water column oxygen levels. For example, Al, Au, Ba, K, La, Nb, Ni, P and Ti have one 

oxygenation state implying that their sedimentary signature is controlled by different 

environmental processes, such as catchment erosion and provenance (e.g. catchment 

versus windblown source). For example, the K/Al ratio has been used as an indicator of 

changes in the illite and kaolinite content of sediments (e.g. Bonatti and Gartner, 1973; 

Yarincik et al, 2000) and can contribute to the understanding of changes in catchment 

weathering (Yarincick et al, 2000; Burnett et al, In Press). Illite is commonly associated 

with temperate and/or arid environments (e.g. such as glacial/stadial climates) and is the 

product of physical weathering of source material (e.g. catchment geology), whereas 

kaolinite is more commonly produced in tropical and/or humid environments (e.g. such 

as interglacial/interstadial periods) and is a product of chemical weathering (Yarincik et 

al, 2000). This implies that, during interglacial/interstadial periods, where chemical 

weathering is more prominent due to increased humidity (implying relatively higher 

temperatures and amounts of precipitation), the kaolinite concentration in lake 

sediments is likely to increase, suggesting the K/Al ratio is low. On the other hand, 

during glacial/stadials, where illite input to sediment increases, the K/Al ratio should 

increase. In Lake Tianyang, Au, Ba, La, Nb and Ni, P and Th are used as catchment 

erosion indicators due to their high concentrations in catchment rocks (see Table 5.5). 
 

Table 5.5: Selected element concentrations of Lake Tianyang averaged from a range of 
catchment rocks 

Element Concentration 
Au 137 μg/g 
Ba 179 μg/g 
La 34 μg/g 
Nb 54 μg/g 
Ni 141 μg/g 
P 0.4 % 

Th 7.6 μg/g 
Ti 1.3 % 
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Throughout the Tianyang record, Au/Al, Ba/Al, La/Al, Nb/Al, Ni/Al and Th/Al are 

strikingly consistent reflecting changes in sediment delivery from the catchment area. 

This is supported by the K/Al record, which shows a similar trend, but of lower 

amplitude, that may reflect changes in physical versus chemical weathering (i.e. low 

K/Al versus high K/Al). A striking shift common to all records occurs during MIS 6, 

where the concentrations of these metals synchronously decrease rapidly (in the context 

of the core sampling resolution, not the chronostratigraphy), concomitant with an 

increase in Fe/Al, Mn/Al and Cu/Al concentrations (but not Ti/Al), and also χ. At the 

same time, %NAP increase, and δ13C shows a distinctive shift towards more depleted 

values. This internal coherency within the multi-proxy records suggests commonality in 

the process underlying the change, causing a reduction in catchment erosion, an increase 

in bottom water oxygen and a shift towards grass dominated vegetation. This suggests 

the establishment of an arid, dry environment. 

 

Concentrations of Ti have been used to reconstruct changes in catchment erosion (e.g. 

Olsen et al, 2010) and dust flux resulting from changes in wind strength (e.g. Yarincik 

et al, 2000; Yancheva et al, 2007), with high concentrations of Ti suggesting either 

increased sediment delivery from the catchment or stronger winds and hence an 

increased dust flux to the catchment. The Ti record in Lake Tianyang is generally highly 

variable, and does not show an internally coherent relationship with the re-dox sensitive 

proxies (i.e. high concentrations to Ti are not always synchronous with high 

concentrations of Fe, Mn and Cu) or catchment erosion proxies. Prima facie, this 

indicates an internal de-coupling of the Tianyang proxy records in some sample 

horizons (but not all) suggesting a change in the mechanisms controlling the 

concentrations of these elements in the sedimemntary record. High Ti concentrations are 

coincident with high concentrations of the redox sensitive proxies, χ, and low 

concentration of catchment erosion proxies (with the exception of Ni) during MIS 8, at 

a time when δ13C values are more depleted (i.e. C4 vegetation), showing a relatively in-

phase relationship across the sampling horizons. A broadly similar pattern is evident 

during MIS 6, however Ti concentrations are extremely low.  

 
5.4.4 Magnetic Susceptibility (χ) 
χ, a measure of the magnetism of the bulk sediment material, which is directly 

proportional to concentration and grain size of ferromagentic (e.g. haematite) and 
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ferrimagnetic minerals (e.g. magnetite/titanomagnetite; Verosub and Roberts, 1995), is 

highly variable in the Tianyang sedimentary archive. The highest χ is evident during the 

MIS 6 glacial (Figure 5.7), with three clearly identifiable peaks (the first concomitant 

with a synchronous shift in the XRF, pollen and δ13C records), with relatively higher 

values also evident during the MIS 8 glacial though much lower in amplitude than for 

MIS 6. The sedimentology during MIS 6 is dominated by fine- and coarse-grained 

clastic components, with a significant reduction in clay and silt, and is primarily 

characterised by quartz and magnetite (i.e. change in grain size distribution in the core). 

The Leizhou Peninsula, and the Lake Tianyang catchment, is dominated by basaltic 

geology, an igneous rock which is a primary natural source of magnetite and 

titanomagnetite (e.g. Dekkers, 1997), suggesting a catchment-derived source (supported 

by microscopic investigation from crater rock samples of intercalated magnetite 

minerals). The concentration of catchment erosion indicators are relatively low in 

comparison with the high χ during MIS 6, which is likely to be due to the dilution of the 

catchment weathering signal by the high influx of coarse-grained material. This is 

plausible in the context of the δ13C record and %NAP counts, which suggest an open 

vegetation environment.  

