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MODELING CANCER PREDISPOSITION: PROFILING LI-FRAUMENI 

SYNDROME PATIENT-DERIVED CELL LINES USING BIOINFORMATICS AND 

THREE-DIMENSIONAL CULTURE MODELS 

 

 Although rare, classification of over 200 hereditary cancer susceptibility 

syndromes accounting for ~5-10% of cancer incidence has enabled the discovery and 

understanding of cancer predisposition genes that are also frequently mutated in sporadic 

cancers. The need to prevent or delay invasive cancer can partly be addressed by 

characterization of cells derived from healthy individuals predisposed to cancer due to 

inherited “single-hits” in genes in order to develop patient-derived samples as preclinical 

models for mechanistic in vitro studies. Here, we present microarray-based transcriptome 

profiling of Li-Fraumeni syndrome (LFS) patient-derived unaffected breast epithelial 

cells and their phenotypic characterization as in vitro three-dimensional (3D) models to 

test pharmacological agents. In this study, the epithelial cells derived from the unaffected 

breast tissue of a LFS patient were cultured and progressed from non-neoplastic to a 

malignant stage by successive immortalization and transformation steps followed by 

growth in athymic mice. These cell lines exhibited distinct transcriptomic profiles and 

were readily distinguishable based upon their gene expression patterns, growth 

characteristics in monolayer and in vitro 3D cultures. Transcriptional changes in the 

epithelial-to-mesenchymal transition gene signature contributed to the unique phenotypes 

observed in 3D culture for each cell line of the progression series; the fully transformed 
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LFS cells exhibited invasive processes in 3D culture with disorganized morphologies due 

to cell-cell miscommunication, as seen in breast cancer. Bioinformatics analysis of the 

deregulated genes and pathways showed inherent differences between these cell lines and 

targets for pharmacological agents. After treatment with small molecule APR-246 that 

restores normal function to mutant p53, we observed that the neoplastic LFS cells had 

reduced malignant invasive structure formation from 73% to 9%, as well as an 

observance of an increase in formation of well-organized structures in 3D culture (from 

27% to 91%) by stereomicroscopy and confocal microscopy. Therefore, the use of well-

characterized and physiologically relevant preclinical models in conjunction with 

transcriptomic profiling of high-risk patient derived samples as a renewable laboratory 

resource can potentially guide the development of safer and more effective 

chemopreventive approaches. 
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CHAPTER ONE: Introduction 

 

1.1. Cancer predisposition syndromes: insights to mechanisms of cancer and 

genotypic/phenotypic aspects  

 

 Cancer predisposition can be defined as an increased susceptibility to the 

development of cancer due to rare germline mutations that either occur de novo or are 

inherited; the genes in which the cancer risk-conferring mutations occur are called cancer 

predisposition genes. The inherited cancers develop due to highly penetrant germline 

mutation whereas familial cancer may arise due to low-penetrance genes constituting for 

~5-10% and 10-15% (Figure 1) of global cancer burden respectively [1].  

 

 Over the past three decades, more than 100 cancer predisposition genes and the 

associated cancer predisposition has been identified which has enabled characterization 

of important genes such as RB1, PTEN, BRCA2, MLH1 and TP53 and revolutionized the 

field of cancer genetics at an unprecedented rate. An overlap of mutations in these genes 

is also found in the general population that contributes to sporadic cancer development. 

In women, a number of autosomal-dominant, highly penetrant cancer predisposition 

genes such as PTEN, BRCA1 and BRCA2, and TP53 contribute to breast cancer 

development in Cowden syndrome (CS), hereditary breast and ovarian cancer syndrome 

(HBOC) and Li-Fraumeni Syndrome (LFS), respectively. 
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Figure 1. Inherited cancer predisposition syndromes are rare. Most cancer are 

sporadic; however, germline mutations in approximately 114 cancer predisposition genes 

that confer high or moderately high risks of cancer called have been identified. About 5-

10% cancers are inherited due to highly penetrant germline mutations in cancer 

predisposition genes. Familial cancers account to 15-20% of cancer burden which may 

result from by interaction(s) between one or multiple low-penetrance alleles and/or the 

environment (Figure adapted from Nagy, 2004).  

Inherited)5+10%)

Familial)15+20%)

Sporadic)80%)
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Li-Fraumeni Syndrome 

 In 1969, Drs. Frederick Li and Joseph Fraumeni, based on retrospective data 

analysis of over 600 medical records, described a cancer syndrome (later termed Li-

Fraumeni syndrome) in four families that comprised of multiple members who developed 

pediatric and diverse early onset cancers such as rhabdomyosarcomas, soft tissue 

sarcomas [2, 3]. Further epidemiological research confirmed Li-Fraumeni syndrome 

(LFS) as a rare autosomal-dominant cancer predisposition syndrome characterized by a 

spectrum of tumors - soft-tissue and bone sarcomas, premenopausal breast cancers, 

central nervous system tumors, acute leukemias and adrenal cortical carcinomas (ACC) 

being most frequent and known as the “core” component class of LFS tumors [4, 5]. 

Germline heterozygous mutations in TP53 gene that encodes tumor suppressor protein 

p53 were identified in individuals in LFS families [6]. The Li-Fraumeni syndrome (MIM 

151623) is defined as clinically and genetically heterogeneous characterized by 

autosomal dominant inheritance, early onset of tumors with multiple tumors occurring 

within an individual and multiple family members affected. Sporadic mutations in TP53 

gene are also common in most human cancers [7] and have been observed in every region 

of TP53 gene [8], however, some mutations are more frequent than others (i.e., hotspot 

mutations). The tumor suppressor plays critical roles in multiple cellular processes 

including maintenance of genome stability, cell-cycle arrest and apoptosis in response to 

oncogenic insults, and thus heterozygous mutations in p53 may be an early step necessary 

in cancer progression [9, 10] as observed in LFS [11]. A conservative estimate for Li-

Fraumeni syndrome causing TP53 germline mutation carrier rate of 1/5000 has been 

calculated [12]. These LFS-associated TP53 mutations can be grouped based on the 
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mutation type; the dominant-negative missense TP53 alterations that may also display 

gain-of-function properties are more common than the second group comprising of 

truncating and frame shift mutations, partial or whole gene deletions that exhibit a loss of 

function. After over two decades of establishing the association of TP53 mutations with 

LFS, the genotype-phenotype correlation between the underlying TP53 mutation and the 

clinical phenotype including the age-specific cancer risks, tumor type, pathological 

features, penetrance and expressivity, host and/or environmental factors is still not well 

understood [5, 13]. This demonstrates the need of patient-derived tissues as an important 

resource to understand the genotype-phenotype correlation. To model LFS, mouse 

models representing the frequently mutated TP53 alleles have been utilized, however, 

they do not represent broad spectrum of mutations observed [14, 15]. Only few of the 

most frequent mutation are studied for their contribution in cancer progression, and since 

the missense TP53 mutations that give rise to mutant p53 proteins with unique features 

(neomorphic gain of function) [16, 17], mechanisms of p53 driven cancer progression are 

not been completely understood [18]. Recently, the use of Li-Fraumeni Syndrome patient 

iPSC-derived osteoblasts as a model to study the role of mutant p53 in development of 

osteosarcoma was reported [19]. Early-onset breast cancers are the most common cancer 

type in women (>70% cases) with LFS and this underscores the need for preventive 

measures such as bilateral mastectomy given limited management options [20, 21]. Since 

preventative surgical procedures such as oophorectomies and bilateral mastectomies are 

frequently recommended to predisposed ovarian and breast cancer individuals [22, 23], 

the use of primary cells derived from the excised tissues to generate cells lines therefore 

offers an avenue to model cancer predisposition.  
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1.2. Cancer Transcriptomics: burgeoning applications of the computational toolbox 

 

Translational importance of gene expression analysis 

 Pathologists have characterized 18 distinct histopathological subtypes breast 

cancer (IARC 2012) and comprehensive molecular profiling has identified six clinically 

different intrinsic breast cancer subtypes (luminal A, luminal B, HER2- enriched, basal-

like, claudin-low, and a normal-like group) characterized by distinct risk factors, 

incidence, and baseline prognosis, and treatment response [24-29]. Also, six unique 

triple-negative breast cancer (TNBC) subtypes (basal-like 1 and 2, immunomodulatory, 

mesenchymal, mesenchymal stem cell-like and luminal androgen receptor) with unique 

molecular profiles and ontologies have been identified [30]. The numerous published 

breast cancer gene-expression signatures aim to improve upon the prognostication 

provided by traditional clinical and pathological information [31]. The molecular 

subtyping of breast cancer has been used to accurately predict clinical response [27, 32-

36], facilitate identification of novel treatment regimens and appropriate patient selection 

for clinical trials. Thus, gene expression profiling based classifications of breast cancer 

reveal complexity and molecular heterogeneity and presents an opportunity to tailor 

individualized therapies to a patient’s tumor subtype. 

 

 Gene expression profiling classifies breast cancer into intrinsic subtypes based on 

the biology of the underlying disease pathways [26, 31]. Gene expression profiling is one 

of the robust approaches to discover novel predictive biomarkers and molecular targets 

and is the basis for rational pharmacological targeting, biomarker identification and 
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chemoprevention strategies. In the past decade, the important contribution of gene 

expression profiling to prognostic value in clinical settings has been widely 

acknowledged [27, 33, 37-43]. Recently, integrated molecular analysis of breast 

carcinomas has yielded a comprehensive catalogue of likely drivers in the four main 

breast cancer subtypes namely Luminal A, Luminal B, HER2-enriched and Basal-like has 

been published [44]. Furthermore pathway analyses of gene expression data have the 

potential to aid in specific therapeutic targeting. To overcome the limitations of cytotoxic 

chemotherapy, current cancer bioinformatics and systems biology approaches aim at 

responder identification and selective targeting of specific cell signaling pathways crucial 

for tumor growth and survival. This strategy requires mapping pathway deregulation 

patterns to therapeutically target and predict drug response in tumors using the gene 

expression signatures. The prospective use of MammaPrint® breast cancer recurrence 

signature to accurately determine beneficial versus ineffective chemotherapeutic options 

for breast cancer patients [45], thereby reducing the time, unnecessary cost and drug 

toxicities arising from a trial and error approach is an excellent example of how gene 

expression signatures can be translated in the clinic. Although some challenges exist in 

translating gene expression signature in the clinic, there have been promising advances in 

the past decade toward stratified personalized approach to patient treatment [46].  

 

 The use of genomics to understand genotype-phenotype correlations, distinct 

pathways, and biological principles of inherited cancer and the extrapolation of these 

finding to sporadic cancers and cancer prevention has been attempted [47]. Previously, 

Herbert et al. have performed gene expression profiling of breast epithelial and stromal 



 

 7 

cells derived from two different LFS patient-derived and identified plausible targets for 

chemoprevention based on the differences in mutation type [48]. In summary, pathway 

deregulation analyses of samples derived from individuals with familial or inherited 

cancer syndromes can lead to prediction of therapy responders, molecular targeting of 

specific signaling pathways and development of rational combination therapies. 

 

1.3. Relevance of cell lines as preclinical models for cancer research 

 

 A comprehensive drug screening project using a panel of 60 human cancer cell 

lines representing 9 different cancer types was undertaken in 1980s to perform primary 

high-throughput screening before progressing to xenograft models [49]. Since this 

endeavor did not meet expectations of identifying prominent drug candidates, a system 

utilizing hollow fiber assay using 12 cancer cell lines was used as an in vitro model as a 

preceeding step to novel drug testing in xenograft models [50]. The denunciation of cell 

lines as preclinical tumor models was owed to changes in genetic and transcriptional 

profiles, failure to represent tumor heterogeneity and lack of tumor microenvironmental 

components. Most of these limitations were due to improper tissue culture practice and in 

the recent years it has been shown that cell lines do in fact represent the features of tumor 

source. Also, with the advent of novel 3D culture models and capabilities of co-culture 

methods, some components of the microenvironemnt can be simulated in vitro without 

compromising on the economic and user-friendly applications of cell lines as preclinical 

models. The two-dimensional (2D) in vitro monolayer cultures largely retain genomic 

features of parent tissue [51, 52] and are ideal high-throughput screening platforms in 
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preclinical setting. During the past decade, molecular heterogeneity and need for 

classification of breast cancer has been acknowledged and alternative targeted therapies 

are being investigated [53]. Advances have been made in understanding major signaling 

pathways and developing new drugs yet unresolved questions, biomarker and therapeutic 

targets identification still remain. We expect that molecular classification on the basis of 

gene expression profiles for of non-malignant and tumorigenic breast cell lines from 

high-risk individuals will guide rationale targeting and biomarker prediction for use in 

preventative or therapeutic strategies to reduce the incidence of breast cancer. Recently, 

through the Cancer Cell Line Encyclopedia (CCLE) project, a comprehensive genetic and 

molecular characterization of about 1000 human cancer cell lines was performed [54]. 

The CCLE enables public access to mRNA expression, chromosomal copy number and 

mutation data for analysis and visualization with the goal of developing gene-expression 

based predictions of preclinical drug sensitivity and response. Use of human cancer cell 

line panels and genetic lesions dependent transcriptional signatures have been fruitful in 

studying heterogeneity and various subtypes in cancer [52, 55, 56]. The Cancer Cell 

Genome Atlas project (TCGA) project is another gargantuan effort ot characterize 

different form of cancer and their subtypes from patient-derived biospecimens to 

facilitate personalized medicine [57, 58]. Human clinical trials are indispensable and 

expensive, so the design of an ideal trial that reflects heterogeneity at genetic level of a 

population for promising preclinical drugs is restricted based on ethical, regulatory and 

econmic level [59]. This is especially true for cancer predisposition syndromes wherein 

the exisitng knowledge for chemopreventive or clinical management is inadequate.  
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 High-risk patient-derived cell line models can serve as renewable resource in 

preclinical evaluation of novel cancer therapies and drug response prediction. To model 

breast cancer progression, a few breast epithelium derived series exist (for example, 

MCF10AT [60, 61], HMT-3522 [62], and the human 21T series [63]) that model 

different stages of cancer in vitro, however the LFS patient-derived HME50 cell lines are 

innovative in that they are the only breast epithelial cell line series from a high-risk 

patient; in addition, stromal cells from this patient have been cryopreserved. High-risk 

patient-derived cell line models serve as a renewable resource for preclinical evaluation 

of novel cancer therapies and drug response prediction.  

 

1.4. Relevance of preclinical three-dimensional in vitro models 

 

 The weak correlation between preclinical screening and clinical efficacy of 

anticancer agents reflects the limitations of preclinical screening models to accurately 

predict clinical response. Ideally, preclinical studies should aid early identification of 

unpredictable toxicities and lack of efficacy [64]. Also, information on 

pharmacokinetic/pharmacodynamic properties of a drug, tissue concentrations and target 

modulation by the agent (or a surrogate biomarker predictive of drug action) are 

important [64]. The discovery of novel cancer therapies relies on selection preclinical 

models that recapitulate the heterogeneity and acknowledgment of limitations of each 

model [65]. The two-dimensional (2D) in vitro monolayer cultures largely retain genomic 

features of parent tissue [51, 52] and are ideal high-throughput screening platforms. 

However, monolayers cannot accurately recapitulate physiological environment and 
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complexity of cancer. Xenograft models are vital tools to investigate new 

pharmacological agents but unreliable for drug eficacy studies due to inherent 

interspecies differences. Xenograft models poorly predict response to therapy in humans 

and are not expedient for proof-of-principle experiments for molecular targeted therapies. 

Also, due to space, time and cost considerations, mouse xenograft models are unsuitable 

for high-throughput screening [66].  

 

 The three-dimensional (3D) in vitro models although relatively new, are 

physiologically relevant models that mimic morphology and signaling, are amenable to 

rapid experimentation and can complement 2D cell cultures and xenograft models [67]. 

Three-dimensional (3D) Matrigel® assays have been used to study human breast-tumour 

cell lines at different stages of progression in laminin-rich extracellular matrix (lrECM) 

[68]. When grown in monolayers cultures, the nonmalignant cells are similar in 

appearance to the malignant cells; however, the phenotypic differences become obvious 

in 3D cultures. In 3D cultures, the non-malignant cells undergo growth arrest and form a 

polarized, acini-like structure (Figure 2), whereas the malignant cells proliferate and 

form amorphous structures [69, 70].  

 

 Bissell and others have shown that reversal of tumorigenic phenotype of the 

malignant cells can be achieved by inhibiting different signaling pathways (inhibitory 

antibodies and pathway inhibitors) and normal phenotype can be restored [71, 72]. 

However, the signal transduction pathways in 3D culture of non-malignant cells are not 

always preserved in cells grown as monolayers [72]. Since tumor cells growing in 3D 
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cultures more closely mimic their counterparts in vivo, aspects such as invasive potential, 

changes in polarity, and drug sensitivity can be better studied in 3D cultures. 

Furthermore, a comparison between drug responses in 2D and 3D cell culture systems 

and in vivo drug responses must be determined [66, 73] to demonstrate that drug 

sensitivity data derived from 3D cultures captures clinically relevant response more 

faithfully than traditional 2D cultures.  

 

 During the past decade, molecular heterogeneity and need for classification of 

breast cancer has been acknowledged and alternative targeted therapies are being 

investigated. Advances have been made in understanding major signaling pathways and 

developing new drugs yet unresolved questions, biomarker and therapeutic targets 

identification still remain. We expect gene expression based molecular classification of 

non-malignant and tumorigenic breast cell lines from high- risk individuals will guide 

rationale targeting and biomarker prediction for use in preventative or therapeutic 

strategies for invasive breast cancer. We will use ex vivo 3D Matrigel® cultures to test 

investigational agents and we anticipate amenability of this example to other high-risk 

patient samples where gene expression analysis will guide chemoprevention and 

treatment regimens on the basis of a match between cell/sample type and underlying 

pathways [31]. 
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 3D culture offers an avenue to use both biologically derived and well-defined 

synthetic matrices and to incorporate cells types from the tumor microenvironment in 3D 

co-cultures. Some of the many differences observed in growth of tumor cells in 3D 

cultures in contrast to 2D monolayers are: (i) morphology similar to tumors in vivo [74]; 

(ii) slower growth rates [75] that reflect mathematical models of tumors in vivo [76]; (iii) 

increased glycolysis in 3D [77]; (iv) differential expression [78]. Some of the important 

reasons for using 3D matrices for anti-cancer drug development and need for 

advancement in 3D cell culture field are [79]: (i) applications in clinical setting that 

emphasizes personalized medicine; (ii) to overcome issues of misleading drug sensitivity 

data that arise due to limitations of 2D monolayer culture and animal models [67] and 

(iii) cells grown in 3D culture may better represent native behavior and expression 

profiles of cells in their in vivo environment [80]; both the ECM cues and the mechanical 

properties provided by 3D in vitro systems affect the behavior and gene expression [81]. 
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Figure 2. Schematic representation of human breast anatomy and in vitro epithelial 

acini. The human breast gland comprises of both epithelial and stromal components. The 

functional epithelial component is the ductolobular system comprising of about 15-20 

lobes radially arranged and connected by a ductal network. Each lobe contains multiple 

lobules and each lobule is composed of acini. Each acinus rests on basement membrane 

and comprises of epithelial cells that surround a lumen. Breast epithelial cells when 

grown in 3D culture in presence of basement membrane components can adopt acinar 

morphology as observed in vivo (adapted from Vidi, P. et. al., 2013). 
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1.5. Epithelial-to-mesenchymal transition in cancer development 

 

 In cancer progression, epithelial-to-mesenchymal (EMT) plasticity is 

characterized by loss of polarity and loss of cell-cell adhesion that alters cytoskeletal 

properties such that epithelial characteristics are lost with concurrent acquisition of 

mesenchymal phenotype. Epithelial cells such as those derived from glandular breast 

form polarized, continuous layer bound by cell-adhesion molecules (such as claudin, 

occludin and E-cadherin) which rests on basement membrane that facilitates connection 

with extracellular matrix such that the apical-basal polarity is maintained. Loss of 

epithelial characteristics and acquisition of mesenchymal migratory and invasive program 

during EMT are initiated by loss of cell adhesion junctional proteins, reduced cell-to-cell 

contact, loss of cell polarity and adoption of mesenchymal transcriptional pattern. This 

process embodies loss of expression and function of epithelial markers such as E-

cadherin and tight junction proteins (ZO-1, OCLN, CLDN), cytokeratins (KRT19, KRT7), 

Type IV collagen along with up-regulation of mesenchymal hallmarks such as N-

cadherin, fibroblast specific protein 1 (FSP1), vimentin (VIM), type I and type III 

collagens, fibronectin (FN1) that together confers the transdifferentiated cells to invade 

and migrate through the extracellular matrix. Several transcriptional and signaling 

pathways that respond to external stimuli can operate the EMT switch and this reflects 

the complexity of multi-tiered crosstalks between regulatory factors and environment 

[82]. Some well characterized EMT mediating signaling pathways such as bone 

morphogenetic protein (BMP), epidermal growth factor (EGF), fibroblast growth factor 

(FGF), platelet derived growth factor (PDGF), transforming growth factor β (TGF-β), 
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integrin signaling etc. can induce EMT driving transcriptional programs via intracellular 

kinase signaling cascades [83, 84]. Several transcriptional factors that can induce and 

drive EMT have been characterized including basic helix-loop-helix (bHLH) factors 

(ZEB1, ZEB2, TWIST), zinc-finger binding transcription factors (SNAI1 and 

SNAI2/SLUG), T cell factor (TCF)/Lymphoid enhancer binding factor-1 (TCF/LEF-1). 

The EMT transcriptional regulators SNAIL and bLHLH can repress the expression of 

epithelial markers claudins, occludins, E-cadherin, desmoplakin and concurrently activate 

fibronectin, vitronectin and N-cadherin associated with mesenchymal phenotype. The E-

cadherin down-regulation destabilizes the adherens junction, repression of claudins and 

occludins causes disbanding of apical tight junctions, and the loss of desmoplakin and 

plakophilin results in loss of desomosomes. Either of the three major EMT transcriptional 

regulators namely SNAIL, bHLH and ZEB can repress E-cadherin expression and activate 

expression of N-cadherin, irrespective of the upstream signaling modules adopted by the 

cell. This repressed E-cadherin expression accompanied by cadherin switching by 

mesenchymal neural N-cadherin up-regulation is a critical event during EMT that alters 

cell adhesion that facilitates migration and invasion [83, 85]. Since EMT in cancer 

progression imparts metastatic potential of transformed cells with tumorigenic potential 

[86], EMT promoting signals serve as therapeutic target for inhibiting cancer cell 

dissemination resulting in localized disease that is amenable to surgical or 

radiotherapeutic intervention [87]. The function of tumor suppressor TP53 is 

compromised by either mutation or loss on over half of human cancers and is associated 

with poor prognosis [88]. The transcriptional factor p53 is a master regulator of genes 

that regulate pathways responsible for cell adhesion, ECM interaction, senescence, 
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migratory potential, anoikis, invasion, cell plasticity/stemness [9, 89] and so the loss of 

p53 function primes cells to sustain EMT, invasion and metastatic potential [90-93]. 

Studies have shown that cancer cells preferentially express mutant p53 relative to 

functional WT p53 thereby suggesting dependence on the gain-of-function properties of 

mutant p53 [10, 17, 90, 94]. Since the loss of wild-type p53 and mutant p53 contributes 

to EMT and metastatic processes, therapeutic targeting of mutant p53 and restoration of 

wild type p53 function may therefore be a promising anticancer strategy [18, 95-97].  
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1.6. Rationale and overall objective 

 

 For over 50 years, patient-derived breast cancer cell lines have proved 

indispensable as preclinical models for drug discovery and development. Although well 

characterized, these frequently used continuous cell lines are limited in number and fail to 

recapitulate clinically observed complexity and heterogeneity of breast cancer. In 

addition to the dearth of normal and pre-malignant cell lines that can model early disease 

stages, there is a limitation on the number of well-characterized cell lines that represent 

progressive stages of breast cancer derived from individuals predisposed to cancer.  

 

 By utilizing the tissues from individuals predisposed to cancer who harbor a 

germline mutation and opt for preventative surgeries to establish cell lines, an important 

step of in vitro (e.g. viral mediated) manipulation of tumor suppressors or cancer drivers 

can be bypassed. These individuals with unique mutations can thus be represented in 

preclinical studies by using patient-derived cells to model disease biology. The breast 

epithelial HMECs and stromal cells derived from high-risk individuals and women with 

no history of breast cancer that represent different ethnic or biological backgrounds can 

partly address the complexity and heterogeneity of breast biology and cancer to facilitate 

cancer prevention and drug development. In recent years, the preeminence of 3D cultures 

as physiologically relevant models to study biology and drug discovery has been 

appreciated. Since 3D cultures can mimic several properties of original tumor and normal 

patient-derived tissue, molecular subtypes of breast cancer can be represented in high-

throughput assays.  
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 The goal of this study was to develop Li-Fraumeni patient-derived breast tissue as 

a renewable resource by characterizing established pre-malignant and malignant cell lines 

that can model different stages of breast cancer progression and then use gene expression 

profiling to identify targets for pharmacological interventions. Toward this goal, the 

objectives were: 

1. Characterization of cell lines from the unaffected breast tissue of Li-Fraumeni 

syndrome patient by genetically manipulated to progress from immortalization, 

transformation and malignant stages in vitro as monolayer and 3D cultures. 

