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EFFECTS OF ELECTRICAL STIMULATION AND TESTOSTERONE ON 

REGENERATION-ASSOCIATED GENE EXPRESSION AND FUNCTIONAL 

RECOVERY IN A RAT MODEL OF SCIATIC NERVE CRUSH INJURY 

 

Although peripheral motoneurons are phenotypically endowed with robust 

regenerative capacity, functional recovery is often suboptimal following peripheral 

nerve injury (PNI). Research to date indicates that the greatest success in 

achieving full functional recovery will require the use of a combinatorial approach 

that can simultaneously target different aspects of the post-injury response. In 

general, the concept of a combinatorial approach to neural repair has been 

established in the scientific literature but has yet to be successfully applied in the 

clinical situation. Emerging evidence from animal studies supports the use of 

electrical stimulation (ES) and testosterone as one type of combinatorial 

treatment after crush injury to the facial nerve (CN VII). With the facial nerve 

injury model, we have previously demonstrated that ES and testosterone target 

different stages of the regeneration process and enhance functional recovery 

after facial nerve crush injury. What is currently unknown, but critical to 

determine, is the impact of a combinatorial treatment strategy of ES and 

testosterone on functional recovery after crush injury to the sciatic nerve, a mixed 

sensory and motor spinal nerve which is one of the most serious PNI clinical 

problems. The results of the present study indicate that either treatment alone or 

in combination positively impact motor recovery. With regard to molecular effects, 
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single and combinatorial treatments differentially alter the expression of 

regeneration-associated genes following sciatic nerve crush injury relative to 

facial nerve injury. Thus, our data indicate that not all injuries equally respond to 

treatment. Furthermore, the results support the importance of treatment strategy 

development in an injury-dependent manner and based upon the functional 

characteristics of spinal vs. cranial nerves. 

Xiao-Ming Xu, M.D.,Ph.D., Chair 
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CHAPTER 1:  INTRODUCTION 

 

Peripheral nerve injuries (PNI) affect nearly 3% of trauma patients and are 

caused by physical trauma, such as motor vehicle accidents, fractures, and 

damage incurred during surgery, or through disease, including multiple sclerosis 

and amyotrophic lateral sclerosis (ALS; Kline et al., 1998; Noble et al., 1998; 

Genain et al., 1999; Marcuzzo et al., 2011). It is well-established that robust 

regeneration occurs following damage to peripheral nerves (Lieberman, 1971); 

however, functional recovery following PNI is often suboptimal, particularly when 

nerves are transected and require surgical repair (Höke & Brushart, 2010). A 

major limiting factor in successful recovery from PNI in humans appears to be 

related to the large size of human peripheral nerves, long distances over which 

injured nerves need to regenerate, and the specificity of motor-sensory 

reinnervation related to functional outcomes associated with activities of daily 

living (Scheib & Höke, 2013). 

PNI frequently results in sensory and/or motor deficits and, in severe 

cases, paralysis that negatively impacts quality of life. Additionally, individuals 

with a PNI typically undergo long-term rehabilitation and have an increased risk 

for additional medical complications. The ability of a nerve to regenerate and 

achieve complete functional recovery is dependent on a multitude of factors: type 

and location of injury, age of individual, and regeneration distance to target (Birch 

& Raji, 1991; Perry et al., 1992; Fu & Gordon, 1995a, 1995b) and, if surgical 

repair is required, enough intact nerve or availability of nerve grafts. Currently, 



3 
 

there are no non-surgical treatment strategies in clinical use for PNI, thus finding 

a non-surgical therapy that enhances functional recovery offers immediate 

translational opportunity in the clinical setting. 

Our laboratory has extensively studied the effects of the combination of 

the gonadal steroid testosterone and electrical stimulation (ES) on properties of 

regeneration and functional recovery utilizing several models of nerve injury, 

including extratemporal and intratemporal facial nerve, recurrent laryngeal nerve, 

and sciatic nerve injuries. These models have allowed us to investigate treatment 

effects in motor vs. mixed (i.e. motor and sensory) nerves, cranial vs. spinal 

nerves, and proximal vs. distal injuries. From these studies, we have discovered 

that ES and testosterone propionate (TP) target two different aspects of the 

regeneration process: delay time before sprout formation and regeneration rate, 

respectively (Kujawa et al., 1991; Sharma et al., 2009). Likewise, we have shown 

that ES and TP differentially enhance regeneration-associated genes after facial 

nerve crush injury which further supports the concept that ES and TP may be 

working through separate, yet interconnected, mechanisms (Sharma et al., 

2010a). Interestingly, the combination of ES and TP significantly improves 

functional recovery compared to either ES or TP alone after facial nerve crush 

injury, but not after recurrent laryngeal nerve crush injury (Sharma et al., 2010b; 

Monaco et al., 2013). These findings have led to the idea that not all injuries 

equally respond to treatment. Additionally, location of injury and whether the 

injured nerve carries motor and/or sensory information are important factors in 

determining the most appropriate therapeutic interventions.  
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Although the combination of ES and TP has shown promise as a 

treatment after proximal nerve injury, as observed with the facial nerve injury 

model, the question remains as to whether ES and TP improve functional 

recovery after distal injury to a spinal nerve, such as the sciatic nerve. The 

central hypothesis of this dissertation is that ES and TP will additively improve 

regeneration, functional recovery, and the increased expression of regeneration-

associated genes in a spinal injury model, comparable to improvements 

observed in the facial nerve injury model.  The central hypothesis was tested by 

the following specific aims:  

 

Specific Aim 1: Evaluate whether ES and/or TP alter the expression of 

regeneration-associated genes after sciatic nerve crush injury. The working 

hypothesis for this aim was that the combination of ES and TP will differentially 

enhance the molecular response following sciatic nerve crush injury. Real time 

PCR was used in Aim 1 to examine changes in several regeneration-associated 

genes in order to elucidate the molecular profile following injury to the sciatic 

nerve. The results demonstrate that the two treatments differentially enhance the 

expression of regeneration-associated genes after sciatic nerve injury in a 

manner distinct from that observed after facial nerve injury. 

 

Specific Aim 2: Determine if ES and/or TP improve axon regeneration and 

functional recovery after sciatic nerve crush injury. The working hypothesis 

for this aim was the combination of ES and TP will accelerate axon regeneration 
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leading to an enhanced functional recovery after sciatic nerve crush injury 

compared to either treatment alone. It has been well-established that the 

combination of ES and TP enhances functional recovery after facial nerve crush 

axotomy more effectively than either treatment alone. In contrast, the 

combination of ES and TP provides no benefit in functional recovery after 

recurrent laryngeal injury. Experiments performed in Aim 2 specifically 

investigated functional recovery of rats in a different injury model, sciatic nerve 

crush, by employing several motor behavior tests, electromyography, and 

examining anatomical correlates. The results of the present study indicate that 

either treatment alone or in combination positively impact motor recovery.  
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CHAPTER 2:  LITERATURE REVIEW 

 

A. The mammalian nervous system: a general overview  

Neurons work collectively to execute sensory, motor, and secretory 

functions and process information through four functional units: (1) dendrites, (2) 

cell body, (3) axon, and (4) presynaptic axon terminal. Dendrites extend from the 

neuron as branched, tree-like projections and play a critical role in receiving 

incoming signals through receptors that line their surface. Upon stimulation, 

neurotransmitters, i.e proteins or chemical compounds, bind to their receptors on 

the dendrites. The cell nucleus and other organelles contained within the soma, 

or cell body, are vital components that carry out normal housekeeping functions, 

including protein synthesis and processing. Incoming signals from dendrites 

accumulate at the axon hillock. In order for a message to be carried down the 

axon and converted into a response, the incoming signals must reach a critical 

threshold. Only if threshold is achieved will the signal be propagated down the 

axon in the form of an action potential. Once the action potential reaches the final 

portion of the neuron, the presynaptic axon terminal, a cascade of events leads 

to the release of neurotransmitters from the terminal. Next, the neurotransmitters 

cross a small gap, or synapse, toward a nearby target. Lastly, the 

neurotransmitters bind to their receptors and communicate their signal to 

adjacent cells (Kiernan & Rajakumar, 2013). 

Neurons are characterized by their morphology, size, and function and 

based upon these criteria, can be classified into three general categories: (1) 
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sensory neurons, (2) motoneurons, and (3) interneurons. The connections 

among these three classes of neurons are intricate, as well as necessary for all 

aspects of the mammalian nervous system to communicate. Interneurons are 

enclosed entirely within the central nervous system (CNS) and connect sensory 

neuron terminals to motoneurons (Kiernan & Rajakumar, 2013). This literature 

review will briefly describe sensory neurons as their input on motoneurons is of 

extreme importance; however the work presented in this dissertation will focus 

primarily on motoneurons.  

The nervous system is a complex, sophisticated system comprised of a 

network of neurons that is responsible for receiving, comprehending, and 

sending information from all parts of the body. In mammals, the nervous system 

is divided into three functionally distinct, yet connected, entities: (1) CNS, (2) 

peripheral nervous system (PNS), and (3) autonomic nervous system (ANS).  

 

1. Central nervous system (CNS) 

The CNS is the largest part of the nervous system and is formed by two 

main organs, the spinal cord and brain. A highly selective permeability barrier 

comprised of capillary endothelial cells connected by tight junctions known as the 

blood-brain barrier anatomically divides the CNS from the PNS and protects the 

CNS from potentially harmful chemicals and pathogens, while regulating 

transport of essential nutrients and molecules that are necessary to maintain a 

stable environment. Although neurons are considered to be the main component 

of the nervous system, non-neuronal cells exceed the number of neurons in the 
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nervous system. Neuroglia, often referred to as glia, in Greek means “nerve 

glue;” though this simple definition undervalues their function. As an ancillary cell 

of the nervous system, glia maintain neuronal life by providing support, myelin, 

nutrients, and protection for neurons in both the CNS and PNS. The chief types 

of glia in the CNS are oligodendrocytes, ependymal cells, microglia, and 

astrocytes; whereas, in the PNS, glial cells include satellite cells in autonomic 

and sensory ganglia, enteric glial cells, and Schwann cells. 

 

2. Peripheral nervous system (PNS) 

 The PNS communicates to the CNS through bundles of axons called 

nerves. Primary afferent or sensory neurons are located within the PNS and 

detect several types of modalities, such as proprioception, touch, temperature, 

and pain, through specialized receptors. Sensory neurons convert external 

signals from the environment into internal electrical signals and have a unique 

pseudounipolar morphology that distinguishes them from other neuron types. 

These particular sensory neurons have a cell body that gives rise to one axon 

that bifurcates and sends a long process to the periphery while a second, shorter 

process terminates in the spinal cord. The cell bodies of pseudounipolar sensory 

neurons are grouped within a distinct structure called a dorsal root ganglion 

(DRG). The axon diameter of a sensory axon signifies the type of modality it 

transmits. For example, sensory neurons that carry pain and temperature 

information are small in size and are defined as either unmyelinated C or lightly 

myelinated Aδ fibers. Sensory axons that are myelinated and have a thicker 
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diameter detect cutaneous and subcutaneous mechanical stimuli and are 

referred to as Aα or Aβ fibers (Kiernan & Rajakumar, 2013).  

After a sensory signal is interpreted by the CNS, a motor response is 

delivered to the PNS through motoneurons. A distinguishing characteristic of a 

somatic motoneuron is that their cell bodies and dendrites are located entirely 

within the CNS. Two types of motoneurons, upper and lower motoneurons, relay 

efferent signals from the CNS to skeletal muscle to elicit movement. Upper 

motoneurons are essential in regulating lower motoneurons, but remain entirely 

within the CNS and do not directly synapse on the target musculature. The cell 

body of an upper motoneuron is located in the motor cortex of the cerebral cortex 

or brain stem.  Additionally, axons from upper motoneurons bundle together to 

form a tract and connect to lower motoneurons in the brainstem or spinal cord. In 

contrast, lower motoneurons act as a link between the upper motoneurons and 

skeletal muscle. Particular classes of lower motoneurons, known as alpha- 

motoneurons (α-motoneurons), send their axons from the brain stem or spinal 

cord to the periphery as a nerve and innervate the extrafusal fibers of skeletal 

muscle. It is important to note that extrafusal muscle fibers are located outside 

the muscle spindle, encompass the majority of the muscle belly, and are involved 

in skeletal muscle contraction. An α-motoneuron and all of the muscle fibers it 

innervates is referred to as a motor unit. Importantly, interneurons, descending 

tracts from the forebrain and brainstem, and some sensory neurons activate α-

motoneurons and can trigger a variety of responses, such as withdrawal reflexes 

or muscle contraction (Kiernan & Rajakumar, 2013).  
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In the mid 1800’s, it was discovered that an α-motoneuron did not directly 

contact muscle, but rather is separated from the muscle interface by a small gap 

referred to as the neuromuscular junction (NMJ) (Hughes et al., 2006). The NMJ 

is a specialized synapse that allows electrical signals from the α-motoneuron to 

be easily transmitted to the skeletal muscle via the neurotransmitter acetylcholine 

(ACh). The structure of a NMJ has three main components: (1) presynaptic nerve 

terminal, (2) synaptic cleft, and (3) postsynaptic motor endplate (Hughes et al., 

2006). Synaptic vesicles filled with ACh are located within the presynaptic axon 

terminal of an α-motoneuron. The second component of the NMJ connects the 

presynaptic terminal to the motor endplate, which is characterized by the 

presence of nicotinic ACh receptors (AChR). When an action potential reaches 

the end of the nerve terminal, it causes the release of ACh into the synaptic cleft. 

Next, ACh traverses the cleft to the postsynaptic motor endplate where it binds to 

the AChR. Binding of ACh to its receptor triggers a cascade of events that 

ultimately leads to muscle contraction and movement (Hughes et al., 2006).  

  Lastly, the CNS and PNS are structurally connected by a third portion of 

the nervous system, known as the ANS. The ANS is functionally distinct from the 

CNS and PNS and is vital in regulating and controlling visceral or involuntary 

functions of internal organs, such as heart rate, blood pressure, digestion, 

respiratory rate, and reproduction (Kiernan & Rajakumar, 2013).  
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3. Regenerative capabilities of the CNS vs. PNS  

The first estimations of the rates of nerve regeneration were based on 

clinical observation. Tinel estimated regeneration rate to be 1-2 mm/day using 

the “Tinel’s sign,” where he tapped the tip of regenerating axons to elicit 

paresthesias or tingling (Tinel, 1916). Other reports using this technique 

estimated nerve regeneration to occur at a rate of 2-5 mm/day, depending on the 

nerve tested (Dustin, 1917). Sunderland reported a case of a 23-year-old male 

who had a laceration of the sciatic nerve at the buttock level (Sunderland et al., 

1993). Over the next 7 years, Sunderland used Tinel’s sign with 

electromyography (EMG) recordings to estimate the rate of sciatic nerve 

regeneration and found the rates to be 2.6 mm/day in the thigh, 1.2 mm/day in 

the proximal ¾ of the leg, and 0.9 mm/day in the distal ¼ of the leg. Using these 

rates, Sunderland calculated that motor axons regenerated a total distance of 70 

cm and sensory axons regenerated 90 cm, which indicates sensory axons 

regenerate at a faster rate than motor axons. Various methods in rabbit, rat, and 

hamster confirm regeneration is the fastest after crush injury (3.5-4.6 mm/day), 

followed by transection and suture (3.2-3.5 mm/day) of the nerve. The slowest 

rate of regeneration is after nerve graft repair (1.5 mm/day; Gutmann & 

Guttmann, 1942; McQuarrie et al., 1977; Forman et al., 1979; Kanje et al., 1988; 

Kujawa et al., 1991; Holmquist et al., 1993; Sharma et al., 2009). Taken together, 

the aforementioned studies indicate that nerve regeneration is much slower in 

humans compared to what has been observed in rodent studies. A major limiting 

factor in successful recovery from peripheral nerve injury (PNI) in humans 
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appears to be related to the large size of human peripheral nerves, long 

distances over which injured nerves need to regenerate, and the specificity of 

motor-sensory reinnervation related to functional outcomes associated with 

activities of daily living (Scheib & Höke, 2013). 

Following injury to an axon, the somata of adult mammalian neurons 

respond by undergoing chromatolysis and substantially increasing RNA and 

protein synthesis (Lieberman, 1971). Of particular interest, the inherent capacity 

of a neuron to respond to injury is markedly reduced in the CNS compared to the 

PNS. It was first thought that the inability of axons in the CNS to regenerate was 

due to CNS neurons lacking intrinsic growth capacity to regenerate. In the 

1980’s, Aguayo and colleagues demonstrated CNS neurons could in fact 

regenerate when provided with a PNS graft; however, axon elongation was 

arrested if axons were redirected from the PNS graft back to the CNS 

(Richardson et al., 1980; David & Aguayo, 1981; Benfey & Aguayo, 1982; 

Richardson et al., 1984). Their results provided a substantial body of evidence 

that not only disproved the theory that CNS neurons lack inherent regenerative 

capability but also that a permissive environment is critical for axon elongation. It 

was later determined that the lag in CNS neuron growth was due to the presence 

of the degenerated nerve that produced an inhibitory milieu which ultimately 

stunted axon regeneration (Filbin, 2003; Vargas & Barres, 2007; Huebner & 

Strittmatter, 2009). The aforementioned studies reiterate the importance of 

clearing remnants of the degenerated nerve in order to have a permissive 

environment in favor of axon regeneration.  
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Augustus Volney Waller was the first to describe in the mid 1800’s the 

detailed process of regressive changes in severed nerves (Augustus volney 

waller (1816-1870) wallerian degeneration, 1969). After transecting the 

glossopharyngeal nerve of the frog, Waller observed diminished movement of 

tongue muscles and loss of sensation. Additionally, he noticed alterations in the 

nerve tubes within the papillae having an appearance he described as “curdling” 

or coagulated. Upon further inspection, he discovered after two weeks many of 

the single tubules disappeared post-injury (Waller, 1850). It was not until years 

later that Waller received praise for his incredible work describing the process 

that would take his name, “Wallerian degeneration.”  

Wallerian degeneration is a cascade of events that leads to the removal of 

axonal debris and is essential in order to clear the path for an injured nerve to 

regenerate back to its target. Much of our understanding on the process of 

Wallerian degeneration has come from studies utilizing the Wallerian 

degeneration (WldS) mouse model which was initially termed Ola (Lunn et al., 

1989; Perry et al., 1990; Glass et al., 1993). Lunn and colleagues reported that 

WldS mouse nerves degenerated more slowly than wild-type mouse nerves by 

several weeks, suggesting the WldS gene delayed the process of Wallerian 

degeneration (Lunn et al., 1989).  

PNI elicits a multitude of changes in the axon, including the onset of 

Wallerian degeneration. Wallerian degeneration occurs in several stages: acute 

axon degeneration, latency in distal axon, and granular fragmentation (Wang et 

al., 2012). These phases are followed by axon regeneration, successful target 
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reinnervation, and functional recovery. As early as 5-30 minutes after PNI, both 

proximal and distal axonal segments surrounding the injury site begin to fragment 

and undergo degeneration that continues to occur over several hours (Lubińska, 

1977; Kerschensteiner et al., 2005; Brushart, 2011; Wang et al., 2012). An influx 

of extracellular calcium initiates the process of acute axon degeneration and 

increases the number of injured axons that undergo acute axon degeneration 

(Knöferle et al., 2010). In addition, calcium influx leads to axoplasmic organelles 

from anterograde and retrograde transport to pool at the terminals of transected 

axon ends (Griffin et al., 1977). Subsequently, calcium activates the protease 

calpain which cleaves neurofilaments and microtubule-associated proteins 

resulting in dissembly of the axon (Zimmerman & Schlaepfer, 1982; Fischer et 

al., 1991). During this process, the blood-nerve barrier degenerates allowing 

proteins, hormones, and ions from the blood to enter the nerve and trigger focal 

edema (Gaudet et al., 2011; Weerasuriya & Mizisin, 2011).  

Despite the rapid process of degeneration in the proximal stump, 

degeneration in the distal stump exhibits a period of quiescence after acute axon 

degeneration. The latent period before the onset of fragmentation in the distal 

axon depends on fiber diameter, intermodal length, temperature, and species 

(Lubińska, 1977; Tsao et al., 1999; Wang et al., 2012) and can last anywhere 

from 25.6 to 45.0 hours in the rat phrenic nerve (Lubińska, 1977), or up to 

several days in humans (Chaudhry & Cornblath, 1992). The end of this latent 

period is defined by the onset of cytoskeletal breakdown. 
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After the end of the latent period, the distal axon begins to undergo a final 

stage of granular fragmentation. Axon destruction proceeds at a rate of 46 

mm/day for large axons to a rapid rate of 250 mm/day for small axons (Lubińska, 

1977). Depending on the severity of injury, degeneration can occur in an 

anterograde or retrograde manner. Recently, Beirowski and colleagues reported 

axons degenerated anterogradely after a transection injury, but retrogradely after 

a crush injury (Beirowski et al., 2005).  

Products of axon fragmentation prompt myelin breakdown and clearance. 

Since the myelin debris is inhibitory, it must be removed rapidly by Schwann cells 

and macrophages in order to clear the way for an axon to regenerate 

(McKerracher et al., 1994; Mukhopadhyay et al., 1994; Shen et al., 1998). One 

cell that is responsible for myelin phagocytosis is the Schwann cell (Stoll et al., 

1989; Liu et al., 1995). Once Schwann cells are no longer associated with an 

axon, they stop producing myelin and dedifferentiate, in a mechanism dependent 

on the ubiquitin-proteasome system (White et al., 1989; Lee et al., 2009). This 

process of dedifferentiation drives the Schwann cell to proliferate and upregulate 

regeneration-associated genes, such as glial cell line-derived neurotrophic factor 

(GDNF) and growth-associated protein (Gap-43; Mehta et al., 1993; Murinson et 

al., 2005; Xu et al., 2013). Lee et al. (2006) reported necrotic neuronal cells 

stimulated the upregulation of several inflammatory factors in Schwann cells, 

such as leukemia inhibitory factor (LIF), macrophage chemoattractant protein-1 

(MCP-1), tumor necrosis factor alpha (TNF-α), and nitric oxide synthase (iNOS). 

NOS is an enzyme that converts L-arginine to nitric oxide. The product nitric 
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oxide is important in the Wallerian degeneration process by participating in the 

breakdown of myelin and subsequent nerve regeneration (Levy et al., 2001; 

Keilhoff et al., 2002).  

Macrophages assist in the removal of myelin debris by facilitating myelin 

breakdown and removing myelin debris through phagocytosis (Liu, 1974; Perry et 

al., 1987; Stoll et al., 1989). In vitro studies show two substances released from 

Schwann cells, LIF and MCP-1, attract macrophages (Tofaris et al., 2002), while 

another substance produced by Schwann cells, TNF-α, augments the injury 

response by increasing expression of MCP-1 and interleukin-1β (IL-1β; Subang 

& Richardson, 2001; Shamash et al., 2002). After macrophages are recruited to 

the denervated nerve, they must be activated before assisting in the breakdown 

of myelin. Shamash and colleagues report that both TNFα and IL-1β augment 

myelin phagocytosis by macrophages in vitro (Shamash et al., 2002).  

 

B. Peripheral nervous system injury 

1. Statement of the problem 

PNI were first classified by Seddon (1942) into three broad categories: (1) 

neurotmesis (herein defined as transection), (2) axonotmesis, and (3) 

neurapraxia. The most severe injury is neurotmesis, where the epineurium is cut 

into two. In an axonotmesis injury the enclosed nerve fibers are severed similar 

to that observed with transection, but the epineurium is spared. Neurapraxia is 
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the least severe injury type and is described as the presence of a short-lived 

paralysis without true regeneration.  

PNI frequently results in sensory and/or motor deficits and, in severe 

cases, nerve paralysis that negatively impact quality of life. Additionally, 

individuals with a PNI typically undergo long-term rehabilitation and have an 

increased risk for additional medical complications. The ability of a nerve to 

regenerate and achieve complete functional recovery is dependent on a 

multitude of factors: type and location of injury, age of individual, and 

regeneration distance to target (Birch & Raji, 1991; Perry et al., 1992; Fu & 

Gordon, 1995a, 1995b) and, if surgical repair is required, enough intact nerve or 

availability of appropriate grafting materials. Currently, there are no non-surgical 

treatment strategies in clinical use for PNI, thus finding a non-surgical therapy 

that enhances functional recovery offers immediate translational opportunity in 

the clinical setting. 

 

2. Anatomy of the peripheral nerve  

Named after German physiologist Theodor Schwann, Schwann cells are 

indispensable cells and play numerous roles in the PNS. Two types of Schwann 

cells, myelinating and non-myelinating, ensheath and insulate all axons in the 

periphery by wrapping them with a substance known as myelin. Myelinating 

Schwann cells form myelin sheaths around axons in a 1:1 Schwann cell to axon 

ratio, while a non-myelinating Schwann cell encases several axons into a group 

known as a Remak bundle. A nerve and its accompanying Schwann cell are 
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surrounded by a continuous tube known as the Schwann cell basal lamina. This 

specialized tube consists of the matrix proteins laminin and collagen, and has an 

essential role in the uninjured nerve by acting as a supporting structure to 

promote and guide nerve regeneration (Brushart, 2011). It is important to note 

that the Schwann cell basal lamina remains intact throughout Wallerian 

degeneration.  

The interaction between a nerve and Schwann cell is necessary for basal 

lamina formation (Bunge et al., 1982). The Schwann cell basal lamina plays a 

key structural role at the neuromuscular junction (NMJ) by capping the 

presynaptic nerve terminal portion of the NMJ and providing a means of cell 

adhesion amongst the nerve and NMJ components. Within the past decade, the 

importance of Schwann cells during development and maintenance of NMJ has 

been investigated (Feng & Ko, 2008; Zuo & Bishop, 2008). During development 

of the NMJ, multiple alpha-motoneurons (α-motoneurons) send axonal branches 

to the same target musculature. Interestingly, within the first several postnatal 

weeks all but one of the axonal branches withdraws from its target and eventually 

disappears. Bishop and colleagues recently used time-lapse imaging of 

fluorescently labeled axons and serial electron microscopy to examine the 

phenomenon of synapse elimination at the NMJ (Bishop et al., 2004). Their work 

revealed that α-motoneurons disintegrate and shed membrane-bound remnants 

referred to as axosomes that are subsequently engulfed by surrounding glia. It 

has been postulated that the mixing of axonal and glial cytoplasm could signal 

the Schwann cell to migrate away or undergo apoptosis leading to synapse 
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elimination (Nakao et al., 1997). Although additional studies are warranted to 

better support whether glia signal synapse elimination of α- motoneurons, 

Schwann cells are likely to play an essential role in maintaining NMJ structure 

and function after injury (Koirala et al., 2000; Court et al., 2008). 

Several layers of connective tissue encase a peripheral nerve to prevent 

the nerve from potential injury. The outermost layer of nerve sheath, the 

epineurium, consists of collagen and elastin fibers that act together to protect the 

nerve fibers and form a supporting wall. Within the epineurium are nerve fibers 

enclosed in a bundle or funiculi by perineurium (Sunderland, 1965). Layers of 

flattened cells and collagen fibers give the perineurium tensile strength to further 

protect the nerve fibers (Thomas, 1963; Sunderland, 1965). Each nerve fiber and 

its accompanying Schwann cells within the nerve bundle are ensheathed by a 

thin, delicate layer of connective tissue called the endoneurium that functions in 

cushioning the nerve fiber. Lastly, between the Schwann cell layer and 

endoneurium is an additional delicate sheath referred to as the neurilemma or 

inner endoneurium (Sunderland, 1965). Together, these three sheaths form a 

protective defense barrier and allow the nerve to efficiently transmit electrical 

signals.     
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3. Current status of peripheral nerve injury (PNI) and repair 

a. Therapeutic rationale  

Typically, the severity of injury determines the treatment regimen that will 

be administered. For minor injuries, physical therapy, splints, or administration of 

analgesic or other medications may be possible; though more severe injuries that 

do not respond to therapy and medication may improve with surgical intervention. 

Recently, the outcomes of neurolysis surgery, or cutting of the epineurium, were 

examined in a retrospective study. The results indicated that half of the patients 

that undergone neurolysis surgery were considered to have an excellent 

outcome (Maalla et al., 2013). Decompression, suture, and nerve grafting also 

have been utilized as surgical interventions and have had some success. Despite 

this success, functional recovery was not seen up to 18 months after surgical 

repair (Kline et al., 1998; Kim et al., 2004). These reports indicate mixed nerves 

are capable of regeneration over long distances and the ability for a nerve to 

regenerate after injury is not purely limited by distance. 

Although surgery is the standard treatment for PNI, only half of individuals 

with PNI regain functional recovery (Kallio & Vastamäki, 1993). Suboptimal 

results observed with surgical intervention stress the need for additional non-

surgical approaches for the treatment of PNI. Finding a novel therapy that 

enhances functional recovery would not only repair sensory and motor deficits 

resulting from injury, but would significantly reduce the time that an individual 

would undergo rehabilitation. 
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Successful functional recovery following nerve injury is dependent upon a 

sequence of events, each of which can be manipulated with treatment to promote 

successful target reinnervation. In the first phase following injury, the intrinsic 

growth state must be activated and maintained. Following injury, neurons 

undergo molecular changes, such as chromatolysis and an increase in RNA and 

protein synthesis, to prepare for regeneration (Lieberman, 1971). Treatments that 

stimulate the intrinsic growth state of a neuron by increasing the expression of 

regeneration-associated genes produce a regenerative neuronal phenotype and 

promote axon elongation across the injury site (Lieberman, 1971; Sharma et al., 

2010a). There are two general phases of the regeneration process that can be 

targeted to decrease the time to functional recovery: (1) time before sprout 

formation and (2) axon regrowth to the appropriate target (Kujawa et al., 1993). 

The time from the start of the Wallerian degeneration process until the daughter 

axon sprouts is defined as the time before sprout formation (Oblinger & Lasek, 

1984). During Wallerian degeneration, the distal axon stump dissembles and is 

removed. By removing the inhibitory myelin debris and creating a permissive 

environment, the nerve can regenerate towards its target (McKerracher et al., 

1994). Treatments that either decrease the time before sprout formation or 

accelerate axon regrowth enhance functional recovery and decrease the time 

individuals will need for rehabilitation services. In humans, regeneration rates are 

relatively slow and an injured nerve likely will have to regenerate over a long 

distance. For successful target reinnervation and functional recovery, it is of 

extreme importance to guide the regenerating motor nerve to the correct distal 
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stump path to prevent synkinesis or involuntary muscle actions accompanying 

voluntary movements (Al-Majed et al., 2000b). One method of achieving 

appropriate target reinnervation is utilizing treatments that increase regeneration 

specificity. Most importantly, the target musculature must remain viable and 

intact during the slow regeneration process to preserve the ability for the 

establishment of new functional neuromuscular junctions (Fischer et al., 2004; 

Hughes et al., 2006; Marcuzzo et al., 2011). 

 

b. Surgical approaches  

The standard surgical care for transection injuries when epineurium 

reattachment is necessary is nylon suture. Unfortunately, only approximately 

50% of individuals regain functional recovery with nylon suture treatment (Kallio 

& Vastamäki, 1993). The low success rate appears to be due to the difficulty of 

aligning the fascicles in the right orientation prior to suture. Additionally, the 

success of surgical repair after nerve injury is dependent upon several factors, 

including the nature of the injury, type and timing of repair, requirement for a 

nerve graft, location of injury (i.e., how far the injury is from target muscle or 

skin), and age of patient (Omer, 1974; Navarro et al., 1988; Birch & Raji, 1991; 

Kawabuchi et al., 1998; Kim et al., 2004; Ruijs et al., 2005; Höke, 2006). A nerve 

graft is required for transection injuries that have stumps that cannot be 

reattached with primary surgical care without causing excessive tension. Two 

general types of nerve grafts, each with their own potential advantages, are in 

clinical use, autografts and allografts. Autografts utilize an individual’s own nerve 
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tissue and are considered the standard nerve graft material. The most common 

source for an autograft is the sural nerve, due to its size, ease of harvest, and 

moderate dispensability (Lee & Wolfe, 2000); although other sources include the 

anterior branch of the medial antebrachial cutaneous nerve, lateral femoral 

cutaneous nerve, and the superficial radial sensory nerve (Sunderland, 1991). 

While an autograft is a safe and fast healing option, making it the standard 

choice for nerve graft repair, harvesting the autograft tissue creates a second 

surgical site which takes time to heal and may cause discomfort. The second 

category of graft, allograft, utilizes donor tissue. Although a second surgical site 

is not created, an allograft takes longer to incorporate into the recipient’s body 

(Squintani et al., 2013). 

