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PREFACE 

In 1809 Jean-Baptiste Lamarck described a theory once held by Hippocrates and 

Aristotle which ascribed evolutionary adaptation as a process that occurred directly from 

one generation to the next- that physiological adaptations acquired during an organism’s 

lifetime in response to environmental pressures were passed immediately to offspring. 

Short lived, the notion was widely discredited in part by experiments executed by August 

Weismann which asserted that germ cells alone could account for inheritance of traits and 

were incapable of being affected by somatic cells and thus, environmental pressure. 

Charles Darwin’s theories of evolution and natural selection, along with Gregor Mendel’s 

work on inheritance effectively replaced Lamarckism by the early 20th century and have 

endured as the principle mechanisms for evolutionary adaptation and inheritance of traits.  

The emergence of epigenetics, or the study of stably heritable phenotypes 

resulting from chromosomal changes without alterations to the DNA sequence, has 

prompted a re-examination of Lamarckian theory and challenged the long-held belief that 

genetics bear the sole weight of organismal physiology, functionality, and adaptation. 

Though the heritability of epigenetic modifications remains a subject of contention 

among experts and limits the evolutionary scope of the mechanism, decades of past and 

emerging research have illuminated very clear and biologically relevant roles for 

epigenetics which rival, or, more accurately, complement the principles of genetics in 

guiding organismal physiology.  
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Marisol Resendiz  

 

THE REGULATORY ROLE AND ENVIRONMENTAL SENSITIVITY OF DNA 

METHYLATION IN NEURODEVELOPMENT 

 

 The emerging field of epigenetics is expanding our understanding of how 

biological diversity is generated in the face of genetic limitations. One epigenetic 

mechanism in particular, DNA methylation, has demonstrated a dynamic range during 

neural development. Here, we provide evidence that DNA methylation occurs as a cell-

unique program aiding in the regulation of neurodevelopmental gene expression. DNA 

methylation has demonstrated sensitivity to external inputs ranging from stress to 

chemical exposure and dietary factors. To explore DNA methylation as a means of 

communicating early-life stress to the brain, we utilized a mouse model of fetal alcohol 

spectrum disorders (FASD). FASD presents a range of neurodevelopmental deficits and 

is a leading cause of neurodevelopmental disabilities in the United States. Predicated on 

the knowledge of alcohol's teratogenic role in brain development, we describe that the 

normal pattern of cortical DNA methylation and epigenetic correlates is similarly 

impacted by prenatal alcohol exposure. Due to the biochemical interaction of alcohol 

metabolism and the pathways regulating DNA methylation synthesis, we further 

investigated whether dietary manipulation could normalize the cortical DNA methylation 

program and aid in the protection of FASD characteristics. We found that the alcohol-

sensitive DNA methylation landscape is dually capable of registering dietary 

intervention, demonstrating normalization of disease-related patterns in the cortex and 
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improved neurodevelopmental gene expression and morphology. Finally, we investigated 

the DNA methylation landscape in a crucial corticodevelopmental gene to more 

accurately define the breadth and scope of the environmental impacts at the nucleotide 

level. We found that alcohol and dietary supplementation are selective for regions 

associated with transcriptional control. Collectively, the evidence supports that DNA 

methylation plays a regulatory role in development and that its sensitivity to external 

inputs is dynamic and detectable at the smallest genomic level. Importantly, DNA 

methylation landscapes are adaptable and thus bear diagnostic and therapeutic potential. 

Feng C. Zhou, Ph.D., Chair  
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DISSERTATION OUTLINE 

Chapter 1: Cell-unique DNA methylation dynamics in the normally-developing brain  

 Goal: characterize DNA methylation dynamics during normal, cellular 

development 

 Rationale: DNA methylation has been implicated in gene regulation and 

cellular specification, though an in-depth characterization of cell-specific 

epigenetic landscapes has not been performed 

 Hypothesis: DNA methylation is unique and dynamic during neural 

specification, guiding developmental cues through transcriptional regulation  

 Approach: Examination of DNA methylation in two major cell types of the 

developing cerebellum (CB) and the neocortex 

Chapter 2: Dysregulation of neurodevelopment and DNA methylation by alcohol  

 Goal: Investigate alcohol-mediated cortico-deficits and alteration of 

developmental DNA methylation patterns  

 Rationale: Evidence suggests that alcohol disrupts normal epigenetic 

landscapes and manifests neurodevelopmental dysregulation 

 Hypothesis: DNA methylation is a window by which alcohol exposure may 

disrupt critical transcriptional profiles, leading to neurodevelopmental 

obstruction  

 Approach: Investigate parallel DNA methylation correlates of cortical laminar 

formation in a mouse model of fetal alcohol spectrum disorder (FASD) 

Chapter 3: The normalizing capacity of S-adenosylmethionine supplementation in a 

mouse model of FASD 
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 Goal: Investigate the role of S-adenosylmethionine supplementation in the 

mitigation of alcohol-induced DNA methylation and developmental disruption  

 Rationale: Alcohol has demonstrated inhibitory capacity on methyl-

metabolism, closely associated with DNA methylation biosynthesis 

 Hypothesis: S-AMe supplementation will ameliorate the epigenetic and 

phenotypic dysregulation of alcohol in FASD 

 Approach: Supplement liquid alcohol diet with S-AMe to evaluate its 

normalizing potential in FASD 
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CHAPTER 1: CELL-UNIQUE DNA METHYLATION DYNAMICS IN THE 

NORMALLY-DEVELOPING BRAIN 

1.1 INTRODUCTION 

1.1.1 Structural Regulation Conveys Biological Heterogeneity 

The genetic code, which instructs the production of all organismal proteins, is 

limited in its intrinsic diversity to account for changes in biological heterogeneity. While 

some endogenous mechanisms exist at the pre-transcriptional level (i.e. alternative 

splicing, genetic variants, DNA transposons, etc.), other post-translational modifications 

have been identified as contributors of proteomic diversity. In essence, due to the 

interdependent nature of the genetic code, intermediary transcripts, and the translated 

protein product,  structural influences (at every level) presumably bear significant impact 

on end point production and as such, are important contributors to biological 

heterogeneity. In the past few decades, a sophisticated understanding of an array of 

modifications that influence gene expression without altering the underlying sequence. 

Broadly termed “epigenetic modifications”, these alterations bear important structural 

implications; and while the examination of all is beyond the scope of this Dissertation, 

much attention will be given to one particular class.  

1.1.2 Epigenetic Modifications 

Epigenetic mechanisms are largely classified by their ability to alter genetic 

outputs via the impact on the structural characteristics of chromatin, consequently 

regulating the accessibility of transcriptional elements. One well-studied class is known 

as histone modifications, referring to factors influencing the chemical (structural) bonds 

between DNA and histone proteins. Due to the negative charge of the DNA phosphate 
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backbone relative to the positively-charged histone octamers of the nucleosome, factors 

such as post-translational chemical modifications of histones (i.e. methylation, 

acetylation, phosphorylation, ubiquitination, sumoylation) may collectively impact the 

electro-dynamics of the DNA-protein bonds. Another class of epigenetic modifications 

which may influence chromatin or impact gene expression is known as non-coding RNA. 

These include a variety of mRNA or genomic-targeting sequences, typically 

accompanied by chromatin modifying enzymes or translation-inhibiting enzymes. 

Finally, in a vein similar to histone modifications, DNA methylation refers to covalent 

chemical modifications occurring on cytosine bases of the genome which can alter the 

electrodynamics of DNA-DNA or DNA-protein bonds underlying the three dimensional 

structure of chromatin.  

While the highly likely scenario is that a multitude of epigenetic marks converge 

on critical loci to affect meaningful structural change, more often than not, these 

alterations are investigated independently. Although several lines of evidence suggest 

that cross-talk indeed exists between epigenetic modifications (i.e., DNA methylation 

recruitment of histone modification enzymes, etc.), fundamental epigenetic study, in 

order to form a more complete and in-depth characterization, continues to be examined in 

singularity. Ultimately, as a clearer understanding emerges, investigators can begin to 

shift attention to inter-epigenetic relationships.  

1.1.3 DNA Methylation 

The focus of this study centered on DNA methylation, the oldest and most well-

studied epigenetic modification class. DNA methylation was originally defined by the 

addition of a methyl group to the 5’ carbon of a cytosine base (termed 5-methylcytosine 
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and hereto denoted as “5mC”), though, as described below, has in recent years expanded 

to include a handful of derivations. This chemical reaction is performed by the enzyme 

family of DNA methyltransferases (DNMTs). It is commonly accepted that DNMT1 and 

DNMT2 are involved in methyl transfer during DNA replication and repair to maintain a 

previously methylated cytosine state. This notion is partially supported by the increased 

affinity of DNMT1 for hemi-methylated DNA (Bestor 1992). On the other hand, the 

DNMT3a and DNMT3b isoforms are believed to play a role in de novo methyl transfer, 

with DNMT3a proposed to play a slightly larger neurogenic role (Wu, Coskun et al. 

2010). Coincidentally, DNMTs have displayed differential expression across 

developmental stages, with loss of function experiments demonstrating a relatively larger 

role for DNMT3a and 3b during the early developmental stages (Okano, Bell et al. 1999).  

Other than the reported predilection of DNMT1 for hemi-methylated DNA, the 

particulars of DNMT recruitment remain the subject of active research. In cancer cells, 

for example, high-throughput screening has allowed the identification of methylation-

prone and methylation-resistant loci (Feltus, Lee et al. 2006), with results supporting a 

previously held notion that CG-rich loci display selective association with DNMT1 

(Robert, Morin et al. 2003). More broadly, these findings suggest that DNMTs may be 

recruited by intrinsic sequence features. Other reported recruitment factors include 

phosphorylation of RelA/p65 in mouse embryonic fibroblasts and the stem-cell 

associated transcription factor SALL4 (Liu, Mayo et al. 2012, Yang, Corsello et al. 

2012). Interestingly, one 2006 study demonstrated the direct recruitment of DNMTs by 

the Polycomb group (PcG) protein EZH2 to EZH2-targeting sequences (Vire, Brenner et 
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al. 2006), presenting evidence of a link between genomic sequence and DNMT-recruiting 

proteins.  

DNA methylation may influence transcription in two ways. First, due to the 

electrostatic interaction of positively charged histone octamers (which form the basis of 

the nucleosome protein cores) and negatively charged DNA (maintaining the DNA-

protein bond), the cumulative effect of even subtle DNA methylation changes may 

influence the electrostatic dynamics and alter the structural profile of DNA-protein 

bonds. In turn, the strength or weakness of those bonds dictates the level of chromatin 

compactness, defining the accessibility of the DNA to transcriptional machinery such as 

RNA polymerases and transcription factors. Importantly, just as methylation of cytosines 

may strengthen the DNA-protein bond and condense the chromatin, other modifications 

(i.e. histone acetylation) may weaken the DNA-protein bond, decreasing chromatin 

compaction and increasing accessibility of transcriptional elements. Second, a variety of 

methyl-DNA binding proteins exist which demonstrate an affinity toward methylated 

DNA. These proteins are recruited to methylated DNA sites and often bind repressive, 

chromatin remodeling complexes, among other proteins. For example, methyl-binding 

domain 2 (MBD2) has been shown to play a role in cancer (Detich, Theberge et al. 2002) 

while MBD3 has been implicated in stem cell differentiation (Kaji, Nichols et al. 2007). 

Additionally emerging evidence has identified some methyl-binding proteins with unique 

features (such as MBD1, MBD4) which are capable of binding unmethylated DNA 

(Jorgensen, Ben-Porath et al. 2004) and which demonstrate endonuclease activity 

(Bellacosa, Cicchillitti et al. 1999). These and other proteins have been reviewed in 

mammalian tissues by Lan et al. (Lan, Hua et al. 2010).  
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Previously, it was believed that DNA methylation was a transient modification, 

though years of research has revealed that DNA methylation can be lasting, in some cases 

reported to be transmissible to subsequent generations through the germline (Sharma 

2013). Importantly, in 2009 a group of researchers confirmed the mammalian existence 

of 5-hydroxymethylcytosine (hereto referred as “5hmC”), a derivative of 5mC catalyzed 

by the Ten-eleven translocation protein family (TET1-3) (Kriaucionis and Heintz 2009, 

Tahiliani, Koh et al. 2009). TET enzymes can further convert 5hmC to 5-formylcytosine 

(5fC) and subsequently 5-carboxycytosine (5caC) in a step-wise manner, though these are 

found at very low levels (Ito, Shen et al. 2011). Because 5hmC is a substrate for TET 

enzymes, it is considered as an intermediary of DNA demethylation. Due to the 

incompatibility of 5hmC with DNMT enzymes, the presence of 5hmC may indicate a 

mechanism of passive demethylation. The discovery of 5hmC is particularly meaningful 

in the absence of confirmed active demethylation pathway elements (Schiesser, Hackner 

et al. 2012).  

1.1.4 DNA Methylation Dynamics 

Previous understanding held that DNA methylation was a purely repressive mark, 

acting to silence the expression of DNA. Today, a clearer picture has emerged revealing 

that DNA methylation is dynamic, acting in both activating and repressive capacity 

(Jones and Takai 2001, Ball, Li et al. 2009) likely influenced by genomic positioning (i.e. 

promoter or intragenic, Figure 1).  Complimentary to 5mC, 5hmC offers a similar 

diversity that appears to be rooted in genomic positioning (Pastor, Pape et al. 2011, Wu, 

D'Alessio et al. 2011). Various reports have identified 5hmC in regions complimentary to 

5mC and highly enriched in activated regions of the genome (Song, Szulwach et al. 2011, 
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Szulwach, Li et al. 2011, Serandour, Avner et al. 2012). 5hmC, though less abundant than 

5mC, is highly enriched in the brain and in maturing neuronal cells and tissues, making 

the marker of particular relevance in neurological research (Munzel, Globisch et al. 

2010). Further, emerging study has identified the diverse binding capacity of the two 

major methyl marks, further suggesting their diverse roles in biological function (Chen, 

Damayanti et al. 2014). As commercial scientific technology advances the capability for 

differentiation of 5mC and 5hmC, overlapping and distinct profiles of the two will 

become even clearer.   
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Figure 1. Two distinct forms of DNA methylation 

DNMT transfers a methyl group to cytosine bases to form 5-methylcytosine (5mC). 5mC 

is found at CpG rich islands in the promoter regions of the gene. Canonically, CpG 

methylation is associated with silenced gene activation (represented by the ‘X’), often 

through methyl CpG-binding proteins (i.e., MBD1), which recognize 5mC sites and 

recruit negative transcriptional regulatory proteins. The Tet family enzymes can further 

bind 5mC and hydroxylate the methyl group into 5-hydroxylmethylcytosine (5hmC). A 

shift of 5hmC from promoter to the gene-body regions is genomically observed. 5hmC 

have shown preference for differential methyl CpG-binding proteins (e.g., MBD3) and 

increasingly found to link to transcriptionally activating complexes. The complementary 

distribution and differential role of 5mC and 5hmC provide a new dynamic for epigenetic 

regulation of the complex development.C: Cytosine; DNMT: DNA methyl transferase; 

Me: Methylation; TSS: Transcription start site. 
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1.1.5 Role of DNA Methylation in Neural Development 

The capacity of DNA methylation to influence three dimensional chromatin 

structure endows the important biological function of steering the progression of cell and 

tissue development. Alternatively, DNA methylation status may ensure the stability and 

maintenance of a cell-specific program. The advancement of high-throughput DNA 

methylation analyses has provided furthered insight into the modification’s role in 

cellular and organismal development, maintenance and plasticity. Contrary to pre-

existing beliefs, DNA methylation is earning a new reputation as a dynamic and 

programmable epigenetic marker, consequently allowing for a greater role in 

development and plasticity. The dire consequences of deletions and mutations of 

epigenetic genes such as DNMT and MeCP2, embryonic lethality (Li, Bestor et al. 1992, 

Okano, Bell et al. 1999) and detrimental nervous system development (Amir, Van den 

Veyver et al. 1999, Guy, Hendrich et al. 2001) respectively, have confirmed the 

developmental importance of DNA methylation. Further, the relevance of 5hmC in neural 

development (and in the brain during adulthood) appears to be supported by its relatively 

high abundance in neural tissues (Munzel, Globisch et al. 2010).  

At the level of the neural stem cell, 5mC has been shown to be upregulated during 

neuroepithelial (NE) commitment, followed by a rapid drop during NE specification into 

mature neuronal populations (Chen, Damayanti et al. 2014). Alternatively, 5hmC appears 

to be enriched at sites of active maturation compared to neuroprogenitor sites (Stroud, 

Feng et al. 2011, Wu, D'Alessio et al. 2011, Kubiura, Okano et al. 2012). At the gene-

level, 5mC appears to play a dynamic role in various genes required for differentiation, 

implicating 5mC hyper and hypomethylation as necessary strategies for neural 
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conversion of stem cells (Singh, Shiue et al. 2009, Cortese, Lewin et al. 2011, 

Hirabayashi, Shiota et al. 2013). Moreover, it has been proposed that while 5hmC may 

not be directly responsible for mediating gene activation, its enrichment at neural gene 

clusters during early neural progenitor specification suggests a role for 5hmC as a 

“primer” for eventual demethylation (and consequent expression) of those genes (Tan, 

Xiong et al. 2013).  
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Figure 2. Global epigenetic trends in neural stem cell differentiation 

Schematic diagram of cellular epigenetic program during neurogenesis. The top panel 

shows cell states during neurogenesis, from self-renewing neural progenitor cells (NPCs) 

to fate-determined neuroblasts, to differentiating and maturating neurons. The epigenetic 

programing is mapped in the bottom panel accordingly: cells gain 5 mC at the beginning 

of cell specification and sequentially gain 5 hmC at the beginning of cell differentiation; 

both 5 mC and 5 hmC accumulate during neuronal differentiation and maturation while at 

later stages of neuronal maturation, 5 mC levels decrease (Chen, Ozturk et al. 2013). 

Global trends in H3 and H4 acetylation have been traced in vivo to find that mature cells 

such as those in the mouse cortical plate are richer for these markers than the neural 

progenitor cells that preceed them (Cho, Kim et al. 2011). Histone 3 lysine 4 

dimethylation (H3K4me2) is primarily acquired in the neural progenitor cell stage and 

becomes pronounced in the matured brain cell stage (Zhang, Parvin et al. 2012). 

H3K27me3 has been shown to be negatively correlated with 5 hmC on intergenic regions 

during NPC differentiation (Hahn, Qiu et al. 2013). Finally, MicroRNAs that support 

proliferative gene expression are diminished as self-renewable NPCs become specified 

neural precursors while pro-neurogenesis non coding RNA are upregulated during neural 

stem cell (NSC) conversion to mature neuronal states (Meza-Sosa, Pedraza-Alva et al. 

2014). 
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Epigenetic modifications have been identified throughout various stages of neural 

differentiation including at the level of cell cycle regulation, neuronal and glial fate 

specification, all the way to late-stage feature specification and plasticity (Resendiz, 

Mason et al. 2014). For example, the pluipotency-maintaining genes Oct4, Nanog, and 

Sox2 have been identified as targets of DNA methylation reprogramming during 

development, with Nanog trading enhancer 5hmC methylation for promoter 5mC 

methylation during silencing (Kim, Park et al. 2014). NSC differentiation analysis has 

also identified the differential methylation of Notch1, Hes5, and a number of downstream 

Notch1 targets. These are particularly relevant due to the prominent role that Notch1 

signaling plays in directing astroglial and opposing pro-neural fates (Hisahara, Chiba et 

al. 2008, Das, Choi et al. 2013). Finally, large scale DNA methylation modifications have 

been shown to be critical for memory consolidation and synaptic plasticity in the 

hippocampus during adulthood (Vecsey, Hawk et al. 2007, Miller, Campbell et al. 2008), 

expanding the relevance of DNA methylation in neuronal systems beyond the 

developmental stage. 

Importantly, while DNA methylation landscapes are changed throughout the 

course of neural specification (Figure 2), it is critical to acknowledge that these 

modifications do not occur independently of other epigenetic modifications. In fact, 

several lines of evidence exist for inter-epigenetic crosstalk (Jobe, McQuate et al. 2012). 

For example, acquisition of intragenic 5hmC during neural differentiation has been linked 

to loss of H3K27me3 and concomitant loss of promoter Polycomb repressor marks 

(Hahn, Qiu et al. 2013). As such, though evidence of DNA methylation as a 

guidingdevelopmental program is presented, the future of epigenetic investigation most 
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certainly requires the consideration of parallel histone modifications and non-coding 

RNA.  

From a rational perspective, the reprogrammability of the chromatin landscape 

during cell specification makes sense in order to accommodate the fluctuating 

transcriptional profiles which are necessary to guide cellular change. Indeed, studies 

using DNMT-inhibiting agents such as 5-azacitadine and histone de-acetylases (HDACs) 

confirm the importance of normally occurring epigenetic landscapes for the proper and 

timely transition of the transcriptional profiles which dictate cellular specificity in the 

brain (Singh, Shiue et al. 2009).   

1.1.6 Developmental DNA Methylation Programs in the Brain 

Similar to the observed pattern of DNA methylation in neural stem cell 

progression, DNA methylation changes are highly orchestrated during mouse embryonic 

development. From the pronuclear stage of an embryo, paternal and maternal genomes 

are asynchronously altered by a wave of cell-wide demethylation through the blastocyte 

stage. This demethylation occurs passively and is predominantly mediated by loss of 

DNMT1 and DNMT3 and subsequent replication-dependent loss of 5mC and 5hmC 

(Mayer, Niveleau et al. 2000, Inoue and Zhang 2011). A second wave of demethylation is 

observed in primordial germ cells (PGCs) as they migrate to the gonadal ridge by 

embryonic (E) day 8.5-12.5 (Hajkova, Erhardt et al. 2002, Yamazaki, Mann et al. 2003, 

Maatouk, Kellam et al. 2006). This de-methylation, however, is not fully penetrant as 

many elements escape de-methylation including some CG rich regions (also termed CpG 

islands) of both the female and male PGCs, imprinting control elements, X-inactivated 

genes, and DNA transposons (Lane, Dean et al. 2003, Popp, Dean et al. 2010). Early 
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DNA methylation reprogramming is completed by a third wave of DNMT3-mediated de 

novo methylation during gametogenesis (Hajkova, Erhardt et al. 2002).  

Pre-implantation embryos further undergo de novo methylation after implantation 

(Monk, Boubelik et al. 1987, Kafri, Ariel et al. 1992), establishing the first embryonic 

somatic methylation program which, when disrupted, can lead to the development of 

neural tube deficits (Dunlevy, Burren et al. 2006). Though this process is not fully 

understood, DNA re-methylation has been shown to occur bimodally between 

housekeeping genes and tissue-specific genes, consequently conferring specificity of 

some cells and heterogeneity of the early tissues (Lange and Schneider 2010). Post-

implantation, during early neurulation, a specific profile of the DNA methylation 

landscape becomes clearer. Present in a gradient from ventral (high) to dorsal (low), 5mC 

apparently coincides with the pattern of neural specification. This pattern is also observed 

along the neural axis, with 5mC peaking at the mid/hindbrain and diffusing rostrally and 

caudally toward the forebrain and caudal neural tube, respectively (Zhou, Chen et al. 

2011). These patterns argue that DNA methylation is spatially and temporally 

coincidental with neural tube development during early gestation. Further, the Zhou study 

reported an intranuclear shift from 5mC presentation in the form of aggregated punctates 

toward a more homogenous distribution, likely indicating a transition from genomic 

hypermethylation to a “relaxation” of genomic clusters required for embryonic 

progression.  

Progressively, throughout brain development DNA methylation landscapes and 

dynamics have been proposed to play critical roles. An examination of the hippocampus 

identified a 5mC to 5hmC transition was correlated with neural differentiation in the 
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region (Chen, Ozturk et al. 2013). Interestingly, this study revealed that distinct cell types 

of the hippocampus expressed unique DNA methylation patterns. At E15, 5mC is 

abundant in hippocampal precursors though, by E17, neuroepithelial (NE) precursors 

undergo extensive loss of 5hmC and to a lesser degree, 5mC. As NE cells initiate radial 

migration through the intermediate zone, migrating neurons re-acquire 5mC and 5hmC, 

peaking as neurons reach their mature state in the Cornus Ammonis (CA). These findings 

suggested that 5mC and 5hmC are required for neural migration and specification of 

pyramidal neurons in the CA region. Additional analysis in the dentate gyrus confirmed 

that 5hmC is co-localized with NeuN, a marker of neuronal maturity. 5mC on the other 

hand demonstrated a more complex distribution and co-localization with Sox2 positive 

progenitors. Overall, this model allowed the visualization of unique DNA methylation 

signatures specific to cellular states within the developing hippocampus. This profile 

beckoned the characterization of DNA methylation landscapes in parallel neural systems, 

where the roles of DNA methylation markers could be compared and contrasted.  

1.1.7 Research Aims 

In light of the mounting evidence positioning DNA methylation as a regulatory 

mechanism in neural development, some questions remain. For example, though across 

various studies it has been observed that DNA methylation is a feature unique to the 

maturation state, it remains unclear whether all neurons observe similar DNA 

methylation programs or whether unique cell types exhibit distinguishing epigenetic 

features throughout their developmental course. Another critical aim was the examination 

of DNA methylation at the gene level. If, as hypothesized, DNA methylation and other 

epigenetic modifications function to aid in the regulation of critical developmental genes 
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during cellular specification, relevant gene networks should reveal differential epigenetic 

signatures at the onset of their expression/quiescence. As commercial technology 

improves, investigative tools such as methyl-sensitive sequencing and high-throughput 

automation will ensure that the future of epigenetics includes a thorough profiling of the 

developmental genome. 

Another major unanswered question revolves around the extent of DNA 

methylation reprogramming. Traditionally, due to the replicative quiescence of neurons 

and the belief that methylation can only be lost through replication-dependent 

demethylation, it is thought that post-mitotic DNA methylation is very stable (Irwin, 

Pentieva et al. 2016). Thus, post-mitotic epigenetic reprogramming has not been 

thoroughly evaluated as a mechanism of cellular plasticity beyond mitosis. Though an 

active demethylase has not been demonstrated in the brain, demethylation has indeed 

been observed in the post-mitotic hippocampal neurons. Believed to play a role in the 

modulation of synaptic plasticity and memory consolidation, DNA methylation has been 

shown to be dynamically regulated in a post-mitotic, replication-independent context 

(Miller, Gavin et al. 2010, Guo, Su et al. 2011).Whether this form of DNA methylation 

reprogramming is utilized in other post-mitotic neurons remains to be examined.  