2. Use of gene expression profiling to identify changes accompanied by sequential 

genetic manipulations, predict drug targets and observe effects of targeted 

pharmacological agents on the Li-Fraumeni syndrome cell lines in vitro 3D 

culture. 

 

Significance 

 Although well-defined breast cancer cell lines are widely used for mechanistic 

and therapeutic studies, their predictive value in the clinical setting is limited by failure to 

adequately reflect breast cancer heterogeneity or in vivo morphology [64, 98, 99]. 

Traditional 2D cell culture does not accurately mimic the three-dimensional (3D) 

environment in which cells function; resulting in inaccurate data and prediction of 

response of cancer cells to chemotherapeutics. On the other hand, xenografts from 

patient-derived tumors have proven to be invaluable, effective models for 

chemotherapeutic screening and translating efficacy to clinical trials [99-101]. However, 

use of xenograft models is limited by high cost, time and species-specific differences that 
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affect pharmacologic and mechanistic studies. These factors have led to the development 

and interest in standardization of 3D in vitro systems for efficacy testing of anti-cancer 

drugs [102-106]. The full potential of the cells derived from breast tissue of an individual 

with cancer predisposition or one with high risk for cancer as a preclinical model for 

chemoprevention and therapeutic targeting studies will be realized upon characterization 

to ensure expression of molecular targets of interest and its use to confirm drug-target 

interaction and efficacy. It is therefore necessary to characterize preclinical models to 

ensure molecular targets are being expressed in studies in order that novel agents that 

offer high anticancer activity and decreased side effects can be integrated in treatment 

regimens. Also, this information can be used to determine and evaluate the most 

promising drug combinations for therapy. The development of target-orientated agents 

with defined mechanisms of action calls for molecular characterization and physiological 

relevance of models, in addition to well-defined pharmacodyanamic and pharmacokinetic 

properties of therapeutic agents [107]. A thorough outlook of how this proposal fits in 

with the overall goals of cancer therapeutic and preventative intervention research is 

shown in the schematic (Figure 3) shows that gene expression and molecular profiling of 

tumors to identify responders to specific therapies can guide patient selection for 

chemopreventive studies and clinical trials. Advances made in breast cancer subtyping 

and pathway analysis; preclinical 3D culture models and generation of patient-derived 

xenografts (PDX) can provide subtype specific outcome data, help reduce costs and tailor 

effective treatment regimens for patients. A multipronged approach using various 

preclinical models will be necessary to overcome trade-offs in cancer research and 

treatment.   
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Central hypothesis of the project 

 

 

Figure 3. Schematic of preclinical model development using high-risk patient-

derived tissues. Both normal and tumor tissue samples derived from sporadic and high-

risk cases are an invaluable resource for preclinical exploratory studies. Advances in 

biobanking, organoid culture and generation of patient-derived xenografts (PDX) in 

conjugation with genome editing methods have enabled unprecedented accessibility to 

patient samples for in vitro mechanistic studies.  
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CHAPTER TWO: Materials and Methods 

 

2.1. Reagents 

 

 Cell culture reagents: To propagate HME50 cells for microarray experiments and 

characterization in 3D culture, HME50 cell lines were grown in M171 modified basal 

medium 171 (Gibco®, Life TechnologiesTM, U.S.A, catalog #M171500) supplemented 

with 10 ng/ml recombinant Human Epidermal Growth Factor (Hu EGF) (Catalog 

#PHG0311L, Gibco® Life TechnologiesTM), 0.4% bovine pituitary extract (Hammond 

Cell Technologies), 5 µg/ml insulin (#I1882, Sigma Aldrich), 0.5 µg/ml hydrocortisone 

(#H4001, Sigma- Aldrich), isoproterenol hydrochloride (#I5627, Sigma-Aldrich), and 5 

µg/ml human apo-transferrin (#T1147, Sigma-Aldrich); malignant HMET were 

additionally supplemented with 5% Fetal bovine serum (#S11150, Atlanta Biologicals, 

GA) was added to HMET growth media only. 10X Hank’s balanced salt solution (HBSS 

buffer), pH 7.50 was filter sterilized and used for maintenance of HME50 cells. 

 

 For pharmacological targeting and experiments to study phenotypic reversion of 

HME50 cells, serum-free and chemically defined H14 medium was prepared by 

supplementing DMEM/F12 basal media (#MT10090CV, ThermoFisher) with 2.6ng/ml 

selenous acid-sodium salt (#354201,BD Biosciences), 0.15IU/ml prolactin (Sigma-

Aldrich, #L6520-1000IU), 0.1nM β-estradiol (#E2758, Sigma-Aldrich), 500ng/ml insulin 

(#I1882, Sigma-Aldrich), 1.4µM hydrocortisone, 10µg/ml human apo-transferrin and 

10ng/ml recombinant Human Epidermal Growth Factor (Hu EGF).  
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 3D Matrigel® culture reagents: Growth Factor Reduced Corning® Matrigel® 

Matrix (Catalog #354230; Protein concentration within range of 9.0mg/ml to 10.0mg/ml 

and Endotoxin <1.5EU/ml), MatTek glass bottom dishes (#P35G-1.5-20-C & #P35G-1.5-

14-C MatTek Corporation), were used for experiments involving confocal imaging of 3D 

embed culture. 

 

 Immunofluorescence reagents: Phalloidin CruzFluorTM AF594 conjugate was 

dissolved in DMSO as 1000X stock (catalog #sc363795, Santa Cruz Biotech). AffiniPure 

F(ab’)2 Fragment Goat Anti-Mouse IgG, F(ab’)2 Fragment specific (Jackson 

ImmunoResearch Laboratories, Inc. Catalog#115-006-006). The primary antibodies used 

were mouse monoclonal ZO-1 (#339100, Molecular Probes®), rabbit monoclonal E-

cadherin (#3195, Cell Signaling Technology®), rabbit Anti-Connexin-43 (#C6219, 

Sigma-Aldrich). The secondary antibodies Alexa Fluor® 488 F(ab’)2 fragment goat anti-

rabbit (#A11070) and rhodamine red-X goat anti-mouse (#R-6393) were used at 1:1000 

dilution in immunofluorescence buffer (IF buffer, see method below).  

 

 The 3D Matrigel® cultures were mounted using ProLong® Gold antifade (P3693) 

or Vectashield® (H-1200) mounting medium with 4',6-Diamidino-2-Phenylindole, 

Dihydrochloride (DAPI). Invitrogen normal goat (#10000C), mouse (#10410), and rabbit 

(#10510) serum were aliquoted and stored at -20 °C for use. 
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 Buffer solutions used for immunostaining: Immunofluorescence (IF) buffer for 

phalloidin AF594 Conjugate actin staining consisted of 2% BSA, 1X PBS, 0.2% Triton-

X, 4% Goat serum. Quenching after PFA fixation was carried out using 0.1M Glycine 

PBS. For antibody staining, the IF wash buffer (10X, 500ml) stock was made using 10X 

PBS, sodium azide (2.5g,NaN3), bovine serum albumin (5g, BSA), Triton X-100 (10ml), 

Tween-20 (2.5ml), volume adjusted to 500 ml and pH to 7.4. 

 

 The IF Blocking buffer used during primary blocking step prior to addition of 

primary antibody, was made by adding 10% goat serum to 1X IF buffer. To mask the 

immunoreactive mouse IgG antibodies present in Matrigel® or EHS, 1% F(ab’)2 was 

added to 1X IF buffer in addition to 10% goat serum and incubated for 3 hours in 

secondary blocking step before addition of primary antibody as recommended by [108, 

109].  

  

 Pharmacological agents: The selective mutant p53 binding small molecule called 

p53 reactivation and induction of massive apoptosis (PRIMA-1) was purchased from 

Cayman chemical and a 10mM stock solution was made by using DMSO as solvent, 

aliquoted and stored at -20 °C. The methylated small molecule and structural analog of 

PRIMA-1 that reactivates mutant p53 is currently in clinical Phase Ib/II trial called APR-

246 (PRIMA-1MET) and was purchased from Tocris Bioscience (catalog #3710). 

Resveratrol (catalog #R5010) and epigallocatechin gallate (EGCG, catalog #E4143) were 

purchased from Sigma-Aldrich. Rapamycin was purchased from LC Laboratories 

(catalog #R-5000).  
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 Sterile 10mM PRIMA-1 stock in DMSO and 100mM APR-246 stock in water 

were aliquoted and stored at -20 °C; sterile EGCG stocks were made immediately before 

use by dissolving in media; 1mM rapamycin and 5mM resveratrol were dissolved in 

DMSO, aliquoted, stored at -80 °C and filter sterilized before use.   
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2.2. The Li-Fraumeni syndrome HME50 cell progression series 

 

 The HME50 cells were derived from a 31-year-old Li-Fraumeni syndrome (LFS) 

patient’s noncancerous breast tissue [110]. The patient harbored a germline missense 

mutation at codon 133 in exon 5 in one of the two alleles of the p53 gene (Met to Thr 

substitution [M133T]) that affects wild-type p53 protein conformation. These cells 

undergo crisis around population doubling (PD) level 50-60 and spontaneously 

immortalize with a 0.5-1 x10-6 frequency [110]. For immortalization and transformation 

experiments of the HME50 cells, Dr. Brittney-Shea Herbert previously performed 

retroviral vector mediated transduction of hTERT, HRasV12, or controls (pBabe or 

pLXSN empty vectors) and selection with 150 ng/ml puromycin, or 200 µg/ml 

hygromycin, for hTERT, HRasV12, respectively, as previously described [111-113]. The 

medium was changed every 2-3 days and cells were monitored routinely for mycoplasma. 

The cell lines have been tested for TP53 mutations by conventional sequencing and 

characterization of cell surface markers performed to authenticate cell lines retained 

mutational and cell surface marker characteristics; mycoplasma testing by 

immunocytology or thermocycler was routinely performed to ensure cell lines were 

mycoplasma-free. The establishment of HME50 cell series is schematically represented 

in Figure 4.  
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Figure 4. Establishment of HME50 cell progression series. Li-Fraumeni syndrome 

patient-derived HME50 cells harbor a heterozygous TP53 [M133T] missense mutation 

and can spontaneously immortalize at a frequency of 5 x 10-7 (Shay JW et al., 1995) in 

culture (not shown). After successive immortalization and transformation of HME50 

cells by addition of hTERT and HRasV12 to generate HME50hT and HME50TR cell 

lines, the transformed HME50TR cells capable of growth in soft agar and tumorigenesis 

in nude mice were collected and propagated as the tumor cell line HMET. The 

progression series can be useful for mechanistic studies and testing pharmacological 

agents that can inhibit (red arrow) or revert (green) the malignant progression. 
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2.3. Cell culture 

 

 HME50 cell lines were propagated and routinely maintained in aforementioned 

modified basal H14 medium (see cell culture reagents, 2.1) at 37 °C, 5% CO2 and 95% 

humidity, media was changed every other day and cells passaged at 75% confluency. 

 

2.4. Gene expression profiling of HME50 series 

 

2.4.1. Microarray data import and normalization 

 RNA Extraction: To ensure that biological differences in each cell strain are much 

greater than differences resulting from technical manipulations of cell culture passage, 

quadruplicates of each cell strain were independently collected and isolated for RNA, 

according to the Center for Medical Genomics guidelines [42]. Total RNA was prepared 

from cultured cells using the Qiagen RNeasy kit by Dr. Brittney-Shea Herbert. All RNA 

samples were confirmed to have an A260/280 ratio of >1.8 by spectrophotometer and gel 

electrophoresis. Total RNA was diluted to a concentration of 1 µg/µl in RNAse-free 

water and 10 µg was given the Center for Medical Genomics for microarray processing. 

RNA integrity was further validated on an Agilent Bioanalyzer. All the samples showed 

distinct peaks corresponding to intact 28S and 18S ribosomal RNAs and therefore were 

included in the analysis. 
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 Microarray Processing: Microarray processing was performed at the Center for 

Medical Genomics (CMG) at the Indiana University School of Medicine (IUSM). Gene 

expressions of the LFS HME50 series were profiled using the HG-U133_Plus_2 

Affymetrix chip. Preparation of cDNA, cRNA, and labeling were carried out according to 

the protocols recommended by Affymetrix in the GeneChip® Expression Analysis 

Technical Manual (Affymetrix, Santa Clara, CA). Arrays were hybridized for 17h at 42 

°C. The arrays were washed and stained protocol by fluidics stations controlled by GCOS 

software using the standard Affymetrix protocol and scanned using a dedicated Model 

3000 scanner controlled by GCOS software. Following gene expression profiling of a 

total of 16 samples of HME50 series, the microarray data .cel files were imported 

followed by Robust Multi-array Average (RMA) normalization and quality control 

analysis as recommended for Affymetrix microarrays using the Partek® Genomics 

Suite®, version 6.6 ©; 2015 (Partek Inc., St Louis, MO, USA). The categorical attributes 

were then assigned to the microarray files to the random effects namely cell line and scan 

dates (Appendix 1). 

 

Principal Components Analysis  

 Principal Component Analysis (PCA) was performed to visualize RMA 

normalized microarray data for global gene expression profiles of HME50, HME50-5E, 

HME50-hTERT and HMET cell lines. Each sample is represented by a single dot (n=16), 

each sample is indicated by distinct color for each cell line (n=4) and ellipse. The 

principal component #1 (PC1) depicted the highest variance between the cell lines.  
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Hierarchical clustering 

 The HME50 microarray data was preprocessed by filtering based on expression 

values for analytical hierarchical clustering to remove genes that have low variance 

across HME50 datasets. This effectively improved both the processing time by focusing 

on the most interesting genes that vary across the samples and by excluding genes that do 

not vary significantly from affecting the clustering pattern. The RMA normalized 

microarray data was filtered based on coefficient of variance (CV) parameter to exclude 

genes with CV less than 0.3 (i.e. “exclude genes CV <0.3”). This preprocessing resulted 

in a spreadsheet with 391 probesets with CV >0.3, which was subjected to hierarchical 

clustering using Euclidean distance for row/column dissimilarity measure that determined 

distance between samples, and average linkage as row/column method to determine the 

distance between two clusters. For gene expression normalization, the gene intensities 

were standardized such that mean equals zero and scaling the standard deviation equal 

one. 

  

 Applying the exclude CV<0.3 filter circumvented the use of gene list derived 

from Analysis of Variance (ANOVA) results that identified a large list of genes that vary 

between HME50 cell lines due to inherent differences in gene expression between the 

cell lines. This unsupervised hierarchical clustering was further used to discover groups 

based on the expression pattern of hallmarks of epithelial-mesenchymal transition. 
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2.4.2. Detection of differentially regulated genes 

 To identify differentially expressed genes amongst LFS HME50 cell lines, the 

microarray data was subjected to ANOVA analysis using Partek® Genomics Suite™ 6.6 

for characterization of LFS HME50 cell line series as breast cancer progression model. 

The categorical attributes were included as experimental factors in ANOVA with 

methods of moment to estimate variance components in this balanced study. To generate 

gene lists for individual contrasts included in the ANOVA design, threshold for 

significance of change of p-value with FDR <0.05 and size of fold change >1.3 or <-1.3 

were used (Appendix 2).  

 

2.4.3. IPA® pathway analyses 

 IPA® Core Analysis: For each list, Affymetrix ID was used as identifier, the 

GeneChip® HG U133 Plus 2.0 Affymetrix was used as reference platform, and to each 

identifier corresponding p-value and fold-change expression values were assigned per 

observation column. The statistical cut-off (p-value with step-up FDR <0.05; fold change 

>1.3 or <-1.3) for each ANOVA list was applied before uploading dataset to IPA®. Since 

these lists consisted of >3000 genes for IPA® analysis, the original ANOVA gene lists 

with statistical thresholds were further subjected to fold change cut-off of 2.0 to reduce 

the number of statistically significant genes for analysis (Table 5). Since the selection of 

IPA® eligible molecules depends on information present in Ingenuity® Knowledge base, 

and IPA® also resolved duplicate gene symbols and identifiers, the analysis ready 

molecule list may display fewer number of features than were originally uploaded.  

 



 

 31 

 Pathway analyses to identify deregulated functional networks, canonical pathways 

and to understand the implications of gene expression changes in each comparison 

(Table 5) was performed using Ingenuity® Pathways Analysis (IPA®; Build version 

346717M; www.ingenuity.com). For HME50 progression series analysis, the Human 

Genome U133 Plus 2.0 Array was used as a reference set. Both direct and indirect 

relationships with high confidence prediction or experimentally observed were included 

for Core Analysis. 

 

 For network (and mechanistic) analysis, the differentially regulated genes 

between each comparison (p-value with FDR (step-up) <0.05 calculated using Benjamini 

and Hochberg method [114, 115] and fold change >1.3 or <-1.3 as thresholds) were 

formatted and uploaded into IPA® software (QIAGEN’s, Ingenuity® Pathway Analysis, 

IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity). The analysis settings were 

set to flexible file format, Affymetrix as identifier type and Human Genome U133 Plus 

2.0 array as reference set was used and both direct- and indirect relationships were 

considered. To determine the top biological functions associated with the gene expression 

profiles, we performed downstream effects analysis from which we focused on the top 

affected functions (overlap p-value <0.05, z-score >2.0 for activated regulator or 

increased function and <2.0 for inhibited regulator or decreased functions). The inference 

of IPA® results was based on overlap P-value that measures enrichment of network-

regulated genes in dataset based on one-sided Fisher’s Exact Test and the Z-score that 

assessed both significance of measure and predicts activation state of the regulator by 

measuring the match of observed and predicted up/down regulation patterns. We further 
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generated gene networks to identify molecular relationships and perturbed functions in an 

interactive mode and then overlaid the pharmacological agents used in 3D phenotypic 

assay to identify the potential molecular targets. To explore the signaling pathways and 

genes differentially expressed in HME50 cell lines, we performed IPA® Core Analysis 

on gene lists for comparison guided by Venn diagram as well as for each contrast. 

 

 IPA® Canonical Pathways and Upstream Regulators: To gain biological insight 

into these differences, we focused on Analysis of Variance (ANOVA) gene lists with 

threshold of p-value with FDR <0.05 and size of fold change >2.0 or <-2.0 and 

performed IPA® analysis to study differences in molecular functions and canonical 

signaling. The IPA® functional analysis and canonical pathways measured the 

probability of association of focus genes in the study and given processes or pathway due 

to random chance; the smaller p-value denotes stronger association identified by 

statistically significant over-representation of focus genes in given process or pathways. 

For IPA® canonical pathways, the ratio for canonical pathways indicates which pathways 

overlap most with the genes in uploaded dataset and it is calculated by dividing the 

number of genes in the uploaded gene list that participate in a canonical pathway, by the 

total number of genes in that canonical pathway. The IPA® canonical pathway p-value 

measured the possibility of observing an association between a specific pathway and the 

uploaded dataset due to random chance, by also considering the total number of analysis 

eligible genes in dataset and reference set of genes. The calculated p-value is dependent 

on the size of the pathway and the p-value is more significant when the relative 

proportion of analysis eligible molecules in pathway in the pathway is greater. Therefore, 
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both the ratio that indicates the strength of association between a specific pathway and 

uploaded gene list, as well as the p-value that measures the statistical significance are 

considered for IPA® canonical pathways. The pathways with small p-values indicated 

significant association with uploaded dataset and ratios determine the pathways with 

most overlap with genes in uploaded dataset.  
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2.4.4. Gene Set Enrichment Analysis 

 Gene Set Enrichment Analysis (GSEA) [116] computationally determines 

whether an a priori defined set of genes has statistically significant and consistent 

differences between two phenotypes by examining the differences in expression values 

on comprehensive dataset without preprocessing to filter genes with low variance across 

HME50 datasets being compared. The (GSEA) v2.0.14 algorithm was used to analyze 

and review enrichment plots significantly associated with non-malignant phenotype 

(group comprising of HME50, HME50-5E, HME50-hTERT) relative to the malignant 

(HMET cell line) phenotype. Since GSEA algorithm does not filter the expression 

dataset, weighted statistic employed by GSEA algorithm ensures that genes with low 

expression values or variance do not contribute to the positive enrichment score and that 

they occupy the center of the ranked gene list, thus increasing the power of the statistic 

analysis. The GSEA algorithm was used as per instructions provided in Subramanian et 

al., 2005 (http://www.broadinstitute.org/gsea/index.jsp) as follows: 

 

 The expression dataset files: The HME50 progression series microarray data 

features (annotated genes) and expression values for each feature in each sample was 

saved as .txt file format. The microarray data was formatted to remove redundant 

identifiers, probeset IDs annotated to Human Genome Organization (HUGO) gene 

symbols as identifiers (feature) and consistently used as feature identifiers across all 

expression and gene datasets and this data was saved as .txt file. The expression dataset 

file contains features (genes/probes) and corresponding expression value for each sample 

in tab-delimited text file with .txt extension. The CEL files containing raw expression 
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values for each sample were merged, RMA normalized and each quadruplicate sample 

was assigned cell line name followed by 1, 2, 3 and 4 rather than averaging the 

expression values for the probesets to avoid redundancy. For example, the technical 

quadruplicates for malignant HMET were labeled as HMET1, HMET2, HMET3 and 

HMET4 and grouped together under malignant label. This resulted in dataset comprising 

of 16 data column (quadruplicates for each cell line in HME50 progression series). After 

uploading and specifying expression datasets, the parameter ‘collapse dataset to gene 

symbols’ was specified to ‘True’ to indicate use of HUGO gene symbols in GSEA to 

avoid inflated enrichment scores and facilitate the biological interpretation of GSEA and 

leading edge results.  

 

 Phenotype label file: The phenotype labels define a discrete phenotype (e.g. 

malignant and non-malignant) and associate each sample in the dataset with the 

categorically labeled phenotype. The phenotype labels were assigned to dataset files ‘on-

the-fly’ in GSEA application dialog box to assign each dataset columns of HME50, 

HME50-5E and HME50 to ‘NMAL’ for non-malignant and HMET datasets to ‘MAL’ for 

malignant while setting analysis parameters in GSEA and the data was uploaded to 

GSEA.  

 

 Gene set files: The MSigDb Gene sets files contain one or more curated gene sets 

and the files can be used from Broad ftp site or exported from the publically accessible 

Molecular Signature Database. Next, analysis parameters were ascribed and gene sets 

obtained from the MSigDB [117] (C2, C3, C5 and C6 gene set collections) were selected 
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based on gene sets in each collection to compute overlaps between uploaded data for non-

malignant and malignant phenotypes and gene sets available in MSigDB. Briefly, 

collection C2 (4725 gene sets), C3 (836 gene sets), C5 (1454 GO gene sets) and C6 (189 

oncogenic signature gene set) comprise of curated gene sets from online pathway 

databases, motif genes based on conserved cis-regulatory motifs comprising of 

microRNA targets and transcription factor targets, GO term annotated gene set and 

oncogenic signatures defined from microarray gene expression data respectively. The 

GSEA analysis was performed after uploading the expression dataset, gene sets and 

assigning phenotype labels to each sample.  