Axon fusion with fibrin glue or polyethylene glycol (PEG) also has been 

explored as a therapy for PNI. Earlier studies found fibrin glue alone to be inferior 

to microsuture when examining electrophysiological properties of the nerve and 

fibrin glue was less reliable in keeping the proximal and distal stumps connected 

(Moy et al., 1988; Maragh et al., 1990; Sames et al., 1997). In contrast, recent 

reports demonstrate fibrin glue alone significantly accelerated motor recovery, 

axonal regeneration, and nerve conduction properties compared to microsuture 

(Ornelas et al., 2006a; Ornelas et al., 2006b; Barbizan et al., 2013). Although 

mixed results utilizing fibrin glue as a treatment after PNI have been observed, it 

is relatively quick and easy to use and still remains an attractive alternative to 

microsuture. PEG has been utilized as a method to fuse the plasmalemmas of 

proximal and distal stumps of severed axons. Several years ago, Bittner and 
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coworkers discovered PEG could fuse severed crayfish and earthworm axons 

(Bittner et al., 1986; Krause & Bittner, 1990). The ground breaking in vitro results 

stimulated Bittner and colleagues to investigate the use of PEG as a treatment to 

reconnect severed mammalian axons in vivo (Stavisky et al., 2005; Britt et al., 

2010). The aforementioned studies reveal that additional treatments in 

combination with surgical repair may be necessary to obtain full functional 

recovery. 

 

c. Non-surgical approaches 

Non-surgical approaches are an attractive form of treatment after PNI 

since they are less invasive. Although no non-surgical treatment is approved in 

the clinical setting, several non-surgical therapies have shown promise in in vitro 

and in vivo studies. ES, gonadal steroids, trophic factors, and exercise are a few 

non-surgical therapies that are being actively investigated. Utilizing a non-

surgical therapy in combination with surgical repair may enhance functional 

recovery. 

 

i. Electrical stimulation (ES) 

Electrical stimulation (ES) is currently being investigated as a therapeutic 

approach following injury and has been utilized in the clinical setting as a therapy 

to enhance nerve regeneration following PNI (Gordon et al., 2009; Gordon et al., 

2010). Concurrent with carpal tunnel release surgery, brief, low frequency ES (20 
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Hz) for 1 hour has been used clinically as a method to treat carpal tunnel 

syndrome (Gordon et al., 2010). The results from this study demonstrated a 

significant increase in motor unit number and sensory nerve conduction values in 

the stimulated group at 6-8 months compared to the unstimulated control group. 

In vitro studies suggest ES can promote neurite outgrowth, orientation, and 

sprouting (Patel & Poo, 1982; Manivannan & Terakawa, 1994; Matthew & 

Rebecca Kuntz, 2009). Moreover, various forms of ES have shown promising 

results in the clinic for a variety of neurobiological disorders, including Bell’s 

palsy, chronic pain, PNI, and multiple sclerosis (Gordon et al., 2010; Buchmuller 

et al., 2012; Happe & Bunten, 2012; Heller et al., 2013). 

The effect of ES on the morphological properties of neurons has been 

extensively studied in vitro. In 1979, Jaffe and Poo discovered that electrical 

fields increase neurite outgrowth of chick dorsal root ganglion (DRG) explants 

(Jaffe & Poo, 1979). Later reports confirmed these results in Xenopus laevis, but 

also revealed that electrical fields alter neurite orientation and branching in a way 

that is dependent upon duration, amplitude, and frequency of the stimulus pulse 

(Patel & Poo, 1982; Patel & Poo, 1984; McCaig, 1990). From these studies, it 

was concluded that ES alters neurite morphology; however the question of 

whether these changes have functional benefit remains to be tested. 

The capability of ES to enhance neurite outgrowth and orientation led 

scientists to investigate whether ES could promote cell survival and axon 

regeneration after injury. Several elegant experiments completed by Borgens and 

coworkers laid the foundation for ES as a potential therapy following injury. In the 
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late 1980’s, they established that ES enhanced neuronal regeneration and 

behavioral recovery across a spinal cord lesion in adult guinea pigs (Borgens et 

al., 1986; Borgens et al., 1987). A decade later, they utilized naturally injured, 

neurologically intact paraplegic dogs as a model of spinal cord injury and 

discovered that oscillating electrical field stimulation significantly improved 

neurological recovery (Borgens et al., 1999). Another group examined whether 

ES would promote cell survival (Morimoto et al., 2002). In this study, Morimoto et 

al. observed that ES increased retinal ganglion cell survival if ES was applied at 

20 Hz for 2 hours after optic nerve transection. These innovative findings 

stimulated others to explore the beneficial effects of ES after PNI. 

Currently, ES has been hypothesized to enhance neurite outgrowth via an 

increase in intracellular Ca2+, followed by an increase in the second messenger 

cyclic adenosine monophosphate (cAMP; Fig. 1). In the early 1990’s, Garyantes 

and Regehr stimulated cultured superior cervical ganglion neurons at 10 Hz for 

up to 1 hour. This brief, low frequency stimulation was enough to elicit a rise in 

intracellular Ca2+ but was not sufficient to increase neurite outgrowth (Garyantes 

& Regehr, 1992). Others experimented using a frequency of 10 Hz and found 

contradictory results to those observed by Garyantes and Regehr. Lin and 

coworkers stimulated DRG neurons at 10 Hz but increased the time of stimulus 

delivery to 3 days (Lin et al., 1993). They concluded that extending the delivery of 

the stimulus from 1 hour to several days increased neurite outgrowth of the 

cultures which supported earlier in vitro findings. Okazaki and colleagues later 

experimented with several different ES paradigms, including 10-120 minute  
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Fig. 1: Schematic of the proposed mechanism by which a brief, low 
frequency electrical stimulation alters regeneration-associated gene 
expression in motoneurons. 

Electrical stimulation increases intracellular calcium and cAMP levels that in turn 
alters the expression of several genes involved in promoting axon regeneration 
and myelination. 
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stimulation period and 10, 20, and 50 Hz frequencies (Okazaki et al., 2008). 

Their results showed a minimum of 30 minutes of ES was necessary to promote 

survival of retinal ganglion cells and a 20 Hz stimulation frequency was most 

effective. Of note, both 10 Hz and 20 Hz stimulation frequencies have been 

shown to increase levels of cAMP which is thought to mediate neuron survival 

and axon growth (Udina et al., 2008; Corredor et al., 2012). The use of a 20 Hz 

stimulation frequency to elicit neuroregenerative effects has been confirmed by 

our laboratory, as well as others (Ahlborn et al., 2007; Hetzler et al., 2008; 

Alrashdan et al., 2010; Wan et al., 2010). 

Following a rise in intracelulluar Ca2+, ES enhances the expression of 

regeneration-associated genes. Al-Majed et al. examined the effects of a 20 Hz 

ES on regeneration-associated genes expression utilizing in situ hybridization 

and a model of femoral nerve transection with suture repair (Al-Majed et al., 

2000a). They observed a significant increase in gap-43 and αI–tubulin mRNA 

expression 2 days post-axotomy, followed by a significant increase in brain-

derived neurotrophic factor (bdnf) and trkB mRNA expression 7 days post-

axotomy in motoneurons (Al-Majed et al., 2000a; Al-Majed et al., 2004). These 

data suggest that ES upregulates gap-43 and αI–tubulin prior to activating BDNF 

signaling following injury. A few studies suggest that ES triggers BDNF signaling 

in a manner dependent on both Ca2+ and extracellular signal-regulated kinase 

(Erk) activation (Wenjin et al., 2011; Yan et al., 2013). In addition, Al-Majed and 

coworkers found that the 20 Hz ES paradigm significantly decreased the 

cytoskeletal medium-molecular-weight neurofilament protein 2 days post-
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axotomy (Al-Majed et al., 2004). This result is not surprising since neurofilament 

has been shown to interfere with the axonal transport by other cytoskeletal 

proteins, actin and tubulin, and is associated with enhanced regeneration (Bisby 

& Tetzlaff, 1992). Lin and coworkers did not observe an increase gap-43 

expression following ES treatment; however, this could be due to utilization of an 

insufficient ES frequency (10 Hz) that does not stimulate neurite outgrowth (Lin et 

al., 1993). Recently, we confirmed that a 20 Hz ES stimulation after facial nerve 

injury enhances early expression of αI–tubulin, gap-43, and bdnf mRNA (Sharma 

et al., 2010a). In addition, we found significant increases in neuritin and pituitary 

adenylate cyclase-activating peptide (pacap) mRNA. Neuritin, also known as 

candidate plasticity gene 15, has been shown to enhance neurite extension and 

arborization (Naeve et al., 1997; Javaherian & Cline, 2005; Marron et al., 2005), 

while PACAP has been reported to increase after spinal cord injury (Tsuchikawa 

et al., 2012) and promote axonal sprouting after facial nerve transection (Suarez 

et al., 2006). In addition to enhancing regeneration-associated genes expression, 

ES recently has been shown to induce the expression of the myelin associated 

gene p0, Schwann cell polarity gene par-3, and stimulate myelination (Wan et al., 

2010; Yang et al., 2012). In 2002, Brushart et al. demonstrated that ES promotes 

the onset of motor axon regeneration, but not the speed of regeneration 

(Brushart et al., 2002). We later confirmed this finding after facial nerve axotomy 

in rats (Sharma et al., 2009). Recently, the ability of ES to enhance axonal 

regeneration was reported to signal through androgen receptors (Thompson et 

al., 2013). Collectively, these data support the ability of ES to increase 
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expression of regeneration-associated genes early after injury and decrease the 

delay to sprout formation in a way that is dependent on androgen receptor 

signaling. 

Although accumulating evidence has shown that ES enhances neurite 

outgrowth and promotes survival of neurons following injury, the protocol by 

which ES should be administered is controversial. An ES protocol of 1 hour to 2 

weeks was applied after femoral nerve transection with immediate repair in rats 

(Al-Majed et al., 2000b). The results from this study demonstrated that ES 

reduced the time it took for motoneurons to regenerate by 5 weeks and 

enhanced preferential motor reinnervation, which is a key feature of motor axon 

regeneration and the tendency of regenerating motor axons in a mixed nerve to 

selectively reinnervate muscle. In support of the results reported by Al-Majed and 

colleagues, ES increases the number of regenerated axons across suture gaps 

to their appropriate target (Brushart et al., 2002; Vivó et al., 2008). We have 

shown that 30 minute daily administration of a 20 Hz ES frequency starting 

immediately after injury shortened functional recovery by nearly a week 

compared to unstimulated rats (Lal et al., 2008). Recently, we demonstrated that 

a one-time, 30 minute ES treatment at 20 Hz immediately after facial nerve crush 

injury is just as effective as daily ES treatments for up to 1 week (Foecking et al., 

2012). Analogous results have been observed in rodents after sciatic nerve injury 

(Hamilton et al., 2011; Singh et al., 2012). Together, these data confirm that 

short- and long-term ES are equally effective in motoneuron reinnervation of their 

appropriate targets and promote the onset of axonal regeneration. 
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The current consensus in the field is that a 20 Hz stimulus frequency 

delivered for 30 minutes to 1 hour will be sufficient to promote functional recovery 

in the clinic. First, this frequency is physiologically relevant to the normal slow 

firing patterns of motoneurons. As discussed, this ES protocol was shown to be 

optimal in vitro, and has had success in vivo in both rodents and humans 

following PNI. The ES protocol will most likely have to be altered depending on 

the type of nerve (i.e., motor, sensory, or mixed) and severity of injury. In 

conclusion, these data support the use of ES as a strategy to improve functional 

recovery by promoting appropriate target reinnervation and enhancing axonal 

regeneration. 

 

ii. Gonadal steroids 

To date, numerous studies suggest gonadal steroids have profound 

neuroprotective and neuroregenerative effects (Chowen et al., 1992; Singer et 

al., 1996; Tanzer & Jones, 1997; Chen et al., 1999). For example, progesterone 

has been reported to have neuroprotective roles in a variety of experimental 

models, such as stroke, Alzheimer’s disease, and traumatic brain injury 

(Jayaraman et al., 2012; Si et al., 2013; Wali et al., 2013), as well as the 

promotion of functional recovery after spinal cord injury (Thomas et al., 1999). 

Our laboratory has shown previously that estrogen accelerates the rate of facial 

nerve regeneration following facial nerve crush injury (Tanzer & Jones, 1997) 

which is supported by a more recent study demonstrating that estrogen and 

selective estrogen receptor modulators stimulate sciatic nerve regeneration in 



32 
 

mouse models (McMurray et al., 2003). Emerging evidence supports the ability of 

androgens to enhance regenerative properties, increase muscle mass, and 

promote functional recovery following nerve injury, as described below (Kujawa 

et al., 1993; Brown et al., 1999; Sinha-Hikim et al., 2003). 

Currently, androgens have been used clinically to treat several disorders, 

including hypogonadism, muscle wasting in human immunodeficiency virus 

(HIV), and androgen deficiency making them a highly translational therapeutic 

intervention following nerve injury (Bhasin et al., 1996; Strawford et al., 1999; 

Arlt, 2006; Selice et al., 2013). It is well understood that androgens have trophic 

effects on the developing nervous system which may translate to its use as a 

therapy following PNI. Androgens are well known for their essential role in male 

reproductive control and development of male secondary sex characteristics, yet 

their function is widespread. During adulthood, androgens support sperm 

production, promote the enlargement of skeletal muscle, and inhibit fat deposition 

(Bhasin et al., 1996; Arner, 2005; Walker, 2010). In the mammalian CNS, 

androgens function to maintain synaptic connections and promote neurite 

outgrowth. For example, androgens are essential for postnatal dendritic growth 

(Goldstein et al., 1990), as well as maintenance of dendrites in adulthood (Kurz 

et al., 1986) in motoneurons located in the spinal nucleus of the 

bulbocavernosus. 

The primary and most recognized androgen is testosterone, although 

other less known androgens, such as dihydrotestosterone (DHT) and 

androstenedione, have equally important roles in development. Androgens, like 
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all gonadal steroid hormones, are derived from cholesterol and thus are similar in 

structure. The gonadal steroids are composed of a central skeleton containing 

three cyclohexane rings and one cyclopentane ring and a side chain that varies 

among the different gonadal steroid hormones. The Leydig cells of the testes are 

the primary site of testosterone production, but considerable levels of 

testosterone can also be found in the adrenal cortex. Testosterone is present in 

both females and males, albeit at different levels, and can be prescribed as an 

exogenous therapeutic if levels fall below normal physiological levels (Selice et 

al., 2013). 

Within the last half-century, we have begun to understand the cellular and 

molecular mechanisms of testosterone action on target tissues. Testosterone can 

act directly through its androgen receptor (AR) or through its aromatization to 

estrogen. In the direct or classical steroid pathway, free testosterone is 

transported to its target tissue where it easily crosses the cell membrane (Fig. 2). 

Upon entering the cell, testosterone acts as a ligand to the AR to which it binds, 

stimulating a conformational change in the receptor. In order for the 

ligand/receptor complex to translocate to the nucleus, it must dimerize. After the 

receptor complexes dimerize, they enter the nucleus and bind to DNA sites 

called hormone response elements. This binding has a direct effect on the level 

of transcription at that site ultimately leading to an increase or decrease in mRNA 

synthesis (Brann et al., 1995). Although the direct pathway is considered to be 

the primary mechanism by which testosterone mediates its effects, indirect or 

nongenomic actions of testosterone recently has become the subject of  
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Fig. 2. Schematic of the proposed mechanism by which testosterone (T) 
alters regeneration-associated gene expression in motoneurons.  

Testosterone enters the cell where it is able to bind to its receptor, the androgen 
receptor (AR), and induce a conformational change. The ligand/receptor complex 
dimerizes with another ligand/receptor complex and translocates to the nuclues. 
After the receptor complexes dimerize, they enter the nucleus and bind to DNA 
sites called hormone response elements. This binding has a direct effect on 
transcription and translation of genes responsible for neuroprotection, the 
astrocytic response, and axon regeneration.   
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increased interest. In indirect mechanisms of action, testosterone binds to 

membrane or neurotransmitter receptors and rapidly exerts its effect through 

signaling pathways that do not directly involve an increase in genomic DNA 

(McEwen, 1991; Falkenstein et al., 2000; Watson & Gametchu, 2003). 

Androgens have been shown to act in a variety of tissues due to the 

widespread distribution of AR. Although AR are present in both males and 

females, males have a significantly higher concentration of AR (Yu & McGinnis, 

2001). Several areas within the brain contain AR, including the preoptic area, 

arcuate nucleus, amygdala, regions of the hippocampus, ventromedial and 

dorsomedial nucleus, and medial hypothalamic area (Simerly et al., 1990). AR 

are also distributed in lower motoneurons of the brainstem and spinal cord and 

can be observed outside the CNS in muscle tissue, nerves, and DRG (Breedlove 

& Arnold, 1981; Simerly et al., 1990; Jordan et al., 2002; Luo et al., 2008; Oki et 

al., 2013). These distinct locations of AR allow gonadal steroids to have selective 

actions at these sites. For example, the effects of gonadal steroids on neuron 

ultrastructure have been well studied in the ventromedial nucleus of rats. 

Estradiol treatment has been shown to increase rough endoplasmic reticulum 

stacks and dense-cored vesicles, which may reflect increased biosynthesis of a 

secretory product (Cohen & Pfaff, 1981). Our laboratory reported similar findings 

and detected alterations in the nucleolus, an increase in cell size, and changes in 

the nuclear shape from nonspherical to spherical (Jones et al., 1985). Moreover, 

our laboratory utilized in situ hybridization to show an increase in gene 

transcription in the hypothalamic neurons of rats within 30 minutes (Jones et al., 
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1990). This work is supported by more recent literature which suggests estradiol 

recruits protein synthesis machinery for local protein synthesis in dendrites of 

newly developing synapses (McCarthy & Milner, 2003). 

Several reports have investigated the neuroprotective role of heat shock 

proteins (HSP) in the motor neuron disease spinal and bulbar muscular atrophy 

and after injury to the optic, facial, and sciatic nerves (Kalmar et al., 2002; 

Katsuno et al., 2005; Tetzlaff et al., 2007; Nagashima et al., 2011; Wang et al., 

2013). HSP are stress-induced, molecular chaperones that are critical in 

maintaining correct assembly, folding, and intracellular transport of proteins. A 

characteristic of the heat shock response is a rapid upregulation of HSP and the 

folding of nonnative proteins after injury (Morimoto & Santoro, 1998). Recent 

literature suggests androgens may exert their neuroprotective effects by 

modulating HSP following injury. In 1990, Sanchez and colleagues established 

that unbound steroid receptors complex with HSP 90 and HSP 70 (Sanchez et 

al., 1990). It was later determined that HSP are bound to AR in the cytoplasm 

and are released in the presence of a synthetic androgen (Veldscholte et al., 

1992). This work is supported by more recent findings in our laboratory 

demonstrating that AR protein localizes to the nucleus following the 

administration of a form of testosterone, testosterone propionate (TP; Tetzlaff et 

al., 2007). Our laboratory also has shown that levels of hsp 70 mRNA and protein 

increase dramatically following facial nerve transection in hamsters and are 

significantly reduced after testosterone treatment (Jones et al., 2000; Tetzlaff et 

al., 2007). Additionally, our laboratory has reported testosterone significantly 
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augments the ribosomal response 18 hours after injury and shortens the interval 

between rRNA transcription and processing in the presence of gonadal steroids 

(Kinderman & Jones, 1993). From this work, it has been hypothesized that 

testosterone treatment may reduce the normal stress response to allow for a 

more rapid neuroregenerative response by making available pre-existing HSP 

70. 

It has been hypothesized that testosterone drives the regenerative 

response by altering expression of regeneration-associated genes, including 

bdnf, gap-43, neuritin, and βII-tubulin (Sharma et al., 2010a; Verhovshek et al., 

2010). Previous studies indicate that BDNF promotes axonal sprouting, 

motoneuron survival, and functional recovery after injury (Serpe et al., 2005; 

Sasaki et al., 2009). Moreover, GAP-43 is a crucial component of the presynaptic 

terminal and necessary in growth cone guidance (Shen et al., 2002). Conversely, 

tubulin has a rather different role in the regeneration process as it is the main 

component of microtubules and functions in maintaining cell structure and 

intracellular transport (Hoffman & Lasek, 1975). McQuarrie et al. found that if a 

lesion precedes peripheral nerve injury, known as a conditioning lesion, tubulin 

levels are increased in the axonal shaft and axonal outgrowth is accelerated 

(McQuarrie, 1986). Recently, we reported that administration of testosterone 

following injury causes a delayed (2-7 days post-axotomy) upregulation of 

several regeneration-associated genes, including bdnf, neuritin, and βII-tubulin 

mRNA in rat facial motoneurons (Sharma et al., 2010a), which is consistent with 

previous results from our laboratory (Jones & Oblinger, 1994; Jones et al., 1999; 
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Brown et al., 2001; Storer et al., 2002; DeLucia et al., 2007; Fargo et al., 2008). 

In contrast to our earlier results, we did not see an upregulation in gap-43 

following testosterone treatment (Jones et al., 1997a; Sharma et al., 2010a). 

Interestingly, from these studies we found testosterone had no effect on mRNA 

levels of a different subclass of tubulin, αI–tubulin. In accordance with existing 

literature, testosterone regulates the expression of BDNF in both spinal 

motoneurons and muscle, as well as the BDNF receptor, trkB, in spinal 

motoneurons (Osborne et al., 2007; Verhovshek et al., 2010; Verhovshek & 

Sengelaub, 2013). Since BDNF regulates AR expression in motoneurons after 

injury, it is likely that BDNF and AR augment one another and have a feed-

forward mechanism (Al-Shamma & Arnold, 1997; Yang & Arnold, 2000). 

Since gonadal steroids have been established to play a role in CNS 

plasticity, our laboratory investigated their effects on motoneurons after injury. 

After transection of the facial nerve, we saw an 81% reduction in the percent 

somal membrane covered by synaptic profiles and a 26% decrease in the 

average synaptic length of axosomatic synapses (Jones et al., 1997b). Exposure 

to TP immediately after nerve transection reduced both of these measurements 

to 48% and 16%, respectively. These results indicate that treatment of TP 

following axotomy attenuated the synaptic stripping that occurred 5 days after 

injury. In support of these data, we found axotomy alone increased glial fibrillary-

acidic protein (gfap) expression in the facial motor nucleus after facial nerve 

transection, which was attenuated with treatment of TP (Jones et al., 1997c; 

Coers et al., 2002). Taken together, these observations indicate TP attenuates 
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the initial response of motoneurons to injury allowing for an accelerated 

regeneration response and that is able to diminish the astrocytic response after 

axotomy. 

Seminal studies conducted in the early 1980’s, examined the effect of 

androgens on axonal regeneration. The first of several elegant papers published 

by the Yu laboratory investigated the effect of TP and DHT on axonal 

regeneration following transection of the hypoglossal nerve in female rats (Yu & 

Srinivasan, 1981). Their results demonstrated that as early as two weeks after 

transection axotomy of the right hypoglossal nerve there was a greater number of 

HRP-labeled neurons in the right hypoglossal nucleus of rats injected with TP or 

DHT compared to vehicle-injected rats. Similar results were observed at three 

weeks post-axotomy but not four weeks post-axotomy for TP treated animals 

compared to control animals. In contrast, the DHT treated animals showed fewer 

labeled HRP-labeled motoneurons three and four weeks post-axotomy compared 

to control animals. The following year, Yu observed that TP treatment following 

transection axotomy of the hypoglossal nerve also increased the number of HRP-

labeled neurons that reached the tongue in male rats compared to female rats 

(Amy Yu, 1982; Yu, 1982). Furthermore, similar results were observed with TP 

treatment following crush axotomy of the hypoglossal nerve (Yu & Yu, 1983). 

Taken together, these data suggest that TP promotes axonal regeneration, but it 

is unclear if TP shortens the time before sprout formation or accelerates the rate 

of axonal regeneration. 
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In 1989, a study conducted by Kujawa and colleagues examined the effect 

of TP on functional recovery following facial nerve crush injury in male hamsters 

(Kujawa et al., 1989). In addition to assessing functional recovery, they also 

tested varying doses and administration of TP, i.e., capsule implants vs. injection. 

From these experiments, they had several unique discoveries. First, functional 

recovery was accelerated in all groups treated with TP, albeit at different levels. 

Moreover, they found that increasing the dose and frequency of TP injections 

directly altered functional recovery; however, TP-filled Silastic capsules elicited 

the most enhanced effects on functional recovery. Lastly, there was no difference 

in functional recovery when comparing gonadally intact to gonadectomized male 

hamsters, suggesting endogenous levels of testosterone was not sufficient to 

enhance functional recovery. 

At this point in time, it was known that TP promoted axon regeneration 

from the observations reported by our laboratory and others; however, the 

mechanism by which TP elicited its effects was unknown. Several subsequent 

papers from our laboratory examined the effects of TP on regeneration rate 

following facial nerve injury. Using linear regression analysis, we determined that 

TP significantly increased regeneration rate after facial nerve injury in intact 

female hamsters by ~10% but had a more enhanced effect in males (~30%; 

Kujawa et al., 1991). Additionally, we confirmed our previous finding that 

endogenous testosterone was not sufficient to alter regeneration rate. To test 

whether these observations were AR dependent, we gave daily injections of 

flutamide, a known antiandrogen (Kujawa et al., 1995). In this study, we found 
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that flutamide completely abolished the ability of TP to enhance regeneration rate 

which suggests that TP acts through an AR dependent mechanism. Interestingly, 

we discovered that there is a critical interval of 6 hours after injury in which TP 

must be administered to significantly enhance regeneration and augment 

functional recovery (Kujawa & Jones, 1990; Tanzer & Jones, 2004). Although 

metabolites of testosterone, including  DHT and estradiol, increase the rate of 

regeneration following injury, the effect is not as pronounced as seen with TP 

treatment (Tanzer & Jones, 1997; Sharma et al., 2009). 

The evidence we have accumulated in the last few decades supporting 

the neurotherapeutic role of testosterone after facial nerve injury has been 

confirmed in other injury models. TP has been shown to accelerate functional 

recovery after sciatic nerve crush injury (Brown et al., 1999). In a similar model, 

Swallow and colleagues observed enhanced anatomical recovery with TP, but 

they did not see behavioral recovery following treatment with TP (Swallow et al., 

1999). It was later determined that this discrepancy stemmed from differences in 

administration of TP and provided further evidence that TP is most effective 

when delivered through subcutaneous capsule implants that elevate serum levels 

of TP to supraphysiological levels. Enhanced functional recovery with TP 

treatment also has been reported following recurrent laryngeal nerve crush injury 

and hypoglossal nerve injury (Yu & Srinivasan, 1981; Yu & Yu, 1983; Brown et 

al., 2013; Monaco et al., 2013). In summary, we and others have established that 

androgens significantly accelerate functional recovery if administered at a 

supraphysiological level and in the propionated form. 
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iii. Growth factors 

The utilization of growth factors to promote peripheral nerve regeneration 

has been investigated with limited success. Neurotrophin-3 (NT-3) has been 

observed to enhance neurite outgrowth in vitro (Avila et al., 1993); however, NT-

3 failed to enhance functional recovery after transection of either the lingual or 

sciatic nerves (Young et al., 2001; Robinson et al., 2004). Similarly, neither 

BDNF nor nerve growth factor (NGF) enhanced peripheral nerve regeneration 

after nerve transection in rats and was inferior compared to no treatment (Young 

et al., 2001; Boyd & Gordon, 2002). In contrast, glial cell-derived neurotrophic 

factor (GDNF) delivered by fibrin glue or collagen gel at the repair site has been 

demonstrated to enhance functional recovery and partially recover contractile 

muscle force, muscle mass, and the number of estimated motor units after nerve 

transection and repair (Chen et al., 2001; Wood et al., 2013), but the 

overexpression of GDNF impaired motor axon growth and target reinnervation 

(Tannemaat et al., 2008). In 2001, Yin and colleagues discovered that NT-4/5 

treatment delivered at the repair site in fibrin glue after sciatic nerve transection 

and repair significantly improved the number of regenerated axons, axon 

diameter, and myelin thickness (Yin et al., 2001). English et al. later 

demonstrated that NT-4/5 enhances the early reinnervation of the distal stump 

(English et al., 2005). 

The limited success of growth factors to lead to functional recovery is 

supported by modest changes in mRNA and protein levels following nerve injury. 

Omura and coworkers investigated the expression of several growth factors in 



43 
 

nerve and muscle after various types of PNI (Omura et al., 2005). Their results 

demonstrated that bdnf mRNA and protein levels increased with nerve 

transection in the sciatic nerve and soleus muscle as early as 7 days post-

axotomy. In addition, nt-3 mRNA and protein levels showed no difference in 

either the sciatic nerve or soleus muscle in any of the tested PNI, whereas nt-4/5 

mRNA decreased as early as 4 days post-axotomy after sciatic nerve 

transection. One mechanism by which GDNF could mediate its effects on 

enhancing peripheral nerve regeneration is through upregulating GAP-43 (Chen 

et al., 2001). In support of the results reported by Chen et al., Storer and 

colleagues discovered application of GDNF to the injury site following 

hemisection to the rubrospinal tract significantly upregulated gap-43 7 days post 

injury (Storer et al., 2003). Additionally, Storer et al. observed increases in βII-

tubulin 1 day post injury, whereas there was no effect of BDNF treatment on βII-

tubulin or gap-43. The aforementioned results suggest growth factors alone are 

less promising than other non-surgical options in improving functional recovery 

following PNI. 

 

iv. Exercise  

Over the past decade, literature describing the effect of exercise on axonal 

regeneration and functional recovery has increased considerably. Several reports 

demonstrate exercise positively impacts axonal regeneration and functional 

recovery of injured peripheral nerves by increasing axon elongation (Sabatier et 

al., 2008), enhancing functional recovery (Cobianchi et al., 2010), and increasing 
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muscle reinnervation (Udina et al., 2011). Moreover, treadmill training within the 

first two weeks following PNI promoted motor axon regeneration without 

disrupting regeneration specificity (English et al., 2009). Treadmill training 

programs significantly reduced neuropathic pain symptoms after chronic 

constriction injury of the sciatic nerve in rats and mice (Cobianchi et al., 2010; 

Chen et al., 2012). Recently, Wood and colleagues investigated sex differences 

in treadmill training in mice following transection injury with allograft repair of the 

common fibular nerve (Wood et al., 2012). Interestingly, Wood et al. discovered 

continuous treadmill training significantly enhanced axon regeneration in males, 

whereas in female’s interval training significantly enhanced axon regeneration. 

Some studies have begun to elucidate the mechanisms underlying the 

effect of exercise on axon regeneration. Gómez-Pinilla et al. established that 

exercise significantly increased bdnf mRNA and protein in lumbar motoneurons 

and the soleus muscle after 5 days of training in uninjured rats (Gómez-Pinilla et 

al., 2001), as well as mRNA levels of the BDNF receptor, trkB, in the lumbar 

spinal cord after 3 days of exercise (Gómez-Pinilla et al., 2002). In contrast, nt-3 

mRNA expression was initially downregulated in the spinal cord after 1 day of 

exercise training but was upregulated after 5 days of continuous exercise training 

in uninjured rats (Gómez-Pinilla et al., 2001). In the soleus muscle, Gómez-Pinilla 

and coworkers observed nt-3 mRNA levels to be significantly upregulated after 

both 1 and 5 days of exercise training. Additionally, Gómez-Pinilla observed that 

exercise significantly increased both mRNA and protein levels of gap-43 and the 

synaptic mediator synapsin 1 in lumbar spinal cord (Gómez-Pinilla et al., 2002). 
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Similarly, Molteni et al. reported increased neurite outgrowth of cultured lumbar 

DRG neurons from exercised animals which was associated with significantly 

higher levels of mRNA of the neurotrophins bdnf and nt-3, synapsin 1, and gap-

43 (Molteni et al., 2004). Interestingly, Wood and coworkers demonstrated that 

castration eliminated the ability of exercise training to enhance axon regeneration 

in male rats (Wood et al., 2012). Conversely, Wood et al. treated female rats with 

the aromatase inhibitor, anastrozole, to demonstrate that axon regeneration is 

significantly enhanced without increasing serum testosterone levels (Wood et al., 

2012). The results presented by Wood and colleagues suggest axon 

regeneration is enhanced in a sex-dependent manner. Similar findings were later 

confirmed in male and female rats utilizing the androgen receptor blocker 

flutamide (Thompson et al., 2013). Together, these results suggest exercise is a 

potential therapy which enhances axon regeneration of both sensory and motor 

neurons and that androgen signaling is likely involved. 