The primary aim of this thesis revolved around the characterization of DNA 

methylation dynamics during normal, cellular development in two independent neural 

regions. Though DNA methylation has been implicated in gene regulation and cellular 

specification, an in-depth characterization and evaluation of cell-specific epigenetic 

landscapes had not been previously performed in the postnatal cerebellum or the 

embryonic cortex. We hypothesized that DNA methylation is a unique and dynamic 
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element guiding developmental cues through transcriptional regulation, exhibiting precise 

spatial and temporal patterns relevant to the developing system. To examine these at 

length, we first characterized DNA methylation patterns in the two major and 

complimentary cell types of the postnatal cerebellum at various time points. Further, the 

strata of the embryonic cortex, encompassing multiple cell types in various states of 

development, were profiled.  

1.2 MATERIALS AND METHODS 

1.2.1 Animals  

C57BL/6J mice from Jackson Laboratory were used in accordance with Indiana 

University Animal Care and Use Committee protocols.  A two-hour mating paradigm 

was used to obtain embryonic tissues and pups. Pregnancies could thus be tracked to the 

nearest two-hour interval of conception. Conception was denoted as embryonic (E) day 0. 

The day of birth was denoted as postnatal day (P) 0.  After deep CO2 euthanasia, embryos 

were harvested from dams at E17 by removal from the embryonic sack. Each embryo 

was either immersion-fixed in 20 mL of fixative prepared from 4% paraformaldehyde 

(PFA) for immunohistochemistry. Five independent litters are represented in the E17 

cortex analysis.  For cerebellar analysis, six P7, four P14, six P21, four P28, and four P45 

mice were selected from at least four different litters, anesthetized by CO2 inhalation, 

and transcardially perfused with saline, followed by 4% paraformaldehyde fixation. Pup 

brains were dissected and post-fixed for a minimum of 48 hours.  

1.2.2 Immunohistochemistry 

Brains were subsequently embedded in 10% gelatin blocks and sectioned by free-

floating vibratome (Leica VIT100S) at 40µm, coronally. Prior to immunohistochemical 
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detection, sections were cleared of endogenous peroxidases using 10% H2O2 in 

phosphate-buffered saline (PBS) for 10 min and permeabilized with 1% TritonX-100 in 

PBS for 30 min. A secondary permeabilization step involved the incubation of sections in 

2N HCl for 15-30 minutes. Next, incubation with a primary antibody diluted in species-

appropriate normal serum (1.5% serum, 0.1% TritonX-100 in PBS) was performed for 

18 h at room temperature.  

Antibodies used in this study are summarized in Table 1. To address issues 

including antibody penetration and inherent reduction of Purkinje cell (PC) 

immunoreactivity, we performed an immunostain using the Purkinje cell marker 

calbindin-D28K. Additionally, to establish the specificity of the 5hmC antibody, a 

preabsorption assay was performed for the anti-5hmC antibody (1:1000, rabbit polyclonal 

IgG, Active Motif) using 5hmC synthesized DNA (Methylated DNA Standard Kit, 

#55008, Active Motif, 50 ng/μ l, at a working dilution of 1:20 molar ratio) overnight at 

4°C. 

Biotinylated secondary antibodies (Jackson ImmunoResearch, West Grove, PA) 

were used at 1:500 for 90 minutes after primary antibody incubation, followed by 90 

minutes of incubation in biotin-streptavidin conjugated tertiary antibodies (1:500). 

Optical detection of immunoreactivity was accomplished by 3,3’-Diaminobenzidine 

(DAB) (Sigma-Aldrich, St. Louis, MO) at 0.05% followed by activation with 

0.003% H2O2 over an average of 3–8 min. Sections were subsequently counterstained 

with methyl green (Nissl stain). All stainings were examined under light microscopy for 

cellular analysis (Leitz Orthoplan 2 microscope; Ernst Leitz GMBH, Wetzlar, Germany). 
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and photographed with a Spot RT color camera (Diagnostic Instruments, Inc., Sterling 

Heights, MI). 

For immunofluorescence detection, sections were incubated for 90 minutes in 

species-appropriate Alexa Fluor 488 and 546 conjugated IgG secondary antibodies 

(Thermo Fisher Scientific, Waltham MA). After PBS wash, sections were mounted on 

SuperFrost slides (Thermo Fisher Scientific, Waltham MA) and coated with DAPI Pro-

long Gold antifade mountant (Thermo Fisher Scientific, Waltham MA).  
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Table 1. Antibodies used for neurodevelopmental assessment of DNA methylation 

Primary Antibodies Company Catalog # dilution 
predicted 
wt. 

5-methylcytosine Eurogentec 
BI-MECY-
0100 1:2000 N/A 

5-methylcytosine Active Motif AM61255 1:2000 N/A 

5-hydroxymethylcytosine Active Motif AM39769 1:3000 N/A 

calbindin/D28k Bioss, USA bs-3758R 1:1000 28 kDa 

DNMT1 Abcam ab87654 1:1000 ~183 kDa 

TET1 GeneTex GTX124207 1:500 ~220 kDa 

MBD1 Santa Cruz Biotech. sc-10221 1:200 ~89 kDa 

MeCP2 Cell Signaling Tech. D4F3XP-R 1:1000 75 kDa 

5-formylcytosine Active Motif AM61224 1:2000 N/A 

5-carboxycytosine Active Motif AM61226 1:2000 N/A 

Ki67 Novus Biologicals 
NB110-
89717 1:500 324 kDa 

Tbr2 Millipore AB2283 1:500 58 kDa 

NeuN Cell Signaling Tech. D3S3I 1:500 46-55 kDa 

P2Y1 Millipore AB9263 1:1000 ~42 kDa 

Secondary Antibodies         

AlexaFlour 488 
ThermoFisher 
Scientific ab150077 1:500 ~150 kDa 

AlexaFlour 546 
ThermoFisher 
Scientific A-11003 1:500 ~150 kDa 

Goat anti Rabbit biotinylated 
Jackson 
ImmunoResearch 

111-065-
003 1:500 ~160 kDa 

Horse anti Mouse biotinylated Vector  Laboratories BA-2000 1:500 
~152-165 
kDa 

Donkey anti Guinea Pig 
biotinylated Vector  Laboratories BA-7000 1:500 

~152-165 
kDa 
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1.2.3 Confocal Microscopy 

Confocal fluorescent images were obtained with an Olympus FV1000-MPE 

Confocal Microscope mounted on an Olympus IX81 inverted microscope stand with a 

60x water-immersed objective.  Sequential excitation at 488 nm and 559 nm was 

provided by argon and diode lasers, respectively. Emission was collected by spectral 

detectors in channels one and two with user-specified min and max wavelengths. Z-stack 

images were collected over a thickness of 4.5 μm in 0.3 μm step intervals. After 

sequential excitation, green and red fluorescent images of the same cell were saved and 

analyzed by Olympus Fluoview FV10-ASW software. The term co-localization refers to 

the overlap of green and red fluorescence in an image pair, as measured by confocal 

microscopy. 

1.2.4 Quantification of 5mC and 5hmC using immunoabsorbance assays 

To independently assess quantitative cellular methylation, 25μm coronal sections 

were obtained from flash-frozen cerebellum at ages P8 (N=8) and P29 (N=8) using a 

Leica Cryostat CM1900. Sections were mounted onto 2μm thick PEN membrane slides 

(Microdissect Gmbh, Herborn, Germany) and stained with 4X Thionin solutions. Slides 

were further dehydrated in series 50%, 75%, 90%, and 100% ethanol. Sections were 

viewed under 10X magnification using a Leica laser microdissection microscope (Leica 

CTR6500). The cerebellar layers were morphologically discernible by Thionin stain and 

dissected by laser into a flat cap 0.65mL Eppendorf tube containing 65μL of DNA 

extraction buffer (Arcturus Picopure DNA Extraction kit, Applied Biosciences). DNA 

was next purified using DNA Clean and Concentrator (Zymo, Irving, CA) according to 

manufacturer’s instructions.  
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100ng and 200ng of purified cellular gDNA was used for MethylFlash™ 

Methylated DNA Quantification Kit and MethylFlash™ Hydroxymethylated DNA 

Quantification Kit respectively, according to manufacturer’s instruction (Epigentek, 

Farmingdale, NY). Absolute quantification was performed using a five-point standard 

curve and further transformed to represent the ratio of methylated DNA (5mC or 5hmC) 

to total DNA. For presentation purposes, these were further transformed to denote 

expression of the methyl mark in relation to the control group totals (normalized).  

1.2.5 Quantitative Gene Specific DNA methylation analysis 

Genomic DNA (2µg) was extracted from cerebellum samples and digested. There 

were four treatment groups for each sample: uncut, methyl-sensitive enzyme (MSRE; 

Hha I or Hpa II; New England Biolabs, Ipswich, MA), methyl-dependent enzyme 

(McrBC; New England Biolabs, Ipswich, MA), and double digest with a methyl-sensitive 

and a methyl-dependent enzyme. Each digest was conducted with 10 U enzyme and 

incubated for 12 hours at 37°C. In the double digest sample, the first digest was 

performed using the methyl-sensitive enzyme, and the enzyme was heat inactivated by 

incubating at 65°C for 20 minutes. Prior to the second digestion, we purified the singly-

digested DNA by phenol: chloroform extraction, and then precipitated the samples with 

0.2 volumes of 1.5 M ammonium acetate and 2 volumes of 100% ethanol and re-

suspended them in 1 X T10E1 buffer. Prior to amplification, all DNA was purified by 

phenol: chloroform extraction followed by ethanol precipitation and quantified by 

Nanodrop ND-1000 Spectrophotometer (NanoDrop Products, Wilmington, DE). We used 

40ng of DNA from each digestion for quantitative PCR reaction with iTaq Universal 

SYBR Green mix (BioRad, Hercules, CA) and locus-specific primers (Table B-2, 
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Appendix B) using an iCycler PCR machine (BioRad, Hercules, CA). We used the 

default setting to obtain the cycle threshold (Ct) values, and normalized the digested 

samples to the uncut samples to calculate the delta Ct value. DNA methylation levels 

were determined by the average MSRE delta Ct value based on the calculation of 100 x 2
-

ΔCt
. Three or four biological replicates for both P7 and P29 animals were used for this 

analysis.   

1.2.6 qPCR for gene expression 

We added 10 volumes of RNA Stat-60 (Tel-Test, Inc., Friendwood, TX) to the 

snap-frozen P7 or P29 cerebellum, and homogenized and incubated the sample at room 

temperature for 5 minutes. To purify the RNA, we extracted the samples for 5 minutes 

with 0.2 ml chloroform/ ml RNA Stat, and centrifuged the samples for 15 minutes at 

12,000 RPM (max) at 4°C. We transferred the aqueous layer to a new tube and 

precipitated the RNA for 10 minutes at room temperature with 0.5 ml isopropanol/ ml 

RNA Stat and then centrifuged the sample for 10 minutes at 12,000 RPM (max) at 4°C. 

The pellet was washed with 75% ethanol, vortexed, and centrifuged for 5 minutes at 

maximum speed at 4°C. We dried the pellet and dissolved it in 300 μl DEPC H2O. RNA 

concentration was measured by NanoDrop ND-1000 Spectrophotometer (NanoDrop 

Products, Wilmington, DE). We performed DNase treatment using the TURBO DNA-

free kit (Life Technologies, Grand Island, NY) to one μg of total RNA extracted from 

each sample by following the manufacture’s instruction. DNase treated RNA was then 

converted into cDNA using iScript cDNA synthesis kit (Bio-Rad, Hercules, CA).  

Quantitative RT-PCR was performed using 50 ng of cDNA as a template for qRT-PCR in 

combination with TaqMan® Gene Expression Master Mix (Life Technologies, Grand 
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Island, NY) and TaqMan Gene-specific probes (Table B-1, Appendix B; Life 

Technologies, Grand Island, NY) on a StepOnePlus™ Real-Time PCR System (Life 

Technologies, Grand Island, NY). We assayed four biological replicates for P7 and P29. 

Cycling reactions were performed in duplicate. The relative expression of each gene was 

calculated based on the ΔΔCt value, where the results were normalized to the average Ct 

value of Gapdh. 

1.2.7 Statistical analysis 

  A randomized design with a one–way arrangement of the treatments, "Age (P7 & 

P29)" data, was analyzed through the Generalized Linear Model procedure on SAS and 

comparisons between treatments were done through the Least Square Means procedure. 

All quantitative data were represented as the mean and standard error of the mean (SEM). 

Statistical analysis was performed between P7 and P29 DNA using a one tailed student t-

test assuming unequal variance (GraphPad, Prism 6.0). The threshold for statistical 

significance was p<0.05.  

1.3 RESULTS 

1.3.1 Purkinje Cell DNA Methylation Reprogramming 

Purkinje cell (PC) analysis is facilitated in part by the prominent and distinct 

morphological characteristics of its development. Purkinje cells originating from the 

ventricular zone of the cerebellar primordium begin to migrate and arrange a monolayer 

at a target region known as the Purkinje Cell Layer (PCL) ~E14.5-16.5 in mice. Purkinje 

cells contribute the primary GABAergic output to deep cerebellar nuclei which aid in 

control of movement and gait (Jayabal, Ljungberg et al. 2015, Vinueza Veloz, Zhou et al. 

2015). During early migration and PCL formation, 5mC and 5hmC appear abundantly in 
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the nucleus of PCs, with 5mC particularly displayed as aggregate punctates and 5hmC 

expressing a more euchromatin distribution (Figure 3A and 3D, red crossed arrows). A 

distinguishing feature of PCs begins to occur after the first postnatal week, wherein PCs 

embark on a morphological transformation including the formation of apical dendrites 

followed by robust outgrowth of the extensive PC dendritic arbors and parallel fiber 

synaptogenesis (McKay and Turner 2005, Paul, Cai et al. 2012). Between the first and 

second postnatal weeks of development, the Purkinje cell dendritic area grows to as much 

as 10,000 µm
2
 (Altman 1969) and a cell-unique upregulation of synaptic genes is 

observed (Rong, Wang et al. 2004, Sotelo 2004, Kirsch, Liscovitch et al. 2012, Paul, Cai 

et al. 2012). Interestingly, that period of cellular transformation was observably 

accompanied by the dramatic loss of 5mC, 5hmC, and DNA methylation correlates 

(Figure 3B, 3E, red dashed circles indicate the borders of the PC perikarya). By postnatal 

day 45, when peak PC synaptogenesis has subsided (Paul, Cai et al. 2012, Arancillo, 

White et al. 2015), PCs exhibit a partial remethylation of 5mC and 5hmC which is in 

agreement with the intranuclear distribution of mature-state 5mC (i.e. heterogeneous 

rather than aggregate or punctate distribution) (Zhou, Chen et al. 2011). Moreover, 

demethylation of PCs was observed to occur in a gradient overlapping the known 

maturation gradient of the cerebellum from the deep fissures to the superficial folia 

(Morris, Beech et al. 1985, Goodlett, Hamre et al. 1990). These phenomena were 

observed consistently throughout the rostro-caudal axis of the cerebellum. 

 To address concerns of incomplete penetrance of the DNA methyl markers in the 

mature PCs as a potential confounding factor, we performed stage matched 

immunohistochemical detection of the PC-specific marker calbindin D28-k. The calcium-
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binding protein is a reliable and abundant marker unique to Purkinje cells in the 

cerebellum (Whitney, Kemper et al. 2008). As shown in Figure 4, it is consistently 

expressed in PCs throughout maturation, indicating that diminished immunoreactivity of 

the cell is not a likely confound for the observed demethylation. Moreover, the distinct 

intranuclear distribution of the DNA methylation markers at P7 combined with antibody 

pre-absorption assays (Figure 5) provided evidence of a distinct and reliable DNA 

methylation marker immunoreactivity in the cerebellum.  

 To confirm the immunohistochemical profiles of 5mC and 5hmC, a secondary 

strategy was initiated whereby the molecular profile of 5mC and 5hmC content was 

independently assessed. First, laser capture microdissection was used to isolate 

populations of Purkinje cells and extract their genomic DNA. While PC microdissection 

(due to the presence of adjacent basket interneurons and overlapping Bergman glia 

bodies) could not totally purify the PC population, the unique DNA methylation program 

of the PCs relative to these cell types (described below) was such that we could 

confidently assume was representative of the assay results. Next, quantitative detection of 

5mC and 5hmC was carried out using the MethylFlash
TM

 Methylated DNA 

Quantification (Epigentek, Carlsbad CA) assays. As presented in Figure 6, semi-pure PC 

populations underwent a nearly ten-fold decline in genomic 5mC (Figure 6A, p<0.01), 

and an 8-fold drop in 5hmC from P7 to P29 (Figure 6B, p<0.0001).  These results are 

consistent with the PC immunostaining patterns observed in Figure 3 and confirmed 

DNA methylation reprogramming in the post-mitotic PCs.   

 As mentioned previously, a dynamic 5mC and 5hmC intranuclear distribution was 

observed in the P7 PC nuclei. 5mC presented as punctate aggregates while 5hmC 
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displayed a euchromatin distribution (Figure 7), the two of which are not overlapping. As 

PC nuclei mature, however, 5mC adopts a more homogenous distribution similar to what 

we have previously observed in the embryonic neural tube (Zhou, Chen et al. 2011). This 

dynamic DNA methylation expression harkens back to the reported genomic 

complementarity of 5mC and 5hmC and likely relates to a functional diversity (Chen, 

Damayanti et al. 2014). Further, this stage-dependent distribution of 5mC in PCs 

provides further support for the early role of 5mC as a repressor of genomic “clusters” 

compared to a more relaxed and diffuse function in mature cells. Importantly, the 

chromatin remodeling of 5mC does not appear to be a cell-unique feature, displaying 

similar chromatin re- arrangement in granule neurons. 

1.3.2 Granule Neuron DNA Methylation Reprogramming 

 While various DNA methylation landscape analyses have by now demonstrated or 

alluded to a maturation-dependent DNA methylation program, the cerebellar profile 

allowed the cross-examination of complementary cell types, complete with unique 

temporospatial developmental patterns. The most obvious was apparent in the granule 

neuron, the primary glutamatergic neuron of the cerebellum. Derived from the dorsal-

most rhombic lip of the primordial cerebellar ventricular zone, granule cells adopt a DNA 

methylation program that is distinct from the reprogramming characterized in the 

Purkinje cell.   

At P7, at the cerebellar superfice, mitotic granule precursors residing in the outer 

limits of the external granular layer (EGL
o
) are largely un-methylated. As the granule 

precursors exit the cell cycle and migrate into the inner EGL (EGL
i
) (also distinguishable 

by their elongated somata (Hatten 1990)),
 
they undergo de novo 5mC and 5hmC 
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methylation. This phenomena is clearly distinguishable by the brown coloring of the 

EGL
i
 relative to the EGL

o
 (Figure 3A and 3D, blue crossed arrows), which demarcates 

the commitment of precursors to a granule fate and the initial stages of radial migration. 

Further, as the granule cells migrate inward from the EGL
i 
toward their target position at 

the Inner
 
Granule Layer (IGL), 5mC and 5hmC levels continually increase in accordance 

with the maturation stage of the cell, peaking as they settle at their final destination. 

Granule neurons in contrast to PCs, appear to maintain the acquired 5mC and 5hmC 

marks throughout adulthood (Figure 3C, 3F; blue crossed arrows).  

Laser capture microdissection and subsequent quantitative analysis of molecular 

5mC further supported the stage-dependent acquisition of granule neuron methylation. 

Proliferating granule cells of the EGL were compared with post-mitotic granule cells of 

the IGL at P7. Between the period of cell-cycle arrest and radial migration to the IGL, 

granule neurons nearly doubled their 5mC expression (Figure 6C, p<0.02). Further, even 

after granule cells reach the IGL, they gradually continued to acquire 5mC from P7 to 

P29 (Figure 6D, p<0.007), a time-frame overlapping with granule cell parallel fiber 

synapse formation (P14-P28) (Paul, Cai et al. 2012). 

The developmental timeline of granule cells, like PCs, is coincidental with the 

DNA methylation reprogramming of the cell. The major DNA methylation 

reprogramming of the granule neuron is observed during P7-P14, coincident with peak 

migration of the cells (Komuro, Yacubova et al. 2001) and bifurcation of parallel fibers. 

Though seemingly straightforward, the developmental progression of granule neurons, 

which deliver excitatory glutamatergic drive to PCs and modulate its excitability, are 
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crucial to the proper formation and function of the cerebellar architecture (Volpe and 

Adams 1972, Hatten 1999). 

Granule and Purkinje neurons are not the only cells that demonstrate a 

temporospatial DNA methylation program in the cerebellum. Stellate interneurons of the 

Molecular Layer (ML), Golgi interneurons in the IGL, and basket cells (Figure 3, purple 

dots) surrounding PCs in the PCL similarly undergo epigenetic reprogramming unique to 

their developmental course. Interestingly, these interneurons are born from the same 

ventricular region as PCs (Zhang and Goldman 1996), yet exhibit an epigenetic course 

more closely resembling granule neurons than PCs.  Stellate and basket interneurons, for 

example, acquire DNA methylation as they complete their migratory paths around the 

second postnatal week (Stroud, Feng et al. 2011) and retain their methylation even after 

their maturation has been completed (approximately the fourth and fifth postnatal weeks).  

1.3.3 Epigenetic Correlates of Post-Mitotic DNA Methylation Reprogramming 

 To further scrutinize the cellular DNA methylation programs of the postnatal 

cerebellum, we profiled DNA methylation-conferring enzymes and methyl-DNA binding 

proteins. At P7, DNMT1 displayed a distribution similar to 5mC, as characterized by an 

intranuclear punctate distribution (Figure 8A). TET1 expression, on the other hand, 

mirrored 5hmC, as denoted by a euchromatin intranuclear distribution (Figure 8D).  By 

the third postnatal week, PC loss of both DNMT1 and TET1 were clearly observable 

(Figure 8B and 8E), re-emerging again at P45 to confer the subsequent wave of PC 

remethylation (Figure 8C and 8F). This observation supports the expression patterns of 

the enzyme products detailed previously.  
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 Further support for DNA methylation reprogramming was obtained from methyl-

DNA binding protein profiles. MeCP2 was present in P7 PCs in punctate distribution 

confirmation (Figure 9A) reminiscent of 5mC, an observation which is in agreement with 

previous reports of 5mC-MeCP2 binding complementarity. Additional evidence of a 

5mC-MeCP2 relationship was provided by the parallel remodeling of MeCP2 from P7 to 

P21 in PCs. Notably, MeCP2 does not undergo complete loss in maturing PCs, though a 

significant reduction is observed during synaptogenesis and axonal-dendritic outgrowth 

(Figure 9B). MBD1 also showed a loss of expression at P21, though some PCs appear to 

retain this methyl binding protein (Figure 9D). Collectively, the presentation of the 

epigenetic correlates of 5mC and 5hmC support the PC DNA methylation program. 

Finally, incomplete loss of the methyl-CpG binding proteins (MBDs) may be rooted in 

the proclivity of the MBDs to interact with histone methylation modifications which were 

not examined in this study (Schmitz, Albert et al. 2011, Chittka, Nitarska et al. 2012, 

Wang, Yue et al. 2014). 

As a final assessment of cerebellar DNA methylation reprogramming, we 

examined downstream intermediates of the passive demethylation pathway including 5fC 

and 5caC. We observed that the presentation of the markers was highly coordinated with 

5mC and 5hmC (Figure 10). The 5caC and 5fC were detected in abundance in PCs at P7, 

but were no longer detectable at P21-P28, in line with 5mC and 5hmC loss. The 

concordant loss of 5mC and downstream intermediates sheds some interesting light on 

the replication-independent mechanisms likely guiding post-mitotic DNA methylation 

reprogramming.   
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Figure 3. Purkinje cell DNA de-methylation and re-methylation in the postnatal 

cerebellum 

(A) 5mC-immunostaining (im) is intensively present in the nucleus (size >12μm) of 

postmitotic Purkinje Cells (PC) at P7 (red, crossed arrows) at PC layer (PCL). 5mC is 

also distinctively present only in the non-dividing granule cells of the inner portion of the 

External Granule Layer (EGLi, blue crossed arrows) but not outer portion of EGL 

(EGLo). (B) By P28, the waning of 5mC-im was evident in PCs (red, dashed circles; 

~20μm diameter). Basket cells surrounding the PCs (purple dots, <8μm) were intensively 

immunostained by 5mC (as well as all other interneurons). Mature granule cells 

inhabiting the Inner Granule Layer (IGL) retained the acquired 5mC-im throughout the 

remainder of the time-course. (C) By P45 re-methylation of PCs occurred as the 5mC-im 

returned to some but not to all de-methylated PCs (red, crossed arrows denote re-

methylated PCs). (D) At P7, 5hmC immunostaining (im) is intensively present in PCs 

(red, crossed arrows), though distributed distinctly from 5mC. Some granule cells of the 

inner EGL express 5hmC-im though not at the upper surface of the EGL, where granule 

cell progenitors reside. (E) At P28, a clear de-methylation of 5hmC occurs in the PCs 

(red, dashed circles) as occurs with 5mC. Granule cells which have migrated to the IGL 
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continue to acquire 5hmC (blue, crossed arrows) as do the emerging basket interneurons 

surrounding the perimeter of PCs (purple dots). (F) At P45, re-methylation of 5hmC 

occurs in line with 5mC re-methylation at PCs (red, crossed arrows denote re-methylated 

PCs). Interneurons and granule cells appear to refrain from de-methylation throughout 

their developmental time-course. Scale bars: A-F=20μm; Methyl Green Nissl 

counterstain. Dashed red circles depict the approximate boundaries of the PC cell body. 