 

It appears χ within the Tianyang sedimentary archive is controlled by a number of 

factors, including changes in catchment erosion and transportation pathways (inplying 

grain size changes), aeolian influx, soil formation processes and, biogenic and 

authigenic mineralisation (e.g. Snowball, 1993; 1994; Dekkers, 1997; Maher, 1998; 

Sandgren and Snowball, 2001; Ishikawa and Frost, 2002). In lakes which have small 

and well defined catchments (e.g. Lake Tianyang maar), the dominant source of 

sediment is likely to be from the catchment (bedrock weathering and catchment soil), 

though aeolian sources are a plausible contributor. 

 

5.5     Glacial – Interglacial Change: A Synthesis 

Glacial – interglacial scale changes have previously been reported from cave records in 

central and east China (Wang et al, 2001; Yuan et al, 2004; Johnson et al, 2006; Cheng 

et al, 2009), from Qinghai-Tibetan Plateau ice core records (Thompson et al, 1997), 

loess/palaeosol sequences from central and northern China (e.g. Porter and An, 1995; 

Chen et al, 1999; An et al, 2000; Porter, 2000), and from sedimentary sequences from 

the South China Sea (Wang et al, 1999; Jian et al., 2001; Sun et al, 2003). In general (i.e. 
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assuming spatial homogeneity of the precipitation associated with seasonal AM regime 

through time), glacial/stadial periods tend to be characterised by dry, arid conditions, 

particularly in north and central China (e.g. Herzschuh, 2006), when the effective 

moisture on continental China is significantly lower as a result of the more southerly 

average position of the ITCZ (e.g. Wang et al., 2001; Flietmann et al., 2003; Bird et al., 

2005; Yanhceva et al., 2007). In contrast, during interglacial/interstadial periods the 

ITCZ-AM system general encroaches continaental China and brings with it signifincat 

precipitation and humidity in apparent concenrt with the northern hemisphere summer 

insoaltion maximum (e.g. Wang et al., 2008). 

 

The Tianyang δ13C record shows a distinct glacial – interglacial palaeoenvironmental 

imprint, alongside the NAP and AP pollen counts, and a striking similarity with the 

SPECMAP δ18O benthic record. In addition, these glacial – interglacial changes appear 

to be evident in the redox sensitive elements, catchment erosion indicators and χ record, 

particularly from MIS 9 to the end of MIS 6 inclusive (see Figure 5.7). This multiple 

proxy evidence demonoistrates internally consietency within the Tianyang records in 

the lower sections of the core. However, this is not an internally pervasive feature of 

these records, the relationship and pahsing between which changes significantly in the 

upper sections, particularly throughout MIS 5. This may principally be due to the silting 

up processes within the lake causing catchment erosion and redox proxies to respond 

more rapidly, and at different timescales within a smaller catchment surface area and 

water column depth, and therefore obscuring regional – global environmental change 

signatures with local signatures. 

 
Prior to MIS 9 (age re-evaluated based on the new 14C datings, pollen and δ13C records 

presented here; Figures 5.5 and 5.6), the Lake Tianyang maar system began 

progressively to change from being a deep, highly productive lake towards a much 

shallower lake (Zheng and Lei, 1999), probably due to the reduction of sediment 

accommodation space in the catchment basin through silting up of the lake, which may 

be the direct result of localised neotectonic uplift (Huang, 1993). During MIS 9, the 

sedimentology (principally characterised by abundant wood macrofossils and highly 

organic clay(amorphous)), relatively depleted δ13C values, high %AP and low %NAP 

point towards a wet woodland/swamp type environment (i.e. dominated by C3 

vegetation), with relatively low water levels. This marks the first major shift in the 

Tianyang system from a highly productive, diatom rich deep water lake to wetland. The 
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redox parameters during this period reflect low oxygen levels in this shallow water 

environment, resulting in productivity driven depletion of the dissolved O2. After 

depletion of the available dissolved O2, oxidation of OM would be significantly reduced 

implying preservation in the sedimentary record. I propose that the local – regional 

environment was characterised by warm, humid conditions (implying abundant 

precipitation) during MIS 9, maintained by the average annual to millennial timescale 

position of the seasonal rain-bearing ITCZ-AM regime being sufficiently north of the 

equator, and traversing the Chinese mainland. This implies that the dominant 

palaeoenvironmental signal during this period is weighted towards the summer season 

variability, with no clear evidence for millennial-scale variability recorded in the multi-

proxy record. This may reflect a period where winter monsoon activity was relatively 

weaker, with no detectable signal in the far south of China, but may also in part be a 

function of the sampling strategy (i.e. sampling resolution ~1280 kyr). 

 

The transition to MIS 8 marks a major shift in the vegetation type within the catchment, 

from wet woodland to a more open vegetation structure, characterised by an increase in 

lower plants, such as grasses. This is evident in the %NAP and %AP records, and 

reflected in the δ13C record (δ13C ≈ –17.3 to –24.8 ‰). Collectively, these vegetation 

proxies are relatively variable and do not necessarily point towards stability in the 

climax vegetation within the catchment (see Figure 5.6 between ~290 ka BP to ~245 ka 

BP). This suggests a mixed vegetation assemblage during MIS 8, with alternations 

between more open, savannah like vegetation with periods characterised by higher 

plants and more woody vegetation. In particular, the most prominent such alternation 

appears to be centred on ~267 ka BP to ~273 ka BP (the resolution of the record at this 

depth is ~1280 yrs), and potentially represents one of the MIS 8 stadial/interstadial 

transitions, suggesting the Tianyang sedimentary archive contains a higher resolution 

MIS 8 record. This variability is also recorded in the higher resolution redox and 

catchment erosion proxies, and χ, which provide clear evidence for substantial 

variations in lake redox conditions, suggesting changes in surface wind-driven mixing 

of the lake water column, particularly when δ13C are most depleted (proxies are 

internally “in-phase”). In addition, the catchment erosion proxies, which are in part 

influenced by vegetation cover (linked to changes in available precipitation and 

temperature) and affect the rate of delivery of sediment to the lake basin, are relatively 

variable (again, with peaks in-phase with higher water column oxygen levels and 

dominant C4 vegetation). Together, these proxies indicate that the sedimentary record 
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from Tianyang has recorded evidence for a relatively unstable glacial period in south 

China, and possibly in the wider tropics (i.e. via an ITCZ-AM teleconnection). 

