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Abstract 
 
This thesis investigates a radiocarbon dated composite sediment core from the 

Skagerrak basin (GC372650) and uses foraminifera to reconstructs the late 

Quaternary palaeoceanographic evolution of the North. The Skagerrak is an ideal 

location to reconstruct oceanographic change as it is critical in controlling water 

exchange between the Baltic Sea and the North Sea. Foraminiferal assemblage 

zones effectively highlight variations in hydrological conditions throughout the 

core. Sediments deposited between 12,600 and 11,200 cal. BP reflect cooler, ice 

proximal conditions during the Younger Dryas, with water temperatures warming 

throughout this period. The opening of a new outlet across central Sweden from 

the Baltic occurred at c. 11,200 cal. BP, and existed for about 1000 years, before 

its gradual closure at c. 10,500 cal. BP. Increased Atlantic inflow during the early 

Holocene is interrupted by a cooling event at c. 9400 cal. BP, though it is unclear if 

this was part of a wider climatic cooling, or a strengthened North Jutland Current. 

 

The Littorina transgression facilitated the initiation of the modern hydrological 

system at c. 8500 cal. BP with the opening of the English Channel; this was 

evidenced by a sudden bloom in Hyalinea balthica. Shortly after, around 8300 cal. 

BP, the opening of the Danish Straits occurred, allowing exchange between the 

North Sea and the Baltic Sea. Outflow from the Baltic was greatest in the 

subsequent 2000 years but decreased after 6000 cal. BP. At the same time, a 

strengthening of the South Jutland Current (SJC) and corresponding drop in water 

temperatures occurred. After the weakening of the SJC around 3000 years later, 

conditions were relatively stable with increasing Atlantic Inflow, though a distinct 

cooling between c. 3000 and 2200 cal. BP may correspond to ‘neoglacial’ cooling 

observed elsewhere. 

 

Between 420 and 160 cal. BP, the return of cold water fauna indicate a drop in 

temperatures due to the Little Ice Age. The duration of this cold phase in 

GC372650 is considerably shorter than in other investigations, only showing 

change during the maximum of the LIA. Following this, recent oxygen depletion, 

evidenced by a sudden increase in Textulari earlandi, is probably a result of 

increased specimen abundance due to additional nutrient input. Although 

eutrophication cannot be ruled out as a possibility, variations in the NAO index 

seem to correlate well with the timing of oxygen depletion.  
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Chapter 1.  Introduction 
 

 
 

1.1 – Introduction 

 

This investigation aims to reconstruct environmental change in the eastern North 

Sea during the Late Quaternary by identifying changes in foraminiferal 

assemblages in a sediment core from the Skagerrak basin. 

 

Whilst the focus of this study is the Skagerrak, the significance of its findings and 

the initial motives for the research are actually related to the Baltic Sea due to the 

exchange between these two water bodies. This research is supported by 

“INFLOW”, a European project aiming to understand the mechanisms contributing 

to environmental change in the region. Immense pressure is placed upon the 

resources of the Baltic Sea as it supports 85 million people from 14 different 

countries (Rönnberg & Bonsdorff, 2004). As a result, it has experienced significant 

change in the 20th/21st century, caused by both environmental and anthropogenic 

factors. The fragility of the Baltic Sea has long been recognised, with Fonselius 

(1972) claiming it to be one of the most contaminated seas on the planet, though it 

is only recently that increased political awareness has led it to become a focus of 

Baltic Sea research. 



William Dickens   
 

 

 2 

 

One of the largest challenges facing the Baltic Sea is eutrophication. This is not a 

new problem, with Elmgren (1989) observing an increase in organic carbon of 70-

190% and a concurrent increase in productivity of 30-70% between 1900 and 

1980. Stålnacke (1996) estimates that around 1.3x106 tonnes of nitrogen and 

59x103 tonnes of phosphorous are released into the Baltic every year. Higher up 

the trophic ladder, it is believed that fish are adversely impacted. Olsson et al., 

(2012) suggest environmental change is altering the ecological structure of fish 

populations in the Skagerrak, whilst fishing practices in the Baltic have put severe 

stress on stocks (Ådjers et al., 2006). Furthermore, it is expected that climate 

warming will exert additional stresses on the ecosystem. Increased precipitation, 

as a result of warmer conditions, will impact upon the transfer of biomass to higher 

levels in the trophic system, reducing its efficiency (Wilkner & Andersson, 2012).  

 

All these problems are worsened by the limited exchange of water between the 

Baltic and the North Sea, limiting the renewal of water. This makes the Baltic Sea 

extremely sensitive to change, both anthropogenic and natural. Given the 

challenges facing the Baltic Sea, a more sustainable use of its resources is 

needed. A critical element in achieving this sustainable use is to gain a better 

understanding of its connection to the surrounding regions, in particular the 

oceanographic system through the Skagerrak and Kattegat, into the North Sea. 

This project aims to contribute to that understanding of the natural processes 

operating in the region.  

 

Firstly, it is necessary to set modern changes in the Baltic in the context of past 

environmental changes. The Baltic itself can be problematic in terms of 

reconstructing the palaeoenvironment, mainly due to poor preservation of proxies, 

whereas the Skagerrak provides extremely well preserved and high-resolution 

records since the last deglaciation (Knudsen et al., 1996a; Gyllencreutz, 2005; 

Erbs-Hansen et al., 2011a). By reconstructing these past environmental changes 

in the Skagerrak it will enable future investigations to assess the sensitivity of the 

Baltic Sea, enabling more precise calibration of models predicting its response to 

future environmental changes.  
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The Skagerrak, however, is not important simply because of its potential for the 

creation of high resolution records. The Skagerrak itself is fundamental in the 

circulation of the whole North Sea but, perhaps more importantly, it also controls 

the exchange of water between the Baltic Sea and the North Sea (Nordberg, 

1991). All water flowing in or out of the Baltic passes through the Skagerrak. 

Hence, understanding the specific palaeoceanographic evolution of the Skagerrak 

is extremely valuable, as it will store records of variable exchange between the 

Baltic and the North Sea.  

 

This is particularly important, as one of the threats facing the Baltic Sea is its 

declining salinity and, hence, productivity. Water renewal in the Baltic Sea is 

governed largely by topography, differences in sea level and freshwater forcing 

(Madsen & Højerslev, 2009). It is only in exceptional circumstances that high 

salinity water from the North Sea is able to flow freely into the Baltic during events 

referred to as Major Baltic Inflows, MBI (Schinke & Matthäus, 1998). These events 

have been linked with low sea level in the Baltic and a prolonged period of 

intensified winds (Matthäus & Franck, 1992; Schinke & Matthäus, 1998), though 

generally such events are generally poorly understood.  

 

Weak to moderate MBI occur every 1 - 2 years, however strong MBI occur far less 

regularly, approximately every 5 – 10 years (Matthaüs & Franck, 1992). Despite 

the irregularity of these MBI, they are fundamental to the ecosystem of the Baltic, 

ensuring that, every few years, a large volume of high salinity water enters the 

Baltic. Consequently, a new and extremely important direction in Baltic research is 

the aim to develop a better understanding of these events. This is made even 

more critical by recent research suggesting the regularity of these inflow events 

has declined, with the last MBI occurring over c.20 years ago (Matthäus et al., 

2008). Whilst the Skagerrak is ideal for reconstructing general exchange between 

the North Sea and the Baltic, it may also provide evidence of these MBI’s.  

 

In addition, by reconstructing the evolution of the Skagerrak Basin it is possible to 

develop a picture of the palaeoceanographic evolution of the entire North Sea; this 

is extremely valuable, not simply for its significance to Quaternary Science or its 

contribution to the understanding of northern Europe’s climatic and oceanographic 
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development, but because it provides a record of the water properties that will 

have entered the Baltic. This record is highly important as variations in properties 

such as salinity and temperature have significant effects on the ecology of the 

Baltic and surrounding land masses. 

 

Finally, given the high sedimentation rates in the Skagerrak (Gyllencreutz et al., 

2005), it is possible to create a high-resolution record of modern environmental 

change; this is extremely pertinent to the Baltic Sea because, to fully understand 

the modern changes that are occurring within the Baltic, it is necessary to 

understand the changes that are occurring around it.   

 

Clearly, this investigation is able directly to support the objectives of INFLOW, and 

will provide valuable data concerning the relationship between oceanographic 

changes in the North Sea and environmental changes in the Baltic. However, it is 

important to note that the primary focus of this research it to reconstruct 

palaeoceanographic development of the North Sea. Nonetheless, it will pay 

particular attention to the variations in water entering the Skagerrak, its exchange 

with the Baltic Sea and more recent, potentially anthropogenic change.  

 

As mentioned earlier, the location of the Skagerrak and the nature of the 

hydrological system within the North Sea make it an ideal location to reconstruct 

environmental change through time. Numerous different water masses affect the 

Skagerrak, with the most significant arriving from the North Atlantic and the 

English Channel. As a result, sediments deposited in the Skagerrak provide 

exceptional records of changing environmental conditions through time (Knudsen 

et al., 1996a; Knudsen et al., 1996b; Jiang et al., 1997; Klitgaard-Kristensen et al., 

2001; Gyllencreutz, 2005; Gyllencreutz & Kissel, 2006; Erbs-Hansen et al., 2011a, 

2011b etc.). By analysing proxy records from marine sediment cores in the 

Skagerrak, it is possible to reconstruct changes in the water column and, hence, 

reconstruct the palaeoceaonographic evolution of the Skagerrak; this is enhanced 

by the potential for extremely high resolution records. 

 

Given its suitability, it is not surprising that this area is relatively well studied. 

However, previous work has shown that there are clear variations between 
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studies, indicating that different areas within the Skagerrak have responded 

differently to past environmental changes. Discrepancies in dating calibration 

between studies, as well as variations in the resolution amplify this problem, 

making precise dating of events difficult. Consequently, additional work in this area 

is extremely valuable in helping to constrain the timing of events as well as their 

magnitude and extent, both historic and current.  

 

Additionally, most studies reconstructing the palaeoenvironmental history of the 

Skagerrak use marine cores taken from depths of less than 350m. This study will 

examine a marine core from much deeper in the Skagerrak, thus creating a new 

record of deep water evolution in the Skagerrak. This may provide a better 

understanding of the timing and magnitude of hydrographic developments, making 

it a significant contribution towards the scientific understanding of this region.   

 

Overall, It is clear that, given the problems faced in the Baltic Sea, more work is 

needed to help understand the relationship between the Baltic and its surrounding 

areas, as well as accurately constrain the relative impacts of modern natural and 

possibly anthropogenic change. Whilst multiple studies have been carried out in 

the Skagerrak before, distinct variations in findings mean more work is needed to 

fully understand the palaeoceanographic evolution of the Skagerrak basin. 

Additionally, a study in the deep Skagerrak may provide a better record of change 

through time. Thus, the findings from this research will help to contribute to 

scientific understanding of the long-term evolution of the areas surrounding the 

Baltic Sea, as well as to provide valuable data to INFLOW concerning variations in 

water exchange through time and the relative impact of modern anthropogenic 

change. 

 

1.2 - Project Aims 

 

The aim of this project is to reconstruct the palaeoceanographic development of 

the Skagerrak basin. It will reconstruct fluctuations in the hydrological system 

across the North Sea throughout the late Quaternary, and, in doing so, contribute 

to the understanding of climatic and oceanographic changes since deglaciation. It 

also aims to reconstruct variations in exchange between the North Sea and the 
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Baltic Sea, gaining an understanding of their complex relationship through time. To 

achieve these aims, a number of objectives have been set out. 

 

 

1.3 - Research Objectives: 

 

1) To identify changes in benthic foraminiferal assemblages from a gravity 

core and associated multi-core from the Skagerrak Basin. 

2) Based on the ecology of the benthic foraminifera, to identify changes in 

environmental conditions through time. 

3) Using the benthic foraminiferal assemblages, in combination with other 

proxy data collected as part of the broader project, to identify changes in 

palaeoceanographic conditions through the late Quaternary. 

4) Based on the high resolution data from the multi-core in combination with 

the longer record from the gravity core, to assess the relative influence of 

human impact on the environmental conditions within the Skagerrak Basin.  
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Chapter 2. Environmental Setting  
 

 
 

2.1 - Modern Environmental Setting 

 

Figure 1 shows the location of the Skagerrak basin, which forms part of the 900 

km long Norwegian Trench that runs along the southern coast of Norway. With a 

maximum depth of 700 m (Nordberg, 1991) it is considerably deeper than the 

average of the North Sea which is just 98m, though some parts of the southern 

Skagerrak are shallower with average depths of around 150 m (Jiang et al., 1997). 

A sill at 270m separates the basin from the remainder of the North Sea (Rodhe, 

1987). 

 

The narrow Kattegat area north of the Danish Straits restricts the flow of water 

between the Skagerrak and the Baltic Sea and, together, the two act as a large 

estuary (Nordberg, 1991) between the higher salinity North Sea, 30-35‰, and the 

more brackish Baltic Sea, 8-12‰ (Jiang et al., 1997). It is this proximity to the 

Baltic Sea and the restrictions the narrow passage imposes on circulation into the 

Baltic that make the area so important when examining past and future 

environmental change in the region. 
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2.2 - Modern hydrological system 

 

As shown in figure 1, Skagerrak circulation is cyclonic, driven primarily by the 

variations in salinity and mixing between the outflowing Baltic water and inflowing 

North Atlantic water (Rodhe, 1996). Nordberg (1991), however, suggests that the 

system is more complex than this, and believes it is controlled by three main 

factors: large scale atmospheric patterns, ocean circulation and the outflow of 

water from the Baltic Sea. These factors combine to create a complex and 

dynamic system.  

 

The Atlantic Water (AW) enters the Skagerrak basin via the southern trench 

current (STC) at a depth of 100m (Talpsepp et al., 1999). The characteristics of 

this inflowing AW are high salinity (>35‰), stable temperatures between 6.0C-

6.5C, though this sometimes falls to below 5C (Mork et al., 1976; Larsson & 

Rodhe, 1979), and a high oxygen content. As the AW reaches the Swedish coast, 

it turns north in the Skagerrak and then west along the southern Norwegian trench. 

It remains close to the coast as it leaves the Skagerrak as the Norwegian Coastal 

Current (NCC). 

 
Another input of Atlantic-sourced water comes from the Central North Sea Water 

(CNSW). This water flows into the Skagerrak at a depth of 70 m (Rise et al., 

1996). As this flows into the Skagerrak along the north coast of Denmark, it mixes 

with the North Jutland Current (NJC). This is formed from South North Sea water 

(SNSW) as well as water from the South Jutland Current (SJC) which is mainly 

derived from the English Channel. Once the NJC and the CNSW enter the 

Skagerrak-Kattegat, they mix with the lower salinity water from the Baltic (BW) in 

the Baltic Current (BC). This water then flows out to join the AW as the NCC. 

There is only a very small tidal range in the area, limited to around 20 cm 

(Nordberg 1991), ensuring it has little impact on the current system. 

 

2.3 - Skagerrak bathymetry and sedimentation 

 

Seismic studies have shown the Skagerrak to have a thick infill of sediment, with 

two plateaux at about 550m and 700m (van Weering et al., 1987).  The Norwegian 
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slope of the trench is relatively steep and irregular, whereas the southern slope 

has a far more gentle gradient and concave shape (van Weering et al., 1987). 

 

The Skagerrak acts as a sediment trap for material derived from the North Sea, 

and the Baltic Sea via the Kattegat. This is primarily driven by a reduction in water 

velocity, as the currents turn anti clockwise in the Skagerrak, shown in figure 1, 

moving into deeper waters (Rodhe & Holt, 1996). It is typically fine grained 

material deposited in the deeper areas, with coarser grained material in shallower 

regions. However, sandy sediments are prevalent down to around 200m on the 

Danish Skagerrak coast, a result of the hydrographical system (Conradsen et al., 

1994). The region also acted as a sediment trap during the Holocene, with 

postglacial sediment deposits up to 200 m thick around Skagen spit (Fält, 1982), 

see Skagen 3 core on Figure 3 for approximate location.  

 

Due to the nature of the current system around the Skagerrak, sedimentation rates 

can be extremely high, with modern deposition rates of around 1 cm yr-1 at site 

MD99-2286 (Gylencreutz et al., 2005). There is, however, considerable spatial 

variation, with Hass (1996) suggesting the sedimentation characteristics respond 

to variations in local hydrology and climate. Further to this, temporal variations are 

also observed, with Jiang et al. (1997) noting much slower sedimentation before 

9000 BP.  

 

2.4 - Sediment and water flux 

 

In terms of water flux, estimates of mean water inflow into the Skagerrak are 

between 0.5 – 1.0x106 m3s-1 (cf. Rodhe, 1996). Rydberg et al. (1996) suggest as 

little as 0.05 x106 m3s-1 may arrive from the southern North Sea, with up to 90% 

arriving from the northern North Sea (Otto, 1976). Modelling performed by Winther 

& Johansson (2006) suggests that around 50% of all Atlantic water inflow mixes 

with fresh/brackish water before it leaves as the NCC. They suggest that most of 

this mixing occurs in the inner Skagerrak, where outflowing water from the Baltic 

Sea meets with the Atlantic water.  
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In terms of sediment flux, the SJC is the most erosive of the currents and 

transports extremely high concentrations of suspended sediments (Eisma & Kalf, 

1987). This is a result of the easily erodable, sandy sediments that comprise most 

of the northwest coast of Denmark. Despite the high concentrations of sediment 

within this water, the SJC is still a relatively small contributor of sediments to the 

Skagerrak as the volume of water input is low.  

 

2.5 - Deep water renewal 

 

A distinct stratification exists in the Skagerrak, largely due to the sill and, although 

there is high seasonal variation in the strength of the stratification (Larsson et al, 

2007), mixing between the two layers is irregular. It is only during late winter/early 

spring in certain years that deep water renewal can occur (Ljøen & Svansson, 

1972). During cold winters, a large mass of high density water builds and 

cascades over the edge of the Skagerrak basin. During these renewals of deep 

water, temperatures can drop by up to 2°C (Ljøen & Svansson, 1972; Aure & Dahl, 

1994). These are referred to as cascading events. 

 

This cascading of water is, however, not regular. Consequently, in the deeper 

parts of the Skagerrak, below about 400 - 500m, deep water renewal can be slow 

with stagnant water persisting for several years (Ljøen & Svansson, 1972). Aure & 

Dahl (1994) suggest the renewal occurs every 3-4 years with an average 

residence time of 25 months. They examinined nutrient cycling in the Skagerrak, 

showing that the average oxygen depletion rate during the anoxic periods is about 

0.04ml l-1month-1. They find no noticeable variation in this depletion rate through 

time. An oxygen concentration minimum occurred in 1980 (just 4.8ml l-1) due to an 

abnormaly slow renewal  rate which resulted from warmer temperatures the 

preceeding years. Above the sill depth, water renewal may well be continuous, 

resulting from the cyclonic circulation (Rodhe, 1987).  

 

  



William Dickens   
 

 

 12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 3 - Palaeoenvironmental development 
 

 
 

A detailed review of the current litereature regarding glacialogical history, 

hydrological development and climatic history of the Skagerrak and wider North 

Sea basin is presented below. The locations of the sites discussed are presented 

in figure 3. All ages are expressed in calibrated carbon years BP.  

 

3.1  -  Late Glacial  

 

Deglaciation in the Skagerrak began around 18,000 cal. BP (Larsson et al., 2007), 

though some put this slightly later, between 18,000 – 16,000 cal. BP (Lundqvist & 

Wohlfarth, 2001). Once deglaciation commenced, it is likely to have been 

extremely rapid (Björck, 1995; Lundqvist & Wohlfarth, 2001). Figure 2, adapted 

from Gyllencreutz et al. (2005), compiles records from numerous authors, 

demonstrating the stepped retreat of the ice front away from the Skagerrak after 

15,400 cal. BP. It shows that by about 15,000 cal. BP, the ice front had retreated 

from the central/south Swedish coast, and had retreated to the mouth of Oslo 

Fjord by around c. 14,000 cal. BP. By c. 10,500 cal. BP, the ice front had retreated 

beyond Oslo Fjord and both the Norwegian and Swedish coast. 
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Marine conditions and the inflow of Atlantic water into the North Sea and the 

Skagerrak occurred around 15,000 cal. BP (Klitgaard-Kristensen et al., 2001; 

Larsen et al., 2012). This period is represented in figure 3A. During this interval, 

the Skagerrak is likely to have resembled a fjord like embayment (Gyllencreutz et 

al., 2006), with relatively weak cyclonic circulation. Sediments deposited in the 

Skagerrak during this interval show glacimarine conditions (Knudsen et al., 1996a; 

Larsson, 2007), as do sediments further north off the west coast of Norway 

(Klitgaard Kristensen et al, 2001). Björck (1995) suggest that an ice calving margin 

would have existed along the south coast of Norway and eastern Skagerrak – this 

would account for the glacimarine sediments found in numerous investigations. 

This is in agreement with Gyllencreutz et al. (2005). 

Figure 2: Edited from Gyllencreutz et al. (2005): Graphic showing the ice 
marginal zone over 8 time periods in the north eastern Skagerrak. 
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The termination of the Younger Dryas at around 11,500 cal. BP, with the transition 

away from ice proximal conditons, has been observed in the Skagerrak by a 

number of authors at MD99-2286 (Erbs-Hansen et al., 2011a), Skagen 3/4 

(Knudsen et al., 1996a) as well as further north at Troll 8903-2803 (Klitgaard-

Kristensen et al., 2011, see figure 3. However, additional work on MD99-2286 

showed ice proximal conditions until slightly later, around 11,300 cal. BP 

(Gyllencreutz, 2005; Gyllencreutz & Kissel, 2006). Larsson (2007), working in the 

eastern Skagerrak-Kattegat, also found ice proximal sediments deposited up to 

11,300 cal. BP, though they inferred reduced glacial meltwater input at this time, 

indicating significant ice retreat. However, this suggests an ice calving front may 

still have existed in the Skagerrak. In either case, conditions throughout the water 

column during this period would have been cool.  

 

The presence or absence of ice rafted debris (IRD) is a good indication of the 

proximity of an ice calving front. Through acoustic profiling and sedimentological 

analysis, van Weering (1982) established that IRD deposition had terminated by 

11,300 cal. BP in the southwest Skagerrak. This appears to coincide with 

estimates from Stabell et al. (1985) and Werner (1985) who examined grain size 

characteristics on the GIK cores to infer a decrease in IRD during the early 

Preboreal. Despite this, Gyllencreutz (2005) found IRD in MD990-2286 up until 

10,700 cal. BP. He also observed IRD at 10,200 cal. BP, though this is more likely 

to have resulted from the Glomma event, a major outburst flood that occurred in 

southeast Norway, releasing around 100 km3 of water in approximately 10,200 cal. 

BP. Iceberg scours and other geomorphological features were used to reconstruct 

the event by Longva & Bakkejord (1990) and Longva & Thoreson (1991). 

Excluding this event, Skagerrak records indicate that a discharging ice shelf was 

still present in the Skagerrak, right up until 11,300 BP and possibly later. 

 

3. 2 - Formation and drainage of Baltic Ice Lake 

 

An extremely important event in the development of the wider North Sea and 

Baltic area was the formation, and drainage, of the Baltic Ice Lake (BIL). During 

the deglaciation of the Scandinavian ice sheet, a proglacial lake formed in front of 

the retreating ice front, with the outlet in the western Baltic, joining to the North 
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Figure 3: Edited from Gyllenreutz et al. (2006) showing the glacial extent (white areas), land 
configuration (dark shaded areas) and hydrological system at four time slices, 14,000 cal. BP, 
11,200 cal. BP, 10,200 cal. BP and 8,100 cal. BP. The graphic also shows the core locations of 
previous core sites examined in this section (Tr = Troll Cores, GIK = GIK cores, MD = MD99-
2286, Sk = Skagen 3/4, HG = Horticultural Garden, Sol = Solberga). In figure 3B, NS = Narke 
Strait, OSS = Otteid-Steinselva outlet and US = Uddevalla Strait. For reference, the BIL would 
have been located towards the east, just outside of this image. 
 
The acronyms for the different hydrological currents are the same as in figure 1. For discussion 
on the numbers, see Gyllencreutz et al. (2006) 
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Sea through the Öresund outlet, in much the same location as present day. The 

early history of this proglacial lake is slightly complex. Due to isostatic uplift 

following deglaciation, the Öresund strait (BIL threshold) began to rise above sea 

level (Björck, 1995).  Compensating this, the sill was initially eroded to remain at 

sea level (Björck, 2008). However, once all of the glacial, easily erodible 

sediments had been removed, the bedrock of the sill was reached – it is likely that 

this produced the modern topography of the Öresund straits. At this point in time, 

the water depth began to shallow as the sill continued to rise above sea level. 

Consequently, water velocity through this outlet began to increase (Björck, 2008). 

 

Ultimately, the water velocity would have reached a limit, beyond which it could no 

longer increase. As a result, the level of the BIL began to rise above sea level. In 

doing so, it created a waterfall (Björck, 2008) between the BIL and the North Sea. 

An important development occurred 13,000 cal. BP when the Scandinavian Ice 

sheet retreated beyond the northern point of Mount Billingen (Björck, 1995). Mount 

Billingen is just to the south west of the Narke Strait; see figure 3B. Once the ice 

sheet had retreated north of this feature, the BIL was able to drain more rapidly 

into the North Sea, initially occurring subglacially but soon occurring proglacially. 

Björck (2008) believes this could have lowered the level of the BIL by around 10m. 

It also led to the abandoning of Öresund as the outlet as water would have 

diverted to flow over south central Sweden. Björck (2008) find no evidence to 

show the exchange of water was two way during this interval, indicating the Batic 

basin would have remained a freshwater environment. 

 

Shortly after this, however, the Younger Dryas caused the readvance of the 

Scandinavian Ice sheet, which subsequently “blocked up” the Baltic Ice Lake 

around Mount Billingen. Given that the Öresund Strait was still rising faster than 

sea level, the BIL continued to rise above sea level simultaneously, with the 

waterfall joining the BIL to the sea growing ever larger. The outlet would have 

been in much the same place as modern day, shown in figure 1, transporting the 

cold, ice proximal sediments and water into the Skagerrak, passing through the 

much shallower Kattegat region. Björck (1995) suggest that this outlet would have 

remained open right up until the Baltic Ice Lake final drainage at c. 11,600 cal. BP.  
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The final drainage of the BIL followed warming at the end of the Younger Dryas 

period, when the Scandinavian ice sheet retreated, exposing Mount Billingen once 

more. This drainage was considerably more dramatic than the previous event 

(Björck, 1995). Given that the Öresund Strait had continued to rise above sea 

level, and the BIL had matched it, the level of the BIL subsequently fell 25m during 

its final drainage (Jensen et al., 1997; Jakbsson et al., 2007; Hyttinen et al., 2011). 