Dashed black lines depict approximate boundaries of the PCL.  
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Figure 4. Persistent immunoreactivity of calbindin D-28k in Purkinje cells of the 

developing cerebellum  

The calcium-binding protein Calbindin D-28k (green) is a characteristic Purkinje cell 

protein and appears markedly immunoreactive at P7 in the PCL. At P7, 5hmC (red) is 

also abundant in PC nuclei and granule cells of the inner EGL and IGL. At P21, even 

while an abundance of DNA methylation markers undergo dramatic loss of 

immunoreactivity, Purkinje cells retain calbindin expression. In contrast, interneurons 

emerging in the ML (as well as basket cells surrounding the large Purkinje bodies) 

abundantly express 5hmC at P21. EGL: external granule layer, IGL: internal granule cell 

layer, PCL: Purkinje cell layer, ML: molecular layer. Dashed borders represent the 

approximate cytological borders of the PCL.  
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Figure 5. Pre-absorption confirms the specificity of the anti-5hmC antibody 

The specificity of the crucial anti-5hmC antibody against 5hmC was characterized by 

pre-absorption of anti-5hmC antibody (1:1000, rabbit polyclonal IgG, Active Motif) with 

5hmC synthesized DNA (Methylated DNA Standard Kit, #55008, Active Motif, 50 ng/μ 

l, at a working dilution of 1:20 molar ratio) overnight at 4°C. (A) Before absorption, the 

anti-5hmC immunostaining in the cortex shows distinct 5hmC staining pattern, (B) while 

the staining pattern was abolished or drastically reduced after 5hmC-preabsorption. 
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Figure 6. Quantitative detection of cell-specific DNA methylation confirms Purkinje cell 

de-methylation and granule cell methylation 

Purified gDNA obtained from laser micro-dissected Purkinje and Granule cells was 

quantitatively analyzed for 5-methylcytosine and 5-hydroxymethylcytosine content (%) 

via antibody-based colorimetric assay. (A-B) Purkinje cells undergo remarkable loss of 

both 5mC and 5hmC between the first and fourth post-natal weeks, coincident with the 

Purkinje cell morphological and transcriptional transformation. (C-D) Granule cells of 

the external granule surface, as they undergo radial migration into the internal granule 

layer and become post-mitotic, acquire 5mC as indicated by earlier immunohistochemical 

analysis (Figure 3). Further, granule cells of the internal granule layer (IGL) continue to 

acquire methylation between the first and fourth postnatal week as granule cells settle 

into their mature state. (A.) **P-value=0.0078; (B.) ***P-value=0.0001; N=4 per age. 

(C.) *P-value=0.0186; (D.)** P-value=0.0036; N=8 per age. 
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Figure 7. Developmental chromatin remodeling of Purkinje cells is apparent by 

intranuclear localization of 5mC and 5hmC during postnatal development  

While distributed throughout the nucleus at the embryonic stage (not shown), at P7, 

major 5mC-immunostaining (im) (red) is packed into large punctates in the DAPI dense 

(blue), heterochromatin regions of the PCs  located in the Purkinje Cell Layer (PCL) (A, 

white arrows). (B) 5hmC (green) was detected primarily in the euchromatin DAPI sparse 

regions (B, white arrows). At P7, as the granule cells in the external granular layer (EGL) 

migrate into the internal granular layer (IGL), 5mC appears to precede 5hmC expression, 

as no overlap was observed at P7 (D, crossed arrows). De-methylation of 5mC and 5hmC 

in PCs progresses through P14 and peaks between P21 and P28. Notice the loss of 5mC 

and 5hmC in most of the PCs in the PCL (E, F white arrows). In contrast, DNA 

methylation in granule cells is independent of the PC program. At P21, when migration 

from the EGL has ceased and cells have permanently settled in the IGL, there is 

significant overlap between 5mC and 5hmC as denoted by yellow fluorescence (H, 

crossed arrows). Furthermore, by P21 the characteristic punctate staining of 5mC 

observed during the first postnatal week has been replaced by a more homogenous 

distribution in the matured, rounded nuclei of the granule cells. ML: molecular layer. 

Scale bar: A-H=20µm.  
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Figure 8. De-methylation and re-methylation are synchronized with the turnover of 

DNMT1 and Tet1 throughout the maturation of Purkinje cells 

The peak heterochromatin appearance of 5mC-im (Figure 1) occurs at the same time as 

peak Dnmt1-im (A, red crossed arrows).  Similarly, the peak euchromatin staining of 

5hmC-im (Figure 1) occurs at the same time as peak Tet1-im (D, red crossed-arrows) in 

PCs at P7.  De-methylation follows progressively, as by P21 many PCs lacked DNMT1 

(B, red arrows), and subsequently were devoid of Tet1 (E, red arrows). The methyl green 

counterstaining reveals 5hmC negative and Tet1-negative PC cell bodies (red arrows). 

Meanwhile, surrounding basket cells (and other interneurons) acquire Tet1 (E, purple 

dots). By P45, as re-methylation of 5mC is occurring, DNMT1-im is notably returned to 

the PC nuclei (C, red crossed-arrows). Similarly, Tet1 is observed parallel with the 

resumed observation of DNMT1-im expression (F, red crossed arrows) in PCs. PCL: 

Purkinje layer; EGL: external granule layer; IGL: internal granule layer. Scale bars: A-

C=20µm; D-F=20µm. 
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Figure 9. Postnatal de-methylation is supported by the diminished immunoreactivity of 

the methyl binding proteins MeCP2 and MBD1  

(A)Marked MeCP2 was found in the nuclei of PCs at P7 (red, crossed arrows) where its 

granular distribution within the nuclei is co-localized at this time point with 5mC (Figure 

1).  A noticeable waning of MeCP2-immunostainning in the PCs is observed by P21 (B, 

red arrows), though not to the extent observed in 5mC at the S-AMe time point. Basket 

interneurons (purple dots), on the other hand, acquire MeCP2 as they for a perimeter 

around the PCs. A similar de-methylation phenomenon is observed with MBD1-im at 

P21 in some but not all PCs observed (D, red arrows). PCs aligned in the deeper regions 

of the cerebellar foliae were more susceptible to this loss. IGL: internal granule cell layer, 

PCL: Purkinje cell layer, ML: molecular layer, Counterstaining: Nissl green. Scale bar: 

A-D= 20 µm. 
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Figure 10. Postnatal loss of 5hmC is synchronized with the loss of downstream 

derivatives 5fC and 5caC in Purkinje cells  

(A)5fC and 5caC are downstream metabolites of 5hmC (catalyzed by Tet enzymes) and 

prevail throughout cerebellar neurons including PCs (red, crossed arrow) and post-mitotic 

granule cells at P7 (A,C).   As 5hmC is de-methylated at P21 (Figure 3), 5fC and 5caC 

are also greatly reduced (B, D, red arrows). On the other hand, as PCs undergo de-

methylation of the 5fC and 5caC derivatives, surrounding basket cells acquire 

immunoreactivity. IGL: internal granule cell layer, PCL: Purkinje cell layer, ML: 

molecular layer, Nissl counterstaining: methyl green. Scale bar: A-B= 50µm, C-D=20µm. 
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1.3.4 Functional Impact of the DNA Methylation Program 

Though the correlation between DNA methylation reprogramming and cellular 

and neural development has been widely documented, its presupposed role in 

transcriptional regulation and the particular transcriptional targets have not been clearly 

outlined. To determine whether these cell-specific, cell-wide demethylation events were 

reflected at the gene level in PCs, we investigated the cerebellar DNA methylation status 

of Grid2, Cacna1g, Itpr1, Ppp1r17, Syt2 and Rgs8, which undergo PC specific turnover 

between P7 and P29. These genes were selected based on their predominant expression in 

PCs during the robust synaptogenesis period according to the Cerebellar Development 

Transcriptome Database (CTD-DB) (http://www.cdtdb.neuroinf.jp/CDT/Top.jsp) (Table 

B-2, Appendix B). Briefly, Grid2 encodes the glutamate ionotropic receptor delta type 

subunit 2, Cacna1g encodes the calcium voltage-gated channel subunit alpha 1g, the 

Itpr1 gene encodes the inositol 1,4,5-triphosphate receptor type 1, and Ppp1r17 encodes 

the regulatory subunit 17 of the protein phosphatase 1. The gene Syt2 encodes the 

synaptic vesicle membrane protein, which is thought to function as a calcium sensor and 

exocytosis. Finally, the gene Rgs8 encodes the regulator of G-protein signaling 8, a 

regulatory and structural component of G protein-coupled receptor complexes. 

Particularly, these selected genes were cross-referenced against a previous high-

throughput analysis identifying differentially hydroxymethylated genomic regions of 

cerebellar DNA between P7 and P42 (Table 2) (Szulwach, Li et al. 2011). The above 

genes met both criteria and were further pursued for methylation-specific restriction 

enzyme (MSRE) digestion qPCR.  

 

http://www.cdtdb.neuroinf.jp/CDT/Top.jsp
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Table 2. Differentially methylated regions of cerebellar gene targets for DNA 

methylation analysis by restriction enzyme digestion and qPCR 

* Szulwach, K. E., Li, X., Li, Y., Song, C. X., Wu, H., Dai, Q., Irier, H., Upadhyay, A. 

K., Gearing, M., Levey, A. I. et al. (2011). 5-hmC-mediated epigenetic dynamics during 

postnatal neurodevelopment and aging. Nature neuroscience 14, 1607-1616. 
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MSRE qPCR allowed for the quantitative assessment of methylated cerebellar 

DNA across different time points. The PC-preference of the investigated genes further 

allowed a cell-specific examination of PCs in lieu of purified PC DNA. This strategy 

could be used to investigate whether the immunohistochemical distribution of 5mC and 

5hmC could be traced onto functional PC genes during the developmental time course.  

Results demonstrated that DNA methylation reprogramming was not fully unilateral, 

demonstrating both up and downregulation at different loci. For example Grid2 and Syt2, 

which are detected at the synapse, underwent demethylation within the gene body by 

P29, diminishing by 42% (p=0.0037; Figure 11B). Similarly, Syt2 demonstrated a marked 

demethylation in the gene body (95% to 38%; p=0.045) between P7 and P29 (Figure 

11D). However, an examination of independent sites on the Cacna1g gene, encoding a 

low voltage calcium channel that is widely detected in neurons, revealed concomitant 

loss of promoter methylation (72% at P7 to 10% at P29; p=0.0003) and acquisition of 

gene body methylation (9% to 78%; p=0.0018) between the two developmental stages 

(Figure 11F). Although two other sites within the gene body of Cacna1g showed an 

increase in DNA methylation at P29, they were not statistically significant. Additionally, 

the G-protein signaling regulator gene Rgs8 demonstrated a 23% increase in gene body 

DNA methylation between P7 (23%) and P29 (46%) (p=0.0026). Various other 

investigated genes demonstrated that not all examined loci undergo epigenetic 

reprogramming. The promoter and gene body of Ppp1r17 (a regulatory subunit of protein 

phosphatase 1), for example, remained completely methylated through P7 and P29, while 

the promoter and gene body of the Itpr2 gene (an inositol triphosphate receptor) remained 

relatively unmethylated throughout these two stages.  
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Figure 11. Purkinje cell-preferring genes undergo simultaneous de-methylation and 

transcriptional upregulation during peak synaptogenesis  

(A) Diagram of Grid2 gene structure. Transcription start site (TSS): black bent arrow; 

exons: black boxes. Grid2 is transcribed from the Watson strand. A region in the intron 4 

was analyzed. The lower half of the panel is a magnification of the target region. Three 

CpG dinucleotides and one HhaI cleavage site are located in the target region 

(Chr6:64,015,530-64,015,858). Displaying primer (blue, straight arrow), CpG 

dinucleotides (white “lollipops”), and restriction enzyme cleavage sites (red, dashed 

lines).  (B) Analysis of Grid2: This Figure represents DNA methylation changes between 

P7 and P29 following digestion with HhaI. The P7 cerebellum is highly methylated, 

while the P29 cerebellum shows about a 60% reduction in DNA methylation. P-

value=0.0037. Gene expression of Grid2: Quantitative RT-PCR of P7 and P29. Grid2 is 

expressed 3.3 fold higher in P29 than in P7 cerebellum. P-value = 0.0006. (C) Analysis of 

Syt2. We amplified the following genomic region for Syt2: Chr1: 

136603663+136603902. (D) This Figure represents DNA methylation changes between 

P7 and P29 following digestion with HpaII. The P7 cerebellum is almost completely 

methylated, while P29 cerebellum shows about a 60% reduction in DNA methylation. P-

value=0.045. From P7 to P29, Syt2 mRNA expression is increased 4.6 –fold. (E) Analysis 

of Cacna1g. We amplified the following genomic region for Cacn1g: Chr11: 94336884 -

94337233. (F) This Figure represents DNA methylation changes between P7 and P29 

following digestion with Hpa II. The P7 cerebellum is ~ 72% methylated, while P29 

cerebellum shows only 10% methylation. P-value=0.0003. Gene body methylation 

analysis reveals a reciprocal relationship across ages, where P7 methylation begins 

around 10% and spikes to about 80% by P29. Overall gene expression was increased 2-

fold across this time. *p<0.05, **p<0.005 
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These results showed that DNA methylation reprogramming affecting cerebellar 

(particularly PC) development may occur through various genomic regions beyond the 

regulatory promoter. Additionally, as described earlier, DNA methylation changes during 

development are dynamic. Some genes experience accumulation of DNA methylation 

while others observe diminished DNA methylation, indicating that the apparent near-

totality of immunohistological demethylation in PCs requires a closer examination. 

Finally, the functional contribution of DNA methylation reprogramming was confirmed 

by gene expression analysis. Among Grid2, Cacna1g, Syt2 and Rgs8, all genes were 

upregulated by P29 with fold changes of 3.3 (p=0.0006), 1.9 (p=0.0037), 4.6 (p=0.0001) 

and 10.6 (p=0.0001), respectively. Itpr1 and Ppp1r17 transcripts have similarly been 

reportedly upregulated in cerebellar DNA by P42 in a previous study (Szulwach, Li et al. 

2011). Taken together, these results corroborate the early immunological profile of PC 

DNA methylation reprogramming and provide support for the mechanism as a regulatory 

element in cellular and cerebellar progression.  

1.3.5 DNA Methylation Program in the Embryonic Cortex 

To examine whether cell-unique DNA methylation occurs during the 

development of neurons in other developing brain regions, we investigated the DNA 

methylation profile of the embryonic cortex. At embryonic day 17, the cerebral cortex 

exhibits a unique stratified architecture containing multiple neuronal populations in 

various states of maturity. After neural tube closure, neuroepithelial cells begin to 

transform into radial glial cells (RGCs) coincidental with the onset of cortical 

neurogenesis (Kriegstein and Gotz 2003). From the lateral ventricular formation, a 

proliferative ventricular zone is formed, populated by replicative RGCs. This region 
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undergoes asymmetrical cell division, giving rise to RGC clones (cortical neuron 

precursors) and simultaneously producing an intermediate progenitor cell (IPC) which 

migrates outward to become an inhabitant of the adjacent subventricular zone (SVZ). In 

the SVZ, intermediate progenitors undergo 1-3 rounds of symmetrical cell division 

(Noctor, Martinez-Cerdeno et al. 2004). IPCs, distinguishable by their distinct 

morphology and protein expression patterns (i.e. Tbr2 (Englund, Fink et al. 2005)) 

produce cortical neurons, particularly of the upper cortical layer (Tarabykin, Stoykova et 

al. 2001), and olfactory bulb neurons (Lois and Alvarez-Buylla 1993).  Moreover, this 

two-tiered replicative mechanism is believed to be a unique feature of mammalian 

neurogenesis which contributes to the formation of a rather large cortical surface 

(Cheung, Kondo et al. 2010).   

The intermediate zone (IZ) is largely populated by the radial glial processes that 

serve as scaffolds for migrating cortical neurons, which subsequently traverse the IZ and 

settle in an inside out fashion (with newly arriving cells migrating and settling past the 

existing neurons ) in the cortical plate (CP). Interestingly, the IZ has also been found to 

be heavily populated by cortical interneurons originated from the ganglionic eminence 

(Nadarajah, Alifragis et al. 2003). Due to the zonal splitting of the primordial plexiform 

cortical layer by the emerging CP, the oldest and most mature cortical neurons are 

located in the superficial marginal zone (MZ) and the deeper subplate (SP) layers. Like 

the proliferating zones and the intermediate layer, the SP is developmentally transient and 

is believed to play an important role in the functional capacity of subcerebral projection 

neurons (Ghosh, Antonini et al. 1990) and the maturation of layer IV and visual cortex 

elements (Kanold, Kara et al. 2003). The MZ, on the other hand, is made up of 



48 

glutamatergic Cajal-Retzius (CR) cells and GABAergic interneurons. The secretion of 

the glycoprotein reelin from CR cells has been particularly implicated in the proper 

formation of the cortical plate layers and cortical circuitry (Costa, Davis et al. 2001).  

During normal development, we observed that DNA methylation progresses in an 

orderly and predictable manner in differentiating cortical precursors, parallel to previous 

observations in early neurulation (Zhou, Chen et al. 2011, Zhou 2012). By E17 the VZ 

(Figure.12A–C), the neurogenic layer of the developing neocortex, exhibited strong 

proliferative activity as demonstrated by Ki67 immunoreactivity (Figure.12D) and dense 

Tbr2 positive cells (indicative of intermediate progenitors (IPs)) detaching from the 

ventricular surface and migrating into the upper cortical layers along radial glia fibers 

(Figure.12E). During this time we observed a robust expression of 5mC followed by the 

muted emergence of 5hmC (Figure.12A-B). At the subventricular zone (SVZ), the 

secondary proliferative compartment of the developing cortex, Ki67 positive cells were 

less apparent (Figure.12D), but contained dense Tbr2-im fibers extending from the VZ 

(Figure.12E). Similar 5mC and 5hmC distribution was observed in the SVZ compared to 

the VZ, with only a slight reduction of 5mC (Figure.12A-B) observed. Notably, the 

methyl-CpG binding protein MeCP2 was absent in both ventricular regions (Figure.12C). 

At E17, the IZ was highly populated by Tbr2-expressing IPCs and their vertical 

projections which were originated in the VZ and SVZ (Figure 12E). In this zone, 

proliferation was drastically reduced as marked by the absence of Ki67 

immunoreactivity. 5mC in the IZ resumed levels observed in the VZ while 5hmC 

appeared unchanged (consistently less abundant compared to 5mC) (Figure.12A-B). The 

subplate (SP) featured the first appearance of round-shaped, mature neurons (as 
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characterized by their expression of NeuN) (Figure 12G). The rounded nuclear 

appearance was in sharp contrast to the ellipsoidal shaped nuclei typical of the NeuN-

absent ventricular regions.  The SP also contained the Tbr2 and P2Y1-expressing fibers 

of the migratory IPCs (Figure 12F-G). An interesting divergence of 5mC and 5hmC was 

observed in the SP, where 5mC was present in both round and ellipsoidal-shaped nuclei 

(Figure.12A) while 5hmC was reserved distinctly for the mature, round-shaped nuclei 

(Figure 12B). Further, 5hmC-positive neurons in this region were highly correlated with 

the NeuN-positive cells (Figure.12G) and, next to the MZ, the SP observed the most 

abundant expression of 5hmC. In contrast to 5mC and 5hmC, MeCP2 was minimally 

apparent in the SP (Figure 12C). 

Finally, at E17 the CP contains maturing neurons which will make up the future 

cortical layers. Proliferation was absent in the CP while Tbr2-expressing fibers were 

tapered compared to the IZ and lower layers (Figure 12E). NeuN-expressing neurons 

appeared to be variable within the layer, distributed into three apparently distinct 

sublayers within the CP (Figure 12G). The appearance of these observed borders within 

the layer are likely affected by variable cellular densities and interspersal of migrating 

neurons. Concordant with the three CP sublayers, 5mC immunoreactivity also appeared 

distributed in the three sublayers with an immuno-intensity gradient inversely 

proportional to that of NeuN (middle < top and bottom) (Figure 12A). The distribution of 

5hmC was, in contrast, well-aligned with the NeuN-im pattern (middle > top and bottom) 

(Figure 12B). Similar to the SP layer, 5hmC appeared to only occupy the mature, round-

shaped nuclei, whereas 5mC was more ubiquitously expressed. MeCP2 in the CP 

remained relatively weak (Figure 12C), concentrated at the lower-most CP region.  
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Temporal and spatial cues tightly regulate the transcriptional profiles of emerging 

cells of the cortex. From the emergence of RGCs to the reelin signaling emanating from 

Cajal-Retzius cells in the MZ, the precise expression of scheduled genes may have 

critical implications for cortical development and subsequently cortical function (Costa, 

Davis et al. 2001). As such, elucidating the regulatory mechanisms underlying cellular 

ontogeny may be critically important in developmental disease. Here, we observed that 

DNA methylation patterns of the cortical laminae were aligned with cellular 

differentiation processes in agreement with the epigenetic narrative presented earlier in 

neurulation, hippocampus and cerebellar development. The onset of 5mC at 

neuroepithelial zones has been previously hypothesized to prepare the cell for the 

downregulation of pluripotency genes in the wake of specification (Kim, Park et al. 2014, 

Resendiz, Mason et al. 2014). At the cortical ventricular zones, 5mC was abundant, 

diminishing slightly as progenitors exited the cell-cycle and initiated upward radial 

migration. Subsequently, 5mC was upregulated secondarily as migrating neurons settled 

in their target cortical zones and initiated morphological and functional modifications. 

This cyclical presentation of 5mC is reminiscent of the PC DNA methylation program in 

the cerebellum and supports the notion that cells may undergo various waves of DNA 

methylation reprogramming. Another feature of 5mC expression included indiscriminate 

expression across various cell types within a cortical layer as distinguished by cellular 

morphology.  5hmC, a bivalent epigenetic mark, observed a more straightforward 

progression in the embryonic cortex.  Predictably upregulated in the zones which housed 

the most mature cortical neurons, 5hmC also was distinctively present in the rounded, 

mature cortical cells. These findings echo the presentation of the marker in parallel 
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hippocampal systems (Chen, Ozturk et al. 2013) and align with the presupposed role of 

5hmC in priming cells for activation of genes required for cellular specification.   

The restricted emergence of the methyl-binding protein MeCP2 in the mature 

zones of the embryonic cortex are consistent with previous findings (Kishi and Macklis 

2004, Mullaney, Johnston et al. 2004) and support the dual binding of MeCP2 with both 

5mC and 5hmC (Chahrour, Jung et al. 2008, Mellen, Ayata et al. 2012, Chen, Damayanti 

et al. 2014). This finding challenges the strictly repressive role of the methyl-binding 

protein and implicates the protein in more dynamic transcriptional regulation. Ultimately, 

the epigenetic characterization of the embryonic cortex strengthens the cell-unique and 

stage-dependent DNA methylation program that has been building since the emergence 

of early studies in neural stem cells. This study, across various neural systems and cell 

types, has demonstrated a systematic orchestration of DNA methylation and DNA 

methylation correlates operating in tandem with cellular progression.  
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Figure 12: Comparative phenotypic and DNA methylation dynamics in the embryonic 

cortex 

(A-C) Representative cortical columns from the Chow E17 frontal neocortex 

immunostained with DMP markers (5mC, 5hmC, MeCP2) and (D-G) phenotypic neural 

markers (Ki-67, Tbr2, P2Y1 and NeuN) are presented for comparison of the DMP 

dynamics along the radially progressing corticogenesis of the E17 brain. SVZ/VZ 

(Subventricular Zone/Ventricular Zone); IZ (Intermediate Zone); SP (Subplate; and CP 

(Cortical plate).  
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1.4 DISCUSSION 

1.4.1 Post-Mitotic DNA Methylation Reprogramming: Evidence from the PC 

 Evidence from adult hippocampal synaptic plasticity modeling first illuminated 

the capacity of acute DNA methylation remodeling in the adult brain (Levenson, Roth et 

al. 2006). These findings led the proposition that DNA methylation (as well as other 

epigenetic modifications) may be a mechanism underlying post-mitotic neural plasticity. 

This notion is a meaningful one given that, to-date, the bulk of neural epigenetic 

investigation has focused on early cell commitment (i.e. stem cell to neural progenitor). 

Moreover, the absence of concrete evidence of active (replication-independent) DNA 

demethylases has led many to believe that post-mitotic DNA methylation reprogramming 

was not a serious contender in the realm of plasticity-conferring mechanisms.   

 Here, our study yielded pronounced evidence of post-mitotic DNA methylation 

reprogramming, including a wave of DNA methylation erasure followed by de novo 

methylation. Like the findings revealed in the adult hippocampus, evidence of DNA 

methylation reprogramming were observed acutely, along regulatory and intragenic 

regions of functionally relevant transcripts. Unlike the work of Levenson et al., 

immunological detection suggests that the extent of DNA methylation reprogramming is 

far wider-reaching than the predictable scope of late-onset neural plasticity, at least in the 

cerebellar Purkinje cell.  

 In the absence of cell-replication (passive) DNA demethylation, Purkinje cell 

reprogramming is likely mediated by active mechanisms. Currently, there are two 

proposed pathways by which active DNA demethylation may occur. The first centers 

around the idea of direct 5mC removal via deamination and subsequent base excision 
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repair (BER) or nucleotide excision repair mechanisms (Grin and Ishchenko 2016).  The 

second proposes DNA demethylation occurs through the step-wise modification of the 

methylated cytosine base. For example, oxidation of 5mC could produce 5hmC which 

may be deaminated and subsequently excised by the AID (activation-induced 

deaminase)/APOBEC (apolipoprotein B mRNA editing enzyme complex) (Guo, Su et al. 

2011). Alternatively, 5hmC could persistently be oxidized by TET enzymes to produce 5-

fC and 5-caC. Subsequently, base-excision repair enyzmes such as Thymine DNA 

Glycosylase (TDG) could mediate demethylation of the derivatives, though this strategy 

is likely to be detrimental to the DNA on a large scale (Maiti and Drohat 2011). 