Specifically, the %NAP, %AP and δ13C provide compelling evidence from changes in 

available moisture (e.g. more arid conditions with high %NAP and higher δ13C values) 

and changes in the summer/winter wind regime (higher Fe, Mn, Cu (redox) and Ti 

concentrations). Broad-scale changes in the average position of the ITCZ, and the 

subsequent landward penetration of the associated seasonal rainfall of the ITCZ-AM 

regime (i.e. average position located farther south during glacial/stadial periods in 

comparison to interglacial/interstadial periods) can account for this trend. It is difficult 

to assess the potential contribution to the singals from changes in winter/summer AM 

variability however Yancheva et al (2007) suggest high Ti concentrations concomitant 

with high water column oxygen levels are indicative of stronger winter AM winds 

during cool, dry periods. It is therefore possible that the vegetation proxies are recording 

a signal more closely linked to changes in available moisture, ultimately driving aridity 

that is directly linked to the displacement of the ITCZ-AM to a more southerly position. 

In contrast, the redox parameters and Ti concentrations may be reflecting changes in the 

winter AM wind regime at this time with winter winds, driven by the intensity of the 

Siberian high vortex, appear to penetrate much farther south, carrying a measureable 

signature from its dust loading. 

 

A similar trend is also noted for MIS 6; however, in this case the vegetation structure 

appears to be more stable, with much lower % AP and an increase in % NAP, and more 

enriched δ13C (δ13C ≈ –13.0 to –19.5 ‰) which more clearly suggest an environment 

dominated by C4 vegetation, likely to be an established savannah grassland (Figure 5.5). 

The transition from MIS 7 to MIS 6 is marked by a distinctive, and apparently rapid, 

shift in towards more arid conditions, implying a major change in vegetation cover and 

subsequent exposure of the catchment surface. Synchronous with this shift are increased 

concentrations in Ti, K/Al (chemical weathering index) and the catchment erosion 

indicators, suggesting an influx of catchment material to the lake basin as a function of 

the change in vegetation cover. However, the redox parameters (in this instance, 

possibly representing influx of oxygen rich freshwater leading to Fe, Cu and Mn 

precipitation), lag behind these proxies during this transition, indicating that the proxies 

are slightly “out of phase” suggesting the processes controlling there sedimentary 

concentrations within the Tianyang system are temporally variable. 
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As the vegetation assemblage begins to re-establish in this more arid environment, 

evidence for catchment weathering begins to reduce. A significant change in the 

sedimentary regime is evident, with a shift from clay domainted depsoits to fine and 

coarse grained sands (Figure 5.4) suggesting high energy depsoition. Prime facie, this 

suggests a difference in the Tianyang palaeoenvironment response to change during 

MIS 6, relative to other sections of the Tianyang sedimentary archive. A striking feature 

of the MIS 6 record is centered approximately on ~185 ka BP, where the δ13C, redox 

proxies and catchment erosion proxies show an in-phase, rapid shift, primarily 

indicating a dramatic reduction of catchment weathering, but an increase in precipitation 

of redox sensitive elemtns (Fe, Cu and Mn) suggesting greater oxygeneation of the 

water column. The δ13C record shows a further enrichment, possibly indicative of a 

climax in arid conditions, suggesting that the redox sensitive elements may be 

controlled at this time by increased water column mixing due to wind regime (i.e. 

possible winter AM winds), though Ti concentrations are notably low during this glacial 

period, and relative to the Tianyang MIS 8 record (i.e. possible variable control on Ti 

record).   

 
The greatest variability in the vegetation records ioccurs during MIS 5, where the 

sedimentary archive returns to a clay/silt dominated sequence. The vegetation proxies 

appear to fit extremely well with the MIS 5 (sub-stage) variability in the SPECMAP 

δ18O record. MIS 5 has been documented in the loess/palaeosol records in north China 

(e.g. Chen et al, 1999) and the cave records in central and southern China (e.g. Wang et 

al, 2001; Yuan et al, 2004; Johnson et al, 2006, Cheng et al, 2009) all of which broadly 

follow northern hemisphere glacial – interglacial changes. For example, MIS 5e, 5b and 

5a in these records collectively point towards periods of humidity, probably 

characterised by relatively higher amounts of precipitation, suggesting abundant rainfall 

delivery from the ITCZ-AM regime. This variability is evident higher %AP and 

lower %NAP concomitant with relatively depleted (lower) δ13C values, indicating an 

environment dominated by C3 vegetation. In MIS 5e the δ13C are around –27 to –

30 ‰, %AP is ~80%, and there is evidence of wood macrofossils in the sedimentology. 

These point towards a return to a wet woodland/swamp type environment, though as 

sub-stage 5e progresses, the system appears to dry up and move back towards an open 

savannah-like environment (leading into MIS 5d). However, in this section of the 

sedimentary record, the vegetation and redox proxy records become decoupled from one 

another, suggesting a change in the mechanisms controlling the concentrations of Fe, 
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Mn and Cu in the sedimentary regime. During the interstadial periods (5e, 5c, 5a), the 

catchment erosion proxies and χ appear to be higher, suggesting an increase in chemical 

weathering in the catchment. Mn concentrations from Mis 5e towards present reduce 

dramatically relative to Fe and Cu. In comparison to Fe adn CU, Mn is more easily 

mobilsed under changing redox conditions. As the Lake Tianyang maar contined silting 

up, and thus reducing the sediment accommodation space, and ultimately, water depth, 

the redox boundary within the water column potentially became more responsive to 

seasonal variability (given its proximity to the sediment surface) resulting in a reduced 

residence time in anoxic conditions of Mn within the surface sediments. This 

continually, and rapid, overturing may therefore reduce the overall concentration, 

relative to Fe and Cu due to this rapid remobilisation. 