 

 GSEA statistics and report: The Enrichment Score (ES) representing the primary 

result of GSEA is calculated in reference to a ranked list of genes, the running-sum 

statistic increases when a genes in present the gene set and decreases when it is absent 

and it reflects the degree to which a particular gene set is over-represented at the top or 

bottom of the ranked gene list. The magnitude of running-sum statistic increment 

depends on the correlation of the gene with the phenotype. The ES is maximum deviation 

from 0 encountered in walking the list (peak in the plot); and the most interesting genes 

are with positive ES indicates enrichment of gene set at the top of ranked list (peak in the 

beginning) and the negative ES reflecting gene set enrichment at the bottom of the ranked 

list (end of enrichment profile). The leading edge subset of genes contributes the most to 

the positive ES and appears in ranked list just before the peak while the negative ES 

genes appear after the peak score. The ranking metric (signal to noise ratio) measures 

genes correlation with phenotype and its value progresses from positive to negative while 
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descending down the ranked list. The positive ranking metric value indicates correlation 

with the first phenotype and a negative value indicates correlation with the second 

phenotype. The GSEA results are compared across datasets by primary statistic 

Normalized Enrichment Score (NES) that is based on GSEA ES for all dataset 

permutations and it accounts for differences in gene set size and in correlation between 

user-selected MSigDB gene sets and expression dataset. The false discovery rate (FDR) 

estimates the probability of a gene set with a given NES represents a positive result 

finding at random. The GSEA results with FDR <25% are most interesting and were 

considered for this study. The nominal p-value was used to estimate statistical 

significance of the ES; in GSEA report, a p-value of zero (0.0) indicates an actual p-value 

of <(1/# permutations) i.e. an actual p-value is <0.001 is reported if the analysis 

performed 1000 permutations. In this study, the statistical significance was ascertained by 

comparing the enrichment results generated from 1,000 random permutations of the gene 

set to obtain P values (nominal P value) and including GSEA results ranked according to 

the nominal P-value (<0.05) and false discovery rate (≤0.25).  
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2.5. Modeling stages of breast cancer and phenotypic reversion in 3D culture 

 

2.5.1. Three-dimensional (3D) Matrigel® overlay culture and stereomicroscope imaging 

of HME50 cell lines 

 The Matrigel® (Engelbreth-Holm-Swarm (EHS) mouse sarcoma derived extra 

cellular matrix (ECM) protein-rich reconstituted basement membrane) aliquots were 

thawed at 4 °C overnight to coat the chilled culture surfaces (for example, dish or well) 

with an appropriate volume of “Matrigel®/EHS coat” for a thin layer of Matrigel® 

(Table 1) directly onto surface and spread evenly with a pipette tip/1-ml syringe plunger 

for smaller areas, or cell scraper for large surface areas. The coated surfaces were 

incubated for 20 minutes at 37 °C to allow the Matrigel® layer to gel without it over-

drying in a humidified chamber/large petri dish. HME50 cell lines and cell lines used as 

controls (non-malignant MCF10A, ME16C and malignant MDA-MB-231 controls) 

cultured at 37 °C with 5% CO2 were trypsinized from a monolayer to a single-cell 

suspension at 70% confluency. The cell number required for seeding was calculated 

(Table 1) and appropriate volume of cell suspension was aliquoted into a 1.5 ml 

microcentrifuge tube. The cells were pelleted by centrifugation at ~115 g, re-suspended 

in half the “medium volume” (Table 1) and plated onto surface coated with Matrigel®. 

The cells were allowed to settle and attach to the EHS for 20 min at 37 °C without 

disturbance with an intermittent agitation in the x-y plane at interval of 10 minutes during 

incubation. Long incubation (>25-30 minutes) and over-agitation of cells were avoided as 

they lead to the drying of Matrigel® layer and deposition of cells in clusters.  
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 To perform drug response assays in 3D overlay culture, the addition of 

pharmacological agent depended on its mode of action. Depending on concentration and 

the cytotoxic nature of the pharmacological agent, the addition of the drug was carried 

out either during seeding by adding drug to cell suspension medium during seeding or 

after short incubation of 4-24 hours after seeding. Addition of small molecule inhibitor 

APR-246 and the antioxidant polyphenol flavonoid EGCG was carried out 3 hours post 

incubation by adding the agent directly to the medium instead of mixing along with cell 

suspension with Matrigel® and was repeated for all subsequent media changes for the 

duration of the culture. HME50 cells were treated with resveratrol, rapamycin and DMSO 

vehicle control post 12 hour of incubation and during subsequent media changes every 

other day. The remaining medium was chilled on ice and Matrigel® was added as per 

10% total media volume (10% Matrigel® during initial plating) and this Matrigel®-

medium mixture was gently added to the plated culture down the side of the well to avoid 

disturbance of the cells or Matrigel®. Care was taken that medium remains thoroughly 

chilled before addition of EHS to ensure homogenous mixing and even deposition of 

EHS onto cells in culture. This overlay 3D culture can be maintained for 4 days or more 

depending on endpoint of assay and completion of morphogenesis while the Matrigel®-

medium (5% Matrigel® total media volume) mixture is replaced every 2 d. For better 

resolution during imaging and to avoid excess Matrigel® deposition, only 5% of 

Matrigel® per well was sufficient during subsequent media changes.  
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 The 3D overlay culture method is an economic alternative to the 3D embedded 

assay for performing drug-response assay, as it reduces duration of morphogenesis (7-8 

days versus 10-12 days) and Matrigel® use, and facilitates stereomicroscope imaging for 

acinar size determination as cells seeded on the coated surface form acini in a single 

plane. Therefore, the on-top assay was ideally used for time-lapse imaging and also for in 

situ immunostaining of cell lines that form invasive stellate structures in 3D. The number 

of cells to be plated per square centimeter of culture surface area has been optimization 

based on the growth properties of each of the HME50 cell lines (refer to Table 1). If 

incubated too long after plating on Matrigel® coat, HMET cells tend migrate across the 

surface leading to crowding in certain areas. Secondly, if HMET cells are seeded in 

higher concentration, toward the completion of morphogenesis they tend aggregate with 

one another forming gross multi-acinar “nodular” structures (>1mm in size) due to their 

invasive properties. The recommended cell numbers for plating (refer to Table 1) ensures 

the completion of deregulated morphogenesis of HMET cells resulting in distinct 

“stellate” like cells which can be easily visualized and characterized. 

  



 

 41 

Table 1. Standardized protocol for Matrigel® 3D Overlay culture of HME50 cell 

lines.

 

The table shows the cell numbers used for 3D overlay culture of HME50 cell lines; for 

seeding, the non-malignant group comprised of HME50, HME50-hTERT, HME50-5E 

and HME50-TR* whereas HMET indicate malignant cell line (modified from Lee et al., 

2007). (Based on the growth properties of HME50-TR, cell densities used for non-

malignant cells were also used for transformed HME50-TR which were considered as 

“non-malignant” for calculation of seeding densities) 

  

Dish # of 
wells 

Diameter 
(mm) 

Area 
(cm2) 

Per well/ 
chamber 

3D on-top HME50 cells/cm2 

EHS coat 
(µl) 

Half Medium 
volume (µl) 

10% EHS 
(in medium) (µl) 

Non-malignant 
25,000 cells/cm2 

Malignant 
17,500 cells/cm2 

 
Petri ------ 60 28.3 850 2,500 500 500,000 350,000 

 

Plates 

6 35 9.6 500 1,000 200 180,000 120,000 
 

24 16 2.0 120 250 50 37,500 25,000 
 

48 10 0.75 80 100 20 14,000 95,00 
 

96 6 0.26 15 30 6 5,000 3,500 
 

Slides 
4 ------- 1.8 120 250 50 33,750 24,000 

 
8 ------- 0.8 90 100 20 15,000 10,500 

!
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2.5.2. Modified 3D Matrigel® embed culture and confocal imaging of HME50 cell lines 

 The Matrigel® (EHS/ECM) aliquots were thawed at 4 °C overnight to coat the 

chilled 20mm glass-bottom culture (Figure 5) surface with 50µl of “EHS coat” for a thin 

layer of Matrigel® (Table 2) with a pre-chilled cell scraper/lifter. These coated glass-

bottom dishes were incubated for 3 minutes at 37 °C to allow the EHS to gel without 

over-drying. For small volumes and thin coats of Matrigel® as used in this protocol, it 

was ensured that the plates do not over incubate (< 3 minutes) which results in drying of 

Matrigel®. For the entire duration of experiment starting from this step, the glass-bottom 

dishes were placed along with 35mm sterile petri-dish containing sterile PBS/water 

without lid to maintain humidity in the large 100mm sterile carrier dish. This is crucial to 

prevent media evaporation and drying of Matrigel® surface. HME50 cells were 

trypsinized from a monolayer to a single-cell suspension as previously described and 

strictly healthy cells at less than 75% confluency were used. The appropriate cell 

suspension volume based on number of cells to be plated was aliquoted into a 1.5 ml 

microcentrifuge tube, gently centrifuged at ~115g and then re-suspended in 200µl chilled 

Matrigel® (on ice) without introducing air bubbles. This cell-Matrigel® suspension was 

pipetted evenly onto the precoated surface and incubated for 6 minutes at 37 °C ensuring 

Matrigel® to gel in humidified 100mm carrier petri dish. For embed culture, 2ml of 

chilled H14 media (supplement with 5% FBS for HMET) was added.  

 

 This modified 3D embed method allowed high-resolution confocal imaging and 

economic use of Matrigel® in a complete 3D format which is physiologically more 

relevant than the “overlay” (2.5D culture) format. All pharmacological agents were added 
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in appropriate concentration and cultures re-fed after 12 hours of seeding. The 3D 

embedded Matrigel® cultures were maintain for 10 days, with media changes and 

appropriate concentration of drug treatment every other day.  
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Table 2. Standardized protocol for Matrigel® 3D Embed culture of HME50 cell 

lines. 

 

The table shows the cell numbers used for 3D embed culture of HME50 cell lines for 

35mm glass bottom dish format; for seeding, the non-malignant group comprised of 

HME50, HME50-hTERT, HME50-5E and HME50-TR* whereas HMET indicates 

malignant cell line (modified from Lee et al., 2007). (Based on the growth properties of 

HME50-TR, cell densities used for non-malignant cells were also used for transformed 

HME50-TR that was considered as “non-malignant” for calculation of seeding densities). 

  

Area (cm2) of glass 
coverslip 

3D Embed Recommended cell numbers  

EHS coat (µl) EHS plate (µl) Non-malignant: 0.6 x 106/ml Malignant: 0.45 x 106/ml 

28.3 50 200 
 

120,000 cells / 200 µl EHS 
 

90,000 cells / 200 µl EHS 

!
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Figure 5. Schematic representation of the modified 3D Matrigel® embedded culture 

method using glass bottom dishes. Use of glass bottom dishes allows laser excitation 

and imaging of acini embedded close to glass coverslip without disturbing the acinar 

organization. The use of embedded culture better preserves the complex mechano-

signaling and growth characteristics as compared to the 3D overlay culture format. 

  

Uncoated 35mm dish MatTek™ glass bottom dish (No. 1.5) coverglass 

50µl GFR-Matrigel™ coat,  
200µl Matrigel™ embed 

Laser excitation 
Zeiss LSM-700  

confocal microscope 
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2.5.3. Treatment of HME50 cell lines with pharmacological agents 

 Working solutions from stock solutions of APR-246, rapamycin and resveratrol 

stored at -20 °C were prepared immediately before use. To make EGCG working stock, 

EGCG was weighed, dissolved in media and filter sterilized immediately before use. The 

methylene blue cell proliferation assay was used to determine IC50 values for PRIMA-1, 

APR-246, EGCG and resveratrol for each of the HME50 cell lines in 2D culture. These 

2D culture based IC50 values were used to empirically treat the HME50 cells in 3D 

culture with following drugs at various concentrations: PRIMA-1 (20 µM), APR-246 

(5µM, 10µM, 20 µM and 40 µM); with Rapamycin (25nM, 50nM, 75nM and 100nM; 

DMSO 100nM was used as vehicle control); resveratrol (2.5µM, 5, 7.5µM and 10µM; 

DMSO 10µM used as vehicle control) and EGCG (3.75µM, 7.5µM, 15µM and 30µM). 

All the drug treatments were repeated during media changes every other day. For APR-

246 and EGCG treatment started on day 0, at 3 hours post seeding whereas rapamycin 

and resveratrol was added 12 hours post seeding in 3D overlay culture. All drug 

treatments for 3D embed cultures were initiated 12 hours post-seeding. 
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2.5.4. Immunofluorescence, image acquisition and statistical analyses of HME50 acini in 

3D cultures 

 Actin staining of 3D Matrigel® (embed/overlay) cultures: After morphogenesis or 

treatment of 3D cultures, the media was aspirated and the Matrigel® surface was gently 

rinsed twice with 1X HBSS. The 35mm glass bottom dishes with 200µl Matrigel® on 

20mm coverslip were fixed with 500µl of 2% PFA for 10 minutes with gentle 

intermittent rocking. The volumes were adjusted to 300µl of 2% paraformaldehyde (PFA) 

for fixation of 100µl Matrigel® on 14mm coverslip glass bottom dish. Care was taken 

during the fixation step to avoid over-fixation that depolymerizes Matrigel® and loss of 

acini as well as negatively affects antibody binding. Also, under-fixation of the culture 

that negatively affects the immunostaining of acini was avoided; generally, a visible 

conversion of gel to translucent gel was used as a good indicator for successful fixation 

and culture was closely monitored to further avoid loss of acini and depolymerization. 

Especially, HMET cells formed large, invasive, multi-acinar structures and needed to be 

closely monitored during fixation as Matrigel® depolymerization tends to occur 

relatively more due to the inherent ECM degrading property of HMET cells. Next, the 

cultures were quenched by three washed with 1ml of 0.1M Glycine PBS for 10 minutes at 

room temperature by gentle intermittent rocking. The quenching step in some cases was 

repeated as necessary until gel-like consistency of Matrigel® culture was regained 

satisfactorily. The cultures were then permeabilized by 500µl of 0.2% Triton-X PBS for 5 

minutes at room temperature and then blocked for 2 hours with 1000µl of IF blocking 

buffer. Next, 1000µl Phalloidin AF594 conjugate at 1:9000 concentration was added with 

2% BSA in 1X PBS to culture and incubated for 6 hours (sodium azide added if 
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incubating overnight). After incubation, three quick washes were followed by 4 washes 

for 15 minutes with 1X PBS. Excess moisture was dabbed off and the stained cultures 

briefly air-dried for 5 minutes before adding the Vectashield or Prolong Gold mountant 

with DAPI. These cultures were cured for at least 72 hours before confocal imaging. 

  

 Confocal Imaging: The fixed and stained 3D cultures mounted in ProLong Gold 

antifade reagent were imaged on Laser Confocal Scanning Microscope FV1000D 

(spectral type inverted Microscope) or Zeiss LSM-700 confocal microscope (inverted). 

To evaluate size and acini morphology, images and optical sections were acquired via an 

Apotome (Zeiss) X63 oil immersion objective (Zeiss). Images were processed with Zeiss 

Axiovision 4.8. Stereo-images were acquired using a Nikon SMZ1500 microscope. 
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CHAPTER THREE: Results 

 

3.1. HME50 cell lines exhibit distinct morphologies and growth characteristics in 

monolayer and 3D Matrigel® culture 

 

3.1.1. Characteristics of HME50 progression series in monolayer culture 

 The expression of hTERT in context of heterozygous mutant p53 (TP53 

[M133T]) resulted in stable immortalization and extended life span of primary HME50 

cells derived from the non-cancerous breast tissue of Li-Fraumeni patient. The patient-

derived HME50 cells entered crisis at population doubling level (PDL) of 50-60. The 

spontaneous immortalization of these HME50 cells has been observed to occur at a 

frequency of 0.5-1 x10-6 [110] in HME50 cells that escape the crisis stage and grow 

indefinitely beyond PDL 70. The successive immortalization and transformation strategy 

involved retroviral transfection of HME50 cells with hTERT and constitutively active 

HRasV12 as described previously [111-113]. The spontaneously immortalized HME50-

5E cells exhibit a near tetraploid status but are incapable of anchorage independent 

growth or tumor growth in athymic mice. After retroviral transfection of HME50 cells 

with hTERT, diploid karyotype was maintained by the immortalized cells which lacked 

anchorage-independent growth potential and were non-tumorigenic in athymic mice. The 

non-malignant HME50, HME50-5E and HME50-hTERT cell lines in HME50 

progression series adopted a cobblestone-like morphology at confluency, a characteristic 

of epithelial cells grown in vitro monolayer culture (Figure 6).  
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 The successive HME50-TR cells that are transformed due to constitutively active 

H-Ras with active telomerase in p53 heterozygous background maintained diploid status 

while displaying anchorage independent growth and tumorigenic potential in nude mice 

when co-injected with Matrigel®. In contrast, the transformed pre-malignant HME50-TR 

cells showed a less than typical cobblestone-like appearance with pronounced elongated 

feature as compared to the non-malignant HME50 cells.  

 

 The HMET cells derived from tumors generated by injection of HME50-TR cells, 

exhibited near tetraploid status and tumorigenic potential independent of Matrigel co-

injection. The mammary fat pad injection of HMET cells in athymic mice resulted in 

high-grade carcinoma evident in the sections of the orthotopic xenografts that exhibited 

high mitotic grade, inflammation and alveolar growth patterns (Herbert et al. unpublished 

observations). The HMET cell lines in culture showed a prominent spindle-shaped 

morphology typical of mesenchymal cell as well as microscopic protrusions and high 

nucleus/cytoplasmic ratio in 2D in vitro culture (Figure 6). 
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Figure 6. The morphologies of HME50 cell lines in monolayer versus 3D culture 

condition. Phase contrast images of non-malignant HME50-5E, HME50-hTERT, 

HME50-TR cells and malignant HMET cell grown as monolayer (2D; left column) or in 

3D overlay culture format on day four after seeding (right column). 
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3.1.2. HMET cells adopt stellate-like acinar morphology in 3D culture  

 The morphogenesis and organization of glandular breast epithelial into polarized 

three-dimensional structures can be used to distinguish cells with or without malignant 

potential. In 3D Matrigel® culture, the diploid HME50-hTERT cells underwent a well-

defined and orchestrated program of morphogenesis in 3D culture to form acinar 

structures of spherical morphology with nuclei radially organized around a hollow lumen 

and exhibited cell-cell adhesion typical of normal epithelial cells. The average HME50-

hTERT acini size observed was 50 microns, and the range of between 31µm to 50µm 

after day 10 of morphogenesis; acini exceeding the size of ≥55µm are very unusual 

(Figure 7-8).  

 

 The spontaneously immortalized HME50-5E cell line also exhibited properties 

similar to HME50-hTERT cells upon completion of acinar morphogenesis in 3D culture. 

The average size of HME50-5E was measured to be 57µm, and the range observed was 

50µm - 80µm (Figure 9). Also in agreement with the microarray analysis, the mRNA 

level for gap junction (connexin 43) protein was up-regulated compared to HMET 

suggesting presence of robust gap junctions in HME50-5E acini (Figure 10). 
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Figure 7. Non-malignant HME50-hTERT acini adopt spherical morphology in 3D 

embedded culture. Non-malignant HME50-hTERT cells embedded in 3D Matrigel 

culture grown for 10 days followed by F-actin and nuclear staining by AF 594 Phalloidin 

and DAPI respectively. The round morphology with radially organized nuclei and robust 

cell-cell adhesion is evident in the representative center z-stack of acini by confocal 

imaging, scale bar 10µm. 

  

AF 594 Phalloidin||DAPI 
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Figure 8. Representative confocal images of center Z-stack of HME50-hTERT acini 

in 3D embedded culture. The sizes of HME50-hTERT were observed to vary between 

31-50µm; the average size of HME50-hTERT acini observed to be 50µm. The feature of 

HME50-hTERT cells that phenotypically distinguished from its counterparts in HME50 

series is relatively its smaller acini size and development of hollow lumen in the spherical 

acini. Representative confocal images show center z-stack stained with F-actin binding 

AF 594 Phalloidin (red) and nuclear stain DAPI (blue). Scale bar, 10µm 

 

HME50-hTERT 

46µm 

36µm 

42µm 

45µm, 35µm 

56µm 

55µm 
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Figure 9. Representative center Z-stack confocal image of spherical HME50-5E 

acini. Spontaneously immortalized HME50-5E acini adopt spherical morphology in 3D 

embedded culture. HME50-5E cells embedded in 3D Matrigel culture grown for 10 days 

followed by F-actin and nuclear staining by AF 594 Phalloidin (red) and DAPI (blue) 

respectively. The spherical HME50-5E acini displayed organized nuclei, robust cell-cell 

adhesion and a hollow lumen evident in the representative center z-stack of the acini 

observed by confocal imaging. Scale bar, 10µm 

  

HME50&5E:"AF"594"Phalloidin||DAPI"
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Figure 10. Spontaneously immortalized HME50-5E acini exhibit robust gap 

junction channels and hollow lumen. Immunofluorescence staining of spontaneously 

immortalized HME50-5E acini grown for 10 days embedded in 3D Matrigel culture. 

Connexin-43 (green) and Hoechst staining (blue) of HME50-5E acini showed well-

organized nuclei and the centermost z-stack showed clear lumen showed HME50-5E 

cells while aneuploid, follow stages of normal epithelial morphogenesis. The 

immunofluorescence of HME50-5E for the gap junction marker Connexin-43 agrees with 

the HME50 microarray data described later. 

 

 

  

HME50-5E : Cx43||HOECHST 
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 The pre-malignant HME50-TR cells develop acini with mass-like morphology 

characterized by disorganized nuclei and lack of hollow, cleared lumen (Figure 11-12). 

The average size of HME50-TR acini was observed to be 78 microns, however, variation 

in HME50-TR size exists and structures ranging from 80-100 microns in size are not 

uncommon (Figure 11). This suggested lack of radial nuclear organization and 

hyperproliferation leading to cellular crowding resulting in multilayered acini. Also, 

HME50-TR acinar structures displayed cell-cell adhesion and expressed E-cadherin 

(Figure 13) but were considerably larger and relatively disorganized than HME50-

hTERT and HME50-5E acini.  
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Figure 11. Pre-malignant HME50-TR acini adopt mass-like morphology in 3D 

embedded culture. Pre-malignant HME50-TR cells embedded in 3D Matrigel culture 

grown for 10 days followed by nuclear stain and F-actin staining by AF 594 Phalloidin 

and DAPI respectively. The mass-like morphology with disorganized nuclei albeit robust 

cell-cell adhesion was evident in the representative center z-stack of acini by confocal 

imaging, scale bar 10µm. 

  

AF 594 Phalloidin||DAPI 
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Figure 12. Representative confocal images of center Z-stack of HME50-TR acini in 

3D embedded culture. The sizes of HME50-TR acini were observed to vary between 

80-100µm; the average size of HME50-TR acini observed to be 78µm. The feature of 

HME50-TR cells that phenotypically distinguished them from their counterparts in 

HME50 series was the formation of large acini by day 10 of morphogenesis and the lack 

of hollow lumen in the disorganized mass-like acini. Representative confocal images 

show center z-stack stained with F-actin binding AF 594 Phalloidin (red) and nuclear 

stain DAPI (blue). Scale bar, 10µm 
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Figure 13. Basolateral E-cadherin staining of pre-invasive HME50-TR acini shows 

lack of hollow lumen. Immunofluorescence staining of pre-invasive HME50-TR acini 

grown for 10 days embedded in 3D Matrigel culture displayed basolateral E-cadherin 

(green) and nuclear Hoechst staining (blue) of HME50TR acini. Dis-organized nuclei and 

absence of a cleared lumen was evident in the centermost z-stack indicating HME50TR 

acini do not strictly respond the cues of normal epithelial morphogenesis. 

 

HME50-TR : E-cadherin||HOECHST 
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 On the other extreme of the progression series, the tumorigenic cell line HMET 

exhibit grossly disorganized nuclei, filled lumen and lack of cell-cell adhesion and 

evident by stellate or grape-like morphology classified by stellate invasive processes that 

bridge multiple colonies by day ten of morphogenesis (Figure 14). The HMET cells 

seeded at a density such that the cells do not crowd or are not in immediate proximity, 

initiate morphogenesis at a faster pace as evident by development of relatively large acini 

compared to its HME50 counterparts by day 4, eventually losing cellular organization, 

and invade surrounding matrix quickly developing as large multi-acinar stellate colonies 

by day 8 (Figure 15). HMET invasive stellate colonies generally exceed 100 microns in 

size and show protrusions. The gene expression pattern of HMET suggested an EMT 

signature characterized by loss of E-cadherin and acquisition of invasive potential by 

deregulated expression of genes that control extracellular matrix modeling and cell 

adhesion, which was also supported by morphology observed in 3D culture. In 

conclusion, retroviral hTERT expression extended the life span of HME50 cells without 

drastically altering the morphological properties of HME50 cells (Figures 7-8) whereas 

distinct changes in morphology and growth characteristics were observed after 

immortalization and transformation strategies used to develop the HME50 progression 

series (Figures 11-15). Thus, the acinar phenotypes observed for HME50 cell lines were 

distinct that prompted the analysis of microarray transcriptomic profiles to understand 

how HME50 cell lines may reflect features of breast cancer progression.  
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Figure 14. Malignant HMET acini adopt stellate-like morphology in 3D embedded 

culture. Malignant HMET cells embedded in 3D Matrigel culture grown for 10 days 

followed by F-actin and nuclear staining by AF 594 Phalloidin and DAPI respectively. 

The stellate-like morphology with disorganized nuclei, poor cell-cell adhesion, and 

invasive processes was evident in the representative center z-stack of acini by confocal 

imaging, scale bar 10µm. 