Alternatives to base-excision mediated demethylation are limited to the existence of 

enzymatic removal, which, though observed in some pathways, has yet to be supported in 

the brain (Wu and Zhang 2010). Whatever mechanisms are ultimately revealed, post-

mitotic DNA methylation reprogramming may play a large role in the synaptic 

morphological plasticity that underlies enduring long term depression/potentiation in the 

brain. 

The evidence observed in this study supports a mechanism by which 5mC 

demethylation concurrently affects all known hydroxylated intermediates, as their 

expression was highly dependent on 5mC. However, the fact remains that there is still 

much to learn regarding post-mitotic DNA methylation reprogramming, particularly 

where large-scale demethylation is concerned. Thus far, only one mechanism has been 

supported in the plasticity of the adult brain, that is, TET1-induced oxidation and 

subsequent deamination by the AID/APOBEC mechanism which was observed to occur 

in an activity-dependent manner (Guo, Su et al. 2011). Though attractive, in vitro this 
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mechanism was found to be 5hmC-specific and sequence selective, suggesting that 

perhaps this mechanism works cooperatively with other un-specified deaminases in the 

post-mitotic brain.  

1.4.2 DNA Methylation Programs in Complementary Cell Types 

The cell-wide DNA demethylation and remethylation of the Purkinje cells was 

unique to that cell type within the observed time course. Cerebellar granule neurons in 

contrast exhibited a more simplified DNA methylation program, acquiring stable 5mC 

and 5hmC only after their exit from the cell cycle (which coincided with the onset of 

radial migration from the EGL to the IGL) (Figure 13). The cell-wide acquisition of DNA 

methylation markers may signal the onset of cell cycle exit/neuronal specification. This is 

supported by the DNA methylation program of later-born cerebellar interneurons, which 

follow the neurogenic pattern from the emergence of granule layer interneurons (i.e. 

Golgi) to the later-arriving molecular layer interneurons (i.e. stellate, basket).  

While intrinsic temporal features may play a role in cell-unique DNA methylation 

patterns, it should be noted that even within similarly patterned cells (i.e. granule and 

interneurons), various nuances exist which complicate the extrapolation of generalities 

such as cell-cycle exit- associated DNA methylation acquisition. For example, though the 

two cell categories display similar, protracted acquisition of DNA methylation markers 

during cell cycle exit, it has been reported that cerebellar interneurons may actually retain 

some intermediate state (not ever fully entering G0 phase) (Leto, Bartolini et al. 2009). 

This allows cerebellar interneurons the plasticity to be “re-shaped” by the manipulation 

of extrinsic cues which would otherwise not be possible in a fully committed state. In this 

way, two cell types with apparently similar intrinsic transcriptional and epigenetic 
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courses deviate and call into question how much of the DNA methylation program, if 

any, is mediated by external cues. Interneuron characteristics also challenge the notion 

that cellular milestones such as cell cycle exit are entirely accountable for cell-wide DNA 

methylation reprogramming.  

Another observed developmental phenomenon which shed some contrasting light 

on the DNA methylation program of the PCs was the embryonic cortical landscape. Like 

the post-mitotic DNA methylation “waves” which characterized postnatal PCs, cortical 

progenitors observed comparatively mild DNA methylation reprogramming throughout 

their developmental course, as detectable through immunological evaluation (Figure 14). 

The defining feature of DNA methylation reprogramming in the cortex was not cell-wide 

erasure and de novo methylation rather, a complementarity of 5mC and 5hmC across the 

cortical strata. For example, in the SVZ/VZ, 5mC was pronounced, subsiding in favor of 

5hmC at the SP, where the earliest born (most mature) cortical neurons reside. Two more 

waves of shifting abundance occur within the complex CP layer. The observed 

“redistribution” of 5mC and 5hmC are reminiscent of the intranuclear positioning of the 

two markers which takes place in the cerebellum from P7 to P21. Recall that during the 

early stage, PCs and granule neurons exhibit a mutually exclusive distribution within the 

nucleus, co-localizing in a more “relaxed” euchromatin distribution only during later 

stages (Figure 7). That DNA methylation patterning additionally coincided with the 

genomic re-distribution of gene-specific DNA methylation from the promoter (P7) to the 

gene body (P29) (Figure 11F). Only gene-specific methylation analysis in the cortex will 

decipher whether the same genomic redistributions are in play and mediating 

immunological observations. Certainly, the developmental cortex demonstrates that the 
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cellular DNA methylation program is not always a case of absolute acquisition or erasure, 

but in some cases a more subtle conversion which remains to be substantiated in 

functional cortical gene networks. The cortical pattern does, however, reiterate the 

plasticity of the DNA methylation program in pre-and post-mitotic neurons, supporting 

the observations of Levenson et al in the adult hippocampus and our characterization in 

the cerebellum.  

1.4.3 DNA Methylation Reprogramming as a Functional Mechanism  

Beyond the need to corroborate cell-wide DNA methylation programs within 

functional gene networks, it remains important to understand how and why some genes 

apparently escape reprogramming. For example, though transcriptomes have been well 

characterized across cellular development, fluctuations in gene expression are not always 

attributable to DNA methylation changes (i.e. Ppp1r17, Itpr2 in the cerebellum). The 

obvious answer is that perhaps some functionally relevant genes are regulated by other 

epigenetic mechanisms or even non-epigenetic mechanisms, which begs the deeper 

question, what determines the regulatory mechanisms of a gene? Yet another possibility 

may be the sub-optimality of the available genomic DNA methylation assays. For 

example, in our cerebellar study, MSRE qPCR was not able to distinguish 5mC and 

5hmC methylation. Further, the examination of genomic regions was based on previously 

identified differentially methylated sites and not absolute coverage of the entire gene. 

Due to the relevance of 5mC and 5hmC genomic transitions and the likelihood that DNA 

methylation may be functionally important beyond the promoter, future studies will need 

to adopt more inclusive, unbiased approaches.   
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Finally, there is a need, just as in primordial germ cell reprogramming to better 

understand how if any genomic elements are protected from DNA methylation erasure 

post- mitotically. Equally important is a better understanding of the elements which 

recruit de novo DNA methylation. One report has proposed that TET-mediated 

hydroxylation may serve as an inhibitory mechanism for aberrant DNA hypermethylation 

(Wiehle, Raddatz et al. 2015). Others have proposed that activity-dependent intercellular 

signaling may underlie the recruitment of DNMT3A in the adult brain (required for de 

novo methylation) (Levenson, Roth et al. 2006). Surely we are still in the nascent stages 

of the exploration of epigenetic mechanisms and the future promises many milestones in 

our understanding of the mediators of the DNA methylation program and its fluidity. 

1.4.4 Summary and Conclusions 

The observations made in the postnatal cerebellum and the embryonic cortex 

greatly expand the epigenetic profile of the developing central nervous system. This 

cellular view paves the way for high-throughput genomic methyl-sequencing of cellular 

transcriptomes and strengthens the case for DNA methylation programming as a guiding 

element of neural progression. The distinct morphology and well-documented 

developmental course of the postnatal cerebellum allowed for a cell-specific assessment 

between the first and sixth postnatal weeks. While DNA methylation turnover has been 

documented previously during pre-implantation and during early neural tube formation, 

the cerebellar assessment revealed a post-mitotic population undergoing a large-scale 

demethylation and remethylation not previously reported. Moreover, the reprogramming 

of the cells was corroborated by epigenetic correlates and quantitative molecular 

assessment. Collectively, our observations showcased the cell-unique nature of DNA 
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methylation landscapes, illustrating that DNA methylation reprogramming, though 

detectable on a global scale, is highly dependent on cellular context. This was 

exemplified further across the cortical layers, where DNA methylation status was 

predictably correlated to proliferative, migratory, or synaptogenic status.  

Across all examined systems, recurring motifs included cell cycle exit, migration, 

and cellular maturation as developmental correlates of DNA methylation reprogramming. 

Additionally, 5hmC was consistently observed in mature-state cellular specification, 

which corroborates various reports of 5hmC as an activating marker during cellular 

differentiation (Stroud, Feng et al. 2011, Wu, D'Alessio et al. 2011).  Why some cells like 

cerebellar granule neurons and interneurons apparently undergo unilateral 

reprogramming while others like cortical progenitors and PCs are subjugated to multiple 

waves of DNA methylation reprogramming is a subject requiring further study. This may 

perhaps be rooted in some cellular complexity requiring large-scale transcriptional 

fluctuations to accommodate functional or structural demands. On the other hand, in light 

of the findings of PC gene targets (some of which were not subject to DNA methylation 

reprogramming), it may be entirely possible that other non-DNA methylation factors are 

collaboratively at work mediating transcriptional regulation. As such, it is with caution 

that investigators should attempt to extrapolate gene level to cell-level methylation and 

vice versa. Fortunately, as better epigenetic technologies emerge, complementary 

methods of investigation will become increasingly accessible to fill the gaps between 

cell-wide immunological trends and the precise cellular methylome.  

 While elucidating the cellular specificity and spatial and temporal profiles of 

DNA methylation across developing neural systems is a momentous step forward, much 
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remains to be answered regarding the mechanistic features and consequential outcomes 

of DNA methylation reprogramming. For example, what factors are at work in the 

recruitment of DNA methylating enzymes and their dynamics during reprogramming 

across cells are not known. Similarly, though labeling of MeCP2 and MBD1 was 

performed, a direct-binding analysis of 5mC and 5hmC methyl-binding proteins in the 

future will be needed to fully confirm methylated DNA and methyl-binding protein 

dynamics. By a similar token, teasing out the precise genomic distribution of 5mC versus 

5hmC may reveal important details about the regulatory DNA methylation program. 

Here, MSRE qPCR was indiscriminant toward 5mC versus 5hmC but new methyl-

sequencing strategies will allow deeper and precise examination of the two markers going 

forward.  

 Finally, as previously mentioned, DNA methylation reprogramming as a means 

for structural and transcriptional regulation is likely only partially explanatory. As 

documented in the literature, epigenetic modifications of chromatin often beget others. 

As such, a complete and comprehensive picture of epigenetic reprogramming in the 

developing brain will require an examination of multiple epigenetic modifications in 

tandem. Ultimately, only a complete and accurate account of epigenetic marks, 

recruitment elements, and transcriptional regulators will help to elucidate one of the most 

important questions of reprogramming as a regulatory mechanism, that is, is epigenetic 

modification an obligatory precedent of developmental outcomes or do 

intrinsic/extracellular developmental cues shape epigenetic landscapes associated with 

development?  
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Figure 13. Independent DNA methylation program of Purkinje, granular and basket cells 

during development   

This scheme illustrates the cell-specific epigenetic distribution of the DNA methylation 

marks 5mC (green dots) and 5hmC (red dots) in the nuclei of neurons during 

development of the cerebellum. As cerebellar granule cells (light green) occupy the outer 

external granule layer (EGL
o
), they are still mitotic and devoid of 5mC and 5hmC. 

Immediately after completing mitosis, these granule cells exit the cell cycle and begin 

radial migration through the inner EGL, PCL, and finally into the internal granule layer 

(IGL). As soon as granule cells break through the EGL
o
, they strongly acquire 5mC and 

5hmC, though these two methylation marks are independently distributed in the nuclei of 

granule cells. From P7 forward, mature granule cells of the IGL maintain their 

methylation, though these become homogenously distributed in contrast to pre-migration 

distribution. Independently, Purkinje cells (PC) of the cerebellum exhibit a unique 

epigenetic program. Post-mitotic Purkinje cells generated in the dorsal rhomboid lip at 

E14 and arrived at the Purkinje cell layer (PCL) at E17 and already express 5mC quite 

prominently (and to a lesser extent 5hmC).  As the PC grow in size, it becomes clear that 

5mC are distributed in a granular fashion in heterochromatin, while 5hmC are distributed 

as fine particles in euchromatin.  Remarkably, just prior to PC’s undergoing characteristic 

dendritogenesis and synaptogenesis (P14-30), a dramatic loss of 5mC and 5hmC occurs 

in their nuclei. As Purkinje cells settle into synaptic maturity, 5mC and 5hmC reappear in 

the nuclei though diminished from peak levels observed at P7.  In contrast, the basket 

interneurons closely associated with PCs appear to have acquired a rich expression of 

5mC and 5hmC while PCs undergo de-methylation and re-methylation.   



62 

 

Figure 14: The DNA methylation program of the embryonic cortex  

(A)At E17, the embryonic cortex develops in distinct layers progressing from the roof of 

the lateral ventricle (LV). Neuroepithelial (NE) cells sequentially migrate through the 

proliferative ventricular zone (VZ) to the uppermost cortical superficies. (B,C) During 

this developmental progression, cells of the layers are diverse in their maturity state and 

simultaneously unique in their chromatin distribution of DNA methylation markers. 

Specifically, NE cells of the proliferative VZ exhibits strong 5mC (B) followed by a 

weaker 5hmC signal (C). (B-D) As these cells undergo differentiation and radial 

migration into the subplate layer (SP), cellular morphology changes from ellipsoidal to 

larger, rounded nuclei. During this transition, a characteristic rise in 5hmC is observed, in 

contrasts to a weakening of 5mC. € Nuclear morphology and DNA methylation mark 

legend. (B-D,F) As cells reach their target layers within the cortical plate (CP), the 

distribution (immunointensity gradient) of 5mC/5hmC shows opposite trend within 3 

sublayers of the CP (CP1/2/3). SVZ (Subventricular Zone) 
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In conclusion, DNA methylation (and associated epigenetic marks) appear and 

disappear in accordance with the spatial and temporal developmental patterns that are 

unique to individual cell types. This presentation demonstrates an association with cell-

unique gene regulation and markers of cellular specification and provides novel evidence 

of a post-mitotic, reprogrammable DNA methylation developmental program. These 

findings also demonstrate that DNA methylation landscapes do not change “globally”, 

but rather fluctuate as unique signatures of evolving cellular states according to the 

temporal transcriptional requirements rendering the appropriate morphological and 

functional capacity of the cell.  

If the DNA methylation program is a major component of transcriptional 

regulation during development and epigenetic mechanisms are sensitive to external cues 

(see Chapter 2), could the program confer environmental input at the cellular level? The 

answer is likely to impact our understanding of a host of developmental abnormalities. If 

so, DNA methylation landscapes may open a world of diagnostic and therapeutic 

possibilities.  
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CHAPTER 2: DYSREGULATION OF NEURODEVELOPMENT AND DNA 

METHYLATION BY ALCOHOL 

2.1 INTRODUCTION 

2.1.1 Environmental Sensitivity and Heritability of DNA Methylation 

The environmental sensitivity of epigenetic mechanisms has been extensively 

documented. Factors such as nutritional disparity, early-life stress, pollution, substances 

of abuse, and maternal care are just some of the many proposed environmental 

contributors of epigenetic modification (Heijmans, Tobi et al. 2008, Madrigano, 

Baccarelli et al. 2011, Suderman, McGowan et al. 2012). Further, studies performed in 

monozygotic twins have provided valuable evidence for the environmental contributions 

of differential epigenetic profiles (Segal, Montoya et al. 2017). Interestingly, early 

findings demonstrated that epigenetic variability of monozygotic twins can actually begin 

prior to birth, suggesting environmental influencers of the epigenetic code can function as 

early as the prenatal environment (Ollikainen, Smith et al. 2010, Gordon, Joo et al. 2012). 

Since then, a host of prenatal and perinatal investigations have identified factors such as 

folate consumption, predatory stress, and chemical exposures such as alcohol and lead 

(Gonseth, Roy et al. 2015, Sen, Heredia et al. 2015, St-Cyr and McGowan 2015, 

Boschen, McKeown et al. 2016) as DNA methylation-altering environmental factors 

during neural development.  

Importantly, these factors and the subsequent epigenetic modifications have been 

characterized for their persistence in later life (Vineis, Chatziioannou et al. 2017), 

suggesting that environmentally-mediated epigenetic modifications may act as a 

molecular recording mechanisms for environmental information. Moreover, the 
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implications of stable and lasting epigenetic modifications include their evolution and 

adaptability over time, perhaps driving forward or reversing pathological courses already 

in play due to genetic or other factors. Of course, that argument would require a more 

comprehensive understanding of the functional “thresholds” which would render the 

chromatin structure vulnerable to differential transcription, the likes of which are 

rudimentary at this time. Additional considerations would require unraveling whether cell 

types, cell states, and accompanying genomic information experience differential 

sensitivity to environmental impacts. In other words, whether cellular chromatin are more 

vulnerable during a particular organismal phase or perhaps more responsive to specific 

outward influences over others remains largely unknown. Finally, epigenetic dynamics 

must be further defined in the context of genetic interaction. 

The notion of epigenetic memory has in recent years become increasingly 

important due to reports of transgenerational heritability. Occurring through the 

transmission of epigenetic signatures in gametes, environmental factors such as pre-

reproductive stress in females (Zidan, Rezk et al. 2015) and fetal alcohol exposure in 

males (Govorko, Bekdash et al. 2012), among others, have empirically demonstrated the 

heritability of acquired epigenetic change. Though unsubstantiated in human studies to 

date, several lines of epidemiological evidence suggest transgenerational epigenetic 

mechanisms at work in human beings as well (Veenendaal, Painter et al. 2013, Yehuda, 

Daskalakis et al. 2014). Given the known epigenetic erasure which occurs in the germline 

during transmission, it is likely, though not certain, that the mechanisms at work 

protecting the demethylation of elements like the imprinting of certain parental genes 

(Guibert, Zhao et al. 2012, Hackett, Sengupta et al. 2013) may also play a role in the 
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preservation of transgenerational epigenetic signatures. Despite the growing body of 

knowledge, and the ever-expanding implications for epigenetic landscapes, how 

environmental influences are mechanistically transduced into the epigenetic code remains 

poorly understood. At least one environmental element is molecularly poised to offer 

insight into how environmental influences impact epigenetic profiles during 

development.  

2.1.2 Alcohol and Methyl and Acetyl Metabolism 

Alcohol metabolism begins by oxidation into acetaldehyde, a known teratogen. 

Simultaneously, the breakdown of alcohol into acetaldehyde includes the production of 

reactive oxygen species (ROS). The metabolism of alcohol during acute exposure is 

mediated by the enzyme alcohol dehydrogenase (ADH) while chronic alcohol exposure is 

believed to increase metabolism by recruitment of hepatic cytochrome P450 isoform 2E1 

(CYP2E1). Secondarily, an enzyme known as aldehyde dehydrogenase (ALDH) is 

responsible for the irreversible conversion of acetaldehyde into acetate, mainly in the 

liver. The metabolism of alcohol is thought to proceed rather quickly to avoid the 

elevation of acetaldehyde levels. In healthy males, about 77% of ingested alcohol is 

converted to acetate (Siler, Neese et al. 1999), prompting the notion that acetate is 

alcohol’s primary metabolite and complementing reports of low levels of acetaldehyde 

accumulation in the blood after alcohol consumption (Umulis, Gurmen et al. 2005). 

Acetate may bind coenzyme A through the enzyme acetyl-coenzyme A synthetase 

(AceCS1). Acetyl CoA is a major substrate of the cellular energy cycle but may also 

donate an acetyl group to histone proteins through the histone acetyltransferase (HAT) 

family of enzymes. Acetylation of histones is generally thought to facilitate gene 
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activation by altering the binding of DNA to core histone proteins (Zakhari 2013). 

Additionally, acetate is a direct inhibitor of class I histone deacetylases (HDACs) in 

hepatic cells and neurons (Soliman, Smith et al. 2012). Accordingly, the metabolism of 

alcohol has a direct biochemical route toward the alteration of the chromatin structure. 

Furthermore, alcohol variability such as frequency of consumption and age of the 

consumer have been shown to alter the enzymatic activities of ALDH in response to 

alcohol, influencing the accumulation of alcohol metabolites and increasing the 

production of ROS’, which themselves may interfere with histone acetylation (Chrostek, 

Tomaszewski et al. 2005, Mello, Ceni et al. 2008, Brooks and Zakhari 2014).  

Beyond acetyl metabolism and histone modification, alcohol metabolically 

accesses a second biochemical pathway that is closely intertwined with epigenetic 

mechanisms. The sole methyl donor for DNA and histone methylation, S-

adenosylmethionine (S-AMe) (produced through the metabolism of dietary folate, 

betaine, and methionine) is impacted at various metabolic stages by alcohol and alcohol-

derived ROS’. For example, alcohol has been shown to decrease serum folate levels, the 

folate intermediate metabolite 5-methyltetrahydrofolate (5-MTHF), as well as the 5-

MTHF conferring enzyme (Eichner and Hillman 1973, McGuffin, Goff et al. 1975, 

Berlin, Cameron et al. 2010). Downstream, the intermediate 5-MTHF is converted to 

methionine by the enzyme methionine synthase (MS) which is decreased by up to 50% in 

models of alcoholism (Finkelstein, Cello et al. 1974, Barak, Beckenhauer et al. 2002).  

A secondary dietary methyl source is also biochemically impacted by alcohol. 

Choline, upon oxidative conversion to betaine, is enzymatically converted to methionine 

by betaine-homocysteine methyltransferase (BHMT). Like ALDH, the BHMT enzyme 
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appears to exhibit a context-dependent response to alcohol exposure, elevated by acute 

exposures but diminished chronically (Barak, Beckenhauer et al. 1996). Alcohol 

additionally has been correlated with decreased levels of methyl metabolism co-factors 

including B6, B12, and riboflavin (Lumeng 1978, Kanazawa and Herbert 1985, 

Subramanian, Subramanya et al. 2013), which may contribute to the observed alcohol-

related inhibition of methyl metabolism enzymes. Finally, past methionine biogenesis, 

alcohol has been observed to impact role players involved in the production of the 

“active” methyl donor substrate S-AMe. Predominantly, alcohol-induced oxidative stress 

has been shown to decrease both the expression and activity of methyl 

adenosyltransferase (MAT) and the hepatic production of S-AMe and DNA methylation 

(Chawla, Watson et al. 1996, Avila, Carretero et al. 1998, Lu, Huang et al. 2000), though 

the modality of alcohol in S-AMe production and DNA methylation may be more 

complex in other tissues.  

Folate, choline, and methionine metabolism have each been independently shown 

to regulate normal neural development in some capacity (Serrano, Garcia-Silva et al. 

2010, Wu, Dyer et al. 2012). Aside from altering methyl and acetyl metabolism, alcohol 

has also been shown to hinder the transfer of folic acid from mother to offspring, though 

earlier studies reported that transfer is actually elevated by alcohol exposure (Lin 1991, 

Hutson, Stade et al. 2012). This, taken together with the known interaction of alcohol and 

alcohol metabolites in methyl metabolism suggest a practical pathway for alcohol to 

impact neural development. In that vein, it is unsurprising that folate deficiency during 

developmental periods mirror some of the phenotypes of fetal alcohol exposure (Molloy, 

Kirke et al. 2008). 
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Figure 15. Effect of alcohol metabolism on acetylation and methylation of histones and 

DNA  

On the acetylation side (red hemisphere), alcohol is metabolized by ADH and CYP2E1 

into acetaldehyde. This process produces many reactive oxygen species that pour over to 

affect folate metabolism. Acetaldehyde is further metabolized to acetate by ALDH 

enzymes. Acetate is then converted to acetyl-CoA, the acetyl donor for histone 

acetylation enzymes acting on the amino acids of variable histone proteins (center). Once 

established, histone deacetylases can remove the acetyl group. On the methylation side 

(blue hemisphere), dietary folate is metabolized by MTHFR to methyl tetrahydrofolate 

(MTHF). Meanwhile, dietary choline is converted to betaine. Betaine and MTHF both 

serve as the methyl donor for homocysteine conversion to methionine by the enzyme 

methionine synthase (MS). Methionine next becomes “activated” by methyl 

adenosyltransferase enzymes into the fi nal methyl donor form, known as S-

adenosylmethionine (S-AMe). S-AMe is utilized by both DNA methyltransferases and 

histone methyl transferases to the 5’ carbon of cytosine bases or histone tail residues, 

respectively (center). Solid dots: substrate; Stars: enzymes, which are known to be 

affected by alcohol. 
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2.1.3 Fetal Alcohol Spectrum Disorders (FASD) 

Alcohol exposure during gestation may lead to a host of developmental deficits 

manifested across a range of severities. These include but are not limited to craniofacial 

dysmorphologies, delayed growth, microcephaly, intellectual disabilities, and impaired 

psychosocial skills. Classically, children manifesting growth deficiency, facial 

characteristics, and central nervous system damage are diagnosed under the classification 

known as Fetal Alcohol Syndrome (FAS), affecting 2 out of 1000 live births with 

treatment costs estimated around $5.8 billion in the US alone. FAS is a leading cause of 

non-genetic intellectual disability in the Western world; though today, a broader 

classification is used to cover five diagnostic categories linked to alcohol-related 

developmental deficits. Known as Fetal Alcohol Spectrum Disorders (FASD), this 

category (though not itself a diagnostic term) includes affected patients from categories 

including FAS, partial FAS, alcohol related neurodevelopmental disorder (ARND) and 

alcohol related birth defects (ARBD). Under this umbrella, covering the more mild and 

subtle manifestations of alcohol-related disorders, an estimated ten times more patients 

have been identified compared to classical FAS statistics.  

Despite the range of severities existing within FASD, it is believed that many 

more affected individuals escape the diagnostic criteria and progress through life 

unevaluated and untreated (de Sanctis, Memo et al. 2011). It has been proposed that these 

patients who do not present distinct phenotypes in early-life may go on to experience 

manifestations of the exposure in later life, typically involving impaired cognitive 

plasticity and/or maladaptive behaviors (Famy, Streissguth et al. 1998, O'Connor, Shah et 

al. 2002, Burd, Klug et al. 2003). Due to the extensive evaluation of fetal alcohol 
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exposure as a teratogen and the observation that even minimal exposures during gestation 

can affect the developing brain(Zucca and Valenzuela 2010, Valenzuela, Morton et al. 

2012), there is no acknowledged tolerable level of gestational drinking. While largely 

preventable, it is important to consider that almost half of all women of childbearing age 

are drinkers (CDC 2002). Further, considering that nearly half of all pregnancies are 

unplanned (Harper, Rocca et al. 2015) and that pregnancy detection in these cases can 

surpass four weeks, it becomes increasingly clear that there is a subset of the population 

at perpetual risk for acute exposure.  