By examining elevation models of the region, Jakobsson et al., (2007) used GIS 

analysis to suggest that the BIL lost 18% of its volume, equivalent to 7800 km3 of 

water. This final drainage is believed to have occurred around 11,600 cal. BP 

(Andren et al., 2002; Kortekaas et al., 2007; Hyttinen et al., 2011).  

 

However, not every author has found evidence for the final drainage, with both 

faunal and sedimentary parameters from MD99-2286 showing no changes around 

this time (Gyllencreutz, 2005; Erbs-Hansen et al., 2011). One possible explanation 

is increased water stratification due to large input of fresh water, limiting any 

impacts on the deeper waters. Conversely, isostatic modeling performed by Påsse 

and Anderson (2005) actually indicates the basin would have been at sea level 

during this period, and thus no BIL would have been present. Clearly, the exact 

nature of the BIL is not unanimously agreed upon.  

 

3.3 – Younger Dryas - Holocene Transition  

 

During this period, represented in figure 3B, the Skagerrak would still have 

resembled a large fjord with fairly weak cyclonic circulation (Gyllencreutz et al., 

2006). However, there may have been an increase in the strength of Atlantic water 

inflow into the North Sea (Klitgaard-Kristensen et al., 2001) which could have 

resulted in a strengthening of the Skagerrak circulation with outflow along the 

Norwegian coast (Jiang et al., 1997).  

 

Another important development occurred as a result of the aforementioned final 

drainage. This was the opening up of the Närke Strait, “NS” in figure 3B, which 

altered sedimentation patterns as the Baltic outflow now entered the Skagerrak via 

new outlets on the Swedish Coast, “OSS” and “US” on figure 3B. This was 

intrinsically related to the final drainage of the BIL, but would have had a far 
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greater, long-term impact on Skagerrak sediments. This drainage change has 

been identified by a number of different authors (Björck, 1995; Gyllencreutz, 2005; 

Gyllencreutz & Kissel, 2006; Larsson, 2007). The development had a significant 

impact upon the Baltic Sea and is referred to as the Yoldia Sea stage. After the 

outlets opened, Andrén et al., (1999) suggest saline water from the North Sea 

could not enter the Baltic for 250 years as the sills were too shallow. However, 

once the outlet was large enough due to the erosion of sediments, high salinity 

water was able to enter the Baltic; this resulted in a slightly brackish environemnt 

(Björck, 2008). 

 

As a result of continued isostatic rebound, the new drainage outlet only existed for 

c. 1000 years, though the exact timing of its closure is unclear, with Larsson 

(2007) inferring a date of 10,600 cal. BP, and Gyllencreutz & Kissel (2006) 

inferring its closure at 10,300 cal. BP. This fits with findings from Björck (1995) and 

Lambeck (1999) who suggested it closed at about 10,300 cal. BP. 

 

In terms of temperatures in the Skagerrak, the period between 11,500 and 

10,200 cal. BP is generally viewed as a transitional period from cooler to warmer 

bottom water conditions (Jiang et al., 1997; Knudsen et al., 1996a; Erbs-Hansen et 

al., 2011a).  

 

3.4 – Early Holocene  

 

This period generally reflects a continuation of the warming trend experienced 

over the previous 1000 years (Sejrup et al., 2001). The Skagerrak would still have 

resembled a fjord like embayment although, as shown in figure 3C, an outlet to the 

Baltic in the Orësund area cannot be ruled out. This period in the Baltic is referred 

to as the Ancylus Lake Stage. The Baltic would have been a freshwater lake with 

no stratification (Björck, 2008). Continued isostatic rebound caused the Baltic to 

rise, though it is thought a riverine outlet may have existed between the Baltic and 

the Kattegat through Denmark (Bennike et al., 2004). This may only have lasted 

200-300 years (Björck, 2008) before sea level rose to the height of the Baltic 

basin. 
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Importantly, this period also witnessed an increase in Atlantic water inflow into the 

Skagerrak (Conradsen & Heier-Nielsen, 1995; Knudsen et al., 1996b; 

Gylllencreutz & Kissel, 2006; Gyllencreutz et al., 2006). With this influx of warmer 

Atlantic water, a concurrent rise in water temperatures occurred, though bottom 

water conditions probably remained relatively cool, showing only a gradual 

warming (Conradsen & Heier-Nielsen, 1995). 

 

3.5 – Early to Mid Holocene 

 

Between 9000 and 7500 cal. BP, the North Sea underwent a considerable 

transformation, which produced a hydrological system very similar to modern day; 

this is represented by figure 3D. This transformation occurred in a number of 

steps, the earliest of which was the opening of the Danish and Oresund Straits. 

This event was likely to have been complex, and may have taken place over an 

extended period of time (Gyllencreutz, 2005). Some studies have shown the slight 

influence of saline waters as early as 10,200 cal. BP in the Bornholm Basin, south-

western Baltic Sea (Andrén et al., 2002), and 9800 cal. BP from Blekinge, also 

south western Baltic Sea (Berglund et al., 2005). These are both much earlier than 

previous estimations of 9200 cal. BP from Björck (1995) or 9000 cal. BP from 

Winn et al., (1986).  

 

Whenever the Danish Straits fully opened, two-way water exchange between the 

Baltic and the North Sea was possible; this stage of the Baltic development is 

called the Littorian Sea (Björck, 1995). With the newly opened connection, the 

Baltic had a far greater input of high salinity water, resulting in a much more 

productive ecosystem that probably peaked in biological diversity between 7500 

BP and 6000 BP (Berglund et al., 2005; Björck, 2008) 

 

The second stage towards modern circulation occurred in the form of the isolation 

of Dogger Bank, in the western North Sea. Lambeck et al. (1995) suggest this 

occurred between 9000 – 8700 cal. BP. Following this was a distinct, basin wide 

shift that completely altered the hydrological regime, the opening of the English 

Channel. This event has been identified by a number of authors (Bjørklund et al., 

1985; Nordberg, 1991; Conradsen & Heier-Nielsen, 1995; Gyllencreutz, 2005; 
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Erbs-Hansen et al., 2011b) with the timing generally agreed to be around c. 8500 

– 8000 cal. BP (Conradsen & Heier-Nielsen, 1995; Jiang et al., 1997; 

Gyllencretutz et al., 2005; Gyllencreutz & Kissel, 2006; Erbs-Hansen et al., 2011). 

Together, the isolation of Dogger Bank and the opening of the English Channel 

facilitated the formation of the South Jutland Current. The SJC was almost 

completely absent before this period (Gyllencreutz, 2005). 

 

3.6 - Mid to late Holocene  

 

After the opening of the English Channel, conditions appeared to have been 

relatively stable, until approximately 6300 cal. BP. At this time, a number of 

authors observe a move toward a higher energy environment, at MD99-2286 

(Gyllencreutz, 2005; Gyllencreutz & Kissel, 2006) and Skagen 3/4 (Conradsen & 

Heier-Nielsen, 1995; Knudsen et al., 1996b; Jiang et al., 1997). This move towards 

a higher energy environment is likely to have resulted from a strengthening of the 

South Jutland Current, flowing along the coast of Denmark. Though there are a 

large number of possibilities as to why the SJC strength might have increased, 

cooling over the North Atlantic has been observed at the same time (Koć Karpuz & 

Jansen, 1992) and many authors believe this to have altered meteorological 

patterns over the North Sea (Conradsen & Heier-Nielsen, 1995; Jiang et al., 1997) 

and, hence, intensified the strength of the SJC.  

 

The subsequent weakening of the SJC is not well constrained, with data from 

Skagen 3/4 suggesting it may have been around 3000 cal BP (Conradsen & Heier-

Nielsen, 1995; Jiang et al., 1997). However, Gyllencreutz & Kissel (2006) on 

MD99-2286 observed a weakening much earlier, around 4700 cal. BP. 

Furthermore, Nordberg (1991), from the eastern Kattegat actually observed a 

reduction in sedimentation rates, inferring a weakening of the SJC far later, just 

1600 cal. BP (2000 C14 yrs BP). This could, however, actually reflect a decrease in 

humidity around Scandinavia (Nordberg, 1991), which resulted in a decrease in 

precipitation. This would have resulted in a reduction in the volume of surface 

water runoff, reducing erosion and transport and, consequently, lowering 

sedimentation rates. 
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Around the same time, regression in the Baltic Sea meant the outlets became 

shallower and less water exchange was possible (Berglund et al., 2005; Björck, 

2008). As a result, salinities in the Baltic began to decrease, as did the 

productivity. Similarly, a reduced output of Baltic outflow will have occurred. This is 

in agreement with findings from Gyllencreutz & Kissel (2006) on MD99-2286, who 

identified a decrease in the strength of Baltic outflow until 4700 cal. BP, combined 

with weaker coastal currents off Sweden and Norway and stronger bottom 

currents. However, they then also noted an increase in Baltic outflow, between 

4000 and 1500 cal. BP.  

 

Following this, the last significant hydrological development to affect the Skagerrak 

is the late Holocene increase in Atlantic water inflow. This occurred at 

approximately 1500 cal. BP (Nordberg, 1990; Gyllencreutz & Kissel, 2006) and 

would have continued right up to modern day. Following this final alteration, 

conditions remain relatively stable.  

 

3.7 – Modern environmental change 

 

The changes that have occurred since 1500 cal. BP have largely been climatic 

variations. The Medieval Warm Period (MWP) has been observed in sediments 

around the Skagerrak between c.1200 cal. BP and c.650 cal. BP (Hass, 1996; 

Hebbeln et al., 2006; Polodova et al., 2011). Temperatures during this interval 

would have been around 0.5 – 2°C warmer (Folland et al., 1990). Hass (1996) 

identified a cooler period around 1,100 cal. BP, superimposed onto this warmer 

period. This was followed by the well-known climatic cooling experienced during 

the Little Ice Age, which has also been identified by a number of authors working 

in the Skagerrak (Hass, 1996; Hebbeln et al., 2006).  

 

More recent change in the Skagerrak has, however, been attributed to humans. As 

mentioned previously, eutrophication of the Skagerrak is believed to be a problem, 

and it has resulted in distinct increased in benthic biomass throughout the region 

(Josefson, 1990; Alve, 1991 etc.). One of the knock on effects of this increased 

biomass is a significant reduction in oxygen concentrations in the Skagerrak 

during the 20th century (Aure et al., 1996). 
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Chapter 4. Materials & Methods: 
 

 
 

4.1 - Core Site & Collection 

 

The sediment cores were collected in September 2009 by the Institute for Baltic 

Sea Research Warnemunde (IOW) from the research vessel “Maria S. Merian”. 

The core location was 58°29.76´N 09°35.91´E, shown with the red dot on figure 1, 

and was collected from a water depth of 550 m. Two cores were collected from 

this location – a longer gravity core (GC372650) and a shorter multi-core 

(MUC372650). The gravity coring process tends to disturb the upper section of the 

sediment record and, hence, the multi-corer was used to sample the sediment 

water interface with minimal disruption. The multi-corer provides a high-resolution 

record of the recent past that overlaps with the longer record from the gravity core. 

The gravity core is 527 cm long and the short multi-core is 36 cm long. 

 

4.2 - Core Description  

 

Both the gravity core and the multi core are composed of a fairly homogenous, 

brown grey sediment. There are no notable variations in the colour or texture of 

sediments. Total organic carbon varies around 1-2 %, increasing up core. 
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4.3 – Sampling 

 

The gravity core was initially sampled every 8 cm for the top 400 cm. Following an 

inspection of the age depth model, see section 5.1.1, it was clear the bottom 120 

cm were deposited at a much slower rate. Consequently, sampling resolution 

below 400 cm was increased to 4 cm. This allowed for a more consistent temporal 

resolution of sampling. Sampling of the multi core took place every 0.5 cm for the 

upper 10 cm, and every 1 cm after that. This facilitated the creation of a very high-

resolution record of modern environmental changes, particularly more recent, 

potentially anthropogenic impacts. 

 

4.4 - Foraminifera  

 

Benthic foraminifera were chosen as the main proxy to investigate environmental 

change for this study as they live in the bottom waters and, hence, provide 

information on the changes in bottom water conditions through time. Foraminifera 

are extremely sensitive to ecological parameters such as salinity, temperature, 

oxygen concentration and food supply (Murray, 1991). It is generally believed that 

foraminiferal assemblages in the Skagerrak are largely controlled by the influence 

of different water masses (van Weering & Qvale, 1983; Nordberg, 1991), and 

detailed studies of modern foraminiferal habitats have been compiled by a number 

of authors in the Skagerrak (van Weering & Qvale, 1983; Conradsen et al., 1994) 

and northern North Sea (Klitgaard-Kristensen et al., 2002). Therefore, variations in 

assemblages can be related to alterations in the relative influence of different 

currents. This makes foraminifera ideal for reconstructing the palaeoceanographic 

development of the North Sea.  

 

4.5 - Sample Preparation 

 

For each sample, 5 cm3 of sediment was taken by measuring the displacement of 

water in a measuring cylinder. This sediment was then soaked in distilled water for 

approximately 24 hours to allow the sediment to disaggregate. The samples were 
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then wet sieved through 63 μm and 500 μm sieves, as it is likely that most 

foraminifera will fall in this fraction (Scott et al., 2001). Any specimens that are 

smaller than 63 μm are likely to be juvenile species, which are often extremely 

difficult to identify. Conversely, if a larger size for the bottom sieve is used then too 

much material will be lost. It is the material between these two fractions that was 

retained for analysis under the microscope.  

 

4.6 - Sample Analysis 

 

Once prepared, the samples were examined under a Leica microscope. For each 

sample 300 specimens were identified and, when identification was more difficult, 

the specimen was placed on a slide to be examined in more detail later on. The 

relative abundances were then converted into percentages and displayed against 

both depth and age in separate figures.  

 

The species identification follows the works of Höglund (1947), Feyling-Hanssen 

(1964) and Qvale & Nigam (1985). During the identification of the foraminifera, 

some genus types were grouped together as they provided little or no help in 

reconstructing the palaeoceanographic development. For example, certain species 

of single chambered foraminifera were grouped into Fissurina spp. or 

Parafissurina spp. This allowed more efficient analysis of the samples. In addition 

to the 300 specimen counts, the total abundance of the foraminifera in each 

sample was counted, although a test was only counted if more than 50% remained 

– this was to avoid double counting. Species diversity is simply the number of 

different taxa encountered in each sample. 

 

CONISS was used to identify zones of similar foraminiferal assemblages, and 

these were defined as Foraminiferal Assemblage Zones (FAZ). Two zones (8 and 

9), see figure 7, were not created using CONISS, as this was unable to effectively 

pick them out, probably due to the more subtle changes and increased sample 

density. However, these were still defined as FAZs as they show important 

changes in the core. 
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4.7 - Discrepancies between studies 

 

The chosen sieve fraction is extremely important in this investigation because 

some previous studies performed within the INFLOW project used 125 μm sieve 

size and dried the samples, as did other projects whose data will be used as 

comparisons. Scott et al. (2001) suggest that up to 99% of the fauna in samples 

may be lost when using this 125 μm sieve size and it is also suggested that fragile 

specimens can become damaged when dried (Bernhard & Sen Gupta, 1999). 

Obviously, in most regions, the realistic number of foraminifera lost by using this 

method is unlikely to be anywhere near as great as 99%. Nonetheless, it does 

raise the issue of comparability between different studies. However, the additional 

data that is captured by sieving down to this smaller particle size is extremely 

valuable and choosing the larger sieve size may be detrimental to the quality of 

the study. 

 

4.8 - Geochemical Analysis 

 

To support the foraminiferal analysis performed in this investigation and help 

interpret the palaeoceanographic evolution, geochemical analysis was also carried 

out. The geochemical analysis was performed by the IOW in Germany. Total 

Carbon (TC), Total Inorganic Carbon (TIC) and Total Nitrogen (TN) were 

measured. From this, it was possible to calculate Total Organic Carbon (TOC), this 

was calculated by subtracting the TIC from TC. The Carbon/Nitrogen ratio was 

also calculated, (TC:TN).  

 

4.9 - Radiocarbon dating 

 

A series of 18 14C dates were measured from the gravity and multi-core to provide 

a chronology for this study. For each date, benthic foraminifera were used. Due to 

the size of the foraminifera, a large number were needed to obtain the necessary 

amount of Carbon. Consequently, a variety of species were selected for each 

date, as opposed to an individual species. 
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The program Oxcal online v. 4.1 was used to calibrate the radiocarbon dates. The 

calibration curve used was “Marine09” from Reimer et al. (2009) which is an ocean 

modeled average of the last 50,000 years. The samples were defined as 100% 

marine, which included the 400-year ocean reservoir. A ΔR value of 0 was used as 

described by Heier-Nielsen (1995). Oxcal was also used to create the age depth 

model using P sequence with a K value of 0.3. The most recent date from the 

short core was calibrated using the Bomb spike curve NH1 (Hua & Barbetti, 2004). 

 

All ages expressed in this thesis are in calibrated years BP, except for the more 

recently deposited sediments, see section 5.1.2. Where earlier investigations used 

radiocarbon dating but did not calibrate the dates, these have now been calibrated 

to allow comparison; with the original date shown in brackets. In certain cases, 

previously uncalibrated dates had been subsequently calibrated by Gyllencreutz et 

al. (2006). In these instances, the calibrated date was taken from Gyllenreutz et al. 

(2006), though this is made clear in each case.  
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Chapter 5. Results 
 

 

5.1 – Core Chronologies 

 

5.1.1 - Age Depth Model: GC372650 

 

Table 1 shows details of uncalibrated dates and their associated calibrated ages 

for the gravity core. As detailed in the method section above, Oxcal online was 

used to calibrate and create the age model.  

 

In most cases, the calibrated ages fit extremely well with one another and the age 

depth model has good agreement values. Despite this, the two dates at depths of 

500 and 484 cm, with relative calibrated ages of 11,268 - 11,261 and 12,574 - 

12,682 cal. BP respectively, are obviously a reversal. When examining the 

sediment, there is no detectable reworking and no obvious turbidities are present; 

this is unsurprising given the shallow gradient of the sea floor. Unfortunately, this 

makes discounting either date difficult.  

 

Assuming, therefore, that only one date can be correct, it is necessary to decide 

which seems more likely. Low sedimentation rates for the lower 100 cm in either 

case mean sedimentation rates are not helpful in selecting a date. 
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Consequently, the best solution in this instance is to look at the faunal 

assemblages themselves. Clearly, this is difficult as the age depth model created 

here would help interpret those dates. However, at 453 cm, there is a rapid 

introduction of Hyalinea balthica. Erbs-Hansen et al., (2011) and Nordberg, (1991) 

have interpreted the appearance of H. balthica in near-by cores as evidence for 

the opening of the English Channel. Independent dating of this event provides an 

age in the range of 8000 – 8500 cal. BP (Conradsen & Heier-Nielsen, 1995; Jiang 

et al., 1997; Gyllencreutz, 2005; Gyllencreutz & Kissel, 2006). The precise 

interpretation of this species will be discussed in considerably more detail later. 

However this interpretation can help here in deciding which of the two radiocarbon 

dates above to use in the age model. 

 

With this in mind, the two different dates can be re-examined. With no other 

information between the date at 416 cm and the two in question, the only option is 

to use a linear fit line between these two points. Accordingly, if the 484 cm date is 

used with a linear fit line, it suggests that sediments at 453 cm were deposited at 

c. 9600 cal. BP. If, on the other hand, the 500 cm date is used, sediments at 

Identifier Depth 
mgC (mixed 

foraminifera) 
Uncalibrated 

ages 
Calibrated 

max (cal. BP) 
Calibrated 

min (cal. BP) 

Poz-34454 24-26 0.26 900 ±50 BP 523 453 

KIA 42417 55-57 0.6 1200 ± 25 BP 771 708 

KIA 42418 105 - 106 0.6 1655 ± 30 BP 1260 1189 

KIA 42419 155 - 157 0.5 2155 ± 30 BP 1804 1717 

Poz-34551 199 - 201 0.23 2620 ± 50 BP 2381 2265 

LuS 9537 223 - 225 0.82 2985 ± 50 BP 2770 2690 

KIA 42420 255 - 257 0.5 3470 ± 35 BP 3219 3084 

KIA 42421 299 - 301 0.36 3155 ± 70 BP 3667 3539 

LuS 9535 323 - 325 0.7 3660 ± 50 BP 4429 4207 

KIA 42422 355 - 357 0.27 4230 ± 90 BP 5312 5134 

Poz 48329 384 - 385 0.2 5130 ± 70 BP 5600 5490 

KIA 42423 415 - 417 0.4 5880 ± 40 BP 6369 6266 

Poz 48331  484 - 485 0.3  11130 ± 70 BP   12574  12682 

Poz-34466 499 - 501 0.34 10260 ± 70 BP 11268 11161 

Table 1:  Uncalibrated C14 years and calibrated ages with depths for GC372650. The 

dates were calibrated using Marine09 100% marine, this includes the 400 year marine 

reservoir. The date highlighted in red was discounted. 
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453 cm were deposited at c. 8500 cal. BP. Consequently, although the singular 

date is far from ideal, and it is clear that more radiocarbon dates are required, the 

date at 500 cm date of 11,200 cal. BP seems more likely to be correct. This 

suggests that the radiocarbon date at 484 cm is too old and has been 

contaminated, perhaps by re-worked foraminifera. 

 

As a result, the 500 cm data will be used in the production of the age model used 

here, with a simple linear sedimentation rate between this point and the date at 

Figure 4:  Age depth model produced by Oxcal v 4.1. The blue line represents the 

Poisson deposition age depth model, created with Oxcal using k=0.3. The date 

surrounded by the red dashed circle was discounted. 
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416 cm, shown with the red line in figure 4. The linear sedimentation rate between 

416 cm and 500 cm is continued to the base of the core; this suggests the oldest 

sediments in this core were deposited at c. 12,600 cal. BP. 

 

Due to the method of core extraction, as explained earlier, an unknown amount of 

sediment will have been lost from the top of the core. As a result, it is not possible 

to use 0 cm as modern day. For this reason, the multi-core was collected with its 

own independent age model. The age depth model of both these sediment cores 

will be ‘spliced’ together in order to create a seamless, full-length core that extends 

right up to modern day.  

 

 5.1.2 - Age Depth Model: MUC372650  

 

Table 2 shows the uncalibrated C14 ages and their associated calibrated ages for 

the multi core; all of the lower dates have good agreement values. However, the 

date taken from 0-1 cm showed 104.13% modern Carbon. When calibrated using 

the bomb spike curve NH1 (Hua & Barbetti, 2004), this value of modern carbon 

could fall on either the rising or falling limb, though the latter is poorly constrained 

after c. AD 2000. Due to the method of extraction for this core, it is unlikely much 

sediment was lost. As a result, for the purposes of this investigation, it is assumed 

that 0cm represents modern day, though it is noted that this may need additional 

consideration. The age depth plot is shown in figure 5. 

 

Identifier Depth 
Carbon 14 

age  
Calibrated 

Max (cal. BP) 
Calibrated 

Min (cal. BP) 
mgC (mixed 

foraminifera) 

Poz-32530 0 – 1 104.13 ± 0.38 Present Day Present Day 0.48 

KIA42424 15 - 16 610 ± 25 291 236 0.35 

KIA42425 25 – 26 715 ± 25 417 348 0.25 

Poz-36313 30 – 31 840 ± 40 505 449 0.5 

Poz-32531 35 - 36 1105 ± 35 686 625 0.46 

Table 2: Uncalibrated C14 years and calibrated ages with depths for 

MUC372650. The dates were all carried out on mixed foraminifera and the 

Marine09 curve has a 400 year reservoir age. 
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Given this, sediments deposited after AD 1950 cannot be referred to using the 

standard “BP” age reference, as 0 BP relates to AD 1950. Hence, although the 

age scale “BP” will be used through most of this investigation, the final 

foraminiferal assemblage zone will be discussed using the AD age scale; this 

avoids confusion when discussing the most recent sediments deposited after AD 

1950. 

 

Figure 5: Calibrated ages for MUC372650. The red line represents constant 

sedimentation between 15 cm and 0 cm. 



William Dickens   
 

 

 32 

5.1.3 - Combining the two sediment cores 

 

Having calibrated the dates for both the gravity core and multi core, the two were 

spliced together to create a continuous record. The gravity core is relatively well 

dated up until c. 500 cal. BP and the oldest sediments in the short core have been  

dated to 654 cal. BP. Based on the standard coring methodology for gravity cores 

and multi-cores it is likely that the multi-core will provide a less disturbed sediment 

record than the gravity core. Therefore the spliced core will use the multi-core 

record from modern to 654 cal. BP and the gravity core record will be used from 

654 cal. BP onwards. In practice, this means the top six samples of the gravity 

core will be discounted. The new core will be referred to as GC372650. 

 

5.1.4 - Sedimentation rates  

 

Sedimentation rates vary considerably down GC372650, shown in figure 6 

Between c. 11,200 cal. BP and c. 6,300 cal. BP, sedimentation is relatively slow, 

Figure 6: Graphic showing general sedimentation rates in the composite core, 

GC372650. The dashed red line represents the core splice point whilst the solid red 

line shows rapid sedimentation just after the core splice. 
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with rates at around 0.017 cm yr-1. Following this, sedimentation rates increase to 

0.043 cm yr-1 until c. 3,600 cal. BP. Between 3,200 cal. BP and the point at which 

the core is spliced, 56 cm, sedimentation is even faster, 0.085 cm yr-1. 

 

Above the splice, however, the sedimentation rates change significantly. Between 

56 cm and 36 cm, sedimentation rates are 0.25 cm yr-1, a considerable increase, 

although this is potentially a product of the core splicing and is shown in red on 

figure 6. The overlying 35 cm of sediment are then deposited at a fairly constant, 

0.049 cm yr-1.   