 

The Ti record, however, is less coherent, and appears to show no clear trend of high 

concentrations with more depleted or more enriched δ13C values, highlighting its 

decoupled nature from the vegetation trends in comparison with the lower section of the 

record. This suggests the mechanism(s) controlling Ti concentrations in the system have 

changed and may vary between catchment derived sources and windblown sources, 

making the overall interpretation of this record uncertain. 

 

5.6      Winter monsoon proxy 

Yancheva et al (2007) reported Ti concentrations, alongside χ, S-Ratio, Fe, Mn and 

total organic C, From the Holocene sedimentary record of Lake Huguangyan (adjacent 

to Lake Tianyang), and collectively interpreted them as evidence for changes in winter 

AM wind strength. This, they claimed, corresponded to changes in the transport of Ti 

laden dust from the loess plateaus in central and north China and changes in lake redox 

conditions. They proposed that, as the winter AM strengthened during cooler periods 

(e.g. glacial/stadials), which resulted in increased aridity and stronger, more persistent 

winter winds deriving from northern China, this increased the dust flux from the loess 

plateau leading to greater concentrations in the Huguangyan sedimentary record. The 

increase in Ti concentrations, concomitant with higher Fe and Mn concentrations (due 

to well oxygenated waters), high total organic C, χ and S-Ratio in the Lake Huguangyan 

Holocene sequence were interpreted as indicators for variability in the strength of the 

winter AM monsoon wind field (Yancheva et al, 2007). Ti was proposed as the primary 

proxy for the winter AM wind strength because of its insensitivity to lake redox changes. 
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Due to the small catchment size of Lake Huguangyan (~2.5 km2 surface area; ~3.5 km2 

catchment area), Yancheva et al (2007) assumed the primary source of Ti and magnetic 

minerals was aeolian during these periods of stronger winter AM winds. 

 

This hypothesis therefore suggests that high Ti concentrations should coincide with 

relatively depleted δ13C values in the Tianyang δ13C record, a decrease in % tree pollen 

and an increase in Poaceae pollen. Given the close proximity of Lake Tianyang to Lake 

Huguangyan (~100 km south), the small size of the Lake Tianyang catchment (~7.3 

km2), and the similarities in catchment geology (Ho et al, 2000), the Tianyang 

sedimentary record serves as an excellent opportunity to test the robustness of the 

winter monsoon wind strength proxy at the glacial – interglacial timescale and 

potentially extend its applicability. 

 

In the Lake Tianyang sedimentary record, the link between high Ti concentrations and 

glacial/stadial periods is complicated, and does not suggest a pervasive driving 

mechanism (i.e. changes in winter AM wind strength). For example, during MIS 8 

(northern hemisphere glacial conditions), a relatively unstable period in the Tianyang 

record characterised by a mixed vegetation assemblage, the Ti record appears to hold up 

the Yancheva et al (2007) hypothesis. This is supported by the coincidence of high 

Fe/Al, Mn/Al and Cu/Al concentrations and an increase in χ and relatively low 

concentrations of catchment erosion elements. A similar coincidence between the 

proxies is evident during the small excursion in MIS 7, suggesting a shift towards less 

humid conditions. % tree pollen rise by ~20% and δ13C ≈ –23.5 ‰, coupled with 

increased chemical wreathing in the catchment and increased oxygen levels in the 

bottom waters of the system. It is possible this co-variability in the records is an erosion 

event linked with a change in the type of vegetation. However, this relationship breaks 

down at the transition to, and throughout, MIS 6. The increase in Ti/Al concentration at 

the MIS 7/6 transition, a shift from C4 vegetation to C3 vegetation, corresponds with 

higher concentrations of Nb/Al, Ba/Al and K/Al, suggesting an increase in catchment 

weathering. Moreover, I note the anomalously low Ti/Al concentrations throughout 

MIS 6, a cooler period where Ti concentrations are hypothesised to be higher. 

Throughout the remainder of the record, high Ti/Al concentrations appear to coincide 

with warmer periods, for example MIS 5e, 5c, 5a, indicating an opposite trend from the 

proposed hypothesis (Yancheva et al, 2007) and from the lower sections of the 

Tianyang core. This suggests that sedimentary Ti concentrations do not ubiquitously 
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vary with changes in winter AM wind field position and/or strength implying its 

applicability for winter AM reconstruction within and between cores is questionable 

because (i) the dust loading during glacial periods is highly variable, (ii) the winter AM 

wind field does not directly cross the Leizhou peninsula during this period or, (iii) the 

Ti concentration does not reflect changes in winter AM wind strength.  