Finally, recent findings have uncovered evidence revealing that alcohol-mediated 

effects may actually be transmitted even in the absence of direct fetal exposure, 

presumably through the germ line. Interestingly, offspring of alcohol-exposed parents 

included differential expression of critical neurodevelopmental genes as well as genes 

involved in chromatin remodeling and transcriptional regulation (Przybycien-Szymanska, 

Rao et al. 2014). These findings not only greatly expand the window of offspring 

vulnerability to alcohol but also shed important light on paternal contributions of alcohol-

related developmental dysregulation. Indeed, several studies have reported that paternal 

alcohol consumption is associated with low birth weight, reduced cognitive ability, and 

early pregnancy loss (Hegedus, Alterman et al. 1984, Little and Sing 1987, Henriksen, 

Hjollund et al. 2004). Moreover, the gametic preservation of differential DNA 

methylation of the H19 imprinting region in response to paternal preconception drinking 

has been previously observed (Ouko, Shantikumar et al. 2009) and is hypothesized to be 

maintained in some loci through multiple generations (Sarkar 2016).  

2.1.4 Developmental Alcohol Exposure and DNA Methylation 
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The alteration of intrinsic DNA methylation by alcohol during development was 

perhaps best observed by a study utilizing the agouti viable yellow (A
vy

) mouse mutant 

allele. This allele contains a methylation-sensitive region within the A
vy

 locus which is 

responsible for coat color ranging from yellow (unmethylated) to pseudoagouti (highly 

methylated) (Kaminen-Ahola, Ahola et al. 2010). In this study the agouti locus was 

hypermethylated by prenatal alcohol exposure, though, as referenced previously, the 

nature of alcohol on DNA methylation is bilateral, demonstrating hyper and 

hypomethylation across various models. For example, DNA methylation is decreased by 

alcohol at the H19 imprinting control site of sperm, placenta, and the critical NMDA 

receptor gene Nr2b in cortical neurons (Marutha Ravindran and Ticku 2004, Haycock 

and Ramsay 2009, Ouko, Shantikumar et al. 2009).   

Various other tissues and developmental gene targets of alcohol have been 

previously reviewed (Resendiz, Chen et al. 2013) and a screen of methylation profiles in 

alcohol-exposed neural stem cells and embryos have revealed the alteration of over 1000 

genes including various neurodevelopmental genes (Liu, Balaraman et al. 2009, Zhou, 

Zhao et al. 2011). In late gestation models of alcohol exposure, global DNA methylation 

alterations in the hippocampus and prefrontal cortex have been observed (Otero, Thomas 

et al. 2012, Marjonen, Sierra et al. 2015). The functional implications of alcohol-altered 

DNA methylation signatures is substantiated by the findings that developing neural 

systems exposed to DNMT inhibitors present phenotypic aberrations strikingly similar to 

FASD (Zhou, Chen et al. 2011).  Notwithstanding, alcohol has demonstrated histone 

modification capacity including bidirectional dysregulation of histone 3 (H3) acetylation 

and H3 methylation in neural tissues (Guo, Su et al. 2011, D'Addario, Caputi et al. 2013). 



73 

Similarly, alcohol has been shown to alter the expression of miRNA profiles in neural 

stem cells (Wang, Zhang et al. 2009), with similar studies suggesting that miRNA 

sensitivity varies according to cell type and differentiation state (Miranda 2012). 

Collectively, evidence of alcohol-sensitive epigenetic mechanisms has mounted across 

gene systems involved in cell-cycle regulation, cell survival, early pro-neuron 

commitment, along with a host of genes implicated in developmental syndromes (Figure 

16).  

2.1.5 Cortical Impact of FASD 

One of the hallmark manifestations of alcohol-related developmental disease is 

cognitive impairment of varying degrees (Green 2007, Jones, Hoyme et al. 2010, 

Jacobson, Jacobson et al. 2011, Lebel, Mattson et al. 2012). The underlying factors of 

protracted neurological deficits of FASD include reduced brain volume, corpus callosum 

volume, and grey matter (Nardelli, Lebel et al. 2011, Yang, Phillips et al. 2012). Imaging 

studies in human FASD patients have confirmed cortical abnormalities compared to 

healthy controls (Sowell, Mattson et al. 2008, Yang, Roussotte et al. 2012, Robertson, 

Narr et al. 2016), although whether alcohol increases or decreases cortical areas is 

unclear. It is likely that a variety of variables across studies may contribute to the range 

of observations. As such, and particularly because of the serious implications of cortical 

dysmorphology to the cognitive and adaptive capacity of the offspring, there remains a 

need to continue to evaluate the effect of fetal alcohol exposure on cortical abnormalities.  

Further study demonstrated that the fundamental aberrations of the forebrain may 

have a basis in cortical apoptosis, neurotrophic factors, migration, and/or morphological 

determination (Aronne, Guadagnoli et al. 2011, Chikhladze, Ramishvili et al. 2011, 
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Lawrence, Otero et al. 2012, Riar, Narasimhan et al. 2016, Lebedeva, Zakharov et al. 

2017). Despite what is known or suspected about the molecular underpinnings of alcohol-

related cortical disruption, the corresponding transcriptional targets have not been well-

studied. Additional questions remain including, what are the exposure thresholds of these 

molecular events (i.e. alcohol dosage, time and length of exposure) and what are the 

mechanisms translating the environmental insult to the genome? 

2.1.6 Research Aims 

The action of alcohol on methyl metabolism and DNA methylation biogenesis 

positions aberrant DNA methylation as a potential mechanism for the neuroteratogenicity 

of alcohol. The previous discussion of normal DNA methylation progression during 

cortical development offers a point of reference by which to evaluate alcohol-related 

dysregulation of the program. We hypothesized that the DNA methylation program is 

predictably responsive to fetal alcohol exposure and may be a mechanism informing the 

neurodevelopmental transcriptome of the teratogenicity of exposure.  The investigative 

approach included evaluating parallel DNA methylation makers and methylation 

correlates alongside multiple cues of cortical laminar formation in a mouse model of 

FASD.  We found that fetal alcohol exposure drives cortical abnormalities in the wake of 

DNA methylation dysregulation. These findings shed important light on how fetal insults 

may establish, maintain, and manifest cognitive and behavioral deficits.  
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Figure 16. Epigenetically-modified neurodevelopmental gene targets of alcohol 

Alcohol is a teratogen with known capabilities to alter the epigenome. Highlighted here 

are just a fraction of genes within various biological pathways of known vulnerability to 

ethanol-mediated epigenetic alteration. Also depicted are genes associated with known 

developmental syndromes and their epigenetic alteration. Genes are more specifically 

discussed and referenced in the text. 
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2.2 MATERIALS AND METHODS 

2.2.1 Overview of experimental prenatal alcohol exposure 

In this study, alcohol was administered via liquid diet according to the paradigm 

illustrated in Figure 17A. The time course and types of analysis are summarized in 

Figure 17B. Mice were conditioned to receive the liquid diet prior to mating. After 

conception, the liquid diet was re-introduced and alcohol was administered from E7–E16 

(corresponding to brain development in the late first and second human trimester 

equivalent). The 4% alcohol liquid diet (v/v) administered in this paradigm has been 

reported in previous and parallel studies to produce a range of blood ethanol 

concentrations (BEC) of 100–200 mg/dL (Anthony, Vinci-Booher et al. 2010, Chen, 

Ozturk et al. 2013). Briefly, six non-pregnant females receiving 4% v/v alcohol were 

used for BEC analysis. Blood samples were harvested through the tail vein 2 h or 6 h 

after introducing the fresh alcohol-PMI diet at 10:00 AM during the dark cycle, on 

days 2, 4 and 6 during treatment. Adequate volume of blood (15 µL) was collected in 

heparinized tubes, and plasma was isolated through centrifugation and stored at −80 °C 

prior to analysis with a gas chromatograph (GC, Agilent Technologies; model 6890). 

Each sample was analyzed in duplicate. 

Under these treatments, no significant difference in dam body weight was 

observed from the start of treatment (E7) to E14, though PF and Alcohol groups did 

exhibit lower gestational weights during E15 and E16 (Chen, Ozturk et al. 2013). While 

our previous studies were aimed at the early neural tube (E10) and early brain primodium 

(E15), the current study focused on the stage prior to birth, at the peak of rodent cortical 

layer formation (E17). 
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2.2.2 Animals and treatments 

All mice were used in accordance with National Institute of Health and Indiana 

University Animal Care and Use (IACUC) guidelines. The protocol was approved by the 

Laboratory Animal Resource Center (LARC) animal ethics committee of Indiana 

University. C57BL/6 (B6) (10–14 weeks old, ~20 g body weight) nulliparous female 

mice (Harlan, Inc., Indianapolis, IN) were used in the study. Mouse breeders were 

individually housed upon arrival and acclimated for at least one week before mating. The 

mice were maintained on a 12-h reverse light-dark cycle (lights on: 10:00 PM–

10:00 AM) and were provided laboratory chow and water ad libitum. Mice were then 

randomly assigned to three treatment groups: Chow (N = 7), Pair-Fed (PF, N = 5), and 

Alcohol (Alc, N = 7). Each litter was considered N = 1; the littermates of each dam were 

distributed for the analyses described in the following sections. The PF and Alc groups 

were pre-treated with liquid diet (see below) for 7 days before mating. Females were bred 

with male breeders for a 2-h period (10:00 AM to 12:00 noon). All animals were mated 

daily over a period of no more than 3 weeks, during which time all animals were on 

ad libitum chow and water diets. The presence of a vaginal plug at the end of the 2-h 

mating session was considered as indicative of conceptus, and that hour was designated 

as hour 0 and embryonic day (E) 0. A liquid-diet paradigm was carried out as previously 

detailed (Chen, Ozturk et al. 2013). Briefly, all alcohol treatment groups received 

4% alcohol v/v in liquid diet (Purina Micro-Stabilized Diet [PMI], Purina Mills Inc., 

Richmond, Indiana) as instructed by supplier with 4% w/v sucrose added, and 

administered using a 35-mL drinking tube (Dyets Inc., NY). The PF group was given the 

PMI diet mixture with the addition of maltose dextran (MD) (to substitute alcohol 
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calories). The volume of the PF diet was restricted to that of a matched dam from the 

alcohol group throughout the course of treatment. The Chow group was maintained on a 

standard chow diet and water ad libitum throughout gestation. On E5, pregnant dams in 

PF and Alc groups were placed on an unrestricted PF liquid diet for acclimation. Either 

4% v/v alcohol (Alc group) or restricted volume isocaloric liquid diet (PF group) was 

initiated on E7 through the end of E16, after which all liquid diets resumed standard lab 

chow diet. On E17, dams from all three groups were euthanized for embryo harvest. In 

addition, E16 embryos from Chow groups (N = 4) were specifically harvested for 

developmental stage comparison (Figure 17). 

2.2.3 Embryo isolation and tissue preparation 

After deep CO2 euthanasia, embryos were harvested from dams at E17 by 

removal from the embryonic sack. Each embryo was either immersion-fixed in 20 mL of 

fixative prepared from 4% paraformaldehyde (PFA) for immunohistochemistry or 

immediately dissected for brain tissue and snap-frozen and stored in a −80 °C freezer 

until Western blot or global methylation analysis. Fixed embryos were subsequently 

weighed, dissected for brains, gelatin-blocked, and post-fixed for at least 24 h at 4 °C 

before sectioning was performed for immunocytochemistry (average N: Chow = 5, Alc 

N = 5, and PF N = 4; animal number for each staining is shown in Results). 

2.2.4 Immunohistochemistry  

One Alc and either one PF or Chow brain were embedded in a single 10% gelatin 

block with careful rostrocaudal and dorsoventral alignments. Gelatin blocks were fixed 

with 4% PFA and sectioned in 40-µm thick coronal sections on a floating vibratome 

(Leica Microsystems; Buffalo Grove, IL). The section pairs (Alc-PF or Alc-Chow) were 
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processed equally in all immunohistochemical procedures. The section pairs were then 

cleared of endogenous peroxidases using 10% H2O2 in phosphate-buffered saline (PBS) 

for 10 min and permeabilized with 1% TritonX-100 in PBS for 30 min before incubation 

with a primary antibody diluted in goat kit (1.5% goat serum, 0.1% TritonX-100 in PBS) 

for 18 h at room temperature. Epigenetic antibodies used in this study are summarized in 

Table 3 below. The section pairs were then incubated for 90 min in goat anti-rabbit IgG 

or goat anti-mouse secondary antibodies conjugated with biotin (Jackson 

ImmunoResearch, West Grove, PA) followed by Streptavidin-AP (1:500, Jackson 

ImmunoResearch, West Grove, PA) for 90 min. The immunostaining was visualized by 

incubation in 0.05% 3,3′-diaminobenzidine (DAB) and 0.003% H2O2 over an average of 

3–8 min, followed by counterstaining with methyl green. All stainings were 

photographed under light microscopy for cellular analysis (Leitz Orthoplan 2 microscope; 

Ernst Leitz GMBH, Wetzlar, Germany). 
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Table 3. Antibodies used for DNA methylation assessment in the E17 cortex 

Primary Antibodies Company Catalog # dilution 
predicted 
wt. 

5-methylcytosine Eurogentec 
BI-MECY-
0100 1:2000 N/A 

5-methylcytosine Active Motif AM61255 1:2000 N/A 
5-hydroxymethylcytosine Active Motif AM39769 1:3000 N/A 

MBD1 Santa Cruz Biotech. sc-10221 1:200 ~89 kDa 
MeCP2 Cell Signaling Tech. D4F3XP-R 1:1000 75 kDa 

Ki67 Novus Biologicals 
NB110-
89717 1:500 324 kDa 

Tbr2 Millipore AB2283 1:500 58 kDa 

P2Y1 Millipore AB9263 1:1000 ~42 kDa 

NeuN Cell Signaling Tech. D3S3I 1:500 46-55 kDa 

ß Tubulin Abcam  ab15568 1:2000 55 kDa 

GAPDH Abcam  ab8245 1:2000 37 kDa 

Secondary Antibodies         

Goat anti Rabbit biotinylated 
Jackson 
ImmunoResearch 

111-065-
003 1:500 ~160 kDa 

Horse anti Mouse biotinylated Vector  Laboratories BA-2000 1:500 
~152-165 
kDa 

Donkey anti Guinea Pig 
biotinylated Vector  Laboratories BA-7000 1:500 

~152-165 
kDa 
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2.2.5 Densitometry analysis (H score) and cortical thickness assessment 

Upon observing epigenetic immunostainings under a light microscope, the 

immunoreactive nuclei (based on evidence of the brown-color DAB reactions) exhibited 

a differential staining profile within different subcortical regions. In order to reflect this 

differential expression, we employed H scoring for nuclear densitometry analysis (Singh, 

Shiue et al. 2009, Chen, Ozturk et al. 2013) of each cell nucleus within each individual 

selected subcortical region (VZ+SVZ, SP, and CP). 

For the analysis, all immunostained pictures were taken using a Leitz Orthoplan 2 

microscope with a Spot RT color camera (Diagnostic Instruments, Inc., Sterling Heights, 

MI). Bright-field images were taken with consistent setup and exposure time for each 

antibody staining. Immunostained images were converted to the 16-bit color format, and 

staining intensity was measured using Image J (National Institutes of Health, Bethesda, 

MD). To measure the subcortical regions of prefrontal neocortex, a rectangular box of 

equal dimensions (150 μm in width) was selected at the same rostro-caudal level of E17 

coronal brain sections. Lateral ventricle and corpus callosum were considered as 

landmarks of the prefrontal cortex. The staining intensities of marks were defined based 

on the optical density (OP) values of the nuclei in each subregion of neocortex as 

follows: Absent – 0 – (OD = 90–120); Weak – 1 – (OD = 120–150); Moderate – 2 – 

(OD = 150–180); and High – 3 – (OD = 180–210). An equivalent number of cells were 

evaluated across each section so that cell number would not play a role in the H score 

percentages. Overall, the immunohistochemical H score of each subcortical region was 

obtained by the following formula:  
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3 × percentage of highly stained nuclei + 2 × percentage of moderately stained nuclei + 

percentage of weakly stained nuclei, giving a range of 0–400.  

Cortical thickness was assessed using two independent immunostainings: NeuN 

and 5mC. Anterior sections of the frontal cortex were rostro-caudally matched between 

groups and selected for cortical measurements. ImageJ software was used to assess 

cortical thickness (measured from the base of the SVZ to the edge of the MZ). 

Subsequently, individual cortical layers were measured (layers were clearly demarcated 

by cortical cytoarchitecture). 

2.2.6 Cell Counting and Morphometric Analyses 

 Automated cell counts were used to detect cells positive for Ki67 due to the 

presentation of the immunosignal being punctate and homogenous. In this experiment, 

sections stained for Ki67 were processed using Image J software according to the 

following protocol: color deconvolution plugin was used to isolate the brown DAB 

signal, images were inverted to 8-bit, automated thresholding was performed, and 

automated particle analysis was performed on the SVZ/VZ region with the selection 

parameters set to 0.25-1.0 circularity (where 1.0 equals a perfect circle) and size inclusion 

being 50-600 (pixel^2). Results were presented as number of particles (cells) detected per 

sample ±SEM. 

To assess cell density, cortical sections from 5mC staining procedures were 

counterstained by Methyl-Green dye (Nissl) which allowed for the visualization of 5mC 

positive as well as 5mC negative nuclei. After Brightfield imaging under a light 

microscope (see “Densitometry analysis and cortical thickness assessment”), a select 

region targeting the mid cortical plate was binned (0.025mm
2
) across all brain sections at 
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a high magnification. Nuclei were counted using the multi-point counting tool on ImageJ 

software (NIH, Bethesda MA). At least two sections taken from the anterior cortex of 

each subject were averaged for total nuclei/area. Additionally, at least two subjects from 

each litter were represented in the assessment (where n=litter).  

A similar procedure was used to analyze nuclear morphology. Due to the non- 

circularity of some cortical cells, the major and minor axes of each nuclei were measured 

across the anterior CP. In some cases, where nuclei were quite circular, the nuclei length 

and diameter were arbitrarily selected and interchangeable. In cases of non-circular 

morphology, the major (longest) and minor (perpendicular to major) axis were clearly 

distinct and thus represented independently. A straight line tool was used in all cases to 

measure the major and minor axes of the nuclei. Finally, nuclear area was calculated 

based on the following equations: circular area=πr
2
 (where r=minor axis/2) and ellipse 

area=πab (where a=minor axis/2, b=major axis/2). Distinction between circular and non-

circular nuclei was made if major axis was ≥1.5 times the minor axis. At least 100 nuclei 

from the selected region were measured per cortical section and at least two sections per 

subject were represented in the average. Each N represents one litter in these 

assessments. To help minimize experimenter bias, images were randomly examined, 

meaning, experimental groups were not evaluated as continuous cohorts throughout the 

imaging session.  

2.2.7 Western blot of the methylation-binding protein MeCP2 

Western blotting was carried out to confirm MeCP2 protein expression 

differences at E17 between groups, which were initially observed in MeCP2 

immunostainings. From the preliminary MeCP2 staining, we noticed that MeCP2 was 
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unilaterally upregulated by alcohol across all cortical layers and in various other brain 

regions, such as the hippocampus and cerebellum. As such, Western blots of the entire 

E17 fetal brain were used (N = 4 each) following a standard protocol (Zhou, Patel et al. 

1999, Anthony, Zhou et al. 2008, Mason, Anthony et al. 2012). Nuclear protein was 

isolated from tissue lysates using NE-PER nuclear and cytoplasmic reagents (Thermo 

Fischer Scientific, Waltham, MA), and sample concentrations were evaluated against a 

BSA standard curve at OD595. All samples were run in triplicate on two independent gels 

for each protein examined. Immunoreactive blots were detected using ECL Western 

Blotting Detection Kit (Thermo Fisher Scientific, Rockford, IL, USA; RPN2108) and 

exposed to a biomolecular imaging system (ImageQuant, LAS 4000). Densitometric 

comparisons were made with Image J software. GAPDH density measurements were 

used as loading controls. All changes in protein expression were reported as a percentage 

change compared to Chow and PF groups, with a minimum of four samples/treatment 

group. Statistical analysis was performed by one-way ANOVA on MedCalc software. 

2.2.8 Global DNA methylation analysis 

Fetal brains were isolated and microdissected under a dissection microscope 

(Leica MZ6, Leica Microsystems). Neocortical brain tissues were separated from 

subcortical brain tissue using the borders of the nascent internal capsule as a visual guide. 

DNA extraction and purification were subsequently performed using silica-based spin-

column purification (DNeasy Blood and Tissue kit, Qiagen) according to manufacturer’s 

instructions. Purified DNA was quantified by spectrophotometric absorption at 230, 260, 

and 280 nm, and the quality and concentration were calculated as the A260/A230 and 

A260/A280 ratio (Nanodrop 2000, Thermo Scientific). An average of 100–200 ng of 
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genomic DNA was used for DNA global methylation analysis performed with the 

MethylFlash Methylated DNA Quantification Kit and MethylFlash Hydroxymethylated 

DNA Quantification Kit (Colorimetric; Epigentek Group) according to the manufacturer's 

instructions. OD values were determined using a PHERAstar FSX microplate reader and 

MARS Data Analysis Software (BMG Labtech, Cary, NC). Methylation levels were 

estimated using a standard curve of methylated DNA standards according to the 

manufacturer’s instructions.  Presented values reflect the ratio of methylation relative to 

the control group (normalized).    

2.2.9 Statistical Analysis  

A Kruskal-Wallis test was used for non-parametric statistical analysis to address 

differences between the three groups while Conover post-hoc testing was used to identify 

differences between each of the groups. Statistical analysis was performed using 

MedCalc software. All data are presented as Mean±Standard Error of the Mean (SEM) 

and sample sizes reflect litter number represented.  
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Figure 17: Summary of experimental procedures 

(A) C57BL/6J females were conditioned to receive the liquid diet devoid of alcohol for a 

period of seven days preceding mating. After conception, the liquid diet was re-

introduced at E5 and either alcohol or an isocaloric pairfed diet was administered from 

E7-E16 (equivalent to the late first and second human trimesters). Each color in the 

schema represents a specific treatment: green (standard pellet and water ad libitum), 

yellow (alcohol-free PMI liquid diet), or red (4% v/v alcohol PMI liquid diet ad libitum). 

(B) At E17, brains from each litter across the three groups were processed for either 

immunophenotypic or molecular assessments. Alc (alcohol); IHC 

(immunohistochemistry) and PF (pair-fed) 
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2.3 RESULTS 

2.3.1 Alcohol-Induced Cortical Thinning in the Embryonic Cortex 

A mouse model of FASD was used in this study to evaluate aberrant DNA 

methylation during cortical laminar formation. We observed that alcohol-induced 

aberrations of phenotypic and epigenetic features are associated in the embryonic cortex, 

providing evidence that the disruption of the intrinsic DNA methylation program may be 

a mechanism for the establishment of cortical dysfunction.  

One of the most prominent phenotypes observed in this experimental animal 

model was the occurrence of reduced neocortical thickness, which was consistent with 

previous observations at E15 (Zhou, Sari et al. 2003, Zhou, Sari et al. 2005). A closer 

layer-by-layer analysis revealed a reduction in cortical plate (CP) size (Figure 18J, 

P<0.005) as well as an increase in the VZ and SVZ in proportion to the total cortical 

length (Figure 18K, P<0.005). Further evidence of neocortical thinning was demonstrated 

by the abnormal expansion of lateral ventricles in the Alc group compared to the Chow 

and PF control groups (Figure.18A–C). To examine the molecular contributors of cortical 

thinning in the alcohol-affected cortex, several phenotypic markers were examined across 

the cortical strata.   

2.3.2 Molecular Correlates of Alcohol-Induced Cortical Thinning 

Aberrations of the ventricular zone during corticogenesis may significantly 

impact long-term and phenotypic and anatomical outcomes. The source of radial glia 

proliferation and intermediate progenitor specification, the ventricular regions of the 

cortex are crucial for radial migration of cortical progenitors and early cortical 

specification. Genetic studies have demonstrated that intrinsic and morphogenic signals 
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at the VZ and SVZ precisely govern the emergence of RGCs and IPCs through the 

sequential expression of gene networks. For example, the onset of cortical neurogenesis 

requires the suppression of cell adhesion elements such that neuroepithelial cells may 

adopt the elongated morphology of an RGC. These transitions are thought to be regulated 

at least in part by the expression of key factors such as Pax6 and vimentin, among others 

(Taverna, Gotz et al. 2014). Similarly, a distinguishing feature of SVZ versus VZ abiding 

progenitors appears to be the expression of the transcription factor Tbr2 (Englund, Fink et 

al. 2005). Tbr2 expression during corticogenesis has been linked to cortical folding, 

social behaviors in adults, and early lineage specification of cortical glutamatergic 

neurons (Vasistha, Garcia-Moreno et al. 2015, Belinson, Nakatani et al. 2016, Toda, 

Shinmyo et al. 2016).  

First, we examined the proliferative capacity of cells at the ventricular regions 

using the maker Ki67, a nuclear cell proliferation marker. In the VZ/SVZ, a significant 

reduction of Ki67 (+) cells (Figure.19A-C, P < 0.05) was observed compared to Chow 

and PF controls. This finding echoes the inhibitory effects of alcohol on neurogenesis in 

the hippocampus observed across various models of exposure (Broadwater, Liu et al. 

2014, Gil-Mohapel, Titterness et al. 2014, Golub, Zhou et al. 2015, Xu, Yang et al. 

2015). And while loss of cortical neurons has been previously reported in developmental 

alcohol models (Ikonomidou, Bittigau et al. 2000, Coleman, Oguz et al. 2012), 

diminished proliferation of cortical progenitors as an underlying factor has not been 

previously substantiated in vivo. One study of E18 Tbr2-expressing neuroblasts did 

reveal, however, that though alcohol did not increase apoptosis, cortical basal progenitors 

were arrested in G1 phase (Riar, Narasimhan et al. 2016).  