 

5.2 Foraminifera ecology 
 

The main species of foraminifera that were identified in this investigation are 

discussed below, with their associated ecological tolerances described based on 

published work. 

 

5.2.1 – Calcareous foraminifera 

 

Bolivina skagerrakensis Qvale & Nigam, 1985: This infaunal species is found 

predominantly in deeper Skagerrak waters and is not commonly found outside this 

area (Qvale & Nigam, 1985). It prefers stable bottom water conditions with 

salinities exceeding 35% and temperatures ranging from 3 – 7°C (Conradsen et 

al., 1994; van Weering & Qvale, 1983).  Nordberg (1991) suggest this species is 

related to Atlantic water inflow. 

 

Bulimina marginata d’Orbigny, 1826 This infaunal species is linked with low 

oxygen levels and high organic carbon content (Van Weering and Qvale 1983, 

Klitgaard-Kristensen, 2002). Murray (1991) found this species at temperatures 

between 5-13°C though it has been found down to temperatures as low as 0°C by 

Conradsen et al., (1994). 

 

Buccella frigida (Cushman, 1921): This infaunal species is associated with cool 

water, most often arctic environments (Knudsen, 1984, Leslie, 1965; Konradi, 

1976) though some have found it in subarctic or warmer conditions (Murray, 

1965). This species seems to be rare in postglacial Skagerrak deposits. However, 
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when found in the Hudson Bay by Leslie (1965) it was between 37 – 212 m in 

depth, living in water temperatures between -1.78°C to 2.98°C. Murray (1979) 

suggests it can tolerate slightly brackish conditions, indicating it can survive in a 

range of environments.  

 
Cassidulina laevigata (d’Orbigny): This infaunal cosmopolitan species can 

tolerate a range of environmental conditions (Van Weering & Qvale, 1983). 

However, Murray (1991) suggests that the species is characteristic of salinities 

around 35‰ and a large temperature range from -1°C to 17°C. The species has 

been found in depths of below 100m in the Skagerrak and up to 2,000m along the 

Norwegian continental margin (Van Weering & Qvale, 1983). Klitgaard-Kristensen 

et al., (2002) suggest this species prefers more oceanic waters, and is strongly 

linked with Atlantic waters. 

 

Cassidulina neoteretis Seidenkrantz, 1995:  This infaunal specimen is 

morphologically very similar to C. laevigata, though regarded as being an indicator 

of cooler Atlantic waters (Rytter et al., 2002; Seidenkrantz, 1995; Erbs-Hansen et 

al., 2011b). 

 

Elphidium excavatum (Terquem) forma clavata (cf. Feyling-Hanssen, 1972): 

Although the different forms are not split in this investigation, it is assumed that 

Elphidium excavatum largely occurs as E. excavatum forma clavata in these 

sediments. Given the appearance of this species is largely restricted to the 

lowermost part of the sediment core (Late glacial – early Holocene), the modern 

arctic distributions are most relevant.  The species is often found on arctic shelves 

where it is able to survive in extreme environments such as those close to 

tidewater glaciers (Hald et al. 1994; Korsun & Hald, 1998, 2000). Elphidium 

excavatum is also known to withstand large variations in both temperature, -1.8 to 

25°C, as well as salinity 0 – 35‰ (Conradsen et al., 1994; Van Weering & Qvale, 

1993). Consequently, the species is generally thought indicative of arctic/subarctic 

conditions (Hald & Korsun, 1997) and may also indicate reduced salinities. 

 

Hyalinea balthica (Schroeter, 1783): This epifaunal species is very common in 

the Oslo Fjord area (Feyling-Hanssen, 1964) and is dominant between 200 – 400 

m in the Skagerrak (Van Weering & Qvale, 1983) but known to exist between 
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depths of 40 – 4500 m. This species is believed to be representative of Boreal 

Lusitanian conditions (Nørvang, 1945, Jansen et al., 1979) and has also been 

associated with high amounts of organic material and low oxygen levels (Qvale & 

Van Weering, 1985; Klitgaard-Kristensen et al., 2002).  

 

Melonis barleeanus (Williamson, 1858): This infaunal specimen is most 

common on the eastern and central sides of the Skagerrak (Van Weering & Qvale, 

1983). A review of the literature by Van Weering & Qvale (1983) identified 

occurrences of M. barleeanus at salinities ranging from 33‰-35‰. This species 

tends to prefer elevated amounts of degraded organic material within the 

sediment. Erbs-Hansen et al. (2011b) suggest this is species is representative of 

Boreal conditons.  

 

Nonionella iridea Heron-Allen & Earland, 1932: This infaunal species is 

prevalent throughout this sediment core. Alve & Murray (1995) found this species 

to be present in water depths deeper than 473 m. Little is known about this 

species, however, and given that it appears consistently throughout the core with 

little variation, it provides minimal help in reconstructing the palaeoceanographic 

evolution.  

 

Pullenia osloensis Feyling-Hanssen, 1954: This infaunal species also forms a 

consistent part of the assemblages throughout the sediment cores in this 

investigation. Whilst this species is not commonly found in the Skagerrak, Alve & 

Murray (1995) did find it to be relatively abundant in the northern sides of the 

Norwegian Trench between depths of 285 – 437 m. Despite this, the ecological 

preferences of this species are not well understood. Gupta et al., (2006) found in it 

areas of high food supply whilst Feyling-Hanssen (1954) found it associated with 

changing environmental conditions. Consequently, it is also able to provide little 

assistance in paleoceanographic reconstruction (Erbs-Hansen et al., 2011). 

 

Stainforthia fusiformis (Williamson, 1848): This species is relatively small with a 

thin shell, generally an infaunal species that is able to withstand periods of anoxic 

conditions (Alve, 2003; Alve, 1994, Conradsen et al., 1994). It is very common in 

the Skagerrak area (Alve & Murray, 1995) and often associated with salinity levels 
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greater than 30‰ (Conradsen et al., 1994) but the typical salinity range is roughly 

33 − 35‰. 

 

Uvigerina mediterranea Hofker, 1932: This infaunal species prefers stable 

bottom water conditions – Qvale & Van Weering (1985) find that it inhabits the 

same area as C. laevigata and is associated with stable water masses and low 

energy conditions.  It is also associated with warmer waters (Sejrup et al., 2004) 

and linked with Atlantic inflow (Klitgaard-Kristensen et al., 2001).  

 

5.2.2 - Agglutinated Foraminifera 

 

Textularia earlandi Parker, 1952: This epifaunal species is known to survive in a 

wide range of environments and is found across the Skagerrak (Alve & Murray, 

1995: Höglund, 1947). However, Bernhard et al. (1997) suggest this species is 

indicative of low oxygen conditions.  

 

5.3 Foraminiferal assemblages and palaeoenvironments 
 
 
In this investigation a total of 73 species have been identified. Throughout both the 

gravity and multi core, preservation was extremely good and in only a few samples 

was it not possible to count 300 specimens. Even in those instances, counts of 

greater than 200 were achieved. The assemblages are plotted in figure 7 against 

their associated depths, figure 8 shows the assemblages plotted against age. Only 

species accounting for > 5% in one or more samples were included in each 

diagram. 

 

Stratigraphically constrained cluster analysis was performed on the assemblages 

shown in Figure 8 to identify and classify zones of similar fauna. These are defined 

as Foraminifera Assemblage Zones (FAZ). The faunal assemblages are shown on 

Figure 8 and the groups are discussed below. Each FAZ is named after its 

dominant taxa and given a description based upon these dominant taxa. It is 

important to note that the environmental conditions reconstructed from these 

benthic foraminifera only apply to the bottom waters. 

08 Fall 
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FAZ 1 – Buccella frigida (524 – 502 cm, 12600 – 11,200 cal. BP)  

 

This zone is dominated by arctic species Buccella frigida (1-44%) and to a lesser 

extent, Elphidium excavatum (12-27%), a species characteristic of arctic/subarctic 

conditions, known to withstand variable salinities (Figure 7). Nonionella iridea 

(c. 14-22%) and Pullenia osloensis (10-18%) are present in this assemblage but, 

as previously mentioned, their value in palaeoenvironmental reconstruction is 

minimal due to their broad ecological tolerances. Smaller constituents of this 

assemblage  are Valvulineria spp. (1-6%), Cassidulina laevigata, Cassidulina 

neoteretis, Melonis barleeanus, Stainforthia fusiformis and Cibicides lobatulus (all 

<5%).  

 

Abundance of B. frigida is highest at the bottom of this zone, decreasing 

significantly towards the top to values of just 8%. Low abundance of E. excavatum 

at the bottom of zone 1 most likely result from the dominance of B. frigida, and as 

relative abundance of this species declines, E. excavatum reaches its peak of 

around 27%.  

 

Species diversity in this zone is lower than at any other point through the sediment 

core. There is, however, a distinct increasing trend towards the top of the zone. 

Despite the low species diversity, the species abundance is actually relatively high 

when compared with the rest of the core. It shows considerable variation but 

typically remains between 800 – 1000 specimens/5ml. 

 
The dominance of B. frigida and E. excavatum suggests this zone is characterised 

by cool bottom water conditions, probably between 0-2°C (Leslie, 1965), but with 

temperatures warming towards the top of the zone. The dominance of these two 

species indicate relative proximity of ice with a possible meltwater influence. The 

low species diversity is indicative of a harsh environment, supporting the 

probability of low temperatures, and the relatively high specimen abundance 

compared to the rest of the core is probably related to an additional factor, 

possibly food. The decreasing abundance of Buccella frigida towards the top of 

FAZ 1 indicates a possible warming in temperatures, though the continued 

abundance of Elphidium excavatum suggests continued presence of cool, low  
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salinity bottom water, indicative of meltwater input. The increasing species 

diversity also suggests ameliorating conditions, moving towards a more habitable 

environment. Together, these imply the environment has undergone a transition 

from relatively ice proximal to ice distal conditions.  

 
FAZ 2 – Valvulineria/Elphidium (501– 474 cm, 11,200 – 9800 cal. BP) 
 

The most pronounced change in this assemblage is the sudden increase in 

Valvulineria spp. (27-41%), figure 8, replacing B. frigida. Elphidium excavatum is 

still present in this zone although its abundance has decreased slightly from the  

 
top of FAZ 1, now it varies slightly 11-17%. Valvulineria spp. peaks at c. 10,700 

cal. BP and then decreases steadily until c. 10,000 cal. BP at which point it 

declines dramatically to just 7% by c. 9700 cal. BP.  Pullenia osloensis and N. 

iridea are at very similar percentages to zone 1 although N. iridea does diminish a 

little in the middle of the zone. Percentages of the minor constituent species 

remains very similar, though there is an increase in the abundance of Melonis 

barleeanus to around 6% at the top of the core. Cassidulina obtusa and 

Epistominella spp. appear for the first time in this assemblage, though both are in 

relatively low abundances (< 5%).  

 

The species diversity in this zone shows little change overall, ending at a very 

similar value to the previous zone. Specimen absolute abundance, on the other 

hand, does show considerable variability, increasing extremely rapidly to c. 1,750 

specimens/5 ml in the middle of this zone, the highest abundance throughout the 

entire core. It then shows an equally rapid decrease to 600 specimens/5ml at the 

top of the zone. The variations in absolute abundance seem to follow closely the 

variations in Valvulineria spp. relative abundance suggesting the two are related. 

 

The continued presence of Elphidum excavatum indicates that conditions are still 

relatively cool, and perhaps salinities are still slighty reduced, though the latter is 

difficult to gauge effectively. It is the rapid introduction of Vavulineria spp. that 

distinguishes this zone. Such a dramatic increase is indicative of a fairly major 

hydrographical shift. Unfortunately, very little is known about this species, as it is 
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very rare in the Skagerrak. As a result, it is hard to ascertain exactly what the 

hydrological change is.  

 

The lack of change in the species diversity suggests temperatures have not 

warmed considerably. This is supported by the continued presence of E. 

excavatum through this zone. The sudden bloom in absolute abundance at c. 

10,500 cal. BP is therefore unlikely to relate to any temperature fluctuation. Given 

how closely it follows the increase in Valvulineria spp., it seems logical that the two 

are related. The subsequent reduction in Valvulineria spp. and concurrent 

decrease in total specimens indicates the environment changed once more, with 

another hydrological development.  

 

FAZ 3 – Elphidium excavatum (473 – 454 cm, 9800 – 8500 cal. BP) 

 

Although the magnitude of faunal changes appears relatively minor in this zone, 

there are still important elements. Figure 8 shows that both Cassidulina laevigata 

(3-5%) and Cassidulina neoteretis (3-8%) increase in this zone, as does the boreal 

species Melonis barleeanus (3-6%). 

 

Another important development is the return of cold-water species B. frigida, 

reintroduced at c. 9450 cal. BP, reaching a peak of c. 15%. Given that it was only 

found in two samples, it is likely to reflect a very short period of time, < 400 years. 

Elphidum excavatum also increases to a peak of 26% at c. 9250 cal. BP. Towards 

the top of this zone the abundance of E. excavatum falls to its lowest yet at just 

9%. Abundance of Valvulineria spp. remain constant and relatively low through 

this zone, around 3%. 

 

Species diversity in this zone shows a slight reduction in the rate of increase 

compared to the previous zone. Adjacent samples still show minor variability but 

generally fluctuate around 33 or 34. The absolute abundance continues to show a 

decreasing trend observed in the underlying zone. It is worth noting that this 

coincides with an increase in sedimentation rates; this might explain the reduced 

abundances as the foraminiferal flux (shells/cm2/year) would have decreased.  
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In FAZ 3, the concurrent increase in Cassidulina laevigata and Melonis barleeanus 

suggest a slight warming of water temperatures and the influence of a more 

stable, well-oxygenated ocean current. However, the reintroduction of arctic 

species B. frigida suggests a decrease in temperatures, though this cooling is 

relatively short-lived, less than 400 years, and is superimposed on the overall 

warming during this period.  

 

 

FAZ 4 – Hyalinea balthica (453 cm – 419 cm, 8500 cal. BP to 6300 cal. BP) 

 

FAZ 4 contains major changes to the foraminiferal assemblages (figure 8). 

Arctic/subarctic foraminifera E. excavatum is almost completely absent, only 

appearing in random samples and extremely low counts (<2%). Countering this is 

the rapid emergence of the warmer water species, Hyalinea balthica, often related 

to ‘boreal’ conditions (Nørvang, 1945, Jansen et al., 1979). This species increases 

rapidly to reach a peak of 31% by c. 8500 cal. BP, though abundance decreases 

after 8100 cal. BP, falling continuously throughout the zone, with minor 

fluctuations, reaching a low of around 4%, at the top of this zone. 

 

The additional, though slightly less abundant, components of this zone, include an 

increase in S. fusiformis to c. 10%, though this is slightly late in the zone. 

Uvigerina mediterranea also increases to its maximum abundance (c. 5%). 

Cibicides lobatulus reduces in percentage at the bottom of this zone but it 

increases towards the top. M. barleeanus shows a very similar trend, decreasing 

at the beginning of the zone before returning to levels slightly above the preceding 

zone. Valvulineria spp. also shows an increase in this zone to around 5 – 7%. 

 

In terms of the less important constituents, Nonionella iridea increases towards the 

top of the zone, reaching a peak of 34% at c. 6800 cal. BP, whilst Pullenia 

osloensis decreases. Pseudopolymorphina spp. is present in low percentages (1-

5%). Cassidulina laevigata and Cassidulina neoteretis are both in relatively low 

abundances, with both decreasing towards the top of the zone.  
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Species diversity is once again higher than in the previous zone, but is beginning 

to show a greater magnitude of variability. Specimen absolute abundance on the 

other hand, reaches the lowest levels throughout the entire core. This decreasing 

trend continues from the previous zone until 435 cm at which point the abundance 

falls below 300 per 5 ml. From this point, right up until the top of this zone, it was 

not possible to reach a count of 300 specimens, and counts were at or just below 

200.  

 

The sudden and dramatic emergence of H. balthica is indicative of another major 

hydrographical shift. Given H. balthica is a warmer, boreal species, this 

hydrographic shift is likely to be characterized by the sudden influx of warmer 

water. Hyalinea balthica can also tolerate low oxygen levels, so it’s increase may 

also relate to a period of increased stratification, resulting in more stagnant bottom 

waters.  The increase in U. mediterranea, albeit at low abundances, and decrease 

in C. lobatulus both support the theory of a warmer, more stable bottom water 

mass with lower energy. The increase in S. fusiformis is indicative of increased 

stratification and reduced deep water renewal, resulting in more regular oxygen 

depletion. The low absolute abundances during this interval may reflect the 

increased stratification and reduced oxygen levels. 

 

Generally, this zone reflects an influx of warmer water with more stable bottom 

water conditions and a possibility of increased stratification resulting in less regular 

deep water renewal. Towards the top of the zone, it is likely that the stratification 

weakened, allowing more regular deep water renewal, also resulting in a higher 

energy environment.  

 

FAZ 5 – cf. Eoeponidella spp. (418 cm – 260 cm, 6300 cal. BP to 3000 cal. BP) 

 

FAZ 5 is characterized by the appearance and rapid increase in abundance of cf. 

Eoeponidella spp. (figure 8), while the abundance of Hyalinea balthica remains 

rather low (< 5%, similar to the top of FAZ 4). Classification of the dominant 

species in this zone (cf. Eoeponidella spp.) is problematical. However it appears 

similar to a species found by Conradsen and Heier-Nelson (1995) in a nearby core 

Skagen 3/4, also the timing of the appearance here correlates well with the influx 
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in Skagen 3/4 - hence it is here classified as cf. Eoeponidella spp. The introduction 

of cf. Eoeponidella spp. is extremely rapid, appearing initially at c. 6300 cal BP 

then remaining at abundances of 17 – 27% through the whole zone before rapidly 

decreasing in abundance at c. 3000 cal BP. This zone is also characterized by the 

re-introduction of Buccella frigida, albeit in considerably lower abundances and 

more sporadically than in FAZ 1, typically varying from 0 to 9%. Cibicides lobatulus 

also appears more consistently in this zone and in slightly higher abundances. 

 

Although in very small abundances, typically less than 6%, Pullenia bulloides 

appears almost in tandem with the appearance of cf. Eoeponidella spp., just 

slightly earlier in the sediment core. Abundances of P. bulloides then stay constant 

throughout the remainder of this zone and all subsequent zones. Abundances of 

both Cassidulina laevigata and Cassidulina neoteretis are at their lowest in this 

zone, with both species almost completely absent in many samples. Both species 

do, however, increase towards the top of zone 5, reaching levels of c. 10%.  

 

Species diversity shows a very minor increase during this zone, though variability 

is still high. Absolute abundance also shows an increased variability as well as a 

slight overall increase, with more than 300 specimens counted for each sample.  

 

While the interpretation of cf. Eoeponidella spp. is difficult, some of the additional 

faunal changes provide valuable information in reconstructing environmental 

change during this interval. The re-introduction of B. frigida implies a drop in water 

temperatures, though the temperature drop is unlikely to be large as only a small 

population of the species is sustained. The temperature drop probably began a 

few hundred years prior to the onset of this zone, but continued throughout it. The 

increase, and more regular and consistent appearance, of C. lobatulus could well 

suggest that conditions have become more variable, and may reflect a higher 

energy environment. This is supported by the decrease in U. mediterranea 

observed at the top of the underlying zone, indicating unsettled conditions.  

 

Generally, therefore, although the most abundant species is not used at this stage, 

the rest of the faunal assemblages suggest a reduction in temperatures and a 

move towards a higher energy, less stable bottom water mass.  
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FAZ 6 – Cassidulina/Buccella (250 cm – 133.5cm, 3000 – 1425 cal. BP) 

 

This zone is marked by the increase in C. laevigata and C. neoteretis, with their 

abundances closely matching one another around 10%. It is also characterised by 

the absence of cf. Eoeponidella spp. Buccella frigida increases in this zone to 

around 12%, its highest abundance since 9400 cal. BP. It maintains this peak for 

c. 800 years, then falls away, the species is absent after c. 2000 cal. BP.  

 

Another minor development in this zone is the introduction of Eggereloides 

scabrus. Although it has appeared sporadically in deeper sections of the core, this 

is the first time it appears consistently, although the abundances are still extremely 

low (< 5%). Pullenia osloensis and Nonionella iridea show little change from the 

previous zone. Absolute abundance also shows little change, though species 

diversity does show an increase from the previous zone.  

 

This FAZ, dominated by Cassidulina species, probably reflects the increased 

inflow of well-oxygenated oceanic water. However, the short lived increase in B. 

frigida suggests a short period of reduced temperatures, superimposed onto this 

general period of increased stability.   

 

FAZ 7 – Bolivina skagerrakensis (133.5 cm – 27.5 cm, 1500 – 418 cal. BP) 

 

This zone is characterised by the introduction of Bolivina skagerrakensis (figure 8). 

Whilst this species has appeared in extremely low abundances (<1%) in sporadic 

intervals throughout the sediment core, it is not until c. 1,500 cal. BP that it forms a 

notable constituent of the assemblage. The abundance of this species shows 

considerable variability through this and subsequent zones, with a rapid 

introduction to 18% by c. 1300 cal. BP and a subsequent range of 2% to 35%. 

 

Aside from B. skagerrakensis, this zone is generally characterised by very little 

change. The other dominant species are P. osloensis, N. iridea, C. laevigata and 

C. neoteretis. Each of these species shows little variability except for N. iridea and 

P. osloensis, which show an increase and decrease, respectively, towards the top 

of the zone. Some of the less important constituents are S. fusiformis and E.  
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scabrus. E. scabrus actually shows a slight increase from zone 6, increasing in 

abundance to around 9%, before decreasing once more. 

 

Finally, species diversity in this zone shows an initial increase, peaking at 56, the 

highest throughout the entire core, before decreasing once more to levels 

observed in the previous zone. The increased species diversity may be due to 

increased preservation of agglutinated species, though it is argued in section 6.8 

that taphonomic effects are not responsible for changing assemblages in this core. 

Absolute abundance increases slightly in this zone from 400 to 1100. 

 

The dominant species in this zone, B. skagerrakensis, is generally regarded as 

favouring stable, well oxygenated bottom water conditions. Therefore, this zone is 

likely to reflect the increased inflow of a well oxygenated, stable water mass, with 

temperatures most likely between 3 – 7°C (Conradsen et al., 1994). The variations 

in B. skagerrakensis may reflect periods of reduced stability, when conditions 

became unsuitable to sustain a population of B. skagerrakensis.  

 
FAZ 8 – Buccella frigida/Hyalinea balthica (27.5 – 11.5 cm, 420  – 160 cal. BP) 

 

This zone appears at the top of the multi-core and is shown in expanded form in 

figure 9. After reaching its peak in the top of the last zone, B. skagerrakensis 

decreases steadily, falling to just 7% by 290 cal. BP. Bolivina skagerrakensis then 

increases again, returning to similar abundances as the previous zone by 160 cal. 

BP. Hyalinea balthica, although appearing sporadically in low abundances in FAZ 

7, forms a consistent part of the assemblage in this zone. Hyalinea balthica 

typically varies between 6-10%, with the peak at 290 cal. BP extending to 19%. 

After this peak, the species abundance decreases slightly towards the top of the 

zone (10%). Bulimina marginata is also present in this zone in relatively low 

abundances. This species appeared in extremely low abundances in the previous 

zone, but has a peak of 10% at 290 cal. BP. However, the species does not 

prevail for long, as in the overlying sample it is no longer present. . 

 

Buccella frigida is another species to increase in this zone, although its 

abundances are much lower, around 6%. The species appears in tandem with the 

reduction in B. skagerrakensis, quickly increasing in abundance to its maximum 
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and then remaining at this level for the rest of the zone, with some very minor 

variations. Nonionella iridea and Pullenia osloensis remain important constituents 

of the assemblages. Species diversity has reduced since FAZ 7, though 

abundances show little variation. 

 

Generally, this zone reflects the influx of colder water fauna, namely Buccella 

frigida, indicating a decrease in water temperatures. Both H. balthica and B. 

marginata are related to reduced oxygen concentrations. This indicates the bottom 

waters of the Skagerrak may have been less regularly renewed, possibly reflecting 

an increased stratification.  

 

FAZ 9 – Textularia earlandi (11.5 – 0 cm, 160 cal. BP – Present Day / 1790 -

 2009 AD) 

 

As mentioned in this methods section, this zone will be discussed using the Age 

reference AD. This zone, also shown in figure 9, is characterised by considerably 

more variability. Firstly, B. skagerrakensis shows a steady decrease from its 

maximum in FAZ 8, reaching its lowest abundances near the top of the core, 

around 4%. Buccella frigida, H. balthica and S. fusiformis show minimal change. 

 

The most prominent change of this FAZ is the introduction of agglutinated species. 

Eggerelloides scabrus has been present throughout the core, and it shows little 

change in this zone. It is the appearance of Textularia earlandi, however, that is 

the most distinct and rapid change observed in FAZ 9. It appears in low 

abundances at AD 1790, and shows minor variability until c. AD 1850. At this 

point, the species increased relatively steadily to reach a peak of 31% at c. AD 

1940. It subsequently decreases, but peaks again at c. AD 2000, before falling 

away in the overlying sample. 

 

In terms of the less prominent species, B. marginata is also present in this zone 

with more consistency and slightly higher abundances than in previous zones. 

Similarly, Epistominella spp. becomes more prominent in this zone, with values 

nearing 5%. Once again, C. neoteretis and C. laevigata show very little change, 

nor do N. iridea or P. osloensis.  
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Species diversity shows a general decreasing trend over this period. Conversely, 

absolute abundance increases dramatically towards the top of the core, peaking at 

c. 1450 and 2000 specimens, around the same time as T. earlandi.  

 

FAZ 9 is generally characterized by the sudden rise in Textularia earlandi. This 

species is considered an opportunistic species (Alve & Goldstein, 2009) and is 

associated with dysoxic conditions (Berhard et al., 1997). Its dramatic appearance 

could thus reflect periods of reduced oxygen concentrations. A concurrent 

decrease in B. skagerrakensis, a species known to prefer stable, well-oxygenated 

bottom water conditions, supports this interpretation. 
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Chapter 6. Discussion  
 

 

In the preceding section, the environmental interpretations of the foraminiferal 

assemblages zones were examined. This section will now build upon these 

interpretations, discussing the palaeoceanographic developments that may have 

caused these foraminiferal changes. This discussion will focus on the 

palaeoceanographic evolution of the Skagerrak, but it will also consider the 

development of the Baltic Ice Lake and its effects on the Skagerrak. In a similar 

vein, the development of the Baltic Sea and its connection with the high salinity 

waters of the North Sea will be examined. To visualise the changes to the North 

Sea discussed in this section, a paleo-land reconstruction has been created for the 

significant developments; these show the land extent during the period discussed, 

as well as the hydrological regime (figure 12).  