 

d. Therapeutic outcomes after PNI  

The basal lamina acts as a conduit for axon regeneration and is necessary 

for proper regeneration. In a crush injury axotomy, the basal lamina is left intact 

resulting in a quicker recovery than observed with transection. Furthermore, a 

faster recovery time after crush injury is undoubtedly due to lack of surgical 

intervention and a faster axonal regeneration rate, as described above 

(McQuarrie et al., 1977; Bittner et al., 2012). Despite an accelerated recovery 

seen with crush axotomy, problems can still arise after both crush axotomy and 
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transection. For example, injury to a mixed nerve can lead to axonal regeneration 

from the proximal stump to inappropriate distal pathways resulting in failed 

functional connections. Moreover, the presence of a nerve in the incorrect 

pathway could inhibit proper axons from entering appropriate, specific pathways. 

This conundrum has been largely investigated as a potential mechanism 

underlying poor functional recovery. In 1988, Brushart labeled sensory neurons 

and motoneurons and quantified the number of neurons that reinnervated 

sensory and motor branches of the rat femoral nerve after lesion and repair. 

Brushart further demonstrated that, when motoneurons are given equal access to 

either a motor or cutaneous pathway, they preferentially reinnervated the motor 

pathway to the quadriceps muscle (Brushart, 1988). Interestingly, this same 

outcome was apparent even if the repair was intentionally misaligned. Aberrant 

nerve regeneration of motor axons to incorrect muscle groups can lead to 

synkinesis which is a common characteristic seen in individuals with cranial 

nerve injuries (Bodénez et al., 2010). 

 

C. Rodent models of PNI 

Animal models offer a valuable therapeutic approach to investigate PNI. 

Unlike humans, rodents typically have full functional recovery from crush (Hetzler 

et al., 2008) but not transection injuries (Deumens et al., 2007). Our laboratory 

and others have explored the use of animal models of the following cranial 

nerves: optic nerve (II; Wu et al., 2014), oculomotor (III; Fernandez et al., 2003), 

trochlear (IV; Fukuoka et al., 1999), trigeminal (V; Okubo et al., 2013), abducens 
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(VI; Pásaro et al., 1985), facial (VII; Kujawa et al., 1989), vestibulocochlear (VIII; 

Shimamura et al., 2002), glossopharyngeal (IX; Geran & Travers, 2011), vagus 

(X; Halum et al., 2013; Monaco et al., 2013), and hypoglossal (XII; Murakami & 

Yoshida, 2012). Injury of the facial nerve is commonly associated with the human 

disorder Bell’s palsy, which is characterized by ipsilateral paralysis of the 

muscles of facial expression (Bodénez et al., 2010). Although the facial nerve 

has a “sensory root,” the neuronal cell bodies are anatomically separate from the 

motor root making facial nerve axotomy one of the most widely used animal 

models to study motoneuron degeneration and regeneration (Moran & Graeber, 

2004). Approximately two months following facial nerve injury, there is 

approximately a 40% motoneuron loss observed in adult mice (Serpe et al., 

2000) but virtually all motoneurons survive after axotomy in adult hamsters 

(LaVelle & LaVelle, 1984). A benefit to interspecies differences in motoneuron 

death allows one to easily study mechanisms of nerve regeneration following 

injury. Commonly utilized models of facial nerve injury include extratemporal 

transection and crush, intratemporal crush, and intracranial transection of the 

facial nerve, all of which are considered proximal nerve injury models (Mattsson 

et al., 1999; Jones et al., 2001; Sharma et al., 2009). Similar to the facial nerve, 

the recurrent laryngeal nerve is classified as a cranial nerve as it is a branch of 

the vagus nerve. The recurrent laryngeal nerve is commonly injured during 

thyroidectomy procedures, thus leading to unilateral vocal fold paralysis and a 

loss of sensation to the inferior portion of the larynx (Rosenthal et al., 2007). A 

benefit to utilizing animal models of recurrent laryngeal nerve injury is that 
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functional recovery is easily quantifiable; however, mechanism is difficult to study 

as the cell bodies of the recurrent laryngeal nerve are not easily accessible. 

In addition to using animal models of cranial nerve injuries, our laboratory 

and others have investigated animal models of spinal nerve injury, such as the 

median, ulnar, femoral, and sciatic nerves (Brown et al., 1999; Wang et al., 2008; 

Gordon et al., 2009). A benefit to utilizing animal models of spinal nerves is that 

they are characterized as mixed nerves and have both motor and sensory 

components, which is advantageous when studying preferential motor 

reinnervation and treatments that enhance specificity of axons to their 

appropriate targets. Due to its large size and accessibility in the rat, the sciatic 

nerve is an ideal spinal nerve to study PNI. Furthermore, the sciatic nerve is the 

longest nerve in the human and rodent body and can be utilized to explore 

treatment effects on proximal vs. distal injuries. Unlike cranial nerve injuries, 

there is virtually no motoneurons loss after spinal nerve injury in adult rodents 

which allows the motoneuron cell bodies to be easily studied after injury 

(Schmalbruch, 1984; Pollin et al., 1991). In addition, the timeline for functional 

recovery following sciatic nerve crush injury has been well documented (Forman 

& Berenberg, 1978; Alberghina et al., 1985; Brown et al., 1999; Lago & Navarro, 

2006); however, the functional recovery timeline after sciatic nerve transection is 

more variable (Hare et al., 1992; Ijkema‐Paassen et al., 2002; Hamilton et al., 

2011). Previously, we have reported work completed on a proximal, mid-thigh 

sciatic injury (Brown et al., 1999) and this dissertation investigates the effects of 

ES and TP on a distal-thigh sciatic injury. The strength of animal models of PNI 
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has allowed us and others to investigate treatment effects in motor vs. mixed 

nerves, cranial vs. spinal nerves, and proximal vs. distal injuries to provide insight 

on how to appropriately guide therapeutic intervention in clinical situations. 

 

D. Sciatic nerve injury and repair 

1. Clinical relevance 

Sciatica is observed in an estimated 40% of adults at some point 

throughout their lives, and is characterized as pain/weakness of the hip and 

lower extremity resulting from pathologies affecting the sciatic nerve. In this 

disorder, pain may extend from the gluteal region, down the posterior and lateral 

thigh and leg, and into the lateral aspect of the foot (Ergun & Lakadamyali, 2010). 

Individuals with sciatica may experience weakness to muscles in the posterior 

compartment of the thigh or all muscles of the leg and foot. This may result in the 

inability of patients to perform any one of the following actions: extend the thigh, 

flex the leg, plantarflex or dorsiflex the foot, flex or extend the toes, and invert or 

evert the foot. Typically, individuals with sciatica develop a distinguishing gait 

abnormality called footdrop. This is caused by a loss of motor innervation to the 

tibialis anterior muscle in the anterior leg, which leads to the inability to dorsiflex 

the foot. As a result, an individual with footdrop will alter their gait to prevent 

dragging their toes on the ground. 
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2. Anatomy of the human and rat sciatic nerve  

 The sciatic nerve is a major nerve of the sacral plexus and is the longest 

and largest nerve in the human and rodent body. Axons from spinal levels L4-S3 

come together to form the sciatic nerve and stay together in a common sheath 

before dividing into the tibial and common fibular divisions. These divisions 

remain together as the sciatic nerve exits the pelvis via the greater sciatic 

foramen and as it emerges at the inferior border of the piriformis muscle. The 

sciatic nerve travels down the posterior thigh deep to semitendinosus and long 

head of bicpes femoris where it supplies innervation to both of these muscles. At 

the superior border of the popliteal fossa, the sciatic nerve divides into two 

independent nerves the tibial and common fibular nerves, which innervate 

muscles of the leg and foot. The path of the tibial nerve runs vertically through 

the center of the fossa where it gives rise to the medial sural cutaneous nerve 

before continuing into the proximal leg and passing between the medial and 

lateral heads of the gastrocnemius muscle. In contrast, the common fibular nerve 

gives off a lateral sural cutaneous branch in the popliteal fossa region before 

passing superficial to the lateral head of the gastrocnemius muscle. The route of 

the common fibular nerve continues laterally around the neck of the fibula toward 

the lateral compartment followed by the anterior compartment of the leg. It 

passes through the fibularis longus muscle and further divides into the superifical 

and deep fibular nerves. The superficial fibular nerve supplies innervation to the 

lateral compartment leg muscles, while the deep fibular nerve supplies 

innervation to the anterior compartment leg muscles, including tibialis anterior 
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muscle, and muscles of the anterior foot. The medial and lateral sural cutaneous 

nerves join in the posterior leg to form the sural nerve and provide cutaneous 

innervation to the lateral foot (Kim et al., 2004; Ergun & Lakadamyali, 2010; 

Brushart, 2011). 

 

3. Etiology of sciatic nerve damage 

Despite an elaborate protective sheath, trauma, disease, and 

complications during surgery can lead to injury of the sciatic nerve. In a 

retrospective study completed by Kim and colleagues, injections were the leading 

cause of sciatic nerve injuries at the level of the buttocks, and gunshot wounds 

constituted roughly a third of all sciatic injuries reported at the level of the thigh 

(Kim et al., 2004). Other reported methods of injury include, but are not limited to: 

fracture or dislocation of the femur, hip arthroplasty, iatrogenic, laceration, 

compression, stretch injury, tumors of the sciatic nerve, piriformis syndrome, and 

pregnancy (Kline et al., 1998; Kim et al., 2004; Ergun & Lakadamyali, 2010). 

Clinical evaluation through neurological examination is the first step in 

determining the severity of sciatic nerve injury. Loss of motor and sensory 

function is quantified using electrophysiological methods, such as compound 

muscle action potentials, nerve conduction velocities, electromyography, and 

sensory nerve action potentials (Masakado et al., 2008; Derr et al., 2009). 

Additionally, radiological assessment with CT scans and MRI can be used to 

determine underlying traumatic injuries. 
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E. Combinatorial approaches 

For researchers to successfully improve functional recovery after PNI a 

combinatorial approach should be considered because it has the ability to target 

and activate multiple pathways and mechanisms. PEG has demonstrated 

promise alone and in conjunction with the antioxidants melatonin and methylene 

blue in vitro and in vivo (Stavisky et al., 2005; Britt et al., 2010; Spaeth et al., 

2012). Bittner et al. also have reported positive motor recovery with microsuture, 

hypotonic Ca2+, methylene blue, and PEG following complete transection of the 

sciatic nerve near that of sham controls (Bittner et al., 2012). In contrast, a more 

recent study suggested seeding Schwann cells that overexpress GDNF into an 

allograft, but failed to promote regeneration into the distal stump thus preventing 

functional regeneration (Santosa et al., 2013). 

Promising results have been observed utilizing the combinatorial 

treatment of ES and exercise following axotomy. Asensio-Pinilla and colleagues 

demonstrated a 1 hour, 20 Hz ES paradigm and treadmill running for 4 weeks 

significantly improved muscle reinnervation following sciatic nerve transection 

with repair compared to either treatment alone (Asensio-Pinilla et al., 2009). A 

more recent study suggested ES enhanced motor and sensory reinnervation, 

whereas the combination of ES and treadmill training decreased nociceptive 

responses to mechanical and thermal stimuli (Cobianchi et al., 2013). Taken 

together, these data indicate the combination of ES and exercise as a potential 

therapeutic intervention. 
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As previously mentioned, ES and TP target different stages of the 

regeneration process: delay time before sprout formation occurs and 

regeneration rate, respectively (Kujawa et al., 1993; Sharma et al., 2009). The 

ability of these two treatments to target different aspects of the regeneration 

process and enhance functional recovery provides a logical rationale for 

combinatorial treatment application following PNI. In support of a combinatorial 

approach, Sharma and colleagues demonstrated that ES and TP together acted 

synergistically to accelerate recovery of the vibrissae movement in rats after a 

facial nerve crush injury (Sharma et al., 2010b), which supported an earlier study 

(Hetzler et al., 2008). Interestingly, the presence of the steroid prednisone, which 

is an anti-inflammatory utilized to decrease edema associated with nerve injury, 

had no additional benefit. Also, we have determined that ES and TP treatment 

after a facial nerve injury increases neuritin, pacap, and bdnf mRNA expression 

in rat in an additive manner (Sharma et al., 2010a). In contrast, the combination 

of ES and TP had no additional benefit in functional recovery than either ES or 

TP alone after injury to the recurrent laryngeal nerve (Monaco et al., 2013). This 

is likely due to the fact that the recurrent laryngeal nerve injury was a more distal 

injury when compared to the facial nerve injury model used in these studies. It 

remains to be determined whether these same effects occur after a spinal nerve 

injury, such as a sciatic nerve injury, and if ES and TP will have differential 

effects on proximal vs. distal sciatic nerve injuries. 
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*This literature review was modified from a forthcoming book chapter in the 

3rd edition of Sunderland's Nerves and Nerve Injuries: Chapter 81: Cellular 

Aspects of Nerve Injury and Regeneration published by Elsevier*  

Meadows RM, Sengelaub DR, and Jones KJ. Cellular Aspects of Nerve Injury 

and Regeneration. Sunderland's Nerves and Nerve Injuries, 3rd edition. (in 

press) 
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CHAPTER 3: MATERIALS AND METHODS 

 

A. Animals and sciatic nerve injury paradigm  

All surgical procedures were reviewed and approved by the Indiana 

University School of Medicine Institutional Animal Care and Use Committee and 

were conducted in accordance with National Institute of Health guidelines. Adult 

male Wistar rats (175-199 g) were purchased from Harlan (Indianapolis, IN) and 

used for all experiments. All animals were maintained with a 12/12 h light/dark 

cycle with standard feed and water ad libitum. No animals displayed a ≥15% 

weight loss throughout the study. 7 animals were removed from the study due to 

autonomy. For behavioral tests, uninjured animals were used as baseline 

throughout the training and testing period. A total of 178 (Aim 1 – 145; Aim 2 – 

33) male Wistar rats were used in this study. 

Surgeries were completed in a sterile, aseptic environment. Rats were 

anesthetized with 3% isoflurane gas with 1.5 L/min oxygen. Surgical site was 

shaven and cleaned. An incision approximately 2 cm in length was made on the 

dorsal surface of the hip and the skin was retracted to expose the underlying 

musculature. Using blunt dissection, the heads of biceps femoris were separated 

to expose the sciatic nerve. The right sciatic nerve was crushed approximately 2 

mm proximal to its trifurcation with Dumont forceps (#3). Two successive 30-

second crushes from alternating directions were completed while leaving the 

epineurium intact. Visible loss of motor function in the right hind foot and loss of 

electrical muscle activity were used as confirmation to ensure a successful crush. 
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After injury (Ax), rats were divided into four experimental groups: 1) No treatment 

(Ax only), animals receiving axotomy, with implantation of blank capsules not 

containing testosterone propionate (TP), 2) Electrical Stimulation (Ax + ES), 

animals receiving axotomy and ES treatment, 3) Ax + TP, animals receiving 

axotomy and TP treatment, 4) Ax + ES + TP, animals receiving axotomy and ES 

and TP treatments. Animals receiving both ES and TP treatments, ES was 

administered followed by delivery of TP. After injury and treatment, the heads of 

biceps femoris were sutured together and the overlying skin closed with wound 

clips as well as coated with triple antibiotic ointment. Immediately after surgery, 

0.025 mg/kg of buprenorphine was administered. Wound clips were removed 7-

10 days post-axotomy. 

 

B. Thin film disk receiver implant 

Immediately prior to the sciatic nerve crush injury, a sterilized, thin disk 

receiver (RedRock Laboratories, St. Louis, MI) was implanted subcutaneously on 

the posterior surface of the rat. The circular receiver device was less than the 

size of a penny (3 mm x 18 mm) and was covered with a silastic coating to make 

it flexible and soft.  The receiver was attached to a silastic cuff (2 mm I.D., 8 mm 

length) by two, thin, aluminum chloride or platinum insulated multi-conductor 

wires (4-5 in).  The cuff was gently wrapped around the sciatic nerve, proximal to 

the injury site, and sutured shut.  The implant was used to elicit ES (see below) 

immediately after injury and to stimulate the nerve for electromyography (EMG) 

recordings. The device was remained in the animal for the length of the study.  
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C. Electrical stimulation (ES) 

 The Automated Functional Assessment Station (FASt; Red Rock 

Laboratories, St. Louis, MO, USA) was used to deliver ES to all animals receiving 

ES treatment. ES was delivered through either wire hooks or a nerve cuff. For 

animals that did not undergo behavioral tests, two aluminum chloride or platinum 

coated wires were bent into hooks and placed around the sciatic nerve just 

proximal to the injury site. The anode and cathode connector pins were attached 

to the leads of a continuous ES box (Red Rock Laboratories, St. Louis, MO, 

USA). For animals that underwent behavior analysis, a silastic cuff housing 

aluminum chloride or platinum electrodes was inserted around the nerve. The 

wires were connected to a subcutaneously implanted disk receiver. A wireless 

transducer with 10 settings, 1-10, was placed above the disk and turned to a pre-

determined setting known to elicit a right hind twitch. The transducer was 

connected to a continuous ES box. Immediately after axotomy, the continuous 

ES box was turned on and rats were stimulated at 20 Hz (200 µsec pulses, 1000 

µA amplitude) for a continuous 30 minutes. 

 

D. Hormone administration 

 TP was administered through subcutaneous capsule implants. The 

capsules were made out of silastic tubing (0.062 in. (1.57 mm) I.D. by 0.095 in 

(2.41 mm) O.D.) and were 16 mm in total length, 10 mm of which contained 

100% crystalline TP (Sigma-Aldrich, St. Louis, MO, USA). Wooden plugs sealed 

both ends of the capsule. As a control, animals receiving axotomy, but no 
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treatment were implanted with blank capsules. Capsules were equilibrated in 

physiological saline for 30-60 minutes prior to implantation. Immediately following 

injury or ES, a subcutaneous pocket was formed by making an incision on the 

dorsal surface of the animal between the scapulae. Two TP capsules were 

implanted in the pocket and the wound site was closed with wound clips. Wound 

clips were removed 7-10 days post-axotomy. Capsules were left in the animal for 

the length of the study.  

 

E. Molecular techniques  

1. Enzyme immunoassay 

Serum was separated from whole blood by spinning whole blood samples 

at 4°C for 15 minutes at 1000 x g. Serum samples were diluted with enzyme 

immunoassay (EIA) buffer and ran in triplicate. An EIA kit was utilized to confirm 

testosterone levels from rats according to the manufacturer’s instructions 

(Cayman Chemical, Ann Arbor, MI, USA).  

 

2. Quantitative real time PCR (qRT-PCR) 

Rats were euthanized with an intraperitoneal injection of ketamine (100 

mg/kg) and xylazine (10 mg/kg) followed by bilateral pneumothorax at 6 hours, 1, 

2, 7, and 21 days post-axotomy. The lumbar region of the spinal column was 

removed and the ends of the column were cleaned of bone debris. A 10 mL 

syringe containing ice-cold saline solution fitted with a blunt-ended needle (16 G) 
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was used to eject the spinal cord, from the caudal end, into a 100 mm size petri 

dish containing ice-cold saline solution. The spinal cord was placed ventral side 

up on a petri dish on top of dry ice and trimmed with a razor blade to isolate a   

1 cm section of the lumbar enlargement. The ventral and dorsal horns of the 

spinal cord were isolated by making a sagittal cut down the central sulcus, 

turning the two tissue pieces until the flat portion was facing up, and making a 

final sagittal cut to separate the ventral horns, lateral side of tissue half, from the 

dorsal horns, medial side of tissue half (Fig. 3). All four quadrants were kept at -

80⁰C. To use as a control, non-lumbar spinal cord was removed and kept at -

80⁰C. 

Spinal cord tissue was homogenized with Lysing Matrix D (MP 

Biochemical, Santa Ana, CA, USA) and lysis buffer (PureLink® RNA Mini Kit 

Cat# 12183025; Ambion, Carlsbad, CA, USA) containing 1% 2-mercaptoethanol 

(Gibco, Carlsbad, CA, USA) using a fast prep 24 homogoenizer (MP 

Biochemical). RNA was extracted from the homogenized tissue sample with 30 

µL of RNase-Free Water according to the manufactures instructions, with the 

exception of incubating the column for 10 minutes instead of 1 minute during the 

extraction step with RNase-Free Water (PureLink® RNA Mini Kit). DNA was 

removed from the RNA samples using the PureLink® DNase Set according to 

the manufactures instructions (Cat# 12185010; Invitrogen, Carlsbad, CA). 100 ng 

of RNA was converted to cDNA using SuperScript® VILO™ Master Mix 

according to manufactures instructions (Cat# 11755250; Invitrogen). Rat-specific 

Taqman® probes were purchased to amplify cDNA of candidate genes, (Applied  
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Fig. 3: Image depicting the quadrant sectioning process of the lumbar 
portion of the spinal cord. 

I is ipsilateral, C is contralateral, VH is ventral horn, and DH is dorsal horn.   
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Biosystems, Carlsbad, CA, USA; Table 1 and Table 2). qRT-PCR was carried 

out in triplicate using Taqman® Gene Expression Master Mix (Applied 

Biosystems). The cycling parameters were as follows: UDG optimization at 50°C  

for 2 minutes, AmpliTaq Gold activation at 95°C for 10 minutes, followed by 40 

cycles at 95°C for 15 seconds and combined annealing/extension at 60°C for 1 

minute. geNorm software was used to determine the most optimal reference 

genes for this study out of 8 candidate housekeeping genes (Table 1) (Bangaru 

et al., 2012). Relative mRNA expression levels acquired from PCR amplification 

were analyzed using the ΔCt method, as previously published by our laboratory 

(Haulcomb et al., 2014), against two housekeeping genes glyceraldehyde 3-

phosphate dehydrogenase (gapdh) and hypoxanthine phosphoribosyl 

transferase 1 (hprt1), which were determined using geNorm software (Bangaru et 

al., 2012). ΔCt is the difference between the threshold cycle level for the gene of 

interest and the threshold cycle for the housekeeping gene within each sample, 

which is calculated for the control and axotomized sides separately. The 

geometric Ct mean of both gapdh and hprt1 was used as the threshold cycle for 

the housekeeping gene. Relative mRNA expression is expressed as the relative 

quantity mRNA of either the injured or uninjured ventral horn of the lumbar spinal 

cord by 2−ΔCt ± the standard error of the mean (SEM). The average percent 

change mRNA expression was calculated using the the ΔΔCt method, as 

previously published by our laboratory (Fargo et al., 2008; Mesnard et al., 2010) 

against gapdh and hprt1. The ΔΔCt value was obtained by calculating the 

difference between the axotomized ΔCt and the control ΔCt. All data is 
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Gene Name 
Taqman® 

Abbreviation 
Taqman® ID 

Accession 
Number 

glucuronidase, beta gusb Rn00566655_m1 NM_017015.2 
glyceraldehyde-3-phosphate 

dehydrogenase 
gapdh Rn01775763_g1 NM_017008.3 

hypoxanthine 
phosphoribosyltransferase 1 

hprt1 Rn01527840_m1 NM_012583.2 

beta-2 microglobulin b2mg Rn00560865_m1 NM_012512.2 

polymerase (RNA) II (DNA directed) 
polypeptide A 

polr2a Rn01752026_m1 XM_002727723.1 

succinate dehydrogenase complex, 
subunit A, flavoprotein (Fp) 

sdha Rn00590475_m1 NM_130428.1 

ornithine decarboxylase antizyme 1 oazi Rn01408148_g1 NM_139081.1 

tyrosine 3-monooxygenase/tryptophan 
5-monooxygenase activation 

 protein, zeta 
ywhaz Rn00755072_m1 NM_013011.3 

 

Table 1: Candidate reference genes.  
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Table 2: List of regeneration-associated genes. 

  

Gene Name 
Taqman® 

Abbreviation 
Taqman® ID 

Accession 
Number 

Cytoskeletal 
αI–tubulin atat1 Rn00821045_g1 NM_022298.1 

βII-tubulin tubb2b Rn01435337_g1 NM_001013886.2 

Growth cone guidance 

43-kiloDalton growth-associated 
protein 

gap43 Rn01474579_m1 NM_017195.3 

collapsin response mediator protein 2 dpysl2 Rn01534654_m1 NM_001105717.2 

Growth factors and neurotrophic 

brain derived neurotrophic factor bdnf Rn02531967_s1 NM_012513.3 

glial cell derived neurotrophic factor gdnf Rn00569510_m1 NM_019139.1 

pituitary adenylate cyclase-activating 
peptide 

adcyap1 Rn00566438_m1 NM_016989.2 

Plasticity 

neuritin nrn1 Rn00584304_m1 NM_053346.1 
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expressed as the average percent change in mRNA expression, by (2−ΔΔCt − 1) × 

100, of the axotomized samples relative to the control samples ± SEM. Ct values 

of 39 or higher were excluded from analysis. Outliers were determined and  

removed utilizing Grubbs’ Test (Graph Pad, La Jolla, CA, USA). Primer 

efficiencies are noted in Table 3.      

 

F. Behavioral tests 

1. Automatic foot misplacement apparatus 

 The automatic foot misplacement apparatus consisted of a corridor with 

an arrival box at one end (Bioseb, Vitrolles cedex, France). The corridor was a 

flat ladder, with alternating rungs removed, on which the rat could move freely 

from one end toward the arrival box. Rats were trained to traverse the walkway 

five times per week for two consecutive weeks prior to injury. During the testing 

period, rats traversed the walkway up to three times per session until a run 

without rearing and minimal stopping was achieved. Baseline data was acquired 

7, 5, and 3 days before injury. Sciatic nerve crush injury always occurred on the 

first day of the week. Following injury, rats were tested at 2 and 4 days post-

axotomy or day 3 and 5 of the week, respectively. Testing continued in 

succession on day 1, 3, and 5 for each of the following 8 consecutive weeks. 

Data from the runs was gathered using the provided Locotronic software and is 

expressed as the total number of rear leg errors ± SEM. It should be noted, due  
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Gene Name Primer Efficiency 

αI–tubulin 1.935 

βII-tubulin 2.0065 

43-kiloDalton growth-associated protein 2.081 

collapsin response mediator protein 2 2.053 

brain derived neurotrophic factor 2.393 

glial cell derived neurotrophic factor 2.962 

pituitary adenylate cyclase-activating peptide 1.942 

neuritin 2.031 

glyceraldehyde-3-phosphate dehydrogenase 1.9695 

hypoxanthine phosphoribosyltransferase 1 1.979 

 

Table 3: Gene primer efficiencies. 
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to altering the software settings, 6 rats did not start the test until 21 days post-

axotomy.   

 

2. Grip strength  

 Hind limb strength was measured using a grip strength test with a rod and 

bar apparatus attached to a senor. To complete the bar task, rats were held by 

their torso and allowed to grab the bar with their hind legs. After successful 

contact of both hind paws with the bar, the rat was gently pulled in a horizontal 

direction by the base of their tail until they released the bar. After each pull, the 

sensor was reset and the rat was allowed to grip the bar. This process was 

repeated five consecutive times and the results were recorded. The grid test was 

used as a second grip strength measure. Similar to the bar, animals were 

allowed to grab the grid with their hind paws. Once the rat successfully made 

contact with the grid with both hind paws, the rat was gently pulled by the tail in a 

parallel direction with the surface of the grid. After each grasp, the sensor was 

reset and five consecutive trials were recorded. Animals were tested on the first 

day of each week for 8 consecutive weeks. Baseline data was recorded exactly 

one week prior to injury and the morning of surgery day. Results for both the bar 

and grid were expressed as an average of the five trials and as the maximum 

grip strength within the five trials for each animal. Each group contained an n of 

3-6.     
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3. CatWalk XT© apparatus 

 The CatWalk apparatus (Noldus Information Technology, Wageningen, 

The Netherlands) consists of an enclosed walkway (8 cm wide) on a glass plate, 

on which the rat could move freely from one end to the other. We made the 

following modifications to the existing apparatus: on the departure end of the 

apparatus, was a plexiglass ledge while at the arrival end was a cage in which 

the rat could enter after completing a run. Since the glass plate was larger than 

the enclosed walkway, the rat could leave the arrival cage and traverse the glass 

plate in the opposite direction to the departure plexiglass ledge. One passage 

from departure ledge down the runway back to the departure ledge will be 

referred to as 1 run.  

All data acquisition was completed in a dark and silent room. The following 

parameters were used during data acquisition: length of the runway was 

approximately 90 cm, camera gain was 19.02, and intensity threshold was 0.1. 

No food restrictions took place during the study. The behavioral training 

consisted of placing the animals in the arrival cage and coaxing them to loop in a 

unidirectional manner. Fruit Loops or Apple Jacks were placed along the path in 

order to encourage the animal to loop. Training occurred on days 1-5 for two 

consecutive weeks prior to injury at which time 5-20 runs were acquired per 

training session. Baseline data (10-20 runs per training session) was acquired 7, 

5, and 3 days prior to injury. During data acquisition, if the rats stopped or 

displayed uneven speed they were encouraged to move as previously published 

(Batka et al., 2014). The glass runway was cleaned with Sparkle™ glass cleaner 
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after the completion of all runs for a particular animal, or as needed to remove 

debris.   

Following sciatic nerve crush injury, rats were tested on a similar schedule to 

that described in the automatic foot misplacement apparatus section. Testing 

lasted for 8 consecutive weeks starting at 2 days post-axotomy and 10 runs were 

acquired during each testing session. Runs in which the animal displayed 

behavioral anomalies (i.e. constant sniffing, turning, rearing) in the middle of the 

run were wholly-discarded. Within runs chosen to be classified, partial footprints 

and rearing as entering or exiting the runway were not classified. Of the classified 

runs, only runs which met the following criteria set in the data acquisition profile 

were exported: 10 minimum consecutive steps per run, average speed range 

from 1.0-150.0 cm/second, maximum allowed speed variation of 55%, and fully 

classified runs. Of the exported runs, only runs with an ‘other statistics maximum 

variation’ of ≤ 60% were analyzed. All exported run statistics were combined for 

each animal to create trial statistics; trial statistics were analyzed and compared 

across groups at various time points. 

The following trial statistics have been shown to change following injury and 

were thus chosen for analysis: print length, print width, print area, swing, swing 

speed, stride length, step cycle, duty cycle, max contact max intensity, sciatic 

functional index (SFI), peroneal functional index (PFI), posterior tibial functional 

index (TFI), base of support (BOS), regularity index, and cadence (Bain et al., 

1989; Hamers et al., 2001; Vrinten & Hamers, 2003; Koopmans et al., 2005; 

Hendriks et al., 2006; Deumens et al., 2007; Bozkurt et al., 2008). Formulas for 
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SFI, TFI, and PFI can be found in Fig. 4. For explanations of each parameter, 

see Table 4. Each group contained an n of 4-6.  

 

3. Electromyography (EMG) recordings 

 All rats were anesthetized with isofluorane and the FASt (Red Rock 

Laboratories) was used for all EMG measurements. Before injury, baseline EMG 

values were determined, whereas functional recovery was monitored by taking 

recordings on day 1 and 5 of each week beginning immediately after injury for 8 

consecutive weeks. Cathodic, monophasic electrical impulses (5000 μA, 0 

second delay, 0.3 second burst width, 200 μs pulse duration, and 0 Hz) were 

generated using a single-channel isolated pulse stimulator (Model 2100, A-M 

Systems Inc., Carlsborg, WA, USA) and delivered to the sciatic nerve proximal to 

injury via a silastic cuff. Stimulation of the nerve occurred wirelessly by placing 

the transducer just above the subcutaneous disk implant. A total of 9 trials 

(settings 1-9 on the transducer) with an inter-trial delay of 10 seconds were 

acquired for each animal. Stimulus amplitude ranged from 5001-5009, which was 

equivalent to a voltage output of 0.408-8.16 V from the transducer. Recordings 

were taken from tibialis anterior and lateral head of gastrocnemius muscles by 

placing 30 G needles into the belly of each muscle. Anode and cathode 

connector pins were attached to the needle probes, while a ground connector pin 

was attached to a 25 G needle placed subcutaneously on the back of the animal. 

Measurements were achieved using custom data acquisition software  (RRL 

V.1.3, Red Rock Laboratories). Data was exported for analysis using MATLAB 
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Fig. 4: Formulas to calculate rat sciatic functional index (SFI), posterior 
tibial functional index (TFI), and peroneal functional index (PFI). 