  

AF 594 Phalloidin||DAPI 
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Figure 15. Representative confocal images of center Z-stack of HMET acinar 

structures in 3D embed culture. The size and morphology of HMET malignant acinar 

structures grown in 3D embed cultures varied drastically and often exceeded >100µm in 

size. The HMET acinar structures were readily distinguishable from their non-malignant 

counterparts in HME50 progression series due to the distinct stellate-like invasive 

colonies that are formed by day 8 of seeding. Most phenotypic heterogeneity was visually 

observed amongst the disorganized HMET structures; formation of invasive processes, 

migratory behavior and lack of organization being the redundant features. Representative 

confocal images show center z-stack stained with F-actin binding AF 594 Phalloidin and 

nuclear stain DAPI. Scale bar, 10µm. 
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3.2. HME50 cell lines can be delineated by their distinct gene expression patterns 

 

3.2.1. Principal Components Analysis conclusively delineates HME50 cell lines based on 

differences in global gene expression profiles 

 Exploratory investigation of our microarray data using principal component 

analysis (PCA) enabled dimensionality reduction and 3D visualization of the variation, 

thus providing evidence that the HME50 cells cluster distinctly in accord to their inherent 

differences in global gene expression patterns with no outliers and major effects in the 

data (Figure 16). Each dot in PCA scatter plot represents a sample; samples with similar 

intensity values across the probesets on the whole chip are grouped close together 

whereas samples that are far apart in the plot are dissimilar. The technical quadruplicates 

are more closely related to one another ensuring that the observed differences are owing 

to inherent biological differences and not due to technical manipulations during sample 

processing.  

 

 Each cell line represented in the PCA plot is classified based on the amount of 

variability captured in each of the three principal components; with most variability 

captured in Principal component (PC) #1 (X-axis 22.9%), followed by PC #2 (Y-axis 

15.9%) and PC 3# (Z-axis12.6%). This showed HMET samples (purple) are distinct and 

resolve farthest from HME50 (red), HME50-5E (blue) and HME50-hTERT (green) 

clusters while the quadruplicates samples for each cell line resembled each other as 

shown in Figure 16. Thus, the PCA plot graphically depicted the differences between 

HME50 cell lines by distinct clustering based on the gene expression changes after 

sequential genetic manipulation during malignant progression – the LFS patient-derived 
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HME50 cells cluster together, closer to hTERT-immortalized HME50-hTERT and 

spontaneously immortalized HME50-5E cell line cluster than with the malignant HMET 

cluster on the PCA plot. Therefore, all of the cell lines clustered very distinctly in the 

PCA plot indicating that these cell lines indeed have very different gene expression 

pattern owing to sequential genetic manipulations although they had HME50 as the 

common source.  

 

 Moreover, after filtering the microarray data such that genes with low coefficient 

of variance (CV <0.3) across dataset are excluded, malignant and non-malignant cluster 

distinctly indicating gene expression changes (Figure 17). In conclusion, the gene 

expression changes essentially acquired during each step of sequential immortalization, 

transformation and gain of metastatic potential dramatically altered the global gene 

signature of HME50 cells and resulted in separation of non-malignant samples from 

malignant samples.  
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Figure 16. Principal Components Analysis (PCA) of HME50 progression series cell 

lines. To enable multidimensional data reduction and visualization of gene expression 

data of each sample profiled using HG_U133_Plus 2.0 Affymetrix Array as a dot; the 

color and shape of the dot denotes the HME50 cell line; HME50-hTERT (green), 

HME50-5E (blue), HME50 (red), and HMET (purple). The scatter plot depicted each cell 

line separated in space, and most separation was observed between malignant HMET and 

non-malignant HME50 cell lines; no distinct separation between the technical replicates; 

this cluster pattern is further highlighted by the ellipse that grouped samples according to 

the cell line. 
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Figure 17. Principal Components Analysis scatter plot of filtered HME50 data. The 

scatter plot enabled the visualization of expression of 391 Affymetrix features with 

variable gene expression filtered based on coefficient of variation >0.3 across the 16 

samples (see Figure 16). The malignant and non-malignant clusters are well separated in 

space also as observed in unsupervised hierarchical dendrogram. 
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3.2.2. Hierarchical clustering shows distinct clustering between non-malignant HME50 

cell lines 

 The PCA results were further supported by unsupervised hierarchical clustering of 

genes that vary across the dataset by a coefficient of variation of >0.3 in the microarray 

dataset (Figure 18). The unsupervised hierarchical clustering analyses revealed that the 

non-malignant HME50 cell lines, namely HME50, HME50-5E, and HME50-hTERT, 

have a relatively similar gene expression pattern and segregate together in contrast to the 

malignant HMET cell line, which has a visually evident difference in gene expression 

profile (Figure 18). Since the hierarchical clustering dendrogram showed that HME50 

and HME50-hTERT cell lines have the most similar gene expression, we noted that the 

retroviral expression of hTERT for immortalization did not alter the gene expression 

pattern drastically, therefore justifying the use of the HME50-hTERT cells as a baseline 

for the progression series for therapeutic/prevention studies. The hierarchical clustering 

dendrogram illustrated the standardized gene expression level of each of the 391 

Affymetrix identifiers in each samples. Genes with unchanged expression levels were 

displayed as a value of zero and were colored grey; up-regulated genes with positive 

values were colored red; down-regulated genes with negative values were displayed in 

blue. The clusters were distinguished using different tree colors (Figure 19), each cell 

line sample was represented in rows (16 samples; malignant HMET separated from non-

malignant cell lines by branches colored red and blue based on tree distance) while genes 

were represented as columns (5 distinct genes clusters of colored azure (21 genes), brown 

(9 genes), grey (50 genes), pink (81 genes), and orange (148 genes) in column 

dendrogram based on distance). This hierarchical clustering dendrogram suggests 
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HME50-hTERT has gene-expression signature that closely correlates with the parental 

HME50 cell line and HMET has the most distinct gene expression profile as compared to 

non-malignant cell lines in HME50 series. To further understand the biological 

differences in context of molecular pathways between the cell lines, IPA® Core Analysis 

was performed on each gene cluster discovered by the clustering algorithm.  
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Figure 18. Unsupervised hierarchical clustering pattern of HME50 progression 

series expression data. The rows in the hierarchical cluster represent quadruplicates for 

the HME50 cell lines and columns represent features (individual genes). From top to 

bottom of the dendrogram on left hand of cluster, quadruplicate HME50-5E (label color 

green), HME50-hTERT (magenta), HME50 (orange), and HMET (red) samples. Genes 

with coefficient of variation >0.3 across all samples were selected for hierarchical 

clustering analysis (391 Affymetrix Identifiers); technical quadruplicates cluster together. 

The red and blue colors represent up-regulation and down-regulation of genes expression 

levels, respectively, whereas grey represents no change in gene expression as shown in 

the scale bar at bottom. The row dendrogram colored based on tree spacing by distance 

shows two major clusters: cluster red contains only malignant HMET cell line, whereas 

the tree colored blue consisted of non-malignant HME50, HME50-hTERT and HME50-

5E cell lines. The HME50-hTERT samples aligned closest to parent HME50 cell line 

within the blue colored non-malignant cluster.   
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 To identify the differentially expressed genes across the HME50 represented in 

dendrogram as 391 features (306 unique genes) genes, ANOVA analysis on the 391 

identifiers of hierarchical cluster was performed using statistical threshold of p-value 

with FDR <0.05 and >1.3 or <-1.3 fold change. The ANOVA results revealed the number 

of genes differentially regulated across each comparison (Table 3) further broken into in 

5 distinct clusters across each comparison (Table 4). Interestingly, the grey cluster 

consists of 50 genes that are all down-regulated whereas the orange cluster consists of 

148 genes that are all up-regulated in malignant HMET cells relative non-malignant 

HME50 cell lines (Figure 19). The azure cluster shows unique set of 21 genes that are 

up-regulated in HME50-5E cells relative to HME50 as well as HME50-hTERT cell lines 

and this cluster includes LIMCH1, TENM1, SLAMF7, SLCO1B3, FAM201A, WISP3, 

SPP1, CC2D2A, UPK1B, SLCO1B3, CUX2, BCHE and GHR as most up-regulated. The 

pink cluster consists of 81 genes, all of which are down-regulated in HME50-5E 

comparison with the parental HME50 cell line. Contrastingly, a subset of 63 genes in the 

pink cluster, 62 genes are down-regulated in HME50-5E relative to HME50-hTERT with 

the exception of PDPN gene (podoplanin; FC -3.5). This revealed the pink cluster in 

HME50-hTERT shows an overlap of subset of genes with both parental HME50 and 

spontaneously immortalized HME50-5E.  

 

 The top up-regulated genes in HME50-hTERT relative to HME50-5E are 

S100A7, KLK7, LOC728613, RARRES1, SLC6A14, TCEAL8, CDC42EP5, TENM2, 

KLK5, and KLK10. A considerable similarity between HMET and HME50-5E is 

observed in the pink cluster, consistent with only 7 genes up-regulated and 14 down-
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regulated in HMET relative to HME50-5E. The genes up-regulated in HMET are 

S100A7, GPM6B, ZNF677, MUCL1, TENM2, ZNF880 and ZNF415; whereas CARD18, 

SLC1A6, PDPN, SPRR3, PHACTR3, ZNF750, KLK5, SYT14, TMPRSS11E and BEX4 are 

down-regulated relative to HME50-5E.  
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Figure 19. Five major clusters discovered by unsupervised hierarchical clustering of 

HME50 cell lines. Unsupervised hierarchical clustering shows dendrogram of HME50 

cell lines (technical quadruplicates rows) using genes with coefficient of variation >0.3 

(columns) for expression across all HME50 cell line microarray samples. The columns 

represent 391 features differentially expressed across the HME50 datasets which 

distinctly cluster into five groups shown on the column dendrogram colored grey, pink 

brown, azure and orange based on tree spacing by distance. The grey cluster (50 genes) 

comprises of epithelial markers which are down-regulated whereas the orange cluster 

represents mostly mesenchymal markers (148 genes) up-regulated in HMET cell line 

samples. The red and blue colors represent up-regulation and down-regulation of genes 

expression levels, respectively, whereas grey represents no change in gene expression as 

shown in the scale bar.  
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Table 3. Differentially regulated genes in hierarchical dendrogram across HME50 

cell lines. 

 

The numbers in parenthesis indicate total number of differentially expressed genes using 

a statistical threshold of p-value with FDR <0.05 and >1.3 or <-1.3 fold change for each 

comparison; cells colored pink and green indicate number of up-regulated and down-

regulated genes respectively. 

  

Compared)HME50)cell)lines Up5reg Down5reg
1 HME5055E)vs)HME50)(249) 49 200

2 HME505hTERT)vs)HME50)(214) 46 168

3 HMET)vs)HME50)(282) 142 140

4 HME505hTERT)vs)HME5055E)(189) 125 64

5 HMET)vs)HME5055E)(247) 164 83

6 HMET)vs)HME505hTERT)(277) 154 123

7 HMET)vs)HME50)&)HME5055E)&)HME505hTERT)(306) 157 149
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Table 4. Differentially regulated genes in each cluster of dendrogram across HME50 

cell lines.  

 

The numbers in parenthesis indicate total number of differentially expressed genes using 

a statistical threshold of p-value with FDR <0.05 and >1.3 or <-1.3 fold change for each 

comparison. The numbers in bold indicate total number of genes in each cluster colored 

grey, pink, brown, azure and orange for comparison between each cell line; cells colored 

pink and green indicate number of up-regulated and down-regulated genes respectively. 

 

 

  

1 HME50-5E vs HME50 (249)
18 18 0 81 0 6 21 0 10 95

2 HME50-hTERT vs HME50 (214)
13 14 13 54 9 0 4 2 7 98

3 HMET vs HME50 (282)
0 50 0 81 2 4 4 4 136 1

4 HME50-hTERT vs HME50-5E (189)
18 17 62 1 9 0 0 21 36 25

5 HMET vs HME50-5E (247)
0 50 7 14 8 0 1 19 148 0

6 HMET vs HME50-hTERT (277)
0 47 2 63 0 9 4 4 148 0

7
0 50 0 79 5 3 4 17 148 0

HMET vs HME50 & HME50-5E & 
HME50-hTERT (306)

47 65 9 8 148

50 79 8 21 148

35 63 9 21 61

50 21 8 20 148

27 67 9 6 105

50 81 6 8 137

Dendrogram ClustersContrasts

36 81 6 21 105
GREY PINK BROWN AZURE ORANGE
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 We analyzed the differentially expressed genes grouped together by hierarchical 

clustering. First, 2-way Analysis of Variance (ANOVA) on hierarchically clustered 391 

identifiers was performed to identify statistically significant differential gene expression 

among the LFS HME50 cell lines and five distinct groups evidenced by clustering 

depicted using different color for branches. To find the signaling pathways and functions 

orchestrated by the differentially expressed genes in clusters discovered by unsupervised 

hierarchical clustering (Figure 19), we performed IPA® Core Analysis on each cluster 

comprising of differentially regulated genes in each comparison (Table 4). Based on the 

experimentally observed change and direction of gene expression in HME50 cell lines, 

IPA® upstream regulator analyses predicted upstream regulators that orchestrate the 

signaling cascade might prompt observed gene expression changes. Further, IPA® 

algorithm processed directional mechanistic networks using the information from 

upstream regulator predictions and gene expression changes observed in the dataset. The 

changes in biological state and processes across the HME50 cell lines were analyzed by 

IPA® Core Analysis of each gene group defined by hierarchical clustering (Figure 19) 

were as follows:  

 

 In the azure cluster, RASSF1 (p-value 9.76E-05), GHR (p-value 5.82E-04) and 

SST (p-value 8.66E-04) were predicted to be upstream regulators in HME50-5E cells 

responsible for the observed up-regulation of the 21 genes. The cluster grouped by pink 

branches in Figure 19 comprised of 81 genes that were all down-regulated relative to 

HME50. We performed IPA® comparison analysis on these 81 statistically significant 

genes after ANOVA analysis to visualize significant genes and regulatory pathways in 
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HME50E relative to HME50 cells. The IPA® comparison analysis showed TREM1 

signaling was inhibited in both HME50-5E and HMET (p-value 2.85E-04, z-score -2.0).  

 

 The pink cluster being similar in both HME50-hTERT and HME50 cell lines did 

not show any significant differences with respect to signaling pathways. However, in the 

brown cluster (Figure 19), we observed 9 genes that are up-regulated in HME50-hTERT 

relative to HME50 but down-regulated relative to HMET. In HMET and parental HME50 

relative to HME50-hTERT comparison, down-regulation of LOXL1-AS1, VNN1, 

C15orf48, IL1RL1, SLC44A5, ZNF260, HTATIP2, KYNU and ZNF529 was observed. 

Also, in the pink cluster comparing the 62 up-regulated genes in HME50hTERT relative 

to HME50-5E, IPA® predicted ROCK2 (z-score 2.0, p-value 2.77E-06) and TNF (z-score 

2.319, p-value 8.04E-04) as activated upstream regulators. Skin formation and neutrophil 

activation were predicted as activated functional annotations (z-scores 2.2 and 2.0 

respectively).  

 

 The grey cluster comprises of 50 genes down-regulated in HMET cell line 

compared to the non-malignant HME50 cell lines. The IPA® analysis predicted ZEB1 (p-

value 2.7E-08), EHF (p-value 1.85E-06), TAF4 (p-value 3.29E-06) and KRT14 (p-value 

3.78E-06) as activated upstream regulators. ZEB1 is known to down-regulate MPZL2, 

TP63, CDH1 (and affect PTPRZ1 and ESRP1) that were experimentally observed to be 

down-regulated in the grey cluster dataset and thus consistent with predicted activation of 

ZEB1. Also, inhibition of the focus molecule NFKB1A (consistency score 1.155) was 

predicted (Z-score -2.0, p-value 4.68E-03) based on observed down-regulation of 
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PTPRZ1, IL1RN, EREG, CDH1 and PCDH7. The KRT14 down-regulation was 

accompanied by observed down-regulation of DSC2, DSC3, DSG3 and KRT6B. Cancer, 

dermatological and connective tissue disorders top disease bio-functions; malignant 

tumor being the top-most function predicted to increase due to down-regulation of 49 out 

of the 50 genes in grey cluster. 

 

 On the other hand, the orange cluster comprises of genes that are all up-regulated 

in malignant HMET cells relative to non-malignant cell lines. Based on these 148 genes, 

the activation of top upstream regulators TGFB1 (p-value 2.93E-18, z-score 3.759), TNF 

(p value 3.41E-12, z-score 3.683), choriogonadotropin (p- value 1.40E-11, z score 2.29), 

CCND1 (p-value 3.45E-11, z score 2.778), FGF2 (p-value 4.76E-11, z-score 2.189), IL6 

(p-value 4.23E-10, z-score 2.139) was predicted in HMET relative to HME50, HME50-

5E and HME50-hTERT. On the other hand, Alpha catenin (p-value 1.92E-09, z-score -

3.273), let-7 (p-value 9.14E-09, z-score -3.215), NUPR1 (p value 4.09E-07 z-score -

3.638), AHR (p-value 4.19E-07, z-score -2.315) and RB1 (p-value 6.82E-04, z-score -

2.618) were predicted as inhibited. 

 

  Interestingly, preliminary analysis based on the direction of gene expression in 

the orange cluster (Figure 19), EGCG (chemical drug) was predicted to be inhibited (p-

value 2.4E-05, z-score -2.376) based on the mechanistic network consisting of 60 genes. 

Specifically, the evidence for inhibition of EGCG is statistically drawn from the 

expression direction of TLR4, MMP3, MMP1, ITGB3, FN1, CSF3, CCL2 and ANGPT1 

which are known to be down-regulated by EGCG were experimentally observed as up-
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regulated in the HMET dataset, thus consistent with inhibition of EGCG. The top 

diseases/function predicted to be increased are metastasis (z-score 2.655), angiogenesis 

(z-score 2.771), vasculogenesis (z-score 2.655), invasiveness (z-score 2.039), 

proliferation (z-score 4.539), cell movement (z-score 3.4); whereas, functions such as 

apoptosis (z-score -3.307), cell death (z-score -2.949), organismal death (z-score -5.845) 

and necrosis (z-score -2.281) are predicted to be decreased.  

 

 In conclusion, the grey cluster comprised of 50 statistically significant genes that 

are down-regulated in HMET compared to all non-malignant HME50 cell lines; the top 

down-regulated genes in this cluster identified were SPRR1B, CDH1, KRT6B, KRT6A, 

DSG3, PNLIPRP3, ESRP1, S100A14, ITGB6 and TP63 (Figure 19). On the other 

extreme, the orange cluster comprising of 148 statistically significant genes up-regulated 

in HMET compared to all non-malignant HME50 cell lines; the top up-regulated genes in 

this cluster were LAPTM5, SRGN, TFPI, MMP3, KLRC2, EDIL3, STC1, PHOBTB3, 

SLC16A6 and MMP1 in addition to important EMT hallmarks such as ZEB1 and CDH2. 

Based on unsupervised hierarchical clustering, HMET cells displayed an up-regulation of 

hallmark EMT genes and down-regulation of epithelial markers. Further analysis by 

breaking the clusters into group of genes showed evidence of down-regulation of 

epithelial genes (grey cluster) that included genes such as TP63, CDH1, DSC2, KRT6A 

and, DSC2. The mesenchymal markers were up-regulated as shown in the dendrogram as 

the orange cluster that consists of mesenchymal markers such as ZEB1, ZEB2, SMAD6, 

FN1, CDH2 when compared to the non-malignant HME50 cell lines. Validation of the E-

cadherin down-regulation in HMET was carried out by immunostaining of 3D culture 
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(Figure 20) as well as qRT-PCR (data not shown). Thus, dendrograms generated using 

the gene expression signature showed that HMET cells may represent a mesenchymal 

phenotype with up-regulated mesenchymal markers and down-regulated epithelial genes 

when compared to the non-malignant HME50 cell lines. Based on the hierarchical 

clustering and IPA® predictions, acquisition of EMT plasticity in HMET cells during 

malignant progression were further studied using publically available epithelial-to-

mesenchymal (EMT) signatures.  
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Figure 20. Malignant HMET acinar cells do not express E-cadherin. The 

immunofluorescence staining of HME50 cell lines in 3D Matrigel overlay culture, stained 

for E cadherin (green) and DAPI (blue). Note the non-malignant HME50-5E (top left) 

and HME50-hTERT (top right) and pre-invasive HME50-TR (bottom row, left) stain for 

E-cadherin; malignant HMET (bottom row, right) have lost E-cadherin expression, in 

accordance to HME50 microarray data. 
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3.3. Characterization of distinct gene expression patterns 

 

3.3.1. Overview of gene expression changes associated with step-wise genetic 

manipulation of HME50 cells in the HME50 cell progression series 

 We next analyzed the RMA (Robust Multi-chip Average) normalized microarray 

data by 2-way Analysis of Variance (ANOVA) model by using Method of Moments and 

found differentially expressed genes between each contrast (Table 5) that passed the 

specified statistical criteria (see Methods and Appendix 2). For any given comparison, 

the gene list created consists of genes that have any change in group 1 relative to group 2 

with FDR (step-up) <0.01 and fold-change >1.3 or <-1.3.  

 

 Not surprisingly, many features were observed to be differentially expressed each 

comparison, specifically the number of differentially expressed genes between HME50-

5E relative to HME50, HME50-hTERT relative to HME50, and HMET relative to 

HME50 was 11773, 7108 and 12051 respectively (Table 5). It is interesting to note that 

close to twice as many IPA® analysis ready molecules were differentially regulated in 

HME50-5E (7463 genes) than in HME50-hTERT (3146 genes) relative to parental 

HME50 cells. Moreover, 9031 features were differentially regulated between 

spontaneously immortalized HME50-5E and hTERT immortalized HME50-hTERT. 

Since HME50-hTERT was used as non-malignant control in lieu of primary HME50 

patient-derived HMECs, we also compared the gene expression changes between HME0-

hTERT and HMET. These gene lists with number of up-regulated and down-regulated 

probesets, IPA® analysis ready molecules, and number of identifiers used in IPA® 
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analysis threshold of fold-change 2.0 are in (Table 5). The most significantly altered 

genes driven by sequential genetic manipulation are shown in Tables 6 –12 (fold change 

and p-values with HUGO Gene Nomenclature Committee (HGNC) approved gene 

symbols and gene name).  
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Table 5. Two-way ANOVA detects differentially regulated probesets for each 

contrast.  

 

The numbers in bold denote total number of features differentially regulated between 

each contrast; cells in pink and green indicate up-regulated and down-regulated features 

respectively. Column with IPA® analysis ready molecules indicates number of 

identifiers/probesets that meet the user-specified statistical cutoffs and after resolution of 

duplicates are mapped in IPA® Knowledge Base as eligible for network analysis, 

functions, canonical pathways and lists. 

 

  

1 HME50-5E vs HME50 7463 2499
6409 5364

2 HME50-hTERT vs HME50 3146 1229
3753 3355

3 HMET vs HME50 5286 2737
6317 5734

4 HME50-hTERT vs HME50-5E 4052 1719
4272 4759

5 HMET vs HME50-5E 6669 3822
7199 7634

6 HMET vs HME50-hTERT 6013 3315
6832 6767

7 5565 2903
6712 6635

#IPA analysis 
ready 

molecules
IPA FC 2.0  

cut-off2-way ANOVA Contrasts used

13599

13347HMET vs HME50 & HME50-5E 
& HME50-hTERT

Total # features in each gene 
list

11773

7108

12051

9031

14833
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Table 6. Most significantly altered genes in HME50-5E corresponding to 

spontaneous immortalization of primary HME50 cells.  

 

  

Gene 
Symbol Gene title (HGNC approved) Fold 

change p-value 

Genes up-regulated in HME50-5E relative to HME50 
LIMCH1 LIM and calponin homology domains 1 64.1754 4.94E-12 
ODZ1 odz, odd Oz/ten-m homolog 1(Drosophila) 31.2445 5.29E-10 
SLAMF7 SLAM family member 7 28.4145 3.26E-13 
AGR2 anterior gradient homolog 2 (Xenopus laevis) 23.6229 7.84E-12 
SLCO1B3 solute carrier organic anion transporter family, member 1B3 22.0318 7.81E-11 
LCP1 lymphocyte cytosolic protein 1 (L-plastin) 21.9535 3.33E-11 
LY6K lymphocyte antigen 6 complex, locus K 20.4748 2.76E-10 
FAM201A family with sequence similarity 201, member A 16.6576 3.14E-08 
WISP3 WNT1 inducible signaling pathway protein 3 16.3316 2.20E-11 
SPP1 secreted phosphoprotein 1 15.6198 3.58E-12 

Genes down-regulated in HME50-5E relative to HME50  
KLK7 kallikrein-related peptidase 7 -218.053 3.36E-12 
S100A7 S100 calcium binding protein A7 -187.868 4.64E-14 
MGP matrix Gla protein -152.09 3.94E-10 
RARRES1 retinoic acid receptor responder (tazarotene induced) 1 -146.255 8.50E-12 
KLK10 kallikrein-related peptidase 10 -116.345 3.07E-10 
KRT23 keratin 23 (histone deacetylase inducible) -100.704 1.04E-08 
HTATIP2 HIV-1 Tat interactive protein 2, 30kDa -96.0171 6.35E-16 
MUCL1 mucin-like 1 -92.7008 4.15E-11 
PI3 peptidase inhibitor 3, skin-derived -83.2755 8.16E-13 
CST6 cystatin E/M -73.3769 2.54E-09 
!
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Table 7. Most altered genes in response to hTERT mediated immortalization of 

primary HME50 cells.  