 

Most studies in the Skagerrak have been based on cores from a water depth of 

less than 350 m. GC372650 was taken from 550 m, considerably deeper than 

previous work. Consequently, this is one of few investigations to consider the 

development of the deep Skagerrak, and may provide a record of environmental 

change less affected by local, short term variations in environmental factors. The 

core locations of the main studies examined in this discussion are presented in the 

figure 10. 
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6.1 – Late Younger Dryas – early Holocene (12,600 to 11,200 cal. BP; FAZ 1) 

 

This period, FAZ 1, is dominated by cold water fauna, namely Buccella frigida, 

indicating that bottom water temperatures are low, probably below 2°C (Leslie, 

1965). Jiang et al., (1997) identified very similar conditions at Skagen 3/4, 

suggesting summer sea surface temperatures would have been around 2°C. This 

cold period correlates extremely well with faunal and sedimentary proxies from 

MD99-2286 (Gyllencreutz, 2005; Gyllencreutz & Kissel, 2006; Erbs-Hansen et al., 

2011a), Skagen 3 (Knudsen et al., 1996a) and GIK15530-4 cores (Stabell, 1985), 

see figure 10 for location. Given the timing of this interval, it probably reflects 

conditions during this Younger Dryas. The low water temperatures are therefore 

Figure 10: Map of the Skagerrak showing the location of main core site 

discussed in this section – see figure 1 for scale of elevation and depth. 
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likely to result from the cold climate during this period. Given that relative sea level 

was c. 100 m higher at MD99-2286 than modern day (Erbs-Hansen et al., 2011b), 

it would most likely have been much higher at GC372650. Consequently, the 

Skagerrak would have resembled a large fjord, with weak circulation and little input 

from the Atlantic Ocean. 

 

The cold climate, combined with the presence of Elphidium excavatum which is 

known to tolerate lower salinities, suggests the likely existence of a glacier calving 

Figure 11: Geochemistry data, collected by IOW on GC372650, with Total Organic 
Carbon (TOC), Total Inorganic Carbon (TIC) and the Carbon/Nitrogen ration (C/N) 
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front nearby, inputting cold, freshwater into the Skagerrak. However, E. excavatum 

is very common in late glacial sediments around the Skagerrak (Nagy & Qvale, 

1985; Knudsen et al., 1996b), and is not necessary indicative of reduced salinities. 

Erbs-Hansen et al., (2011a) suggested that, during this interval, the Skagerrak 

probably experienced cold marine conditions at the sea floor and glaci-marine, 

meltwater influenced conditions at the surface. However, given that circulation in 

the Skagerrak was relatively weak around this interval (Gyllencreutz et al., 2006) it 

seems likely that the cold meltwater would have had time to mix with warmer, high 

salinity waters and sink into the deep Skagerrak. Therefore, Elphidium excavatum 

is interpreted to reflect the presence of lower salinity water due to the proximity of 

the Scandinavian Ice Sheet margin and an associated ice shelf. Sedimentological 

data from MD99-2286 (Gyllencreutz, 2005) supports this theory, showing high clay 

content during this interval as well as the occurrence of IRD. 

 

The geochemical data collected from this core (figure 11) also tends to support 

this interpretation. Relatively low TOC values at the base of the core indicate 

relatively low organic productivity at this time driven by cold ice proximal 

conditions. The high TC/TN ratio also suggests significant input of terrestrial 

material most likely from the meltwater flux of the nearby calving ice sheet margin. 

 

Whilst there is general agreement that an ice shelf would have existed in the 

Skagerrak during the Younger Dryas, determining its location is difficult from these 

sediments alone. However, previous authors have identified a small drainage 

event from the Baltic Ice Lake at c. 13,000 cal. BP (Björck, 2008). For this to have 

occurred, the Scandinavian Ice sheet must have retreated to at least the north-

west coast of Sweden, and more likely further inland, away from the Swedish 

coast. This is supported by Lundqvist & Wohlfarth (2000), who re-examined past 

investigations into the retreat of the Weichselian ice sheet and concluded that the 

ice had retreated as far north as the central Oslo Fjord by the Younger Dryas. 

Gyllencreutz et al., (2005) then extended the ice marginal line drawn by Lundqvist 

& Wohlfarth (2000), shown in figure 3, indicating the ice calving front would most 

likely have been on the south coast of Norway and the Oslo Fjord.  
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It is interesting to note that some previous studies have shown that certain 

shallower areas in the Skagerrak respond differently during the Younger Dryas. 

Where this, and many other investigations see cooling, they actually see warming 

(Bergsten & Nordberg, 1992; Conradsen, 1995). Knudsen et al., (1996a) speculate 

that this may be a result of the shallower waters where freshwater input may have 

had more of an effect on the fauna.  

 

6.1.1 - Baltic Ice Lake drainage  

 

It is also worth considering the absence of any evidence of the final drainage of 

the Baltic Ice Lake, discussed in section 3.2, and thought to have occurred around 

11,700 cal. BP (Björck, 1995; Lambeck, 1999; Andrén et al., 2002). When 

examining the faunal assemblages, there are no distinct, short-lived changes that 

occur within this interval that might represent the final drainage. A significant 

faunal change in GC372650, FAZ 2, is discussed in detail in section 6.2, but it is 

not thought to represent the BIL final drainage.  

 

The drainage of the BIL is believed to have taken place over one to two years 

(Jakobsson et al., 2007). During this time, Jakobsson et al., (2007) suggest 7800 

km3 of freshwater was released at a relatively constant rate of 0.15 – 0.3 Sv 

(106 m2s- 1). Given the extended duration of the final drainage, it seems logical that 

the sea floor would have had time to respond to the changing conditions. Despite 

this, it is possible that any changes to the faunal assemblages may have been 

short-lived as the freshwater was renewed with more saline waters after the 

drainage terminated. It is therefore unsurprising that the faunal assemblages show 

no indication of this event, particularly as the resolution between adjacent samples 

at this depth is just c.100 years. Furthermore, given the deposition rates during 

this interval, a 1cm slice represents around 60 years – the signal of the BIL 

drainage could have been easily suppressed. However, with a large outwash 

event, one might expect to see an increase in TOC or alterations in the C/N values 

as terrigenous material is washed into the ocean. This is particularly the case due 

to the higher resolution of the organic analysis. Despite this, there are no such 

variations that could be connected with the BIL drainage seen in this study.  
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Whilst no supporting evidence was identified in GC372650, authors have found 

evidence for this event from isotope signatures in southwest Sweden (Bodén et 

al., 1997), sedimentological studies from the Baltic Sea (Andrén et al., 2002) and 

Finland (Hyttinen et al., 2011) as well as roadside cuttings in Sweden (Johnsen et 

al., 2010). Clearly, therefore, the BIL drainage is found in a wide variety of cores 

across the North Sea as well as from on-land exposures. Why, therefore, is it not 

visible in GC372650? Grain size data is not available to this investigation, which 

may have shown evidence of the BIL drainage, though the sediment showed no 

apparent sand layers. Furthermore, no evidence for this final drainage was found 

from core MD99-2286 in either the grain size data (Gyllencreutz, 2005), or faunal 

assemblages and geochemistry (Erbs-Hansen et al., 2011a). In fact, no evidence 

was found in Skagen 3 either (Knudsen et al., 1996a; Jiang et al., 1997). Many of 

the authors that did find supporting evidence of the drainage found it outside the 

Skagerrak, much closer to the drainage route.  

 

Given the depth of the core sites, a possible explanation for these disparities is a 

greatly increased stratification due to a sudden and massive input of freshwater. 

Such an event would have occurred during the BIL drainage. The sudden influx 

would have intensified the already strong stratification and, as a result, the 

sediments in the deep Skagerrak could have been separated from any effects of 

the drainage. Erbs-Hansen et al., (2011) arrived at the same conclusion in 

explaining their results. However, given the shallower depth of Skagen 3, this 

explanation is not valid for all sites. Another possible explanation is that the BIL 

drainage was not as large an event as many have suggested. The sites of 

Johnson et al., (2010) and Bodén et al, (1997) were extremely close to the BIL and 

would have been far closer to the outlet. This would explain why evidence of the 

BIL drainage is much clearer there, simply because it was closer.  

 

As mentioned previously, Påsse and Anderson (2005) actually question the entire 

presence of the BIL, using isostatic modeling to suggest that the basin may have 

been at sea level. Were this the case, it would explain the lack of evidence here 

for any major outwash around this interval; meaning evidence found elsewhere 

was from a different event. However, given the considerable amounts of research 
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into the history of the BIL (Björck, 1995, 2002; Andren et al., 1999, 2002; Hyttinen 

et al., 2011 etc.), this seems unlikely.  

 

It is probable, therefore, that the lack of evidence constraining, or even supporting, 

the final BIL drainage may be the outcome of a number of different causes. Any 

faunal changes that may have occurred could have been short lived, and the 

signal lost during deposition. This problem is exacerbated by the slow deposition 

rates meaning a 1cm slice, as investigated here, covers nearly 60 years. A second 

reason could be increased stratification due to the sudden influx of freshwater, this 

is in agreement with Erbs-hansen et al., (2011a). Or it may simply be the case that 

the BIL drainage was not as large as some such as Jakobsson et al. (2007) 

suggest. In any case, the absence of evidence in this investigation is not 

interpreted as an absence of the event. It seems likely therefore, that different 

areas were affected differently by the BIL drainage and more work is needed to 

better constrain its timing and the areas it affected. 

 

6.2 – Baltic Drainage Change (11,200 – 9,800 cal. BP, FAZ 2) 

 

The faunal assemblages from 11,200 – 9,800 cal. BP (FAZ 2) reflect cool, ice 

distal conditions, with an increase in temperature from the previous zone, as 

evidenced by the absence of Buccella frigida. The ice distal conditions suggest 

that the ice margin may have retreated on land. The TOC, TIC and C/N ratio 

measurements from this period are similar to the preceding period (figure 11). As 

in the earlier period the low TOC values suggest low productivity and the relatively 

high C/N ratio suggests continued influx of terrestrial derived material from the 

retreating ice margin.  

 

The most distinctive element of this zone is the sudden increase in abundance of 

Valvulineria spp., though very little is known about its ecological preferences. 

Despite this, the timing of this significant shift in foraminiferal assemblage at this 

site (c. 11,200 cal BP) correlates extremely well with a major alteration to the 

hydrography of the Skagerrak-Kattegat area suggested by Björck (1995) - the 

opening of a new outlet from the Baltic over central Sweden, the Otteid-Steinselva 

(see figure 12a). This is intrinsically related to the final drainage of the BIL,  
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discussed above.  Once the final drainage had occurred, and the level of the Baltic 

had fallen by 25m (Jakobsson et al., 2007; Hyttinen et al., 2011), the main channel 

for water to enter the Skagerrak became the Otteid-Steinselva outlet (figure 12a). 

 

Given the coincidental timing of these two events, it is very likely that they are 

related. The sudden bloom in Valvulineria spp. may have been triggered by the 

increased glacial meltwater outflow from the Baltic, via this new outlet. This outflow 

would have created an intense pycnocline in the Skagerrak. Valvulineria spp. 

might be a product of this stratification, possibly preferring the more saline, cold, 

oxygen depleted waters. As shown in figure 12a, there would probably have been 

3 outlets into the Skagerrak, but for simplification purposes, they will be classified 

with one name – the Otteid-Steinselva outlet. 

 

This drainage change from the Baltic Sea has been identified by a number of 

authors, particularly at site MD99-2286 in the fauna (Erbs-Hansen et al., 2011) 

and in clay content and magnetic properties of the sediments (Gyllencreutz, 2005; 

Gyllencreutz & Kissel, 2006), as well as different sites in the Skagerrak (Larsson, 

2007). Furthermore, some deposits that were originally correlated directly with the 

BIL final drainage have subsequently been re-interpreted as being related to the 

opening of this new outlet, figure 12a, (eg. Bergsten, 1994). Given that these two 

events are inextricably linked, it seems paradoxical to separate them. However, 

the initial drainage event of the BIL would have been relatively quick (Björck, 1995) 

whereas the change in drainage persisted for hundreds of years and is most likely 

the key process that produced the changes observed in GC372650. 

 

Whilst the Otteid-Steinselva outlet was open, it would have been at sea level. 

However, Andrén et al., (1999) suggest high salinity water would not have been 

able to enter the Baltic for 250 years after this outlet opened as it was not large 

enough. Only when enough sediment had been eroded would two-way exchange 

have been possible. When this exchange began, the water column was most 

probably stratified, much like the modern day, with the more dense, higher salinity 

Atlantic water flowing beneath the fresh Baltic waters. 
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Based on this interpretation that an increase in Valvulineria spp. is produced by 

increased stratification related to the opening of the Otteid-Stenselva outlet, its 

subsequent decrease is most probably related to the closing of this outlet. The 

demise of Valvulineria spp. begins between 10,700 cal. BP and 10,460 cal. BP, 

occurring gradually until approximately 10,000 cal. BP, after which the species 

rapidly falls away. This gradual decrease in the abundance of Valvulineria spp. 

suggests the closing of the Otteid-Stenselva outlet occurred slowly, causing a 

gradual decrease in outflow from the Baltic Sea. This is most likely due to 

continued isostatic rebound, gradually lifting the outlet above sea level, constantly 

reducing the exchange of water between the two water bodies. This gradual 

decrease in outflow would have led to a reduction in the strength of the pycnocline, 

causing greater levels of mixing before its eventual breakdown by c. 10 ka. 

 

Foraminiferal absolute abundance peaked at or around the onset of the decline in 

Valvulineria spp. This is probably because once the thermocline began to break 

down, more mixing occurred in the water column. The species of foraminifera 

bloomed during this initial mixing, before returning to previous levels. A very 

similar rise in foraminifera productivity at a similar time was identified by Knudsen 

et al., (1996a, 2009). 

 

Other authors have found the closure of this outlet to occur at a similar time. Erbs-

Hansen et al. (2011) observed a transition to warmer foraminifera species at c. 

10,300 cal. BP, whilst Gyllencreutz (2005) and Gyllencreutz & Kissel (2006) 

observe a reduction in clay content at the same time, both indicating the closure of 

the outlet. Gyllencreutz et al., (2006) calibrated the dates from Björck (1995) and 

Lambeck (1999), which indicated the closure occurred between 10,400 cal and 

10,200 cal. BP in their investigations.  Although these dates are within c. 200 

years of the initial reduction in output from the Baltic observed in GC372650, they 

seem to indicate the closure occurred much faster. The discrepancies between the 

different studies may be explained by depth. The water depth at GC372650 is 

550m, far deeper than the core site of MD99-2286. The stratification that was 

caused by the increased glacial meltwater output from the Baltic may have broken 

up earlier in the shallower sites, causing more mixing of waters, reducing the effect 

of the Baltic outflow on the sediments. In the deeper sites, this stratification would 
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have existed for longer, and may explain why it observes the full duration of the 

closure. 

 

Interestingly, Gyllencreutz (2005) also finds that these clay rich sediments 

deposited between 11,300 and 10,300 cal. BP, during the existence of the Otteid-

Steinselva outlet, correlate with sediments found elsewhere on the Swedish west 

coast. However, sediments deposited further south do not show this increased 

clay content until later. This fits with the theory from Björck (1995), who suggested 

that varying isostatic rebound in the area led to a southward migration of the main 

deposition area for Baltic outflow sediments.  

 

It is worth mentioning that faunal assemblages in this zone do not indicate any 

variations in temperature. This is in contrast to δ18O based temperature 

measurements from MD99-2286 that showed an increase in temperature 

throughout this period (Erbs-Hansen et al., 2011b). Furthermore, the influx of 

warmer water species at Skagen 3 (Knudsen et al., 1996a) and Troll 8903/28-03 

(Klitgaard-Kristensen et al., 2001), during this interval suggest the inflow of 

warmer, Atlantic water. Given the dominance of Valvulineria spp. in GC372650, up 

to 40% at its maximum, the signature of warming in the foraminiferal assemblages 

may have been suppressed. However, given the increased depth of this site, it 

may well be that no warming occurred during this interval. The cold, glacial 

meltwater that entered the Skagerrak from the Baltic may have caused an intense 

stratification, keeping temperatures in the bottom water persistently low. 

 

 

6.3 – Holocene transitional period (9,800 – 8500 cal. BP, FAZ 3)  

 

This period is characterized by the increase in Cassidulina laevigata, a species 

commonly associated with warm Atlantic waters (Klitgaard-Kristensen et al., 2002; 

Erbs-Hansen et al., 2011b). It is notable that Cassidulina neoteretis also increases 

in the zone, more commonly associated with cool Atlantic waters (Rytter et al., 

2002) but given the morphological similarities between these two species, it is 

possible that occasional misidentification may have occurred. Nonetheless, their 

concurrent increase is interpreted as an increase in Atlanic inflow. Supporting this 
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theory is the increase in warmer water species Melonis barleeanus. Melonis 

barleeanus was found in MD99-2286 (Erbs-Hansen et al., 2011b) between 9200 

and 8000 cal. BP, which was also interpreted as a period of increased Atlantic 

inflow. The variation in timing between GC372650 and MD99-2286 might reflect 

slightly different hydrological regimes given their distance apart and variation in 

depth, or could be due to inaccuracies in the age models.  

 

This increase in Atlantic water inflow has been observed around the same time in 

the Skagen 3 core (Conradsen, 1995; Conradsen & Heier-Nielsen, 1995; Knudsen 

et al., 1996b; Jiang et al., 1997), MD99-2286 (Gyllencreutz & Kissel, 2006; Erbs-

Hansen et al., 2011b) and Troll 8903/28-04 (Klitgaard-Kristensen et al., 2001). 

This period is often regarded as the initiation of full interglacial conditions 

(Knudsen et al., 1996a; Erbs-Hansen et al., 2011a). 

 

There are, however, additional faunal changes in this zone; FAZ 3 sees the rapid 

but short-lived increase in cold-water fauna at c. 9450 cal. BP. The increase in 

abundance of E. excavatum and B. frigida suggests the return of relatively colder 

waters. However, based on their age, this change in fauna is unlikely to be linked 

to any cooling associated with advance of local ice, as is the case in the Younger 

Dryas. Nonetheless, they are clearly indicating a distinct drop in temperatures, 

which began around 9,450 cal. BP, and probably lasted less than 400 years.  

 

This cool period correlates well with a change in assemblages from Skagen 3, 

identified in both diatoms (Jiang et al., 1997) and foraminifera (Conradsen & Heier-

Nielsen, 1995), dated to 9000-9450 cal. BP (8600 14C BP). Jiang et al. (1997) 

suggests that these changing assemblages may reflect a period of slightly reduced 

temperatures caused by a strengthened North Jutland Current. The foraminiferal 

assemblages from Conradsen & Heier-Nielsen (1995) were interpreted as 

reflecting a westerly source for the sediments, this is in agreement with Jiang et 

al., (1997). The cooling observed at Skagen 3 persisted for around 1000 years, 

whereas the cooling here is thought to have persisted for less than 400 years. This 

may, however, simply reflect slightly different hydrological regimes, with the 

deeper Skagerrak responding differently. 
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This period may also relate to a cooling event discussed by Fleitmann et al. (2007, 

2008) that also occurred at 9200, cal. BP and is believed to have lasted c. 200 

years. Although there is a discrepancy of around 200 years between the onset of 

cool conditions in GC372650 and the cooling event discussed by Fleitmann et al., 

(2007, 2008), the low resolution dating during this period means the two may 

easily be the same event. 

 

Fleitmann et al. (2008) identified studies that had showed this cooling event across 

Europe (von Grafenstein et al., 1999; Korhola, 2002; Spurk et al., 2002), Asia 

(Fleitmann et al., 2007) and Alaska (Hu et al., 2003). Fleitmann et al., (2007, 2008) 

suggest a weakening of the North Atlantic Thermohaline Circulation (THC), 

resulting from a large freshwater input, or meltwater pulse (MWP), may have 

caused the climatic cooling. The sudden input of freshwater would have caused a 

reduction in the formation of North Atlantic Deep Water, reducing the strength of 

the THC. A well-documented example of this is the 8.2 ka event, identified by 

Erbs-Hansen et al., (2011a) from the Skagerrak, but widely observed outside the 

region (Alley et al., 1997; Alley & Ágústsdóttir, 2005). Teller & Leverington (2004) 

identified a similar input of freshwater into the North Atlantic at c. 9200 cal. BP, 

though a much smaller amount, just 5% of the 8.2 ka event. Fleitmann et al. 

believe the 9.2 ka and 8.2 ka events showed very similar characteristics, indicating 

that they were caused by the same process, namely a reduction in the THC.  

It is therefore difficult to ascertain which process caused the reduction in water 

temperatures inferred during this period, a strengthened NJC or a weakening of 

the THC. It may well be that both processes acted together, and that a weakened 

THC, discussed by Fleitmann et al. (2008), was actually a significant factor in the 

cooling observed by Jiang et al. (1997).  

 

Also of interest during this zone is the continued presence of Valvulineria spp. 

Despite the uncertainty surrounding the environmental preferences of this species, 

it was clear in FAZ 2 that its presence was somehow related to the opening of the 

Otteid-Stenselva outlet and, hence, increased influence of the Baltic Sea. Given, 

then, that Valvulineria spp. is still present in this zone, albeit in extremely low 

abundances, it is reasonable to assume that waters from the Baltic were still 

reaching the Skagerrak. Given the continual presence of this species through all of 
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the samples, it seems likely that an outlet remained throughout the whole period, 

though the extremely low abundances indicate that discharge through this outlet 

was minimal. This seems to be in agreement with Andrén et al., (2002) and 

Berglund et al., (2005) who found the inflow of higher salinity water into the Baltic 

as early as 10,200 cal. BP. The exchange would probably have been two way, 

accounting for the continued presence of Valvulineria spp. right through this and 

the end of the subsequent zone.  

 

6.4 – Opening of the English Channel (8500 – 6300 cal. BP, FAZ 4) 

 

The sudden introduction of Hyalinea balthica at 8500 cal. BP is indicative of a 

considerable alteration to the hydrographic system. This warm water species 

indicates a distinct and sudden warming of ocean temperatures, and is found at 

the same time by a number of authors from around the Skagerrak (Hessland, 

1943; Brotzen, 1951; Feyling-Hanssen, 1964; Nagy & Qvale, 1985; Erbs-Hansen 

et al., 2011). The sudden increase suggests a very rapid change in hydrographic 

conditions. This is unlikely to be linked to a sudden change in climatic conditions 

and is more likely to be linked to a sudden change in ocean circulation. Supporting 

this idea of a warmer ocean current is the near complete disappearance of 

Elphidium excavatum and Buccella frigida, both cold water species. Uvigerina 

mediterranea also peaks throughout this zone, albeit to values typically less than 

5%. According to Klitgaard-Kristensen et al. (2001), this species is known to 

flourish in Atlantic waters. They noted an increase in abundance of this species 

between 8,500 – 7500 cal. BP in Troll 8903/29-03. 

 

Generally, the fauna shows a distinct shift from colder, lower salinity foraminifera, 

to those associated with warmer conditions and Atlantic inflow. This zone therefore 

most likely reflects the flooding of the English Channel (figure 12c). Concurrent 

changes identified elsewhere from the Skagerrak have also been attributed to this 

hydrological development (Nagy & Qvale, 1985; Conradsen & Heier-Nielsen, 

1995; Jiang et al., 1997; Gyllencreutz, 2005; Gyllencreutz & Kissel, 2006; Erbs-

Hansen et al., 2011b). The flooding of the English Channel occurred as a result of 

eustatic sea level rise (Nagy & Qvale, 1985; Nordberg, 1991; Behre, 2007), 

termed the Littorina transgression in this region. This hydrological development 
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was the last significant oceanographic change to occur in the Skagerrak, and 

resulted in the onset of the modern oceanographic system (Nagy & Qvale, 1985; 

Conradsen & Heier-Nielsen, 1995; Erbs-Hansen et al., 2011b). It also enabled the 

creation of the South Jutland Current and the Continental Coastal Current 

(Nordberg, 1991; Gyllencreutz & Kissel, 2006). 

 

It is worth noting the timing of this hydrological development is not consistent 

across the North Sea. In GC372650, it occurs at c. 8500 cal. BP, this is in general 

agreement with findings from MD99-2286 (Gyllencreutz, 2005, Gyllencreutz & 

Kissel, 2006) and Skagen 3 (Conradsen & Heier-Nielsen, 1995; Jiang et al., 1997). 

However, Nordberg (1991) in the Kattegat, suggests this may have been earlier, 

9000 - 8700 cal. BP, (this is a calibrated date from Gyllencreutz et al., 2006). 

Furthermore, the faunal assemblages in MD99-2286 do not show this 

development until 8000 cal. BP (Erbs-Hansen et al., 2011b). Clearly, the impact of 

this hydrological development was different in different locations, and even 

different proxies within the same core. However, the records generally indicate the 

English Channel opened sometime between 8500 – 8000 cal. BP leading to a 

significant change in hydrography of the entire North Sea region. 

 

Aside from the opening of the English Channel, faunal changes in this zone also 

reflect the opening of the Danish Straits (figure 12c). In the previous two zones, 

Valvulineria spp. has been associated with outflow from the Baltic Sea. Its 

increase here, at 8300 cal. BP, is therefore likely to correspond to an increase in 

outflow from the Baltic. The eustatic sea level rise (Behre, 2007) that caused the 

opening of the English Channel also resulted in the opening of the Danish Straits, 

facilitating a connection between the Baltic and the North Sea through these 

narrow channels. This would probably have resulted in an intensified stratification 

in the Skagerrak-Kattegat. It would also have allowed much greater volumes of 

higher salinity water into the Baltic, resulting in an increase in productivity and 

biodiversity, and encouraged two-way flow between the Baltic and the 

Skagerrak/Kattegat. 