PL is Manual Print Length, TS is Toe Spread, ITS is Intermediate Toe Spread, 
and the subscripts E and N indicate the Experimental and Normal contralateral 
hind paws, respectively. Formulas taken from Bain et al. (1989). 
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CatWalk Parameter Definition 

Paw-related parameters 
Print length length (horizontal direction) of the complete print 
Print width the width (vertical direction) of the complete print 
Print area surface area of the complete print 

Swing 
duration in seconds of no contact of a paw with 

the glass plate 

Swing speed speed (cm/s) of the paw during Swing 

Stride length 
distance (cm) between successive placements of 

the same paw 

Step cycle 
time in seconds between two consecutive initial 

contacts of the same paw [Stand + Swing] 

Duty cycle expresses Stand as a percentage of Step Cycle 
Duty cycle = (Stand)/[(Stand) + (Swing)] * 100 

Max contact max intensity maximum intensity at max contact of a paw 

Non paw-related parameters 

Sciatic functional index  
(SFI) 

measure for the functional recovery of the sciatic 
nerve which innervates the hind paws 

Peroneal functional index 
(PFI) 

measure for the functional recovery of the 
peroneal nerve which innervates the hind paws 

Posterial tibial functional 
index (TFI) 

measure for the functional recovery of the tibial 
nerve which is a branch of the sciatic nerve 

Base of support (BOS) 
front paws 

average width between the front paws  

BOS hind paws average width between the hind paws 

Regularity Index 
expresses the number of normal step sequence 

patterns and total paw placements 

Cadence expressed in steps per second  

 

Table 4: Definitions of CatWalk parameters/variables. 
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software (The Mathworks Inc., Natick, MA, USA) and is expressed as the EMG 

amplitude (mV) ± SEM. 3 animals were removed from EMG analysis due to 

malfunctioning wireless electrodes. Each group contained an n of 4-6 animals.   

 

G. Histological and histochemical processing 

Eight weeks or 56 days post-axotomy after injury, animals were 

anesthetized with isofluorane, and the right anterior tibialis muscle was exposed 

and injected with horseradish peroxidase conjugated to the cholera toxin B 

subunit (BHRP; 0.5 µl, 0.2%; List Biological, Inc.). BHRP labeling permits 

population-level quantitative analysis of motoneuron somal and dendritic 

morphologies (Kurz et al., 1986; Goldstein & Sengelaub, 1990). Forty-eight hours 

after BHRP injection, a period that ensures optimal labeling of motoneurons 

(Kurz et al., 1986; Goldstein & Sengelaub, 1990), animals were weighed, 

anesthetized with Ketamine/Xylazine (i.p.), and perfused intracardially with saline 

followed by cold fixative (4% paraformaldehyde). Tibialis Anterior and lateral 

head of gastrocnemius muscles were extracted and weighed. 

 

1. Motoneuron number and morphology   

The tibialis anterior muscle is innervated by motoneurons located in 

column 4 of the lateral motor column in the L3 spinal segment (Nicolopoulos‐

Stournaras & Iles, 1983). Following perfusion, the lumbar portion of the spinal 

cord of each animal was removed, postfixed 5 hours in 1% paraformaldehyde/ 
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1.25% glutaraldehyde, and then transferred to sucrose phosphate buffer (10% 

w/v, pH 7.4) overnight for cryoprotection. Spinal cords were then embedded in 

gelatin, frozen, and sectioned transversely at 40 µm; all sections were collected 

into four alternate series. One series was stained with thionin for use in cell 

counts. For visualization of BHRP, the three remaining series were immediately 

reacted using a modified tetramethylbenzidine protocol (Mesulam, 1982), 

mounted on gelatin-coated slides, and counterstained with thionin. 

 

2. Motoneuron counts  

To assess potential motoneuron loss after nerve crush, counts of 

motoneurons in the tibialis motor pool were performed. Motoneurons innervating 

the tibialis anterior muscles do not form a discrete nucleus, but instead are 

contained within the large continuous populations of motoneurons located within 

the lateral motor column. Thus, to identify the appropriate area within the lateral 

motor column for motoneuron counts in the unreacted series, we used a method 

similar to that of Little et al. (2009). Briefly, for each animal the range of sections 

in which motoneurons labeled with BHRP after injection into the tibialis anterior 

muscle were present in the reacted series was identified, and then motoneuron 

counts were performed in the appropriate matching sections in the unreacted 

series. For each animal, estimates of the total number of motoneurons in the left 

and right lateral motor columns were obtained using the optical disector method 

as previously described (Little et al., 2009). Counts were made using a video-

based morphometry system (Stereo Investigator; MBF Bioscience, Williston, VT, 
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USA) at 937.5X under brightfield illumination. Motoneurons are easily 

recognizable as large, darkly staining, multipolar cells. A counting frame (110 µm 

X 80 µm) was moved systematically throughout an area of each ventral horn 

(approximately 300 µm X 300 µm, defined by the actual distribution of BHRP-

labeled somata from all of the animals used in the study) in each section within 

the identified range. Only motoneurons in which there was a clear nucleus and 

nucleolus were counted, provided they did not contact the forbidden lines of the 

counting frame; motoneuron nucleoli were counted as they appeared while 

focusing through the z axis, and nucleoli in the first focal plane (i.e., "tops") were 

excluded to avoid double counting. The length of the dissector was 

approximately 16 µm, which was adequate for visualizing nucleoli in multiple 

focal planes. Motoneuron counts were derived from a mean of 15.0 sections 

spaced 480 µm apart and distributed uniformly through the entire rostrocaudal 

extent of the tibialis motoneuron pool range. This sampling scheme produced 

average estimated coefficients of error (CE) of 0.051 for normal animals and 

0.046 for crush animals. Cell counts for each animal were corrected for the 

proportion of sections sampled and reported as per side and as a ratio [(right 

side/left side) X 100]. 

Using similar methods, the number of BHRP-labeled motoneurons was 

assessed in all sections of the reacted series through the entire rostrocaudal 

extent of their distribution for all animals. Counts of labeled tibialis motoneurons 

were made under brightfield illumination, where somata could be visualized and 

cytoplasmic inclusion of BHRP reaction product confirmed. 
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3. Soma volume  

To assess potential changes in motoneuron morphology after nerve crush, 

soma volumes were measured. The volume of tibialis motoneuron somata was 

assessed in at least one set of alternate sections (160 µm apart) using the 

Nucleator method (Gundersen, 1988). A set of 4 rays emanating from a point 

randomly chosen within each BHRP-labeled motoneuron soma was drawn and 

oriented randomly. Soma volumes of an average of 27.3 motoneurons were 

measured for each animal using Stereo Investigator at a final magnification of 

780X. Average estimated coefficients of error (CEs) were 0.022 for normal 

animals and 0.028 for crush animals. Soma volumes within each animal were 

then averaged for statistical analysis. 

 

4. Dendritic length   

To assess potential changes in motoneuron morphology after nerve crush, 

dendritic lengths and distributions were measured. For each animal, dendritic 

lengths in a single representative set of alternate sections were measured under 

darkfield illumination. Beginning with the first section in which BHRP-labeled 

fibers were present, labeling through the entire rostrocaudal extent of the tibialis 

motoneuron dendritic field was assessed in every third section (480 µm apart) in 

three dimensions using a computer-based morphometry system (Neurolucida; 

MBF Bioscience, Williston, VT, USA) at a final magnification of 250X. No attempt 

was made to identify BHRP-labeled fibers as either dendrites or axons. Average 

dendritic length per labeled motoneuron was estimated by summing the 
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measured dendritic lengths of the series of sections, multiplying by three to 

correct for sampling, then dividing by the total number of labeled motoneurons in 

that series. This method does not attempt to assess the actual total dendritic 

length of labeled motoneurons (Kurz et al., 1991), but has been shown to be a 

sensitive and reliable indicator of changes in dendritic morphology in normal 

development (Goldstein & Sengelaub, 1990; Goldstein et al., 1993; Goldstein & 

Sengelaub, 1994), after changes in dendritic interactions (Goldstein et al., 1993), 

afferent input (Kalb, 1994; Hebbeler et al., 2002; Hebbeler & Sengelaub, 2003), 

and after injury (Little et al., 2009; Byers et al., 2012). 

 

5. Dendritic distribution 

To assess potential redistributions of dendrites across treatment groups, 

for each animal the composite dendritic arbor created in the length analysis was 

divided using a set of axes oriented radially around the center of the collective 

labeled somata. These axes divided the spinal cord into twelve bins of 30° each. 

The portion of each animal’s dendritic arbor per labeled motoneuron contained 

within each location was then determined. This method provides a sensitive 

measure of dendritic redistribution in response to changes in dendritic 

interactions (Goldstein et al., 1993), afferent input (Hebbeler et al., 2002; 

Hebbeler & Sengelaub, 2003), and injury (Byers et al., 2012). 
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6. Dendritic extent   

The comparability of BHRP labeling across groups was assessed by 

quantifying both the rostrocaudal and the radial extent of tibialis motoneuron 

dendritic arbors. The rostrocaudal extent of the dendritic arbor was determined 

by recording the rostrocaudal distance spanned by tibialis motoneuron dendrites 

for each animal. The maximal radial extent of the arbor in the transverse plane 

was also measured for each animal, using the same radial axes and resultant 

30° bins used for the dendritic distribution analysis. For each bin, the linear 

distance between the center of the tibialis motor pool and the most distal BHRP-

filled process was measured. Radial dendritic extent is independent of overall 

dendritic length and reflects the maximal linear distance (in the transverse plane) 

of BHRP transport to the most distal dendritic processes. 

 

H. Statistical analysis 

All data were expressed as mean ± SEM. For molecular and behavioral 

analyses, all data were analyzed by t-tests or analyses of variance (one way, two 

way, or repeated measures as appropriate) followed by post hoc analyses using 

either Student-Newman-Keuls or Holm-Šidák with significance at P ≤ 0.05 

(SigmaPlot, version 12.3). 

For behavioral tests, animals were subjected to the tests in a randomized 

order. All statistical tests for the CatWalk behavioral test were performed at a 

two-sided 5% significant level using SAS, version 9.3 (SAS Institute, Cary, North 

Carolina, USA). Statistical significance was evaluated using linear mixed effects 
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models including an interaction term for time as a qualitative variable and 

treatment group. Each model included random intercepts and slopes for speed 

and weight for each animal. Post hoc pairwise multiple comparisons were 

performed within time points using the Holm-Šidák method when group 

differences were detected.  

For histological analyses, all data were analyzed by t-tests or analyses of 

variance (one way, two way, or repeated measures as appropriate) followed by 

post hoc analyses using Fisher’s least significant difference (LSD). 

 

I. Figure preparation 

Digital light micrographs were obtained using an MDS 290 digital camera 

system (Eastman Kodak Company, Rochester, NY, USA).  Brightness and 

contrast of these images were adjusted in Adobe Photoshop (Adobe Systems, 

San Jose, CA, USA). 
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CHAPTER 4: RESULTS 

 

A. Validation experiments 

1. Verification of sciatic nerve crush axotomy 

 We validated our model of sciatic nerve crush axotomy by measuring 

electromyography (EMG) activity of two muscles that are innervated by branches 

of the sciatic nerve — tibialis anterior (TA) and lateral head of gastrocnemius 

(LG). The EMG amplitudes of both the TA and LG muscles (22.89 ± 1.76 mV and 

18.21 ± 1.90 mV, respectively) were significantly reduced in the rats following 

axotomy (0.80 ± 0.13 mV and 0.98 ± 0.18 mV, respectively; P < 0.001; Fig. 5). 

Thus, we achieved successful crush axotomy of the sciatic nerve.   

 

2. Serum testosterone propionate (TP) levels are supraphysiological by 6 

hours post-axotomy 

We have reported previously in hamster and rat that testosterone 

propionate (TP) capsule implants significantly elevate serum levels of 

testosterone (Kujawa et al., 1989; Kinderman & Jones, 1993; Brown et al., 2001; 

Tanzer & Jones, 2004; Hetzler et al., 2008). Serum samples were obtained and 

tested for the presence of systemic TP at 6 hours, 1, 2, 7, and 21 days post-

axotomy to confirm TP diffused out of the Silastic capsules into the blood where it 

could exert its effects. Statistical analysis revealed an overall main effect 

between treatment groups (F3,69 = 63.55; P < 0.001), time (F4,69 = 13.79; P <  
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Fig. 5: Validation of sciatic nerve crush axotomy. 

Data is represented as EMG amplitude (mV) ± SEM. A Student’s t-test was 
utilized for statistical analysis to compare EMG amplitude before axotomy (Ax) to 
after Ax for both tibialis anterior (TA) and lateral head of gastrocnemius (LG) 
muscles. * represents a significant difference between before Ax relative to after 
Ax, at P < 0.05. For each experimental group, n = 23-24 animals/time-point.            
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0.001) as well as an interaction between treatment x time (F12,69 = 6.60; P < 

0.001; Fig. 6). At 6 hours post-axotomy, systemic administration of TP in both the 

TP only (Ax + TP; 31.6 ± 3.8 ng/mL) and the combined treatment (Ax + ES + TP; 

21.8 ± 3.7 ng/mL) groups were significantly increased compared to injury alone 

(Ax only; 2.5 ± 1.8 ng/mL; P< 0.001) and electrical stimulation (ES) treatment 

(1.3 ± 0.8 ng/mL; P < 0.001).  TP-treated animals (15.6 ± 3.1 ng/mL) and animals 

treated with ES plus TP (17.1 ± 2.8 ng/mL) had significantly elevated levels of 

testosterone at 1 day post-axotomy compared to both injury alone (2.1 ± 0.7 

ng/mL; P < 0.001) and ES only animals (2.4 ± 0.8 ng/mL; P < 0.001). At 2 days 

post-axotomy, TP-treated animals (10.6 ± 1.4 ng/mL) and ES plus TP-treated 

animals (15.1 ± 1.7 ng/mL) had significantly elevated levels of testosterone 

relative to both injury alone (1.0 ± 0.3 ng/mL; P = 0.006 and P < 0.001, 

respectively) and ES-treated animals (1.3 ± 0.04 ng/mL; P = 0.007 and P < 

0.001, respectively). By 7 days post-axotomy, administration of TP alone was 

significantly higher than ES-treated animals (11.2 ± 0.7 ng/mL and 2.5 ± 0.7 

ng/mL, respectively; P = 0.026), but there was no significant increase relative to 

injury alone (3.7 ± 0.9 ng/mL) or the combined treatment (7.3 ± 2.7 ng/mL). At 21 

days post-axotomy, TP-treated animals (7.9 ± 1.0 ng/mL) had a significantly 

enhanced serum level of TP compared to injury alone (2.3 ± 0.4 ng/mL; P = 0.05) 

and ES only (2.7 ± 0.6 ng/mL; P = 0.031); however, the combined treatment (8.0 

± 2.0 ng/mL) was not significantly different from any of the other groups.    
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Fig. 6: Serum TP levels post-axotomy. 

Shown is a time-course of the serum testosterone level at 6 hours, 1, 2, 7, and 
21 days post-axotomy (Ax). Control animals, which were axotomized but left 
untreated, and animals receiving Ax + ES are compared to animals receiving Ax 
+ TP and Ax + ES + TP. Data is represented as serum testosterone 
concentration (ng/mL) ± SEM. A two-way ANOVA (treatment x time) with a 
Student-Newman-Keuls multiple comparison post hoc test was utilized for 
statistical analysis among all experimental groups. * represents a significant 
difference between Ax + TP or Ax + ES + TP compared to Ax only, at P < 0.05.  
# represents a significant difference between Ax + TP or Ax + ES + TP relative to 
Ax + ES, at P < 0.05. For each experimental group, n = 6-7 animals/time-point. 
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3. Expression of βII-tubulin mRNA increases with axotomy  

We have demonstrated previously that axotomy alone significantly 

increased the mRNA expression of βII-tubulin in facial and sciatic motoneurons 

(Jones & Oblinger, 1994; Brown et al., 2001); however, this data was obtained 

utilizing a sensitive technique, in situ hybridization, and localized βII-tubulin 

mRNA to the cell bodies of motoneurons. In the current study, mRNA was 

extracted from the injured and uninjured ventral horns of the lumbar spinal cord 

which contains several uninjured cell types, in addition to the cell bodies of the 

injured motoneurons. We examined βII-tubulin mRNA expression in two different 

sciatic nerve crush injury models — distal and proximal — to confirm the mRNA 

samples from the injured cells were not diluted by mRNA from uninjured cells. 

We found that there was an upregulation in βII-tubulin mRNA at 7 days post-

axotomy after both distal and proximal sciatic nerve crush injuries (Fig. 7). In 

addition, there was a statistically significant increase in the expression of βII-

tubulin mRNA with the proximal sciatic nerve crush, compared to the distal sciatic 

nerve crush (50.4 ± 15.0% and  13.2 ± 12.1%, respectively; P = 0.05; Fig. 7). 

Thus, we conclude that our method of sectioning the spinal cord allowed us to 

detect differences in gene expression. 

 

4. Contralateral effect of regeneration-associated gene expression 

Previously, we have reported changes in mRNA as a percent ratio of 

injured (axotomy) to uninjured (control) facial nuclei (Haulcomb et al., 2014). 

Unlike the right and left facial nuclei, there is significant cross-talk among right  
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Fig. 7: Distal vs. proximal injury βII-tubulin mRNA expression. 

Shown is the average percent of mRNA expression of βII–tubulin in the 
axotomized ventral horn of the spinal cord (Ax) relative to the non-axotomized 
control (C) ventral horn of the spinal cord at 7 days post-axotomy. Two injury 
paradigms were examined: distal and proximal nerve injuries. Data is 
represented as average percent of βII–tubulin mRNA expression ± SEM. A 
Student’s t-test was utilized for statistical analysis to compare βII–tubulin mRNA 
following distal and proximal nerve injuries. * represents a significant difference 
between distal and proximal nerve injuries, at P = 0.05. For each experimental 
group, n = 5-6 animals/injury. 
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and left sides of the spinal cord (Kiernan & Rajakumar, 2013). Thus, we 

examined whether axotomy and/or treatment influenced levels of gene 

expression in the contralateral ventral horn of the spinal cord and whether the 

contralateral side could be utilized as an internal control for analysis of 

regeneration-associated gene expression. This dissertation analyzed the relative 

mRNA expression of several genes involved in the regeneration process over the 

time-course of 6 hours, 1, 2, 7, and 21 days post-axotomy (Table 2). 

 

a. Cytoskeleton genes: αI–tubulin and βII–tubulin 

Statistical analysis revealed an overall main effect for the relative mRNA 

expression of αI–tubulin between treatment groups (F3,101 = 8.05; P < 0.001), 

time(F4,101 = 3.78; P = 0.007), as well as an interaction between treatment x time 

(F12,101 = 4.42; P < 0.001; Fig. 8). Injury alone significantly decreased αI–tubulin 

expression at 1 day post-axotomy (13.594 ± 0.508) compared to 6 hours, 2, 7, 

and 21 days post-axotomy (19.755 ± 1.322, 18.339 ± 1.279, 17.903 ± 1.615, and 

17.912 ± 1.033, respectively; P < 0.05). Administration of ES did not alter αI–

tubulin mRNA levels at 6 hours, 1, 2, and 7 days post-axotomy (18.192 ± 1.578, 

17.068 ± 1.267, 16.014 ± 1.835, and 19.447 ± 1.210, respectively), but αI–tubulin 

mRNA was significantly downregulated at the later time-point of 21 days post-

axotomy with ES treatment (13.270 ± 1.137) relative to both 6 hours and 7 days 

post-axotomy (P < 0.05; Fig. 8A). In contrast to treatment with ES, systemic 

treatment of TP alone did not alter αI–tubulin mRNA across the time-course of 6 

hours, 1, 2, 7, and 21 days post-axotomy (17.843 ± 1.013, 16.983 ± 1.587,  
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Fig. 8: Contralateral αI–tubulin mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of αI–tubulin in 
the uninjured ventral horn at 6 hours, 1, 2, 7, and 21 days post-axotomy (Ax). 
Control animals, which were axotomized but left untreated, are compared to 
axotomized animals receiving only ES (A), only TP (B), or the combination of 
both ES and TP (C). (D) Represents the comparison between ES, TP, and the 
combination of ES and TP. Data is represented as relative αI–tubulin mRNA 
expression ± SEM. A two-way ANOVA (treatment x time) with a Student-
Newman-Keuls multiple comparison post hoc test was utilized for statistical 
analysis among all experimental groups. * represents a significant difference 
between ES, TP, or ES and TP compared to axotomy alone, at P < 0.05.             
# represents a significant difference between ES, TP, or ES and TP, at P < 0.05. 
For each experimental group, n = 6-7 animals/time-point.   
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15.903 ± 0.972, 17.818 ± 0.878, and 17.274 ± 1.443, respectively; Fig. 8B). The 

combined treatment maintained levels of αI–tubulin mRNA from 6 hours to 1 day 

post-axotomy (12.980 ± 0.937 and 16.062 ± 0.971, respectively) before peaking 

at a significant level at 2 days post-axotomy (19.444 ± 0.949; P ≤ 0.05; Fig. 8C). 

The combination of ES and TP significantly downregulated the relative mRNA 

expression of αI–tubulin by 7 and 21 days post-axotomy (12.387 ± 1.077 and 

9.607 ± 1.178, respectively; P < 0.001) relative to 2 days post-axotomy. Only at 

the latest time-point of 21 days post-axotomy did ES of the sciatic nerve elicit a 

significant decrease in the expression of αI–tubulin relative to axotomy alone (P < 

0.05; Fig. 8A). In contrast, treatment with TP did not alter αI–tubulin mRNA 

relative to axotomy alone at any time-point (Fig. 8B). The combined treatment 

group significantly downregulated the expression of αI–tubulin at 6 hours, 7, and 

21 days post-axotomy compared to all other groups (P < 0.05; Fig. 8C and Fig. 

8D, respectively).  

We found an overall main effect in the relative mRNA expression of βII–

tubulin between treatment groups (F3,100 = 4.00; P = 0.010), time (F4,101 = 13.95; 

P < 0.001), as well as an interaction between treatment x time (F12,100 = 3.48; P < 

0.001; Fig. 9). Axotomy alone significantly enhanced the relative expression of 

βII–tubulin mRNA at 7 days post-axotomy (0.949 ± 0.117) relative to 6 hours and 

1 day post-axotomy (0.626 ± 0.021 and 0.596 ± 0.087, respectively; P < 0.05), 

but not to 2 and 21 days post-axotomy (0.720 ± 0.031 and 1.013 ± 0.132, 

respectively; Fig. 9). Similar to injury alone, ES of the sciatic nerve significantly 

peaked βII–tubulin mRNA expression at 7 days post-axotomy (1.155 ± 0.129)  
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Fig. 9: Contralateral βII–tubulin mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of βII–tubulin in 
the uninjured ventral horn at 6 hours, 1, 2, 7, and 21 days post-axotomy (Ax). 
Control animals, which were axotomized but left untreated, are compared to 
axotomized animals receiving only ES (A), only TP (B), or the combination of 
both ES and TP (C). (D) Represents the comparison between ES, TP, and the 
combination of ES and TP. Data is represented as relative βII–tubulin mRNA 
expression ± SEM. A two-way ANOVA (treatment x time) with a Student-
Newman-Keuls multiple comparison post hoc test was utilized for statistical 
analysis among all experimental groups. * represents a significant difference 
between ES, TP, or ES and TP compared to axotomy alone, at P < 0.05.             
# represents a significant difference between ES, TP, or ES and TP, at P < 0.05. 
For each experimental group, n = 5-7 animals/time-point.     
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compared to 6 hours, 1, 2, and 21 days post-axotomy (0.620 ± 0.073, 0.827 ± 

0.081, 0.851 ± 0.129, and 0.747 ± 0.039, respectively; P < 0.05; Fig. 9A). TP-

treated animals demonstrated a significant, steady increase in relative mRNA 

expression of βII–tubulin at the early time-points of 6 hours, 1, and 2 days post-

axotomy (0.450 ± 0.056, 0.731 ± 0.058, and 0.817 ± 0.100, respectively; P < 

0.05) until it peaked at 7 days post-axotomy (1.045 ± 0.095) relative to 6 hours 

and 1 day post-axotomy (P < 0.05; Fig. 9B). At the latest time-point of 21 days 

post-axotomy (0.986 ± 0.100), βII–tubulin remained significantly upregulated with 

TP treatment compared to 6 hours post-axotomy (P < 0.001). Administration of 

ES and TP demonstrated a significant increase in βII–tubulin mRNA expression 

from 6 hours to 1 day post-axotomy (0.416 ± 0.041 and 0.752 ± 0.058, 

respectively; P < 0.05; Fig. 9C). βII–tubulin levels remained significantly elevated 

in animals treated with both ES and TP at 2 and 7 days post-axotomy (0.965 ± 

0.093 and 0.739 ± 0.091, respectively; P < 0.05) before significantly decreasing 

at 21 days post-axotomy (0.421 ± 0.056; P < 0.05). No differences in βII–tubulin 

mRNA expression, with respect to injury alone, were observed in ES- or TP-

treated animals (Fig. 9A and Fig. 9B, respectively). The combined treatment of 

ES plus TP demonstrated a significantly lower βII–tubulin expression at 7 days 

post-axotomy compared to either treatment alone (P < 0.05; Fig. 9D). At the 

latest time-point of 21 days post-axotomy, ES and TP demonstrated a significant 

decrease in βII–tubulin expression compared to all other groups (P < 0.05).  
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b. Axonal growth genes: gap-43 and crmp2 

When investigating the relative mRNA expression of 43-kiloDalton growth-

associated protein (gap-43) in the contralateral ventral horn we observed a main 

effect of post-operative time (F4,99 = 4.14; P = 0.004) and an interaction between 

treatment x time (F12,99 = 2.53; P = 0.006; Fig. 10); although, there was no overall 

effect between treatment groups (F3,99 = 0.91; P = 0.44; Fig. 10). Axotomy alone 

did not alter the relative level of gap-43 expression throughout the time course of 

6 hours, 1, 2, 7, or 21 days post-axotomy (0.313 ± 0.019, 0.363 ± 0.030, 0.377 ± 

0.030, 0.304 ± 0.026, and 0.365 ± 0.045, respectively; Fig. 10). In animals 

receiving ES treatment, the value of gap-43 mRNA expression remained steady 

at 6 hours, 1, 2, and 7 days post-axotomy (0.321 ± 0.045, 0.323 ± 0.039, 0.352 ± 

0.042, and 0.388 ± 0.050, respectively), but significantly declined at the latest 

time-point of 21 days post-axotomy (0.237 ± 0.017; P < 0.05; Fig. 10A). Similar 

to axotomy alone, administration of TP had no effect on the relative mRNA 

expression of gap-43 at 6 hours, 1, 2, 7, or 21 days post-axotomy (0.388 ± 0.040, 

0.290 ± 0.028, 0.357 ± 0.022, 0.386 ± 0.036, and 0.321 ± 0.023, respectively; 

Fig. 10B). Unlike animals treated with TP, treatment with the combination of ES 

plus TP significantly upregulated the mRNA expression of gap-43 at 1 and 2 

days post-axotomy compared to 6 hours-axotomy (0.364 ± 0.054, 0.462 ± 0.075, 

and 0.217 ± 0.024, respectively; P < 0.05; Fig. 10C). The combination treatment 

demonstrated a significant decrease in gap-43 mRNA at both 7 and 21 days 

post-axotomy (0.315 ± 0.041 and 0.213 ± 0.018, respectively) relative to 2 days 

post-axotomy (P < 0.05). In animals receiving ES treatment, the value of gap-43  
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Fig. 10: Contralateral gap-43 mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of 43-kiloDalton 
growth-associated protein (gap-43) in the uninjured ventral horn at 6 hours, 1, 2, 
7, and 21 days post-axotomy (Ax). Control animals, which were axotomized but 
left untreated, are compared to axotomized animals receiving only ES (A), only 
TP (B), or the combination of both ES and TP (C). (D) Represents the 
comparison between ES, TP, and the combination of ES and TP. Data is 
represented as relative gap-43 mRNA expression ± SEM. A two-way ANOVA 
(treatment x time) with a Student-Newman-Keuls multiple comparison post hoc 
test was utilized for statistical analysis among all experimental groups.                 
* represents a significant difference between ES, TP, or ES and TP compared to 
axotomy alone, at P < 0.05. # represents a significant difference between ES, 
TP, or ES and TP, at P < 0.05. For each experimental group, n = 5-6 
animals/time-point. 
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expression was significantly lower at 21 days post-axotomy compared to injury 

alone (P = 0.05; Fig. 10A). Unlike ES-treated animals, TP-treated animals were 

similar to axotomized, untreated animals at all time-points (Fig. 10B). In contrast 

to TP treatment, the combination treatment of ES and TP was significantly 

downregulated at 6 hours post-axotomy compared to TP-treated animals and at 

21 days post-axotomy relative to axotomy alone (P ≤ 0.05; Fig. 10D and Fig. 

10C, respectively).  

Overall, we observed a main effect between treatment groups (F3,100 = 

6.68; P < 0.001), time (F4,100 = 5.40; P < 0.001), as well as an interaction 

between treatment x time (F12,100 = 4.47; P < 0.001; Fig. 11) when examining the 

relative mRNA expression of collapsin response mediator protein 2 (crmp2).  In 

axotomized, untreated animals there was a significant decline in crmp2 mRNA 

expression at 1 day post-axotomy compared to 6 hours post-axotomy (1.134 ± 

0.050 and 1.556 ± 0.077, respectively; P < 0.05; Fig. 11). By 2 days post-

axotomy (1.553 ± 0.136), crmp2 levels returned to levels similar to that of 6 hours 

post-axotomy (P < 0.05) where they were maintained throughout the rest of the 

time-course of 7 and 21 days post-axotomy (1.425 ± 0.107 and 1.520 ± 0.060, 

respectively). Treatment with ES did not alter crmp2 expression at the earlier 

time-points of 6 hours, 1, 2, and 7 days post-axotomy (1.518 ± 0.140, 1.355 ± 

0.093, 1.310 ± 0.147, and 1.516 ± 0.107, respectively), but did significantly 

downregulate crmp2 expression at 21 days post-axotomy (1.061 ± 0.114) relative 

to 6 hours and 7 days post-axotomy (P < 0.05; Fig. 11A). In contrast to treatment 

with ES, administration of TP did not alter the relative mRNA expression of  
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Fig. 11: Contralateral crmp2 mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of collapsin 
response mediator protein 2 (crmp2) in the uninjured ventral horn at 6 hours, 1, 
2, 7, and 21 days post-axotomy (Ax). Control animals, which were axotomized 
but left untreated, are compared to axotomized animals receiving only ES (A), 
only TP (B), or the combination of both ES and TP (C). (D) Represents the 
comparison between ES, TP, and the combination of ES and TP. Data is 
represented as relative crmp2 mRNA expression ± SEM. A two-way ANOVA 
(treatment x time) with a Student-Newman-Keuls multiple comparison post hoc 
test was utilized for statistical analysis among all experimental groups.                   
* represents a significant difference between ES, TP, or ES and TP compared to 
axotomy alone, at P < 0.05. # represents a significant difference between ES, 
TP, or ES and TP, at P < 0.05. For each experimental group, n = 6 animals/time-
point. 
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crmp2 throughout the entire time-course of 6 hours, 1, 2, 7, and 21 days (1.478 ± 

0.065, 1.326 ± 0.138, 1.368 ± 0.083, 1.404 ± 0.042, and 1.389 ± 0.109, 

respectively; Fig. 11B). The combination of ES and TP significantly elevated 

crmp2 levels at 2 days post-axotomy compared to 6 hours and 1, 7, and 21 days 

post-axotomy (1.709 ± 0.097, 1.082 ± 0.070, 1.255 ± 0.066, 1.040 ± 0.108, and 

0.787 ± 0.095, respectively; P < 0.05; Fig. 11C). Crmp2 expression was similar 

between systemic TP treatment compared to axotomy alone throughout the 

entire time-course (Fig. 11B); however, animals treated with ES demonstrated a 

significant decrease in crmp2 mRNA at the latest time-point of 21 days post-

axotomy compared to injury alone and TP-treated animals (P < 0.05; Fig. 11A 

and Fig. 11D, respectively). Animals treated with the combination of ES and TP 

demonstrated a significant downregulation in the mRNA expression of crmp2 at 6 

hours and 7 days post-axotomy compared to all groups (P < 0.05) and at 21 days 

post-axotomy relative to axotomy alone and TP treatment (P < 0.001; Fig. 11D). 

In contrast, the combination treatment significantly elevated crmp2 mRNA 

expression at 2 days post-axotomy compared to either treatment alone (P < 0.05; 

Fig. 11D). 