 

There are two important considerations that underpin the winter monsoon wind strength 

interpretation: (i) The concentration of clastic material in the Huguangyan and Tianyang 

sedimentary record and (ii) Ti concentration from catchment geology (Table 5.4). Zhou 

et al (2008) argue that the weathering in south China is intensive owing to the climate 

regime (high temperatures and precipitation) and suggest that weathering of the Ti rich 

basalt and laterite in the catchment (dominant in maar lake catchments in the Leizhou 

Peninsula, including Lakes Huguangyan and Tianyang) is an important local source of 

Ti in the sediments, which may dilute any windblown Ti signal. This point is refuted by 

Yancheva et al (2007) in the context of their S-Ratio and χ records, despite the known 

presence of Ti rich minerals in the Huguangyan catchment, namely ilmenite and 

titanomagnetite (Ho et al, 2000; Mingram et al, 2004; Yancheva et al, 2007), and the 

evidence for catchment erosion (Liu et al, 2000; Zhou et al, 2008; Han et al, 2010). In 

addition, Ti concentrations of source rock in the Leizhou Peninsula are reported at ~1.0 

– 1.5 %, and in the Loess and Palaeosol sequences from central and north China at ~0.4 

– 0.5 % (Ho et al, 2000; Zhou et al, 2008). XRF analysis of the Tianyang catchment 

rock indicate Ti concentrations to be ~0.8 – 1.6 %. Furthermore, Zhou et al (2008) 

argue that the flux of lithogenic materials in Lake Huguangyan, relative to the rate of 

dust flux from the Loess plateau, is considerably higher, which, given the locally 

sourced Ti, indicates that the record does not provide a pure winter monsoon wind 

signal.  

 
A recent investigation on the magnetic granulometry of the Huguangyan sedimentary 

record (Han et al, 2010) corroborated the findings of Zhou et al (2008), indicating that 

the grain size or magnetic minerals was primarily catchment sourced rather than from 

the Chinese loess plateau. Han et al (2010) reported that the primary magnetic mineral 

in Huguangyan is (titano) magnetite and showed that the grain size of the magnetic 

minerals in the sedimentary record was more closely correlated with the catchment 

geology than with loess.  They did not completely rule out the possibility of a 

contributory source from the Chinese loess plateau, however, Han et al. clearly suggest 
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the signal to noise ratio in the magnetic granulometry record in respect of the proposed 

winter AM wind strength of Yancheva et al (2007) is much lower than initially reported.  

 
In addition, the support from the % total OC, which Yancheva et al (2007) interpret as a 

bottom-water oxygenation proxy, may be compromised by the presence of siderite in 

the lake throughout their record (Mingram et al, 2004; Yancheva et al, 2007). It is 

known that siderite is not readily digested (if at all) by acid treatment (Larson et al, 

2008), suggesting a non-stoichiometric reaction in the sample material resulting in 

residual IC. Residual IC would subsequently increase the value of total organic C, 

indicating the quantification of presented by Yancheva et al (2007), and its support for 

changes in bottom water oxygenation, is highly questionable. In addition, Zhang and Lu 

(2008) questioned the applicability of the Ti record in the recent past by showing 

discrepancies with the proposed periods of stronger winter AM from the Huguangyan 

sedimentary record and the historical records. 

 
This, together with the contradictory evidence from the Tianyang record, implies Ti 

concentrations from the Tianyang sedimentary record is probably not a robust winter 

AM wind proxy at the glacial – interglacial timescale. I suggest the Ti concentration in 

the Lake Tianyang sedimentary sequence is primarily controlled by changes in 

catchment hydrology (i.e. weathering/erosion signal), but that aeolian sources are 

evident. Given the similar geological and climatic setting of Lakes Tianyang and 

Huguangyan, and the complications aforementioned, I go further and suggest that the Ti 

concentration in Lake Huguangyan sediments does not represent a reliable proxy for 

dust flux from the Chinese loess plateau, which undermines its reliability as an indicator 

for changes in winter AM variability. The relationship between the winter AM wind 

strength, sedimentary geochemistry and provenance proposed by Yancheva et al (2007) 

is far more complex than originally thought, though the emergent understanding appears 

to support changes in catchment hydrology as the primary controlling mechanism. 

Importantly, this could be driven by changes in summer AM precipitation, which adds a 

further seasonal complexity to the argument. 

 

5.7 Regional palaeoclimate comparison 

At the regional scale, this new record from Lake Tianyang maar represents one of the 

longest terrestrial palaeoclimate records in the southern AM region, and which rivals the 

cave speleothem records (e.g. Cheng et al., 2006) with respect to continuity, resolution 
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and time span. Specifically, the δ13C and XRF records have a resolution of ~ 600 years 

(at 8 cm sampling intervals), implying a near annual resolution for the χ record (5 mm 

sampling interval) though the interpretation of this record at lower than multi-centennial 

resolution is compromised by chronological uncertainties (and hence constraint on 

sedimentation rates), the limitation of the Tianyang system (i.e. the resolution with 

which the sedimentary archive has faithfully recorded palaeoenvironmental variability) 

and sampling strategy. Given these constraints, only a tentative and broad regional 

comparison (limited to glacial – interglacial scale changes) is feasible and no 

investigation of the phasing of these different proxy archives (i.e. lead/lag relationships) 

can be undertaken.  

 

The palaeoenvironmental records from the Chinese loess plateau (Guo et al., 2009) and 

from the hulu, Sanbao and Luizhiu cave speleothems (Wang et al., 2001; 2008) show 

distinctive glacial – interglacial scale variability, and in the case of the cave speleothem 

record, punctuated by stadial – interstadial scale variability. These records lend support 

to the theory that summer AM variability (i.e. implying broad-scale variability in 

precipitation regime) varies dominantly with northern hemisphere summer insolation at 

orbital timescales (e.g. Kutzbach, 1981; Prell and Kutzbach, 1985; Rooisgnol-Strick et 

al., 1998; Ruddiman, 2006). The Loess plateau records provide proxy evidence for 

variability in the summer and winter monsoon regime (Guo et al., 2009). Loess grain-

size is interpreted as a proxy for past changes in wind strength/intensity, with much 

coarser grain sizes prevalent during glacial/stadial periods, which is attributed to 

changes in the Siberian High airmass which, in itself, influences winter monsoon wind 

regime and continental aridity (e.g. Porter and An, 1995; Ding et al, 1995; Guo et al., 

2009). The chemical weathering indiex, derived from the Xifeng profile, reflects periods 

of increased soil productivity (e.g. palaeosol formation), influenced in part by the 

landward extent of precipitation and humidty (implying temperature) associated with 

the summer monsoon (e.g. Guo et al., 2000; 2009). The central China cave records are 

δ18O measurements of calcitic stalgtites, which have been interpreted as a proxy for 

changes in meteoric precipitation, proposed to relate directly to the strength/intensity of 

the seasonal summer monsoon (e.g. Wang et al., 2001; 2008; Yuan et al., 2004; Cheng 

et al., 2006).  