 

This opening of the Danish Straits has been identified by numerous other authors, 

with Berglund et al., (2005) and Bennike et al., (2004) suggesting it occurred at 



William Dickens   
 

 

 66 

8500 cal. BP and 8100 cal. BP respectively. These dates are relatively close to the 

8300 cal. BP suggested here. However, previous investigations identified this 

event much earlier. Gyllencreutz et al. (2006) calibrated the dates interpreted as 

reflecting the opening of the Danish Straits of previous investigations, finding dates 

of 9300 – 9000 cal. BP (Björck, 1995) and 9000 – 8700 cal. BP (Conradsen, 1995; 

Jensen et al., 1997). The large discrepancies in the period of opening of the 

Danish Straits may be related to resolution of dating, or they may reflect genuine 

variations in response, dependent on location. In either case, it suggests the 

opening of the Danish Straits was probably a complex, and lengthy development. 

Consequently more work is needed to fully understand this event, particularly as it 

was extremely important in the development of the Baltic Sea.  

 

More recently it has been thought that a combination of the English Channel 

opening, and the opening of the Danish Straits facilitated the sudden bloom in H. 

balthica. The warming ocean temperatures and opening of the Channel provided a 

migration route for H. balthica (Erbs-Hansen et al., 2011) and the increased 

stratification resulting from the opening of the Danish Straits created low oxygen 

bottom water conditions, in which H. balthica is known to thrive. This is supported 

by the increase in S. fusiformis during this period. Despite this, the bloom of H. 

balthica occurred slightly earlier than that of Valvulineria spp., suggesting that this 

explanation is not entirely satisfactory. However, if a strong stratification did exist, 

the resulting low oxygen concentrations may explain the reduced abundances 

during this period.  

 

The 8200 cal. BP event, a well described cooling over northern Europe (Alley et 

al., 1997; Alley & Ágústsdóttir, 2005) and observed in other Skagerrak sediments 

at MD99-2286 (Erbs-Hansen et al., 2011b), is not evident in GC372650. The 

reason may be related to the opening of the English Channel, discussed above. 

The sudden and dramatic change to the hydrological system caused by the 

English Channel opening could well mask any changes linked directly to the 8.2 ka 

event. It is also possible, however, that the magnitude of the 8.2 ka cooling event 

was not great enough to have had a significant effect on the deep Skagerrak.  
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6.5 – Strengthened South Jutland Current (6300 – 3000 cal. BP, FAZ 5)  

 

This period is characterized by slight cooling, evidenced by the increase in B. 

frigida, and the move towards an environment with higher energy, interpreted from 

the increase and more consistent appearance of Cibicides lobatulus. The timing of 

this zone corresponds extremely well with a period of cooler conditions and 

strengthened currents off the Danish coast, the South Jutland Current, identified 

by a number of authors at M99-2286 (Gyllencreutz, 2005; Gyllencreutz & Kissel, 

2006), Skagen 3/4 (Conradsen & Heier-Nielsen, 1995; Knudsen et al., 1996b; 

Jiang et al., 1997), and in the Kattegat (Nordberg, 1991; Conradsen, 1995). The 

fauna in this investigation support the theory of cooler conditions and an increase 

in current strength, supporting the interpretation of a strengthened SJC. The 

mechanism for this increased strength of the SJC is related to meteorological 

conditions over the North Sea and North Atlantic. 

 

Mid Holocene climatic cooling over the North Atlantic has been identified by a 

number of authors (Koç Karpuz & Jansen, 1992; Nesje & Dahl, 1993). Given the 

SJC is susceptible to changing meteorological patterns over the North Atlantic 

(Kristensen, 1991), it can become more pronounced during periods of increased 

south-westerlies. Hence, this cooling event in the North Atlantic during the mid-

Holocene, which caused a concurrent decrease in surface water temperatures in 

the North Sea and affected the meteorology, may well have led to a strengthening 

of the South Jutland Current.  

 

Conradsen & Heier-Nielsen (1995), from Skagen 3/4, also interpreted this interval 

as reflecting a strengthened SJC. They observed the influx of a new species at c. 

6200 cal. BP (5500 14C BP), Eoeponidella laesoeensis. Larsen (1984), from 

Northern Jutland, observe the influx of a species they refer to as Astergerinata 

mamilla at the same time, though Conradsen & Heier-Nielsen (1995) inspected 

this species and found it to be exactly the same as E. laesoeensis. A similar 

species was found here with a sudden increase in abundance between c. 6300 – 

3100 cal BP. This supports the interpretation of a stronger SJC by Conradsen & 

Heier-Nielsen (1995) for this period (figure 12d).  
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Given the link between cf. Eoeponidella spp. and a strengthened SJC, the decline 

in this species at c. 3100 cal. BP in GC372650 is possibly related to a weakening 

of the SJC. This date, although close, does appear slightly later than others, with 

Conradsen & Heier-Nielsen interpreting a weakening at c. 3500 cal. BP (3300 C14 

BP) at Skagen 3/4. Sedimentological work on MD99-2286 also showed a 

decrease in strength much earlier, around 4700 cal. BP (Gyllencreutz & Kissel, 

2006). However, Jiang et al., (1997), also on Skagen 3/4 inferred a weakening 

slightly later, at c. 2800 cal. BP (3000 C14 BP), whilst Nordberg (1991), from the 

Kattegat showed a weakening much later, c. 1600 cal. BP (2000 14C BP). These 

records generally indicate that different regions responded differently to variations 

in the SJC. 

 

Importantly, there is not agreement between all records concerning this change. 

Erbs-Hansen et al. (2011b), on MD99-2286, did not identify any similar evidence 

for this hydrographic shift in their faunal assemblages, this is in contrast to the 

sedimentological data on the same core (Gyllencreutz & Kissel, 2006). Instead, 

they observe an increase in B. marginata and a decrease in oxygen isotope 

values, both pointing towards an increase in freshwater output from the Baltic. 

Gyllencreutz & Kissel (2006) also inferred increase Baltic outflow during this period 

from the sedimentological data, though slightly later, around 4000 cal. BP. 

 

The interpretations of Gyllencreutz & Kissel (2006) and Erbs-Hansen et al. (2011b) 

differ slightly from those in this investigation (GC372650). The faunal assemblages 

in GC372650 show a decrease in Valvulineria spp. at c. 6000 cal. BP to its lowest 

levels throughout the core, with most samples showing its complete removal. As 

mentioned previously, this species is associated with outflow from the Baltic and, 

hence, its decrease indicates reduced output. This finding fits extremely well with 

the reconstruction of the Baltic Sea from Björck (1995). After the Littorina stage, 

which saw a maximum in water exchange between the North Sea and the Baltic 

Sea, eustatic sea level rise ceased but isostatic rebound, particular in the southern 

Baltic, continued. This resulted in lowered sills and, hence, reduced water 

exchange.  
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This is also supported by the considerably lower abundances of H. balthica in 

GC372650 compared to the FAZ 4. This species is thought to have bloomed due 

to the Channel opening and increased Atlantic inflow combining with increased 

output from the Baltic to cause an intense stratification (Erbs-Hansen et al., 2011). 

Reduced output from the Baltic would have weakened the stratification; Nordberg 

& Bergsten (1988) also interpreted a weaker stratification in the Kattegat at c. 

4000 cal. BP (Nordberg & Bergsten, 1988). This would explain the consistently low 

abundances of H. balthica. Reduced exchange with the North Sea was an 

important development in the history of the Baltic Sea, as this would have caused 

salinity levels to reduce, leading to stagnation of the water column, creating more 

anoxic conditions and lowering productivity (Björck, 2008).  

 

Generally, therefore, the findings from Gyllencreutz & Kissel (2006) and Erbs-

Hansen et al. (2011) seem to differ from those here. Site MD99-2286 is further 

east and shallower than GC372650; this could possibly explain the disparity in 

results. The outflowing water from the Baltic is likely to have a greater impact upon 

Site MD99-2286 than GC37650. Once again, this indicates that the deep 

Skagerrak responds differently to shallower regions.  

 

6.6 - Period of stability with increasing Atlantic Flow (3000 – 418 cal. BP, FAZ 

6 and 7) 

 

This period, comprised of FAZs 6 and 7, is indicative of relatively stable 

oceanographic conditions. FAZ 6, from c. 3000 cal. BP to c. 1500 cal. BP shows 

the influx of Cassidulina species, interpreted as an increased inflow of Atlantic 

water. There is, however, an increase in Buccella frigida between 2800 and 2000 

cal. BP; this is inferred to reflect a period of reduced water temperatures. The 

cooling may be related to neo-glacial cooling, with Emeis et al., (2003) suggesting 

a sea surface temperature drop of 2°C occurred between 6000 – 2000 cal. BP in 

the Baltic Sea. This period also witnessed the significant re-advance of glaciers 

(Nesje & Dahl, 1993). Neo-glacial cooling is also observed in the Skagerrak by 

Erbs-Hansen et al. (2011) between 4350 to 1100 cal. BP, suggesting a cooling 

over c. 3000 years. In GC372650, evidence of reduced temperatures persisted for 

around 800 years, indicating that the deep Skagerrak may have responded slower 
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to the climatic changes, only reacting after a prolonged duration of cooler 

temperatures.  

 

From 1450 cal BP there is a distinct change with the introduction of B. 

skagerrakensis. This species is reported as preferring stable bottom water 

conditions, with high oxygen concentrations and salinities (Conradsen et al., 

1994). Its increase during the late Holocene in GC372650 is therefore likely to 

relate to the influence of a more stable water mass with high salinities and 

temperatures. Numerous authors have also observed the influx of B. 

skagerrakensis around this time from sites around the Skagerrak (Nagy & Qvale, 

1985, Qvale & Nigam, 1985; Bjørklund et al., 1985). Nordberg (1991), working in 

the eastern Kattegat, did not observe this species, though this was probably due to 

the fact the Kattegat is too shallow to support B. skagerrakensis. Nonetheless, 

Nordberg (1991) still interpreted changes around this period as a result of the 

inflow of a nutrient rich water source. Therefore, the sudden influx of B. 

skagerrakensis is probably related to a further increase in Atlantic water inflow. 

Many authors from the Skagerrak also believe Atlantic inflow increased during this 

period (Nordberg, 1991; Gyllencreutz & Kissel, 2006; Erbs-Hansen et al., 2011b). 

 

Hass (1996) links this increased inflow of Atlantic water to a distinct climatic 

change, with cool and wetter conditions over the North Atlantic and North Sea. 

Hass (1996) suggests that these changes would have enabled a stronger inflow of 

saline water into the North Sea. The predominant wind direction at that time would 

have been northwesterly, and this could have increased the inflow of water 

through the South Trench Current (STC); Jiang et al., (1997), proposed a similar 

interpretation. This would have strengthened circulation in the Skagerrak and 

increased the inflow of Atlantic Water. 

 

It is of note, however, that Hass (1996) suggested this increased Atlantic inflow 

through the Southern Trench only occurred between c. 1550 – 1150 cal. BP. The 

fauna from GC372650 indicate this persisted over a much longer duration. 

Furthermore, it continues throughout the period known as the Medieval Warm 

Period (MWP), a well-documented climatic warming across Northern Europe 

(Hass, 1996; Hebbeln et al., 2006; Gil et al., 2006; Poldova et al., 2011; Erbs-
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Hansen et al., 2011b), thought to have occurred between 1200/1000 cal. BP – 

700/500 cal. BP (Hass, 1996).  These might indicate that a different process has 

caused the increased Atlantic inflow between c. 1500 and 420 cal. BP.  

 

6.7 – Little Ice Age (420 - 160 cal. BP, FAZ 8) 

 

The increase in B. frigida at c. 420 cal. BP, FAZ 8, suggests a distinct drop in 

water temperatures that lasted throughout this zone. Additionally, abundances of 

B. skagerrakensis decrease, reaching a minimum at c. 290 cal. BP. This species is 

an indicator of stable and warm bottom water conditions and its decrease in FAZ 8 

may therefore also reflect a decrease in temperatures. However, Hass (1994) 

interpreted B. skagerrakensis as an indicator of changing hydrographical 

conditions, largely because peaks in abundance were found during periods of 

changing conditions, such as the initiation of the Little Ice Age. In this 

investigation, B. skagerrakensis peaks in the sample underlying the onset of this 

zone. Therefore, this period is generally characterized by reduced temperatures 

which probably relate to the Little Ice Age.  

 

On the other hand, B. skagerrakensis has been associated with Atlantic water 

inflow. Therefore, a reduction in abundance could also be a result of decreased 

Atlantic water inflow. Erbs-Hansen (2011) identify a change around 500 cal. BP 

which they suggest might be connected to a period of negative and move variable 

NAO index, as identified by Trouet et al. (2009), which may have resulted in 

reduced Atlantic water inflow. However in GC372650, the reduction in B. 

skagerrakensis occurs later, and for a shorter duration, indicating that this negative 

NAO index probably had little effect. 

 

Generally, although the impact of a negative NAO index cannot be ruled out, this 

zone reflects reduced temperatures that probably relate to the LIA. After c. 290 

cal. BP, B. skagerrakensis increases in abundance once more, reaching pre-LIA 

levels at c. 160 cal. BP; this is interpreted as a return to wamer temperatures. A 

similar rise in B. skagerrakensis, has been observed elsewhere in the Skagerrak, 

also attributed to warming following the LIA (Hass, 1994; Jentzen, 2010). This 

suggests that the LIA terminates at c. 160 cal. BP. 
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It is notable that the duration of the LIA in GC372650 appears much shorter than 

in previous studies around the Skagerrak (Hass et al., 1996; Hebbeln et al., 2006). 

However, Hass et al., (1996) suggest the maximum of the LIA probably occurred 

between c. 400 and 170 cal. BP. This corresponds fairly well with the sediments in 

GC372650, indicating that the deeper Skagerrak sediments responded slightly 

more slowly to the cooling experienced during the LIA. 

 

Furthermore, Hass (1996) observed a decrease in current strength during the LIA 

maximum, c.400 – 170 cal. BP. Water depth of core sites in the investigation by 

Hass (1996) varied, but some were as deep as 450m. The decreased current 

strength could have resulted in reduced mixing of the water column, a theory 

supported by the increase in H. balthica and B.  marginata in GC372650, two 

species which are able to survive in less oxygenated environments.  

 

This in itself is interesting as Hebbeln et al., (2006) observed the opposite, an 

increase in bottom water current strength throughout the period they define as the 

LIA. It seems logical that this would have affected the sediments in GC372650 

from the outset, though this was clearly not the case. However, Hebbeln et al. 

(2006), who investigated sites from across the Skagerrak and North Sea, were 

limited to just 338 m water depth. Given that GC372650 is from 550m water depth, 

it seems likely that the increased bottom water velocities were limited to the upper 

water column, perhaps down to the maximum depth of Atlantic water inflow.   

 

Consequently, it appears that the deeper Skagerrak responded differently to 

cooling during the LIA than shallower sites. The duration of cooling appears 

shorter, and lowered oxygen concentrations resulting from reduced mixing in the 

water column may have occurred.  

 

6.8 - Present day: Anthropogenic Impacts or NAO index? (c.160 cal BP – 

Present Day / AD 1790 – 2009). 

 

This section will discuss the environmental changes using the time scale relative 

to modern day, AD. This is to avoid confusion with dates after ad 1950. 
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One of the most distinctive elements of this period is the appearance of more 

agglutinated species and in far higher abundances. Previous investigations have 

attributed this to variations in preservation (Nordberg, 1991). However, Alve (1996) 

considered this problem in detail and concludes that the assemblage changes are 

related to genuine ecological changes rather than taphonomic effects; similar 

conclusions are reached by Alve & Murray (1995). 

Figure 13: Graphic showing the relative percent of Textularia earlandi, specimen 

abundance and NAO index values over the last 200 years. The blue line represents the 

reconstructed NAO index by Truet et al. (2009) with the shaded area the possible error. The 

record from Truet et al. (2009) only extends to 1995, and the hashed red line is redrawn 

from Osborn (2011). The red line is used to demonstrate the rapidly reducing NAO values 

proposed by Osborn (2011), however, given that the two authors used different 

calibrations methods, it is not possible to correlate the exact values. Hence, the red line is 

simply used to show a decrease since 1995. 
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The two most dominant faunal changes that occur during this period are the 

decrease in B. skagerrakensis and the increase in T. earlandi. As discussed in the 

results, the concurrent decrease and increase in these two species respectively is 

likely to relate to a reduction in oxygen levels in the deep Skagerrak. A number of 

authors have found similar assemblages indicating oxygen depletion from sites 

around the Skagerrak (Nordberg et al., 2000; Jentzen, 2010). In fact, a number of 

studies into the Skagerrak have also shown oxygen depletion through direct 

measurements (Aure et al., 1996; SMHI, 2004, 2007). In GC372650, B. 

skagerrakensis shows a relatively constant decline throughout the duration of FAZ 

9. However, T. earlandi actually shows significant variation, with peak abundances 

between c. AD 1850 – 1940 and c. AD 1970 – 2000. This is interpreted as varying 

levels of oxygen depletion, with lowest oxygen concentrations during the period of 

increased abundance in T. earlandi. 

 
Aure et al. (1996) suggests this reduction in oxygen concentration is directly 

related to an increase in nutrient supply to the deep Skagerrak. The dramatic 

increase in specimen abundance over the last 50 years supports this theory. An 

increase in nutrients, often the limiting factor in environments such as this, would 

promote a bloom in foraminiferal abundance. Concurrent increases in benthic 

biomass have been reported from across the Skagerrak (Josefon, 1990; Alve, 

1991; Alve & Murray, 1995; Rosenberg et al., 1997), all of which have been 

associated with an increased supply of nutrients. It is worth noting that the oxygen 

depletion rates  

 
observed in the deep Skagerrak are not actually greater in magnitude than the 

shallower nearby regions (Aure et al., 1996). However, lower base levels of 

oxygen concentration mean the Skagerrak is more sensitive to this oxygen 

depletion (Aure et al., 1996), meaning it has a greater impact on its ecology. 

Nevertheless, it seems likely that the considerable increase in foraminiferal 

abundance and changes in foraminiferal assemblages seen throughout this period 

in G372650 may be linked with an increased supply of nutrients. However, the 

precise cause of this nutrient enrichment is unclear.   
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Aure et al. (1996) suggested this increased availability of nutrients was a result of 

eutrophication. Increased run off, more extensive use of fertilisers and an increase 

in activities such as tree felling all lead to increased input of terrigenous sediments 

and nutrients into the Skagerrak. Eutrophication increases the food supply, 

allowing greater populations of benthic biomass, thus increasing the oxygen 

depletion rate. However, some authors have investigated this possibility in the 

deep Skagerrak and found inconclusive results (Johannessen & Dahl, 1996), 

whilst an official report by Eilola (2011) found the Skagerrak to be a “non-problem 

area” in terms of eutrophication.  

 

Therefore, it is worth considering if there are alternative explanations for the 

oxygen depletion in the Skagerrak. Brückner (2008) suggests a high NAO index 

since c. 1980 AD, NAO phase 1 on figure 13, may be a significant factor. Positive 

NAO index values result in intensified westerlies and warmer temperatures 

(Brückner, 2008). It would also, however, have caused a greater influx of water 

with high concentrations of nutrients through the English Channel (Brückner, 

2008). Edwards et al. (2002) also suggested recent abundance increases in 

phytoplankton and zooplankton were down to extremely high temperatures and 

salinities during this period, linked with the positive NAO index. Brückner (2008) 

demonstrated that negative NAO index phases were associated with cascading 

events into the Skagerrak (deep water renewal, see section 2.5). Thus, it can be 

surmised that positive NAO phases could results in fewer cascading events. 

 

Therefore, the oxygen depletion inferred from the bloom in T. earlandi at c. 2000 

AD may have been related to a positive NAO index. It is clear that an offset of 

approximately 10 years exists between the maximum in the NAO index values and 

the peak in T. earlandi; however, the reduced sample density during this interval 

may have caused this. It may also be due to the limited dating resolution during 

this period, with only two dates covering 15cm of sediment. Regardless, there 

appears to be a link between the increase in T. earlandi and positive NAO index 

values. The subsequent and extremely rapid reduction in T. earlandi correlates 

well with the rapid drop in NAO index values suggested by Osborn (2011), the 

hashed red line in figure 13. Again, the reduction in NAO values occurs slightly 
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before the reduction in T. earlandi. Clearly, despite the slight offset in dates, recent 

fluxes in oxygen levels in the Skagerrak seem to be related to the NAO index. 

 

Given this, it is worth considering if earlier periods of increased oxygen 

concentration are related to more negative NAO index values. The NAO index, 

shown in figure 13, shows a distinct drop in values between c. AD 1920 – 1970, 

NAO index phase 2; this fits relatively well with the minimum in T. earlandi 

between c. AD 1940 – 1970. Edwards et al. (2002) suggested that conditions 

around AD 1970 – 1980 were probably cool, with reduced salinities due to 

decreased Atlantic inflow. An increase in Buccella frigida in GC372650 between c. 

AD 1930 – 1990, see figure 9, supports the theory of reduced temperatures. 

Reduced Atlantic inflow may have reduced the supply of nutrient to the deep 

Skagerrak, causing a subsequent decrease in productivity; this might explain the 

reduction in T. earlandi as oxygen concentrations may have been higher. Finally, 

the large abundances of T. earlandi, between c. AD 1850 – 1940 may also be 

tentatively linked with a period of higher NAO index values, NAO phase 3 on figure 

13.  

 

One argument against the link between NAO index values and oxygen depletion is 

that the hydrological system in the Skagerrak has varied very little since the 

opening of the English Channel in c. 8,500 cal. BP. Reconstructions by Truet et 

al., (2009) suggest there were higher values of the NAO index before the LIA. 

Why, therefore, did the faunal assemblages not indicate increased oxygen 

depletion during those earlier periods? One possible explanation is that variations 

in the NAO index, and more recent, potentially anthropogenic eutrophication of the 

Skagerrak have combined to cause these greater levels of oxygen depletion.  

 

Overall, oxygen depletion in the Skagerrak over the last 100 years appears to 

show a good correlation with variations in the NAO index, similar results were 

found by FIlipson & Nordberg (2004) and Nordberg et al. (2000). However, further 

studies would be needed to confirm this link. Furthermore, higher sampling 

resolution and additional dates will greatly improve the potential for correlation of 

these processes. It must also be considered that eutrophication of the Skagerrak 
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may be a significant factor in the recent faunal changes, and future investigations 

assessing the relative impact of the two are necessary. 

 

6.9 - Inflow events (MBI’s) 

 

One of the original aims for this investigation was to ascertain whether or not MBI 

events could be examined in sediments deposited in the Skagerrak. As discussed 

in section 1.1, inflow events occur when extreme low pressure systems preside 

over the North Sea, leading to increased sea level and a large inflow of water from 

the North Sea into the Baltic Sea (Matthaüs & Franck, 1992; Schinke & Matthaüs, 

1998). These MBI’s are vital for the ecology of the Baltic Sea, particularly given its 

relatively low salinity water and limited productivity. Recent work suggesting the 

frequency of these MBI’s is decreasing (Matthaüs et al., 2008) highlights the need 

to better understand their frequency and causes.  

 

When examining GC372650, there are no discernible long-term trends in the 

fauna assemblages that are indicative of these inflow events. Obviously, there is 

considerable variation throughout the core, but none are easily linked with the 

MBIs. When examining more recent sediments, there are variations in the inflow of 

Atlantic water, as discussed in the previous zones, but again these occur on 

timescales greater than that of MBI. More recent faunal assemblages have shown 

evidence of increased oxygen depletion that could be related to a decrease in the 

MBI, but is far more likely to relate to the factors discussed above - a positive NAO 

index and eutrophication.  

 

The lack of evidence for these Baltic inflows is most likely due to the depth and the 

topographic nature of the Skagerrak. Any major inflow event may not access the 

deeper parts of the Skagerrak as the north Atlantic water enters between 100 – 

400m. Given the intense stratification in the Skagerrak, this inflowing water would 

have minimal effect on the deep sediments. Furthermore, if there were to be any 

evidence of these inflow events, it is possible that they may be suppressed by the 

cascading events into the Skagerrak. Consequently, it generally seems that the 

deep Skagerrak is not an effective place to reconstruct these MBI’s, although 

shallower regions directly affected by Atlantic inflow may be more suitable.  
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Chapter 7. Conclusion 
 

 

This study has shown that foraminifera are an extremely valuable tool for 

reconstructing the palaeoceanogaphic development of the Skagerrak. As set out in 

objectives 1 and 2 of this investigation, the foraminifera were successfully 

identified and used to reconstruct changes to the conditions of deep water in the 

Skagerrak. Their sensitivity to different environmental parameters, particularly 

temperature, salinity and oxygen concentrations, mean that variations in their 

assemblages accurately reflect alterations to the hydrological regime. This has 

allowed for successful reconstruction of the palaeoceanographic and 

palaeoenvironmental history of the North Sea, objective 3 of this investigation. 

Finally, as set out in objective 4, the influence of both environmental, and natural 

changes in recently deposited sediments has been assessed. The findings 

reported here show a similar development to other cores in the Skagerrak, namely 

MD99-2286, Skagen 3/4, and the GIK cores, as well as those from the north 

eastern North Sea, Troll 8903/28-03. However, some variations in the timing and 

warming shown in these records do exist.  
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7.1 – Skagerrak paleoceanographic development 

 

Between 12,600 and 11,200 cal. BP, the cold water fauna, Buccella frigida and 

Elphidium excavatum reflect particularly cold conditions during the Younger Dryas. 

The presence of a discharging ice front is inferred from the presence of E. 

excavatum, an indicator of lower salinity, the location of which is probably along 

the southern coast of Norway and the Oslo Fjord. Water temperatures have 

warmed by the end of this period, as reflected by the decline in Buccella frigida, 

indicating the end of the Younger Dryas period.  

 

Sediments deposited between 11200 and 9700 cal. BP reflect the Baltic Drainage 

Change to the Otteid-Steinselva outlet. The increasing temperatures at the end of 

the Younger Dryas would have triggered a retreat of the Scandinavian ice sheet 

beyond Mount Billingen, which would have resulted in the subsequent drainage 

change.  Whilst the initiation of this drainage change occurred at similar times 

around the Skagerrak, its subsequent closure based on the faunal record from 

GC372650 appears to occur later and over a more extended period of time 

(between 10,500 and 10,000 cal. BP) than other records around the Skagerrak 

have shown. The most likely cause for this disparity in results is probably related 

to depth. The deeper site, GC372650, may have been more affected by the cold 

meltwater, whereas the shallower sites would have seen the pycnocline brake up 

more readily when meltwater input decreased.  