 

  

Gene Symbol Gene title (HGNC approved) Fold 
change p-value 

Genes up-regulated in HME50-hTERT vs HME50 
IL1RL1 interleukin 1 receptor-like 1 18.3505 6.96E-09 
LOC100132891 hypothetical LOC100132891 13.7522 1.89E-12 
SHOX2 short stature homeobox 2 10.7751 2.07E-09 
VNN1 vanin 1 10.5412 1.24E-10 
KYNU kynureninase (L-kynurenine hydrolase) 9.88821 2.55E-08 
CADPS2 Ca++-dependent secretion activator 2 8.71469 3.01E-12 
LOC100287616 Hypothetical protein LOC100287616 8.68678 2.69E-09 
SPRR3 small proline-rich protein 3 8.15087 4.43E-07 
SCG5 secretogranin V (7B2 protein) 7.40939 3.45E-07 
CTH cystathionase (cystathionine gamma-lyase) 7.11168 2.07E-09 

Genes down-regulated in HME50-hTERT vs HME50 
MGP matrix Gla protein -89.1987 1.31E-09 
GPX3 glutathione peroxidase 3 (plasma) -68.3997 5.15E-15 
DLGAP5 discs, large (Drosophila) homolog-associated protein 5 -39.9116 2.46E-08 
KIF20A kinesin family member 20A -38.99 3.42E-08 
MUCL1 mucin-like 1 -36.7317 4.89E-10 
CEP55 centrosomal protein 55kDa -27.618 7.15E-08 
NEK2 NIMA (never in mitosis gene a)-related kinase 2 -26.906 4.77E-09 
PDPN podoplanin -26.0751 3.84E-11 
DEPDC1 DEP domain containing 1 -23.6916 1.65E-08 
MGP matrix Gla protein -89.1987 1.31E-09 
!
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Table 8. Gene expression changes in HMET cell line driven by the successive 

immortalization, transformation and gain of metastatic potential during malignant 

progression of HME50 cells. 

 

  

Gene 
Symbol Gene title (HGNC approved) Fold 

change p-value 

Genes up-regulated in HMET vs HME50 
LAPTM5 lysosomal protein transmembrane 5 124.405 7.37E-12 
TFPI tissue factor pathway inhibitor  103.833 6.91E-13 
KLRC1/C2 killer cell lectin-like receptor subfamily C, member 1 99.3924 1.89E-15 
MMP3 matrix metallopeptidase 3 (stromelysin 1, progelatinase) 90.5187 1.11E-11 
SRGN serglycin 80.5829 2.47E-11 
GNG11 guanine nucleotide binding protein (G protein), gamma 11 72.1448 2.29E-10 
EPB41L3 erythrocyte membrane protein band 4.1-like 3 54.3098 2.74E-15 
ADAM12 ADAM metallopeptidase domain 12 53.3512 2.84E-13 
SLC16A6 solute carrier family 16, member 6  52.2974 8.13E-13 
EDIL3 EGF-like repeats and discoidin I-like domains 3 43.8861 1.36E-10 

Genes down-regulated in HMET vs HME50  
SPRR1B small proline-rich protein 1B -672.113 2.04E-15 
KRT6B keratin 6B -585.22 8.08E-17 
CDH1 cadherin 1, type 1, E-cadherin (epithelial) -489.567 7.28E-19 
KRT6A keratin 6A -480.842 3.13E-17 
DSG3 desmoglein 3 -411.451 2.60E-16 
SPRR1A small proline-rich protein 1A -230.315 1.10E-09 
KLK7 kallikrein-related peptidase 7 -195.331 1.75E-11 
PNLIPRP3 pancreatic lipase-related protein 3 -194.591 8.65E-13 
S100A14 S100 calcium binding protein A14 -192.977 1.92E-14 
KRT5 keratin 5 -191.37 5.98E-19 
!
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Table 9. Genes differentially regulated by hTERT mediated immortalization of 

HME50 cells relative to spontaneously immortalized HME50-5E cell line.  

 

 

  

Gene 
Symbol Gene title (HGNC approved) Fold 

change p-value 

Genes up-regulated in HME50-hTERT vs HME50-5E 
S100A7 S100 calcium binding protein A7 327.973 1.53E-14 
HTATIP2 HIV-1 Tat interactive protein 2, 30kDa 120.931 3.70E-16 
C15orf48 chromosome 15 open reading frame 48 103.402 3.97E-11 
KLK7 kallikrein-related peptidase 7 75.7801 3.60E-11 
LOC728613 programmed cell death 6 pseudogene 54.5309 1.64E-13 
RARRES1 retinoic acid receptor responder (tazarotene induced) 1 51.4613 1.09E-10 
SLC6A14 solute carrier family 6 (amino acid transporter), member 14 49.5139 2.11E-08 
TCEAL8 transcription elongation factor A (SII)-like 8 45.2155 7.42E-12 
CDC42EP5 CDC42 effector protein (Rho GTPase binding) 5 44.1833 5.76E-12 
SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), member 2 42.695 3.72E-10 

Genes down-regulated in HME50-hTERT vs HME50-5E 
LIMCH1 LIM and calponin homology domains 1 -70.2882 3.91E-12 
LCP1 lymphocyte cytosolic protein 1 (L-plastin) -31.7598 9.79E-12 
SLCO1B3 solute carrier organic anion transporter family, member 1B3 -26.1057 4.38E-11 
ODZ1 odz, odd Oz/ten-m homolog 1(Drosophila) -25.737 9.85E-10 
VCAN versican -21.5239 3.95E-08 
CYB5A cytochrome b5 type A (microsomal) -20.1536 5.07E-12 
GHR growth hormone receptor -19.8971 4.64E-09 
LY6K lymphocyte antigen 6 complex, locus K -18.3478 4.11E-10 
SPP1 secreted phosphoprotein 1 -17.2749 2.42E-12 
WISP3 WNT1 inducible signaling pathway protein 3 -17.2175 1.80E-11 
!
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Table 10. Top differentially expressed genes in malignant HMET relative to 

spontaneously immortalized aneuploid HME50-5E cell line.  

 

 

  

Gene Symbol Gene title (HGNC approved) Fold 
change p-value 

Genes up-regulated in HMET vs HME50-5E  
LOC100288985 Hypothetical protein LOC100288985 507.555 8.41E-12 
SRGN serglycin 392.187 1.35E-16 
MGP matrix Gla protein 330.049 8.41E-11 
LAPTM5 lysosomal protein transmembrane 5 271.22 1.44E-12 
MMP1 matrix metallopeptidase 1 (interstitial collagenase) 234.896 1.19E-12 
TFPI tissue factor pathway inhibitor  166.309 1.66E-13 
MMP3 matrix metallopeptidase 3  156.913 3.18E-12 
HS3ST3B1 heparan sulfate (glucosamine) 3-O-sulfotransferase 3B1 135.82 2.30E-12 
KLRC1 killer cell lectin-like receptor subfamily C, member 1 129.147 1.03E-15 
RRM2 ribonucleotide reductase M2 127.019 1.86E-08 

Genes down-regulated in HMET vs HME50-5E   
SPRR1B small proline-rich protein 1B -706.859 1.88E-15 
CDH1 cadherin 1, type 1, E-cadherin (epithelial) -512.318 6.72E-19 
KRT6A keratin 6A -469.098 3.27E-17 
KRT6B keratin 6B -400.566 1.58E-16 
ESRP1 epithelial splicing regulatory protein 1 -255.965 1.84E-17 
DSG3 desmoglein 3 -252.779 6.57E-16 
PNLIPRP3 pancreatic lipase-related protein 3 -215.928 6.98E-13 
S100A14 S100 calcium binding protein A14 -204.327 1.70E-14 
FAM129A family with sequence similarity 129, member A -196.371 7.62E-14 
KRT5 keratin 5 -148.712 1.03E-18 
!
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Table 11. Top differentially expressed genes in malignant HMET relative to 

HME50-hTERT used as experimental non-malignant control.  

 

 

  

Gene 
Symbol Gene title (HGNC approved) Fold 

change p-value 

Genes up-regulated in HMET vs HME50-hTERT 
LAPTM5 lysosomal protein transmembrane 5 305.882 1.14E-12 
EDIL3 EGF-like repeats and discoidin I-like domains 3 242.188 2.38E-12 
MGP matrix Gla protein 193.569 2.38E-10 
RHOBTB3 Rho-related BTB domain containing 3 170.227 2.07E-13 
TFPI tissue factor pathway inhibitor  163.69 2.49E-13 
SRGN serglycin 161.801 4.98E-12 
MMP3 matrix metallopeptidase 3 (stromelysin 1, progelatinase) 145.294 3.76E-12 
KLRC1 killer cell lectin-like receptor subfamily C, member 1 134.724 9.36E-16 
GNG11 guanine nucleotide binding protein (G protein), gamma 11 107.517 8.77E-11 
KIF20A kinesin family member 20A 83.5605 4.69E-09 

Genes down-regulated in HMET vs HME50-hTERT 
SPRR1B small proline-rich protein 1B -578.952 2.64E-15 
KRT6B keratin 6B -545.759 9.12E-17 
CDH1 cadherin 1, type 1, E-cadherin (epithelial) -536.98 6.19E-19 
KRT6A keratin 6A -492.614 3.00E-17 
DSG3 desmoglein 3 -393.093 2.83E-16 
PNLIPRP3 pancreatic lipase-related protein 3 -273.684 4.36E-13 
ESRP1 epithelial splicing regulatory protein 1 -223.472 2.41E-17 
FAM129A family with sequence similarity 129, member A -217.212 6.19E-14 
LCN2 lipocalin 2 -189.544 1.06E-12 
SPRR1A small proline-rich protein 1A -181.722 1.77E-09 
!
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Table 12. Top differentially expressed genes in malignant HMET relative to non-

malignant group of HME50 cell lines. 

 

 

 

 

 

 

  

Gene Symbol Gene title (HGNC approved) Fold 
change p-value 

Genes up-regulated in HMET vs HME50 & HME50-5E & HME50-hTERT  
LAPTM5 lysosomal protein transmembrane 5 217.724 2.44E-13 
SRGN serglycin 166.482 5.13E-13 
TFPI tissue factor pathway inhibitor  141.183 3.73E-14 
MMP3 matrix metallopeptidase 3  127.316 5.53E-13 
KLRC1 killer cell lectin-like receptor subfamily C, member 1  120.032 1.31E-16 
EDIL3 EGF-like repeats and discoidin I-like domains 3 100.173 1.76E-12 
LOC100288985 Hypothetical protein LOC100288985 88.2517 3.33E-11 
RHOBTB3 Rho-related BTB domain containing 3 82.5846 3.11E-14 
SLC16A6 solute carrier family 16, member 6  54.3836 7.96E-14 
MMP1 matrix metallopeptidase 1 (interstitial collagenase) 53.252 4.14E-12 

Genes down-regulated in HMET vs HME50 & HME50-5E & HME50-hTERT 
SPRR1B small proline-rich protein 1B -650.332 2.33E-16 
CDH1 cadherin 1, type 1, E-cadherin (epithelial) -512.585 7.23E-20 
KRT6B keratin 6B -503.88 1.13E-17 
KRT6A keratin 6A -480.751 3.37E-18 
DSG3 desmoglein 3 -344.494 3.90E-17 
PNLIPRP3 pancreatic lipase-related protein 3 -225.713 6.96E-14 
ESRP1 epithelial splicing regulatory protein 1 -216.978 2.76E-18 
S100A14 S100 calcium binding protein A14 -185.895 2.24E-15 
KRT5 keratin 5 -170.8 8.19E-20 
ITGB6 integrin, beta 6 -136.23 2.04E-14 
!
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3.3.2. Venn diagram summarizes the gene expression changes during HME50 

progression relative to parent HME50 cell line 

 The number of differentially expressed unique features relative to HME50 was 

highest in HMET, 42% (5056/12051) followed by HME50-5E, 39.5% (3997/11773) and 

the least in HME50-hTERT, 18.5% (1316/7109). All three cell lines in HME50 

progression cell lines share a set of 2674 features that are differentially regulated as 

compared to parental HME50 cell line (Figure 21). The HME50-5E cell line (3152) 

shares more identifiers than HME50-hTERT (1950) with malignant HMET. Since these 

original ANOVA results comprised of comprehensive lists with Affymetrix probeset ID 

as identifiers/features, duplicates genes were resolved and appropriate statistical 

thresholds applied to understand the molecular mechanisms involved in the HME50 

progression series. 
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Figure 21. Venn diagram shows overlapping identifiers among the HME50 

progression cell lines relative to parental HME50 cells. Venn diagram showing the 

overlapping common and unique features expressed in HME50-5E, HME50-hTERT and 

HMET lines relative to the patient-derived HME50 cells (P-value (step up FDR) <0.05; 

Fold Change >1.3 or <-1.3). The numbers in parenthesis denote the total number of 

features expressed in each comparison.   
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3.3.3. IPA® analyses of pathways enriched based on unique gene expression changes 

acquired during sequential genetic manipulations 

 Based on the Venn diagram (Figure 21), the list of 3997 probesets that were 

uniquely altered in HME50-5E expression dataset, 2858 genes were mapped by IPA® as 

analysis ready molecules that were enriched in oxidative phosphorylation (p-value 2.47E-

05), HIPPO signaling (p-value 2.00E-04, 31.6% overlap), OX40 signaling pathway (p-

value 6.96E-04), estrogen receptor signaling (p-value 7.45E-04) and PPAR signaling (p-

value 1.28E-03) pathways. The toxicity related molecules enriched in HME50-5E cells 

were implicated in mitochondrial dysfunction, gene regulation by peroxisome 

proliferators via PPARα, NF-κB signaling, PPARα/RXRα activation and TGF-β signaling. 

Unique to HME50-5E, the inhibition of many microRNA molecules was predicted along 

with PARP9 (z-score -2.157, 1.06E-03), DOCK8 (z-score -2.828, 1.91E-03), RICTOR (z-

score -3.959, p-value 4.02E-03), SASH1 (z-score -3.300, p-value 4.22E-03), NLRC5 (z-

score -2.372, p-value 1.15E-02) and SAMSN1 (z-score -2.982, p-value 1.75E-02).  

 

 Similarly, analysis of 1316 unique HME50-hTERT altered probesets (Figure 21) 

led to enrichment of protein ubiquitination (p-value 1.48E-04), caveolar-mediated 

endocytosis signaling (p-value 4.87E-04), Phospholipase C signaling (p-value 1.20E-03) 

canonical pathways based on 1016 analysis ready molecules. Given the observed gene 

expression changes in this list, IPA® predicted activation of XBP1 (z-score 4.826, p-

value 3.95E-11), FSH activated (z-score 2.6, p-value 1.93E-04), TMBIM6 (z-score 2.0, p-

value 4.41E-03) and THBS4 activated (z-score 2.2, p-value 8.95E-03). The biological 

functions such as cell survival (z-score 2.3, p-value 7.26E-08), proliferation (z-score 2.2, 
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p-value 2.94E-05) and differentiation of epithelial cells and tissue (z-score 2.398, p-value 

9.8E-03) were predicted to be increased; whereas organismal death (z-score -4.721, p-

value 8.55E-03) and cellular senescence (z-score -2.33, p-value 1.25E-02) were predicted 

to decrease. 

 

 IPA® mapped 2858 genes from the given list of 5056 unique probesets altered in 

HMET cell line (Figure 21) which showed enriched in HIPPO signaling (p-value 3.58E-

06, 40% overlap), Ephrin B signaling (p-value 6.2E-05), CCR3 signaling (p-value1.53E-

04) and Wnt/β-catenin signaling (p-value 1.87E-04) canonical pathways. In the 2858 

genes in the HMET, genes that mediate toxicity associated with p53 signaling, RAR 

activation and cell cycle: G1/S checkpoint regulation. In contrast to the inhibited 

microRNAs predicted for HME50-5E expression data, IPA® predicted activation of 

various mature microRNAs. Moreover, activation of TGFB3 (z-score 3.5, p-value 1.69E-

04), TGFB1 (z-score 3.881, p-value 6.05E-04), MYC (z-score 2.95, p-value 1.46E-03) 

with simultaneous inhibition of NUPR1 (z-score -5.484, p-value 4.52E-07), MGEA5 (z-

score -2.321, p-value 1.78E-04), SPDEF (z-score -3.14, p-value 6.69E-04), IRS1 (z-score 

-2.7, p-value 6.75E-04) was predicted. Interestingly, the annotated disease/function based 

on HMET gene expression predicted increased proliferation (z-score 2.76, p-value 7.73E-

07), cell movement (z-score 2.45, p-value 1.83E-03), G2/M phase of tumor cell lines (z-

score 2.5, p-value 2.55E-03) and cell migration (z-score 2.148, p-value 3.49E-03). 
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 The IPA® comparison analysis of overlapping genes in all three HME50-5E, 

HME50-hTERT and HMET progressed from HME50 exhibit commonly shared 2674 

probesets altered compared to HME50 (Figure 21). For an overview of unique and 

overlapping pathways affected between the three observations, IPA® comparison 

analysis was performed on the core results. In summary, interferon and NF-κB signaling 

was inhibited in all three cell lines (p-value >0.01; z-score >-2.0, not very significant) 

based on observed gene expression changes in the 2015 analysis ready molecules shared 

by all three cell lines. However, the cell cycle G2/M DNA damage checkpoint was 

activated in HME50-5E and HME50-hTERT but inhibited in HMET dataset. Similarly, 

opposing directional change was observed for the ATM signaling and the cyclin and cell 

cycle regulation which was activated in HMET but inhibited in HME50-5e and HME50-

hTERT cell lines. Furthermore, NUPR1, let-7, and RBL2 were activated in HME50-5E 

and HME50-hTERT while inhibited in HMET. Simultaneous up-regulation of TBX2, 

CSF2, HGF and FOXM1 in HMET and down-regulation in HME50-hERT and HME50-

5E was predicted. Interestingly, TP53 was predicted as inhibited upstream regulator in 

HMET but not in the non-malignant HME50-5E and HME50-hTERT dataset. Also, 

CDKN1A showed activated state in HME50-5E but inhibited state in HMET cells; 

whereas RABL6 and MYC was inhibited in both HME50-hTERT and HME50-5E 

whereas up-regulated in HMET. This analysis suggested that HME50-5E cells maintain a 

“normal like” phenotypic state by robust cell cycle checkpoints and inhibition of 

migratory programs. 
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3.3.4. GSEA reveals significant enrichment of basal-like breast cancer phenotype in non-

malignant HME50 cell lines relative to malignant HMET cell line  

 GSEA was performed, and the rank order of genes from the HME50 progression 

series in two phenotypes non-malignant versus malignant was compared within the 

molecular signature database (MSigDB) and significant enrichment scores for group each 

reported. GSEA revealed that the gene expression profiles of non-malignant HME50, 

HME50-5E, and HME50-hTERT relative to malignant HMET are significantly enriched 

and positively correlate with the a priori established “Charafe breast cancer basal vs. 

mesenchymal up signature” indicating that a group of genes expressed in basal-like breast 

cancer cell lines shared a well-defined directional change with non-malignant HME50 

cell lines as reflected by the high normalized enrichment score (NES) and the leading 

edge genes in the enrichment plot (Figure 22). The a priori “basal vs mesenchymal up” 

curated gene signature in MSigDB comprises of genes up-regulated in basal-like breast 

cancer cell lines as compared to the mesenchymal-like breast cancer cell lines discovered 

by gene and protein expression profiling of breast cancer cell lines [118]. This gene set 

comprised of 121 genes, comprising of transcription factors, tumor suppressors, cell 

differentiation markers, oncogenes, as described in Table 13. This correlation strongly 

suggested HME50 non-malignant cell lines have basal like breast cancer features and the 

malignant HMET cell line has a mesenchymal-like gene expression signature. The 

enrichment plot for malignant HMET group showed significant enrichment for negatively 

correlated genes in the a priori “Kobayashi EGFR signaling” gene set (Figure 23) 

consisting of 251 genes that were down-regulated in gefitinib resistant H1975 NSCLC 

cell line after treatment with EGFR inhibitor [119]. This suggested that cyclin D1 
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activation with subsequent E2F-responsive gene suppression and proliferation arrest is 

lacking in HMET cell lines. The functional overview and categorization of genes 

contributing to leading edge are in Table 14. The GSEA algorithm used family wise error 

rate (FWER) for multiple testing correction and false discovery rate (FDR) to determine 

statistical significance of the results; results according to the nominal P-value <0.05 and 

FDR≤0.25; for both GSEA plots shown, FDR q-value of zero was calculated b the 

software indicating an actual p-value of ≤0.01 for 1000 permutations for the phenotype 

performed. 
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Figure 22. Gene Set Enrichment Analysis plot for non-malignant HME50 cell lines. 

Representative enrichment plot shown for non-malignant group (depicted as NONMAL; 

comprising of HME50, HME505E, HME50hTERT). Black bars represent the position of 

members of the category in the ranked list, together with the running enrichment score 

(plotted in green). For the non-malignant HME50 cell lines, GSEA resulted in enrichment 

of gene signature specific to ‘basal compared to mesenchymal breast cancer cell lines’ 

available in Molecular Signature Database (MSigDB). Statistical significance of GSEA 

results was based on 1000 permutations; the green curve represents enrichment score, 

orange dotted line indicates the maximum enrichment score (FDR q-value = 0.000) and 

the leading edge represents the core gene set that accounted for the enrichment signal. 

The non-malignant cell lines positively correlate with the CHARAFE BREAST 

CANCER BASAL VS MESENCHYMAL UP (M12795) in MSigDB. 
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Table 13. Functional overview and categorization of Charafe MSigDB gene set.  

 

The table represents the functional categorization of genes in the MSigDB CHARAFE 

BREAST CANCER BASAL VS MESENCHYMAL UP (M12795) that also contribute to 

enrichment plot.  

Transcritpion 
factors

Cell differentiation 
markers

Protein kinases Translocated cancer 
genes

Oncogenes Tumor Suppresors

Tumor 
Suppresors

CDH1 CBLC, CDH1

Oncogenes MAF MUC1 MAF, MUC1 MAF, MUC1

Translocated 
cancer genes

MAF MUC1 MAF, MUC1

Protein kinases LIMK2, EPHA1

Cell 
differentiation 
markers

MUC1, F11R, 
CDH1

Transcritpion 
factors

MAF, ZFP36, 
ELF1, ELF3, 
RBL2, LITAF, 
EHF, FOSB, 
ZNF165, 
TSC22D3, 
KIAA0040, IRF6, 
OVOL1
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Figure 23. Gene Set Enrichment Analysis plot for malignant HMET cell line. 

Representative enrichment plot shown for malignant (MAL; HMET) group. Black bars 

represent the position of members of the category in the ranked list, together with the 

running enrichment score (plotted in green). For the malignant HMET cell line, GSEA 

resulted in Enrichment plot of gene signature specific to ‘EGFR signaling’ available in 

MSigDB. Statistical significance of GSEA results was based on 1000 permutations; the 

green curve represents enrichment score, orange dotted line indicates the maximum 

enrichment score (FDR q-value = 0.000) and the leading edge subsequent to the peak 

score represents the core gene set that accounted for the enrichment signal. The malignant 

cell line positively correlate (ranking metric measured negative enrichment score for 

second phenotype) with the KOBAYASHI EGFR SIGNALING 24HR DN (M16010) 

FDR q-value = 0.000 in MSigDB. 
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Table 14. Functional overview and categorization of Kobayashi MSigDB gene set.  

 

The table represents the functional categorization of genes in the MSigDB KOBAYASHI 

EGFR SIGNALING 24HR DN (M16010) that also contribute to enrichment plot.