89 

Next, we evaluated the expression of NeuN, a nuclear marker of neuronal 

maturity which is observed in post-mitotic neurons. While NeuN was absent in the 

proliferating zones, a significant reduction was observed in the E17 Alc group compared 

to the Chow and PF groups in the cortical subplate (SP)(Figure.19D–F, P < 0.05). In the 

cortical plate (CP), a similar reduction of NeuN expressing cells was detected (Figure 

20H, P < 0.05). Morphological examination of CP cells further demonstrated that alcohol 

hinders the progression of immature progenitors toward mature cortical neurons, as 

denoted by the increased presentation of ellipsoidal shapes in the place of more rounded  

nuclei (Figure 20D-F).  

Further, a notable reduction of Tbr2 immunoreactivity was evident in the E17 Alc 

group compared to E17 Chow and PF control groups (Figure.18A–C). When further 

compared to  E16 Chow stage controls, the E17 alcohol group was anatomically and 

phenotypically reminiscent of E16 Chow controls (Figure.18C–D), indicating a cortical 

developmental delay of around one gestational day. These observations agree with the 

findings of Rair et al in E15-E18 embryonic cerebral cortex (Riar, Narasimhan et al. 

2016).  

2.3.3 The DNA Methylation Program is Modified by Fetal Alcohol Exposure 

Parallel epigenetic assessment was performed alongside phenotypic markers of 

cortical development. DNA methylation in the form of 5mC was elevated in the alcohol 

group ventricular zones, SP, and CP, though statistical significance was only observed in 

the CP (Figure 20G, P<0.05). A secondary feature observed in the 5mC assessment was 

the heterochromatin, punctate expression within the nuclei of alcohol animals. 

Comparatively, control cortices exhibited round nuclei with a euchromatin distribution of 
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5mC within the CP (Figure 20D-F). This feature has been observed in embryonic neural 

tube and hippocampal examinations of previous FASD models (Zhou, Chen et al. 2011, 

Chen, Ozturk et al. 2013) and perpetuates the notion that the intranuclear re-distribution 

of DNA methylation marks like 5mC may be essential intrinsic components of cellular 

development.  

The 5hmC marker demonstrated a similar alcohol-induced hypermethylation in 

the CP, though unchanged in the SP and diminished by alcohol in the SVZ/VZ (Figure 

21D, P<0.05). 5hmC-positive nuclei in the alcohol group did not apparently undergo 

intranuclear re-organization during development. Finally, the methyl-binding protein 

MeCP2 demonstrated a marked alcohol-induced increase (Figure 22F, P<0.05) which 

was concurrent with DNA hypermethylation. Assessed region wide by Western Blot, a 

global increase was concurrently observed (Figure 22E, P<0.005).  

2.3.4 Global versus Cell-Specific Characterization of DNA Methylation in the FASD 

Cortex 

A common representation in previous epigenetic investigations has included the 

“global” assessment of epigenetic change. From previous work, we and others have 

found that DNA methylation (and likely various other epigenetic modifications) are 

context-specific and thus cell-unique. Because of this, global assessments may be limited 

in their ability to accurately portray epigenetic patterns. In order to compare our study 

with previous DNA methylation assessments and to offer a contrasting tissue-wide view, 

we performed an independent molecular 5mC and 5hmC analysis in the E17 neocortex. 

5mC analysis demonstrated that alcohol induced a global reduction in DNA methylation 
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compared to Chow and PF animals (Figure 23A, P < 0.01). Additionally, molecular 

5hmC levels were overall reduced compared to Chow controls (Figure 23B, P < 0.05).  

These observations present a different perspective compared to the patterns 

observed with 5mC and 5hmC in the cortical plate. The inclusion of cortical interneurons 

and non-neuronal cells in the genomic DNA of the cortical tissue or perhaps the mixing 

of cells with differential DNA methylation levels is likely responsible for this contrasting 

pattern. Despite that, alcohol-effects were persistently detectable, even on a global scale 

and speak to the potent nature of the teratogen on the cortical tissue at large.  
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Figure 18: Alcohol reduces cortical thickness and Tbr2-im expression in the E17 frontal 

cortex  

Structural abnormalities were observed during phenotypic investigation. Notably, the 

thickness of cortical plate (J) as well as the entire thickness of frontal cortex (I) were 

reduced in alcohol group frontal cortex as compared to their Chow and PF control 

cortices (A-C). Fetal alcohol exposure also increased the proportion of SVZ+VZ/entire 

cortical thickness (K) as compared to controls. Lateral Ventricle (LV) expansion was also 

observed in E17 Alcohol cortices (A-C). (G) Finally, Tbr2-im (a marker for neural 

progenitor migration) was normally observed as a radially extending fiber ascending 

from the base of the lateral ventricle up to the pial surface. Alcohol noticeably reduced 

Tbr2 immunoreactivity in the CP. E16 Chow brains were used as developmental stage 

controls and more closely resembled the E17 Alcohol developmental state than E17 

Chow (C-D,G-H). Quantitative measurements among the 3 groups were analyzed by 

One-way ANOVA and the difference between paired groups were compared by student t-

test. *P<0.05, **P<0.005. N (structural analysis) = Chow (5), PF (5), Alc (5). N (Tbr2-im 

analysis)=Chow (3) , PF (3), Alc (3), E16 Chow (3). SVZ/VZ (Subventricular 

Zone/Ventricular Zone); IZ (Intermediate Zone); SP (Subplate) and CP (Cortical plate).  
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Figure 19: Alcohol reduces ventricular proliferation and neuronal maturation in the E17 

frontal cortex  

Representative cortical column of E17 Chow (A,D), PF (B,E), and (C,F) Alc group 

coronal sections for Ki67 and NeuN immunostaining. Fetal alcohol-induced reduction of 

Ki67 immunoreactivity was observed mainly in the SVZ/VZ zone, the neuroepithelial 

cellular zones. Quantitative assessment of Ki67+ cells further confirmed an alcohol-

related reduction in the SVZ/VZ zone (G);  N=Chow (5), PF (4), Alc (7). Alcohol 

reduced NeuN-im throughout cortical SP and CP layers (F) compared to Chow (D) and 

PF (C). No significant change was observed between Chow and PF groups. Quantitative 

assessment of NeuN-im was further quantified by single-cell density analysis (H-Scoring) 

across the three groups (H). *p < 0.05. SVZ/VZ (Subventricular Zone/Ventricular Zone); 

IZ (Intermediate Zone); SP (Subplate) and CP (Cortical plate) 

G 
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Figure 20: Alcohol inhibits 5mC and cellular maturity in the E17 cortical plate  

(A-C) E17 frontal cortex across three groups (Chow, PF, and Alc). Red boxed areas in 

CP (A-C) was enlarged in all D-F. While no change in 5mC-im was detected across the 

groups in the SVZ/VZ or SP, 5mC was significantly increased in the Alcohol group CP 

(G). Enlarged CP areas further demonstrated that alcohol induced a morphological delay 

of CP neurons (as observed by their ellipsoidal shape and granular intranuclear 5mC-im 

distribution) compared to the mature, roundedness of Chow and PF CP neurons (D-F). 

*P<0.05.  N=Chow (5) , PF (4), Alc (5). LV (Lateral Ventricle); SVZ/VZ (Subventricular 

Zone/Ventricular Zone); IZ (Intermediate Zone); SP (Subplate), CP (Cortical plate) and 

MZ (Marginal Zone).  
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Figure 21: 5-hmC-im is reduced in the lower cortex but upregulated in the E17 cortical 

plate  

(A) Alcohol reduced 5hmC-im at the cortical SVZ/VZ layers compared to Chow and PF 

controls (B), while no significant change was observed between controls (D). At the SP 

cortical layer, only significant alternation is detected as an increase in PF group as 

compared to both Chow and Alc groups. (A-D) A marked increase of 5hmC-im was 

observed at the CP region in both the PF and Alc groups as compared to Chow group, 

while a significant increment was also evident at the Alc group CP as compared to PF 

group . * P<0.05.  N=Chow (5), PF (4), Alc (5). CP (cortical plate); MZ (marginal zone); 

SP (subplate); SVZ (subventricular zone) and VZ (Ventricular zone).  
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Figure 22: Alcohol-induced MeCP2 up-regulation in the E17 cortex 

(A-C) Representative columns from the frontal of E17 cortex across the three groups.  

(C,F) Alcohol increased MeCP2-im throughout cortical SVZ/VZ, SP and CP layers 

compared to controls. No significant change was observed between Chow and PF groups. 

* P<0.05.  N=Chow (5), PF (4), Alc (5). (D-E) Densitometry of MeCP2 whole-brain 

western blot (WB) showed a significant increase of MeCP2 expression at E17 in the Alc 

group compared to its counterparts. (One-way ANOVA: F=6.95, P<0.05). Post-hoc 

analysis showed no significant difference between PF and Chow groups. Western Blot 

band intensity was normalized to GAPDH as an internal control. N=4 (Chow), PF (3), 

Alc (4). * P<0.05  **P<0.005. WB (Western Blot); blots are presented as cropped 

segments.  
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Figure 23. Quantitative DNA methylation (5-mC and 5-hmC) reveals tissue-wide 

alcohol-related de-methylation in the E17 cortex  

Global DNA methylation (5mC) was significantly decreased in the neocortex at E17 (A). 

Global DNA methylation (5hmC) was also significantly decreased in the neocortex in 

response to fetal alcohol exposure (B). Means of the three groups were compared by non-

parametric Kruskal-Wallis test followed by conover post-hoc test for multiple 

comparisons. *p < 0.05. **p < 0.01. Chow (n=6), Pair-fed (n=6), Alcohol (n=6). 
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Figure 24. Cortical plate density is unchanged by alcohol but nuclear morphology is 

negatively impacted  

Cortical plate nuclear density was unchanged by experimental treatment (p=0.848)(A). 

Nuclear length was decreased by alcohol treatment (B) and nuclear diameter was 

similarly decreased (C). Nuclear area of circular and ellipsoidal neurons was extrapolated 

from major and minor axes. Alcohol nuclear area was significantly decreased compared 

to both Chow and PF control groups (D). Means of the three groups were compared by 

non-parametric Kruskal-Wallis test followed by Conover post-hoc test for multiple 

comparisons. *p < 0.05, **p < 0.005.  
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2.4 DISCUSSION 

2.4.1 Cortical Dysmorphology in FASD 

Head circumference has been commonly used in the assessment of brain 

developmental disorders including some subsets of FASD. A recent study confirmed a 

significant positive correlation between head circumference, brain volume and IQ scores 

in patients (age 5-19) prenatally exposed to alcohol (Treit, Zhou et al. 2016). Moreover, 

the study demonstrated that the relationship was predictable from early to late adulthood, 

indicating that structural deficits persist for a sizable length of time after exposure. These 

findings confirm previous work concluding that gestational alcohol exposure (of varying 

degrees) may lead to developmental growth abnormalities across the brain, manifesting 

most notably in reduced brain volume and corpus callosum malformations (Lebel, 

Mattson et al. 2012). More importantly, these structural abnormalities may be underlying 

factors for the cognitive impairment reported in FASD. For example, callosal 

dysmorphologies have been linked to verbal learning, motor ability, and executive 

function while hippocampal volume has been linked to verbal ability and recall as 

reviewed by Lebel et al (Lebel, Mattson et al. 2012). Interestingly, verbal learning has 

also been associated with structural deficits in the cerebellum and the dorsal frontal 

cortex (O'Hare, Kan et al. 2005, Sowell, Mattson et al. 2008). Though seemingly 

straightforward, the structural-functional impact of alcohol is probably more complex in 

the developing cortex as evidenced by previous studies that have found either no 

significant correlation or alcohol-mediated increases in cortical thickness.  

In reviewing cortical size particularly, as a precedent to the work performed 

herein, the complexity of alcohol on the cortical structure was continually revealed. 
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Disruption of neocortical thickness as a consequence of developmental alcohol exposure 

has been documented in animal studies, including various time courses and doses of 

alcohol (Table 4). Cortical thinning is apparently a continuous effect occurring from mid-

gestation (Zhou, Sari et al. 2004, Aronne, Evrard et al. 2008) to young adulthood in 

rodent models. Alcohol-induced cortical abnormalities, however, are not unilateral and 

vary across different cortical regions postnatally (Abbott, Kozanian et al. 2016). In a 

similar vein, human studies have rarely agreed with the structural effects observed in 

alcohol rodent models. Longitudinal neuroimaging studies of FASD human patients have 

reported that while cortical thinning appears to be a normal feature of both FASD 

adolescents and healthy controls, FASD patients are distinctly affected in the left middle 

frontal, bilateral precentral, bilateral precuneus and paracingulate, left inferior and 

bilateral fusiform gyri (Zhou, Lebel et al. 2011). On the other hand, cross-sectional 

neuroimaging studies have demonstrated that heavy prenatal exposure to alcohol could 

result in cortical thickening up to 1.2 mm in the bilateral temporal, bilateral inferior 

parietal and right lateral frontal cortex (Sowell, Mattson et al. 2008). Another FASD 

adolescent, multi-site study similarly showed thicker frontal, temporal and parietal 

cortices (Yang, Roussotte et al. 2012).  

The diversity of cortical phenotypes may be rooted in variable factors such as 

patient age range, co-morbidities (e.g. ADHD) and exposures (e.g. acute, chronic, 

combinatorial with tobacco, etc.), and other unforeseeable factors rendering them 

incompatible with more controlled rodent studies. A recent analysis by Robertson et al 

compared regional cortical thickness across continuous measures of prenatal exposure 

and found that region-specific cortical thinning was inversely related to dose and 
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frequency of prenatal exposure (Robertson, Narr et al. 2016). Another important 

distinction between human and animal models is the reported effect of alcohol on cortical 

folding (De Guio, Mangin et al. 2014), which may limit the ability to cross reference the 

two types of studies. All things considered, there are many factors to weigh in comparing 

cortical phenotypes across studies. For the purpose of this study, we attempted to 

reconcile our results with cortical phenotypes observed in rodent models of prenatal 

alcohol exposure with comparable Blood Alcohol Concentration (BEC) levels (Table 4). 

Our study demonstrated distinct cortical thinning, which was subsequently examined at 

the cellular level using phenotypic and epigenetic markers.  

2.4.2 Epigenetic Correlates of the Molecular Drivers of Cortical Dysmorphology 

At the base of the cortical column, the neuroepithelial zones demonstrated a 

reduced expression of the proliferation marker Ki67 in our study. Though alcohol-related 

reduction of proliferation in neurogenic zones has been previously observed in the 

hippocampus and thalamus (Leasure and Nixon 2010, Mooney and Miller 2011, 

Broadwater, Liu et al. 2014), few examples have been documented in the cortex (Huang, 

He et al. 2015). In several cases, alcohol-diminished neurogenesis was concomitant with 

regional volume reduction (Kashyap, Frey et al. 2011, Coleman, Oguz et al. 2012) and 

cognitive and behavioral outcomes (Ehlers, Liu et al. 2013, Golub, Zhou et al. 2015). 

Some of the neurogenic gene networks proposed to be altered by gestational alcohol 

include Adora2a, Cxxl1, Dlg4, Hes1, Nptx1, Vegfa, Fgf13, Ndn, and Sox3. Interestingly, 

the study also identified decreased Dnmt expression, suggesting that alcohol may 

dysregulate DNA methylation profiles during proliferation (Tyler and Allan 2014). 

Indeed, our findings relating to the neurogenic zones of the embryonic cortex revealed 
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that 5hmC (though not 5mC) were diminished by fetal alcohol exposure. Similarly, in the 

dentate gyrus, a previous study employing our alcohol model demonstrated reduced 

5hmC in the alcohol group (Chen, Ozturk et al. 2013). The observation that the more 

abundant 5mC was unchanged by treatment in the SVZ/VZ may perhaps be rooted in its 

dual nature in both neurogenesis (mitosis) and the (post-mitotic) production of 

intermediate progenitors, two prominent features of the neurogenic zone. It is possible 

that while 5hmC plays a more linear role in proliferation, 5mC may exhibit opposing 

patterns in mitotic versus post-mitotic events in the region, resulting in an overall 

unchanged signal.  

Despite reduction in proliferation, our laminar assessment demonstrated that the 

neurogenic SVZ/VZ was actually increased in size (relative to the total cortical length) in 

the alcohol experimental group. One possible explanation may be that while alcohol 

reduces proliferation (presumably diminishing cell number in the region), it also hinders 

the progression of basal progenitors, prolonging their occupancy in the SVZ/VZ and 

delaying their migration into the IZ and upper layers. During corticogenesis, intermediate 

progenitors are proposed to account for most of the production of mature cortical neurons 

(Englund, Fink et al. 2005), suggesting that their timely development may bear 

significant functional consequences. Evidence for the delayed progression of intermediate 

progenitors in the SVZ/VZ is provided by the observed reduction of the transcription 

factor Tbr2 both here and in a previous developmental alcohol study (Riar, Narasimhan et 

al. 2016). Tbr2 is thought to be a unique indicator of neuron-fated progenitors and has 

been demonstrated in various studies to be critical for conferring neuronal subtype 

identity. Interestingly, conditional knockout of Tbr2 during corticogenesis produces 
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concomitant reduction of cortical surface (though not cortical thickness) (Mihalas, Elsen 

et al. 2016). Other roles for Tbr2 in neuronal differentiation include cellular migration, 

including subpalial migration of GABAergic neurons to the cortical SVZ (Sessa, Mao et 

al. 2010). In the olfactory bulb, a similar expansion of the subventricular zone-rostral 

migratory stream was observed in response to diminished Tbr2 (Kahoud, Elsen et al. 

2014).  

Additional evidence for the alcohol-delayed progression of neuron-fated 

progenitors in the neurogenic zones was provided by the observed reduction of the 

neuronal marker NeuN in the subplate and cortical plate. NeuN is a DNA/RNA-binding 

protein that is almost exclusively found in post-mitotic neuronal nuclei. Often used as a 

biomarker of neuronal maturity, in previous studies of chronic, developmental alcohol 

exposure, NeuN was decreased in the posterior medial barrel subfield and the motor 

cortex (Powrozek and Zhou 2005, Teixeira, Santana et al. 2014). The results of this and 

other studies corroborate the proposed delayed progression of intermediate progenitors in 

the SVZ/VZ as a consequence of developmental alcohol exposure. In contrast to the 

DNA hypomethylation (5hmC) associated with alcohol in the SVZ/VZ, the DNA 

methylation profile of alcohol in the upper cortical layers was generally 

hypermethylation.  

In the SP, the site of the oldest post-mitotic neurons, 5mC remains unchanged 

though 5hmC demonstrates a reduction compared to nutritional controls (but not Chow 

controls). This decrease parallels the diminished NeuN immunoreactivity observed in the 

SP and echoes various reports of a positive correlation between neuronal maturity and 

5hmC (Song, Szulwach et al. 2011, Szulwach, Li et al. 2011). Interestingly, though 5hmC 
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was reduced with alcohol treatment, the methyl-binding protein MeCP2 was significantly 

increased. Though there is significant co-localization of 5hmC-DNA and MeCP2 in the 

developing cortex (Chen, Damayanti et al. 2014), the inverse 5hmC/MeCP2 response 

here warrants further examination. Additionally, while a recent report found that NSCs 

upregulate and subsequently downregulate protein and mRNA MeCP2 levels following 

alcohol exposure and withdrawal, respectively (Liyanage, Zachariah et al. 2015), the 

dynamics of 5mC/5hmC/MeCP2 remain to be elucidated. While MeCP2 has 

demonstrated a regulatory role in a variety of developmental and disease processes, much 

less is understood to-date about the mechanisms that regulate the methyl-binding protein. 

A few studies have tackled this problem, for example, a MeCP2-targeting microRNA has 

been identified as a regulator of MeCP2 expression and conserved cis-regulatory motifs 

such as G-quadruplexes have been isolated as potential regulators of MeCP2 pre-mRNA 

(Bagga and D'Antonio 2013, Han, Gennarino et al. 2013). While insightful, much 

remains to be elucidated about the regulation of methyl-binding proteins and their 

intersection with methylated DNA.  

In the cortical plate, concordant with decreased NeuN, Tbr2, and decreased CP 

thickness, all three DNA methylation marks (5mC, 5hmC, and MeCP2) were increased in 

the Alc group relative to controls. This was in contrast to the 5hmC profiles observed in 

the SVZ/VZ and SP as well as cortex-wide in global DNA methylation analyses. The 

discrepancy between DNA hypermethylation in the CP and hypomethylation in the SP 

and neurogenic layers may lie in the composition of diverse cell types of the CP. Unlike 

the SVZ/VZ (composed of neuron and glial progenitors) and SP (composed of mature 

neurons and migrating CP neurons), cells represented in the CP include migrating 
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neurons, inhibitory interneurons (deep CP), glial cells, and mature cortical neurons of 

varying specifications (subcerebral projecting, callosal, etc.). The transcriptional 

requirements of differentiating neurons in the CP may respond differently to alcohol than 

premitotic and intermediate cells of the lower layers, which we have previously reported 

demonstrate bivalent action during differentiation (Zhou, Zhao et al. 2011).  Evidence 

that neurons in mature states respond differently to alcohol may be taken from adult 

models of alcohol seeking and post-dependent rats, where DNA hypermethylation has 

been observed (Warnault, Darcq et al. 2013, Barbier, Tapocik et al. 2015).  

2.4.3 Reconciling Cell and Tissue-Wide Epigenetic Analysis in FASD Studies 

Of the few DNA methylation profiles that have been examined in the cortex, all 

have agreed with reported reductions in DNA methylation in primordial and postnatal 

cortical regions in response to fetal alcohol (Garro, McBeth et al. 1991, Otero, Thomas et 

al. 2012). However, all of these studies share the feature of presenting DNA methylation 

as a cumulative cortical product, indiscriminant of diverse cell types. When considered as 

such, these findings agree with our global analyses of DNA hypomethylation in the 

alcohol-exposed cortex (Figure 23). But as unique DNA methylation programs of the 

postnatal cerebellum and normally developed embryonic cortex demonstrated (see 

Chapter 1), analysis of “global” or region-wide homogenates may oversimplify the 

complexity of the epigenetic alcohol response that is observed layer-by-layer.  

A second possibility for the divergent presentation of DNA methylation trends in 

the CP compared to lower layers may relate to differences in cellular density. One report 

observed that prenatal alcohol was associated with an increase in the number of MGE-

derived interneurons in the medial prefrontal cortex (PFC) (Skorput, Gupta et al. 2015), 
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supporting the likely increased cellular density of the alcohol CP. Finally, as shown in 

Figure 20(D–F), differential cellular morphology and intranuclear 5mC distribution in the 

alcohol CP may factor into alcohol-induced hypermethylation in the CP. To examine 

whether cell density or morphology factored into perhaps an overrepresentation of DNA 

methylation in the CP, we performed an analysis across the three groups. We report that 

cell number (as detected by nuclear number/area) was unchanged across all groups 

(Figure 24A). This finding is in line with a previous alcohol study where BrdU 

incorporation revealed no changes in the number of corticothalamic neurons (White, 

Weber et al. 2015). While these findings increase our confidence in the observed DNA 

methylation profile of the alcohol-affected CP, cell density in a restricted area 

measurement may not truly reflect the cell density of the total CP, particularly in light of 

observed decreases in CP thickness.  

Morphometric analysis of cellular nuclei in the cortical plate revealed that while 

cell number was unchanged, nuclear area was significantly compromised by alcohol 

(Figure 24B, P < 0.005). Here, our observations echo the historic findings of alcohol-

impaired PC maturation in the cerebellum, where cell number is unaffected, but nuclei 

are significantly smaller (Volk, Maletz et al. 1981).  However, one previous analysis in 

the medial PFC demonstrated that alcohol was actually associated with increased soma 

size (Lawrence, Otero et al. 2012). Contrasting observations may be attributable to a 

wealth of variations in the experimental paradigm (for example, the mPFC observation 

was performed during an adolescent stage in a perinatal model of alcohol exposure and 

limited to Layer II/III pyramidal neurons). Interestingly, even in the cerebellar analysis, it 

was noted that the impact of alcohol on nuclear size was not persistent in advanced ages. 
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Ultimately, our observed alcohol-mediated developmental deficits may begin to offer an 

explanation for cumulative cortical thinning. It should be noted however, that a few 

important contributors were omitted in this study which require future consideration.  

Apoptosis is a common cellular phenotype of developmental alcohol exposure 

(Farber, Creeley et al. (2010), Lebedeva, Zakharov et al. (2017)). Affecting glial and 

neuronal populations, likely through the suppression of neuronal activity (Lebedeva, 

Zakharov et al. 2017), dose-dependent, alcohol-induced apoptosis has been demonstrated 

to peak during the first postnatal week in the neonatal rodent cortex (Ikonomidou, 

Bittigau et al. 2000). As such, assessment of alcohol-related apoptosis was not featured in 

our E17 cortical model though its contributions during prenatal periods might be 

significant. There is a particular need in future studies to consider apoptosis during late 

corticogenesis as intraneocortical circuitry (and consequent neuronal activity) has been 

demonstrably altered around this time point in previous FASD rodent models (El Shawa, 

Abbott et al. 2013). Cell loss due to apoptosis, though not reflected in cell density 

analysis, may be an important contributor of alcohol-related cortical thinning.  

Another limitation of this study was the exclusive use of neuronal migration and 

maturation markers to characterize the developmental background of target CP 

populations that include non-neural cells. In a similar vein, the many inhibitory 

interneurons which inhabit the CP demonstrate a completely different origin site and 

migratory path than the neurogenic SVZ/VZ-radial migration examined here. Aberrant 

tangential migration of medial ganglionic eminence-derived cortical interneurons is 

observed in gestational alcohol models and results in the increased occupancy of 

GABAergic interneurons in the cortex that persists into young adulthood (Skorput, Gupta 
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et al. 2015). Similarly, abnormal radial glial migration and the differentiation of 

astrocytes in the rodent cortex have all been previously reported in response to prenatal 

alcohol exposure (Miller and Robertson 1993, Valles, Sancho-Tello et al. 1996, Aronne, 

Guadagnoli et al. 2011). To date, very few studies have profiled the epigenetic 

characteristics of cortical interneurons and non-neurons independently.  One recent study 

reported that cortical GABAergic interneurons demonstrate a distinct DNA methylation 

program compared to glutamatergic projection neurons, including decreased 5hmC and 

increased CpG 5mC hypermethylation (Kozlenkov, Wang et al. 2016). Another study 

utilized cell sorting techniques to examine the global DNA methylation landscapes of 

neuronal and non-neuronal cells in the cortex. They determined that neurons showed a 

tendency toward general hypomethylation and hypermethylation of astrocytic gene 

networks while non-neuronal nuclei demonstrated hypermethylation of synaptic 

transmission gene networks, likely reflecting the repressive role of global methylation. 