 

It is of note that no evidence of the Baltic Ice Lake final drainage was found. This 

is thought to precede the opening of the Otteid-Steinselva outlet. The absence of 

evidence for this event is, once again, probably related to depth. The sudden, and 

considerable, influx of cold, freshwater glacial melt may have caused an intense 

stratification in the Skagerrak, isolating the bottom sediments from the influence of 

the cold water. The constant output during this initial drainage meant the 

stratification would have persisted throughout its duration.  

 

After the closure of the Otteid-Steinselva outlet, increased Atlantic inflow into the 

Skagerrak is registered by the increase of more boreal species and those 

associated with Atlantic water, namely Cassidulina laevigata and Melonis 
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barleeanus. These findings are generally in agreement with other authors around 

the Skagerrak, who also see this as a period of increased Atlantic influence. 

However, the faunal assemblages also indicate the occurrence of a distinct cooling 

event at approximately 9450 cal. BP.  

 

This climatic deterioration around 9400 cal. BP appears to have lasted less than 

400 years, and the timing suggests it may correlate with a cooling observed by 

Jiang et al., (1997) caused by a strengthening of the North Jutland Current. 

However, it may also be part of a wider climatic deterioration that occurred across 

Northern Europe during this period. The cause of the climatic cooling is probably 

related to the sudden discharge of glacial meltwater into the North Atlantic, which 

caused a subsequent slowdown of the THC.  

 

At 8500 cal. BP, a sudden influx of boreal species H. balthica occurs, this has 

been interpreted as the opening of the English Channel. This facilitated the 

formation of the South Jutland Current, which was almost completely absent 

before the opening. Slightly later, at 8300 cal. BP, the increase in Valvulineria spp. 

is probably related to the opening of the Danish Straits. The opening of the English 

Channel and Danish straits is regarded as the initiation of the modern hydrological 

system in the North Sea. At c. 6000 cal. BP, the increased abundance of cold 

water fauna and those associated with increased current strength probably reflect 

a strengthened South Jutland Current.  

 

Between 3000 and c. 420 cal. BP, the faunal assemblages indicate a period of 

stable hydrographic conditions with increasing Atlantic inflow. Following this, 

between c. 420 and 160 cal. BP, the fauna indicates a reduction in temperatures, 

probably related to the Little Ice Age. It is interesting that the cooler conditions 

manifest themselves at GC372650 only during the maximum of the LIA. 

Furthermore, the fauna suggest the Skagerrak experienced reduced oxygen 

concentrations during this period, in contrast to results from Hebbeln et al. (2006) 

which suggested a strengthened bottom current and more mixing. The data from 

GC372650 actually indicates a calmer, more stratified environment, more in line 

with findings from Hass (1996). 
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Subsequently, between c. AD 1850 and modern day, the fauna suggest significant 

oxygen depletion in the Skagerrak. At this stage, it is unclear whether this is a 

result of anthropogenic eutrophication, or a result of more positive NAO index 

values, or a combination of the two. Additional data is extremely important to help 

understand these environmental changes and assess the relative impact of the 

two processes.  

 

7.2 – Variable exchange between the North Sea and Baltic Sea 

 

Based on the benthic foraminiferal record from GC372650 variations in the 

exchange of water and nutrients between the Baltic Sea and the North Sea have 

been observed. Output from the Baltic seems to have had its greatest effect on the 

Skagerrak during the existence of the Otteid-Steinselva outlet. Once this outlet 

closed, output decreased dramatically. However, importantly, the continued 

presence of Valvulineria spp. indicates that exchange between the Baltic and the 

North Sea continued to occur. The opening of the Danish Straits around 

8300 cal. BP increased the exchange between the two water masses, but this 

subsequently decreased after about 6000 cal. BP. The exchange then appears to 

remain at this level until modern day. These variations are extremely important, as 

they would have had significant impacts upon the productivity and biodiversity 

within the Baltic basin.  

 

7.3 – Influence of depth on reconstruction 

 

This investigation on GC372650 has observed variations in the timing, duration, 

and onset of both hydrological and climatological events throughout the North Sea 

when compared to previous studies. Whilst discrepancies in the resolution and 

accuracy of dating might explain these variations, in many cases they seem 

related to depth. The influence of water depth seems to manifest itself in a number 

of ways. Firstly, GC372650 demonstrates a stratified water column for a longer 

duration that shallower sites, particularly during the opening of the Otteid-

Steinselva outlet. This is probably because it is more readily broken up in 

shallower areas. Secondly, the onset of climatological cooling in GC372650, 

particularly during the LIA, seems to occur later and persist for a shorter duration. 
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This seems to imply that the deeper waters respond slower to climatic cooling, and 

that it takes a lower magnitude of warming before conditions return to a pre 

cooling state.  

 

In addition to this, bottom water velocities inferred from GC372650 often differ 

considerably from those identified in shallower sites. This is particularly the case 

during the LIA, where Hebbeln et al. (2006) observed increased velocities 

throughout the LIA, whereas GC372650 actually demonstrated increased 

stratification and reduced oxygen concentrations. This implies that the depth of 

water inflow into the Skagerrak is extremely important in determining the 

hydrological environment at different water depths. Overall, it is clear that the 

deeper Skagerrak responds slightly differently to climatological and hydrological 

developments, and provides a slightly different palaeoreconstruction of the North 

Sea. 

 

7.4 – Outlook 

 

Overall, this investigation has provided valuable data to INFLOW concerning the 

palaeoceanographic development of the North Sea. It has identified, variations in 

exchange between the Baltic and the North Sea through time, changes in the 

composition of Skagerrak water that will have entered the Baltic Sea, more recent 

climatic cooling events as well as a strong correlation between NAO index values 

and recent oxygen depletion in the Skagerrak. It has, however, highlighted the 

need for more research into modern foraminiferal studies, higher resolution dating 

to more accurately constrain the dates of hydrological developments and more 

studies to effectively determine the relative impact of eutrophication and NAO 

index variations in recent oxygen depletion. Nonetheless, it provides extremely 

useful data to INFLOW to help achieve a sustainable use of the Baltic and its 

resources.   
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Appendix 1 – Species list 

 
Calcareous Foraminifera 
 
Ammonia spp. 
Astrononion gallowayi Loeblich and Tappan, 1953 
Biloculina depressa (d’Orbigny, 1826) 
Bolivina albatrossi Cushman, 1922 
Bolivina skagerrakensis Qvale and Nigam, 1985 
Bolivina spathulata (Williamson, 1858) 
Brizalina pseudopunctata (Hoeglund, 1947) 
Buccella frigida (Cushman) 
Bulimina marginata d’Orbigny, 1826 
Buliminella elegantissima (d’Orbigny) 
Cassidulina cf. laevigata d’Orbigny, 1826 
Cassidulina laevigata  d’Orbigny, 1826 
Cassidulina neoteretis Tappan, 1951 
Cassidulina obtuse Williamson, 1858 
Cassidulina reniforme Nørvang 
Cassidulina sp. 1 
cf. Eoeponidella Wickenden, 1949 
Cibicides lobatulus (Walker and Jacob) 
Cibicides sp. 1 
Cornuspira involvens (Reuss) 
Dentalina spp. 
Elphidium excavatum (Terquem) forma clavata (cf. Feyling-Hanssen, 1972)  
Epistominella spp. 

Epistominella sp. 1 
Epistominella sp. 2 
Fissurina spp. 
Flat Spiral 
Globobulimina turgida (Bailey, 1947)  
Haynesina germanica (Ehrenberg, 1840) 
Hyalinea balthica (Schroeter, 1783) 

Islandiella norcrossi (Cushman) 
Lagena spp. 
Lenticulina  cf. angulata Noth, 1951 
Lenticulina spp. 

Melonis barleeanus (Williamson, 1858) 
Miliolinella spp. 
Nonionella iridea Heron-Allen and Earland, 1932 
Nonionella labrodorica (Dawson, 1860) 
Nonionella turgida (Williamson, 1858) 
Oolina spp 

Parafissurina spp. 
Pseudopolymorphina spp. 
Pullenia bulloides (d’Orbigny, 1839) 
Pullenia osloensis Feyling-Hanssen, 1954 
Pullenia osloensis sp. 2 
Pullenia subcarinata (d’Orbigny, 1839) 
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Pyrgo williamsoni (Silvestri, 1923) 
Quinqueloculina spp. 

Rosalina spp. 
Stainforthia fusiformis (Williamson, 1848) 
Trifarina angulosa (Williamson, 1858) 
Trioculina tricarinata d’Orbigny, 1826 
Uvigerina mediterranea Hofker, 1932 
Valvulineria spp.  
Virgulina loeblichi Feyling-Hanssen, 1954 
Virgulina schreibersania  Cžjžek, 1848 
Unidentified sp. 1 
 
Agglutinated Foraminifera 
 

Adercotryma glomerata (Brady, 1878) 

Eggerelloides scabrus (Williamosn, 1858) 

Gaudryina spp.  
Haplophragmoides bradyi (Robertson, 18
1) 
Milliamina fusca (Brady, 1870) 

Reophax spp. 

Reophax sp. 1 
Saccammina spp. 
Textularia earlandi Parker, 1952 

Trochammina inflata spp. 
Trochammina inflata (Montagu, 1808) 
Unidentified agglutinated sp. 1 
Unidentified agglutinated sp. 2 
Unidentified agglutinated sp. 3 
Unidentified agglutinated sp. 4 

 

 
 
 
 
 



Appendix 2 - Raw foraminifera data

Species 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25

Ammonia spp. 0 0 0 0 0 0 0 0 0

Astrononion gallowayi 0 0 0 0 0 0 0 0 0

Biloculina depressa 0 0 0 0 0 0 1 0 0

Bolivina albatrossi 0 0 0 0 0 0 0 0 0

Bolivina skagerrakensis 13 9 30 18 31 40 36 32 28

Bolivina spathulata 0 1 1 1 1 1 0 0 0

Brizalina pseudopunctata 0 1 0 0 5 3 1 1 1

Buccella frigida 16 18 38 25 23 15 12 10 7

Bulimina marginata 6 1 6 0 8 7 9 6 5

Buliminella elegantissima 0 0 0 5 0 0 0 0 0

Cassidulina cf. Laevigata 0 0 0 0 0 0 0 0 0

Cassidulina laevigata  12 6 6 2 4 7 14 7 6

Cassidulina neoteretis 14 8 13 10 7 10 17 15 15

Cassidulina obtuse 8 13 1 0 1 0 1 1 5

Cassidulina reniforme 0 0 0 0 0 0 0 0 0

Cassidulina sp. 1 0 0 0 0 0 0 0 0 0

cf. Eoeponidella spp. 0 0 3 0 0 0 0 0 0

Cibicides lobatulus 3 0 0 0 2 0 2 3 2

Cibicides pseudoungerianus 0 0 0 0 0 0 0 0 0

Cibicides sp. 1 0 0 0 0 1 0 0 0 0

Cornuspira involvens 3 3 3 1 0 1 1 2 0

Dentalina spp. 0 0 0 0 0 0 1 0 0

Elphidium excavatum  forma clavata 0 0 2 1 1 2 1 0 0

Epistominella sp. 1 22 11 20 12 10 4 8 9 5

Epistominella sp. 2 0 0 0 1 0 0 0 0 0

Epistominella spp. 0 0 0 0 0 0 0 0 0

Fissurina spp. 3 2 2 3 0 2 2 1 0

Flat Spiral 0 0 0 0 0 0 0 0 0

Globobulimina turgida 0 0 0 0 2 3 2 1 3

Haynesina germanica 1 0 0 1 0 0 0 0 0

Hyalinea balthica 33 3 7 5 1 10 21 22 15

Islandiella norcrossi 0 0 0 0 0 0 0 0 0

Lagena spp. 4 2 0 1 0 2 3 1 1

Lenticulina  cf. angulata 2 3 0 2 0 1 0 1 0

Lenticulina spp. 0 0 0 1 0 0 0 0 1

Melonis barleeanus 2 2 15 11 13 5 4 5 5

Miliolinella spp. 0 0 0 0 0 0 0 0 0

Nonionella iridea 37 23 21 26 19 15 10 13 25

Nonionella labrodorica 0 0 0 0 0 0 0 0 0

Nonionella turgida 2 0 0 0 0 0 0 0 0

Oolina s pp 1 1 5 3 3 1 2 0 1

Parafissurina spp. 0 0 1 0 0 0 0 1 2

Pseudopolymorphina spp. 0 0 0 0 0 0 0 0 0

Pullenia bulloides 0 3 7 4 5 13 3 8 1

Pullenia osloensis 61 24 29 30 43 42 39 16 19

Pullenia osloensis sp. 2 0 0 0 0 0 0 0 0 0

Pullenia subcarinata 0 5 9 5 9 8 4 1 5

Pyrgo williamsoni 0 0 0 0 0 0 1 0 0

Quinqueloculina spp. 0 0 0 0 0 0 1 0 0

Rosalina spp. 1 1 0 0 0 0 0 0 0

Unidentified sp. 1 0 0 0 0 0 0 0 0 0

Stainforthia fusiformis 17 14 29 22 26 25 26 18 16

Trifarina angulosa 0 0 0 0 0 0 0 0 0

Trioculina tricarinata 0 0 0 0 0 0 0 0 0

Uvigerina mediterranea 13 3 3 2 1 0 0 4 0

Valvulineria spp. 2 1 1 0 0 0 1 0 3

Virgulina loeblichi 1 0 1 1 0 0 1 0 1

Virgulina schreibersania  0 0 0 0 0 0 0 0 0

Adercotryma glomerata 1 0 1 2 3 0 0 0 0

Eggerelloides scabrus 2 3 14 9 22 23 19 16 19

Gaudryina spp. 0 0 0 1 0 0 0 0 1

Haplophragmoides bradyi 7 11 10 17 18 6 10 4 4

Milliamina fusca 0 0 0 0 0 0 0 0 0

Reophax sp. 1 0 0 0 0 0 0 0 0 0

Reophax spp. 18 5 13 15 23 13 12 9 11

Saccammina spp. 0 1 2 0 0 0 0 0 0

Textularia earlandi 5 117 18 32 13 39 33 94 82

Trochammina inflata 0 0 0 0 0 0 0 0 0

Trochammina inflata spp. 3 3 3 6 3 4 2 0 3

Unidentified agglutinated sp. 1 0 3 0 3 2 1 1 0 1

Unidentified agglutinated sp. 2 1 1 0 1 0 3 0 0 0

Unidentified agglutinated sp. 3 0 2 3 2 3 2 1 3 3

Unidentified agglutinated sp. 4 0 0 0 0 0 0 0 0 0



Species 4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75

Ammonia spp. 0 0 0 0 0 0 0 0 0

Astrononion gallowayi 0 0 0 0 0 0 0 0 0

Biloculina depressa 0 0 1 0 0 0 0 0 0

Bolivina albatrossi 0 0 0 0 0 0 0 0 0

Bolivina skagerrakensis 32 62 52 46 40 32 43 39 52

Bolivina spathulata 0 1 0 0 0 0 0 1 0

Brizalina pseudopunctata 1 0 1 0 1 0 1 0 0

Buccella frigida 3 6 14 14 13 8 14 13 17

Bulimina marginata 8 6 6 3 3 7 4 3 5

Buliminella elegantissima 0 0 0 0 0 1 0 0 0

Cassidulina cf. Laevigata 0 0 0 0 0 0 0 0 0

Cassidulina laevigata  15 7 8 9 13 9 12 9 12

Cassidulina neoteretis 19 17 25 15 15 18 18 19 23

Cassidulina obtuse 1 2 2 5 2 2 2 4 3

Cassidulina reniforme 0 0 0 0 0 0 0 0 0

Cassidulina sp. 1 1 0 0 0 0 0 0 0 0

cf. Eoeponidella spp. 0 0 1 0 1 2 0 0 0

Cibicides lobatulus 4 4 3 6 3 2 7 5 6

Cibicides pseudoungerianus 0 0 0 0 0 0 0 0 0

Cibicides sp. 1 1 0 0 0 0 0 0 0 0

Cornuspira involvens 2 2 1 1 2 1 0 0 3

Dentalina spp. 0 0 0 0 0 0 0 0 0

Elphidium excavatum  forma clavata 0 1 0 1 1 1 0 2 1

Epistominella sp. 1 12 4 1 13 5 11 15 14 19

Epistominella sp. 2 0 0 0 0 0 0 3 0 0

Epistominella spp. 1 0 0 0 0 0 0 0 0

Fissurina spp. 1 0 1 2 0 2 3 0 0

Flat Spiral 0 0 0 0 0 1 1 1 1

Globobulimina turgida 3 1 0 0 1 1 1 2 1

Haynesina germanica 0 0 0 0 0 0 0 0 0

Hyalinea balthica 31 15 21 16 19 22 13 28 24

Islandiella norcrossi 0 0 2 1 0 1 1 2 0

Lagena spp. 0 2 3 2 2 4 2 3 2

Lenticulina  cf. angulata 0 1 0 0 1 0 3 0 0

Lenticulina spp. 0 2 0 2 0 0 0 0 1

Melonis barleeanus 2 8 4 7 6 6 4 11 7

Miliolinella spp. 1 1 1 2 4 5 5 10 2

Nonionella iridea 23 13 13 30 33 20 29 19 37

Nonionella labrodorica 0 0 0 0 0 0 0 0 0

Nonionella turgida 0 0 0 0 1 0 0 0 0

Oolina s pp 0 1 0 0 0 3 2 4 2

Parafissurina spp. 1 0 1 0 0 0 1 0 0

Pseudopolymorphina spp. 1 0 0 0 2 0 1 3 1

Pullenia bulloides 10 5 12 11 9 3 4 6 2

Pullenia osloensis 22 20 16 37 34 26 32 27 22

Pullenia osloensis sp. 2 0 0 0 0 0 0 0 0 0

Pullenia subcarinata 3 8 8 5 7 6 7 9 6

Pyrgo williamsoni 0 3 4 5 5 0 3 3 1

Quinqueloculina spp. 3 0 0 2 1 3 3 5 2

Rosalina spp. 1 1 0 0 0 0 1 0 1

Unidentified sp. 1 0 1 0 0 0 0 0 0 1

Stainforthia fusiformis 14 7 11 14 24 12 17 9 14

Trifarina angulosa 1 1 0 0 0 1 1 1 0

Trioculina tricarinata 0 0 0 2 0 3 0 2 1

Uvigerina mediterranea 1 2 0 2 2 0 1 2 1

Valvulineria spp. 0 0 0 1 1 0 3 3 4

Virgulina loeblichi 0 0 0 0 1 0 0 0 0

Virgulina schreibersania  0 0 0 0 0 0 0 0 0

Adercotryma glomerata 2 3 1 0 0 1 2 4 4

Eggerelloides scabrus 13 18 12 12 10 17 14 11 12

Gaudryina spp. 0 0 0 0 2 1 0 0 0

Haplophragmoides bradyi 2 6 15 12 7 10 11 5 6

Milliamina fusca 0 0 0 0 0 0 0 0 0

Reophax sp. 1 0 0 0 0 0 0 0 0 0

Reophax spp. 4 11 6 21 11 10 9 6 9

Saccammina spp. 0 0 0 0 0 0 0 0 0

Textularia earlandi 70 44 38 6 5 32 19 16 3

Trochammina inflata 0 0 0 0 0 0 0 0 1

Trochammina inflata spp. 3 2 5 4 2 5 0 2 2

Unidentified agglutinated sp. 1 0 0 1 3 1 1 0 0 1

Unidentified agglutinated sp. 2 0 2 1 2 0 0 0 0 1

Unidentified agglutinated sp. 3 1 3 6 1 2 0 0 2 3

Unidentified agglutinated sp. 4 0 0 0 0 0 0 0 0 0



Species 9.25 9.75 10.5 11.5 12.5 13.5 14.5 15.5 16.5
Ammonia spp. 0 0 0 0 0 0 0 0 0

Astrononion gallowayi 0 0 0 0 0 0 0 0 0

Biloculina depressa 1 1 0 0 0 0 0 0 0

Bolivina albatrossi 0 0 0 0 0 0 0 0 0

Bolivina skagerrakensis 33 55 68 86 66 60 42 29 39

Bolivina spathulata 0 0 0 0 0 0 0 0 1

Brizalina pseudopunctata 0 1 0 0 1 2 1 4 1

Buccella frigida 14 10 7 6 8 2 9 19 14

Bulimina marginata 8 3 2 5 4 4 2 5 2

Buliminella elegantissima 0 1 0 0 0 0 0 2 0

Cassidulina cf. Laevigata 0 0 0 0 0 0 0 0 0

Cassidulina laevigata  8 11 10 22 26 16 15 10 17

Cassidulina neoteretis 13 22 15 14 25 23 18 23 20

Cassidulina obtuse 5 3 2 1 3 1 8 3 3

Cassidulina reniforme 0 0 0 0 0 0 0 0 0

Cassidulina sp. 1 0 0 0 0 0 0 0 0 0

cf. Eoeponidella spp. 0 1 0 0 0 0 0 0 0

Cibicides lobatulus 5 5 4 9 8 2 5 1 2

Cibicides pseudoungerianus 0 0 0 0 0 0 0 0 0

Cibicides sp. 1 0 1 2 1 0 0 0 1 0

Cornuspira involvens 3 0 0 0 1 0 0 1 0

Dentalina spp. 0 0 1 0 1 1 0 0 0

Elphidium excavatum  forma clavata 0 0 3 2 0 1 0 2 0

Epistominella sp. 1 17 10 4 2 1 6 6 6 8

Epistominella sp. 2 0 1 0 0 0 0 3 0 0

Epistominella spp. 0 0 0 0 0 0 0 0 0

Fissurina spp. 0 0 2 2 3 2 3 3 3

Flat Spiral 0 0 0 0 0 0 0 0 0

Globobulimina turgida 1 0 0 1 0 0 1 1 1

Haynesina germanica 0 0 0 0 0 0 0 0 0

Hyalinea balthica 15 13 19 21 25 25 28 43 26

Islandiella norcrossi 1 1 0 0 0 0 0 0 0

Lagena spp. 3 3 1 3 0 1 0 1 1

Lenticulina  cf. angulata 0 1 0 0 2 1 0 0 0

Lenticulina spp. 0 1 0 0 0 0 1 0 0

Melonis barleeanus 3 10 7 4 11 10 4 5 0

Miliolinella spp. 8 3 6 1 0 2 1 0 6

Nonionella iridea 28 30 38 20 21 26 40 34 42

Nonionella labrodorica 0 0 0 0 0 0 0 0 0

Nonionella turgida 1 0 0 1 0 0 1 0 0

Oolina s pp 0 2 1 3 4 3 1 1 1

Parafissurina spp. 1 0 0 1 0 0 1 2 1

Pseudopolymorphina spp. 2 1 2 1 0 1 1 0 1

Pullenia bulloides 6 3 8 14 6 8 5 7 9

Pullenia osloensis 42 34 34 30 46 49 46 38 43

Pullenia osloensis sp. 2 0 0 0 0 0 0 0 0 0

Pullenia subcarinata 5 3 9 13 11 4 4 5 1

Pyrgo williamsoni 1 4 2 4 2 1 2 1 0

Quinqueloculina spp. 4 2 3 5 2 1 3 3 2

Rosalina spp. 0 0 1 0 2 0 1 1 0

Unidentified sp. 1 0 0 1 0 0 0 2 0 1

Stainforthia fusiformis 15 14 13 3 11 13 22 18 14

Trifarina angulosa 0 0 0 1 0 1 0 1 1

Trioculina tricarinata 1 0 2 0 0 0 0 0 0

Uvigerina mediterranea 1 3 1 0 0 4 0 2 1

Valvulineria spp. 1 4 0 0 0 1 1 1 1

Virgulina loeblichi 0 1 0 0 0 0 1 0 0

Virgulina schreibersania  0 0 0 0 0 0 0 0 0

Adercotryma glomerata 5 2 3 2 0 1 2 0 1

Eggerelloides scabrus 14 12 15 14 12 10 13 19 27

Gaudryina spp. 0 0 1 0 0 0 1 0 0

Haplophragmoides bradyi 15 10 5 3 2 3 7 6 2

Milliamina fusca 0 0 0 0 0 1 0 0 0

Reophax sp. 1 0 0 0 0 0 0 0 0 0

Reophax spp. 7 6 1 1 1 1 2 2 0

Saccammina spp. 0 0 0 0 0 0 0 0 0

Textularia earlandi 8 5 7 1 2 2 2 0 7

Trochammina inflata 0 0 0 0 0 0 0 0 0

Trochammina inflata spp. 3 1 0 0 0 1 5 3 2

Unidentified agglutinated sp. 1 0 0 0 0 1 1 0 1 2

Unidentified agglutinated sp. 2 0 0 0 0 0 2 0 0 1

Unidentified agglutinated sp. 3 4 3 0 3 2 2 2 1 6

Unidentified agglutinated sp. 4 0 0 0 0 0 0 0 0 0



Species 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5
Ammonia spp. 0 0 0 0 0 0 0 0 0