Cytokines 
and growth 
factors

Transcritpio
n factors

Cell 
differentiatio
n markers

Protein 
kinases

Translocated 
cancer genes Oncogenes

Tumor 
Suppresors

Tumor 
Suppresors BUB1B

MSH6, 
BUB1B, 
BLM, 
MSH2, 
BRCA1

Oncogenes
HMGA2, 
ETV1, 
ETV5

MET

ETV1, STIL, 
CCND1, 
HMGA2, 
CCND3, 
ETV5

ETV1, STIL, 
CCND1, 
HMGA2, 
CCND3, 
ETV5, MET

Translocated 
cancer genes

HMGA2, 
ETV1, 
ETV6

ETV1, STIL, 
CCND1, 
HMGA2, 
CCND3, 
ETV6

Protein 
kinases

CDK1, 
NEK2, 
MET, AXL, 
TTK, 
PKMYT1, 
AURKA, 
AURKB, 
PBK, CDK2, 
PLK4, 
VRK1, 
PLK1, 
BUB1, 
BUB1B, 
MELK

Cell 
differentiatio
n markers

ITGA6, 
NT5E, 
TNFRSF12
A, HMMR

Transcritpio
n factors

E2F1, 
MAFF, 
HMGB2, 
EZH2, 
MYBL1, 
MYBL2, 
SOX9, 
HMGA2, 
TIMELESS, 
ETV1, 
ETV5, 
FOSL1, 
TFDP1, 
TRIP13

Cytokines 
and growth 
factors

DKK1, 
EREG, 
CKLF, 
TGFA, 
STC1, 
AREG, 
CX3CL1, 
NRG1, IL11
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3.3.5. IPA® Core Analysis of HME50 progression cell lines relative to parental HME50 

cells 

 IPA® Core Analysis of altered gene expression in HME50-5E relative to HME50 

cells: The top canonical pathways in Figure 24 displayed the enrichment of differentially 

regulated genes observed between HME50-5E and HME50 cells in the signaling and 

metabolic pathways. TP53 is predicted as a top upstream regulator in HME50-5E and 

IPA® predicted CDKN1A, IRGM1, NKX2-3, and MAPK1 as activated upstream 

regulators (Table 15). The upstream regulators predicted to be inhibited in HME50-5E 

relative to HME50 include TGFB1, ERBB2, TNF, CSF2, OSM, RABL6, VEGF, HGF, 

ESR1, CCND1 and IL1B. The biological functions related to observed HME50-5E altered 

genes are involved in cell movement (z-score -5.384, p-value 1.04E-10), migration (z-

score -5.241, p-value 5.44E-11) and survival (z-score -4.6, p-value 1.25E-08) that were 

predicted to be decreased. Simultaneously, biological functions such as organismal death 

(z-score 6.809, p-value 2.42E-08), hyperkeratosis (z-score 3.196, p-value 3.56E-08) and 

inflammation (z-score 2.15, p-value 7.00E-05) are predicted as increased in HME50-5E 

cell line. 
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Figure 24. Canonical pathways enriched in HME50-5E relative to parental HME50. 

The bar graph depicts the 15 most significant canonical pathways associated with gene 

expression differences observed in HME50-5E relative to HME50. The significant p-

values based on right-tailed Fisher Exact Test are denoted as –log(p-value) on X-axis and 

ratios are displayed as line graph indicating number of molecules from dataset relative to 

total number of molecules in that pathway; orange and blue bars denote activated and 

inhibited state respectively. 



 

 109 

Table 15. IPA® predicted upstream regulators responsible for observed gene 

expression changes in HME50-5E relative to HME50. 

 

The table shows upstream regulators identified by IPA® to explain the observed gene 

expression changes in HME50-5E dataset relative to HME50 based on the information 

using IPA® Knowledge Base. The upstream regulators are predicted to be activated 

(orange) or inhibited (blue) based on the activation Z-score; fold changes observed for 

probesets corresponding to overexpressed or under-expressed genes in the uploaded 

dataset are colored red or green respectively.

z-score p-value FC
TP53 1.86 2.95E-32
CDKNIA 3.745 7.82E-23 1.83
Irgm1 5.005 9.82E-20
NKX2-3 2.34 1.93E-14
KDM5B 4.019 1.51E-13 1.332
KRAS 2.509 1.83E-13 1.832
VEGF -6.834 1.61E-22
TGFB1 -4.342 2.77E-28
ERBB2 -4.815 8.26E-27
TNF -6.249 -1.53E+00 -1.53
CSF2 -7 1.39E-23 -1.66
OSM -2.268 7.42E-23
HGF -5.813 5.53E-21
ESR1 -2.335 1.38E-19 -2.04
CCND1 -3.737 2.78E-19 -1.575
IL1B -6.281 5.43E-10 -3.263
IFNL1 -5.466 2.39E-17
MAPK1 -4.07 9.96E-14
NUPR1 4.67 1.00E-13 1.6
PTGER2 -5.707 2.98E-15 -1.618
SMARCA4 -4.269 1.45E-13
STAT1 -2.088 1.59E-15 -2.766
STAT3 -4.897 1.80E-14
TREM1 -2.097 2.85E-15 -1.936
RABL6 -5.032 7.89E-23 1.39

HME-505E vs HME50
GENE 
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 IPA® Core Analysis of altered gene expression in HME50-hTERT relative to 

HME50 cells: The canonical pathways (Figure 25) that contain significant numbers of 

genes from the observed genes differentially regulated between HME50-hTERT and 

HME50 are given in Table 16. IPA® predicted an activated state for CDKN1A, NUPR1 

while inhibited state for RABL6, ERBB2, CSF2, CCND1, VEGF, HGF, PTGER2, E2F1, 

ESR1 upstream regulators. Although TP53 was predicted as the topmost transcriptional 

factor based on the direction of expression of 216 genes in the dataset, due to a statistical 

threshold set, its activation state was not predicted (z-score 1.411, p-value 4.86E-39). The 

biological functions strongly associated with the altered gene regulation pattern observed 

to decrease in HME50-hTERT were cell viability, proliferation and survival of tumor 

cells, migration of cells and growth of lesion whereas increased organismal death 

increased (z-score 5.916, p-value 6.73E-11). The top disease and functions associated 

with the HME50-hTERT were cell cycle, cell function and maintenance, tissue 

development and morphology.  

  



 

 111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Canonical pathways enriched in HME50-hTERT relative to parental 

HME50. The bar graph depicts the 15 most significant canonical pathways associated 

with gene expression differences observed in HME50-hTERT relative to HME50. The 

significant p-values based on right-tailed Fisher Exact Test are denoted as –log(p-value) 

on X-axis and ratios are displayed as line graph indicating number of molecules from 

dataset relative to total number of molecules in that pathway; orange and blue bars denote 

activated and inhibited state respectively. 
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Table 16. IPA® predicted upstream regulators responsible for observed gene 

expression changes in HME50-hTERT relative to HME50. 

 

The table shows upstream regulators identified by IPA® to explain the observed gene 

expression changes in HME50-hTERT dataset relative to HME50 based on the 

information using IPA® Knowledge Base. The upstream regulators are predicted to be 

activated (orange) or inhibited (blue) based on the activation Z-score; fold changes 

observed for probesets corresponding to overexpressed or under-expressed genes in the 

uploaded dataset are colored red or green respectively. 

  

z-score p-value FC
TP53 1.1411 4.86E-39
CDKN1A 2.737 1.32E-32
NUPR1 8.25 4.01E-18 1.735
Irgm1 4.99 7.69E-22
CDKN2A 3.892 6.01E-15
RABL6 -5.06 4.69E-31 -1.36
ERBB2 -2.063 3.23E-29 -1.43
CCND1 -3.171 2.93E-26
VEGF -4.751 6.85E-23
HGF -4.236 2.17E-20
PTGER2 -4.764 3.95E-20 -1.63
E2F1 -4.683 4.10E-20 -1.36
ESR1 -3.95E+00 2.41E-19 -2.027
CSF2 -6.325 6.35E-28
MITF -5.104 1.00E-15 1.882
FOXM1 -4.886 1.86E-15 -9.891
TBX2 -4.807 1.08E-14

HME50-hTERT vs HME50
GENE
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 IPA® Core Analysis of altered gene expression in HMET relative to HME50 

cells: The enriched canonical pathways based on significantly different genes expressed 

in HMET cell line provide an overview of cellular processes that are different relative to 

parental HME50 are given in Figure 26. Based on the gene expression changes observed 

in HMET, TNF, HGF, VEGF, CSF2 and MAPK1 are predicted (Table 17) to be in an 

activated state whereas TP53, estrogen receptor (z-score -2.742, p-value 7.82E-19), FAS 

(z-score -2.04, p-value 1.57E-17), NUPR1, Alpha Catenin (z-score -2.59, p-value 2.96E-

13) and AHR (z-score -2.123, p-value 3.0E-13) are predicted to be inhibited; the z-score 

and p-values are in Table 17. Moreover, cell movement (z-score 3.0, p-value 1.51E-06), 

migration (z-score 2.67, p-value 3.27E-07), EMT (z-score 2.28, p-value 1.06E-07), 

inflammation (z-score 2.2, p-value 2.93E-10) were observed to be increased biological 

functions in HMET while decrease in proliferation of epithelial cell lines (z-score -2.4, p-

value 5.22E-10) and cell adhesion (z-score -2.0, p-value 8.75E-08) was predicted 

biological state for HMET relative to HME50 cells. Interestingly, EGCG was predicted to 

be in an inhibited state based on direction of expression of 64 molecules in the HMET 

versus HME50 comparison. The mechanistic network for EGCG is depicted in Figure 

27. The IPA® Core Analysis for other comparisons namely HME50-hTERT vs. HME50-

5E, HMET vs. HME50-5E, HMET vs. HME50-hTERT and, HMET vs. all non-

malignant HME50 cell lines were carried and the resulting canonical pathways are 

depicted in Figures 28 – 31. In conclusion, IPA® predicted transcriptional changes in 

agreement with the properties of each HME50 cell line as characterized. 
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Figure 26. Canonical pathways enriched in HMET relative to parental HME50. The 

bar graph depicts the 15 most significant canonical pathways associated with gene 

expression differences observed in HMET relative to HME50. The significant p-values 

based on right-tailed Fisher Exact Test are denoted as –log(p-value) on X-axis and ratios 

are displayed as line graph indicating number of molecules from dataset relative to total 

number of molecules in that pathway.  



 

 115 

Table 17. IPA® predicted upstream regulators responsible for observed gene 

expression changes in HMET relative to HME50. 

 

The table shows upstream regulators identified by IPA® to explain the observed gene 

expression changes in HMET dataset relative to HME50 based on the information using 

IPA® Knowledge Base. The upstream regulators are predicted to be activated (orange) or 

inhibited (blue) based on the activation Z-score; fold changes observed for probesets 

corresponding to overexpressed or under-expressed genes in the uploaded dataset are 

colored red or green respectively. 

  

z-score p-value FC
TNF 2.26 4.61E-44
HGF 2.47 1.44E-22
VEGF 3.282 5.32E-19
CSF2 3.899 8.70E-17 5.614
MAPK1 2.777 3.47E-16
SNAI1 3.787 7.66E-08 2.645
FOXM1 3.663 5.97E-09 1.936
E2F1 3.258 3.35E-10 1.891
POU5F1 3.121 3.19E-04
MMP3 3.011 2.57E-01 90.519
RABL6 2.785 7.20E-09 1.5
IL17A 2.193 2.33E-15
TP53 -2.846 2.81E-38 2.168
NUPR1 -6.191 2.24E-15 -6.72
SPDEF -4.059 2.21E-08
RB1 -3.754 1.07E-08
ROCK2 -3.503 4.74E-07
RBL2 -3.079 1.93E-03 -1.45
SREBF2 -3.034 7.01E-03 -1.488
NUPR1 -6.191 2.24E-15

HMET vs HME50
GENE
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Figure 27. Inhibited state of EGCG is predicted based on connected genes and 

upstream regulators in HMET cell line. The mechanistic network depicts plausible 

gene and upstream regulator targets that are deregulated to elicit gene expression pattern 

that is affected given inhibited state of EGCG. This also indicates the treatment of EGCG 

may impact the targets and affect the gene expression change observed in HMET cell 

line. The up-regulated and down-regulated molecules observed in dataset are colored red 

and green respectively; higher intensity reflects extreme fold change. Orange dashed lines 

denote interaction leads to activation; blue dashed lines denote interaction results in 

inhibition; yellow lines represent inconsistent findings for downstream molecule 

prediction state.  
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Figure 28. Canonical pathways enriched in HME50-hTERT relative to HME50-5E. 

The top 15 canonical pathways associated with gene expression differences observed in 

HME50-hTERT relative to HME50-5E. The significant p-values based on right-tailed 

Fisher Exact Test are denoted as –log(p-value) on X-axis and ratios are displayed as line 

graph indicating number of molecules from dataset relative to total number of molecules 

in that pathway.  
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Figure 29. Canonical pathways enriched in HMET relative to HME50-5E. The top 

15 canonical pathways associated with gene expression differences observed in HMET 

relative to HME50-5E. The significant p-values based on right-tailed Fisher Exact Test 

are denoted as –log(p-value) on X-axis and ratios are displayed as line graph indicating 

number of molecules from dataset relative to total number of molecules in that pathway. 
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Figure 30. Canonical pathways enriched in HMET relative to HME50-hTERT. The 

top 15 canonical pathways associated with gene expression differences observed in 

HMET relative to HME50-hTERT. The significant p-values based on right-tailed Fisher 

Exact Test are denoted as –log(p-value) on X-axis and ratios are displayed as line graph 

indicating number of molecules from dataset relative to total number of molecules in that 

pathway.  
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Figure 31. Canonical pathways enriched in HMET relative to non-malignant 

HME50 cell lines. The top 15 canonical pathways associated with gene expression 

differences observed in HMET relative to the non-malignant HME50, HME50-5E and 

HME50-hTERT cell lines. The significant p-values based on right-tailed Fisher Exact 

Test are denoted as –log(p-value) on X-axis.  
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3.3.6. Genes involved in EMT program during cancer progression are deregulated in 

malignant HMET cell line 

 The deregulated EMT hallmarks can confer invasive, migratory and stem-cell like 

characteristics that potentiate a complex metastatic cascade which are dependent on 

various molecular interactions and environmental context. To identify genes known to be 

involved in EMT process that are differentially expressed in HMET relative to non-

malignant HME50 cell lines, comprehensive EMT signatures were appended from the 

literature consisting of genes from dbEMT database, core EMT signature reported by 

Taube et al. and literature search to generate a list of 522 known EMT players. To 

identify the genetic network affected in HMET that switches the EMT process ON, these 

522 genes in the list (Appendix 3) were used to filter the ANOVA results and 328 genes 

were identified to be deregulated in HMET relative to non-malignant HME50 cell lines. 

A volcano plot (Figure 32) was invoked to visualize the p-values and fold-changes of 

these important players in the EMT process based on gene-list derived from Taube et al., 

2010 and dbEMT [120, 121] (Appendix 3). Down-regulation of main epithelial markers 

namely CDH1, KRT5, KRT6A, KRT6B, TP63, ITGB4, DSG3, ITGB6, SPINT2, SPINT3 

and DLGAP5 whereas up-regulation of mesenchymal and breast cancer markers such as 

VIM, MGP, RHOBTB3, ZEB1, SRGN, MMP1, MMP2, MMP3, BIN1, CDH11, CDH2, 

FBN1, COL3A1, NID1 and HAS2 (Appendix 3) was observed upon microarray data 

analysis. 
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Figure 32. Volcano plot of most significant players involved in epithelial-to-

mesenchymal transition program. Volcano plot of EMT genes displayed statistically 

significant expression differences in HMET samples relative to non-malignant HME50 

cell samples. Fold changes are specified on X-axis and the p-value to the corresponding 

contrast displayed on Y-axis. Each dot represents a gene symbol annotated to the 

Probeset ID and is colored based on fold-change, up-regulated and down-regulated genes 

in HMET samples are colored red (positive fold changes on right hand side of X-axis) 

and blue (negative fold changes on left hand side of X-axis) respectively. 
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3.4. Identification of drug targets in malignant HMET cell line by pathway analyses 

and analyses of their pharmacological action in 3D in vitro phenotypic assays 

 

3.4.1. IPA® Network Analysis revealed specific targets for pharmacological agents 

 IPA® pathways and Path designer was used to visualize the networks of 

differentially regulated genes in HMET cells relative to HME50-hTERT. The gene 

network was generated and ‘add’ tool used to find and include APR-246, EGCG, 

Rapamycin and Resveratrol in the pathway. Next, using the overlay tool the fold change 

and p-values observed for the expression data were attributed to the genes in the network 

and all molecules (genes and drugs) were connected to incorporate the knowledge of drug 

targets present in the Ingenuity® Knowledge Base.  

 

 Molecule activity predictor was also used to analyze the effect of drugs on genes 

and the function epithelial-to-mesenchymal transition (Figure 33). The direction of 

expression of molecules causally affected by each of these drugs relevant to the 

phenotype ‘epithelial and mesenchymal transition’ changed in response to activating each 

of the drug. This further corroborated the evidence for target of EGCG since the 

molecules that are inhibited by EGCG changed direction in the network after activating 

EGCG as well as other investigated drugs. For examples, the expression of TP53, TP63 

increased whereas the expression of MMP2, SNAI1 and ZEB1 decreased. The genes 

differentially regulated in HMET were enriched in the canonical p53 pathway (ratio: 

34/98, p-value: 6.35E-05, Z-score: 0.4) and the mechanistic network depicted TP53 to be 

in an inhibited state. In addition to this knowledge, network connecting the genes 
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enriched in EMT process, were the basis for exploring the targets that are affected by 

pharmacological agents used namely APR-246, EGCG, rapamycin and resveratrol. The 

known heterozygous TP53 status, in addition to IPA® predicted TP53 inhibition state 

was motivation for targeting mutant TP53 with APR-246.  
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Figure 33. Evidence for pharmacological agents that target the activated state of 

epithelial-to-mesenchymal transition in HMET. IPA® identified the complex 

interactive network involved in epithelial to mesenchymal transition in HMET relative to 

HME50-hTERT based on genes that are deregulated and can be pharmacologically 

targeted by agents of interest to our laboratory such as APR-246, EGCG, rapamycin and 

resveratrol. Based on the experimentally observed evidence in IPA® Knowledge base, 62 

genes involved in EMT contribute to activation of this functional process in HMET cells 

(p-value 1.06E-07; z-score 2.3). Red and green colored molecules represent up-regulated 

and down-regulated genes respectively.  
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3.4.2. IPA® Network Analysis predicted potential pharmacological agents that target 

canonical pathways  

 The top regulated network comprising of differentially regulated genes in HMET 

relative to non-malignant HME50-hTERT were used to generate and overlay expression 

values and pharmacological agents of interest (Figure 34). The resulting network was 

then subjected to molecule activity predictor to visualize effect of said agents on targets 

in the network. For instance, EGCG activation leads to down-regulation of APP and 

vimentin in the network and this information can also be used to identify targets that can 

be used as endpoints. 
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Figure 34. IPA® predicts targets for tested pharmacological agents. IPA® predicts 

the deregulated genes in network that would be targeted in HMET cells relative to 

HME50-hTERT based on the experimentally observed evidence for APR-246, EGCG, 

Rapamycin and Resveratrol in IPA® Knowledge base.  
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3.4.3. Reversion of HMET invasive structures to organized acinar structures in 3D 

culture by select pharmacological agents  

 The activated wild-type TP53 functions can result in cell cycle arrest, senescence 

and/or apoptosis in response to oncogenic stimuli that is conducive to carcinogenic 

progression [122, 123]. This was the motivation for using small molecule PRIMA-1 that 

can reactivate mutant p53 and restore its tumor suppressor function. The methylated 

version of PRIMA-1, APR-246 was found to be safe and potent inducer of antitumor 

effects in clinical trial [124]. Based on previous reports by Herbert et al. [48], PRIMA-1 

and APR-246 were ideal pharmacological agents to be tested in the HME50 cell 

progression series given the heterozygous mutant p53 background coupled with useful 

readout of observing the effect of the agent in 3D Matrigel® culture for proof-of-concept 

experiment. Based on IPA® Core Analysis, we were also interested in the potential 

chemopreventive effects of EGCG and resveratrol that are predicted to target deregulated 

networks in HMET cell line by each of the agents. After treatment, we observed changes 

in morphologies of HME50-hTERT, HME50-TR and HMET cells grown in overlay as 

well as embed cultures. The confluency (70-75%) of cell lines was maintained such that 

3D culture yields consistent sizes of acini and heterogeneity in acini sizes is minimal. It 

was observed that overlay method generally resulted in development of slightly larger 

acini in shorter duration than the embed method (data not shown). However, the 

properties and morphologies of each cell line remain constant for acini formed in both 

methods, i.e. all cell lines give rise with >95% acini within the appropriate size range. 

Initially, PRIMA-1 (5µM) treatment for 96 hours in 3D overlay culture led to reduction 

of acini sizes in HMET cell line alone (Figure 35-36). These results prompted treatment 
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of HME50 cell lines with APR-246 (20µM) for 10 days in 3D overlay culture and image 

acquisition using stereomicroscope (Figure 37-38). We observed the size distribution of 

acini changed for HME50-TR cell line, close to 60% (n=1500) of the acini formed 

measured <50µm in diameter after treatment with APR-246. Drastic changes were also 

observed for HMET cell line where 91% of the acini adopted spherical morphology after 

treatment with concomitant reduction in formation of irregular stellate colonies (Figures 

37-38). 

 

 In 3D embed cultures, spherical acini (31-50µm) with hollow lumens for HME50-

hTERT; larger acini (50-80µm) with hollow lumens for HME50-5E cells; very large acini 

(75-100µm) with filled lumen for HME50-TR; and stellate HMET (>100µm) 

disorganized acini were regarded the baselines for experimental analysis. The average 

acini size of HME50-hTERT, HME50-TR and HMET are 35µm, 70µm and >100µm 

respectively. The morphologies of HME50 cell lines distinctly change after treatment 

with APR-246, EGCG and rapamycin in 3D Matrigel embed culture for 10 days (Figure 

39). HME50-TR acini formed were smaller in size and lumen is observed after treatment. 

Most striking phenotypic changes were evident in the tumorigenic HMET cell line, as the 

formation of mass like acini is observed in contrast to stellate-like morphology typical of 

HMET.  
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Figure 35. Mutant p53-binding small molecule PRIMA-1 affects acini size in 3D 

culture. Effect of PRIMA-1 treatment on acini size Matrigel™ overlay culture To study 

effect of PRIMA-1 on acini size, the stereomicroscope images at 10X magnification 

(scale 100µm) were captured for size quantification of were performed using Adobe™ 

software. Mutant p53 binding small molecule PRIMA-1 affects acini size in 3D culture 

(Figure 36 for quantification). 
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Figure 36. HMET acini size decreases with PRIMA-1 (5µM) treatment. The average 

sizes of HMET acini treated with PRIMA-1 for 96 hours differ significantly (***P < 

0.001, unpaired, two-tailed t-test; 99% confidence interval). Error bars ± SE (n=500) 
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Figure 37. Mutant p53 reactivating APR-246 affects acini size in 3D culture. 

HME50-hTERT, HME50TR and HMET cells were grown in 3D overlay culture for 10 

days (left column) or treated with (right) of 20µM APR-246 in culture media. The drug 

was supplemented beginning day 0, 3 hours post seeding and every other day during 

media changes. Representative images acquired using Nikon SMZ1500 microscope, scale 

bar, 100µm. 
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Figure 38. Mutant p53 reactivating APR-246 affects acini size in 3D culture. 

Histogram showing the percentage of acini distributed over size categories for (b) 

HME50-hTERT (c) HME50TR and pie-chart plotted for morphological categories (d) 

HMET as percentage of population for cells grown in 3D overlay culture for 10 days in 

presence or absence of APR-246 treatment.  
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Figure 39. Effect of pharmacological agents on acinar morphologies of HME50 cell 

lines. HME50 cell lines embedded in 3D Matrigel grown for 10 days untreated (top row) 

or in the presence of APR-246 (40µM), or EGCG (30µM) or rapamycin (100nM) as 

indicated. Representative confocal images of center z-stacks of HME50-hTERT (left 

column), HME50-TR (center) and HMET (right) are shown; scale bar, 20µm.   
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Figure 40. Quantification of the acini size of HME50 cell lines. The acini diameters 

were quantified after treatment of HME50-hTERT, HME50-TR and HMET 3D 

embedded cultures with APR-246 (40µM), or EGCG (30µM) or Rapamycin (100nM) for 

10 days (20 acini per group). No statistically significant effects on HME50-hTERT acini 

size were observed; however both HME50-TR and HMET cells showed decreases in 

acini sizes (pairwise ANOVA comparison with Bonferroni’s post-test correction p-value 

< 0.0001). 
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CHAPTER FOUR: Discussion 

 

 With the recent advances in diagnostic screening and treatment modalities, breast 

cancer is being detected at earlier stages including benign and precursor lesions. The 

precursor breast lesions such as atypical ductal hyperplasia (ADH) or ductal cancer in 

situ (DCIS) may not be prerequisites for linear progression to an invasive breast cancer. 