Importantly, this study described the increased variation of neuronal DNA methylation as 

an indicator of increased epigenetic plasticity in neurons. Finally, the authors of this 

study suggested that global cortical DNA methylation patterns largely reflect non-

neuronal cells, and this may not accurately portray the unique DNA methylation program 

of neurons (Iwamoto, Bundo et al. 2011). Collectively these reports offer new insights 

and expand support for the idea of cell-unique DNA methylation dynamics which have 

been described here. Performed under normal conditions in the adult cortex, the 

expansion of a developmental profile and the evaluation of aberrant (disease) state DNA 

methylation reprogramming in purified cortical populations is needed in the future.   
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Some technical considerations should also be addressed at this time. Here, for 

example, the administration of alcohol via a liquid-diet paradigm required the inclusion 

of an isocaloric liquid-diet control group (PF), which mirrored the Chow brain 

anatomically, phenotypically, and epigenetically. The isocaloric pairfed is calorie-

matched to account for any existing nutritional deficiency in the liquid diet model not 

attributable to alcohol itself. While the PF group has been successfully used in various 

alcohol liquid diet models, some epigenetic sensitivity of the liquid-diet (PF compared to 

Chow) was detectable here, particularly in 5hmC analyses. Even though the liquid-diet 

alcohol paradigm allows for control over the alcohol dose and caloric equilibrium in a 

relatively non-invasive method, some epigenetic differences may arise due to inherent 

variations between the Chow and PF diet, such as micronutrition, fat content, and stress 

induced by the yoking of liquid-diet volume to equilibrate caloric content of the alcohol 

and nutritional control group. Though these variables did not perturb normal 

development, they cannot be entirely ruled out as environmental contributors of the DNA 

methylation program.  

Finally, due to the observation of many grades of immunoreactivity across various 

markers in the cortex, we employed a semi-quantitative immunohistochemcial analysis 

known as the H-score (see Materials and Methods, 2.5). Using this algorithm, the 

percentage of cells stained at various intensity levels (arbitrarily defined by the 

experimenter as absent, weak, moderate, and intense) could more accurately reflect the 

abundance of the antigen than traditional cell counting techniques. To ensure that the 

categorical percentages were comparable between groups, cell number was normalized 

within each examined region ensuring that density of cells was not a factor of perceived 
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immunoreactivity. Due to the nature of optical densitometry in our software to range 

from completely black (OD=255) to completely white (OD=0), it was necessary to set 

thresholds which could include “absent” (methyl-green) nuclei as well as the most 

intensely-labeled nuclei (dark brown). Using cortical sections stained for methyl-green 

only, we were able to set these thresholds and subsequently define the OD ranges for 

each of our four immunoreactivity categories. To assuage inherent experimenter bias, 

cortical sections from different groups were examined non-sequentially. Additionally, 

randomized selection of nuclei was performed prior to densitometry analysis. Despite 

each measure taken to minimize the biases of H-scoring, the fact remains that processing 

procedures and the use of the human eye introduce certain variability in IHC (Rimm, 

Giltnane et al. 2007). Moreover, the biophysical properties of diaminobenzidine (DAB) 

as a chromagen monopolize light absorption and limit its visual dynamic range. These 

phenomena cannot be disregarded and suggest that H-scoring should be taken as a 

preliminary analysis to be supplemented by more objective, quantitative methods, such as 

Western Blotting or immunosorbance assays.  

2.4.4 Summary and Conclusions 

Here, we show for the first time that the altered neocortical DNA methylation 

program is concomitant with the aberrant laminar patterning of the neocortex as a 

consequence of embryonic alcohol insult. While a global investigation of DNA 

methylation markers revealed a cortex-wide reduction following prenatal alcohol 

exposure, a more detailed examination of the developing cortical laminae revealed that 

the sub-structural DNA methylation patterning exhibited a far more complex response to 

alcohol. These epigenetic aberrations were bilateral and parallel with many critical 
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corticogenic events including progenitor proliferation, migration, and maturation. As is 

believed to occur in development, these findings together suggest that the dysregulation 

of the normal DNA methylation program serves as a mechanism by which fetal alcohol 

confers abnormal gene expression and consequential deficits associated with cortical 

function.  

Despite the complex DNA methylation distribution of various cell types and 

developmental markers to alcohol exposure, cumulative cortical measures registered a 

measureable alcohol-response which bears significant structural-functional implications. 

Though the precise genomic targets of fetal alcohol insult remain to be elucidated in the 

embryonic cortex another pressing question remains, that is, does epigenetic 

reprogramming by alcohol drive the developmental response or does alcohol (though 

other mechanisms) alter developmental processes which produce aberrant methylation as 

a secondary function? Emerging epigenetic manipulation techniques and high-throughput 

RNA screens offer solutions for future investigations. In the meantime, the ongoing 

characterization of alcohol impacts on developmental epigenetic programs provides 

ample evidence that DNA methylation and transcriptional correlates play a substantial 

role as “readers” and “writers” of environmental insult during development. 

Fetal alcohol perhaps best models this to-date. Exposure has demonstrated the 

capacity to impact the epigenetic signature of the nervous system from the neural stem 

cell stage to the embryonic and the late gestational stages (Figure 25). Impressively, 

many studies have revealed that epigenetic dysregulation may span beyond the course of 

direct insult (in utero), prompting many authors to suggest that an “epigenetic memory” 

is at work recording environmental insults occurring in early development. Though 
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reportedly stable, whether these alterations are cumulative or rectifiable is still unknown. 

Further, the thresholds for functionally meaningful chromatin remodeling will be crucial 

to characterize for future clinical application.  

While the investigation continues, there is mounting evidence to support 

epigenetic mechanisms such as DNA methylation as developmental instructors of 

vulnerability to (among other things) psychosocial deficits, propensity for substance 

abuse, and cancer (Bilinski, Wojtyla et al. 2012, Gonseth, Roy et al. 2015, McCoy, 

Jackson et al. 2017). Alternatively, a growing repertoire of studies is proposing the 

reversible nature of epigenetic memory (Kutanzi, Koturbash et al. 2010, Tompkins, Hall 

et al. 2012) paving the way for a wealth of intervention strategies.  And while the 

sometimes subtle appearance of the epigenetic program may seem marginal, there are 

very clear molecular pathways from external stimuli to biochemical action and lasting, 

sometimes multi-generational encoding.  An exemplary model of this mechanism, 

developmental alcohol is perhaps only the beginning.  

 

 

 

 

 

 



113 

 

Table 4. Summary of cortico-structural alterations induced by alcohol in animal 

models 

Comparison of animal model details and BEC range of different studies 

examining the prenatal alcohol induced cortical phenotypes. Alc (alcohol); BEC 

(blood alcohol level); IP (intraperitoneal injection) and SA: self-administered 
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Figure 25. Epigenetic mechanisms and potential manifestations of fetal alcohol spectrum 

disorders 

Maternal alcohol exposure leads to expansive phenotypes of FASD but the mechanisms 

remain elusive. Besides immediate cellular effects, it is now understood that alcohol 

extensively alters epigenetics during fetal and NSC development through genomic DNA 

methylation, cellular DNA methylation programming, histone modification, transposons 

and miRNA. These epigenetic changes are likely a major upstream disrupter of gene 

transcription leading to primary phenotypes of FASD (e.g., growth retardation and 

neurodevelopmental deficit) and collectively compromise brain function and mental 

faculty as secondary phenotypes in early-life. It is not expected that all epigenetic 

changes lead to transcriptional and phenotypic changes but increasing evidence suggests 

that continuous environmental insults may lead to increased epigenetic abnormality. The 

primary seeding of epigenetic errors and secondary, cumulative epigenetic abnormality 

via abrasive environment (e.g., childhood abuse and stress) may result in a potential 

manifestation of FASD beyond the classical diagnosis in adulthood. Moreover, epigenetic 

errors carried in the germlines may influence the next generations.  
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CHAPTER 3: THE NORMALIZING CAPACITY OF S-ADENOSYLMETHIONINE 

SUPPLEMENTATION IN A MOUSE MODEL OF FASD 

3.1 INTRODUCTION 

3.1.1 Methyl Metabolism in Neural Development 

The importance of fetal nutrition has long been acknowledged. Methyl-related 

nutrition has been particularly scrutinized in neural development. For example, 

polymorphisms on methionine-metabolism enzymes have been linked with fetal growth 

impairments (Beaudin, Perry et al. 2012). Additionally, lower serum levels of folate (folic 

acid) and B12 have been linked with neural tube defects (Kirke, Molloy et al. 1993, 

Shaw, Schaffer et al. 1995). Recently, Wang et al demonstrated that choline deficiency 

during gestation led to the reduction of radial glia, intermediate progenitors, and upper 

layer cortical neurons in the embryonic cortex. This effect persisted up to 4 months in the 

mouse offspring of choline-deficient dams (Wang, Surzenko et al. 2016). Choline 

deficiencies can also lead to fetal neuron apoptosis in vitro (Yen, Mar et al. 2001) and 

prenatal choline has demonstrated the ability to alter hippocampal and cortical gene 

expression (Mellott, Follettie et al. 2007). Unsurprisingly, maternal choline and betaine 

deficiency have been linked to infantile cognitive impairment (Wu, Dyer et al. 2012). 

Similar to fetal alcohol exposure and later-life psychosocial disorders, perinatal choline 

has been correlated with increased risk of schizophrenia in later life (Ross, Hunter et al. 

2013). However, the proposition of methyl-metabolism as a unilateral regulator of neural 

development has been challenged by various studies describing that high levels of dietary 

methyl precursors can induce hyperhomocysteinemia and negatively impact embryonic 
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development and cognitive performance (Baydas, Koz et al. 2007, Pickell, Brown et al. 

2011, Mikael, Deng et al. 2013).  

The mechanisms by which nutritional dysregulation exhibit compound action 

against neural development are not well known. Previous work has proposed that 

receptor and transporter deficiency may lie behind nutritionally responsive 

developmental diseases. Particularly, in neural tube defects, diminished folate transport 

and disturbance of folate receptors during pregnancy have been associated with increased 

risk (Cabrera, Shaw et al. 2008, Chen, Yu et al. 2015). Other studies have implicated 

folate deficiency and increased susceptibility to oxidative stress via ERK activation as 

mechanisms of neuropathy (Barrera 2012, Kao, Chu et al. 2014). However, due to the 

parallel phenotypes of methyl insufficiency and surplus, it is likely that the mechanisms 

governing the methyl metabolism-neural development axis are far more complex.  

3.1.2 Nutritional Deficiency and Developmental Epigenetics 

Epigenetic mechanisms as mediators of the methyl sensitive-neurodevelopmental 

pathway have garnered much supporting evidence. Recall that methyl metabolism is a 

principle component of transmethylation reactions including DNA and histone 

methylation (Chapter 2, Figure 15).  First, genomic studies have revealed variations in 

susceptibility to methyl insufficiency during development, likely related to genetic 

variations (Zeisel 2008), which likely impact the epigenome.  For example, mutation of 

the methionine synthase reductase gene (Mtrr) has demonstrated transgenerational DNA 

hypomethylation in liver and uteri, though not in the brain. This differential methylation 

was positively correlated with phenotype severity (growth restriction, neural tube 

malformations, etc.) and gene misexpression. Interestingly, in the placenta of wild-type 



117 

grandprogeny, differential methylation remained detectable (Padmanabhan, Jia et al. 

2013). This study suggests that the sensitivity of a developing system to folate-

metabolism is significant and likely mediated in some capacity by epigenetic 

transmission. Indeed, DNA methylation profiles of nearly 2,000 newborns revealed vast 

CpG sites that are differentially methylated in response to maternal plasma folate, many 

of which lie on genes related to birth defects and neurological function (Joubert, den 

Dekker et al. 2016).  

More evidence of epigenetic mechanisms as purveyors of 

environmental/nutritional impact on the developing neural system comes from deficiency 

models. For instance, studies of gestational choline deficiency have reported global and 

gene-specific hypomethylation as well as histone hypomethylation on cell cycle control 

elements in the fetal hippocampus (Niculescu, Craciunescu et al. 2006, Mehedint, 

Niculescu et al. 2010). Similarly, a study of neonatal blood from offspring born to 

mothers of variable folate consumption revealed an inverse correlation between folate 

and genome-wide DNA methylation, including genes associated with neural crest 

development and cancer associated genes (Gonseth, Roy et al. 2015). Conversely, a 

human fetal study of severe neural tube defects in a folic-acid fortified population 

demonstrated unchanged methylation of genome-wide repetitive elements, indicating that 

the epigenetic etiology of severe neural dysregulation may be contingent on folate 

deficiency (Price, Penaherrera et al. 2016).  

Just as nutritional deficiency has provided much evidence of epigenetic 

reprogramming during neural development, supplementation strategies have exhibited an 

ameliorating potential, reinforcing the contribution of dietary elements like methyl 
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precursors in regulating the epigenetic landscape during gestation. Substantial evidence 

exists supporting that daily periconceptional folate supplementation can prevent the 

incidence of neural tube defects in humans (Tinker, Cogswell et al. 2010, Viswanathan, 

Treiman et al. 2017). Further, data suggesting that 75% of women of childbearing age in 

the US do not consume adequate folate have prompted the US Preventative Services Task 

Force to recommend daily folate supplementation (Viswanathan, Treiman et al. 2017). 

Maternal supplementation strategies have also manifested ameliorating potential on the 

epigenetic front. For example, long term folic acid consumption during pregnancy has 

been associated with increased cord blood DNA methylation (Pauwels, Ghosh et al. 

2017). In infants born small for gestational age, umbilical cord blood revealed 

hypermethylation at six differentially methylated regions in the imprinted H19 gene. 

However, maternal folic acid supplementation reduced DNA hypermethylation and 

improved growth outcomes in male offspring (Qian, Huang et al. 2016). Finally, in a rat 

model of methyl donor deficiency, two micro RNAs and their targets have been 

previously shown to be upregulated parallel to disrupted brain morphology-outcomes 

which were reversed by the administration of gestational folic acid supplementation 

(Geoffroy, Kerek et al. 2016).   

It should be noted that dietary elements beyond methyl-contribution have been 

implicated in epigenetic modulation and neural development. Fetal iron deficiencies, for 

one, have been linked to chromatin remodeling of the bdnf locus in the hippocampus 

(Tran, Kennedy et al. 2015). Additionally, heat-shock protein induced oxidative damage 

and associated DNA hypomethylation and histone hyperacetylation in chick embryonic 

liver was ameliorated in offspring of zinc supplemented mothers (Zhu, Liao et al. 2017). 
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Equally notable is the evidence that implicates nutritional epigenetics as a mechanism of 

extra-neural disease etiology, such as cardiovascular disease and cancer (Tobi, Lumey et 

al. 2009, Loche and Ozanne 2016). Malnutrition or famine in general has also been 

epigenetically implicated in metabolic syndrome, cardiovascular function and 

inflammation (Tobi, Lumey et al. 2009, Hernandez-Valero, Rother et al. 2013). 

Collectively, substantial evidence supports a role for epigenetic mechanisms as regulators 

of the nutrition-neural developmental axis. While much remains to be understood and 

clarified about how different methyl donors and other nutritional elements manifest 

epigenetic modifications, one model of developmental disease etiology offers significant 

insight. 

3.1.3 Alcohol Disruption of Methyl Metabolism During Pregnancy 

In Chapter 2, the intersection of alcohol and methyl donor metabolism was 

introduced. Briefly, alcohol metabolism has been shown to produce reactive oxygen 

species which inhibit the metabolism of folate, choline, and betaine, dietary methyl 

donors. Additionally, alcohol and alcohol metabolites have demonstrated inhibitory 

capacity on various enzymes involved in methyl metabolism (Figure 15). Do the 

dynamics of alcohol and methyl metabolism persist during pregnancy? Are there unique 

features during that time? Substantial evidence has elucidated the characteristics of 

alcohol-induced methyl metabolism dysregulation during gestation. Indeed several 

studies have reported that plasma methionine concentrations in both dam and fetus are 

different after gestational alcohol exposure (Hewitt, Knuff et al. 2011, Ngai, 

Sulistyoningrum et al. 2015). Historically, chronic alcohol consumption has been 

associated with increased demand for methionine and its subsequent depletion 
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(Finkelstein, Cello et al. 1974). In a similar vein, methyl metabolism genes in the fetal 

tissues have also been shown to be sensitive to prenatal alcohol exposure (Ngai, 

Sulistyoningrum et al. 2015).  

In addition to methyl metabolism, alcohol has been shown to interfere with 

maternal-fetal transmission of methyl metabolic precursors and selectively inhibit the 

ability of exposed offspring to absorb the nutrients in early life. For example, methionine 

and folate absorption in the small intestine of the pregnant rat is disrupted by alcohol 

consumption (Leichter and Lee 1984, Polache, Martin-Algarra et al. 1996, Murillo-

Fuentes, Murillo et al. 2003). Maternal-fetal methionine intestinal transport and altered 

free folate absorption dynamics in the postnatal intestines of alcohol exposed offspring 

have also been reported (Polache, Martin-Algarra et al. 1996, Tavares, Gomez-Tubio et 

al. 1999, Hutson, Stade et al. 2012). Finally, folate receptor activity is reportedly 

decreased by fetal alcohol exposure in offspring rat placenta (Fisher, Inselman et al. 

1985).  

Recall that both developmental alcohol exposure and nutritional insufficiency 

have been independently linked to a barrage of neural insults. In light of the various work 

elucidating the disruptive role of alcohol in methionine metabolism, it is likely that 

alcohol may work by hijacking maternal-fetal metabolomics, thereby conferring a variety 

of teratogenic effects. Evidence for this mechanism in neural developmental 

dysregulation includes parallel alcohol-induced methyl insufficiency and neural deficits. 

For example, in Xenopus embryos, alcohol exposure compromises neural crest cell 

migration in tandem with homocysteine accumulation, an indicator of compromised 

methionine synthesis (Shi, Li et al. 2014). In the postnatal brain of alcohol exposed 
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offspring, methyl metabolism is observed simultaneously with disrupted mRNA 

expression of serotonin and glucocorticoid receptors (Ngai, Sulistyoningrum et al. 2015). 

Fittingly, a recent study identified that deficient choline levels can exacerbate the effects 

of fetal alcohol on hindlimb coordination, hyperactivity and eye opening (Idrus, Breit et 

al. 2017). But perhaps the most substantial evidence for the consequential potential of the 

alcohol-nutrition pathway has come from supplementation studies.  

3.1.4 Nutritional Intervention Strategies in FASD 

On the premise of alcohol-compromised nutrition, various nutritional 

supplementation strategies have been attempted to mitigate alcohol phenotypes. Aside 

from the ameliorating potential of methyl precursor supplementation in alcohol-fed adults 

(Parlesak, Bode et al. 1998, Barak, Beckenhauer et al. 2003, Kharbanda, Rogers et al. 

2005, Bailey, Robinson et al. 2006), various studies have chronicled the developmental 

impact of supplementation across FASD models, predominantly via methionine, folic 

acid, betaine, and choline or synthetic variants. Table B-3 (Appendix B) outlines 

supplementation studies focused on growth anomalies and neurodevelopmental targets. 

During early gestation, various embryopathic effects, including neurocristopathies, neural 

tube defects, and embryonic dysmorphologies have been alleviated by developmental 

supplementation with folic acid (FA), 5-MTHF, and S-AMe, with one study offering that 

the co-administration of vitamin B12 may further enhance the protective action of the 

methyl donors (Xu, Li et al. 2006). However, in a few of these acute paradigms, 

supplementation was unsuccessful as a preventative strategy against neural tube defects 

and some embryonic growth deficits (Graham and Ferm 1985, Padmanabhan, Ibrahim et 

al. 2002).  
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Across supplementation studies performed in chronic alcohol exposure models 

(predominantly rodent), the protective capacity of methyl-donor supplementation 

included cortical neuroapoptosis, neurodegeneration, microcephaly, and growth deficits, 

though in one study, embryopathies were not prevented by methionine+zinc 

supplementation (Seyoum and Persaud 1997) and in others, gross body/brain weights and 

other malformations were similarly unaffected (Downing, Johnson et al. 2011, Hewitt, 

Knuff et al. 2011). Various postnatal and human studies have focused on the behavioral 

outcomes of methyl supplementation in FASD models. While the literature is rarely 

unanimous on any given measure, methyl donor supplementation alleviates alcohol-

induced deficits in learning, memory, hyperactivity, and balance and coordination. On the 

other hand, across all examined studies, locomotor and global cognitive measures have 

consistently lacked a neuroprotective response (Thomas, Garrison et al. 2004, Coles, 

Kable et al. 2015, Wozniak, Fuglestad et al. 2015, Nguyen, Risbud et al. 2016).  

Factors to consider when evaluating previous studies and contrasting outcomes 

include the dose and time of alcohol exposure, the methyl supplement format and the 

intervention period. For example, some studies administer methyl donor cocktails 

(Downing, Johnson et al. 2011, Sogut, Uysal et al. 2017) while others have experimented 

with methionine, betaine, or 5-MTHF. By far, the majority of animal and human studies 

have focused on folic acid and choline supplementation. Additionally, some studies pre-

treat with methyl supplements, others are delivered simultaneously with alcohol, and a 

majority of human interventions are delivered mid-gestation or even post-ethanol 

exposure. Finally, the current body of literature is made up of varying doses of methyl 

supplements and it  is not yet known how this factor impacts experimental outcomes.  
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3.1.5 Neural Targets for Intervention in the FASD Cortex 

Beyond the tissue-wide and functional outcomes that have been continually 

investigated and observed in FASD models, the field of FASD intervention has, along 

with technology, advanced toward an era of gene targeting in intervention strategies. The 

advent of genomic editing tools like CRISPR/Cas9 and transcription activator-like 

effectors (TALENS) has equipped experimenters with the tools for the precise 

investigation and manipulation of disease-related targets. As such, now more than ever 

there is a need to shed light on the specific drivers of alcohol teratogenicity. In the cortex, 

vulnerability to alcohol has been demonstrated across a multitude of targets. 

Compromised cell proliferation in both neurons and glia has been observed in 

prenatal alcohol models (Chikhladze, Ramishvili et al. 2011, Huang, He et al. 2015) and 

further study has elucidated possible gene targets involved in cell cycle regulation 

including cdcs, various cyclins, Mcm5, Plk1, E2f7 and Bub1. Notably, a handful of these 

targets have shown alcohol-induced hypermethylation at their promoter (Hicks, Lewis et 

al. 2012). Prenatal alcohol has also demonstrated inhibitory action on the proper 

specification of radial glial cells, precursors of intermediate progenitors and mature 

cortical neurons. Investigation of many of the genes conferring these processes has 

similarly revealed alcohol-sensitivity, including the early glial pathway genes notch, 

nestin, wnt, and Pax6 in the cerebral cortex (Aronne, Evrard et al. 2008, Hashimoto-

Torii, Kawasawa et al. 2011).   

The aberrant effects of gestational alcohol on cortical migration have been 

identified including the tangential migration of GABAergic interneurons and the radial 

migration of cortical progenitors (Cuzon, Yeh et al. 2008, Aronne, Guadagnoli et al. 
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2011). Migration-associated gene targets implicated in prenatal alcohol studies include 

the heat shock factor 2 (HSF2)-binding genes p35, Dclk1, and Dcx (El Fatimy, Miozzo et 

al. 2014). Ex-vivo models have also identified the TGFß pathway as a target of alcohol 

during neuronal migration (Siegenthaler and Miller 2004). The inhibitory effects of 

alcohol on cortical specification may be attributed to the downregulation of genes like 

Tbr2, an important regulator of upper cortical layer specification (Riar, Narasimhan et al. 

2016). Interestingly, other independent genomic screens have similarly identified a 

variety of cortical specification genes, some of which are intricately connected to the Tbr 

domain. For example, Satb2, Bhlhb5, Id2, Nr4a3, Foxp1, Pou3f2, Ctip2, and Crym have 

all been demonstrably downregulated in an FASD model (Hashimoto-Torii, Kawasawa et 

al. 2011). Finally, the effects of fetal alcohol exposure have been observed in the late-

specification of cortical neurons as well, with downregulation of synaptic targets like 

Nr2b, GluR1, Cb1r, and the adenosine A1 receptor (Bellinger, Davidson et al. 2002, 

Othman, Legare et al. 2002, Toso, Poggi et al. 2005, Subbanna, Shivakumar et al. 2013). 

Surprisingly, while the majority of reports describe alcohol-related inhibition of synaptic 

profiles, some synaptic targets of alcohol appear to be upregulated by prenatal alcohol 

exposure (Marutha Ravindran and Ticku 2004, Toso, Poggi et al. 2005, Kleiber, Diehl et 

al. 2014). From cell cycle exit to receptor distribution on the pre and post-synaptic 

terminals of a cortical neuron, various elements are targeted by prenatal alcohol, likely 

setting the tone for the hallmark cognitive, intellectual, and behavioral maladaptation 

observed commonly in FASD. A concrete understanding of the alcohol-sensitive gene 

networks and their dynamics is an important first step to remediation strategies, including 

nutritional supplementation therapies. Likewise, characterizing genomic regions critical 



125 

to cortico-development and function may offer molecular parameters for the evaluation 

of disease and therapeutic response. Ultimately, the profiling of important alcohol-targets 

in the developing brain is necessary for gene-targeting strategies such as genetic and 

epigenetic editing in the future.  

3.1.6 Research Aims 

A unique feature of methyl supplementation studies in developmental alcohol 

models is the parallel execution of pre-clinical and clinical investigation. The dietary 

nature of methyl donors and their high feasibility and tolerability in humans (Wozniak, 

Fuglestad et al. 2013) allows for the potentially rapid pace of clinical trials and data 

acquisition. On the other hand, while human trials are offering a wealth of behavioral 

information on the protective action of methyl donors, a gap in our understanding of the 

molecular drivers of methyl neuroprotection still exists. This prompts the need for pre-

clinical investigation of the underlying mechanisms regulating the developmental output 

of converging alcohol-nutritive pathways.  