 

c. Growth factor and neurotrophic genes: bdnf, gdnf, and pacap 

We found an overall main effect in the relative mRNA expression of brain 

derived neurotrophic factor (bdnf) between treatment groups (F3,98 = 10.09; P < 

0.001), time (F4,98 = 4.29; P = 0.003), as well as an interaction between treatment 

x time (F12,98 = 3.18; P < 0.001; Fig. 12). The time-course of bdnf expression at 6  
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Fig. 12: Contralateral bdnf mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of brain derived 
neurotrophic factor (bdnf) in the uninjured ventral horn at 6 hours, 1, 2, 7, and 21 
days post-axotomy (Ax). Control animals, which were axotomized but left 
untreated, are compared to axotomized animals receiving only ES (A), only TP 
(B), or the combination of both ES and TP (C). (D) Represents the comparison 
between ES, TP, and the combination of ES and TP. Data is represented as 
relative bdnf mRNA expression ± SEM. A two-way ANOVA (treatment x time) 
with a Student-Newman-Keuls multiple comparison post hoc test was utilized for 
statistical analysis among all experimental groups. * represents a significant 
difference between ES, TP, or ES and TP compared to axotomy alone, at           
P < 0.05. # represents a significant difference between ES, TP, or ES and TP, at 
P < 0.05.  For each experimental group, n = 5-7 animals/time-point.   
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hours, 1, 2, 7, and 21 days post-axotomy was not altered by axotomy alone 

(0.00185 ± 0.00017, 0.00192 ± 0.00015, 0.00151 ± 0.000007, 0.00162 ± 

0.00019, and 0.00241 ± 0.00026, respectively; Fig. 12). In contrast to axotomy 

alone, ES of the sciatic nerve significantly upregulated bdnf expression at 7 days 

post-axotomy compared to 6 hours, 1, 2, and 21 days post-axotomy (0.00260 ± 

0.00037, 0.00156 ± 0.00025, 0.00130 ± 0.00011, 0.00179 ± 0.00024, and 

0.00121 ± 0.00014, respectively; Fig. 12A). We observed a significant 

downregulation in the relative mRNA expression of bdnf in TP-treated animals at 

1 day post-axotomy compared to 6 hours post-axotomy (0.00156 ± 0.00022 and 

0.00271 ± 0.00014, respectively; P < 0.05; Fig. 12B). With TP treatment, bdnf 

levels were maintained at 2 days post-axotomy (0.00223 ± 0.00024) but peaked 

to a significant level at 7 days post-axotomy (0.00296 ± 0.00047) compared to 1 

day post-axotomy (P < 0.001) and the latest time-point of 21 days post-axotomy 

(0.00209 ± 0.00030; P < 0.05). Similar to axotomized animals, bdnf expression in 

animals treated with the combination of ES and TP remained unaltered 

throughout the entire time-course of 6 hours, 1, 2, 7, and 21 days post-axotomy 

(0.00139 ± 0.00017, 0.00144 ± 0.00019, 0.00184 ± 0.00018, 0.00173 ± 0.00018, 

and 0.00119 ± 0.00021, respectively; Fig. 12C). In animals treated with ES there 

was a significant upregulation in bdnf expression at 7 days post-axotomy relative 

to injury alone (P < 0.05; Fig. 12A). In contrast, a significant downregulation in 

bdnf expression was observed at 21 days post-axotomy compared to injury alone 

and TP-treated animals (P < 0.05; Fig. 12D). Administration of TP significantly 

increased bdnf levels at 6 hours post-axotomy compared to all other groups (P < 
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0.05) and at 7 days post-axotomy relative to injury alone and the combination 

treatment (P < 0.05; Fig. 12B and Fig. 12D). Animals treated with the 

combination of ES plus TP demonstrated a significant downregulation in bdnf 

mRNA expression at 21 days post-axotomy compared to injury alone and TP-

treated animals (P < 0.05; Fig. 12C and Fig. 12D, respectively). 

The expression of glial cell derived neurotrophic factor (gdnf) mRNA 

following axotomy led to a main effect of treatment group (F3,96 = 4.77; P = 

0.004); although, there was no overall effect of post-operative time (F4,96 = 1.96; 

P = 0.107) or interaction between group x post-operative time (F12,96 = 0.760; P = 

0.690; Fig. 13). There was a significant difference in gdnf expression in the 

combined treatment group compared to injury alone and either treatment alone 

(P < 0.05).  

Evaluation of the relative mRNA expression of pituitary adenylate cyclase-

activating peptide (pacap) after axotomy revealed a main effect of post-operative 

time (F4,94 = 2.68; P = 0.036) and treatment x time (F12,94 = 2.074; P = 0.026) but 

not treatment (F3,94 = 2.361; P = 0.076; Fig. 14). The time-course of pacap 

expression at 6 hours, 1, 2, 7, and 21 days post-axotomy was not altered with 

axotomy (0.0225 ± 0.0027, 0.0424 ± 0.0087, 0.0281 ± 0.0074, 0.0268 ± 0.0062, 

and 0.0251 ± 0.0031, respectively; Fig. 14), treatment with ES (0.0307 ± 0.0079, 

0.0227 ± 0.0009, 00.0266 ± 0.0006, 0.0305 ± 0.0046, and 0.0136 ± 0.0013, 

respectively; Fig. 14A), or the combined treatment (0.0164 ± 0.0022, 0.0212 ± 

0.0012, 0.0239 ± 0.0030, 0.0342 ± 0.0052, and 0.0156 ± 0.0014, respectively; 

Fig. 14C). In contrast, administration of TP significantly decreased pacap  
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Fig. 13: Contralateral gdnf mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of glial cell 
derived neurotrophic factor (gdnf) in the uninjured ventral horn at 6 hours, 1, 2, 7, 
and 21 days post-axotomy (Ax). Control animals, which were axotomized but left 
untreated, are compared to axotomized animals receiving only ES (A), only TP 
(B), or the combination of both ES and TP (C). (D) Represents the comparison 
between ES, TP, and the combination of ES and TP. Data is represented as 
relative gdnf mRNA expression ± SEM. A two-way ANOVA (treatment x time) 
with a Student-Newman-Keuls multiple comparison post hoc test was utilized for 
statistical analysis among all experimental groups. * represents a significant 
difference between ES, TP, or ES and TP compared to axotomy alone, at           
P < 0.05. # represents a significant difference between ES, TP, or ES and TP, at 
P < 0.05. For each experimental group, n = 5-6 animals/time-point.    
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Fig. 14: Contralateral pacap mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of pituitary 
adenylate cyclase-activating peptide (pacap) in the uninjured ventral horn at 6 
hours, 1, 2, 7, and 21 days post-axotomy (Ax). Control animals, which were 
axotomized but left untreated, are compared to axotomized animals receiving 
only ES (A), only TP (B), or the combination of both ES and TP (C). (D) 
Represents the comparison between ES, TP, and the combination of ES and TP. 
Data is represented as relative pacap mRNA expression ± SEM. A two-way 
ANOVA (treatment x time) with a Student-Newman-Keuls multiple comparison 
post hoc test was utilized for statistical analysis among all experimental groups.                 
* represents a significant difference between ES, TP, or ES and TP compared to 
axotomy alone, at P < 0.05. # represents a significant difference between ES, 
TP, or ES and TP, at P < 0.05. For each experimental group, n = 5-6 
animals/time-point. 
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expression at 1, 2, and 21 days post-axotomy relative to 6 hours post-axotomy 

(0.0211 ± 0.0043, 0.0277 ± 0.0039, 0.0236 ± 0.0055, and 0.0468 ± 0.0105, 

respectively; P < 0.05) but pacap expression at 6 hours post-axotomy was similar 

to 7 days post-axotomy (0.0345 ± 0.0102; Fig. 14B). ES treatment alone 

significantly downregulated pacap mRNA expression compared to injury alone (P 

< 0.05; Fig. 14A). Relative mRNA expression of pacap was significantly higher at 

6 hours post-axotomy in TP-treated animals compared to all other groups (P < 

0.05; Fig. 14B). At 2 days post-axotomy, TP treatment significantly 

downregulated pacap mRNA compared to axotomy alone (P < 0.05). Similar to 

TP treatment, the combined treatment also significantly downregulated pacap 

mRNA at 1 day post-axotomy compared to axotomy alone (P < 0.05; Fig. 14C).       

 

d. Plasticity gene: neuritin 

The extended time course did not reveal any differences between 

treatment groups after axotomy for neuritin (F3,100 = 1.18; P = 0.320) or an 

interaction between treatment x post-operative time (F12,100 = 0.99; P = 0.466; 

Fig. 15). However, analysis did reveal a main effect of post-operative time (F4,100 

= 3.06; P = 0.020; Fig. 15).  
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Fig. 15: Contralateral neuritin mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of neuritin in the 
uninjured ventral horn at 6 hours, 1, 2, 7, and 21 days post-axotomy (Ax). Control 
animals, which were axotomized but left untreated, are compared to axotomized 
animals receiving only ES (A), only TP (B), or the combination of both ES and TP 
(C). (D) Represents the comparison between ES, TP, and the combination of ES 
and TP. Data is represented as relative neuritin mRNA expression ± SEM. A two-
way ANOVA (treatment x time) with a Student-Newman-Keuls multiple 
comparison post hoc test was utilized for statistical analysis among all 
experimental groups. * represents a significant difference between ES, TP, or ES 
and TP compared to axotomy alone, at P < 0.05. # represents a significant 
difference between ES, TP, or ES and TP, at P < 0.05. For each experimental 
group, n = 4-7 animals/time-point.            
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e. Summary 

In this study, we characterized the molecular effects of ES and TP on the 

expression of 8 genes associated with axonal regeneration on the contralateral 

side of the lumbar ventral horn following sciatic nerve crush axotomy. We found 

the expression of 3 out of 8 regeneration-associated genes was altered following 

axotomy. Moreover, our results indicate that ES and/or TP treatment modified the 

expression of 6 out of 8 genes following axotomy. Our results demonstrate that 

ES and TP alter gene expression in very distinct patterns when administered 

alone, and have a combined suppressive effect when administered together 

(Table 5). We have categorized the genes into three groups: (1) the individual 

treatments altered expression relative to axotomy alone (i.e. differential), (2) the 

combined treatment altered expression relative to both of the individual 

treatments (i.e. additive), (3) treatment did not alter gene expression (i.e. no 

effect; Table 6). In summary, ES and TP differentially altered the expression of 

gap-43, bdnf, and pacap, whereas the combination of both ES and TP exhibited 

an additive downregulation in the expression of αI-tubulin, βII-tubulin, and crmp2. 

In addition, neither treatment altered the expression of gdnf and neuritin. 
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Gene 
Early 

(6 hours-2 days) 
Middle 

(7 days) 
Late 

(21 days) 

ES    
gap-43 - - ↓ 
crmp2 - - ↓ 
bdnf - ↑ ↓ 

pacap ↓ - - 
TP    

bdnf ↑ ↑ - 
pacap ↑ , ↓ - - 

ES + TP    
αI–tubulin ↓ ↓ ↓ 
βII–tubulin - - ↓ 

gap-43 - - ↓ 
crmp2 ↓ ↓ ↓ 
bdnf - - ↓ 

pacap ↓ - - 
 

Table 5: Summary of contralateral mRNA expression. 
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Change in Expression Sciatic Nerve Crush Injury 

Differential gap-43, bdnf, and pacap 
Additive αI-tubulin, βII-tubulin, and crmp2 

No change gdnf and neuritin 

 

Table 6: Differential and additive effects of ES and TP on contralateral gene 
expression. 
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B. Effects of ES and TP on regeneration-associated gene expression 

Since we found a significant change in mRNA expression with either 

treatment and/or time in 6 out of 8 genes, we did not use the contralateral side as 

an internal control. Therefore, all data is expressed as the relative mRNA 

expression from the ipsilateral ventral horn of the lumbar spinal cord. 

Experiments were carried out over the time-course of 6 hours, 1, 2, 7, and 21 

days post-axotomy.  

 

a. Cytoskeleton genes: αI–tubulin and βII–tubulin 

Microtubules are comprised of two members of the tubulin family, αI–

tubulin and βII–tubulin. In order for the axon to elongate, the cytoskeletal 

architecture must remodel. These subunits provide cytoskeleton support and 

have been demonstrated to increase following injury (Jones & Oblinger, 1994; 

Brown et al., 2001; Sharma et al., 2010a). In addition, αI–tubulin and βII–tubulin 

are differentially regulated by ES and TP following cranial and spinal nerve injury 

(Brown et al., 2001; Al-Majed et al., 2004; Sharma et al., 2010a). Although it is 

known that ES elevates αI–tubulin and that TP elevates βII–tubulin following 

spinal nerve injury, it remains to be determined whether the combination of ES 

and TP has an additive effect on tubulin expression.  

A two-way ANOVA for the relative mRNA expression of ipsilateral ventral 

horn αI–tubulin revealed no differences across time (F3,101 = 2.02; P = 0.116) or 

between treatment groups (F4,101 = 1.81; P = 0.134; Fig. 16). In contrast, 
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statistical analysis revealed a significant interaction between treatment x time 

(F12,101 = 3.67; P < 0.001; Fig. 16). Axotomy alone significantly decreased αI–

tubulin expression at 1 day post-axotomy relative to 6 hours post-axotomy 

(14.758 ± 0.536 and 21.922 ± 2.002, respectively; P < 0.05; Fig. 16). For the 

remaining time-points of 2, 7, and 21 days post-axotomy αI–tubulin levels were 

maintained in axotomized animals (18.902 ± 2.874, 21.189 ± 2.458, and 18.489 ± 

1.953, respectively). ES of the sciatic nerve maintained αI–tubulin mRNA values 

at 6 hours, 1, 2, and 7 days post-axotomy (20.627 ± 2.352, 17.080 ± 1.185, 

18.219 ± 1.587, and 22.629 ± 2.127, respectively; Fig. 16A); however, a 

significant decline in αI–tubulin mRNA was observed at the latest time-point of 21 

days post-axotomy (15.488 ± 1.413) compared to 7 days post-axotomy (P < 0.05; 

Fig. 16A). Unlike that observed with axotomy alone and ES treatment, αI–tubulin 

mRNA expression was unaffected by TP treatment at 6 hours, 1, 2, 7, and 21 

days post-axotomy (18.797 ± 2.471, 17.784 ± 1.747, 20.385 ± 1.052, 18.757 ± 

2.358, and 22.813 ± 0.956, respectively; Fig. 16B). There was a transient 

upregulation of αI–tubulin with the combination treatment of ES and TP at 1 and 

2 days post-axotomy relative to 6 hours post-axotomy (21.985 ± 1.665, 21.401 ± 

1.778, and 13.848 ± 0.388, respectively; P < 0.05; Fig. 16C). Levels of αI–tubulin 

started to decline in animals treated with ES and TP at 7 and 21 days post-

axotomy (16.727 ± 1.115 and 11.170 ± 1.295, respectively) but were only 

significantly lower at the latest time-point relative to 1 and 2 days post-axotomy 

(P < 0.001). ES and TP alone had no effect on expression levels of αI–tubulin  
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Fig. 16: Ipsilateral αI–tubulin mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of αI–tubulin in 
the injured ventral horn at 6 hours, 1, 2, 7, and 21 days post-axotomy (Ax). 
Control (C) animals, which were axotomized but left untreated, are compared to 
axotomized animals receiving only ES (A), only TP (B), or the combination of 
both ES and TP (C). (D) Represents the comparison between ES, TP, and the 
combination of ES and TP. Data is represented as relative αI–tubulin mRNA 
expression ± SEM. A two-way ANOVA (treatment x time) with a Student-
Newman-Keuls multiple comparison post hoc test was utilized for statistical 
analysis among all experimental groups. * represents a significant difference 
between ES, TP, or ES and TP compared to axotomy alone, at P < 0.05.             
# represents a significant difference between ES, TP, or ES and TP, at P < 0.05. 
For each experimental group, n = 6-7 animals/time-point.   
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throughout the studied time-course compared to axotomy alone (Fig. 16A and 

Fig. 16B, respectively). In contrast, the combined treatment significantly 

downregulated αI–tubulin at 6 hours post-axotomy relative to axotomy alone and 

ES treatment (P < 0.05; Fig. 16C and Fig. 16D, respectively). At 1 day post-

axotomy, the combined treatment of ES plus TP significantly elevated αI–tubulin 

expression relative to axotomy alone (P < 0.05; Fig. 16C). By 21 days post-

axotomy, αI–tubulin levels were significantly lower in animals that received the 

combined treatment relative to axotomy alone and TP treatment (P < 0.05; Fig. 

Fig. 16C and Fig. 16D, respectively). 

In the current study, the extended time course of the relative mRNA 

expression of βII–tubulin revealed a main effect of time (F4,100 = 11.81; P < 0.001) 

and treatment x time (F12,100 = 2.76; P = 0.003), but there was no statistical 

interaction between treatment groups (F3,100 = 1.43; P = 0.240; Fig. 17). In 

axotomized, untreated animals βII–tubulin expression was maintained at 6 hours, 

1, 2, and 21 days post-axotomy (0.723 ± 0.061, 0.587 ± 0.060, 0.778 ± 0.125, 

and 0.827 ± 0.087, respectively) but peaked at 7 days post-axotomy (1.052 ± 

0.134) relative to 1 day post-axotomy (P < 0.05; Fig. 17). Treatment with ES 

significantly upregulated βII–tubulin expression at 7 days post-axotomy relative to 

6 hours, 1, 2, and 21 days post-axotomy (1.181 ± 0.135, 0.697 ± 0.074, 0.751 ± 

0.022, 0.758 ± 0.074, and 0.710 ± 0.073, respectively; P < 0.05; Fig. 17A). 

Systemic administration of TP sustained βII–tubulin levels at the earlier time-

points of 6 hours, 1, and 2 days post-axotomy (0.518 ± 0.081, 0.687 ± 0.062, and 

0.832 ± 0.085, respectively; Fig. 17B). By 7 and 21 days post-axotomy (1.020 ±  
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Fig. 17: Ipsilateral βII–tubulin mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of βII–tubulin in 
the injured ventral horn at 6 hours, 1, 2, 7, and 21 days post-axotomy (Ax). 
Control (C) animals, which were axotomized but left untreated, are compared to 
axotomized animals receiving only ES (A), only TP (B), or the combination of 
both ES and TP (C). (D) Represents the comparison between ES, TP, and the 
combination of ES and TP. Data is represented as relative βII–tubulin mRNA 
expression ± SEM. A two-way ANOVA (treatment x time) with a Student-
Newman-Keuls multiple comparison post hoc test was utilized for statistical 
analysis among all experimental groups. * represents a significant difference 
between ES, TP, or ES and TP compared to axotomy alone, at P < 0.05.             
# represents a significant difference between ES, TP, or ES and TP, at P < 0.05. 
For each experimental group, n = 5-7 animals/time-point. 
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0.177 and 0.985 ± 0.051), βII–tubulin expression was significantly elevated 

relative to 6 hours post-axotomy in TP-treated animals (P < 0.05). The 

combination treatment of ES and TP significantly elevated relative βII–tubulin 

mRNA expression at 1, 2, and 7 days post-axotomy compared to 6 hours post- 

axotomy (0.896 ± 0.110, 0.904 ± 0.092, 0.877 ± 0.091, and 0.440 ± 0.012, 

respectively; P < 0.05; Fig. 17C). At 21 days post-axotomy (0.422 ± 0.064), 

administration of both ES and TP together downregulated levels of βII–tubulin to 

levels similar to that observed at 6 hours post-axotomy (P < 0.05). Statistical 

analysis revealed no differences between animals treated with either ES or TP 

relative to axotomized, untreated animals (Fig. 17A and Fig. 17B, respectively). 

In contrast, the combination treatment significantly downregulated βII–tubulin 

compared to all other groups at 21 days post-axtomy (P < 0.05; Fig. 17D).   

 

b. Axonal growth genes: gap-43 and crmp2 

Following injury, assembly of the growth cone is essential for axon 

elongation and synaptogenesis. Both gap-43 and crmp2 are present in the 

growth cone and are important in axonal growth, whereas gap-43 is important in 

growth cone guidance (Aigner et al., 1995; Fukata et al., 2002). Molecular 

studies further demonstrate that gap-43 increases and is regulated by ES and TP 

following injury (Tetzlaff et al., 1991; Al-Majed et al., 2004; Sharma et al., 2010a). 

However, it is unknown whether ES and TP regulate the expression of crmp2 

after nerve injury. 
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 Overall, we observed a main effect with time (F4,101 = 10.42; P < 0.001) 

and treatment x time (F12,101 = 2.05; P = 0.027; Fig. 18); although, there was no 

effect of time (F3,101 = 1.71; P = 0.169; Fig. 18) when examining the relative 

mRNA expression of gap-43. In axotomized animals, there was a peak in gap-43 

expression at 7 days post-axotomy relative to 6 hours, 1, and 2 days post-

axotomy (0.598 ± 0.094, 0.352 ± 0.035, 0.235 ± 0.023, and 0.326 ± 0.035, 

respectively; P < 0.05) but not to 21 days post-axotomy (0.457 ± 0.060; Fig. 18). 

ES of the sciatic nerve significantly upregulated gap-43 expression at 7 days 

post-axotomy compared to 6 hours, 1, 2, and 21 days post-axotomy (0.649 ± 

0.125, 0.308 ± 0.032, 0.348 ± 0.022, 0.442 ± 0.074, and 0.436 ± 0.108, 

respectively; P < 0.05; Fig. 18A). In contrast, animals treated with TP 

demonstrated no significant difference throughout the time-course of 6 hours, 1, 

2, 7, and 21 days post-axotomy (0.334 ± 0.021, 0.302 ± 0.010, 0.444 ± 0.029, 

0.433 ± 0.063, and 0.492 ± 0.036, respectively; Fig. 18B). The combination of 

ES and TP had no effect on gap-43 expression at the earlier time-points of 6 

hours, 1, and 2 days post-axotomy (0.227 ± 0.008, 0.403 ± 0.048, and 0.414 ± 

0.048, respectively; Fig. 18C). At 7 days post-axotomy (0.467 ± 0.057) relative 

levels of gap-43 mRNA peaked relative to 6 hours post-axotomy (P < 0.05), but 

this effect was absent by 21 days post-axotomy (0.261 ± 0.037). ES-treated 

animals demonstrated a significantly upregulated gap-43 expression at 7 days 

post-axotomy compared to TP-treated animals (P < 0.05; Fig. 18D). The 

combination treatment significantly downregulated gap-43 expression at the  
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Fig. 18: Ipsilateral gap-43 mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of 43-kiloDalton 
growth-associated protein (gap-43) in the injured ventral horn at 6 hours, 1, 2, 7, 
and 21 days post-axotomy (Ax). Control (C) animals, which were axotomized but 
left untreated, are compared to axotomized animals receiving only ES (A), only 
TP (B), or the combination of both ES and TP (C). (D) Represents the 
comparison between ES, TP, and the combination of ES and TP. Data is 
represented as relative gap-43 mRNA expression ± SEM. A two-way ANOVA 
(treatment x time) with a Student-Newman-Keuls multiple comparison post hoc 
test was utilized for statistical analysis among all experimental groups.                 
* represents a significant difference between ES, TP, or ES and TP compared to 
axotomy alone, at P < 0.05. # represents a significant difference between ES, 
TP, or ES and TP, at P < 0.05.  For each experimental group, n = 6-7 
animals/time-point.     

  



113 
 

latest time-point of 21 days post-axotomy compared to all other groups (P < 0.05; 

Fig. 18D). 

Statistical analysis did not reveal a main effect of treatment group (F3,101 = 

1.80; P = 0.153) or an effect of post-operative time (F4,101 = 1.31; P = 0.273) but 

did reveal an interaction between treatment x post-operative time (F12,101 = 3.19; 

P < 0.001; Fig. 19). Axotomy alone significantly decreased crmp2 expression at 

1 day post-axotomy relative to 6 hours post-axotomy (1.193 ± 0.062 and 1.932 ± 

0.233; P < 0.05) but levels were maintained throughout the rest of the time- 

course at 2, 7, and 21 days post-axotomy (1.504 ± 0.258, 1.714 ± 0.171, and 

1.548 ± 0.150, respectively; Fig. 19). No significant differences in crmp2 mRNA 

were observed at 6 hours, 1, 2, 7, or 21 days post-axotomy in animals treated 

with either ES (1.842 ± 0.211, 1.480 ± 0.122, 1.536 ± 0.141, 1.815 ± 0.179, and 

1.389 ± 0.166, respectively; Fig. 19A) or TP (1.474 ± 0.251, 1.498 ± 0.156, 1.704 

± 0.092, 1.533 ± 0.192, and 1.916 ± 0.053, respectively; Fig. 19B). The 

combination treatment of ES plus TP maintained crmp2 mRNA expression at 6 

hours, 1, 2, and 7 days post-axotomy (1.259 ± 0.048, 1.738 ± 0.109, 1.781 ± 

0.132, and 1.398 ± 0.113, respectively) but downregulated crmp2 expression at 

the later time-point of 21 days post-axotomy (0.908 ± 0.117) relative to 1 and 2 

day post-axotomy (P < 0.05; Fig. 19C). In the combined treatment group, a 

downregulation in crmp2 expression was observed at 6 hours relative to axotomy 

alone and ES treatment (P < 0.05) and 21 days post-axotomy relative to all 

groups (P < 0.05; Fig. 19D). 
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Fig. 19: Ipsilateral crmp2 mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of collapsin 
response mediator protein 2 (crmp2) in the injured ventral horn at 6 hours, 1, 2, 
7, and 21 days post-axotomy (Ax). Control (C) animals, which were axotomized 
but left untreated, are compared to axotomized animals receiving only ES (A), 
only TP (B), or the combination of both ES and TP (C). (D) Represents the 
comparison between ES, TP, and the combination of ES and TP. Data is 
represented as relative crmp2 mRNA expression ± SEM. A two-way ANOVA 
(treatment x time) with a Student-Newman-Keuls multiple comparison post hoc 
test was utilized for statistical analysis among all experimental groups.                 
* represents a significant difference between ES, TP, or ES and TP compared to 
axotomy alone, at P < 0.05. # represents a significant difference between ES, 
TP, or ES and TP, at P < 0.05.   For each experimental group, n = 6-7 
animals/time-point.   
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c. Growth factor and neurotrophic genes: bdnf, gdnf, and pacap 

Neurotrophic factors, such as BDNF and GDNF, promote neurite 

outgrowth and survival of motoneurons following axotomy (Yan et al., 1992; 

Novikov et al., 1997; Boyd & Gordon, 2003). PACAP is a multifunctional peptide 

and is important in the regeneration process (Armstrong et al., 2008). Similar to 

BDNF and GDNF, PACAP has been demonstrated to promote neurite outgrowth 

and motoneuron survival (Chen & Tzeng, 2005; Suarez et al., 2006). We and 

others have demonstrated previously that ES and TP differentially regulate the 

expression of bdnf and pacap following facial or femoral nerve axotomy (Al-

Majed et al., 2000a; Sharma et al., 2010a); although, it has yet to be determined 

whether the combination of ES and TP alter bdnf and pacap expression following 

sciatic nerve axotomy. ES in combination with exercise has been reported to 

increase the expression of gdnf (Cobianchi et al., 2013). However, it is unknown 

whether ES with administration of systemic TP alter the expression of gdnf 

following sciatic nerve injury.     

Statistical analysis revealed a main effect of treatment (F3,97 = 5.93; P < 

0.001) and an interaction between treatment x time (F12,97 = 3.26; P < 0.001) but 

no effect was observed for time (F4,97 = 1.31; P = 0.272; Fig. 20) with respect to 

bdnf mRNA expression in the ipsilateral ventral horn of the spinal cord. Injury 

alone moderately decreased the expression of bdnf at 1 day post-axotomy 

relative to 6 hours post-axotomy (0.00163 ± 0.00017 and 0.00259 ± 0.00054, 

respectively; P < 0.05; Fig. 20). By 2 days post-axotomy (0.00169 ± 0.00017), a 

significant decrease in bdnf expression was observed relative to 6 hours post-  
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Fig. 20: Ipsilateral bdnf mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of brain derived 
neurotrophic factor (bdnf) in the injured ventral horn at 6 hours, 1, 2, 7, and 21 
days post-axotomy (Ax). Control (C) animals, which were axotomized but left 
untreated, are compared to axotomized animals receiving only ES (A), only TP 
(B), or the combination of both ES and TP (C). (D) Represents the comparison 
between ES, TP, and the combination of ES and TP. Data is represented as 
relative bdnf mRNA expression ± SEM. A two-way ANOVA (treatment x time) 
with a Student-Newman-Keuls multiple comparison post hoc test was utilized for 
statistical analysis among all experimental groups. * represents a significant 
difference between ES, TP, or ES and TP compared to axotomy alone, at           
P < 0.05. # represents a significant difference between ES, TP, or ES and TP, at 
P < 0.05. For each experimental group, n = 5-7 animals/time-point.   
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axotomy (P < 0.05). Bdnf expression values started to increase by 7 days post-

axotomy (0.00269 ± 0.00017) and peaked at 21 days post-axotomy (0.00291 ± 

0.00039) to a level that was significantly different relative to 1 and 2 days post-

axotomy (P < 0.05; Fig. 20). In contrast to axotomy alone, ES did not alter bdnf 

expression at 6 hours, 1, 2, 7, or 21 days post-axotomy (0.00234 ± 0.00035, 

0.00227 ± 0.00024, 0.00194 ± 0.00042, 0.00301 ± 0.00025, and 0.00179 ± 

0.00030, respectively; Fig. 20A). TP treatment significantly elevated bdnf 

expression at 2 days post-axotomy relative to 1 and 7 days post-axotomy 

(0.00371 ± 0.00076, 0.00219 ± 0.00029, and 0.00246 ± 0.00041, respectively) 

but had no effect at 6 hours and 21 days post-axotomy (0.00310 ± 0.00032 and 

0.00298 ± 0.00075, respectively; Fig. 20B). Similar to ES treatment, the 

combination treatment revealed no differences in bdnf expression at 6 hours, 1, 

2, 7, or 21 days post-axotomy (0.00195 ± 0.00011, 0.00247 ± 0.00027, 0.00242 

± 0.00026, 0.00223 ± 0.00029, and 0.00363 ± 0.00015, respectively; Fig. 20C). 

At the latest time-point of 21 days post-axotomy, there was a significant 

downregulation in bdnf mRNA in animals treated with ES relative to axotomy 

alone (P < 0.05; Fig. 20A). Systemic treatment with TP significantly elevated 

bdnf expression at 2 days post-axotomy compared to all groups tested (P < 0.05; 

Fig. 20B and Fig. 20D). There was a significant downregulation in bdnf mRNA at 

21 days post-axotomy relative to axotomy alone and TP treatment (P < 0.05; Fig. 

20C and Fig. 20D).  

In the current study, the extended time course of the relative mRNA 

expression of gdnf did not reveal a main effect of treatment (F3,97 = 0.92; P = 
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0.437) or time (F4,97 = 2.41; P = 0.055) but did reveal a statistical interaction 

between treatment x time (F12,97 = 2.48; P = 0.007; Fig. 21). No differences were 

observed in the relative mRNA expression of gdnf at 6 hours, 1, 2, 7 and 21 days 

post-axotomy in animals that received axotomy alone (0.000484 ± 0.00008, 

0.000297 ± 0.000041, 0.000421 ± 0.000068, 0.000428 ± 0.000072, and 

0.000430 ± 0.000069, respectively; Fig. 21) or axotomy and TP treatment 

(0.000484 ± 0.000010, 0.000351 ± 0.000032, 0.000469 ± 0.000048, 0.000480 ± 

0.000078, and 0.000486 ± 0.000095, respectively; Fig. 21B). Animals treated 

with ES demonstrated similar levels of gdnf expression at 6 hours and 1 day 

post-axotomy before peaking at 2 days post-axotomy (0.000565 ± 0.000111, 

0.000386 ± 0.000054, and 0.000764 ± 0.000256, respectively) compared to 1 

day post-axotomy (P < 0.05; Fig. 21A). Relative mRNA expression of gdnf 

declined at 7 days post-axotomy and reached a significant low at 21 days-post 

axotomy (0.000496 ± 0.000083 and 0.000213 ± 0.000053, respectively) relative 

to 6 hours and 2 days post-axotomy (P < 0.05; Fig. 21A). The combination 

treatment significantly peaked gdnf expression at 1 day post-axotomy relative to 

6 hours, 7, and 21 days post-axotomy (0.000667 ± 0.000063, 0.000372 ± 

0.000055, 0.000323 ± 0.000041, and 0.0002005 ± 0.000056, respectively; P < 

0.05), but gdnf expression was similar to 2 days post-axotomy (0.000444 ± 

0.000033; Fig. 21C). Treatment with ES only was significantly different than all 

groups at 2 days post-axotomy (P < 0.05; Fig. 21D) but similar at all other tested 

time-points. In contrast, TP treatment did not alter gdnf expression at any time-

point relative to axotomy alone (Fig. 21B). The combination of ES and TP 
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Fig. 21: Ipsilateral gdnf mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of glial cell 
derived neurotrophic factor (gdnf) in the injured ventral horn at 6 hours, 1, 2, 7, 
and 21 days post-axotomy (Ax). Control (C) animals, which were axotomized but 
left untreated, are compared to axotomized animals receiving only ES (A), only 
TP (B), or the combination of both ES and TP (C). (D) Represents the 
comparison between ES, TP, and the combination of ES and TP. Data is 
represented as relative gdnf mRNA expression ± SEM. A two-way ANOVA 
(treatment x time) with a Student-Newman-Keuls multiple comparison post hoc 
test was utilized for statistical analysis among all experimental groups.                 
* represents a significant difference between ES, TP, or ES and TP compared to 
axotomy alone, at P < 0.05. # represents a significant difference between ES, 
TP, or ES and TP, at P < 0.05. For each experimental group, n = 5-6 
animals/time-point.    
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significantly elevated levels of gdnf at 1 day post-axotomy relative to all other 

groups tested (P < 0.05) but was similar at all other time-points (Fig. 21D).      