 

I compare the Tianyang δ13C with the Loess plaeteau records and cave records to 

provide a preliminary understanding of the newly developed Tianyang record in the 
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context of climate variability at glacial – interglacial timescales across continental 

China. This will provide a broad terrestrial gradient which may elucidate variations in 

land-sea thermal contrasts that are cited as integral to monsoonal climate (see Figure 

5.8). Similarities between the Tianyang δ13C record, the Loess plaeteau record and the 

cave δ18O records at glacial – interglacial timescales are evident which lend support for 

my interpretation of changes in aridity in Tianyang. During glacial periods, the Loess 

grain size increases significantly, a change reflected in the Tianyang δ13C by a shift 

towards more depleted values, followed by a reduction in soil formation processes in 

the Loess plateau. This broad trend appears relatively similar from MIS 9 through to the 

end of MIS 6, though the resolution of the Tianyang δ13C is not as superior as in the 

cave δ18O, and therefore does not neccassarily detect sub-orbital scale variability. In 

addition, there is support for the “event” during MIS 7, around ~245 ka BP, being 

representative of a period of stronger winter monsoon, which sees an increase in Loess 

plateau grain size and a similar shift towards depleted δ18O in the cave records, a slight 

depletion in δ13C, and an increase in sedimentary Fe, Cu, Mn and Ti. These collectively 

point towards a signifincat reduction in precipitation across China, suggesting more 

dominance of the winter monsoon winds.  

 

However, this apparent similarity in the records appears to fundamentally change during 

MIS 5, at a time when the internally phasing of the multiple proxies measured in the 

Tianyang core appear to change. For example, from ~145 ka BP to ~70 ka BP, the 

Tianyang δ13C and cave δ18O records appear to be in “anti-phase” with respect to the 

expected trend seen during MIS 9 through to the end of MIS 6. Specifcally, during the 

interstadials 5e, 5c and 5a in the Tianyang δ13C, where it is proposed that the 

environment was much more humid the cave δ18O suggest a dramatic reduction in 

precipitation (or, possibly, a shift in the moisture source region). At the same time, the 

Loess plateau records, compromised in part by their much lower resolution over this 

time period, appear to support the findings from the Tianyang archive. It is therefore 

possible that the cave δ18O (at least at this time) may not be recording changes in 

intensity or amount of precipitation, but could actually be a recorded of changes in 

moisture source region, suggesting the land-sea thermal contrast in south China is much 

weaker with respect to moisture delivery, with a potential alternative source being 

derived from the Indian monsoon region (longer transit period of moisture would 

explain difference in δ18O fractionation record in the cave records). 
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Figure 5.8: Comparison of Tianyang δ13C record with loess plaeteau grain size >32 µm 
(%) and associated weathering indiex (Guo et al., 2009) and central and eastern Chinese 
cave δ18O records (Wang et al., 2001; 2008; Yuan et al., 2004; Cheng et al., 2006). In 
the cave record plots, the red line represents data from hulu cave, the black line data 
from Sanbao cave and the blue line data from Luizhiu cave. 
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5.8 Synthesis and Conclusions 

The multi-proxy geochemical record from the Lake Tianyang maar presented here is the 

first long-term terrestrial record detailing glacial – interglacial palaeoenvironmental 

changes, in the far south of continental China. Lake Tianyang has undergone major 

changes in its evolution, the first of which was the recorded in the reduction of diatom 

abundance at ~160 m, coupled with with a slight increase in minerogenic content. The 

second, and most notable, was between ~53 m and 37 m, where diatoms gradually 

disappeared and the sedimentology became increasing dominated by fine- and coarse-

grained minerogenic material, alongside clear evidence for the presence of wet 

woodland/swamp like environment. These changes suggest Lake Tianyang began silting 

as a result of a reduction of sediment accommodation space and/or relatively lower lake 

levels. Although the mechanism(s) responsible for this major change in the system are 

unclear, neotectonic uplift has been proposed (Huang, 1993). 

 
The Lake Tianyang record shows evidence for significant changes in the type of 

vegetation in the catchment, with an emergent glacial – interglacial and stadial - 

interstadial imprint in the δ13C record, suggesting broad changes in temperature and 

precipitation patterns in south China. For example, during glacial periods (e.g MIS 8 

and MIS 6), the δ13C record and pollen spectra point towards a dominance of C4 

vegetation, where catchment erosion appears to be lower and bottom water oxygen 

levels high (i.e. huimid environment). Interglacials (e.g. MIS 9, MIS 7), however, show 

the opposite trend and imply a less humid environment characterised by grass-like 

vegetation.  