Astrononion gallowayi 0 0 0 0 0 0 0 0 0

Biloculina depressa 0 1 0 0 0 1 1 0 0

Bolivina albatrossi 0 0 0 0 0 0 0 0 0

Bolivina skagerrakensis 25 21 31 25 29 36 40 48 86

Bolivina spathulata 1 0 0 0 0 0 0 0 0

Brizalina pseudopunctata 3 1 2 2 1 0 0 1 2

Buccella frigida 9 13 18 10 19 11 14 11 7

Bulimina marginata 2 31 7 4 4 1 8 0 4

Buliminella elegantissima 0 0 0 0 0 0 0 0 0

Cassidulina cf. Laevigata 0 0 0 0 0 0 0 0 0

Cassidulina laevigata  10 15 23 23 14 11 15 13 13

Cassidulina neoteretis 15 20 26 19 21 22 20 21 17

Cassidulina obtuse 6 4 9 8 3 2 5 7 2

Cassidulina reniforme 0 0 2 0 1 1 0 1 0

Cassidulina sp. 1 0 0 0 0 0 1 1 0 0

cf. Eoeponidella spp. 1 1 0 0 0 1 1 1 0

Cibicides lobatulus 3 2 4 5 4 5 1 3 2

Cibicides pseudoungerianus 0 0 0 0 0 0 0 0 0

Cibicides sp. 1 0 0 0 0 0 0 0 0 1

Cornuspira involvens 1 4 0 0 0 0 0 1 0

Dentalina spp. 1 0 0 0 1 2 2 1 1

Elphidium excavatum  forma clavata 0 0 1 1 2 1 0 1 3

Epistominella sp. 1 9 1 1 4 8 1 5 2 3

Epistominella sp. 2 0 0 0 0 0 0 0 0 0

Epistominella spp. 0 0 0 0 0 0 0 1 0

Fissurina spp. 2 1 6 3 1 1 3 4 6

Flat Spiral 0 0 0 0 0 0 0 0 0

Globobulimina turgida 0 0 0 0 0 0 1 0 0

Haynesina germanica 0 0 1 0 0 1 0 0 0

Hyalinea balthica 29 59 23 25 23 37 36 17 17

Islandiella norcrossi 0 1 2 2 1 0 1 0 1

Lagena spp. 4 0 0 1 3 4 2 3 4

Lenticulina  cf. angulata 0 1 0 0 1 0 2 0 0

Lenticulina spp. 1 2 2 0 0 1 3 2 0

Melonis barleeanus 3 3 9 5 8 7 4 1 7

Miliolinella spp. 3 2 2 1 3 3 5 4 0

Nonionella iridea 49 42 43 45 49 46 32 59 32

Nonionella labrodorica 0 0 0 0 0 0 0 1 0

Nonionella turgida 1 0 1 0 2 0 0 0 0

Oolina s pp 2 1 0 3 0 3 0 0 2

Parafissurina spp. 0 0 1 1 1 0 1 0 1

Pseudopolymorphina spp. 4 0 0 0 0 0 0 0 3

Pullenia bulloides 6 8 4 1 9 7 5 0 10

Pullenia osloensis 48 33 48 61 51 61 75 72 53

Pullenia osloensis sp. 2 0 0 0 0 0 0 0 0 0

Pullenia subcarinata 2 3 0 3 4 3 6 2 2

Pyrgo williamsoni 0 1 1 3 1 2 0 0 0

Quinqueloculina spp. 2 5 2 3 1 4 2 1 0

Rosalina spp. 0 0 0 1 1 1 0 3 0

Unidentified sp. 1 0 0 0 0 1 1 0 0 0

Stainforthia fusiformis 13 15 18 15 10 8 9 9 6

Trifarina angulosa 0 0 0 1 0 1 0 3 1

Trioculina tricarinata 1 0 2 0 1 0 0 0 0

Uvigerina mediterranea 1 0 0 1 0 0 0 0 0

Valvulineria spp. 0 2 1 0 1 3 1 1 1

Virgulina loeblichi 0 0 1 0 1 0 0 1 0

Virgulina schreibersania  0 0 0 0 0 0 0 0 0

Adercotryma glomerata 0 0 0 0 1 0 0 0 0

Eggerelloides scabrus 15 12 7 10 11 5 4 6 6

Gaudryina spp. 0 1 1 1 1 0 1 0 1

Haplophragmoides bradyi 4 4 3 3 1 3 2 4 0

Milliamina fusca 0 0 0 0 0 0 0 0 0

Reophax sp. 1 0 0 0 0 0 0 0 0 0

Reophax spp. 0 1 2 2 3 0 1 0 0

Saccammina spp. 0 0 0 0 0 0 0 0 0

Textularia earlandi 2 2 6 3 0 0 1 2 3

Trochammina inflata 0 0 0 0 0 1 0 0 0

Trochammina inflata spp. 4 0 2 1 1 1 1 0 1

Unidentified agglutinated sp. 1 1 0 1 0 0 1 0 1 0

Unidentified agglutinated sp. 2 0 1 0 0 0 0 0 0 0

Unidentified agglutinated sp. 3 5 0 1 0 0 1 3 3 1

Unidentified agglutinated sp. 4 0 0 0 0 0 0 0 0 0



Species 26.5 27.5 28.5 29.5 30.5 31.5 32.5 33.5 34.5
Ammonia spp. 0 0 0 0 0 0 0 0 0

Astrononion gallowayi 0 0 0 0 0 0 0 0 0

Biloculina depressa 0 0 0 2 0 1 0 0 0

Bolivina albatrossi 0 0 0 0 0 0 0 0 0

Bolivina skagerrakensis 73 112 97 107 102 70 77 97 65

Bolivina spathulata 0 0 0 0 0 0 0 0 0

Brizalina pseudopunctata 1 3 0 1 1 0 3 1 5

Buccella frigida 6 2 3 3 2 0 0 2 7

Bulimina marginata 3 5 3 5 2 2 0 0 1

Buliminella elegantissima 0 0 0 0 0 0 0 0 0

Cassidulina cf. Laevigata 0 0 0 0 0 0 0 0 0

Cassidulina laevigata  13 15 12 17 17 16 15 16 14

Cassidulina neoteretis 21 22 11 18 13 19 18 17 12

Cassidulina obtuse 8 3 4 3 4 3 4 5 4

Cassidulina reniforme 0 1 0 1 1 0 0 0 0

Cassidulina sp. 1 0 0 0 1 0 0 0 0 0

cf. Eoeponidella spp. 0 0 0 0 1 0 0 0 0

Cibicides lobatulus 5 3 2 2 2 3 3 4 10

Cibicides pseudoungerianus 0 0 0 0 0 0 0 0 0

Cibicides sp. 1 0 1 0 0 0 0 0 0 0

Cornuspira involvens 0 0 1 0 1 2 0 0 0

Dentalina spp. 1 0 0 0 0 0 3 1 3

Elphidium excavatum  forma clavata 1 0 3 0 0 0 0 0 0

Epistominella sp. 1 5 2 2 1 3 2 7 2 2

Epistominella sp. 2 0 0 0 0 0 0 0 0 0

Epistominella spp. 0 0 0 0 0 0 0 0 1

Fissurina spp. 3 2 4 5 3 1 2 3 4

Flat Spiral 0 0 0 0 0 0 0 0 0

Globobulimina turgida 0 0 0 2 0 0 0 0 1

Haynesina germanica 0 0 0 0 0 0 0 0 0

Hyalinea balthica 14 8 2 6 9 3 14 6 4

Islandiella norcrossi 2 0 1 1 0 4 0 0 1

Lagena spp. 3 6 2 1 0 2 7 4 0

Lenticulina  cf. angulata 1 0 2 1 0 1 1 0 0

Lenticulina spp. 0 1 1 0 1 0 1 2 1

Melonis barleeanus 7 6 13 13 8 6 6 6 7

Miliolinella spp. 1 1 1 0 2 3 1 1 0

Nonionella iridea 24 34 31 17 27 43 36 31 40

Nonionella labrodorica 0 0 0 0 0 0 0 0 0

Nonionella turgida 0 0 0 0 0 0 0 0 0

Oolina s pp 0 1 1 1 1 2 3 1 6

Parafissurina spp. 2 1 0 0 1 2 0 1 1

Pseudopolymorphina spp. 1 0 1 0 0 1 2 1 1

Pullenia bulloides 6 6 1 4 5 3 1 4 8

Pullenia osloensis 69 45 62 55 65 84 60 56 71

Pullenia osloensis sp. 2 0 0 0 0 0 0 0 0 0

Pullenia subcarinata 0 3 3 2 6 3 3 5 0

Pyrgo williamsoni 0 0 1 1 0 0 0 2 1

Quinqueloculina spp. 0 2 2 2 2 2 1 1 1

Rosalina spp. 1 1 1 1 2 1 0 0 2

Unidentified sp. 1 1 0 0 0 1 0 1 0 0

Stainforthia fusiformis 4 13 18 10 3 12 13 12 21

Trifarina angulosa 2 0 2 0 0 0 0 0 0

Trioculina tricarinata 0 0 1 2 0 0 1 0 0

Uvigerina mediterranea 0 0 1 0 0 0 0 0 1

Valvulineria spp. 1 0 1 0 2 2 3 1 2

Virgulina loeblichi 0 0 0 0 0 0 0 2 0

Virgulina schreibersania  0 0 0 0 0 0 0 0 0

Adercotryma glomerata 0 0 0 0 0 0 0 0 0

Eggerelloides scabrus 16 11 4 9 10 9 5 7 8

Gaudryina spp. 0 0 0 0 0 0 0 0 1

Haplophragmoides bradyi 6 1 1 2 5 3 3 2 5

Milliamina fusca 0 0 0 0 0 0 0 0 0

Reophax sp. 1 0 0 0 0 0 0 0 0 0

Reophax spp. 2 1 0 3 3 0 0 1 0

Saccammina spp. 0 0 0 0 0 0 0 0 0

Textularia earlandi 0 1 1 0 0 3 1 1 1

Trochammina inflata 0 0 1 0 0 1 1 0 0

Trochammina inflata spp. 2 1 1 1 0 0 1 1 4

Unidentified agglutinated sp. 1 0 1 0 0 0 0 0 0 0

Unidentified agglutinated sp. 2 0 0 0 0 0 0 1 0 0

Unidentified agglutinated sp. 3 1 3 1 3 1 1 5 9 8

Unidentified agglutinated sp. 4 0 0 0 0 0 0 0 0 0



Species 35.5 37.5 46.5 53.75 61.5 69.5 77.5 86.5 93.5
Ammonia spp. 0 0 0 0 0 0 0 0 0

Astrononion gallowayi 0 0 0 0 0 0 0 0 0

Biloculina depressa 1 0 0 2 2 0 0 1 1

Bolivina albatrossi 0 0 1 0 0 0 0 0 0

Bolivina skagerrakensis 47 58 40 6 15 72 111 67 38

Bolivina spathulata 0 0 0 0 0 0 3 1 3

Brizalina pseudopunctata 2 1 1 0 5 1 0 2 2

Buccella frigida 1 5 5 0 2 1 0 0 0

Bulimina marginata 1 1 5 2 9 1 2 2 1

Buliminella elegantissima 1 2 1 2 2 2 2 2 5

Cassidulina cf. Laevigata 0 2 2 0 0 0 1 0 1

Cassidulina laevigata  22 12 15 17 16 10 5 14 16

Cassidulina neoteretis 22 13 12 8 24 16 8 18 22

Cassidulina obtuse 3 6 5 3 0 1 3 4 4

Cassidulina reniforme 2 0 1 0 0 1 1 0 2

Cassidulina sp. 1 0 0 0 0 0 0 0 0 0

cf. Eoeponidella spp. 0 0 1 0 0 0 0 0 0

Cibicides lobatulus 5 1 2 4 4 1 1 4 6

Cibicides pseudoungerianus 0 0 0 0 0 0 0 0 0

Cibicides sp. 1 0 0 0 7 1 6 4 3 3

Cornuspira involvens 1 1 2 2 2 0 0 1 2

Dentalina spp. 0 0 0 0 1 0 0 1 1

Elphidium excavatum  forma clavata 1 1 1 0 0 0 0 0 0

Epistominella sp. 1 2 1 8 2 3 3 4 3 2

Epistominella sp. 2 1 5 4 0 0 0 0 0 0

Epistominella spp. 0 6 3 2 0 3 2 1 2

Fissurina spp. 1 4 2 4 7 0 2 2 1

Flat Spiral 0 0 0 0 0 0 0 0 0

Globobulimina turgida 0 1 0 0 0 1 0 1 1

Haynesina germanica 0 0 0 0 0 0 0 0 1

Hyalinea balthica 9 5 8 2 8 1 3 4 2

Islandiella norcrossi 0 1 4 2 1 1 0 2 0

Lagena spp. 3 3 1 3 9 2 4 4 2

Lenticulina  cf. angulata 1 2 0 0 1 1 1 0 0

Lenticulina spp. 0 0 1 1 0 1 1 0 1

Melonis barleeanus 10 5 3 20 22 11 6 12 23

Miliolinella spp. 1 2 3 3 1 2 1 4 3

Nonionella iridea 37 42 50 48 34 42 32 44 44

Nonionella labrodorica 1 0 0 0 0 0 0 0 0

Nonionella turgida 0 1 1 3 0 0 2 3 1

Oolina s pp 1 0 3 3 0 2 1 1 6

Parafissurina spp. 4 1 0 3 1 0 0 3 3

Pseudopolymorphina spp. 1 4 0 2 4 2 4 1 1

Pullenia bulloides 6 4 4 11 4 3 5 3 9

Pullenia osloensis 62 59 57 68 80 60 57 59 61

Pullenia osloensis sp. 2 0 3 0 1 1 0 1 1 2

Pullenia subcarinata 9 2 7 3 3 3 2 5 4

Pyrgo williamsoni 2 2 1 1 0 0 3 1 1

Quinqueloculina spp. 7 3 3 5 4 3 2 3 6

Rosalina spp. 2 1 1 6 0 1 2 1 1

Unidentified sp. 1 0 1 6 4 9 0 2 1 1

Stainforthia fusiformis 7 14 17 12 3 28 25 18 22

Trifarina angulosa 1 0 0 0 0 0 0 0 0

Trioculina tricarinata 0 0 0 1 0 4 0 2 3

Uvigerina mediterranea 1 1 1 0 5 3 4 2 4

Valvulineria spp. 2 1 1 2 0 0 2 2 1

Virgulina loeblichi 0 1 1 0 1 1 1 0 2

Virgulina schreibersania  0 0 0 1 1 0 0 1 2

Adercotryma glomerata 0 1 2 3 3 0 1 0 1

Eggerelloides scabrus 7 16 19 28 14 12 7 8 11

Gaudryina spp. 0 0 0 0 0 0 0 0 1

Haplophragmoides bradyi 8 3 0 6 2 0 0 3 2

Milliamina fusca 0 0 0 0 2 0 0 0 1

Reophax sp. 1 0 0 0 0 0 0 0 0 0

Reophax spp. 1 2 0 5 0 0 2 2 1

Saccammina spp. 0 0 5 1 4 5 2 1 2

Textularia earlandi 1 2 2 5 1 1 0 0 2

Trochammina inflata 0 0 0 0 0 0 0 0 0

Trochammina inflata spp. 3 3 3 3 2 1 0 5 2

Unidentified agglutinated sp. 1 0 1 0 3 0 0 0 1 0

Unidentified agglutinated sp. 2 0 0 0 2 0 1 0 0 0

Unidentified agglutinated sp. 3 7 1 0 5 2 0 0 0 0

Unidentified agglutinated sp. 4 0 0 0 0 0 0 0 0 1



Species 109.5 117.5 126.5 133.5 141.5 149.5 158.5 166.5
Ammonia spp. 0 0 3 2 2 0 0 0

Astrononion gallowayi 0 0 0 0 0 0 0 0

Biloculina depressa 0 0 0 0 0 0 0 1

Bolivina albatrossi 0 0 0 1 0 0 0 0

Bolivina skagerrakensis 9 56 10 0 0 0 0 0

Bolivina spathulata 0 2 2 0 3 1 2 5

Brizalina pseudopunctata 0 2 0 1 1 0 1 1

Buccella frigida 3 0 1 2 2 0 6 2

Bulimina marginata 4 11 5 2 3 2 9 5

Buliminella elegantissima 1 3 1 2 4 0 2 0

Cassidulina cf. Laevigata 2 3 1 6 2 0 0 0

Cassidulina laevigata  20 16 25 8 16 12 26 18

Cassidulina neoteretis 17 13 17 16 8 10 27 10

Cassidulina obtuse 5 3 8 6 13 9 7 3

Cassidulina reniforme 0 0 0 0 1 1 0 2

Cassidulina sp. 1 0 0 0 0 0 0 0 0

cf. Eoeponidella spp. 0 4 8 2 3 0 1 1

Cibicides lobatulus 4 12 7 9 10 3 4 4

Cibicides pseudoungerianus 0 1 0 0 0 0 0 0

Cibicides sp. 1 3 0 0 4 2 1 6 8

Cornuspira involvens 1 2 1 0 0 0 0 1

Dentalina spp. 0 0 0 0 0 0 0 0

Elphidium excavatum  forma clavata 0 3 1 3 0 0 0 1

Epistominella sp. 1 2 7 12 12 15 10 11 12

Epistominella sp. 2 0 0 0 0 0 4 1 1

Epistominella spp. 4 11 20 5 4 1 4 1

Fissurina spp. 7 2 2 2 3 1 5 3

Flat Spiral 0 0 0 0 0 0 0 0

Globobulimina turgida 0 0 0 5 0 1 0 2

Haynesina germanica 0 0 0 0 1 0 0 0

Hyalinea balthica 6 3 2 1 3 5 6 4

Islandiella norcrossi 0 2 5 5 0 0 1 4

Lagena spp. 2 2 3 4 3 3 5 1

Lenticulina  cf. angulata 0 1 1 3 3 1 1 1

Lenticulina spp. 0 0 0 0 1 9 1 0

Melonis barleeanus 11 7 2 9 4 2 8 12

Miliolinella spp. 3 0 2 3 3 9 2 3

Nonionella iridea 49 37 43 35 62 66 50 78

Nonionella labrodorica 0 0 0 0 0 0 0 0

Nonionella turgida 4 0 2 2 5 8 6 3

Oolina s pp 2 2 1 1 0 4 5 1

Parafissurina spp. 0 2 3 3 2 1 2 2

Pseudopolymorphina spp. 2 1 3 3 3 2 0 2

Pullenia bulloides 5 15 8 9 7 2 6 6

Pullenia osloensis 86 41 46 55 47 44 43 40

Pullenia osloensis sp. 2 3 7 12 4 3 0 0 1

Pullenia subcarinata 8 5 0 7 2 6 6 7

Pyrgo williamsoni 0 1 0 2 3 1 1 2

Quinqueloculina spp. 6 3 11 6 2 7 3 3

Rosalina spp. 3 1 5 4 2 2 2 2

Unidentified sp. 1 0 0 0 1 0 1 2 2

Stainforthia fusiformis 21 11 12 20 39 31 20 19

Trifarina angulosa 0 0 1 2 0 4 1 5

Trioculina tricarinata 2 0 4 1 3 4 2 0

Uvigerina mediterranea 1 1 2 2 2 2 8 2

Valvulineria spp. 1 2 1 0 0 29 3 1

Virgulina loeblichi 0 0 1 0 1 0 0 2

Virgulina schreibersania  4 0 1 0 0 0 0 0

Adercotryma glomerata 0 0 0 0 0 0 1 1

Eggerelloides scabrus 7 5 1 11 2 4 11 5

Gaudryina spp. 0 1 2 2 1 2 1 1

Haplophragmoides bradyi 2 0 0 1 1 0 0 0

Milliamina fusca 0 0 0 0 0 0 0 0

Reophax sp. 1 1 4 2 1 1 0 3 2

Reophax spp. 0 0 1 1 0 2 2 1

Saccammina spp. 1 0 0 0 0 0 0 0

Textularia earlandi 1 1 1 0 1 0 1 0

Trochammina inflata 1 0 1 9 3 5 1 3

Trochammina inflata spp. 6 1 2 5 0 12 5 3

Unidentified agglutinated sp. 1 0 0 0 0 0 0 0 1

Unidentified agglutinated sp. 2 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 3 0 4 0 0 1 1 3 5

Unidentified agglutinated sp. 4 0 1 0 0 0 0 0 0



Species 172.5 181.5 189.5 197.5 205.5 213.5 221.5 229.5
Ammonia spp. 0 0 0 0 0 0 0 0

Astrononion gallowayi 0 0 0 0 0 0 0 0

Biloculina depressa 2 0 2 6 1 3 1 1

Bolivina albatrossi 0 0 0 0 1 0 0 0

Bolivina skagerrakensis 0 0 0 1 1 1 0 0

Bolivina spathulata 4 2 0 1 2 2 1 0

Brizalina pseudopunctata 1 1 2 0 0 1 2 1

Buccella frigida 6 19 25 5 39 39 11 1

Bulimina marginata 2 15 14 4 4 5 2 5

Buliminella elegantissima 2 1 0 1 0 1 1 1

Cassidulina cf. Laevigata 3 0 0 1 3 0 1 0

Cassidulina laevigata  28 13 13 26 24 35 20 34

Cassidulina neoteretis 28 17 20 22 37 29 28 21

Cassidulina obtuse 0 1 2 7 5 3 4 3

Cassidulina reniforme 0 1 1 1 0 0 1 0

Cassidulina sp. 1 0 0 0 0 0 0 0 0

cf. Eoeponidella spp. 0 2 0 2 0 0 0 1

Cibicides lobatulus 6 10 10 6 6 13 13 9

Cibicides pseudoungerianus 0 0 0 0 0 0 0 0

Cibicides sp. 1 4 8 8 4 3 4 4 8

Cornuspira involvens 2 0 2 0 0 0 0 1

Dentalina spp. 0 0 0 3 1 0 0 0

Elphidium excavatum  forma clavata 0 0 0 0 0 0 1 0

Epistominella sp. 1 10 21 20 0 1 0 3 2

Epistominella sp. 2 0 1 0 0 2 0 0 0

Epistominella spp. 3 0 3 1 1 3 2 0

Fissurina spp. 5 2 4 3 4 7 4 7

Flat Spiral 0 0 0 0 1 0 0 0

Globobulimina turgida 3 0 1 0 0 1 0 1

Haynesina germanica 0 0 0 0 0 0 0 0

Hyalinea balthica 6 4 16 9 10 12 13 30

Islandiella norcrossi 6 6 9 10 15 4 4 6

Lagena spp. 6 4 7 5 3 1 4 4

Lenticulina  cf. angulata 1 0 0 0 1 0 1 1

Lenticulina spp. 2 2 1 2 1 2 1 0

Melonis barleeanus 15 13 15 11 7 14 17 15

Miliolinella spp. 0 2 0 7 7 2 4 4

Nonionella iridea 31 45 23 39 45 36 45 35

Nonionella labrodorica 0 0 0 0 0 0 0 0

Nonionella turgida 0 1 1 2 0 0 1 2

Oolina s pp 6 1 6 0 6 5 5 3

Parafissurina spp. 0 1 0 1 2 1 1 0

Pseudopolymorphina spp. 1 0 0 1 1 1 3 0

Pullenia bulloides 6 12 5 15 6 4 11 13

Pullenia osloensis 46 48 37 37 28 36 48 55

Pullenia osloensis sp. 2 1 1 0 0 0 0 1 0

Pullenia subcarinata 5 3 2 1 1 14 16 12

Pyrgo williamsoni 2 1 0 4 1 0 0 0

Quinqueloculina spp. 3 3 2 6 7 5 8 2

Rosalina spp. 1 1 2 0 2 0 2 2

Unidentified sp. 1 0 2 2 0 2 1 1 1

Stainforthia fusiformis 14 19 24 26 15 13 15 7

Trifarina angulosa 0 2 3 0 1 1 1 1

Trioculina tricarinata 0 1 3 2 1 2 3 1

Uvigerina mediterranea 2 6 6 4 2 3 1 3

Valvulineria spp. 0 3 0 1 1 0 0 1

Virgulina loeblichi 1 0 0 0 0 0 0 2

Virgulina schreibersania  1 1 0 4 2 3 4 0

Adercotryma glomerata 0 1 0 0 3 0 0 2

Eggerelloides scabrus 13 11 0 6 3 4 4 4

Gaudryina spp. 1 1 1 0 1 1 3 3

Haplophragmoides bradyi 0 0 0 0 0 0 2 0

Milliamina fusca 1 0 0 0 0 1 0 0

Reophax sp. 1 1 1 1 0 0 1 0 0

Reophax spp. 3 0 2 0 1 1 2 0

Saccammina spp. 2 0 0 0 0 0 0 2

Textularia earlandi 0 0 0 1 0 0 0 0

Trochammina inflata 1 1 0 3 2 2 0 1

Trochammina inflata spp. 7 7 5 7 3 0 4 0

Unidentified agglutinated sp. 1 0 0 0 1 1 0 0 0

Unidentified agglutinated sp. 2 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 3 9 3 4 5 4 1 4 2

Unidentified agglutinated sp. 4 0 0 0 0 0 0 0 0



Species 237.5 261.5 269.5 272.5 292.5 301.5 309.5 317.5
Ammonia spp. 0 0 0 0 0 0 0 0