When investigating the relative mRNA expression of pacap in the 

ipsilateral ventral horn we observed a main effect of post-operative time (F4,99 = 

7.30; P < 0.001) 0.006; Fig. 22); although, there was no overall effect between 

treatment groups (F3,99 = 1.80; P = 0.152) or treatment x time (F12,99 = 0.79; P = 

0.663; Fig. 22).  

 

d. Plasticity gene: neuritin 

Neuritin was first identified as a candidate plasticity-related gene but since 

has been shown to promote neurite outgrowth and dendritic arborization (Naeve 

et al., 1997; Javaherian & Cline, 2005; Marron et al., 2005). Previously, our 

laboratory has demonstrated that axotomy with either ES or TP increase neuritin 

levels following facial nerve injury (Fargo et al., 2008; Sharma et al., 2010a). It 

remains to be determined whether ES and TP alter neuritin expression following 

sciatic nerve injury.   

The extended time course did not reveal any differences between 

treatment groups after axotomy for neuritin (F3,101 = 0.532; P = 0.662) or an 

interaction between treatment x post-operative time (F12,101 = 1.20; P = 0.296; 

Fig. 23). However, analysis did reveal a main effect of post-operative time (F4,101 

= 4.72; P = 0.002; Fig. 23). 
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Fig. 22: Ipsilateral pacap mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of pituitary 
adenylate cyclase-activating peptide (pacap)in the injured ventral horn at 6 
hours, 1, 2, 7, and 21 days post-axotomy (Ax). Control (C) animals, which were 
axotomized but left untreated, are compared to axotomized animals receiving 
only ES (A), only TP (B), or the combination of both ES and TP (C). (D) 
Represents the comparison between ES, TP, and the combination of ES and TP. 
Data is represented as relative pacap mRNA expression ± SEM. A two-way 
ANOVA (treatment x time) with a Student-Newman-Keuls multiple comparison 
post hoc test was utilized for statistical analysis among all experimental groups.  
* represents a significant difference between ES, TP, or ES and TP compared to 
axotomy alone, at P < 0.05. # represents a significant difference between ES, 
TP, or ES and TP, at P < 0.05. For each experimental group, n = 5-6 
animals/time-point.            
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Fig. 23: Ipsilateral neuritin mRNA expression. 

Shown is a time-course of the relative mRNA expression levels of neuritin in the 
injured ventral horn at 6 hours, 1, 2, 7, and 21 days post-axotomy (Ax). Control 
(C) animals, which were axotomized but left untreated, are compared to 
axotomized animals receiving only ES (A), only TP (B), or the combination of 
both ES and TP (C). (D) Represents the comparison between ES, TP, and the 
combination of ES and TP. Data is represented as relative neuritin mRNA 
expression ± SEM. A two-way ANOVA (treatment x time) with a Student-
Newman-Keuls multiple comparison post hoc test was utilized for statistical 
analysis among all experimental groups. * represents a significant difference 
between ES, TP, or ES and TP compared to axotomy alone, at P < 0.05.             
# represents a significant difference between ES, TP, or ES and TP, at P < 0.05.    
For each experimental group, n = 6-7 animals/time-point.       
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e. Summary 

We characterized the molecular effects of ES and TP on the expression of 

8 regeneration-associated genes on the ipsilateral side of the lumbar ventral horn 

following sciatic nerve crush axotomy. Similar to our results from the contralateral 

analysis, we found that the expression of 3 out of 8 regeneration-associated 

genes was altered ipsilateral to injury. These genes include αI-tubulin, crmp2, 

and gap-43. Furthermore, our results indicate that ES and/or TP treatment 

altered the expression of 6 out of 8 genes following axotomy. Our results 

demonstrate that ES and TP alter gene expression in very distinct patterns when 

administered alone and have a combined suppressive effect when administered 

together (Table 7). In summary, ES and TP separately altered the expression of 

bdnf, whereas the combination of both ES and TP suppressed the expression of 

αI-tubulin, βII-tubulin, gap-43, crmp2, and gdnf in an additive manner (Table 8). In 

addition, neither treatment altered the expression of pacap and neuritin. 
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Gene 
Early 

(6 hours-2 days) 
Middle 

(7 days) 
Late 

(21 days) 

ES 
bdnf - - ↓ 
gdnf ↑ - - 

TP    
bdnf ↑  - - 

ES + TP    
αI-tubulin ↓ , ↑ - ↓ 
βII-tubulin - - ↓ 

gap-43 - - ↓ 
crmp2 ↓ - ↓ 
bdnf - - ↓ 
gdnf ↑ - - 

 

Table 7: Summary of ipsilateral mRNA expression 
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Change in 
Expression 

Facial Nerve 
Crush Injury 

Sciatic Nerve  
Crush Injury 

Differential 
αI-tubulin, βII-tubulin, 

and gap-43 
bdnf 

Additive 
pacap, bdnf, and 

neuritin 
αI-tubulin, βII-tubulin, gap-43, 

gdnf and crmp2 
No change - pacap and neuritin 

 

Table 8: Comparison of the effects of ES and TP on gene expression after 
facial vs. sciatic nerve crush injuries.  

*Facial nerve crush injury gene expression summarized from Sharma et al. (2010a).  
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C. Effects of ES and TP on functional recovery 

The following assessments were used to test functional recovery following 

sciatic nerve axotomy: rear foot falls (automatic foot misplacement apparatus), 

grip strength, gait analysis (CatWalk XT©), and EMG recordings. Testing of the 

automatic foot misplacement and CatWalk XT© apparatuses was completed on 

day 0 (3 days before injury), 2, 4, 7, 9, 11, 14, 16, 18, 21, 23, 25, 28, 30, 32, 35, 

37, 39, 42, 44, 46, 49, 51, 53, and 56 days post-axotomy. Grip strength was 

tested before axotomy (0) and weekly for 8 weeks. EMG recordings were taken 

before axotomy and at 53 days post-axotomy.  

A two-way repeated measures ANOVA revealed a significant difference in 

animal weight across time (F27,509 = 355.54; P < 0.001) and an interaction 

between treatment group x time (F81,509 = 3.22; P < 0.001) but no effect was 

observed between treatment groups (F3,509 = 1.9; P = 0.162; Fig. 24). Analysis 

revealed that animals treated with ES had a significantly higher weight than TP 

only treated animals from 32 days post-axotomy through 46 days post-axotomy 

(P < 0.05; Fig. 24). Since there was an effect of treatment on weight and since 

speed alters several gait parameters (Batka et al., 2014), we included weight and 

speed as dependent factors for all CatWalk XT© analysis.  

 

1. Automatic foot misplacement apparatus 

A two-way repeated measures ANOVA revealed a significant difference in 

the number of rear foot falls across time (F24,429 = 9.36; P < 0.001) and an  
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Fig. 24: Effect of ES and TP on animal body weight. 

Shown is a time-course of the effect of ES and TP on animal body weight post-
axotomy (Ax). Uninjured animals (solid line) represent a longitudinal baseline 
throughout the study. Control animals, which were axotomized but left untreated 
(Ax only), are compared to axotomized animals receiving only ES (A), only TP 
(B), or the combination of both ES and TP (C). (D) Represents the comparison 
between the combination of ES and TP relative to both ES and TP alone. Data is 
represented as weight (g) ± SEM. Statistical significance was evaluated using 
linear mixed effects models. Each model included random intercepts and slopes 
for speed and weight for each animal. Post hoc pairwise multiple comparisons 
were performed within time points using the Holm-Šidák method when group 
differences were detected. * represents a significant difference between ES, TP, 
or ES and TP compared to axotomy alone, at P < 0.05. # represents a significant 
difference between ES and TP relative to both ES and TP alone, at P < 0.05. For 
each experimental group, n = 5-6 animals/time-point.    
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interaction between treatment group x time (F96,429 = 1.52; P = 0.003) but no 

effect was observed between treatment groups (F4,429 = 2.27; P = 0.092; Fig. 25). 

At 2 days post-axotomy, all injured animals had a significantly higher number of 

rear foot fall errors relative to uninjured animals (P < 0.001; Fig. 25). However, 

axotomized, untreated animals by 4 days post-axotomy were similar to control, 

unaxotomized animals. Due to the fast recovery time of 2 days post-axotomy for 

injured, untreated animals with this particular motor test, treatment effects could 

not be determined.       

 

2. Grip strength 

a. Bar apparatus 

Overall, we observed a main effect with time (F8,170 = 66.25; P < 0.001) 

and between treatment groups (F4,170 = 2.74; P = 0.05; Fig. 26); although, there 

was no interaction observed between treatment x time (F32,170 = 1.26; P = 0.177; 

Fig. 26) when examining the mean force for the bar grip strength test. Additional 

analysis to determine the presence of a treatment effect was not completed since 

there was no statistical difference between treatment x time.  

 

b. Grid apparatus 

A two-way repeated measures ANOVA for mean force for the grid grip 

strength test revealed no difference between treatment groups (F4,170 = 1.91; P = 

0.143; Fig. 27). In contrast, statistical analysis revealed a significant difference  
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Fig. 25: Effect of ES and TP on the number of rear leg errors. 

Shown is a time-course of the effect of ES and TP on the number of rear leg 
errors post-axotomy (Ax). Uninjured animals (solid line) represent a longitudinal 
baseline throughout the study. Control animals, which were axotomized but left 
untreated (Ax only), are compared to axotomized animals receiving only ES (A), 
only TP (B), or the combination of both ES and TP (C). (D) Represents the 
comparison between the combination of ES and TP relative to both ES and TP 
alone. Data is represented as the number of rear leg erros ± SEM. Statistical 
significance was evaluated using linear mixed effects models. Each model 
included random intercepts and slopes for speed and weight for each animal. 
Post hoc pairwise multiple comparisons were performed within time points using 
the Holm-Šidák method when group differences were detected. * represents a 
significant difference between ES, TP, or ES and TP compared to axotomy 
alone, at P < 0.05. # represents a significant difference between ES and TP 
relative to both ES and TP alone, at P < 0.05. For each experimental group, n = 
5-6 animals/time-point.    
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Fig. 26: Effect of ES and TP on hind paw grip strength utilizing the bar 
apparatus. 

Shown is a time-course of the effect of ES and TP on hind paw grip strength 
utilizing the bar apparatus post-axotomy (Ax). Uninjured animals (solid line) 
represent a longitudinal baseline throughout the study. Control animals, which 
were axotomized but left untreated (Ax only), are compared to axotomized 
animals receiving only ES (A), only TP (B), or the combination of both ES and TP 
(C). (D) Represents the comparison between the combination of ES and TP 
relative to both ES and TP alone. Data is represented as force (g) ± SEM. 
Statistical significance was evaluated using linear mixed effects models. Each 
model included random intercepts and slopes for speed and weight for each 
animal. Post hoc pairwise multiple comparisons were performed within time 
points using the Holm-Šidák method when group differences were detected.        
* represents a significant difference between ES, TP, or ES and TP compared to 
axotomy alone, at P < 0.05. # represents a significant difference between ES and 
TP relative to both ES and TP alone, at P < 0.05. For each experimental group,  
n = 5-6 animals/time-point.    
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Fig. 27: Effect of ES and TP on hind paw grip strength utilizing the grid 
apparatus. 

Shown is a time-course of the effect of ES and TP on hind paw grip strength 
utilizing the grid apparatus post-axotomy (Ax). Uninjured animals (solid line) 
represent a longitudinal baseline throughout the study. Control animals, which 
were axotomized but left untreated (Ax only), are compared to axotomized 
animals receiving only ES (A), only TP (B), or the combination of both ES and TP 
(C). (D) Represents the comparison between the combination of ES and TP 
relative to both ES and TP alone. Data is represented as force (g) ± SEM. 
Statistical significance was evaluated using linear mixed effects models. Each 
model included random intercepts and slopes for speed and weight for each 
animal. Post hoc pairwise multiple comparisons were performed within time 
points using the Holm-Šidák method when group differences were detected.        
* represents a significant difference between ES, TP, or ES and TP compared to 
axotomy alone, at P < 0.05. # represents a significant difference between ES and 
TP relative to both ES and TP alone, at P < 0.05. For each experimental group,  
n = 5-6 animals/time-point.    
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across time (F8,170 = 119.90; P < 0.001) and an interaction between treatment x 

time (F32,170 = 2.33; P < 0.001; Fig. 27). At 1 week post-axotomy, all axotomized 

groups had a significantly lower grip strength force relative to uninjured, 

untreated animals (No Ax: 393.8 ± 46.6 g; Ax only: 195.0 ± 24.1 g; ES: 245.0 ± 

26.5 g; TP: 205.2 ± 22.3 g; ES + TP: 177.7 ± 23.9 g ; P < 0.05; Fig. 27A-D). By 2 

weeks post-axotomy, the combined treatment group was similar to the No Ax and 

Ax only groups (246.1 ± 27.2 g, 367.8 ± 63.8 g, and 187.3 ± 14.9 g, respectively; 

Fig. 27C), but was similar to either treatment alone (ES: 211.8 ± 20.1 g; TP: 

220.4 ± 25.0 g; Fig. 27D). 

 

3. CatWalk XT© apparatus 

A detailed list of analyzed CatWalk parameters with definitions can be 

found in Table 4. 

 

a. Paw-related parameters  

i. TP increases print length. 

We found an overall main effect in the right hind (RH) print length between 

treatment groups (F4,5767 = 13.80; P < 0.0001), time (F26,5767 = 69.77; P < 0.0001), 

as well as an interaction between treatment x time (F104,5767 = 10.54; P < 0.0001; 

Fig. 28). Print length was significantly decreased in injured, untreated animals at 

2 days post-axotomy relative to uninjured control animals (0.25 ± 0.14 cm and 

2.07 ± 0.17 cm, respectively; P < 0.001; Fig. 28). At 14 days post-axotomy, print  
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Fig. 28: Effect of ES and TP on RH print length. 

Shown is a time-course of the effect of ES and TP on right hind (RH) print length 
post-axotomy (Ax). Uninjured animals (solid line) represent a longitudinal 
baseline throughout the study. Control animals, which were axotomized but left 
untreated (Ax only), are compared to axotomized animals receiving only ES (A), 
only TP (B), or the combination of both ES and TP (C). (D) Represents the 
comparison between the combination of ES and TP relative to both ES and TP 
alone. Data is represented as RH print length (cm) ± SEM. Statistical significance 
was evaluated using linear mixed effects models. Each model included random 
intercepts and slopes for speed and weight for each animal. Post hoc pairwise 
multiple comparisons were performed within time points using the Holm-Šidák 
method when group differences were detected. * represents a significant 
difference between ES, TP, or ES and TP compared to axotomy alone, at           
P < 0.05. # represents a significant difference between ES and TP relative to 
both ES and TP alone, at P < 0.05. For each experimental group, n = 5-6 
animals/time-point.    
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length for axotomized animals returned to control levels (1.86 ± 0.11 cm and 1.99 

± 0.16 cm, respectively; Fig. 28). At 23 days post-axotomy, print length of 

axotomized animals significantly decreased relative to uninured animals and 

remained steady for the remainder of the time-course (P < 0.05; Fig. 28). 

Animals treated with ES demonstrated no consistent significant pattern for print 

length across all time-points relative to that observed in uninjured animals (Fig. 

28A). In contrast, animals treated with TP demonstrated a significantly higher 

print length as early as 4 days post-axotomy relative to injured, untreated animals 

(P < 0.05; Fig. 28B) until 9 days post-axotomy. From 25 to 39 days post-

axotomy, TP-treated animals demonstrated a significantly elevated print length 

relative to axotomy alone (P < 0.05; Fig. 28B). The combinatorial treatment 

significantly elevated print length at the earlier time-points of 2, 4, 7, and 9 days 

post-axotomy relative to axotomy alone (P < 0.05; Fig. 28C), but demonstrated 

no consistent difference compared to axotomized animals throughout the rest of 

the time-course. Animals treated with ES and TP demonstrated no 

supplementary effect relative to either treatment alone throughout the time-

course (Fig. 28D).            

 

ii. TP increases print width. 

Overall, we observed a main effect in the RH print width between 

treatment groups (F4,5767 = 15.34; P < 0.0001), time (F26,5767 = 115.02; P < 

0.0001), as well as an interaction between treatment x time (F104,5767 = 18.41; P < 

0.0001; Fig. 29). Print width was significantly decreased at 2 days post-axotomy  
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Fig. 29: Effect of ES and TP on RH print width. 

Shown is a time-course of the effect of ES and TP on right hind (RH) print width 
post-axotomy (Ax). Uninjured animals (solid line) represent a longitudinal 
baseline throughout the study. Control animals, which were axotomized but left 
untreated (Ax only), are compared to axotomized animals receiving only ES (A), 
only TP (B), or the combination of both ES and TP (C). (D) Represents the 
comparison between the combination of ES and TP relative to both ES and TP 
alone. Data is represented as RH print width (cm) ± SEM. Statistical significance 
was evaluated using linear mixed effects models. Each model included random 
intercepts and slopes for speed and weight for each animal. Post hoc pairwise 
multiple comparisons were performed within time points using the Holm-Šidák 
method when group differences were detected. * represents a significant 
difference between ES, TP, or ES and TP compared to axotomy alone, at           
P < 0.05. # represents a significant difference between ES and TP relative to 
both ES and TP alone, at P < 0.05. For each experimental group, n = 5-6 
animals/time-point.    
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in injured, untreated animals relative to uninjured control animals (0.35 ± 0.08 cm 

and 1.85 ± 0.09 cm, respectively; P < 0.001; Fig. 29) and never returned to that 

observed in uninjured animals. Animals treated with ES demonstrated no 

consistent significant pattern for print width until 46 days post-axotomy at which 

point levels were significantly elevated relative to that observed in uninjured 

animals (P < 0.05; Fig. 29A). In contrast, animals treated with TP demonstrated 

a significantly higher print width at 4 and 7 days post-axotomy relative to injured, 

untreated animals (TP: 0.95 ± 0.06 cm and 1.09 ± 0.06 cm, respectively; Ax only: 

0.58 ± 0.07 cm and 0.72 ± 0.07 cm, respectively; P < 0.001; Fig. 29B). Similarly, 

TP-treated animals demonstrated a significantly elevated print width beginning at 

16 days post-axotomy for the remainder of the time-course relative to axotomy 

alone (P < 0.001). The combinatorial treatment significantly elevated print width 

at the earlier time-points of 2, 4, 7, and 9 days post-axotomy relative to axotomy 

alone (P < 0.05). At 35 days post-axotomy, animals treated with ES and TP 

exhibited a consistent significant elevation relative to axotomy alone that was 

present through 56 days post-axotomy (P < 0.05; Fig. 29C). The combinatorial 

treatment had no supplementary benefit to either treatment alone (Fig. 29D). 

 

iii. TP increases print area. 

When investigating the effect of treatment on RH print area we observed a 

main effect between treatment groups (F4,5767 = 12.64; P < 0.0001), time (F26,5767 

= 76.29; P < 0.0001), as well as an interaction between treatment x time (F104,5767 

= 18.52; P < 0.0001; Fig. 30). Print area was significantly decreased in injured,  
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Fig. 30: Effect of ES and TP on RH print area. 

Shown is a time-course of the effect of ES and TP on right hind (RH) print area 
post-axotomy (Ax). Uninjured animals (solid line) represent a longitudinal 
baseline throughout the study. Control animals, which were axotomized but left 
untreated (Ax only), are compared to axotomized animals receiving only ES (A), 
only TP (B), or the combination of both ES and TP (C). (D) Represents the 
comparison between the combination of ES and TP relative to both ES and TP 
alone. Data is represented as RH print area (cm2) ± SEM. Statistical significance 
was evaluated using linear mixed effects models. Each model included random 
intercepts and slopes for speed and weight for each animal. Post hoc pairwise 
multiple comparisons were performed within time points using the Holm-Šidák 
method when group differences were detected. * represents a significant 
difference between ES, TP, or ES and TP compared to axotomy alone, at           
P < 0.05. # represents a significant difference between ES and TP relative to 
both ES and TP alone, at P < 0.05. For each experimental group, n = 5-6 
animals/time-point.    
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untreated animals at 2 days post-axotomy and never returned to levels observed 

in that of uninjured control animals (-0.04 ± 0.13 cm2 and 1.93 ± 0.15 cm2, 

respectively; P < 0.001; Fig. 30). Animals treated with ES demonstrated no 

consistent significant pattern throughout the observed time-course (Fig. 30A). In 

contrast, animals treated with TP demonstrated a significantly higher print area at 

21 days post-axotomy until 42 days post-axotomy relative to injured, untreated 

animals (P < 0.05; Fig. 30B). Similar to ES-treated animals, animals treated with 

ES plus TP demonstrated no consistent difference in print area relative to 

animals receiving axotomy alone (Fig. 30C). The combinatorial treatment had no 

supplementary benefit to either treatment alone (Fig. 30D). 

 

iv. ES only and TP only increase swing 

Statistical analysis revealed a main effect between treatment groups 

(F4,5730 = 10.36; P < 0.0001), time (F26,5730 = 67.00; P < 0.0001), as well as an 

interaction between treatment x time (F104,5730 = 9.11; P < 0.0001; Fig. 31) with 

respect to RH swing. Swing was significantly increased in injured, untreated 

animals at 2 days post-axotomy relative to uninjured control animals (0.31 ± 

0.010 s and 0.10 ± 0.007 s, respectively; P < 0.001; Fig. 31). At 30 days post-

axotomy, swing of axotomized animals returned to values similar to that of 

uninjured animals (0.14 ± .006 s and 0.11 ± 0.008 s, respectively) where they 

were maintained for the remainder of the time-course. ES of the sciatic nerve 

significantly decreased swing as early as 2 days post-axotomy relative to injury 

alone (ES: 0.18 ± 0.009 s; P < 0.001; Fig. 31A) but returned to values similar to  
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Fig. 31: Effect of ES and TP on RH swing. 

Shown is a time-course of the effect of ES and TP on right hind (RH) swing post-
axotomy (Ax). Uninjured animals (solid line) represent a longitudinal baseline 
throughout the study. Control animals, which were axotomized but left untreated 
(Ax only), are compared to axotomized animals receiving only ES (A), only TP 
(B), or the combination of both ES and TP (C). (D) Represents the comparison 
between the combination of ES and TP relative to both ES and TP alone. Data is 
represented as RH swing (s) ± SEM. Statistical significance was evaluated using 
linear mixed effects models. Each model included random intercepts and slopes 
for speed and weight for each animal. Post hoc pairwise multiple comparisons 
were performed within time points using the Holm-Šidák method when group 
differences were detected. * represents a significant difference between ES, TP, 
or ES and TP compared to axotomy alone, at P < 0.05. # represents a significant 
difference between ES and TP relative to both ES and TP alone, at P < 0.05. For 
each experimental group, n = 5-6 animals/time-point.    



140 
 

that of injury alone by 9 days post-axotomy. Animals receiving systemic TP 

demonstrated a significant decrease in swing at 2 and 4 days post-axotomy (0.20 

± .008 s, 0.15 ± .007 s, respectively) relative to injured, untreated animals (P < 

0.05; Fig. 31B). There was no consistent difference in swing of animals that 

received reatment with the combination of ES plus TP compared to axotomy 

alone throughout the time-course (Fig. 31C). Therefore, ES and TP had no 

supplementary effect in swing relative to either treatment alone (Fig. 31D). 

 

v. TP increases swing speed 

Overall, we observed a main effect between treatment groups (F4,5730 = 

11.07; P < 0.0001), time (F26,5730 = 186.18; P < 0.0001), as well as an interaction 

between treatment x time (F104,5730 = 18.89; P < 0.0001; Fig. 32) with respect to 

RH swing speed. Axotomy alone significantly decreased swing speed at 2 days 

post-axotomy relative to uninjured animals (94.8 ± 4.5 cm/s and 170.0 ± 4.0 

cm/s, respectively; P < 0.001; Fig. 32) where it was maintained until 42 days 

post-axotomy. Animals treated with ES only had similar swing speed throughout 

the observed time-course compared to axotomized animals (Fig. 32A). In 

contrast, TP-treated animals demonstrated a significantly higher swing speed 

between 14 and 28 days post-axotomy relative to axotomized, untreated animals 

albeit this trend was not consistent (P < 0.05; Fig. 32B). Similar to treatment with 

ES, the combination of ES and TP did not consistently alter swing speed relative 

to axotomy alone (Fig. 32C). Thus, the combination of ES and TP demonstrated  
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Fig. 32: Effect of ES and TP on RH swing speed. 

Shown is a time-course of the effect of ES and TP on right hind (RH) swing 
speed post-axotomy (Ax). Uninjured animals (solid line) represent a longitudinal 
baseline throughout the study. Control animals, which were axotomized but left 
untreated (Ax only), are compared to axotomized animals receiving only ES (A), 
only TP (B), or the combination of both ES and TP (C). (D) Represents the 
comparison between the combination of ES and TP relative to both ES and TP 
alone. Data is represented as RH swing speed (cm/s) ± SEM. Statistical 
significance was evaluated using linear mixed effects models. Each model 
included random intercepts and slopes for speed and weight for each animal. 
Post hoc pairwise multiple comparisons were performed within time points using 
the Holm-Šidák method when group differences were detected. * represents a 
significant difference between ES, TP, or ES and TP compared to axotomy 
alone, at P < 0.05. # represents a significant difference between ES and TP 
relative to both ES and TP alone, at P < 0.05. For each experimental group,        
n = 5-6 animals/time-point.    
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no supplementary effect in swing speed compared to either treatment alone (Fig. 

32D).  

 

vi. ES only and TP only decrease stride length 

Evaluation of RH stride length did not reveal a main effect of treatment 

group (F4,5730 = 1.62; P = 0.1651) but did reveal an effect of post-operative time 

(F26,5730 = 8.14; P < 0.0001) and an interaction between treatment x post-

operative time (F104,5730 = 2.89; P < 0.0001; Fig. 33). Injury alone significantly 

increased stride length at 2 days post-axotomy relative to uninjured animals (20.8 

± 0.6 cm and 17.3 ± 0.5 cm, respectively; P < 0.001; Fig. 33) but was similar for 

the remainder of the observed time-course. In contrast, ES-treated animals 

demonstrated a significant decrease in stride length at 2 days post-axotomy 

animals (13.7 ± 0.5 cm) compared to axotomy alone (P < 0.001; Fig. 33A) but 

was similar to axotomy alone at all other time-points. Similar to ES-treated 

animals, systemic treatment of TP significantly decreased stride length only at 2 

days post-axotomy (15.9 ± 0.5 cm) relative to injury alone (P < 0.001; Fig. 33B). 

Animals treated with both ES and systemic TP demonstrated a significant 

increase in stride length only at 4 days post-axotomy relative to axotomy alone 

(18.2 ± 0.4 cm and 16.2 ± 0.5 cm, respectively; P < 0.05; Fig. 33C). The 

combination of ES plus TP had no additional benefit to either treatment alone 

throughout the time-course (Fig. 33D). 
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Fig. 33: Effect of ES and TP on RH stride length. 

Shown is a time-course of the effect of ES and TP on right hind (RH) stride 
length post-axotomy (Ax). Uninjured animals (solid line) represent a longitudinal 
baseline throughout the study. Control animals, which were axotomized but left 
untreated (Ax only), are compared to axotomized animals receiving only ES (A), 
only TP (B), or the combination of both ES and TP (C). (D) Represents the 
comparison between the combination of ES and TP relative to both ES and TP 
alone. Data is represented as RH stride length (cm) ± SEM. Statistical 
significance was evaluated using linear mixed effects models. Each model 
included random intercepts and slopes for speed and weight for each animal. 
Post hoc pairwise multiple comparisons were performed within time points using 
the Holm-Šidák method when group differences were detected. * represents a 
significant difference between ES, TP, or ES and TP compared to axotomy 
alone, at P < 0.05. # represents a significant difference between ES and TP 
relative to both ES and TP alone, at P < 0.05. For each experimental group,        
n = 5-6 animals/time-point.    
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vii. ES only and TP only decrease step cycle 

In the current study, the extended time course of RH step cycle revealed a 

main effect between treatment groups (F4,5730 = 4.09; P = 0.0026), time (F26,5730 = 

6.83; P < 0.0001), as well as an interaction between treatment x time (F104,5730 = 

4.15; P < 0.0001; Fig. 34). Injury alone significantly increased step cycle at 2 

days post-axotomy relative to uninjured animals (0.32 ± 0.01 s and 0.23 ± 0.008 

s, respectively; P < 0.001; Fig. 34) but was similar for the remainder of the 

observed time-course. In contrast, ES-treated animals demonstrated a significant 

decrease in step cycle at 2 days post-axotomy (0.17 ± 0.01 s) compared to 

axotomy alone (P < 0.001; Fig. 34A) but was similar to axotomy alone at all other 

time-points. Similar to ES-treated animals, systemic treatment of TP significantly 

decreased step cycle only at 2 days post-axotomy (0.20 ± 0.008 s) relative to 

injury alone (P < 0.001; Fig. 34B). Animals treated with both ES and systemic TP 

demonstrated a significant increase in step cycle only at 4 days post-axotomy 

relative to axotomy alone (0.25 ± 0.007 s and 0.21 ± 0.007 s, respectively; P < 

0.001; Fig. 34C). The combination of ES plus TP had no additional benefit to 

either treatment alone throughout the time-course (Fig. 34D). 

 

viii. TP increases duty cycle 

Statistical analysis revealed a main effect between treatment groups 

(F4,5730 = 14.39; P < 0.0001), time (F26,5730 = 345.63; P < 0.0001), as well as an 

interaction between treatment x time (F104,5730 = 30.51; P < 0.0001; Fig. 35) with  
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Fig. 34: Effect of ES and TP on RH step cycle. 

Shown is a time-course of the effect of ES and TP on right hind (RH) step cycle 
post-axotomy (Ax). Uninjured animals (solid line) represent a longitudinal 
baseline throughout the study. Control animals, which were axotomized but left 
untreated (Ax only), are compared to axotomized animals receiving only ES (A), 
only TP (B), or the combination of both ES and TP (C). (D) Represents the 
comparison between the combination of ES and TP relative to both ES and TP 
alone. Data is represented as RH step cycle (s) ± SEM. Statistical significance 
was evaluated using linear mixed effects models. Each model included random 
intercepts and slopes for speed and weight for each animal. Post hoc pairwise 
multiple comparisons were performed within time points using the Holm-Šidák 
method when group differences were detected. * represents a significant 
difference between ES, TP, or ES and TP compared to axotomy alone, at           
P < 0.05. # represents a significant difference between ES and TP relative to 
both ES and TP alone, at P < 0.05. For each experimental group, n = 5-6 
animals/time-point.    
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Fig. 35: Effect of ES and TP on RH duty cycle. 

Shown is a time-course of the effect of ES and TP on right hind (RH) duty cycle 
post-axotomy (Ax). Uninjured animals (solid line) represent a longitudinal 
baseline throughout the study. Control animals, which were axotomized but left 
untreated (Ax only), are compared to axotomized animals receiving only ES (A), 
only TP (B), or the combination of both ES and TP (C). (D) Represents the 
comparison between the combination of ES and TP relative to both ES and TP 
alone. Data is represented as RH duty cycle (%) ± SEM. Statistical significance 
was evaluated using linear mixed effects models. Each model included random 
intercepts and slopes for speed and weight for each animal. Post hoc pairwise 
multiple comparisons were performed within time points using the Holm-Šidák 
method when group differences were detected. * represents a significant 
difference between ES, TP, or ES and TP compared to axotomy alone, at           
P < 0.05. # represents a significant difference between ES and TP relative to 
both ES and TP alone, at P < 0.05. For each experimental group, n = 5-6 
animals/time-point.    
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respect to RH duty cycle. Duty cycle significantly decreased in injured, untreated 

animals at 2 days post-axotomy relative to uninjured control animals (8.9 ± 2.0% 

and 55.2 ± 2.0%, respectively; P < 0.001; Fig. 35). At 42 days post-axotomy, 

duty cycle of axotomized animals returned to values similar to that of uninjured 

animals and was maintained for the remaining time-points. ES of the sciatic 

nerve significantly increased duty cycle at 2 and 7 days post-axotomy relative to 

injury alone (P < 0.001; Fig. 35A) but was similar at all other time-points. Animals 

receiving systemic TP demonstrated a significant increase in duty cycle at 4, 7, 9, 

and 11 days post-axotomy relative to injured, untreated animals (P < 0.05; Fig. 