However, when such ADH or DCIS lesions are diagnosed, surgical excision with 

radiation therapy is the common clinical management practice [125-130]. In the case of 

individuals genetically predisposed to the development of cancer such as in Li-Fraumeni 

syndrome and hereditary breast and ovarian cancer (HBOC) syndrome families, the 

diagnosis of benign, hyperplastic or precancerous lesions presents a dilemma due to 

limited chemopreventive and management options [131]. This problem is amplified in the 

cases of germline mutation carriers who carry variants of unknown significance, thereby 

increasing the complexity of genetic counseling, recommendations for risk reduction and 

clinical decisions [132]. The pre-malignant, benign and high-risk disease states are 

currently not well represented at the preclinical stage [133]. This limitation can be partly 

addressed by using primary cells and cell lines established from unaffected tissues of 

patients with increased cancer risk due to inherited or familial cancer predisposition. In 

this study, we present a model of in vitro multistep cancer progression characterized by 

gene expression profiling to investigate the altered pathways that can be targeted to 

prevent the progression of premalignant lesions to an invasive stage using the Li-

Fraumeni syndrome HME50 cell series. 
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 The HME50 cell series demonstrated unique gene expression patterns that 

correlated with unique in vitro growth phenotypes. Immortalization is the first step during 

malignant progression and a hallmark of cancer [134, 135]. Toward the goal of 

establishing malignant progression in vitro, immortalization of HME50 cells by retroviral 

transduction of hTERT was achieved in the first step. The hTERT driven immortalization 

alone without simultaneous inhibition of TP53 or other tumor suppressors such as p16 

[136] was sufficient to generate HME50-hTERT cell line that is capable of indefinite 

growth in monolayer culture. Chromosomal analysis using spectral karyotyping (SKY) of 

HME50-hTERT cells did not exhibit gross chromosomal alterations (data not shown). 

Other techniques of immortalization such as viral SV40 large and small T antigen, HPV-

E6 and E7 mediated immortalization approaches are associated with profound weakening 

of DNA damage response and gross chromosomal aberrations. These methods of 

immortalization may facilitate the acquisition of new properties and selection of 

immortalized cells that do not represent the characteristics of parental source [137, 138]. 

The inhibition of p53 along with overexpression of telomerase has been implemented in 

immortalized cell line generation [139]. Due to inherent the TP53 missense mutation 

harbored by HME50 patient, a crucial step of inhibiting a major tumor suppressor (e.g. 

TP53 or RB) essential for the malignant transformation of normal human cells was 

bypassed unlike in other models requiring viral manipulation [140-142]. This facilitated 

the use of HME50hTERT cell line as a renewable and genetically stable, non-malignant 

control with minimal genetic manipulation encompassing introduction of hTERT. Apart 

from inconsequential differences in gene expression profiles of HME50-hTERT and 

HME50 cells, the immortalization step resulted in a stable renewable resource that 
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resembled the parental HME50 cells. In addition, the phenotype of HME50-hTERT cells 

in 3D monolayer also exhibited normal morphogenesis and a clear lumen which is a 

hallmark of non-malignant acini. Therefore, hTERT mediated immortalization of primary 

cells derived from cancer susceptibility syndrome patients undergoing cancer 

preventative surgeries can be an invaluable source of genetically stable non-tumorigenic 

cell lines that represent high-risk individuals in preclinical studies. In addition to the 

spectral karyotyping (SKY) analysis performed in our laboratory, this conclusion is 

further supported by the microarray data analysis described herein. Using hierarchical 

clustering analysis, we found that HME50-hTERT closely resembled parental HME50 

gene expression profile. Apart from minor gene expression changes, this suggests that 

although telomerase expression is a hallmark of cancer, the HME50-hTERT maintained 

the growth characteristic and gene expression profile similar to HME50.  

 

 The spontaneously immortalized HME-50E cell line was established from a clone 

of cells that escaped crises [110]. Aneuploidy is a hallmark of cancer, which is known to 

confer breast epithelial cells unique features that may promote breast disease [143-145]. 

HME50-5E cell line although near tetraploid, lacked tumorigenic potential as observed 

by failure of xenografted HME50-5E cells to form tumors in athymic mice (data not 

shown) as well as formation of spherical acini with hollow lumens in 3D culture. The 

differences between aneuploid non-malignant HME50-5E and aneuploid malignant 

HMET can be exploited to further understand changes associates with breast cancer 

progression. 
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 In the HME50 progression series, transformation of immortalized HME50-

hTERT cells was achieved by simultaneous expression of telomerase reverse 

transcriptase and a constitutively activated HRas protein. The successive immortalization 

and constitutive expression of active mutant HRas12 as sufficient to drive the 

transformation of non-malignant HME50-hTERT to transformed, pre-invasive HME50-

TR cells. The transformed HME50-TR cells express HRas, hTERT and inherently carry 

heterozygous dominant negative mutant TP53. With minimal genetic manipulations 

compared to other breast cell line models such as MCF10-AT or human mammary 

epithelial isogenic cell line [60, 141, 146] as well as other cell types reported [134, 147-

149], these transformed HME50-TR cells, supplemented with extracellular matrix 

(Matrigel®) were xenografted in athymic mice resulting in their progression to the 

malignant stage phenotype. It is interesting to note that during inoculation in athymic 

mice, extracellular matrix was initially essential for successful xenografting of pre-

invasive HME50-TR cells even in presence of constitutively active HRasV12 and mutant 

p53. The resulting tumor lesion was subsequently established as the tumorigenic cell line 

HMET which exhibited malignant potential independent of extracellular matrix 

supplement during xenografting process.  

 

 The impact of sequential genetic manipulations of HME50 primary cells is 

evident in the PCA plot which showed that indeed the four HME50 cell lines displayed 

unique gene expression patterns that allow them to cluster into distinct groups. The 

HMET cell line has the most distinct gene expression pattern and separated farthest as a 

cluster. Consistent with the exploratory PCA plot, the hierarchical clustering of HME50 
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cell lines underscored the drastic differences in gene expression pattern of malignant 

HMET cells in comparison with the non-malignant HME50 cell lines. Moreover, 

although aneuploid, the HME50-5E gene expression pattern resembled closely to the 

non-malignant parental HME50 cells and immortalized HME50-hTERT than the 

tumorigenic HMET cell line. After filtering the 391 gene identifiers that vary the most 

across all cell lines, the PCA scatter plot showed HMET cell line grouped separately than 

the rest of the HME50 cell lines. To identify interesting genes in the clusters grouped in 

dendrogram, we performed ANOVA analysis on gene set in each cluster and compared 

each of the cell line compared.  

 

 HME50-5E cells although non-malignant are aneuploid and yet more closely 

resembled HME50 cells than tumorigenic HMET cells. However, we observed up-

regulation of 21 genes (Figure 19; azure cluster) in HME50-5E relative to HME50 

parental cells, in contrast to HME50-hTERT in cluster colored with azure branches on the 

dendrogram. This group showed overexpression of the WNT1 inducible signaling 

pathway (WISP) WISP3 gene that belongs to connective tissue growth factor family in 

HME50-5E relative to parental HME50 cells. WISP3 is overexpressed in colon cancers 

and is relevant to malignant transformation. On the other hand, HME50-hTERT closely 

resemble the gene expression pattern of HME50 cell but interestingly, in contrast to 

HME50-5E cells, show expression differential expression of genes involved in 

tryptophan degradation, VDR/RXR activation and IL-10 signaling are up-regulated 

relative to HME50 cell line grouped in cluster with brown branches in dendrogram. 

Vanin-1 is epithelial surface anchored pantetheinase that hydrolyzed pantetheine to 
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vitamin B5 and anti-oxidant cysteamine which plays key roles in regulation of essential 

metabolic pathways and inhibition of invasion [150]. The up-regulation of kynureninase 

(KYNU) involved in tryptophan degradation and HTATIP2 oxidoreductase with tumor 

suppressive functions was detected uniquely in HME50-hTERT.  

 

 The most distinguishing changes observed were those between the HMET and 

HME50 non-malignant cells, as shown in the cluster with grey and orange branches 

(Figure 19). The 50 genes in the grey cluster down-regulated in HMET compared to non-

malignant group are regulated by ZEB1. The EMT transcriptional switches ZEB1 and 

ZEB2 were observed up-regulated in HMET clustered in the group with orange branches. 

The gene encoding for transcriptional regulator Epitheilum specific Ets Homolgoous 

factor (EHF) was also predicted to be inhibited based on the expression of its downstream 

targets of the observed down-regulation. Moreover, the drastic negative fold changes 

observed for epithelial and ECM markers such as CDH1, TP63, ESRP1, DOCK8, EREG, 

DSC2, FBN2, ITGB6, AREG, EREG, EDNRA and DSG3 in the grey cluster alludes to 

processes involved in morphology, disease and acquisition of migratory potential. On the 

other extreme of the grey cluster, we observed 148 genes up-regulated in HMET relative 

to non-malignant HME50 cells that are relevant to the EMT program and invasive 

potential. This group comprised of drastic positive fold changes in genes that regulate 

ECM signaling and remodeling, mediate angiogenesis and protease secretion such as 

MMP1, MMP3, MMP2, ZEB1, STC1, SRGN, EDIL3, MGP, FOXG1, CDH2, CDH11 and 

NID2. Also, cyclins E2, Cyclin A and chromosome replication related proteins such as 

CACS5, BUB1 that promote S-phase cell cycle entry and ensure sustained proliferation 
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were increased. This cluster analysis provided a snapshot of overall differences present in 

HME50 cell lines and for comprehensive analysis, we next performed 2-way ANOVA to 

identify genes and pathways involved in HME50 progression. 

 

 Consistent with the hTERT induced immortalization step, HME50-hTERT cells 

exhibit down-regulation of anaphase promoting complex subunit 7 (ANAPC7) relative to 

HME50 cells. Also, similar to HME50-5E, the HME50-hTERT relative to HME50 cells, 

exhibits down-regulation of crucial molecular players in the mitotic polo-like signaling 

pathway in addition to PLK2. Interestingly, Aurora kinase A (AURKA) is down-regulated 

in HME50-hTERT cells along with TOP2A (30 fold down-regulation), CCNB1, CCNB2, 

CDC25C, CHEK1, CKS2, CKS1B and PLK1 which are components of cell cycle G2/M 

DNA damage checkpoint regulation. The down-regulation of these genes indicates 

activation of G2/M DNA damage checkpoint that maintains genomic instability and 

prevents malignant transformation of cells by allowing for DNA repair to occur before 

cells progress into M phase. The proto-oncogene MDM2 is up-regulated two-fold in 

HME50-hTERT cells and one of its functions is ubiquitination of p53 thereby initiating 

its proteasomal degradation. Inhibition of cyclin B1 also blocks cell entry into mitosis 

ensuring DNA damage check before progression into M phase. It is remarkable to note 

that a sub-group of human breast cancers that exhibit amplification of both TOP2A and 

HER-2/neu have shown favorable response to anthracycline therapy [151, 152]. This 

suggests that transformed or malignant cells evolved from HME50-hTERT may not 

respond well to anthracyclines such as doxorubicin given lack of ERBB2 amplification 

and down-regulation of TOP2A. The down-regulated ATM and BRCA1 DNA damage 
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signaling in HME50-hTERT can be attributed to the down-regulated of BLM, CDK1, 

BARD1, CDC25C, BRIP1, FANCD2, RFC5, RAD51, CHEK1 and BRCA2 genes. ATM is 

the key regulator of DNA breaks and signaling activation of checkpoints, DNA repair and 

apoptosis. Among other important downstream substrates, the tumor suppressors p53, 

CHEK2 and BRCA amplify and initiate the DNA repair and G2 cell cycle arrest or 

inhibition of S phase progression. Similar to HME50-5E, the upstream CDKN1A is 

predicted to be active whereas ERBB2 is inhibited. Additionally, the transcription factor 

FOXM1 is down-regulated (~10 fold) relative to HME50 cells. FOXM1 is a master 

regulator of cell cycle progression and it involved in cell proliferation and regulates the 

expression of cell cycle regulators such as cyclin B1, Cyclin D1 and it is also crucial in 

DNA damage checkpoint response and elevated FOXM1 expression has been 

documented in various breast cancer data sets. FOXM1 can enhance DNA repair and 

mediate resistance mechanisms [153]. Down-regulated FOXM1 coupled with lack of 

TOP2A and ERBB2 over amplification suggested that the FOXM1-TOP2A-ERBB2 axis 

might not be a good target for tumors that evolve from HME50-hTERT and preserve the 

direction of expression through the malignant progression. Moreover, in HME50-hTERT, 

cell differentiation and death were decreased while the proliferation, migration and 

malignant transformation increased as predicted by IPA® functional analysis. These 

changes can be attributed to the inherent heterozygous TP53 missense [M133T] mutation 

and addition of hTERT indicating the HME50-hTERT cell line is primed for malignant 

transformation. Based on these results, we conclude that well characterized and properly 

maintained HME50-hTERT cells that carry relatively few gene expression and 
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chromosomal alterations compared to parental HME50 cells are ideal non-malignant 

controls for mechanistic in vitro studies. 

 

 Upon comparing the gene expression profile of aneuploid HME50-5E with the 

parental HME50 cells, IPA® predicted the upstream regulator ERBB2 and CCND1 to be 

inhibited whereas CDKN1A, KRAS and NUPR1 to be activated. The mitotic polo-like 

kinase pathway is an essential cell cycle regulator and cytokinesis promoter; 17 of the 63 

major players such as CDK1, CCNB1, CCNB2, PLK1, PLK2, PLK4 and RAD21 are 

down-regulated in HME50-5E while the stress-activated protein kinases/Jun amino 

terminal kinases (SAPK/JNK) pathway suppressors anaphase promoting complex and 

PPM1L are up-regulated in HME50-5E. It is of interest that although over-expression of 

CCNB1 in conjunction with inactivation of TP53 has been documented, CCNB1 and 

CCNB2 are in fact, down-regulated in HME50-5E. This possibly alludes to the fine 

balance that allows HME50-5E cell lines to growing indefinitely in culture despite 

genomic alterations, as has been reported in TP53 deficient spontaneously immortalized 

cells. Interestingly, HME50-5E gene expression data shows down-regulation of claudins 

family members namely CLDN1, CLDN3, CLD4, CLD8, and CLDN23 that are integral 

membrane proteins and components of tight junctions that play a major role in cell 

polarity, permeability if epithelia, and signal transduction programs. Additionally, 

adhesion molecules, cell surface receptors and extracellular matrix proteins such as 

fibronectin (FN1), matrix metalloproteases namely MMP7, MMP1, MMP10, ITGA4 and 

inflammatory cytokines namely CXCL1, CXCL14, CXCL11, CXCL3, CXCL10 are down-

regulated relative to HME50 indicating altered adhesion and reduced inflammatory 
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receptor signaling. The IPA® results also indicated decreased cell migration, survival, 

proliferation, differentiation, metastasis, vasculogenesis, angiogenesis and decreased 

chromosomal alignment in HME50-5E cell line. On the other hand, in HME50-5E, 

apoptosis, keratosis and inflammatory response were an increased function. 

 

 The HME50 series comprises of both spontaneously immortalized HME50-5E 

and hTERT immortalized HME50-hTERT that have ability of indefinite proliferation cell 

lines that provided an opportunity to compare the molecular players involved in both 

spontaneous and hTERT immortalization events. By pathway analysis of differential 

gene expression in HME50-hTERT relative to HME50-5E cell lines, we observed up-

regulation of S100A7 transcript relative to spontaneously immortalized HME50-5E cell 

line. The members of the S100 family of proteins are known to be expressed variably in 

different subtypes as well as in different stages of breast cancer and can be affected by 

the hormone receptor status [154]. In an ERα-negative context, S100A7 is associated with 

aggressive disease and can induce ductal hyperplasia in vivo; on the other hand, in vitro, 

S100A7 can activate pro-survival signaling to promote anchorage independent growth. 

Additionally, S100A8 and S100A9 were also up-regulated in HME50hTERT cells. The 

proteoglycan Versican (VCAN) protein is an important ECM component central to 

epithelial morphogenesis and it is involved in cell adhesion, proliferation and migration. 

Down-regulation of VCAN in HME50-hTERT suggests perturbed intercellular and ECM 

signaling in addition to up-regulation of TERT (~4 fold) and kallikrein 5 peptidase which 

is involved in desquamation of epidermis. This suggests retroviral hTERT mediated 

immortalization of parental HME50 cells with hetereozygous TP53 background can 
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initiate priming of the malignant progression cascade. Notwithstanding the S100A7 and 

VCAN expression in HME50-hTERT, IPA® predicted activated Oncostatin M signaling 

which indicates inhibition of proliferation of tumor cells as well as increased immune 

response with chemotaxis. 

 

 In the HMET microarray gene expression dataset, we detected the transmembrane 

collagen type XVII alpha1 (COL17A1) gene encoding the structural component of 

hemidesmosomes that mediates epithelial interaction with basement membrane is down-

regulated along with fibrillar forming COL5A2 that binds to thrombospondin and heparin 

sulfate, COL2A1, and down-regulation of structural constituent of extracellular matrix 

COL12A1 that confers tensile strength in HMET relative to HME50. Down-regulation of 

these collagens was accompanied with up-regulation of COL3A1, COL1A1, COL5A1, 

COL6A2, COL13A1, COL6A1, COL4A1 and COL4A2 indicating collagen expression 

involved in fibrosis and ECM remodeling. The up-regulation of immunoregulatory and 

inflammatory molecules intereukin 6 (IL6), CCL2, CXCL8, CXCL3 and TL4; matrix 

metallopeptidases MMP1, MMP2 and MMP13; growth factors IGFBP4, PGF, IGF2, 

IGFBP3, FGF2, PDGFRA, FGFR1 and TGFB2 collectively hint to an aggressive EMT 

phenotype. The aryl hydrocarbon receptor signaling pathway plays an important role in 

modifying immune responses and in the major stages of tumorigenic cascade and is 

predicted to be inhibited in HMET cells. The knowledge of functional role of AHR in 

tumor proliferation is currently incomplete as conclusions are based on the cell 

lines/model used and mechanism being investigated. The AHR signaling depends on the 

microenvironment context of tumor and can contribute to inflammatory signaling through 
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various mechanisms, however, the evidence for direct for transcriptional regulation of 

IL6 by AHR has been established [155]. Interestingly proliferation of epithelial cell lines 

and adhesion of breast cancer was predicted to be decreased; whereas migration, 

epithelial-to-mesenchymal transition and inflammation predicted to be increased. In 

conclusion, the malignant nature of HMET can be attributed to the gain of epithelial-to-

mesenchymal transition capability which confers cell motility, stem-cell like plasticity, 

apoptotic resistance, loss of cellular communication and chemoresistance. 

 

 Since HME50-hERT cell line was used as a non-malignant control in lieu of 

primary HME50 cells, we compared the differential gene expression pattern of malignant 

HMET with HME50-hTERT cells. The up-regulation of members of multiprotein DNA 

replication initiation complex that includes CDC45, MCM5, MCM2, MCM7, MCM6, 

ORC1, ORC6, CDC6 in addition to TOP2A, AURKA, CDK1, PCNA, BIRC5 and down-

regulation of stratifin (14-3-3 Sigma) protein in HMET relative to HME50-hTERT 

indicated increased proliferation and decreased G2/M DNA damage checkpoint response. 

These pathways are accompanied with evidence of activated ATM signaling and BRCA1 

mediated DNA damage response in HMET cells. The predicted activation and observed 

up-regulation of CCND1, HGF, RABL6, Vegf, TBX2, FOXM1, MYC and HRAS 

complemented with inhibition of TP53, CDKN1A, RB1, CTNNA1 and SMARCB1 fueled 

the malignant progression of HMET. The HMET malignant gene expression signature 

was consistently observed when comparing the non-malignant HME50 cell lines as the 

pathways and gene expressions differences are preserved irrespective of the differences 

between the non-malignant HME50 cell lines. This was also supported by GSEA result, 
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which indicated HMET cell line to have a mesenchymal phenotype whereas HME50, 

HME50-5E and HME50-hTERT to exhibit a basal-like gene expression signature. 

 

 Taking both the general morphology/phenotype characterizations and the gene 

expression profiling of the HME50 cell series together, we were able to utilize these cells 

for the experimental therapeutics research. The reversion of the invasive phenotype of 

breast cancer cells by select agents, as well as the disruption of normal acinar architecture 

by providing oncogenic stimuli has been shown by the pioneer work of Bissell and 

Brugge groups [68, 71, 109, 156-159]. These studies were instrumental in cataloging 

stages of breast acinar in vitro morphogenesis as well as identifying novel targets for 

pharmacological intervention. Cell lines are indispensable tools for understanding 

biology, drug discovery and development and this underscores the need of additional 

diverse cell line progression systems that can recapitulate complexity and molecular 

heterogeneity of breast cancer for preclinical research [160-162]. The growth properties 

in monolayer, three-dimensional culture and the gene expression profiles of HME50 

progression series together suggest that HME50 cell lines can be used as preclinical 

three-dimensional system that can be easily manipulated for pharmacological testing with 

phenotypic reversion as an endpoint parameter. The distinct properties of increasingly 

transformed HME50-hTERT, HME50-5E, HME50-TR and HMET derived by genetic 

manipulations of HME50 parental source are well defined by their gene expression 

profiles and are evident in 3D culture. In this study, we assessed and distinguished the 

cell lines based on their size, morphology and ability of lumen clearing and used the size 

and morphology as endpoint parameters to test effect of various agents. The immortal 
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HME50-hTERT cells grown embedded in 3D Matrigel culture exhibited a spherical 

morphology with average diameter of 50µm, growth arrest, robust cell-cell 

communication and radially organized cells around a clear lumen similar to the non-

malignant HMT-3522 S1 described by Kenny et al. [159]. In contrast to the non-

malignant HME50-hTERT acini, the transformed, pre-malignant HME50-TR cells 

exhibit dis-organized acini that lack hollow lumen by day 10 of morphogenesis; however, 

they exhibited robust cell-cell adhesion with larger spherical acini of average 78µm in 

diameter. On the other extreme of the spectrum, malignant HMET cells lacked acinar 

organization and displayed invasive stellate morphology similar as malignant cell lines 

that lack E-cadherin such as MDA-MB-231 [159]. Until day 3 after embedding HMET 

cells in Matrigel, HMET acini are not easily distinguishable than their non-malignant 

counterparts by phase contrast microscopy. However, by day 5, the HMET acini grow 

considerably larger than other HME50 cell lines and exhibit invasive projections and 

motility evident by bridges between multiple acini visualized by phase contrast and 

confocal microscopy. By day 10, HMET acini can be observed as stellate like structures 

>100µm in size comprising of multiple colonies and invasive protrusions. Owing to these 

easily distinguishable characteristics of HME50 cell lines in culture and guided by the 

gene expression profiling data, the HME50 progression series can be further used to 

explore the biological differences between different stages of cancer progression in vitro.  

 

 The analysis of HME50 gene expression profiles and identification of the 

differentially regulated gene sets identified among these cell lines, enables further 

hypothesis enabled studies on novel genes of interest and effect of pharmacological 
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agents by utilizing acinar morphology as endpoint parameter. The known heterozygous 

mutant TP53 status of HME50 cells provided a known target for small molecule inhibitor 

APR-246 for proof-of-concept study. Our goal was to determine whether the changes in 

HME50 acini size and morphology can be used as a readout to predict targeting of 

deregulated pathways as has been reported previously for HMT-3522 progression series 

[68, 71, 72, 156, 163]. We observed, APR-246 treatment resulted in reversion of stellate 

morphology of HMET cells in majority of the acini (p-value<0.001) and did not affect 

the size or viability of non-malignant HME50 cells. This provided a confirmation that 

changes in size and morphology of HMET acini can be used as readout parameter to test 

pharmacological agents. Next, by analysis of deregulated gene expression, the potent 

polyphenol in green tree extract, EGCG was predicted as an inhibited chemical drug 

using IPA® analysis based on the knowledge of gene expression pattern of the 

downstream targets. We used this information to treat the non-malignant, pre-malignant 

and malignant HMET cells embedded in 3D culture and then studied the effect on acinar 

morphology. We found EGCG resulted in drastic change in acinar size and morphology 

of HMET cells as well as clearing of lumens in pre-invasive HME50-TR cell by confocal 

imaging. Similarly, this system was also used to test effect of resveratrol and rapamycin 

and their targets were identified using IPA® Network Analysis. The HME50 progression 

system thus provides an opportunity to study pharmacological intervention using 

chemopreventive or novel chemotherapeutic agents on malignant cells possessing 

invasive potential as well as non-malignant controls arising both arising from a common 

source. This strategy eliminates the bias arising from employing normal control and 

malignant cell lines from a different source and genetic background and provides a 
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precise experimental control due to well-defined series of manipulations used. Unlike 

other routinely used well-characterized models established from reduction 

mammoplasties or fibrocystic disease, utilizing the tissue donated by predisposed 

individuals during preventative surgeries provides an opportunity to dissect novel tumor 

suppressor mutations as well as variants of unknown significance in familial cancers 

allowing hypothesis testing on a model systems derived from different individuals. This 

is especially pertinent in cases where genotype/phenotype correlation and differential 

impact of cancer predisposing TP53 missense mutations in development of various 

cancers as observed in Li-Fraumeni syndrome families needs to be ascertained.  
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CHAPTER FIVE: Concluding remarks and future directions 

 

5.1. Analysis of the molecular drivers of tumor reversion in the HME50 cell 

progression series and potential for novel chemopreventive agent testing 

 

 Many seminal studies have insinuated the capacity of cancer cells to differentiate 

and reprogram into normal cells that are capable of maintaining the refurbished normal 

state and are reviewed in [164, 165]. The reversion models propose that the cancer cells 

can turnaround to the non-malignant state either by (i) a single step loss or inhibition of 

key transforming events for example loss of oncogenic viruses or gene [166], (ii) 

multistep molecular changes that revert the malignant phenotype back to normal due to 

suppression of major oncogenic cue e.g. role of cues from 3D Matrigel® and integrin 

blocking to regulate the oncogenic pathway [71] or (iii) gradual rewiring of the complex 

molecular circuitry in a cancer cells that was originally fuelled by multitude of oncogenic 

stimuli (accumulation of mutations, loss of tumor suppressors and tumor promoting 

microenvironment as coconspirators) [164]. This third model is intriguing because 

Telerman and colleagues have proposed that the oncogenic mutation or tumor promoting 

signals are not lost but in fact effector genes downstream of the oncogenic signal activate 

alternative mechanisms responsible for reprogramming cells back to native state [164]. 