 
In addition, XRF elemental analysis indicates changes in lake water oxygenation levels 

and catchment processes also with a glacial – interglacial imprint, the definition of 

which diminishes from MIS 6 towards present. This lower signal-to-noise ratio in the 

XRF elements after MIS 6 is likely due to the continued silting up of the lake towards 

present, with regional – global scale changes in the palaeoenvironment being 

significantly masked by localised processes. Furthermore, changes in the overall 

concentration of any one catchment erosion proxy can vary between glacial – 

interglacial and/or stadial – interstadial periods due to preferential erosion of catchment 

bedrock with a slightly different geochemical composition. Where the δ13C record 

shows evidence for the MIS 5 stadials/interstadials, the relationship with the redox and 
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catchment erosion proxies breaks down, suggesting the mechanism(s) controlling their 

sediment concentrations alters, possibly dominated by more localised processes. The 

key findings of this chapter are: 

 
1. The Lake Tianyang sedimentary archive is apparently much older than previously 

reported. I present here an age estimation of ~320 ka BP for the upper 40m of sediment 

which contradicts previous estimations of ~45 – 50 ka BP for the upper 40 m (Chen, 

1988; Chen and Yang, 1989; Chen et al, 1990). The new suggestion is based on the 

correlation of pollen and δ13C data to the SPECMAP δ18O stack, with a degree of 

independent dating control by 14C dates between ~2.50 m and 7.50 m.  

 
2. Glacial – interglacial timescale variations, and stadial – interstadial variations (i.e. 

MIS 5), are well expressed in the Lake Tianyang sedimentary δ13C bulk OM record. 

This indicates that palaeovegetation patterns followed broad changes in global ice 

volume and associated sea-level change. Despite the limitations of the accuracy and 

precision of the δ13C data (~ 4‰), the Tianyang δ13C shows striking similarity to the % 

AP and %NAP data, suggesting that δ13C can still provide low amplitude information 

on changes in vegetation (i.e. C3 versus C4 plants). 

 
3. Change in the Ti/Al record does not ubiquitously represent changes in winter 

monsoon wind strength, as proposed by Yancheva et al (2007). Throughout the lower 

section of the Tianyang record (i.e. MIS 9 – MIS 6), there is a coherency between the 

vegetation proxies, Ti, redox sensitive parameters, χ and catchment erosion indicators, 

which support this theory. However, towards the end of MIS 6, and from MIS 6 through 

MIS 5, the coherency between the proxies capturing these processes breaks down, 

suggesting an increase in localised variability contributing to the elemental 

concentrations in the sedimentary record (e.g. catchment erosion; low lake levels), 

therefore diluting any regional – global scale palaeoenvironmental changes.  

 
4. A regional comparison of the new Tianyang δ13C record with palaeoenvironmental 

records from the Chinese Loess Plateau and central and eastern Chinese cave 

speleothem archives indicate broad similarities in change at glacial – interglacial 

timescales. During MIS 5, the relationship appears to change, and the comparison 

suggests a potential alteration in the strength of the land-sea thermal contrast in south 

China. This implies an alternative primary moisture source to the region during this 

time, reflected in the cave δ18O records, which may be from the Indian monsoon region. 
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6. Summary 

The primary aims of this thesis were: 

1. To investigate the effect of pre-analysis acid treatment methods on C/N and δ13C 

values of OM in a range of environmental materials. (Chapter 2) 

2. To investigate the effect of pre-analysis acid treatment methods on δ15N values of 

OM in a range of environmental materials. (Chapter 3) 

3. To investigate the effect of pre-analysis acid treatment methods on C/N, δ13C and 

δ15N values of OM in a down-core sedimentary sequence. (Chapter 4) 

4. To develop of multi-proxy record of environmental change from Lake Tianyang. 

(Chapter 5) 

6.1 Effect of acid treatment on C/N and δ13C of organic material 

Pre-analysis acid treatment methods, necessary for the measurement of C/N and δ13C 

values of OM, carry two important inherent assumptions: (i) the influence on sample 

OM is either negligible or systematic and (ii) that the acid reagent and method 

employed completely remove IC from the sample material, which has not been 

previously investigated in a systematic manner. Therefore, the assumption underpinning 

decades of research on C/N and δ13C of OM had not been validated. This implied that 

there was no robust understanding of the reliability or otherwise of the measured data 

(i.e. the proxies).  

 

The comparative study presented in Chapter 2 was the first such systematic study on the 

effects of pre-analysis acid treatment methods on OM from environmental materials. It 

has been clearly demonstrated that the assumptions underpinning the pre-analytical 

methods are seriously flawed, and that C/N and δ13C values of OM depended upon the 

acid treatment. This biasing by acid treatment can be (and normally is) several orders of 

magnitude higher than instrument precision (here ~0.2 for C/N and; 0.2 ‰ for δ13C), 

and was shown to be highly non-linear. Biasing in C/N was in the range of ~1 – 120 and 

δ13C in the range of ~0.2 – 7.2 ‰, with C and N values biased in a non-proportional 

manner. Consequently, the environmental interpretation of the data becomes unreliable 

(e.g. difference between interpreting a terrestrial OM source or an aquatic OM source).  

The effects of acid treatment varied substantially between sample materials, within and 
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between methods, as did the size and direction of the bias (i.e. samples from different 

environments). Across the methods tested, I demonstrated a lack of coherency in the 

application of any one method or acid reagent. 

 

6.2 Effect of acid treatment on δ15N of organic material 

A progression of the comparative study to that presented in Chapter 2 was undertaken in 

the context of the increased application of “dual-mode” isotope analysis (i.e. the 

simultaneous measurement of δ13C and δ15N from the same sample aliquot). This 

implies an increase in the measurement of δ15N values in OM after acid treatment of the 

sample, in comparison with the more common approach of measurement of δ15N values 

in OM on untreated samples. Similarly to the findings of Chapter 2, it is shown that 

measured δ15N values of OM between pre-analysis acid treatment methods are 

significantly different, and that the strength of HCl and the type of capsule the sample 

was combusted in (e.g. samples combusted only in Ag capsules produced lower δ15N 

values) could contribute considerably to variability on the measured data (i.e. bias). The 

bias on δ15N was as high as ~1.5 ‰, significantly above the instrument precision (here 

~0.3 ‰). Further, it was noted that δ13C and δ15N values were altered within and 

between methods in a disproportionate and non-linear fashion. This is not unsurprising 

given that elemental C and N varied in a non-linear fashion under acid treatment 

(Brodie et al., 2011a; Chapter 2). This provides further evidence that indicates a lack of 

coherency in the application of any one method or acid reagent and supports the 

contention that the method followed can directly influence the reliability of δ15N 

(including measurement on untreated samples).  