35B). Similar to TP treatment, treatment with the combination of ES plus TP 

significantly increased duty cycle at 4, 7, 9, and 11 days post-axotomy compared 

to axotomy alone throughout the time-course (P < 0.05; Fig. 35C). However, the 

combination of ES and TP had no supplementary effect in duty cycle relative to 

either treatment alone (Fig. 35D). 

 

ix. ES and TP increase max contact max intensity mean 

When investigating the effect of treatment on RH max contact max 

intensity mean we observed a main effect between treatment groups (F4,5767 = 

7.48; P < 0.0001), time (F26,5767 = 109.30; P < 0.0001), as well as an interaction 

between treatment x time (F104,5767 = 16.13; P < 0.0001; Fig. 36). Max contact 

max intensity mean was significantly decreased in injured, untreated animals at 2 

days post-axotomy relative to uninjured control animals (53.7 ± 10.1 and 206.4 ± 

11.6, respectively; P < 0.001; Fig. 36) and did not return to that observed in  
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Fig. 36: Effect of ES and TP on RH max contact max intensity mean. 

Shown is a time-course of the effect of ES and TP on RH max contact max 
intensity mean post-axotomy (Ax). Uninjured animals (solid line) represent a 
longitudinal baseline throughout the study. Control animals, which were 
axotomized but left untreated (Ax only), are compared to axotomized animals 
receiving only ES (A), only TP (B), or the combination of both ES and TP (C). (D) 
Represents the comparison between the combination of ES and TP relative to 
both ES and TP alone. Data is represented as intensity (arbitrary units) ± SEM. 
Statistical significance was evaluated using linear mixed effects models. Each 
model included random intercepts and slopes for speed and weight for each 
animal. Post hoc pairwise multiple comparisons were performed within time 
points using the Holm-Šidák method when group differences were detected. * 
represents a significant difference between ES, TP, or ES and TP compared to 
axotomy alone, at P < 0.05. # represents a significant difference between ES and 
TP relative to both ES and TP alone, at P < 0.05. For each experimental group, n 
= 5-6 animals/time-point.     
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uninjured animals, with the exception of 42 days post-axotomy. Animals treated 

with ES demonstrated a significantly elevated max contact max intensity mean at 

some of the later time-points between 28 and 42 days post-axotomy, but this 

effect was not consistently maintained (P < 0.05; Fig. 36A). In contrast, animals 

treated with TP demonstrated a significantly higher max contact max intensity 

mean as early as 4 days post-axotomy relative to axotmy alone that lasted for 

several weeks (P < 0.05; Fig. 36B). Animals treated with ES plus TP 

demonstrated a significant increase in max contact max intensity mean 4 days 

post-axotomy relative to animals receiving axotomy alone (P < 0.05; Fig. 36C) 

that lasted until 11 days post-axotomy. This effect returned at the later time-point 

of 25 days post-axotomy, but was not consistently maintained. The combinatorial 

treatment significantly increased max contact max intensity mean at 7 days post-

axotomy relative to either treatment alone (P < 0.05; Fig. 36D) but was similar at 

all other time-points. 

 

b. Non paw-related parameters 

i. ES only and TP only significantly increase SFI 

Evaluation of sciatic functional index (SFI) score did not reveal a main 

effect of treatment group (F3,1429 = 0.91; P = 0.4336) but did reveal an effect of 

post-operative time (F7,1429 = 106.44; P < 0.0001) and an interaction between 

treatment x post-operative time (F21,1429 = 3.91; P < 0.0001; Fig. 37). Axotomized 

animals demonstrated a recovery in SFI over the extended 8 week time-course 
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Fig. 37: Effect of ES and TP on SFI. 

Shown is a time-course of the effect of ES and TP on SFI score post-axotomy 
(Ax). Control animals, which were axotomized but left untreated (Ax only), are 
compared to axotomized animals receiving only ES (A), only TP (B), or the 
combination of both ES and TP (C). (D) Represents the comparison between the 
combination of ES and TP relative to both ES and TP alone. Data is represented 
as SFI score ± SEM. Statistical significance was evaluated using linear mixed 
effects models. Each model included random intercepts and slopes for speed 
and weight for each animal. Post hoc pairwise multiple comparisons were 
performed within time points using the Holm-Šidák method when group 
differences were detected. * represents a significant difference between ES, TP, 
or ES and TP compared to axotomy alone, at P < 0.05. # represents a significant 
difference between ES and TP relative to both ES and TP alone, at P < 0.05. For 
each experimental group, n = 5-6 animals/time-point.  
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(Fig. 37). ES treatment significantly elevated SFI levels only at 7 weeks post-

axotomy relative to axotomy alone (-17.4 ±  3.6 and -33.2 ±  3.9; P < 0.05; Fig. 

37A). TP-treated animals demonstrated a significant increase in SFI only at 5 

weeks post-axotomy relative to axotomy alone (-25.2 ±  2.8 and -40.8 ± 3.5; P < 

0.05; Fig. 37B). The combinatorial treatment had no effect on PFI relative to 

axotomy alone (Fig. 37C). Analysis revealed the combination treatment of ES 

plus TP did not have any supplementary benefit to either treatment alone (Fig. 

37D). 

 

ii. ES only and TP only significantly increase PFI 

Overall, we observed a main effect of treatment group (F3,1429 = 2.68; P = 

0.0459), time (F7,1429 = 47.32; P < 0.0001) as well as an interaction between 

treatment x post-operative time (F21,1429 = 8.17; P < 0.0001; Fig. 38) with respect 

to peroneal functional index (PFI) score. Axotomy alone demonstrated a recovery 

in PFI over the extended 8 week time-course (Fig. 38). ES treatment significantly 

elevated SFI levels at the later time-points of 5, 6, and 7 weeks post-axotomy (P 

< 0.05) relative to axotomy alone (Ax + ES: -43.6 ± 10.5, -21.2 ± 11.3, and -8.7 ± 

11.5; Ax only: -97.8 ± 12.8, -73.4 ±  12.7, and -65.0 ±  13.1;  P < 0.05; Fig. 38A). 

TP-treated animals demonstrated a significant increase in SFI at 1, 5, and 6 

weeks post-axotomy (-99.2 ± 14.5, -40.1 ± 10.6, and -32.3 ± 10.6) relative to 

axotomy alone (Ax only at 1 week post-axotomy: -184.3 ± 19.2; P < 0.05; Fig. 

38B). The combinatorial treatment had no effect on PFI relative to axotomy alone 

(Fig. 38). Analysis revealed the PFI score for animals treated with both ES plus 
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Fig. 38: Effect of ES and TP on PFI. 

Shown is a time-course of the effect of ES and TP on PFI score post-axotomy 
(Ax). Control animals, which were axotomized but left untreated (Ax only), are 
compared to axotomized animals receiving only ES (A), only TP (B), or the 
combination of both ES and TP (C). (D) Represents the comparison between the 
combination of ES and TP relative to both ES and TP alone. Data is represented 
as PFI score ± SEM. Statistical significance was evaluated using linear mixed 
effects models. Each model included random intercepts and slopes for speed 
and weight for each animal. Post hoc pairwise multiple comparisons were 
performed within time points using the Holm-Šidák method when group 
differences were detected. * represents a significant difference between ES, TP, 
or ES and TP compared to axotomy alone, at P < 0.05. # represents a significant 
difference between ES and TP relative to both ES and TP alone, at P < 0.05. For 
each experimental group, n = 5-6 animals/time-point.  
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TP was significantly lower at 5 weeks post-axotomy (-85.9 ± 13.4) relative to 

either treatment alone (P < 0.05; Fig. 38D).   

 

iii. ES only and TP only significantly increase TFI 

Overall, we did not observe a main effect between treatment groups 

(F3,1429 = 1.73; P = 0.1591; Fig. 39); however, analysis revealed an effect with 

time (F7,1429 = 143.74; P < 0.0001) and an interaction between treatment x post-

operative time (F21,1429 = 86.74; P < 0.0001; Fig. 39) with respect to posterior 

tibial functional index (TFI) score. Axotomy alone demonstrated a recovery in TFI 

over the extended time-course of 1, 2, 3, 4, 5, 6, 7, and 8 weeks post-axotomy 

(Fig. 39). At 5 and 7 weeks post axotomy, treatment with either ES (-33.4 ± 3.3 

and -18.3 ± 3.8, respectively; Fig. 39A) or TP (-25.9 ± 3.0 and -22.2 ± 3.4, 

respectively; Fig. 39B) significantly elevated TFI score relative to injury alone (-

45.3 ± 3.6 and -35.5 ± 4.0, respectively, P < 0.05). In contrast, ES + TP animals 

were similar to axotomy alone at all observed time-points (Fig. 39C). At 4 weeks 

post-axotomy, the combination treatment of ES and TP (-39.7 ± 3.7) 

demonstrated a significantly lower TFI score than either treatment alone (P < 

0.05; Fig. 39D). 

 

iv. TP decreases BOS of front paws 

We found an overall main effect between treatment groups (F4,5863 = 3.00; 

P = 0.0173), time (F26,5863 = 8.70; P < 0.0001), as well as an interaction between  
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Fig. 39: Effect of ES and TP on TFI. 

Shown is a time-course of the effect of ES and TP on TFI score post-axotomy 
(Ax). Control animals, which were axotomized but left untreated (Ax only), are 
compared to axotomized animals receiving only ES (A), only TP (B), or the 
combination of both ES and TP (C). (D) Represents the comparison between the 
combination of ES and TP relative to both ES and TP alone. Data is represented 
as TFI score ± SEM. Statistical significance was evaluated using linear mixed 
effects models. Each model included random intercepts and slopes for speed 
and weight for each animal. Post hoc pairwise multiple comparisons were 
performed within time points using the Holm-Šidák method when group 
differences were detected. * represents a significant difference between ES, TP, 
or ES and TP compared to axotomy alone, at P < 0.05. # represents a significant 
difference between ES and TP relative to both ES and TP alone, at P < 0.05. For 
each experimental group, n = 5-6 animals/time-point.    
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treatment x time (F104,5863 = 3.12; P < 0.0001; Fig. 40) with respect to the base of 

support (BOS) of the front paws. Although the BOS of the front paws was 

significantly elevated at 2 days post-axotomy in axotomized animals relative to 

uninjured animals (2.18 ± 0.10 cm and 1.70 ± 0.15 cm, respectively) this effect 

was not consistent across all time-points (P < 0.05; Fig. 40). The BOS of the 

front paws of ES-treated animals was significantly lower at 21 and 23 days post-

axotomy (1.67 ± 0.09 cm and 1.65 ± 0.10 cm, respectively) relative to axotomy 

alone (2.09 ± 0.10 cm and 2.06 ± 0.10 cm) but was similar at all other time-points 

(P < 0.05; Fig. 40A). In TP-treated animals, the BOS of the front paws was 

significantly decreased at multiple time-points between 7 and 14 days post-

axotomy and 21 and 28 days post-axotomy relative to axotomy alone (P < 0.05; 

Fig. 40B). The combination of ES plus TP significantly decreased BOS of the 

front paws at 2 days post-axotomy, but this effect was not consistent across time 

(P < 0.05; Fig. 40C). In addition, the combination of both ES and TP 

demonstrated no additional benefit to either treatment alone throughout the time-

course (Fig. 40D). 

 

v. Treatment does not affect BOS of hind paws     

We observed an overall main effect between treatment groups (F4,5767 = 

4.55; P = 0.0011), time (F26,5767 = 137.50; P < 0.0001), as well as an interaction 

between treatment x time (F104,5767 = 12.71; P < 0.0001; Fig. 41) with respect to 

the BOS of the hind paws. The BOS of the hind paws was significantly increased 

in injured, untreated animals at 28 days post-axotomy relative to uninjured  
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Fig. 40: Effect of ES and TP on BOS of the front paws. 

Shown is a time-course of the effect of ES and TP on BOS of the front paws 
post-axotomy (Ax). Uninjured animals (solid line) represent a longitudinal 
baseline throughout the study. Control animals, which were axotomized but left 
untreated (Ax only), are compared to axotomized animals receiving only ES (A), 
only TP (B), or the combination of both ES and TP (C). (D) Represents the 
comparison between the combination of ES and TP relative to both ES and TP 
alone. Data is represented as BOS of the front paws (cm) ± SEM. Statistical 
significance was evaluated using linear mixed effects models. Each model 
included random intercepts and slopes for speed and weight for each animal. 
Post hoc pairwise multiple comparisons were performed within time points using 
the Holm-Šidák method when group differences were detected. * represents a 
significant difference between ES, TP, or ES and TP compared to axotomy 
alone, at P < 0.05. # represents a significant difference between ES and TP 
relative to both ES and TP alone, at P < 0.05. For each experimental group,        
n = 5-6 animals/time-point.    
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Fig. 41: Effect of ES and TP on BOS of the hind paws. 

Shown is a time-course of the effect of ES and TP on BOS of the hind paws post-
axotomy (Ax). Uninjured animals (solid line) represent a longitudinal baseline 
throughout the study. Control animals, which were axotomized but left untreated 
(Ax only), are compared to axotomized animals receiving only ES (A), only TP 
(B), or the combination of both ES and TP (C). (D) Represents the comparison 
between the combination of ES and TP relative to both ES and TP alone. Data is 
represented as BOS of the hind paws (cm) ± SEM. Statistical significance was 
evaluated using linear mixed effects models. Each model included random 
intercepts and slopes for speed and weight for each animal. Post hoc pairwise 
multiple comparisons were performed within time points using the Holm-Šidák 
method when group differences were detected. * represents a significant 
difference between ES, TP, or ES and TP compared to axotomy alone, at           
P < 0.05. # represents a significant difference between ES and TP relative to 
both ES and TP alone, at P < 0.05. For each experimental group, n = 5-6 
animals/time-point.    
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control animals (2.84 ± 0.14 cm and 2.09 ± 0.24 cm, respectively; P < 0.05; Fig. 

41) and was maintained throughout the remaining time-course. The BOS of the 

hind paws of ES-treated animals demonstrated no consistent difference relative 

to injury alone (Fig. 41A). In TP-treated animals, the BOS of the hind paws was 

similar to axotomy alone throughtout the time-course (Fig. 41B). The 

combination of ES plus TP significantly increased BOS of the hind paws between 

21 and 28 days post-axotomy (P < 0.05; Fig. 41C). Similarly, the BOS of the hind 

paws in ES and TP treated animals was significantly elevated shortly after 42 

days post-axotomy throughout the remaining time-points relative to injury alone 

(P < 0.05) with the exception of 49 days post-axotomy. In contrast, the 

combination of both ES and TP demonstrated no additional benefit to either 

treatment alone throughout the time-course (Fig. 41D). 

 

vi. TP increases regularity index 

Evaluation of the regularity index revealed an overall main effect between 

treatment groups (F4,5863 = 2.98; P = 0.0181), time (F26,5863 = 149.18; P < 0.0001), 

as well as an interaction between treatment x time (F104,5863 = 12.20; P < 0.0001; 

Fig. 42). Axotomy alone significantly decreased the regularity index at 2 days 

post-axotomy relative to uninjured animals (31.3 ± 2.1% and 99.6 ± 2.1%, 

respectively, P < 0.001) and returned to levels similar to that observed in 

uninjured animals at 11 days post-axotomy (Fig. 42). At the earlier time-points of 

2 and 4 days post-axotomy, ES of the sciatic nerve (40.2 ± 2.0% and 90.8 ± 

1.8%, respectively) significantly increased the regularity index relative to axotomy   
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Fig. 42: Effect of ES and TP on regularity index. 

Shown is a time-course of the effect of ES and TP on regularity index post-
axotomy (Ax). Uninjured animals (solid line) represent a longitudinal baseline 
throughout the study. Control animals, which were axotomized but left untreated 
(Ax only), are compared to axotomized animals receiving only ES (A), only TP 
(B), or the combination of both ES and TP (C). (D) Represents the comparison 
between the combination of ES and TP relative to both ES and TP alone. Data is 
represented as regularity index (%) ± SEM. Statistical significance was evaluated 
using linear mixed effects models. Each model included random intercepts and 
slopes for speed and weight for each animal. Post hoc pairwise multiple 
comparisons were performed within time points using the Holm-Šidák method 
when group differences were detected. * represents a significant difference 
between ES, TP, or ES and TP compared to axotomy alone, at P < 0.05.             
# represents a significant difference between ES and TP relative to both ES and 
TP alone, at P < 0.05. For each experimental group, n = 5-6 animals/time-point.    
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alone (P < 0.05; Fig. 42A). Similarly, TP treatment demonstrated a significant 

elevation at 2, 4, 7, and 9 days post-axtomy (59.6 ± 2.0%, 96.1 ± 1.9%, 101.0 ± 

1.8%, and 100.8 ± 1.7%, respectively) relative to axotomy alone (P < 0.05; Fig. 

42B). At 2, 7, and 9 days post-axotomy, the combination of ES and TP (43.7 ± 

1.9%, 98.9 ± 1.7%, and 96.1 ± 1.8%, respectively) significantly elevated the 

regularity index relative to axotomy alone (P < 0.05; Fig. 42C). The combinatorial 

treatment of ES and TP did not demonstrate a supplementary effect in regularity 

index relative to either treatment alone (Fig. 42D). 

 

vii. Treatment does not affect cadence 

The extended time course did not reveal any differences between treatment 

groups (F4,5863 = 1.23; P = 0.2958) but did reveal a significant effect between time 

(F26,5863 = 21.69; P < 0.0001) as well as an interaction between treatment x time 

(F104,5863 = 3.94; P < 0.0001; Fig. 43). Axotomy alone demonstrated a brief and 

delayed significant increase in the cadence from 11 through 21 days post-

axotomy relative to uninjured animals (P ≤ 0.05; Fig. 43). Treatment with ES 

(Fig. 43A), TP (Fig. 43B), or the combination of ES and TP (Fig. 43C) 

demonstrated no consistent difference across time relative to axotomy alone. 

Thus, the combination of ES and TP showed no supplementary benefit relative to 

either treatment alone Fig. 43D). 
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Fig. 43: Effect of ES and TP on cadence. 

Shown is a time-course of the effect of ES and TP on cadence post-axotomy 
(Ax). Uninjured animals (solid line) represent a longitudinal baseline throughout 
the study. Control animals, which were axotomized but left untreated (Ax only), 
are compared to axotomized animals receiving only ES (A), only TP (B), or the 
combination of both ES and TP (C). (D) Represents the comparison between the 
combination of ES and TP relative to both ES and TP alone. Data is represented 
as cadence (steps/sec) ± SEM. Statistical significance was evaluated using linear 
mixed effects models. Each model included random intercepts and slopes for 
speed and weight for each animal. Post hoc pairwise multiple comparisons were 
performed within time points using the Holm-Šidák method when group 
differences were detected. * represents a significant difference between ES, TP, 
or ES and TP compared to axotomy alone, at P < 0.05. # represents a significant 
difference between ES and TP relative to both ES and TP alone, at P < 0.05. For 
each experimental group, n = 5-6 animals/time-point.    
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4. EMG recordings 

Overall, we observed a main effect with time (F1,16 = 4.72; P = 0.05; Fig. 

44); although there was no difference between treatment groups (F3,16 = 1.08; P 

= 0.385) or an interaction observed between treatment x time (F3,16 = 0.20; P = 

0.895; Fig. 44) when examining the EMG amplitude of the tibialis anterior 

muscle. Additional analysis to determine the presence of a treatment effect was 

not completed since there was no statistical difference between treatment x time. 
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Fig. 44: Effect of ES and TP on tibialis anterior EMG amplitude. 

Shown is the effect of ES and TP on electromyography (EMG) amplitude post-
axotomy (Ax). EMG amplitudes of animals that were axotomized but left 
untreated (Ax only) and axotomized animals receiving only ES, only TP, or the 
combination of both ES and TP are compared to their respective EMG amplitude 
before Ax. Bars represent means ± SEM. For graphical purposes, the EMG 
amplitudes before axotomy for all treatment groups were averaged together.       
For each experimental group, n = 4-6 animals/time-point.    
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5. Summary 

In this study, we characterized the effects of ES and TP on functional 

recovery following sciatic nerve crush axotomy. We found that animals treated 

with systemic TP exhibited the greatest recovery then either treatment with ES 

only or the combination of both ES and TP. Moreover, our results indicate that 

treatment with only ES improved many gait parameters but not to the same 

extent as treatment with only TP. Our results demonstrate that ES and TP 

together significantly improved one parameter, max contact max intensity, 

relative to either treatment individually.  
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D. Effects of ES and TP on dendritic morphology 

1. Axotomy and treatment do not alter motoneuron counts 

In normal animals, the number of motoneurons within the identified tibialis 

range averaged 125.83 (± 13.01, Mean ± SEM) on the left side and 134.91 (± 

17.62) on the right side (right/left ratio X 100 = 116.65 ± 21.06). Nerve crush with 

or without subsequent treatment had no effect on the number (F(4,25) = 0.74, ns) 

or ratio (F(4,25) = 0.56, ns) of tibialis motoneurons (Ax only left, 153.14 ± 16.03, 

right, 150.29 ± 23.07, right/left ratio = 98.33± 11.76; Ax + ES left, 179.91 ± 19.55, 

right, 155.46 ± 26.41, right/left ratio = 86.44 ± 11.52; Ax + TP left, 154.20 ± 

15.80, right, 137.54 ± 17.81, right/left ratio = 97.38 ± 18.45; Ax + ES + TP left, 

144.24 ± 22.81, right, 156.48 ± 27.04, right/left ratio = 112.72 ± 15.43; Fig. 45). 

 

2. Motoneuron morphometry 

Injection of BHRP into the right anterior tibialis successfully labeled 

ipsilateral motoneurons in all groups (Fig. 46). Labeled motoneurons were 

located in the lateral motor column in the L3 spinal segment (Nicolopoulos‐

Stournaras & Iles, 1983). Dendritic arbors were strictly unilateral, with extensive 

ramification along the ventrolateral edges of the gray matter and in the lateral 

funiculus, as well as throughout the ventral horn. An average of 35.56 ± 3.34 

motoneurons per animal were labeled with BHRP, and did not differ by group 

(F(4,22) = 0.07, ns). 
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Fig. 45: Effect of ES and TP on number of tibialis anterior motoneurons.  

Shown are the number of tibialis anterior motoneurons of normal controls (No Ax) 
and axotomized animals (Ax only) that were either treated with ES, TP, or ES + 
TP. (A) Location of tibialis anterior motoneurons in column 4 of the lateral motor 
column in the L3 spinal segment. (B) Image of tibialis anterior motoneurons. (C) 
Number of contralateral and ipsilateral tibialis anterior motoneurons at 58 days 
post-axotomy. (D) Number of tibialis anterior motoneurons as a percent ratio of 
ipsilateral/contralateral side. Bar heights represent means ± SEM.  
* indicates significantly different from normal controls. 
  

300 μm 

100 μm 
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Fig. 46: Darkfield digital micrographs and somata composites 
demonstrating the effect of ES and TP on the dendritic arbor of tibialis 
anterior motoneurons.  

Shown are darkfield digital micrographs of transverse hemisections through the 
lumbar spinal cord and corresponding computer-generated composites of labeled 
somata and processes after BHRP injection into the right tibialis anterior muscle. 
Composites of BHRP-labeling were selected as representative of the respective 
group average dendritic lengths. Scale bars = 250 μm (micrographs), 500 μm 
(composites). 
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a. Axotomy and treatment do not alter soma volume   

In normal animals, tibialis motoneuron somata were typical in size 

(24985.63 ± 1946.05 μm3), and did not differ from those of Ax only (22143.52 ± 

2507.01 μm3), Ax+ES (24107.88 ± 1176.06 μm3), Ax + TP  

 (25849.02 ± 2268.86 μm3), or Ax + ES + TP (29511.34 ± 2470.25 μm3) animals 

(F(4,25) = 1.49, ns; Fig. 47). 

 

b. TP attenuates axotomy-induced dendritic hypertrophy 

Following nerve crush, tibialis motoneurons underwent marked dendritic 

hypertrophy. Dendritic length increased by 174.57% (11741.62 ± 1931.11 µm in 

Ax only animals compared to 4276.42 ± 928.54 µm for normal animals, LSD, P < 

0.05; overall test for the effect of group on arbor per cell F(4,22) = 5.15, P < 0.05; 

Fig. 48). Treatment with ES or ES + TP had no effect on dendritic hypertrophy: 

dendritic lengths in Ax + ES animals (11233.80 ± 2449.38 μm) and Ax + ES + TP 

(13345.94 ± 2449.38 μm) were 162.69% and 212.08% (respectively) longer than 

those of normal animals (LSDs P < 0.05), and did not differ from each other 

(LSD, ns). In contrast, treatment with TP attenuated crush-induced hypertrophy: 

dendritic lengths in Ax+TP animals (8385.91 ± 1686.28 μm) were 96.10% longer 

than those of normal animals but this difference did not reach statistical 

significance (LSD, ns). Dendritic length per bin was nonuniform across radial 

bins, and a repeated-measures ANOVA revealed a significant effect of radial  
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Fig. 47: Effect of ES and TP on soma volume. 

Shown is the cross-sectional soma areas of tibialis anterior motoneurons of 
normal controls (No Ax) and axotomized animals (Ax only) that were either 
treated with ES, TP, or ES + TP. Bar heights represent means ± SEM  
* indicates significantly different from normal controls. 
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Fig. 48: Effect of ES and TP on dendritic arbor. 

Shown is the dendritic lengths of tibialis anterior motoneurons of normal controls 
(No Ax) and axotomized animals (Ax only) that were either treated with ES, TP, 
or ES + TP. Bar heights represent means ± SEM. * indicates significantly 
different from normal controls. 
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location (F(11,242) = 41.51, P < 0.05; Fig. 49). Consistent with the results of the 

arbor per cell analysis, there was also a significant effect of group (F(4,242) = 5.17, 

P < 0.05). Increases in dendritic length occurred throughout the radial distribution 

in Ax only animals compared to that of normal animals (an average of 275.91%; 

F(1,110) = 14.46, P < 0.05). Similar increases in length throughout the radial 

distribution of the dendritic arbor were present in animals treated with ES 

(averaging 271.18%) or ES + TP (326.87%) (Fs(1,110) > 15.30, Ps < 0.05). 

Consistent with the attenuation in crush-induced dendritic hypertrophy seen after 

TP treatment, smaller but statistically significant (F(1,110) = 5.27, P < 0.05) 

increases in length throughout the radial distribution of the dendritic arbor were 

present in Ax + TP animals (averaging 198.12%). 

 

c. TP attenuates axotomy-induced dendritic extent 

Consistent with the nonuniform dendritic distribution of tibialis 

motoneurons apparent in Fig. 49, radial dendritic extent differed across bins (Fig. 

50), and repeated-measures ANOVA revealed a significant effect of location 

(F(11,242) = 69.83, P < 0.05). Radial dendritic extent also differed across groups 

(F(4,242) = 8.73, P < 0.05). Increases in dendritic extent occurred throughout the 

radial distribution in Ax only animals compared to that of normal animals (an 

average of 159.59%; F(1,110) = 20.12, P < 0.05). Similar increases in extent 

throughout the radial distribution of the dendritic arbor were present in animals 

treated with ES (averaging 154.09%), TP (137.22%), or ES + TP (160.62%)  
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Fig. 49: Effect of ES and TP on dendritic arbor across radial bins. 

Top: Drawing of gray matter divided into radial sectors for measure of tibialis 
anterior motoneuron dendritic distribution. 
Bottom: Shown is the length per radial bin of tibialis anterior motoneurons of 
normal controls (No Ax) and axotomized animals (Ax only) that were either 
treated with ES, TP, or ES + TP. For graphical purposes, dendritic length 
measures have been collapsed into 6 bins of 60° each. Bar heights represent 
means ± SEM. * indicates significantly different from normal controls. 
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Fig. 50: Effect of ES and TP on dendritic extent. 

Top: Drawing of gray matter divided into radial sectors for measure of tibialis 
anterior motoneuron radial dendritic extent. 
Bottom: Shown is the radial extents of tibialis anterior motoneurons of normal 
controls (No Ax) and axotomized animals (Ax only) that were either treated with 
ES, TP, or ES + TP. For graphical purposes, dendritic length measures have 
been collapsed into 6 bins of 60° each. Bar heights represent means ± SEM. * 
indicates significantly different from normal controls. 
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(Fs(1,110) > 6.65, Ps < 0.05). Rostrocaudal dendritic extent also differed across 

groups (F(4,22) = 3.72, P < 0.05; Fig. 51), spanning 2605.70 ± 147.00 µm in 

normal animals, and increasing to 4000.00 ± 572.40 µm in Ax + ES animals, and 

4128.00 ± 478.4 µm in Ax+ES+TP animals (LSDs, Ps < 0.05). Rostrocaudal 

extent in Ax only (3424.00 ± 164.7 µm) and Ax + TP (3328.00 ± 163.2 µm) 

animals did not differ from that of normal animals (LSDs, ns).  

 

6. Summary       

In this study, we characterized the effects of ES and TP on motoneuron 

morphology following sciatic nerve crush axotomy. We found that crush axotomy 

and treatment did not alter the number of tibialis motoneurons. Interestingly, our 

results indicate crush axotomy leads to hypertrophy of the dendritic arbor of 

tibialis motoneurons which is attenuated with treatment of TP.  
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Fig. 51: Effect of ES and TP on rostrocaudal extent of the dendritic arbor. 

Shown is the rostrocaudal extent of tibialis anterior motoneurons of normal 
controls (No Ax) and axotomized animals (Ax only) that were either treated with 
ES, TP, or ES + TP. Bar heights represent means ± SEM  
* indicates significantly different from normal controls. 
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CHAPTER 5: DISCUSSION 

 

It is well-established that functional recovery is suboptimal following 

peripheral nerve injury (PNI), especially with transection injuries, with full 

functional recovery seen in approximately 50% of individuals (Kallio & Vastamäki, 

1993). The use of electrical stimulation (ES), gonadal steroids, growth factors, 

and exercise as therapies following axotomy have had great success in rodents, 

but few have shown promise in a clinical setting (Gordon et al., 2010). It is likely 

that the greatest success in achieving full functional recovery will come from the 

use of a combinatorial approach that has the potential to stimulate multiple 

targets and pathways. Several objectives must be accomplished to have 

successful regeneration and complete functional recovery: 1)  maintaining the 

internal neuronal growth state, 2) increasing regeneration-associated genes to 

promote axon elongation across the injury site, 3) removing inhibitory debris to 

promote a permissive environment, 4) increasing axonal regeneration by 

decreasing the time before sprout formation and/or accelerating regeneration 

rate, 5) increasing regeneration specificity, and 6) maintaining viable and intact 

target end-organs. Many of the aforementioned treatments target one or more of 

these goals, although two treatments show more promise than the others. Both 

ES and testosterone propionate (TP) address several of the goals listed above. 

ES decreases the time before sprout formation and increases regeneration 

specificity (Brushart, 1988; Sharma et al., 2009). On the other hand, TP 

maintains the internal growth state and target end-organs while also enhancing 
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axonal regeneration rate (Kujawa et al., 1993; Tetzlaff et al., 2007; Verhovshek et 

al., 2010; Verhovshek & Sengelaub, 2013). Together, ES and TP increase 

regeneration-associated gene expression (Jones et al., 1999; Al-Majed et al., 

2000a; Fargo et al., 2008; Sharma et al., 2010a). From a translational 

perspective, ES has demonstrated therapeutic potential in the clinic following 

axotomy (Gordon et al., 2010) and TP is currently utilized in the clinic to treat 

other disorders, thus making it an easily translational therapy for treatment of 

PNI. The results presented in the preceding chapter have provided insight into 

the mechanisms by which ES and TP promote functional recovery following 

sciatic nerve crush injury. Following is a discussion of some of those key results 

and their impact on the current literature.  