Telerman and colleagues developed comprehensive models (leukemia, breast, colon, 

melanoma and lung cancer cell lines) and used negative selection and identified about 

300 major effectors of reprogramming pathways in cancer cells that mainly are regulated 

by SIAH1 (Seven In Absentia Homolog 1), PSEN1 (Presenilin), STEAP3 (Six-
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Transmembrane Epithelial Antigen of Prostate 3; previously called TSAP6) and TPT1 

(Tumor protein, Translationally-controlled) that inhibit tumor progression [167-169]. 

This work by Telerman, Oren, and colleagues using the same cell models further showed 

SIAH1 and STEAP3 are up-regulated in revertants after induction of wild-type p53 

function whereas, the PS1 and TPT1 are repressed in presence of wild-type p53 function 

suggesting selection pressures in mutant TP53 context in cell lines derived from cancers 

originating in different tissues. Also, all revertants expressed increased levels of the p53 

direct transcriptional target, CDKN1A (p21). The SIAH proteins are ubiquitin ligases 

involved in apoptotic program and are known to affect numerous important players 

implicated in cancer progression such as APC, NUMB, NOTCH and can modify the 

transcriptional landscape by guiding degradation of transcriptional regulators. Previously, 

overexpression of SIAH1 has shown to cause tumor reversion phenotype in MCF7 breast 

cancer cell line, and myelomonocytic leukemia U937 cell line [164]. Also, the STEAP3 

protein is up-regulated by TP53 and has a p53-dependent pro-apoptotic function. On the 

other hand, the inhibition of Presenilin 1 was observed in tumor reversion models [170] 

and promotion of apoptosis in these models signified PS1 repression is crucial for the 

reversion process. The translationally controlled tumor-protein, TPT1 is an anti-apoptotic 

factor that also regulates several cellular functions and its inhibition in tumor cells 

resulted in apoptosis [168, 169, 171]. The expression changes of SIAH1, STEAP3, 

PSEN1, TPT1 and CDKN1A are relevant parameters to the HME50 progression model as 

plausible endpoints in drug response studies in a heterozygous mutant p53 setting. The 

HME50 microarray data showed SIAH1, STEAP3, PSEN1, TPT1, CDKN1A are all down-

regulated in HMET (statistically significant <-1.5 fold down-regulation) relative to 
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HME50-hTERT. One future goal is to pharmacologically target mutant p53 and study the 

gene expression changes of associated with the resumption of wild-type p53 function 

using qRT-PCR analysis. Also, since the 3D culture system gives an unparalleled 

experimental control and ability to study cellular function in a physiologically pertinent 

setting, we would extend the pharmacological testing using EGCG, resveratrol and 

rapamycin to see the effect of treatment on the gene expression changes and the 

concomitant changes observed with the acinar morphologies in 3D culture. Although 

reversion of the malignant phenotype is a novel intervention to block metastatic 

progression [172], the caveat is that the “reversion” of malignant phenotype may be 

transient and thus it would need to be ensured the tumor revertants have disarmed the 

tumorigenic arsenal after complete reversion. To ensure this in the 3D culture, a more 

comprehensive gene signature will need to be examined in addition to the re-

establishment of apical-basal polarity and loss of mesenchymal markers in vitro (Figure 

41). Since neomorphic TP53 mutants can have distinct gain-of-function properties, it is 

imperative to test the TP53-related gene functions in models that represent the 

heterogeneity in appropriate tissue- and mutation-context. To address this issue, primary 

cells derived from tissues surgically excised as a preventative measure for individuals 

harboring distinct mutations in tumor suppressors (e.g. a BRCA1/2 mutation and TP53 

mutation) can be used to as preclinical models. For instance, the Herbert laboratory has 

developed a cell line derived from another LFS patient [48] with heterozygous truncating 

germline TP53 mutation that can be used as 3D culture models (Figure 42) for 

mechanistic and pharmacological testing to identify mutation based differences. 

 



 

 159 
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Figure 41. Molecular players in tumor reversion. Based on the above schematic 

adapted from Telerman et. al., 2009 [164] which depicts the molecular circuitry involved 

in tumor reversion, we identified genes deregulated in HMET that may be involved in 

both p53 dependent (e.g. TSAP1-8; TSIP1-2) and p53 independent pathways (e.g. TSAP9-

22; TSIP3). Microarray data analysis showed SIAH1 E3 ubiquitin ligase, PSEN1, 

STEAP3 and TPT1 were down-regulated in HMET and their substrates may be up-

regulated or down-regulated in HMET relative to HME50-hTERT as indicated by red and 

green boxes respectively. 
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 The tumor suppressive functions of wildtype p53 confer cancer cell sensitivity to 

chemotherapy and radiation therapy. Since TP53 mutations are observed in sporadic as 

well as inherited human cancers, pharmacological agents that can exploit the 

compromised p53 pathway, for example in the context of germline mutant TP53 carriers 

in LFS families are required to overcome chemoresistance and cancer progression. Apart 

from the novel p53 targeting approaches such as chemoradiation, gene therapy, small-

molecule reactivation of mutant p53 (e.g. PRIMA-1) and small peptides, a unique 

promising agent is FDA approved antidiabetic drug metformin (a biguanide derivative for 

treatment of type II diabetes) which selectively targets cancer cells lacking normal p53 

function [173, 174]. Based on epidemiological studies, it was observed that metformin 

use reduces cancer risk and mortality in Type II diabetics. Although the mechanism still 

remains unclear, preclinical data has showed anti-proliferative properties of metformin on 

different cancer cell lines, anti-cancer effect in animal models and beneficial effect in 

colon and breast cancers in a clinical trial [175-181].  

 

 Amongst other effects, metformin modulates mitochondrial function by 

decreasing oxidative phosphorylation and preclinical research suggests metformin to be 

particularly effective as an anti-cancer and anti-proliferative agent in context of p53-

deficient background [173]. Since, no approved chemopreventive agents currently exist 

for LFS patients, the tolerability and the effect of metformin on circulating IGF-1, insulin 

and IGFBP3 is being determined in an interventional pilot study (NCI identifier: 

NCT01981525).  



 

 162 

 A registry of clinical trials with metformin conducted for prevention of cancer in 

human participants is available online on Clinical trials database 

(www.ClinicalTrials.gov) and these have been recently reviewed by Kasznicki et al. 

[174]. Targeting the HME50 cell line progression series in 3D culture is our future goal 

to establish its effect on malignant progression and determine plausible endpoint markers 

for proposed mechanism of action of metformin in cancer.  

 

 The mutations in TP53 are frequent in triple-negative breast cancers (TNBCs) and 

probably are one of the most important drivers of TNBC [44, 182, 183]. Since HME50 

cell lines carry mutant TP53 as exhibit Estrogen Receptor negative status (unpublished 

data), the triple-negative breast cancer (TNBC) Subtyping of HME50 cell lines using 

microarray gene expression data was performed using a web-based prediction TNBCtype 

subtyping tool as per instructions [184]. This TNBCtype tool analysis, using the gene 

expression data, assigned the LFS HME50 cell lines to a distinct TNBC subtype with 

corresponding correlation coefficient and P-value from 1000 permutations.  

 

 For the TNBCtype analysis, the samples with correlation coefficient >0.1 and P-

value <0.05 were assigned a TNBC subtype (Table 18); briefly, non-malignant HME50-

hTERT are predicted to have gene expression signature that corresponds to Basal-like 2 

(BL2) subtype whereas, malignant HMET cell lines correspond to the mesenchymal 

stem-like (MSL) subtype. These results implied that the gene unique gene expression 

signatures reflect characteristics of distinct TNBC subtypes and that the HME50 cell lines 

may respond differentially to chemotherapeutic agents [30, 184, 185]. For instance, based 
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on the preliminary microarray data analyses using the TNBCtype subtyping tool, we can 

expect the HME50-hTERT cell line to model BL2 TNBC subtype and respond to 

cisplatin whereas, the HMET cell line show characteristics of TNBC MSL subtype and 

respond to PI3K/mTOR inhibitors.  

 

 Recently, RNA and DNA profiling of about 200 TNBC tumor samples by 

Burstein et al. [186] defined TNBC subtypes and subtype-specific biomarkers and targets 

characterized by distinct molecular profiles. This study confirmed four stable TNBC 

subtypes namely luminal androgen receptor (LAR), mesenchymal (MES), basal-like 

immunosuppressed (BLIS) and basal-like immune activated (BLIA). These findings 

substantiate TNBC heterogeneity as well as provide subtype-specific molecular 

signatures that can be utilized clinically to identify TNBC subtypes. The Burstein study 

addresses limitations of the Lehmann’s TNBC subtyping signature [30] which doesn’t 

readily segregate basal-like 1 and basal-like 2 based on hierarchical clustering and the 

Burstein analysis unlike TNBCtype tool doesn’t rely on inclusion of samples with 

Estrogen Receptor (ER), Progesterone Receptor (PR) and Human Epidermal growth 

factor Receptor 2 (HER2) immunohistochemistry data. However, a user-friendly TNBC 

subtyping tool has not yet been made available by the Burstein group. Both TNBC 

subtyping studies carried out by Lehmann et al. and Burstein et al. demonstrate molecular 

heterogeneity in TNBC tumors that can be divided into distinct stromal, immune and 

basal signaling components. These studies also support the possibility of targeting 

specific TNBC subtypes using approved drugs such as Androgen Receptor (AR) 

antagonists for treatment of AR or LAR subtype [30, 185, 186]. 
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 The LFS HME50 cell lines that arise from a common background, exhibit unique 

features (karyotypes, growth characteristics in monolayer, anchorage independent soft 

agar growth, tumorigenic potential in mouse xenograft) and distinct gene expression 

profiles facilitating the study of cancer mechanisms. Furthermore, gene expression 

profiling can reveal the predominantly deregulated signaling pathways and genetic 

alterations that drive the oncogenic proliferation of the tumor cells. Thus, the analyses of 

LFS HME50 gene expression data using bioinformatics can improve its utility as a 

preclinical model of high-risk breast cancer by addressing some aspects of molecular 

heterogeneity. 
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Table 18. The TNBCtype tool predicted TNBC subtype to each of the HME50 cell lines 

with corresponding correlation coefficient and permutation P-value. 

 

 

  

Sample Cell Line Subtype  Correlation P-
value 

BH02002.CEL HME50 BL2 Basal-like 2 0.217 0.028 

BH02003.CEL HME50 BL1 
Basal-like 1 

0.152 <0.001 

BH02004.CEL HME50 BL1 0.118 <0.001 

BH02007.CEL HME50-5E LAR Luminal Androgen 
Receptor-like 

0.118 0.002 

BH02008.CEL HME50-5E LAR 0.134 0.001 

BH02009.CEL HME50-hT BL2 

Basal-like 2 

0.132 0.025 

BH02010.CEL HME50-hT BL2 0.217 0.002 

BH02011.CEL HME50-hT BL2 0.122 0.023 

BH02012.CEL HME50-hT BL2 0.126 0.039 

BH02013.CEL HMET MSL Mesenchymal Stem 
Cell-like 

0.101 <0.001 

BH02015.CEL HMET MSL 0.164 <0.001 
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5.2. Endpoint parameters for future chemopreventive agent testing 

 

 Based on the aforementioned differences in characteristics of cells in 3D culture 

relative to monolayer culture, it will be imperative to analyze gene expression changes 

and protein localization to ascertain drug response and tumor reversion. Based on the 

gene expression data and pharmacological agents used, in addition to the direct 

transcriptional targets of TP53, our main endpoints for analysis are the cell adhesion 

markers E-cadherin, gap junction channel proteins, DSG3, DSC3; the mesenchymal 

markers vimentin, N-cadherin, ZEB1 and SNAI1; extracellular matrix modeling proteins 

metalloproteases (MMP1, MMP2, MMP3); the tumor reversion markers SIAH1, STEAP3, 

PS1 and TPT1. A feedback loop between TP53 and TPT1 is a crucial switch for tumor 

reversion in context of wildtype TP53 function [171], and hence it will be an important 

endpoint in examining the effect of pharmacological of TP53 reactivating agents such as 

kevetrin and APR-246. Moreover, the restoration of apical-basal polarity markers based 

on their localization in 3D Matrigel® will serve as validation of complete phenotypic 

reversion that accompanies the change in morphology.  

 

 Healthy breast tissue donated by volunteers with no clinical history of breast 

cancer at Susan G. Komen Tissue Bank at Indiana University Simon Cancer Center is 

available to researchers. The Herbert laboratory has derived both primary epithelial and 

stromal cells that can represent a non-malignant state in 3D Matrigel cultures for 

preclinical studies (Figure 43). Use of these primary cells can alleviate our absolute 

reliance on cell lines derived from fibrocystic breast disease as “normal” equivalents in 
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preclinical studies. In conclusion, the HME50 series model is based on high-risk but 

clinically healthy tissue sourced from the contralateral breast of LFS patient undergoing 

surgery and this averted the use of tissue from reduction mammoplasty or fibrocystic 

breast disease or normal breast epithelium in contrast to previously reported progression 

models [60-62, 141, 187-189]. It is important to note that in this study, we have chosen 

the commonly used extracellular matrix for in vitro 3D culture of breast epithelial cells is 

Matrigel® - a commercially available reconstituted basement membrane matrix 

preparation from extracellular matrix protein-rich mouse tumor. Since Matrigel® 

preparation is not completely defined (or precisely reproducible) and biological variations 

present in different batches may introduce skewed or gene expression changes that may 

not be easily reproducible in highly sensitive and specific transcriptome profiling 

experiments. For this reason, the gene expression profiling of HME50 cell lines for initial 

characterization was carried out using cells harvested from monolayer culture and the 

data was extrapolated for pharmacological treatments in 3D cultures. 

 

 RNA-Sequencing of HME50 cell series is a future goal as it will allow further 

profiling transcriptome and unbiased discovery of novel, rare or low-abundance 

transcripts and gene level changes occurring through the progression series with high 

specificity and sensitivity as compared to microarray based approach. The RNA-

sequencing approach will allow validation of microarray profiles along with in depth 

genetic analysis of specific genes of interest that contribute to the distinct phenotypes of 

HME50 cell lines in 3D cultures during malignant progression. A future goal of this 

study is to manipulate deregulated genes predicted by gene expression profiling, by 
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revolutionary genome editing techniques and investigate the phenotypic reversion in 3D 

culture. Shalem et al. [190] have recently reviewed the use of CRISPR (clustered 

regularly interspaced short palindromic repeat)-Cas9 (RNA-guided nuclease) system for 

genome-scale screen that enables transcriptional perturbations that inhibit (CRISPRi) or 

activate (CRISPRa) gene expression in a functional genomic screen. Cas9 is proficient 

and programmable tool that can be used for specific targeting of genomic loci using the 

guide RNA in large-scale functional genetic screening of cultured mammalian cells. The 

conglomerate of revolutionary next-generation sequencing, CRISPR-Cas9 genome 

editing, and 3D cultures systems together allow high-throughput scalability with 

unprecedented experimental control to decipher genotype-phenotype correlation. 

Recently, normal and tumor 3D organoids derived from patients with colorectal 

carcinoma were shown to reflect mutational changes as patient tissue source; these 3D 

organoid cultures were also used in a high throughput drug screen to establish causal 

links between drug effect and genetic landscape [191]. Given that the patient-derived cell 

lines such as HME50 cell lines are a renewable resource, hypothesis-driven experiments 

can be scalable to ascertain the genotype-phenotype correlations in high-throughput 

genetic screens. With the known genetic information, both forward (phenotype-to-

genotype) and hypothesis-driven reverse (genotype-to-phenotype) genetic screens 

employing RNA-guided CRISPR/Cas9 nuclease system combined with genome-scale 

guide RNA libraries for unbiased, phenotypic screens can be used. This is an exciting 

prospect to model diverse TP53 mutations observed in Li-Fraumeni families as well as 

sporadic cancers. 
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 This study highlights the utility of patient-derived tissue samples for developing 

cell lines and cell progression series that can represent cancer predisposition due to 

unique gene mutations in preclinical studies. Additionally, the analysis of HME50 series 

microarray data enabled the characterization of the altered gene expression patterns and 

deregulated cellular processes that reflect malignant progression in vitro. We expect the 

use of this system facilitates mechanistic studies that provide clues to inhibit or reverse 

malignant progression. 
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Figure 42. Cytoskeletal actin staining of IUSM Li-Fraumeni patient-derived 

epithelial cell line. The cytoskeletal actin staining of human mammary epithelial cell line 

derived from IUSM Li-Fraumeni Syndrome patient harboring a truncating TP53 germline 

mutation. After the acini underwent morphogenesis for 10 days embedded in 3D Matrigel 

culture, actin staining and confocal imaging was performed. The representative 

centermost z-stack of the acini stained with AF594 conjugated Phalloidin and Hoechst 

staining showed radially organized IUSM LFS patient-derived epithelial cells 

surrounding a clear lumen and acinar size (51µm) similar to MCF10A [109] and HME50-

hTERT non-malignant controls. Scalebar 10µm. 

 

IUSM%hTERT:+AF#594#Phalloidin||DAPI#
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Figure 43. Cytoskeletal actin staining of primary human mammary epithelial acini. 

The cytoskeletal actin staining of K-HME 496 acini grown for 10 days embedded in 3D 

Matrigel culture was performed followed by confocal imaging. KTB496 breast epithelial 

cells were derived from breast tissue of a healthy (no breast disease or cancer history) 

female volunteer donor at the Susan G. Komen for the Cure® Tissue Bank (KTB) at the 

IU Simon Cancer Center [192]. The centermost z-stack of K-HME 496 acini stained with 

AF594 conjugated Phalloidin and Hoechst staining showed radially organized HME496 

epithelial cells surrounding a clear lumen and acinar size (51µm) similar to MCF10A 

[109] and HME50-hTERT non-malignant controls. Scalebar 20µm. 

  

AF 594 Phalloidin||DAPI 
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 Patients suspected of inherited cancer predisposition upon consultation and 

recommendation of clinician and clinical geneticists can undergo genetic testing. Based 

on individual case, the gene expression profiling and next-generation sequencing 

methods (microarray, gene panel, whole-exome, whole-genome sequencing) can be 

employed either independently or in combination that can help identify and validate the 

genetic variants and followed by traditional Sanger sequencing and complex segregation 

analysis. Briefly, diagnostic analysis of blood samples, clinical histopathological analysis 

of normal, preinvasive and tumor tissue samples along with in vivo imaging data 

(mammograms, MRI, X-rays) can provide phenotypic classification; whereas, genotypic 

and molecular stratification can be carried out by genomics (next-gen sequencing, genetic 

panels, copy number and epigenetic classification), transcriptomics (mRNA and miRNA 

signatures and pathway analysis), proteomics (e.g. immunohistochemistry, liquid 

chromatography and mass spectroscopy), and metabolomics. The combined systems 

biology and next-generation sequencing approach used in tandem with diagnostic 

analysis of biopsied sample to establish tumor pathophysiology and disease phenotype 

can provide morphological, histological and molecular data useful for patient 

stratification. Biobanking of patient-derived normal and tumor samples will provide a 

renewable of phenotypically stable and biologically diverse tissue resource. Along with 

biobanking and development of patient-derived xenograft (PDX) mouse models, the 

biopsied material can also digested for expansion as primary cells and organoids, 

immortalized cell lines and 3D cultures to enable functional assays and screening tools to 

test drug efficacy and toxicity in preclinical trials as well as personalized medicine. 

Following this integrated genotypic and phenotypic stratification approach, predictions 
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on patient clinical outcome, response and resistance signatures, drug toxicities and 

personalized therapeutic strategies can be determined. A brief summary of steps involved 

in the characterization of the established HME50 progression series is highlighted in red 

along with future directions depicted in Figure 44. The pedigree analysis, polymerase 

chain reaction-single strand conformation polymorphism (PCR-SCCP) analysis [110], 

and Sanger sequencing was performed that ascertained inherited germline TP53 

mutations in the proband – a 31 year old woman with undergoing surgery for breast 

cancer (unpublished data). The normal predisposed breast tissue obtained from this 

patient during the prophylactic surgery was digested and primary HME50 cells were 

cultured. Next, primary HME50 cells were immortalized and progressed to a malignant 

stage through sequential genetic manipulations followed by gene expression profiling and 

characterizing the phenotypic changes observed in 3D Matrigel® cultures. To use the 

HME50 cell lines as a screening tool, we further show proof-of-concept experiment to 

link the mutant p53 context with the use of PRIMA-1 and APR-246, which are known to 

reactivate mutant p53. Next, the characterized changes in morphology and acini size was 

used as a phenotypic readout to study the action of agents such as EGCG, Resveratrol and 

rapamycin in a gene-expression guided approach. In conclusion, we propose the use of 

patient-derived cells from genetically predisposed individuals as renewable cell lines, 

perform gene expression profiling to identify targets and signaling pathways that can be 

targeted to prevent or revert the cancer progression by novel chemopreventive agents. 

Genetic testing along with patient-derived preclinical models can facilitate surveillance, 

medical management decisions, prophylactic surgeries as well as opportunities for 

chemoprevention.
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Figure 44. Summary of current research and proposed future objectives to integrate 

cancer genetics, tissue biobanking and phenotypic screening in Herbert Laboratory. 

Preclinical models of cancer are necessary to understand cancer biology, mimic cancer 

phenotypes, drug discovery and translate fundamental research to the clinic. 

Multipronged approach with an integrated approach of systems biology is necessary to 

overcome caveats associated with each breast cancer model in addition. 

 

Genetics: 
•  Familial cancer genes 
•  Cancer cell signaling 

pathways 
•  Tumor Transcriptomics 

Disease phenotypes and hallmarks 
•  Malignancy 
•  Cancer histopathology 
•  Cell biology 
•  Pharmacodyanamic biomarkers 
•  Patient Selection 

Sporadic cancer 
•  Normal tissue 
•  Tumor tissue 

A] Cancer Biology 

C] Drug Discovery and development: preclinical exploratory, mechanistic and validation studies 

Tool box 
•  Genome editing 
•  High-throughput 

screening 
•  Cellular Assays 
•  Gene signatures 
•  Predictive and 

prognostic 
assays 

•  Link drugs with 
known mechanism of 
action to phenotypic 
effects 

•  Structure based drug 
design 

•  Knowledge based 
rational therapeutic 
design  

Multipronged approach to overcome trade-offs 
•  Patient-derived primary cultures and cell lines 
•  3D primary organoid culture 
•  3D cell culture models as phenotypic readouts 
•  Patient-derived xenograft, transgenic and 

knockout models 
•  Gene expression changes to aid phenotypic 

screening 

B] Tissue Bio-banking 

Familial cancer 
•  Predisposed tissue 
•  Tumor tissue 

•  Primary cell culture 
•  Immortalized cell lines as 

renewable resource 
•  Primary organoid culture 
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Appendix 1: QC for microarray 

Please see attached supplemental file for supplementary figures and supporting 

information on QC metrics generated using Partek® Genomics Suite software. 
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Appendix 2: Lists of differentially expressed genes in HME50 cell lines 

Please see attached supplemental file for lists of differentially expressed genes as 

identified in this dissertation. 
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Appendix 3: Comprehensive epithelial-to-mesenchymal transition gene list used 

Please see attached supplemental file for supporting information on epithelial and 

mesenchymal gene list used. 
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