 

This therefore precludes a “dual-mode” analysis approach to C and N isotopes on bulk 

OM and subsequently highlights the potential for different organic compounds, within 

and between different environmental samples and acid treatment methods, to respond in 

an unpredictable manner to acid treatment. It is now essential that a molecular level 

characterisation of acid treated materials be undertaken to develop the scientific 

understanding of the bias introduced to sample OM by acidification.   

 

Additionally, it is widely assumed that IN has a negligible influence on elemental and 

isotopic N data, and is therefore not commonly quantified. Rather, the IN has been 

estimated from a bi-plot of %C and %N, with assumed linearity, and used to moderate 
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interpretations of OM based on an offset from a perfect linear relationship between %C 

and %N. I showed this approach to IN estimation, and subsequent support for OM 

interpretations, to be an aberration. In particular, this approach is undermined by the 

flawed assumptions on (i) linearity and co-variability of %C and %N within bulk OM 

and (ii) the influence of pre-analysis acid preparation methods on elemental and isotopic 

C and N concentrations. IN should therefore be quantified on separate sample aliquots 

and a correction applied.  

 

6.3 Effect of acid treatment on C/N, δ13C and δ15N on organic materials in a down 
core sequence 

Given a more robust understanding of the biasing by acidification on elemental and 

isotopic C and N of organic materials derived in Chapters 2 and 3, and the emergence of 

reduced accuracy and precision on measured values, it was necessary to investigate the 

impact on the measurement and interpretation of bulk OM from a down-core 

sedimentary sequence. A section of sediment was analysed from the Lake Tianyang, for 

C/N, δ13C and δ15N values of bulk OM. The analysis illustrated sample horizons with no 

difference within and between pre-analysis acid treatment methods, and untreated 

samples (i.e. within instrument precision), and sample horizons with considerable 

differences within and between pre-analysis acid treatment methods, and untreated 

samples. This re-iterates the inconsistency in the application of any on particular 

method in a down-core context (i.e. bias on measured values is inevitable, varying in its 

magnitude between sample horizons). In particular, bias on the measured C/N, δ13C and 

δ15N values were evident from inefficient removal of IC, likely due to differential rates 

of removal between acid reagents and methods, and the bias of acidification on the 

organic fraction of the sample material. For IC, this is problematic as acidification is 

widely assumed to completely remove calcite based IC, however more robust forms of 

IC such as dolomites and siderites, are more difficult (if not impossible) to completely 

remove from samples, suggesting the extent of bias attributed to the measured values 

may not be clear using the methods or reagents investigated here. Bias on measured data, 

above that of instrument precision, was in the range of ~1 – 100 for C/N values; ~4 – 7 ‰ 

for δ13C values; and up to ~1 ‰ δ15N values. These findings are similar to those 

presented in Chapters 2 and 3, and makes the interpretation of C/N, δ13C and δ15N 

values, in the context of OM provenance and type, highly problematic. 
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6.4 Multi-proxy palaeoenvironmental reconstruction from Lake Tianyang 

The multi-proxy geochemical record from Lake Tianyang is the first long-term 

terrestrial record detailing glacial – interglacial palaeoenvironmental changes, in the far 

south of continental China. I suggest a new chronostratigraphy from those previously 

published, proposing the upper 40.00 m of sediment in the Lake Tianyang basin is ~320 

ka old. During this period, Lake Tianyang has undergone two major changes in its 

evolutionary history, possibly due to local neotectonic uplift, resulting in the system 

silting up and reducing accommodation space in the basin. Despite this change in 

system behaviour, the geochemical proxies show clear evidence for changes in 

vegetation type (pollen and δ13C), water column oxygen levels and catchment erosion at 

the glacial – interglacial scale. However, the glacial – interglacial imprint on water 

column oxygenation and catchment erosion diminishes after MIS 6 due to an increase in 

locally derived noise (i.e. local driving mechanism exerting stronger influence on record 

than regional – global scale mechanisms).  

 

Moreover, despite the inherent limitations to the application and interpretation of δ13C 

from bulk OM, I show that δ13C of bulk OM can still be used to provide 

palaeoenvironmental information on high amplitude changes (e.g. glacial – interglacial 

scale shifts). These interpretations are strongly supported by coincident changes in 

pollen spectra derived from the same core, suggesting a major change between C3 

versus C4 plants. Furthermore, I show that Ti/Al, proposed as a proxy for reconstructing 

winter AM variability, does not provide a coherent, ubiquitous signal throughout the 

Tianyang record, and suggest caveats to the interpretation from Lake Huguangyan. It 

appears that, whilst Ti may be derived from central and northern Chinese loess 

sequences, the local imprint of Ti from the catchment of both lakes substantially 

reduces the signal-to-noise ratio rendering a robust interpretation of aeolian derived Ti 

difficult. 

 

Finally, a regional comparison of the Tianyang δ13C of bulk OM provides tentative 

evidence for the change in mosiutre source during MIS 5 to China. This is corroborated 

by changes in the cave δ13C of bulk OM fractionation suggesting a weaker land-sea 

thermal contrast in south China possibly leading to moisture delivery from the Indian 

monsoon region. 
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