 

A. Validation Experiments 

As previously discussed, functional recovery following nerve injury is 

dependent upon several factors: type and location of injury, age of individual, and 

regeneration distance to target (Birch & Raji, 1991; Perry et al., 1992; Fu & 

Gordon, 1995a, 1995b). In the current study, we demonstrated that there is a 

significant increase in βII-tubulin mRNA expression with proximal sciatic nerve 

crush injury relative to a distal sciatic nerve crush axotomy; findings which have 

been previously documented (Fernandes et al., 1999). Therefore, we can 

conclude that the strength of the motoneuron response following injury is in direct 

proportion to the proximity of injury to the cell body.  
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The peripheral nervous system exhibits a high degree of symmetry with 

side-to-side integration particularly extensive in the spinal cord. Some animal PNI 

models, such as the facial nerve injury model, have historically utilized the 

contralateral side as an internal control for analysis, such as normalizing gene 

expression data (Haulcomb et al., 2014). However, numerous examples of 

unilateral injury have been reported to produce bilateral effects, including 

alterations in gene expression and nociceptive response (McGregor et al., 1984; 

Sugimoto et al., 1990; Booth & Brown, 1993; Koltzenburg et al., 1999; Pettersson 

et al., 2004). In contrast to motor nuclei in the brainstem, the spinal cord is 

anatomically predisposed to exhibit contralateral effects to unilateral nerve injury 

(Kiernan & Rajakumar, 2013).      

In the literature, there are contradictory data on whether nerve injury can 

lead to a contralateral effect in gene expression in the spinal cord (Booth & 

Brown, 1993; Fernandes et al., 1999; Pettersson et al., 2004). The current study 

revealed alterations in the expression of αI-tubulin, βII-tubulin, and collapsin 

response mediator protein 2 (crmp2) with axotomy alone. Some studies have 

reported altered mRNA levels of pituitary adenylate cyclase-activating peptide 

(pacap) and 43-kiloDalton growth-associated protein (gap-43) in intact 

motoneurons contralateral to a sciatic nerve lesion (Booth & Brown, 1993; 

Pettersson et al., 2004). Similar to our findings, Pettersson and colleagues did 

not detect a change in pacap expression on the contralateral side with a distal 

sciatic nerve injury (level of mid-thigh), but did observe a slight increase in pacap 

expression after a proximal sciatic nerve injury (Pettersson et al., 2004). Given 
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the discrepancy in the literature and our current results, we did not use the 

contralateral side as an internal control.  

 

B. ES and TP differentially alter regeneration-associated gene expression 

It is well-established that motoneurons undergo a robust response to 

axotomy and shift from a state of maintenance to growth/repair (Lieberman, 

1971). This morphological shift is critical for motoneurons to regenerate and 

characterized by several changes in the somata, including chromatolysis, 

swelling, and an upregulation of genes critical for neuronal recovery and repair 

(regeneration-associated genes; Lieberman, 1971). In the current study, we 

analyzed the effects of ES and TP on axotomy-induced expression of the 

following regeneration-associated genes: αI-tubulin, βII-tubulin, gap-43, crmp2, 

brain derived neurotrophic factor (bdnf), glial cell derived neurotrophic factor 

(gdnf), pacap, and neuritin.       

Over the extended post-axotomy time-course, we observed an increase in 

gap-43 mRNA expression at 7 days post-axotomy. Previous studies from our 

laboratory and others support the upregulation of gap-43 mRNA following 

axotomy (Tetzlaff et al., 1991; Jones et al., 1997a; Sharma et al., 2010a). In 

addition, we observed a downregulation in the expression of αI-tubulin and crmp2 

after axotomy that contradicts what has been previously reported (Pasterkamp et 

al., 1998; Sharma et al., 2010a), and which could be attributed to differences in 

the molecular response of cranial versus spinal neurons. Initially, it was 
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surprising that we did not observe significant changes in the expression of βII-

tubulin, bdnf, and pacap with axotomy alone, as all of these genes have been 

reported to increase after facial or sciatic nerve axotomy (Brown et al., 1999; 

Zhou et al., 1999; Pettersson et al., 2004; Sharma et al., 2010a; Haulcomb et al., 

2014). However, these contradictory findings could be due to differences in 

tissue source and extraction methodologies (i.e. motoneuron cell body vs. entire 

ventral horn) and also the lesion site. Similar to previous studies, we found no 

axotomy-induced increase in neuritin mRNA (Höke et al., 2000; Fargo et al., 

2008; Sharma et al., 2010a).    

Several groups have reported an increase in gdnf expression after 

axotomy in the DRG, dorsal horn, and sciatic nerve (Höke et al., 2000; Dong et 

al., 2005; Cobianchi et al., 2013). In contrast, resultant low gdnf expression within 

the whole spinal cord has been documented following axotomy (Cobianchi et al., 

2013), which is in agreement with our current results. ES has been demonstrated 

to increase gdnf expression in the DRG, but not the ventral horn, at 1 and 3 days 

following sciatic nerve injury (Cobianchi et al., 2013). Similarly, we did not detect 

a change in gdnf expression at 1 day post-axotomy. Although we discovered ES-

treated animals displayed a significant increase in ventral horn gdnf expression 

at 2 days post-axotomy, this discrepancy is most likely due to temporal 

differences.  

We also reported ES treatment has no effect on early bdnf expression. In 

contrast, Cobianchi et al. published an increase in bdnf ventral horn expression 
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following axotomy and ES treatment (Cobianchi et al., 2013); however, their 

analysis was relative to sham animals and not to injured animals.    

An earlier study from our laboratory concluded that one 30 minute session 

of low frequency ES (20 Hz) was just as effective as daily, 30 minute ES at the 

same low frequency (Foecking et al., 2012). Therefore, for the current study we 

used one 30 minute session of low frequency ES (20 Hz). It is possible that a 

longer stimulation session or multiple sessions would lead to more robust 

increases in regeneration-associated gene expression following sciatic nerve 

crush injury (Sharma et al., 2010a).  

Previously, our laboratory reported that systemic TP treatment enhanced 

bdnf mRNA after facial nerve injury at 7 days post-axotomy (Sharma et al., 

2010a). Similarly, we observed an upregulation in bdnf expression with systemic 

TP treatment but at an earlier time-point of 2 days post-axotomy. Most likely, the 

temporal delay observed by Sharma et al. is due to the fact they utilized a 

proximal nerve injury model and thus more time was necessary for nerve 

degeneration. In addition, they examined a mostly pure motoneuron population 

and could detect smaller changes in mRNA expression.   

To our knowledge, we are the first to investigate the combined effects of 

ES and TP on the expression of both gdnf and crmp2 after sciatic nerve injury. 

Our results indicate that together ES and TP together act in an additive manner 

to elevate gdnf levels 1 day post-axotomy. Cobianchi et al. found that ES in 

combination with treadmill exercise led to a synergistic increase in gdnf ventral 
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horn expression following sciatic nerve axotomy (Cobianchi et al., 2013). It is 

possible that multiple pathways need to be activated to achieve substantial 

elevation in gdnf expression, which could explain the greater effect on gdnf 

expression with the combinatorial treatment of ES and TP rather than with ES 

alone. Moreover, we observed an early and late decrease in mRNA expression 

of crmp2 in response to ES and TP treatment. Similar to gap-43, crmp2 is 

important in axonal growth and shows a decreased expression level at a late 

time-point similar to that of gap-43. Decreased expression of both gap-43 and 

crmp2 could indicate a decrease in axonal outgrowth, resulting in a slower rate of 

axon regeneration.  

The work by Sharma et al. effectively described the differential and 

combinatorial effects of ES and TP on regeneration-associated gene expression 

after facial nerve axotomy (Sharma et al., 2010a). For ease of discussion, a 

comparison of the previous study by Sharma et al. and the current study is 

summarized in Table 8. Sharma and colleagues demonstrated that ES and TP 

differentially altered the expression of αI-tubulin, βII-tubulin, and gap-43, whereas 

the combination of ES and TP increased the expression of bdnf, neuritin, and 

pacap. Interestingly, our results with a different injury model, crush injury to the 

sciatic nerve, contrasted significantly with those reported by Sharma and 

coworkers. ES has been reported to enhance αI-tubulin, gap-43, and pacap 

mRNA expression (Al-Majed et al., 2004; Sharma et al., 2010a). In addition, 

findings from our laboratory have established that TP enhances βII-tubulin 

expression following facial and sciatic nerve axotomy (Jones & Oblinger, 1994; 
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Jones et al., 1999; Brown et al., 2001; Storer et al., 2002; Sharma et al., 2010a). 

Yet, in the current study, we did not observe any changes in αI-tubulin or βII-

tubulin expression with ES or systemic TP treatment alone, but a combinatorial 

treatment of ES and TP resulted in early increases in αI-tubulin expression and 

late downregulation in both αI-tubulin and βII-tubulin. Furthermore, in the current 

study we did not find an altered expression of gap-43 with either ES or TP 

treatment alone (Jones et al., 1997a; Al-Majed et al., 2004; Sharma et al., 2010a) 

but did observe a decrease in gap-43 levels after concerted administration of ES 

and TP. Previously, Sharma et al. found the expression levels of bdnf were 

unchanged by the individual treatments of ES or TP but were elevated after 

treatment with both ES and TP following facial nerve axotomy (Sharma et al., 

2010a). In contrast to their findings, results from our current study indicate that 

administering TP led to an early increase, while ES treatment led to a late 

downregulation in bdnf expression. Sharma and colleagues report that when ES 

and TP were administered together, ES led to an early increase in neuritin mRNA 

whereas TP elevated neuritin levels in a delayed fashion. Most notably, the 

current study revealed no change in the expression of neuritin after sciatic nerve 

crush axotomy. In the facial nerve axotomy model, treatment with the 

combination of ES and TP elevated the expression of pacap in a synergistic 

manner and demonstrated the most robust change out of all of the regeneration-

associated genes that were examined in the study (Sharma et al., 2010a). 

Interestingly, treatment did not alter pacap expression in the sciatic nerve injury 

model used in the current study.  
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The numerous findings our study which contradict what has been reported 

in other PNI models raise several interesting questions that should be considered 

when guiding future investigations for therapeutic strategies and whether ES 

and/or TP are beneficial treatments following PNI. First, the remarkable 

dichotomy in differential and combinatorial effects observed between the facial 

and sciatic nerve injuries supports the theory that cranial and spinal 

motoneurons, respectively, molecularly respond differently to treatment following 

PNI. Second, our results support the idea that gene expression levels in direct 

proportion to injury distance from the motoneuron cell body. In our model of distal 

sciatic nerve crush injury, we observed smaller changes in expression compared 

to what has been reported by others using a proximal nerve crush injury model 

(Fernandes et al., 1999; Pettersson et al., 2004; Sharma et al., 2010a). 

Furthermore, our results demonstrate ES and TP alone lead to an early increase 

in expression of regeneration-associated genes; however, when ES and TP are 

administered in combination they elicit a late suppressive effect in regeneration-

associated gene expression. These results agree with a rapid regenerating 

response at the level of the motoneuron cell body accompanied by rapid 

functional recovery, which will be discussed in more detail below. Lastly, the type 

of injury should be considered when choosing the best therapeutic strategy. 

Although our experiments were restricted to crush axotomy, a more severe 

transection injury may respond differently to ES and/or TP treatment. The latter 

will be discussed in more detail in the section outlining Future Directions.  
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C. TP improves functional recovery following sciatic nerve crush axotomy 

Rodent gait analysis has been long utilized as a method to assess 

therapeutic efficacy and extrapolate to humans (Medinaceli & Wyatt, 1988). 

Moreover, rodent locomotion has been examined in the context of treatment 

efficacy on several disease and injury models, including Parkinson’s disease, 

amyotrophic lateral sclerosis, and PNI (Deumens et al., 2007; Hampton & 

Amende, 2009; Westin et al., 2012).The CatWalk gait analysis system is an 

automated unforced gait analysis method and has been utilized to measure 

functional recovery following sciatic nerve crush and transection injuries 

(Deumens et al., 2007; Bozkurt et al., 2008). From these studies, it was 

discovered that sciatic nerve injury altered several gait parameters, including but 

not limited to print length, print width, print area, swing, swing speed, step cycle, 

duty cycle, max contact max intensity mean, sciatic functional index (SFI), 

peroneal functional index (PFI), posterior tibial functional index (TFI), and base of 

support (BOS) of the hind paws. Although CatWalk examines 162 gait 

parameters, we limited our analysis to clinically relevant parameters, such as 

those described above with the addition of stride length, BOS of the front paws, 

and cadence. It should be noted, for all paw related parameters only the right 

hind (RH) paw was analyzed.   

In addition to gait analysis, other behavioral assessments have been 

utilized to examine functional recovery after nerve injury, such as grip strength 

and electromyography (EMG) recordings (Galtrey & Fawcett, 2007; Hamilton et 

al., 2011). Both grip strength and EMG measurements correlate with nerve 
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reinnervation to intrinsic muscles of the paws. We adapted these methods to 

measure functional recovery of the hind limbs following sciatic nerve axotomy.  

For assessment of the effects of ES and TP on functional recovery, we 

employed a variety of behavioral tests, including automatic foot misplacement, 

grip strength, CaWalk©, and EMG recordings. Below, I will discuss our findings in 

context with the current literature and our original hypothesis. 

The foot misplacement apparatus tests the ability of the rat to use all four 

paws in a coordinated manner. An increase in the number of rear leg errors 

indicates a decrease in coordinated movement. Although all axotomized groups 

demonstrated a significant increase in the number of rear leg errors 2 days post-

axotomy, few rear legs errors were observed for the remaining time-course. 

These data suggest axotomized animals quickly adapted to the behavioral test 

and altered their gait. Likewise, axotomized animals exhibited a significant 

decrease in grip strength relative to uninjured animals. Although no significant 

treatment effect was observed, ES had the strongest effect in returning grip 

strength levels to those of uninjured animals.  

The time-line for functional recovery following a sciatic nerve crush injury 

has been well documented (Forman & Berenberg, 1978; Alberghina et al., 1985; 

Brown et al., 1999; Lago & Navarro, 2006). Based on our results, axotomoized 

animals returned to levels of uninjured animals in all of the behavioral parameters 

analyzed, including EMG activity, with the exception of BOS hind paws, print 

length, print width, and print area. These findings suggest that, in the absence of 
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treatment, animals still exhibit deficits at 8 weeks post-axotomy, which 

substantiates the need for therapeutic intervention to achieve full functional 

recovery.   

Print length and print width are used to calculate the total area of the paw 

that is in contact with the glass floor (print area). A larger print area indicates that 

a larger portion of the foot is in contact with the glass floor. A decrease in print 

length, print width, and print area has been reported following sciatic nerve 

transection and crush (Deumens et al., 2007; Bozkurt et al., 2008). Systemic TP 

treatment beginning immediately after injury resulted in the most pronounced 

improvement throughout the time-course for print length, print width, and thus 

print area, compared to either treatment with only ES or the combination of ES 

and TP following axotomy. An increase in all three of these parameters indicates 

reinnervation of the calf and foot muscles (de Medinaceli et al., 1982; Brown et 

al., 1999). The abililty of TP treatment to improve print length, print width, and 

print area better than ES treatment or the combination of ES and TP, suggests 

TP treatment alone can accelerate regeneration of the sciatic nerve (Brown et al., 

1999). 

Stride length is the distance between two successive placements of the 

same paw, in this case the RH paw. Axotomy has been shown to have no effect 

on stride length when examined as early as 3 days post-axotomy (Deumens et 

al., 2007). We observed a significant increase in stride length with injury at 2 

days post-axotomy. In line with previous findings, this effect diminished by 4 days 

post-axotomy (Deumens et al., 2007). Interestingly, treatment with either ES or 
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TP alone significantly decreased stride length relative to the combination of ES 

and TP. This suggests that ES and TP individually can decrease the distance 

between two consecutive placements of the RH paw. Despite the paw being 

placed more frequently, there was no significant difference in cadence among 

any of the groups. 

Swing has been reported to increase with axotomy and is defined as the 

duration in seconds of no contact of the RH paw with the glass plate (Vrinten & 

Hamers, 2003; Deumens et al., 2007; Bozkurt et al., 2008). Similarly, we 

observed an increase in swing following crush injury to the sciatic nerve. 

Individually, ES and TP decreased swing by 2 days post-axotomy relative to no 

treatment. However, the combination of both ES and TP had no supplementary 

benefit. These data suggest ES and TP individually decrease the amount of time 

the RH paw is in the air between consecutive placements of that paw.  

Stand is defined as the duration of time the RH paw is in contact with the 

glass plate. Step cycle is defined as the time in seconds between two 

consecutive initial contacts of the same paw and can be calculated as the sum of 

both stand and swing. Given that minor differences were observed across 

treatment groups in swing, it is not surprising we did not detect substantial 

treatment differences with step cycle.  

Duty cycle expresses stand as a percentage of step cycle. In the current 

study, duty cycle significantly increased within the first 2 weeks post-axotomy 

across all treatment groups. Since small treatment effects were detected with 
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step cycle, the treatment effect observed with duty cycle is mostly attributed to an 

increase in stand or the time the RH paw was placed on the glass. In contrast to 

our results, Bozkurt and colleagues report a decrease in duty cycle following 

sciatic nerve crush injury (Bozkurt et al., 2008). It should be noted that their data 

is reported as a percent ratio of ipsilateral to contralateral hind paws and the 

current study did not examine the duty cycle of the contralateral hind paw. Taken 

together, these data suggest that either ES or TP treatment alone is beneficial in 

improving gait parameters following injury.        

Swing speed takes into account both stride length and swing and is the 

speed of the RH paw during swing. Since there were no substantial differences 

among treatment groups in stride length, swing, or cadence, it was surprising to 

us that TP-treated animals exhibited significant increases in swing speed 

between the second and fourth weeks post-axotomy. One explanation for these 

differences is that TP-treated animals had a shorter swing, albeit not significant, 

during the second and fourth weeks post-axotomy. Furthermore, a decrease in 

swing would lead to an increase in swing speed. Our results contradict what has 

been reported previously by Bozkurt et al. (2008); however, it should be noted 

their data is expressed a ratio of the ipsilateral to contralateral hind paw and the 

current study did not examine swing speed of the contralateral hind paw. 

In 1988, Bain et al. modified formulas to calculate functional recovery of 

the sciatic nerve and its branches (Bain et al., 1989). The formulas proposed by 

Bain et al. are the basis for calculation of SFI, PFI, and TFI with the CatWalk 

system (Fig. 4). A decrease in SFI, PFI, or TFI indicates a deficit in the injured 
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hind paw and the inability of the rat to correctly spread their toes. Regardless of 

treatment, animals showed early improvement in SFI, PFI, and TFI. ES of the 

sciatic nerve significantly improved SFI, PFI, and TFI during the later phases of 

recovery, an observation reported by others (Gigo-Benato et al., 2010; Zhang et 

al., 2013). Although we observed improvements with ES at slightly later time-

points than what has been previously published, these differences are most likely 

due to differences in location of injury and duration of ES treatment. TP-treated 

animals exhibited PFI recovery relatively early and all three parameters were 

significantly improved in later recovery phases (Brown et al., 1999).  In contrast, 

the combination of ES plus TP did not enhance the benefits of individual 

treatments only. Together, these data suggest with a distal sciatic nerve injury, 

either treatment alone is sufficient to improve functional recovery; however, the 

combination of ES and TP gives no additional therapeutic advantage. 

BOS indicates stability of the trunk of the animal and is defined as the 

average width between either the front or hind paws. In agreement with the 

literature describing gait alterations after spinal cord injury, we observed no 

consistent difference in BOS of the front paws of axotomized animals compared 

to uninjured animals (Hamers et al., 2001). Treatment with either ES or TP 

resulted in a decreased front paw BOS that was similar to uninjured animals. In 

contrast to results within the literature, hind paw BOS increased at 3 weeks post-

axotomy relative to uninjured animals (Deumens et al., 2007), which is most 

likely due to differences in type of injury. For example, Deumens et al. measured 

the BOS of hind paws using a transection injury, rather than a crush injury as 
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presented in the current study. It is likely that a more severe nerve injury results 

in a shorter hind paw BOS. Interestingly, we observed no treatment effect on 

hind paw BOS. Moreover, the combination of ES plus TP resulted in an even 

wider hind paw BOS, relative to axotomy alone. Taken together, these data 

suggest either treatment alone is effective in treating distal sciatic nerve injury; 

whereas, the combinatorial treatment of both ES and TP provided no additional 

benefit. 

Regularity index measures the degree of interlimb coordination and is 

expressed as the number of normal step sequence patterns and paw 

placements. In healthy uninjured rats, the regularity index is valued at 100%. 

After injury, there is a loss in interlimb coordination and decrease in regularity 

index. Relative to uninjured animals, we observed a significant decrease in the 

regularity index all axotomized groups regardless of treatment; accordingly, these 

data suggest injured animals exhibited extra paw placements and irregular 

walking patterns (Hendriks et al., 2006). Minor, yet significant, improvements 

were detected in all treated animals within the first two weeks following axotomy. 

These results are similar to our observations with swing, step cycle, and stride 

length. Together, these results indicate an alteration in gait immediately after 

injury. Deumens et al. (2007) report no change in regularity index following 

sciatic nerve resection in comparison to our findings.  It should be noted that our 

results indicate recovery of regularity index by 7 days post-axotomy which is in 

accordance with their data.  
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Max contact max intensity is the average maximum intensity when the 

paw is in maximum contact with the glass floor. Intensity ranges from 0 to 255 

and depends on the degree of contact between the paw and glass floor. Vrinten 

and Hamers examined paw intensity utilizing a sciatic nerve constriction injury 

model, which causes neuropathic pain (Vrinten & Hamers, 2003). Following 

nerve injury, they observed a decrease in paw intensity of the injured hind limb 

that gradually returned to pre-injury levels over time. In addition, Vrinten and 

Hamers demonstrated a high correlation between intensity and mechanical 

withdrawal thresholds.  

In the current study, all axotomized groups, regardless of treatment, 

exhibited a significant decrease in max contact max intensity mean of the injured 

paw. These results are similar to what have been observed by others (Vrinten & 

Hamers, 2003; Deumens et al., 2007; Bozkurt et al., 2008). ES of the sciatic 

nerve led to a delayed increase in the max contact max intensity mean, relative 

to systemic treatment with TP. In addition, the combination of ES and TP 

significantly increased the max contact max intensity mean similar to that 

observed with treatment of TP. Surprisingly, the combinatorial treatment led to a 

synergistic effect in intensity at 1 week post-axotomy relative to either individual 

treatment, an effect that was not observed with any other behavioral measure.    

From these tests, our results indicate that either ES or TP alone 

demonstrate therapeutic potential following sciatic nerve crush injury. In addition, 

the combination of ES and TP did not demonstrate any improvements in 

functional recovery, with the exception of max contact max intensity mean. 
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Despite this difference, the combinatorial difference appeared to worsen recovery 

in some measurements. In accordance with our molecular data, the inability of 

the combinatorial treatment to enhance functional recovery may be due to 

suppressed expression of regeneration-associated genes.  

 

D. TP attenuates axotomy-induced dendritic hypertrophy 

There is a dichotomy in motoneuron death in rodents following injury that 

is contingent upon age. It is well-established that newborn rat motoneurons are 

susceptible to cell death following spinal nerve axotomy (Schmalbruch, 1984); 

however, there is very limited motoneuron death in adult rats (Gu et al., 1997). 

One study published by Gu et al. (1997) investigated the effect of spinal nerve 

axotomy on motoneuron loss in adult rats. They discovered there was no 

motoneuron loss in the spinal cord if the lesion site was at least 4 mm distal to 

the soma. In the current study, we observed a comparable number of HRP-

labeled tibialis anterior motoneurons to that observed in the literature 

(Nicolopoulos‐Stournaras & Iles, 1983). Moreover, crush injury did not affect 

motoneuron number (Gu et al., 1997), and motoneurons were healthy with 

respect to similar soma volumes across all groups. 

Dendritic morphology is directly correlated with the electrophysiological 

response of a neuron (Rumberger et al., 1998; Lu et al., 2001; Grudt & Perl, 

2002). Moreover, the dendritic morphology of motoneurons is influenced by injury 

(Standler & Bernstein, 1982; Wellman & Sengelaub, 1995). For example, the 
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dendritic fields of spinal motoneurons undergo a cyclic pattern of degeneration 

and regeneration following ventral root crush (Standler & Bernstein, 1982). In the 

current study, we found that crush axotomy led to hypertrophy of the dendritic 

arbor that extended in a radial and rostrocaudal direction. In addition, we 

discovered that TP treatment attenuated the axotomy-induced dendritic 

hypertrophy. At first, we were surprised that our results contradict what others 

have reported (Bowe et al., 1992; O'Hanlon & Lowrie, 1995); however, these 

morphological differences could expain why animals do not regain normal 

functional recovery by 2 months post-axotomy. Consequently, attenuation of the 

dendritic tree by TP treatment may reflect a restoration of synaptic inputs similar 

to that of an uninjured state and is one possible explanation for why TP treatment 

demonstrated the greatest therapeutic effect in regards to our behavioral data.  

After closer examination, several differences exist between the current 

and preceding studies. The study led by Bowe et al. (1992) investigated the 

effects of a distal sciatic nerve crush injury in adult female rats on motoneuron 

morphology, including the dendritic arbor, at 5 and 10 months post-axotomy. It 

should be noted that their distal sciatic nerve injury was at mid-thigh level and 

proximal to the lesion performed in the current study. At 5 months post-axotomy, 

Bowe et al. observed no differences in the morphology of ipsilateral sciatic 

motoneurons relative to contralateral motoneurons. However, at 10 months post-

axotomy ipsilateral sciatic motoneurons displayed an increase in perikaryal area 

relative to contralateral sciatic motoneurons. The results from the current study 

demonstrated sciatic nerve axotomy resulted in dendritic hypertrophy of tibialis 
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anterior motoneurons which are a subset of sciatic motoneurons. It is highly 

possible that sciatic nerve axotomy, regardless of injury location, leads to a 

hypertrophy in dendritic arborization by 2 months post-axotomy that regresses by 

5 months post-axotomy. This question could be answered with further 

experimentation. 

In opposition to our findings, O’Hanlon and colleagues discovered that 

sciatic nerve crush injury led to a smaller dendritic tree of hallucis longus 

motoneurons at 1 and 2 months post-axotomy (O'Hanlon & Lowrie, 1995). 

Several similarities exist between the study executed by O’Hanlon et al. and the 

current study, such as rat age and sex and location of injury. However, it should 

be noted the authors examined dendritic properties of a different pool of 

motoneurons. It is highly possible that different pools of spinal motoneurons 

respond differently to axotomy and could explain the contradictory results. If we 

assume that all spinal motoneurons respond the same to axotomy, several other 

differences between the two studies are worthy of discussion. First, O’Hanlon et 

al. limited their analysis to isolated motoneurons and did not take into account 

the dendritic tree from motoneurons that had overlapping dendritic arbors. 

Second, their analysis was restricted to within one tissue section. As a result, 

their analysis was biased toward smaller motoneurons that were isolated. 

Moreover, the entire dendritic length of each cell (in both the transverse and 

longitudinal planes) was not considered in their final analysis. Together, these 

differences could have led to a decrease in total dendritic length and thus a 

smaller dendritic tree. 
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E. Conclusion  

Decades of regeneration studies have impacted our detailed 

understanding of the mechanisms by which ES and/or TP treatment mediate 

axonal regeneration and improve functional recovery following axotomy. This 

dissertation analyzed whether ES and TP enhance axon regeneration and 

functional recovery following a distal sciatic nerve crush injury, and evaluated the 

effects of ES and TP on axotomy-induced molecular expression of genes 

involved in motoneuron regeneration. Our results indicate that treatment with TP 

accelerates functional recovery and attenuates axotomy-induced dendritic 

hypertrophy following a distal sciatic nerve crush injury. In addition, we 

demonstrated that either treatment alone or in combination led to an early 

increase in regeneration-associated gene expression, but the combination 

treatment exhibited a late suppression in regeneration-associated gene 

expression. In support of our molecular results, we observed no added 

therapeutic benefit with administration of both ES and TP in combination. Based 

on these results, we propose two separate mechanisms by which ES and TP 

ultimately enhance functional recovery. First, systemic treatment of TP may 

activate the internal growth state by upregulating the expression of bdnf to 

maintain synaptic homeostasis. As a result, axonal elongation is enhanced and 

successful functional recovery is achieved. Second, we propose ES upregulates 

the expression of gdnf to increase regeneration specificity and promote functional 

recovery. Together, the combination of ES and TP would activate both of these 

mechanisms to enhance functional recovery. 
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 With respect to earlier findings from our laboratory, either treatment alone 

may be beneficial for treatment of distal nerve injuries (Monaco et al., 2013); 

however, the combination of both ES and TP may be an advantageous treatment 

for proximal nerve injuries (Hetzler et al., 2008; Sharma et al., 2010b). Together, 

our results support the concept that not all injuries respond equally to treatment. 

Furthermore, our data support the importance of treatment strategy development 

in an injury-dependent manner and based upon distinct functional characteristics 

of spinal vs. cranial nerves. 

 

F. Future Directions  

In the preceding chapters, the effects of ES and TP on regeneration-

associated gene expression and functional recovery following sciatic nerve crush 

injury in rats were delineated. The results from this dissertation present several 

avenues to complete our understanding of the therapeutic benefits of ES and TP 

following axotomy. 

It is likely that the change in mRNA levels of regeneration-associated 

genes reflect concomitant alterations in with protein expression, however future 

studies will need to be done to validate the mRNA expression data with protein 

analysis. The current study provided a time-line of functional recovery where 

recovery was observed as early as 2 weeks post-axotomy. Future studies will 

need to be done to examine intact NMJ and dendritic morphology on a weekly 
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basis after axotomy for 8 weeks, and correlate these morphological changes with 

improvements in functional recovery.        

This dissertation primarily focused on motor recovery. Since the sciatic 

nerve is a mixed nerve, the effects of ES and TP on sensory recovery should be 

examined. This could be accomplished by repeating the study and measuring 

mechanical and thermal nociceptive responses of the injured paw. We are aware 

that nerve cuffs have been reported to elicit pain-like behavior in rodents (Pitcher 

et al., 1999; Benbouzid et al., 2008). To rule out this effect, the study should be 

repeated without the use of a nerve cuff.  

Future experiments could also include multiple and/or longer sessions of 

ES. Importantly, it should be determined whether ES and TP elicit a 

combinatorial effect after a proximal nerve injury. These findings could be 

correlated with regeneration-associated gene expression changes to elucidate 

potential mechanisms by which ES and TP may be mediating their effects. Based 

on the molecular results, future studies could include genetic mouse models with 

the ability to overexpress/knockout candidate genes and assess functional 

recovery as an outcome measure.     

Although the combination of ES and TP did not demonstrate a therapeutic 

effect after distal sciatic nerve crush injury, ES and TP may prove to be beneficial 

after transection injury. One substantial challenge that remains with transection 

injuries is guiding regenerating nerves back to functionally appropriate Schwann 

cell tubes. The work by Bittner et al. demonstrates great promise at maintaining a 
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conduit for the axons to regenerate into after sciatic nerve transection with the 

use of microsuture, hypotonic Ca2+, methylene blue, and PEG (Bittner et al., 

2012). Combining surgical and non-surgical approaches, such as surgical repair 

with membrane fusion followed by ES and TP administration could have 

significant potential in maintaining an appropriate channel for axons to 

regenerate back to their appropriate target. Moreover, ES and TP would 

decrease the time before sprout formation and accelerate axon regeneration 

rate, respectively.  

In summary, there are multiple aspects of the post-injury response that are 

amenable as treatment targets, including the severity, location, and type of nerve 

injury, rapidity of recovery, and regeneration distance to target. The data 

presented in this dissertation do not support the concept of a “blanket” treatment 

approach that could be applied in a generalized manner to PNI, regardless of the 

nature of that injury. Instead, we propose different treatment strategies, 

depending on injury severity. With a severe nerve injury, in close proximity to the 

cell body and far from target, there is a prolonged regenerative response needed 

to accommodate protracted recovery times accompanying proximal lesions.  

Moreover, prolonged target disconnection times and longer regeneration 

distances compromise target end-organ viability and suitability for re-innervation.  

As such, administration of a combinatorial treatment, targeting multiple post-

injury stages or phases following proximal nerve injury, is essential for maximal 

enhancement of axon regeneration and, by extrapolation, functional recovery. In 

contrast, distal nerve injuries have relatively rapid recovery time, as axons have 
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shorter distances to reach and reinnervate target tissues. Due to fast recovery 

times, less damaging effects occur at the target end-organ. Administration of 

selected treatments targeting a single phase or stage can, therefore, reduce the 

time to functional recovery in less severe PNI effectively, thus eliminating the 

need to build multi-tiered treatment approaches necessary in more severe injury 

situations.  An important future direction will be to translate the conclusions 

obtained in this study using a crush axotomy injury paradigm to a complete 

transection and surgical repair paradigm that reflects the clinical PNI situation.       
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