Astrononion gallowayi 0 0 0 0 0 0 0 0

Biloculina depressa 1 2 0 1 1 1 0 0

Bolivina albatrossi 0 0 0 0 0 0 0 0

Bolivina skagerrakensis 0 0 0 0 0 0 1 0

Bolivina spathulata 4 1 1 2 0 1 0 2

Brizalina pseudopunctata 1 0 3 1 0 1 0 2

Buccella frigida 6 12 12 7 8 3 7 12

Bulimina marginata 0 6 5 5 0 0 3 6

Buliminella elegantissima 0 1 2 3 1 1 1 1

Cassidulina cf. Laevigata 1 5 1 0 2 0 0 0

Cassidulina laevigata  28 35 20 27 12 6 4 5

Cassidulina neoteretis 31 37 10 19 19 9 4 6

Cassidulina obtuse 5 4 3 2 5 7 7 3

Cassidulina reniforme 0 0 1 1 1 0 2 1

Cassidulina sp. 1 0 0 0 0 0 0 0 0

cf. Eoeponidella spp. 1 44 69 55 54 76 59 61

Cibicides lobatulus 13 6 3 8 10 8 10 19

Cibicides pseudoungerianus 0 0 0 0 0 0 0 0

Cibicides sp. 1 4 2 8 3 4 2 3 2

Cornuspira involvens 0 0 0 0 0 2 4 0

Dentalina spp. 2 1 0 0 1 3 0 0

Elphidium excavatum  forma clavata 1 0 1 0 0 0 1 0

Epistominella sp. 1 1 0 0 0 0 0 1 0

Epistominella sp. 2 0 0 0 0 3 2 0 0

Epistominella spp. 2 0 0 1 0 0 0 0

Fissurina spp. 4 4 3 7 1 6 6 1

Flat Spiral 0 0 0 0 0 0 0 1

Globobulimina turgida 1 1 0 0 0 0 2 0

Haynesina germanica 0 0 0 0 0 0 0 0

Hyalinea balthica 8 19 7 14 18 12 13 15

Islandiella norcrossi 9 9 6 5 6 2 1 0

Lagena spp. 3 2 4 3 1 5 5 8

Lenticulina  cf. angulata 1 1 0 0 3 1 1 3

Lenticulina spp. 0 0 0 0 1 2 1 4

Melonis barleeanus 8 10 12 5 18 18 12 15

Miliolinella spp. 2 5 5 6 4 3 9 7

Nonionella iridea 60 23 35 31 45 45 50 48

Nonionella labrodorica 0 0 0 0 0 0 0 0

Nonionella turgida 5 3 3 2 1 1 5 1

Oolina s pp 2 1 5 9 5 8 4 6

Parafissurina spp. 2 1 3 3 1 6 1 3

Pseudopolymorphina spp. 2 0 1 1 4 3 5 2

Pullenia bulloides 4 12 5 4 10 11 5 8

Pullenia osloensis 54 24 40 44 43 34 32 32

Pullenia osloensis sp. 2 0 0 0 0 0 0 0 0

Pullenia subcarinata 8 10 7 3 8 6 7 9

Pyrgo williamsoni 1 2 0 1 1 2 1 4

Quinqueloculina spp. 6 8 8 6 3 3 10 8

Rosalina spp. 1 1 2 1 0 1 0 4

Unidentified sp. 1 0 1 0 0 1 1 0 0

Stainforthia fusiformis 22 18 14 17 11 17 19 18

Trifarina angulosa 0 5 1 0 1 0 4 0

Trioculina tricarinata 0 1 1 0 0 0 0 0

Uvigerina mediterranea 0 2 3 3 2 1 3 1

Valvulineria spp. 1 0 2 3 2 2 3 0

Virgulina loeblichi 1 0 2 0 0 3 2 0

Virgulina schreibersania  1 1 1 0 0 0 0 0

Adercotryma glomerata 0 2 0 0 0 0 0 1

Eggerelloides scabrus 2 4 4 0 2 0 5 3

Gaudryina spp. 2 2 0 0 0 2 1 1

Haplophragmoides bradyi 0 1 2 0 2 1 1 0

Milliamina fusca 0 0 0 0 0 0 0 0

Reophax sp. 1 0 0 0 0 0 0 0 0

Reophax spp. 0 0 0 1 0 0 0 0

Saccammina spp. 0 0 0 0 0 0 0 0

Textularia earlandi 0 0 0 0 0 0 0 0

Trochammina inflata 1 3 1 0 0 0 0 0

Trochammina inflata spp. 1 1 2 0 2 2 1 0

Unidentified agglutinated sp. 1 0 0 0 0 1 0 0 0

Unidentified agglutinated sp. 2 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 3 2 1 4 3 0 3 0 4

Unidentified agglutinated sp. 4 0 0 0 0 0 0 0 0



Species 326.5 333.5 341.5 358.5 363.5 373.5 389.5 397.5
Ammonia spp. 0 0 0 0 0 0 0 0

Astrononion gallowayi 0 0 0 0 0 0 0 0

Biloculina depressa 1 1 4 0 2 2 3 2

Bolivina albatrossi 0 1 0 1 0 0 0 0

Bolivina skagerrakensis 0 0 0 0 0 1 0 0

Bolivina spathulata 1 0 3 0 1 0 0 1

Brizalina pseudopunctata 2 0 0 0 1 0 1 1

Buccella frigida 3 16 1 20 6 20 2 13

Bulimina marginata 1 2 7 0 1 2 0 1

Buliminella elegantissima 0 0 1 3 3 1 0 0

Cassidulina cf. Laevigata 0 0 0 0 0 0 0 0

Cassidulina laevigata  1 2 0 1 1 4 6 2

Cassidulina neoteretis 1 5 2 7 5 12 8 6

Cassidulina obtuse 9 13 14 16 15 15 7 9

Cassidulina reniforme 1 0 1 1 2 0 0 0

Cassidulina sp. 1 0 0 0 0 0 0 0 0

cf. Eoeponidella spp. 88 43 68 43 54 55 47 60

Cibicides lobatulus 8 13 9 11 7 7 14 11

Cibicides pseudoungerianus 0 0 0 0 0 0 0 0

Cibicides sp. 1 7 4 6 0 1 2 4 2

Cornuspira involvens 0 0 3 0 0 1 0 2

Dentalina spp. 0 0 0 0 0 2 0 2

Elphidium excavatum  forma clavata 0 0 1 0 2 0 1 1

Epistominella sp. 1 1 1 1 3 1 1 1 0

Epistominella sp. 2 2 3 0 3 4 0 0 1

Epistominella spp. 0 1 0 0 1 1 0 0

Fissurina spp. 8 7 1 1 0 3 5 10

Flat Spiral 0 0 0 1 0 1 0 0

Globobulimina turgida 0 0 0 0 0 0 0 0

Haynesina germanica 0 0 0 0 0 0 0 0

Hyalinea balthica 17 14 18 20 20 10 9 1

Islandiella norcrossi 0 0 0 0 2 0 0 2

Lagena spp. 5 9 6 2 7 6 2 5

Lenticulina  cf. angulata 0 0 0 0 1 3 0 5

Lenticulina spp. 2 3 0 0 2 0 2 2

Melonis barleeanus 15 15 13 10 4 9 12 21

Miliolinella spp. 9 3 1 5 9 7 0 2

Nonionella iridea 57 72 39 86 65 57 92 60

Nonionella labrodorica 0 0 0 0 0 0 0 0

Nonionella turgida 3 6 4 3 2 4 15 9

Oolina s pp 7 7 5 3 1 5 2 1

Parafissurina spp. 1 2 2 4 3 2 3 5

Pseudopolymorphina spp. 0 3 3 4 3 8 8 6

Pullenia bulloides 1 6 6 0 5 6 9 12

Pullenia osloensis 34 34 38 9 34 28 14 11

Pullenia osloensis sp. 2 0 0 0 0 0 0 1 0

Pullenia subcarinata 4 2 1 4 4 10 5 6

Pyrgo williamsoni 1 1 1 2 2 2 0 0

Quinqueloculina spp. 7 3 2 6 5 8 0 4

Rosalina spp. 2 0 0 1 2 0 1 0

Unidentified sp. 1 0 2 4 2 1 2 1 0

Stainforthia fusiformis 25 30 16 18 10 11 9 12

Trifarina angulosa 0 1 1 0 3 0 2 0

Trioculina tricarinata 0 0 0 0 1 0 0 0

Uvigerina mediterranea 1 2 0 0 9 6 0 2

Valvulineria spp. 0 2 1 2 3 4 11 5

Virgulina loeblichi 0 0 1 0 3 0 2 0

Virgulina schreibersania  0 0 0 0 0 0 0 0

Adercotryma glomerata 0 0 0 2 0 0 0 1

Eggerelloides scabrus 0 0 0 1 0 0 0 2

Gaudryina spp. 0 0 1 0 0 1 2 1

Haplophragmoides bradyi 0 0 0 1 2 0 0 0

Milliamina fusca 1 0 0 0 0 0 0 0

Reophax sp. 1 0 0 0 0 0 0 0 0

Reophax spp. 0 0 0 0 0 0 0 0

Saccammina spp. 0 0 1 0 0 1 0 0

Textularia earlandi 0 0 1 1 0 0 1 0

Trochammina inflata 0 0 4 2 0 0 0 0

Trochammina inflata spp. 0 0 6 7 0 0 1 1

Unidentified agglutinated sp. 1 0 0 0 1 0 0 0 0

Unidentified agglutinated sp. 2 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 3 4 1 2 1 2 0 0 2

Unidentified agglutinated sp. 4 0 0 0 0 0 0 0 0



Species 401.5 405.5 409.5 412.5 418.5 421.5 426.5 429.5
Ammonia spp. 0 0 0 0 0 0 0 0

Astrononion gallowayi 0 0 0 0 1 0 0 0

Biloculina depressa 3 2 2 0 0 0 2 1

Bolivina albatrossi 0 0 0 0 0 0 0 0

Bolivina skagerrakensis 0 0 0 0 0 0 0 0

Bolivina spathulata 1 0 1 1 0 1 1 0

Brizalina pseudopunctata 0 3 0 0 0 0 0 0

Buccella frigida 0 6 29 12 7 6 2 9

Bulimina marginata 1 2 1 3 1 2 0 0

Buliminella elegantissima 0 0 0 0 0 0 0 0

Cassidulina cf. Laevigata 0 0 0 0 0 0 0 0

Cassidulina laevigata  5 3 3 3 3 1 3 1

Cassidulina neoteretis 5 7 1 10 8 10 4 12

Cassidulina obtuse 2 3 5 6 8 3 7 9

Cassidulina reniforme 0 1 0 0 1 1 2 1

Cassidulina sp. 1 0 0 0 0 0 1 0 1

cf. Eoeponidella spp. 77 70 63 51 5 1 1 0

Cibicides lobatulus 17 14 8 21 16 9 6 10

Cibicides pseudoungerianus 0 0 0 0 0 0 0 0

Cibicides sp. 1 1 0 1 0 0 2 2 1

Cornuspira involvens 0 1 0 0 0 0 0 0

Dentalina spp. 1 0 0 1 1 1 2 0

Elphidium excavatum  forma clavata 0 1 0 0 1 0 1 0

Epistominella sp. 1 3 6 3 1 2 1 1 8

Epistominella sp. 2 1 0 1 1 1 0 1 0

Epistominella spp. 0 0 0 1 0 0 0 0

Fissurina spp. 8 8 4 4 1 4 6 2

Flat Spiral 2 0 5 0 4 0 2 0

Globobulimina turgida 1 0 0 0 0 0 0 0

Haynesina germanica 0 0 0 0 0 0 0 0

Hyalinea balthica 9 0 6 9 8 10 14 28

Islandiella norcrossi 0 0 0 0 0 2 1 0

Lagena spp. 8 4 5 4 3 9 8 3

Lenticulina  cf. angulata 0 1 1 0 6 2 1 2

Lenticulina spp. 2 5 4 2 2 3 1 1

Melonis barleeanus 12 22 17 24 9 24 16 18

Miliolinella spp. 7 3 7 6 6 5 2 2

Nonionella iridea 72 72 79 64 60 54 82 47

Nonionella labrodorica 0 0 0 0 0 0 0 0

Nonionella turgida 3 0 4 2 6 0 2 8

Oolina s pp 1 2 4 2 1 1 1 1

Parafissurina spp. 2 2 2 1 2 2 0 3

Pseudopolymorphina spp. 6 1 11 0 3 3 3 8

Pullenia bulloides 8 10 8 20 5 8 5 1

Pullenia osloensis 26 16 8 18 25 21 16 13

Pullenia osloensis sp. 2 0 0 0 0 0 0 0 0

Pullenia subcarinata 3 3 4 5 8 5 2 4

Pyrgo williamsoni 1 4 2 0 1 1 0 1

Quinqueloculina spp. 8 5 6 9 4 2 1 1

Rosalina spp. 1 0 0 1 0 0 1 0

Unidentified sp. 1 0 0 0 0 0 0 0 2

Stainforthia fusiformis 2 12 12 10 8 19 13 15

Trifarina angulosa 2 0 0 2 1 1 2 4

Trioculina tricarinata 0 1 0 0 0 0 0 0

Uvigerina mediterranea 1 4 4 6 4 1 1 14

Valvulineria spp. 3 2 3 4 7 5 11 6

Virgulina loeblichi 0 1 1 2 1 1 2 1

Virgulina schreibersania  0 0 0 0 0 0 0 0

Adercotryma glomerata 0 0 0 0 0 0 2 1

Eggerelloides scabrus 0 0 0 0 1 0 0 0

Gaudryina spp. 0 0 0 0 1 0 1 0

Haplophragmoides bradyi 0 0 0 0 4 0 3 0

Milliamina fusca 0 0 1 0 2 0 0 0

Reophax sp. 1 0 0 0 0 0 0 0 0

Reophax spp. 0 0 1 0 0 0 0 0

Saccammina spp. 0 0 0 0 0 0 2 0

Textularia earlandi 0 0 0 0 0 0 0 1

Trochammina inflata 0 0 0 0 1 0 0 0

Trochammina inflata spp. 4 0 1 0 4 0 0 0

Unidentified agglutinated sp. 1 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 2 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 3 0 1 1 0 3 0 2 1

Unidentified agglutinated sp. 4 0 0 0 0 0 0 0 0



Species 433.5 437.5 441.5 445.5 450.5 453.5 457.5 461.5
Ammonia spp. 0 0 0 0 0 0 0 0

Astrononion gallowayi 0 0 0 0 0 0 0 0

Biloculina depressa 1 3 5 1 0 0 1 5

Bolivina albatrossi 0 0 0 0 0 0 0 0

Bolivina skagerrakensis 0 0 1 0 1 0 0 0

Bolivina spathulata 3 0 1 1 0 2 1 0

Brizalina pseudopunctata 0 0 0 0 0 0 0 0

Buccella frigida 2 1 1 1 1 0 0 1

Bulimina marginata 0 1 1 2 0 0 2 2

Buliminella elegantissima 0 1 0 0 0 0 1 0

Cassidulina cf. Laevigata 0 0 0 0 0 0 0 0

Cassidulina laevigata  8 8 4 3 1 20 10 12

Cassidulina neoteretis 4 9 6 12 3 33 18 23

Cassidulina obtuse 1 9 12 3 1 2 4 6

Cassidulina reniforme 0 2 0 0 2 1 0 2

Cassidulina sp. 1 0 0 0 0 1 1 0 0

cf. Eoeponidella spp. 1 0 0 0 1 0 1 1

Cibicides lobatulus 7 6 5 2 4 4 10 8

Cibicides pseudoungerianus 0 0 0 0 0 0 0 0

Cibicides sp. 1 0 1 0 0 0 0 1 1

Cornuspira involvens 0 1 2 3 0 2 0 0

Dentalina spp. 1 5 1 0 0 1 0 1

Elphidium excavatum  forma clavata 4 1 1 0 3 1 28 40

Epistominella sp. 1 6 4 5 1 3 0 4 3

Epistominella sp. 2 0 0 1 0 1 0 0 0

Epistominella spp. 0 0 1 0 0 0 0 0

Fissurina spp. 4 6 10 2 5 1 4 8

Flat Spiral 0 0 18 12 5 1 2 6

Globobulimina turgida 0 0 0 0 1 0 0 0

Haynesina germanica 0 0 0 0 0 0 0 0

Hyalinea balthica 19 71 33 89 100 101 0 2

Islandiella norcrossi 0 2 0 3 0 4 0 0

Lagena spp. 5 1 8 1 8 4 7 4

Lenticulina  cf. angulata 5 3 1 1 2 2 2 1

Lenticulina spp. 0 6 2 4 6 3 3 7

Melonis barleeanus 15 8 7 7 5 7 18 15

Miliolinella spp. 9 2 4 12 10 3 3 4

Nonionella iridea 60 56 53 36 66 35 74 63

Nonionella labrodorica 0 0 0 0 0 0 0 0

Nonionella turgida 0 3 1 0 1 2 4 4

Oolina s pp 3 2 2 1 2 1 2 3

Parafissurina spp. 2 4 2 1 0 2 0 1

Pseudopolymorphina spp. 0 16 7 5 4 1 2 2

Pullenia bulloides 0 0 0 0 0 0 1 0

Pullenia osloensis 20 19 32 43 34 63 72 26

Pullenia osloensis sp. 2 0 0 0 0 0 0 0 0

Pullenia subcarinata 3 3 13 1 1 1 4 1

Pyrgo williamsoni 1 7 3 4 0 1 2 4

Quinqueloculina spp. 6 1 7 13 8 2 5 3

Rosalina spp. 0 1 0 2 0 0 0 2

Unidentified sp. 1 0 0 0 0 0 0 0 0

Stainforthia fusiformis 25 15 23 7 10 11 13 5

Trifarina angulosa 0 2 1 0 0 1 1 0

Trioculina tricarinata 0 0 0 1 0 0 0 0

Uvigerina mediterranea 4 5 6 5 6 5 2 3

Valvulineria spp. 12 9 8 12 22 3 9 3

Virgulina loeblichi 1 1 0 0 0 0 1 1

Virgulina schreibersania  0 0 0 0 0 0 0 0

Adercotryma glomerata 2 0 0 0 0 0 0 1

Eggerelloides scabrus 0 0 0 0 1 0 0 0

Gaudryina spp. 0 1 0 0 0 0 0 0

Haplophragmoides bradyi 2 1 1 1 0 0 0 1

Milliamina fusca 0 0 1 0 0 1 0 0

Reophax sp. 1 0 0 0 0 0 0 0 0

Reophax spp. 1 0 0 0 0 0 0 0

Saccammina spp. 0 0 1 0 0 0 0 0

Textularia earlandi 0 0 0 0 0 0 0 0

Trochammina inflata 0 2 0 0 0 0 0 0

Trochammina inflata spp. 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 1 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 2 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 3 1 0 0 0 0 0 0 0

Unidentified agglutinated sp. 4 0 0 0 0 0 0 0 0



Species 465.5 469.5 473.5 477.5 481.5 485.5 489.5 493.5
Ammonia spp. 0 0 0 0 0 0 0 0

Astrononion gallowayi 0 0 0 0 0 0 0 0

Biloculina depressa 3 1 0 0 0 0 0 1

Bolivina albatrossi 0 0 0 0 0 0 0 0

Bolivina skagerrakensis 0 1 0 1 0 0 0 0

Bolivina spathulata 0 0 1 5 0 2 0 0

Brizalina pseudopunctata 1 0 0 0 0 0 0 0

Buccella frigida 11 46 2 1 1 2 0 5

Bulimina marginata 3 4 0 1 2 5 1 0

Buliminella elegantissima 0 0 2 0 0 0 0 0

Cassidulina cf. Laevigata 0 0 0 0 0 1 0 0

Cassidulina laevigata  17 14 7 4 6 6 1 9

Cassidulina neoteretis 11 18 8 3 4 8 6 12

Cassidulina obtuse 4 5 7 9 6 9 3 6

Cassidulina reniforme 0 0 3 0 1 3 1 0

Cassidulina sp. 1 1 0 1 0 0 1 0 0

cf. Eoeponidella spp. 0 0 1 0 1 1 0 0

Cibicides lobatulus 10 11 13 9 5 4 1 1

Cibicides pseudoungerianus 0 0 0 0 0 0 0 0

Cibicides sp. 1 0 0 2 2 0 7 0 2

Cornuspira involvens 0 0 0 0 1 0 0 0

Dentalina spp. 0 0 0 1 0 0 1 1

Elphidium excavatum  forma clavata 81 29 34 47 46 65 50 34

Epistominella sp. 1 6 4 3 1 2 0 0 4

Epistominella sp. 2 0 0 0 0 0 0 0 0

Epistominella spp. 2 1 1 0 0 0 0 0

Fissurina spp. 5 5 7 2 5 1 2 4

Flat Spiral 4 0 4 1 2 0 3 1

Globobulimina turgida 0 0 0 0 0 0 0 0

Haynesina germanica 0 0 0 0 0 0 0 0

Hyalinea balthica 0 0 0 0 0 0 1 0

Islandiella norcrossi 1 0 1 2 0 2 0 0

Lagena spp. 6 7 8 7 4 1 4 0

Lenticulina  cf. angulata 0 1 0 0 0 0 0 1

Lenticulina spp. 1 6 6 1 3 4 6 9

Melonis barleeanus 8 15 17 11 3 3 3 4

Miliolinella spp. 10 7 5 10 2 3 5 6

Nonionella iridea 42 39 33 57 45 52 47 64

Nonionella labrodorica 0 0 0 0 0 0 0 0

Nonionella turgida 1 5 4 2 1 8 2 0

Oolina s pp 6 2 4 2 2 1 0 0

Parafissurina spp. 0 0 2 1 1 1 1 0

Pseudopolymorphina spp. 7 1 2 2 1 0 2 1

Pullenia bulloides 0 1 0 0 0 2 0 0

Pullenia osloensis 42 60 64 52 47 24 28 36

Pullenia osloensis sp. 2 0 0 0 0 0 0 0 0

Pullenia subcarinata 1 0 2 0 1 0 1 1

Pyrgo williamsoni 2 1 2 0 0 4 1 1

Quinqueloculina spp. 12 6 5 9 3 4 3 5

Rosalina spp. 0 4 0 0 1 0 0 0

Unidentified sp. 1 0 0 0 0 0 0 0 0

Stainforthia fusiformis 3 7 10 6 11 19 17 2

Trifarina angulosa 0 0 0 0 0 0 0 0

Trioculina tricarinata 0 0 2 0 0 2 1 1

Uvigerina mediterranea 1 0 0 1 0 0 0 0

Valvulineria spp. 9 5 21 90 88 143 133 103

Virgulina loeblichi 0 1 0 0 2 0 0 1

Virgulina schreibersania  0 0 0 0 0 0 0 0

Adercotryma glomerata 0 0 0 0 0 0 0 0

Eggerelloides scabrus 2 1 1 0 0 0 0 0

Gaudryina spp. 0 0 0 0 0 0 0 0

Haplophragmoides bradyi 0 0 0 0 0 0 0 0

Milliamina fusca 0 1 0 0 1 0 2 0

Reophax sp. 1 0 0 0 0 0 0 0 0

Reophax spp. 0 0 0 0 0 0 0 0

Saccammina spp. 0 0 0 0 0 0 0 0

Textularia earlandi 0 0 0 0 0 0 0 0

Trochammina inflata 0 0 0 0 0 0 0 0

Trochammina inflata spp. 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 1 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 2 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 3 1 0 0 0 0 0 0 0

Unidentified agglutinated sp. 4 0 0 0 0 0 0 0 0



Species 497.5 501.5 505.5 509.5 513.5 516.5 521.5 523.5
Ammonia spp. 0 0 0 0 0 0 0 0

Astrononion gallowayi 0 0 0 0 0 0 0 0

Biloculina depressa 0 3 1 0 2 0 0 0

Bolivina albatrossi 0 0 0 0 0 0 0 0

Bolivina skagerrakensis 0 0 0 0 0 0 0 0

Bolivina spathulata 0 0 2 0 0 0 0 0

Brizalina pseudopunctata 0 0 0 0 1 0 0 0

Buccella frigida 4 4 25 71 103 121 127 133

Bulimina marginata 5 1 2 0 1 0 0 1

Buliminella elegantissima 0 0 0 0 0 0 0 0

Cassidulina cf. Laevigata 0 0 0 0 0 0 0 0

Cassidulina laevigata  14 12 2 5 7 6 0 2

Cassidulina neoteretis 1 5 9 6 3 8 5 0

Cassidulina obtuse 5 8 1 1 0 1 3 1

Cassidulina reniforme 0 0 0 0 0 1 0 0

Cassidulina sp. 1 0 0 0 1 0 0 0 0

cf. Eoeponidella spp. 0 0 0 1 0 0 0 2

Cibicides lobatulus 4 4 1 2 2 1 6 2

Cibicides pseudoungerianus 0 0 0 0 0 0 0 0

Cibicides sp. 1 1 1 0 1 1 0 0 1

Cornuspira involvens 0 0 1 0 0 0 0 0

Dentalina spp. 2 0 0 1 0 0 1 1

Elphidium excavatum  forma clavata 43 68 67 84 38 45 39 42

Epistominella sp. 1 0 1 1 0 0 0 0 0

Epistominella sp. 2 0 1 0 0 0 0 0 0

Epistominella spp. 0 0 0 0 1 0 0 0

Fissurina spp. 2 1 0 0 0 2 2 1

Flat Spiral 5 4 5 0 3 0 11 0

Globobulimina turgida 0 0 0 0 0 1 0 0

Haynesina germanica 0 0 0 0 0 0 0 0

Hyalinea balthica 0 0 0 0 0 0 0 0

Islandiella norcrossi 0 0 0 1 0 0 0 0

Lagena spp. 1 4 4 4 1 4 0 2

Lenticulina  cf. angulata 0 0 0 0 1 0 1 0

Lenticulina spp. 5 4 2 3 2 1 5 4

Melonis barleeanus 1 3 5 5 1 2 2 1

Miliolinella spp. 6 7 11 0 3 2 4 0

Nonionella iridea 61 69 63 51 69 57 52 43

Nonionella labrodorica 0 0 0 0 0 0 0 0

Nonionella turgida 1 6 3 1 4 1 1 0

Oolina s pp 1 1 0 4 1 1 3 4

Parafissurina spp. 0 1 0 1 1 0 0 0

Pseudopolymorphina spp. 4 2 4 1 3 0 3 1

Pullenia bulloides 0 0 0 0 0 0 0 0

Pullenia osloensis 40 46 42 54 31 33 37 48

Pullenia osloensis sp. 2 0 1 0 0 0 0 0 0

Pullenia subcarinata 1 1 0 2 3 1 2 4

Pyrgo williamsoni 2 4 0 1 2 5 1 2

Quinqueloculina spp. 6 7 9 2 2 1 4 0

Rosalina spp. 2 1 1 1 0 2 0 0

Unidentified sp. 1 0 0 0 0 0 0 0 0

Stainforthia fusiformis 6 10 10 3 10 6 3 4

Trifarina angulosa 0 0 0 0 0 0 0 0

Trioculina tricarinata 0 2 5 0 1 0 0 0

Uvigerina mediterranea 0 0 0 0 0 0 0 0

Valvulineria spp. 92 23 22 8 17 13 8 2

Virgulina loeblichi 0 2 0 0 0 0 2 0

Virgulina schreibersania  1 0 0 0 0 0 0 0

Adercotryma glomerata 0 0 0 0 0 0 0 0

Eggerelloides scabrus 0 0 0 0 0 0 1 0

Gaudryina spp. 0 0 0 0 0 0 0 0

Haplophragmoides bradyi 0 0 0 0 0 0 0 1

Milliamina fusca 1 0 0 1 2 2 0 3

Reophax sp. 1 0 0 0 0 0 0 0 0

Reophax spp. 0 0 0 0 0 0 0 0

Saccammina spp. 0 0 0 0 0 0 0 0

Textularia earlandi 0 0 0 0 0 0 0 0

Trochammina inflata 0 0 0 0 0 0 0 0

Trochammina inflata spp. 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 1 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 2 0 0 0 0 0 0 0 0

Unidentified agglutinated sp. 3 0 0 0 0 0 0 1 0

Unidentified agglutinated sp. 4 0 0 0 0 0 0 0 0