Some studies have reported that one way methyl supplementation may counter 

perinatal alcohol exposure is through the improved intestinal absorption of dietary co-

factors like zinc (Tavares, Carreras et al. 2000). And while supplementation does not 

appear to restore alcohol-restricted absorption of methyl donors, one study found that 

Selenium+Folic Acid supplementation in a fetal alcohol model enhanced the transporters 

for their respective substrates in the duodenal mucosa (Nogales, Ojeda et al. 2011).  As 

described in Chapter 2, the biochemical proximity of methyl metabolism to DNA 

methylation and the previous demonstration of DNA methylation as a developmental 

regulator beckon the examination of epigenetic mechanisms as mediators of supplemental 
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neuroprotection. Despite this, to-date, very few alcohol+supplementation studies have 

characterized epigenetic changes.  

What has been reported thus far includes the capacity of choline to remediate 

region-wide hypermethylation in the hippocampus, though not in the medial prefrontal 

cortex (Otero, Thomas et al. 2012). Normalization of gene-specific hypermethylation has 

additionally been reported on the POMC gene of adult male offspring (Bekdash, Zhang et 

al. 2013) and in the Igf2 gene (Downing, Johnson et al. 2011). Beyond methylation, 

methyl supplementation has also been shown to normalize repressive histone marks, 

methyltransferase and methyl binding protein expression, and microRNA expression 

(Wang, Zhang et al. 2009, Bekdash, Zhang et al. 2013). An important structure for 

cognition, mobility, and higher order function, the effects of methyl supplementation in 

the embryonic cortex have not been extensively characterized nor examined through an 

epigenetic lens. Here, we aimed to establish the dynamics of epigenetic environmental 

sensitivity through methionine supplementation in a model of fetal alcohol exposure. 

Using S-adenosylmethionine (S-AMe), which is the active methyl donor for DNA and 

histone methylation reactions, we hypothesized that supplementation during chronic 

gestational exposure would exhibit neuroprotective action, possibly conferred through the 

stabilization of the previously described aberrant cortical DNA methylation program. 
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3.2 MATERIALS AND METHODS 

3.2.1 Overview of Experimental Treatments 

In this study, alcohol was administered via liquid diet according to the paradigm 

illustrated in Figure 26. Mice were acclimated to animal housing conditions one week 

prior to mating. After conception, the liquid diet was introduced from E5-E6 and 

experimental treatment was administered from E7-E16 (reflecting the late first and 

second human trimester equivalent). The 4% alcohol liquid diet (v/v) administered in this 

paradigm has been previously published in previous and parallel studies to reach a range 

of blood ethanol concentration (BEC) of 100-200 mg/dL (Anthony, Vinci-Booher et al. 

2010, Chen, Ozturk et al. 2013). Briefly, six non-pregnant females receiving 4% v/v 

alcohol liquid diet were used for BEC analysis. Blood samples were collected via tail 

vein bleeding method 2 hrs or 6 hrs after the administration of fresh alcohol-PMI diet. 

Collections were made 2, 4, and 6 days during the course of treatment, alternating 

between animals so as to provide at least 48 hours between tail bleeds. Adequate volumes 

of blood (15 µl) were collected in heparinized tubes, and plasma was isolated through 

centrifugation and stored at -80°C prior to analysis with a Gas Chromatograph (GC, 

Agilent Technologies; model 6890). Each sample was analyzed in duplicate. A previous 

fetal alcohol liquid diet study in gestating C57BL/6 mice with identical doses of S-

adenosylmethionine administration (10mM) showed that the treatment was well-tolerated 

by pregnant females and did not interfere with alcohol metabolism or BECs levels 

(Gauthier, Ping et al. 2010). Similar studies of choline supplementation have echoed that 

dietary supplementation does not alter peak BEC or interfere with alcohol metabolism 

(Thomas, Abou et al. 2009).  
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3.2.2 Animals and Treatments 

All mice were used in accordance with National Institute of Health and Indiana 

University Animal Care and Use (IACUC) guidelines. The protocol was approved by the 

Laboratory Animal Resource Center (LARC) animal ethics committee of Indiana 

University. C57BL/6 (B6) (10–14 weeks old, ~20 g body weight) nulliparous female 

mice (Jackson Labs, Bar Harbor, ME) were used in the study. Mouse breeders were 

individually housed upon arrival and acclimated for at least one week prior to mating. 

The mice were maintained on a 12 hr reverse light-dark cycle (lights on: 22:00–10:00) 

and provided laboratory chow and water ad libitum. Mice were then randomly assigned 

into five treatment groups for E17 study: Chow, Pair-Fed (PF), Alcohol (Alc), Alcohol + 

S-AMe (Alc+S-AMe), and S-AMe ad libitum (S-AMe).  Each litter was considered N=1; 

the littermates of each dam were distributed among the various analyses performed in this 

study. Chow, PF, Alc, and Alc+S-AMe groups were additionally treated for postnatal day 

(P) 7 analysis, including N≤5 litters per group. Due to the developmental and epigenetic 

similarity of the S-AMe control group to the Chow and PF control groups, the group was 

not included in the P7 analysis.  

Females were bred with male breeders for a 2-hr period (10:00 to 12:00). All 

animals were mated daily over a period of no more than 3 weeks, at which time all 

animals were on ad libitum chow and water diets. The presence of a vaginal plug at the 

end of the 2-hr mating session was considered as indicative of conceptus and that hour 

was designated as hour 0, and embryonic day (E) 0. A liquid diet paradigm was modified 

from a previously detailed study (Chen, Ozturk et al. 2013). Briefly, all alcohol treatment 

groups received 4% alcohol v/v in liquid diet (Purina Micro-Stabilized Diet (PMI), 
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Purina Mills Inc., Richmond, Indiana) as instructed by supplier with 4% w/v sucrose 

added, and administered using 35 ml drinking tube (Dyets Inc., NY). The PF group was 

given the PMI diet mixture with the addition of maltose dextran (MD) (to substitute 

alcohol calories). The volume of the PF diet was restricted to that of a dam paired from 

the alcohol group throughout the course of treatment. The addition of a S-AMe 

supplemented group (Alc+S-AMe) and S-AMe control was included in this study. The 

Alc+S-AMe group was administered the 4% alcohol PMI diet as described above, with 

the daily addition of powdered S-AMe (10mM, Nature Made, Mission Hills CA). A S-

AMe control group was also included, administered via daily unrestricted isocaloric PF 

diet supplemented with 10mM S-AMe.  Finally, the Chow group was maintained on a 

standard chow diet and water ad libitum throughout gestation. On E5, pregnant dams in 

PF, Alc, Alc+SAM, and S-AMe groups were placed on an unrestricted PF liquid diet for 

a 48 hour acclimation to the liquid diet. Experimental treatment was initiated according to 

the designated regimen on E7 through the end of E16. After E16, all dams were returned 

to standard lab chow and water ad libitum. For postnatal litters, dams were allowed to 

give birth, designated postnatal (P) day 0. Approximately six hours after parturition, 

experimental litters (PF, Alc, and Alc+S-AMe) were switched to be nursed by surrogate 

Chow-fed dams until harvest on P7. Surrogate dams had previously given birth no more 

than 48 hours prior to experimental litter births. During surrogacy, litters were randomly 

culled to six pups/litter in order to decrease possible nutritional deficiencies caused by 

within-litter competition.  
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3.2.3 Embryo Isolation and Tissue Preparation  

Dams were placed under deep CO2 euthanasia until completely sedated and 

embryos were harvested from dams at E17 by removal from the embryonic sack. P7 pups 

were weighed and immediately decapitated. Each embryo/pup was either immersion-

fixed in 20 ml of fixative prepared from 4% paraformaldehyde (PFA) for 

immunohistochemistry, flash frozen in liquid nitrogen,  or preserved in RNA later 

(25mM sodium citrate, 10mM EDTA, 70g ammonium sulfate/100mL solution, pH 5.2).  

3.2.4 Immunohistochemistry  

Fixed embryos were subsequently weighed, dissected for brain tissue, and 

assessed for brain weight no more than 48 hours after fixation. Brains taken from each 

group were embedded in a single 10% gelatin block with careful rostrocaudal and 

dorsoventral alignments. Gelatin blocks were fixed in 4% PFA for 48 hrs and sectioned 

in 40 mm thick coronal sections on a floating vibratome (Leica Microsystems; Buffalo 

Grove, IL). For P7, section-pairs (Chow-PF or Alc-Alc+S-AMe) were processed equally 

across all immunohistochemical procedures. For all immunohistochemical experiments, 

sections were cleared of endogenous peroxidases using 3% H2O2 in phosphate buffered 

saline (PBS) for 10 min and permeabilized with 1% TritonX-100 in PBS for 30 min 

(overnight for Vglut1). For nuclear proteins, an additional 30 min incubation in 2N HCl 

was performed. Sections were subsequently blocked in species-specific normal serum for 

60 min prior to primary antibody incubation. Antibodies used are summarized in Table 5 

below. Primary antibodies were diluted in normal serum according to the following 

dilutions and incubations in primary antibody varied from 18-24 hours at room 

temperature. Subsequently, sections were incubated for 90 min in biotinylated secondary 
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antibodies (Jackson ImmunoResearch, West Grove, PA) followed by incubation in 

Streptavidin-AP (1:500, Jackson ImmunoResearch, West Grove, PA) or Universal 

Peroxidase ABC HRP Kit (Vector Laboratories, Burlingame, CA) for 90 min. The 

immunostaining was visualized by incubation in 0.05% 3,3'-diaminobenzidine (DAB) for 

15 min, followed by chromagen activation by 0.03% H2O2 over a range of of 3-8 

minutes. Sections were rinsed and mounted on glass slides followed by counterstaining 

with methyl green (0.05%, Sigma Aldrich, St. Louis, MO). All stainings were analyzed 

under light microscopy for cellular analysis using a Leica DM 6000B microscope (Leica 

Microsystems, Wetzlar, Germany). 
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Table 5. Antibodies used for neurodevelopmental and DNA methylation assessment in 

the S-AMe supplemented E17 cortex 

Primary Antibodies Company Catalog # dilution 
predicted 
wt. 

5-methylcytosine Eurogentec 
BI-MECY-
0100 1:2000 N/A 

5-methylcytosine Active Motif AM61255 1:2000 N/A 
5-hydroxymethylcytosine Active Motif AM39769 1:3000 N/A 

Ki67 Novus Biologicals 
NB110-
89717 1:500 324 kDa 

Tbr2 Millipore AB2283 1:500 58 kDa 
NeuN Cell Signaling Tech. D3S3I 1:500 46-55 kDa 
Vglut1 Millipore AB5905 1:1000 ~62 kDa 
Fezf2 ImmunoBiological Labs 18997-S 1:100 ~65 kDa 

Secondary Antibodies         

Goat anti Rabbit biotinylated 
Jackson 
ImmunoResearch 

111-065-
003 1:500 ~160 kDa 

Horse anti Mouse biotinylated Vector  Laboratories BA-2000 1:500 
~152-165 
kDa 

Donkey anti Guinea Pig 
biotinylated Vector  Laboratories BA-7000 1:500 

~152-165 
kDa 
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3.2.5 Densitometry analysis (H score) and cortical thickness assessment  

Epigenetically immunostained nuclei exhibited a variable staining profile within 

different cortical layers. In order to reflect this heterogeneity, we employed H scoring as 

a strategy for nuclear densitometric analysis (Singh, Shiue et al. 2009, Chen, Ozturk et al. 

2013) of each cell within the selected cortical subregion (VZ+SVZ, SP, and CP).  

Images of immunostained sections were taken using a Leica CTR 6000 camera 

and Leica Firecam Software Version 1.7.1 (Leica Microsystems, Wetzlar, Germany). 

Bright-field images were taken with consistent acquisition settings between sections for 

each antibody analyzed. Images were converted to the 16-bit color format, and staining 

intensity was assessed using Image J (National Institutes of Health, Bethesda, MD). 

Calibration was set based on 256 levels of the gray scale. To measure the sub regions of 

prefrontal neocortex, a rectangular box of equal dimensions (150 μm in width) was 

selected at the S-AMe rostro-caudal level of E17 coronal brain sections. Lateral ventricle 

and corpus callosum were used as landmarks to align the prefrontal cortex across all 

groups. Equal amounts of cells were randomly sampled within the designated dimensions 

per group. The intensity of the staining in each selected cell was measured on a black-

white scale (0-256). These absolute intensity values were subsequently classified based 

on the optical density (OD) values according to the following guidelines: Absent-0-

(OD=256-206), Weak-1-(OD=206-156), Moderate-2-(OD=156-106) and High-3-

(OD=106-56). Overall, the immunohistochemical H score of each subcortical region was 

obtained by the following formula: 3 X percentage of highly stained nuclei + 2 X 

percentage of moderately stained nuclei + percentage of weekly stained nuclei.   
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 Cortical thickness was assessed using two independent immunostainings: NeuN 

and 5mC. Anterior sections of the frontal cortex were rostro-caudally matched between 

groups and selected for cortical measurements. ImageJ software was used to assess 

cortical thickness (measured from the base of the SVZ to the edge of the MZ). 

Subsequently, individual cortical layers were measured (layers were clearly demarcated 

by cortical cytoarchitecture). For P7 analysis, a similar process was used, modified to 

include multiple cortical subdivisions including: cingulate cortex, primary motor cortex, 

secondary motor cortex, primary sensorimotor cortex, and forelimb/hindbrain 

sensorimotor cortex. P7 layer measurements were also taken across layer I, layers II-IV, 

layer V, and layer VI.  

3.2.6 Cell Counting and Morphometric Analyses 

Automated cell counts were used to detect cells positive for Ki67 due to the 

presentation of the immunosignal being punctate and homogenous. In this experiment, 

sections stained for Ki67 were processed using Image J software according to the 

following protocol: color deconvolution plugin was used to isolate the brown DAB 

signal, images were inverted to 8-bit, automated thresholding was performed, and 

automated particle analysis was performed on the SVZ/VZ region with the selection 

parameters set to 0.25-1.0 circularity (where 1.0 equals a perfect circle) and size inclusion 

being 50-600 (pixel^2). Results were presented as number of particles (cells) detected per 

sample ±SEM. 

To assess cell density, cortical sections from 5mC staining procedures were 

counterstained by Methyl-Green dye (Nissl) which allowed for the visualization of 5mC 

positive as well as 5mC negative nuclei. After Brightfield imaging under a light 
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microscope (see “Densitometry analysis and cortical thickness assessment”), a select 

region targeting the mid cortical plate was binned (0.025mm
2
) across all brain sections at 

a high magnification. Nuclei were counted using the multi-point counting tool on ImageJ 

software (NIH, Bethesda MA). At least two sections taken from the anterior cortex of 

each subject were averaged for total nuclei/area. Additionally, at least two subjects from 

each litter were represented in the assessment (where n=litter).  

A similar procedure was used to analyze nuclear morphology. Due to the non- 

circularity of some cortical cells, the major and minor axes of each nuclei were measured 

across the anterior CP. In some cases, where nuclei were quite circular, the nuclei length 

and diameter were arbitrarily selected and interchangeable. In cases of non-circular 

morphology, the major (longest) and minor (perpendicular to major) axis were clearly 

distinct and thus represented independently.  A straight line tool was used in all cases to 

measure the major and minor axes of the nuclei. Finally, nuclear area was calculated 

based on the following equations: circular area=πr
2
 (where r=minor axis/2) and ellipse 

area=πab (where a=minor axis/2, b=major axis/2). Distinction between circular and non-

circular nuclei was made if major axis was ≥1.5 times the minor axis. At least 100 nuclei 

from the selected region were measured per cortical section and at least two sections per 

subject were represented in the average. Each N represents one litter in these 

assessments. To help minimize experimenter bias, images were randomly examined, 

meaning, experimental groups were not evaluated as continuous cohorts throughout the 

imaging session.  

3.2.7 Global DNA Methylation Analysis 
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Fetal brains were isolated and microdissected under a Dissection Microscope 

(Leica MZ6, Leica Microsystems). Neocortical brain tissues were separated from 

subcortical brain tissue using the borders of the nascent internal capsule as a visual guide. 

DNA extraction and purification was subsequently performed using silica-based spin-

column purification (DNeasy Blood and Tissue kit, Qiagen) according to manufacturer’s 

instructions. Purified DNA was quantified by spectrophotometric absorption at 230, 260, 

and 280nm and the quality and concentration was calculated as the A260/A230 and 

A260/A280 ratio (Nanodrop 2000, Thermo Scientific). An average of 100-200 ng of 

genomic DNA was used for DNA global methylation analysis performed with the 

MethylFlash Methylated DNA Quantification Kit and MethylFlash Hydroxymethylated 

DNA Quantification Kit (Colorimetric; Epigentek Group) according to the manufacturer's 

instructions. OD values were determined using a PHERAstar FSX microplate reader and 

MARS Data Analysis Software (BMG Labtech, Cary, NC). Methylation levels were 

estimated using a standard curve of methylated DNA standards provided by the 

manufacturer. Relative methylation (percent of total DNA) was calculated according to 

the following calculations:  

5-mC%=(sample OD-neg control OD)/(slope of the standard curve*input DNA 

(ng))*100% 

5-hmC%= ((sample OD-neg control OD)/(slope of standard curve*5))/input DNA 

(ng)*100% 

Global methylation data were presented as percent of control group values. 

3.2.8 Gene Expression Analysis 
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RNA was extracted from cortical tissue by RNA extraction kit (RNeasy Mini Kit, 

Qiagen Valencia, CA) according to manufacturer’s instructions. One microgram of 

cortical RNA was converted to cDNA using the High Capacity Reverse Transcription Kit 

(Applied Biosystems, Foster City CA). Next, 100ng of cDNA was loaded per reaction 

and at least three reactions were examined per gene expression assay per sample. Taqman 

PCR Master Mix was used with Taqman Probes (Applied Biosystems, Foster City CA) 

for an array of neurodevelopmental genes (Table B-4, Appendix B). Relative expression 

was calculated according to the [delta] [delta] Ct method, using the ubiquitous ribosomal 

gene 18S as an internal control.  Reactions were performed on AB Step One Plus Real 

Time PCR System (Applied Biosystems, Foster City CA). 

3.2.9 Methyl-CpG Pyrosequencing 

Site-specific methylation analysis was performed using Pyromark Q24 CpG 

Assay (Qiagen, Valencia, CA). One microgram of gDNA was bisulfite treated using 

Zymo’s EZ DNA Methylation Gold kit (Zymo, Irvine CA). Two microliters of the 

bisulfite-converted DNA was next used as input for pyro-PCR using custom oligos (IDT, 

Coralville IA) or commercial Pyromark CpG Assays (Table B-4, Appendix B) using 

Pyromark PCR Kit (Qiagen, Valencia, CA).  Once PCR product was confirmed by gel 

electrophoresis, 20uL of PCR Product was incubated with CpG Assay reagents and 

sequenced using Pyromark Q24 Workstation (Qiagen, Valencia, CA). PROMO 

transcription factor prediction software was used to generate predicted transcription 

factor binding sites within the analyzed sequence of the gene (Messeguer et al 2002). 

Control oligo was used as a positive control in all assays. Percent methylation of all CpGs 
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in the sequence as well as cumulative methylation was presented within each of the 

differentially methylated regions (DMR) investigated.   

3.2.10 Statistical Analysis 

IBM SPSS Statistical software (Version 24) was used to perform all statistical 

analyses. Comparison of group means was performed by one-way ANOVA, with 

Welch’s correction when groups violated the homogeneity of means test (assessed by 

Levene’s Test of equality of variances). Where statistical significance was observed 

(P≥0.05), either Tukey’s HSD (ANOVA) or Games-Howell (Welch’s) post-hoc analysis 

was carried out. All data are presented as means± standard error of the mean (SEM). All 

birth data were presented as litter averages to account for litter size effects. Across all 

experiments, sample size (n) denotes the number of represented litters within each group. 

A detailed summary of statistics is provided for all quantitative assessments in Table B-5, 

Appendix B. 
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Figure 26. Experimental paradigm for fetal alcohol and S-adenosylmethionine 

supplementation 

(A) Representative scheme of experimental treatment paradigm. Conception was 

designated as embryonic (E) day 0. Liquid diet acclimation was initiated on E5 and 

experimental treatments were integrated into liquid diet from E7-E16. Pairfed (PF) 

groups were calorically matched to Alcohol and Alc+S-AMe groups by volumetric 

restriction to PF diet (alcohol calories supplemented by maltose dextran). All liquid diet 

treatments were terminated on E17 and dams were returned to standard lab diet on that 

day. Harvests were performed on E17 or P7 (arrows). (B) Experimental workflow 

included analyses performed across each of the listed categories at the E17 stage.   
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3.3 RESULTS 

3.3.1 Gestation and Fetal Characteristics 

 Maternal weight and alcohol intake was monitored daily throughout the course of 

this study as alcohol exposure reportedly impacts appetite and feeding behaviors 

(Kokavec 2008). Due to the use of a liquid diet model, combining alcohol administration 

with daily nutrition, alcohol-induced loss of appetite could be severely detrimental. 

However, we report that gestational weight gain was overall unchanged by experimental 

treatment. Moreover, gestational consumption of the experimental liquid diets was 

comparative to nutritional control levels, averaging around 13mL/day (Figure 27 B). 

Finally, because alcohol and alcohol+S-AMe groups were unrestricted in their daily 

access to the diet, we evaluated whether the two alcohol-administered groups consumed 

different amounts of diet (alcohol) throughout gestation. There were no observed 

differences in the consumed liquid diet across the two-alcohol receiving groups on either 

day throughout gestation (Figure 27C) indicating that both Alc and Alc+S-AMe dams 

ingested equivalent amounts of alcohol daily. These levels of alcohol consumption have 

been previously shown in our lab to produce blood ethanol content (BECs) around 120-

160 mg/dL (Anthony, Vinci-Booher et al. 2010, Chen, Ozturk et al. 2013). Additionally, 

several methyl-supplementation studies have determined that the supplementation of an 

alcohol diet with 10mM S-adenosylmethionine does not alter the BEC of a dam 

(Gauthier, Ping et al. 2010).  

 Next we examined the fetal characteristics of the experimental litters across all 

groups. Alcohol-exposed fetuses demonstrated a significant decrease in body weight at 

E17 (Figure 28A, P<0.001). S-AMe supplemented fetuses also showed a decreased body 
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weight compared to Chow and S-AMe controls. However, no intergroup differences were 

found in fetal brain weight. To examine whether deficits in body weight persisted beyond 

the exposure timeframe, we evaluated pup body weights at postnatal day 7. No group 

differences were detectable by P7, in either body or brain weight (Figure 28 C-D). These 

findings are consistent with the notion that body weight impacts are typically observed in 

high dose alcohol studies rather than low dose studies (such as our own) (Abel 1996). 

Finally, neither alcohol nor S-AMe treatment affected the average number of pups/litter.  

 To evaluate the effect of prenatal alcohol on methyl metabolism in our model, we 

examined the expression of the S-AMe-producing enzyme methionine 

adenosyltransferase 2A (Mat2a) in the liver and brain. In the fetal liver, the Mat2a gene 

expression was significantly decreased by maternal alcohol treatment (Figure 29A, 

P<0.0001), consistent with previous reports (Ngai, Sulistyoningrum et al. 2015). Here we 

observed that S-AMe supplementation of the alcohol diet normalized liver Mat2a to 

levels comparable to controls. Interestingly, unrestricted S-AMe access (no alcohol) 

expressed the highest level of the transcript, indicating that methyl supplementation does 

not diminish the expression of Mat2a rather increases it. In the brain, the sensitivity of 

the gene to alcohol exposure was absent, on the other hand, the sensitivity of the cortical 

tissue to S-AMe persisted beyond the liver, where a majority of alcohol and methyl 

metabolism occurs. The findings suggest that at the gene level, fetal alcohol’s influence 

on methyl metabolism may be limited to the fetal liver, unlike S-AMe supplementation, 

which exhibits a more dynamic range.  

To further examine whether alcohol or S-AMe supplementation impacted the 

DNA methylation products 5mC and 5hmC, whole tissue DNA was quantitatively 
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assessed using an immuno-absorbance assay. While both the liver and cortex were 

sensitive to alcohol exposure and exhibited decreased 5mC consistent with diminished S-

AMe production (Figure 29C, cort P=0.05; liver P= 0.028), Alc+S-AMe treatment did 

not produce a significantly different outcome. However, the trend of the S-AMe 

supplemented alcohol group was such that they were not statistically significant from 

control groups. Notably, though the unrestricted S-AMe nutritional control exhibited 

higher than normal Mat2a in the liver and brain, expression of 5mC was comparable to 

Chow and Pairfed controls (Figure 29C). Finally, quantitation of 5hmC revealed no 

changes across groups in either liver or cortical tissue (Figure 29D).  These results 

confirm the sensitivity of methyl metabolism to fetal alcohol exposure in our paradigm 

and illuminate the sensitivity of the liver and cortex to S-AMe supplementation. Finally, 

our results echo previous findings of global DNA methylation patterns (Figure 23) and 

place the effects of methyl-supplementation into perspective on a tissue-wide scale.  

3.3.2 Role of S-AMe supplementation as a Cortical Neuroprotector 

 To interrogate whether S-AMe supplementation of the fetal alcohol exposure 

paradigm could abrogate the growth deficits of alcohol on the embryonic cortex, we 

examined the phenotypic characteristics on a structural, molecular, and genomic level. 

First and foremost, we evaluated whether methyl-supplementation via the active methyl 

donor S-AMe could normalize one of the prominent FASD features previously observed 

in our experimental model-cortical thinning. Recall in Chapter 2 that fetal alcohol 

exposure dramatically reduced the length of the embryonic cortical column. Here, we 

used identical metrics and 1) confirmed the cortical thinning phenotype in a second 

cohort of E17 fetuses, 2) observed the normalizing potential of S-AMe supplementation 
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(Figure 30A, P<0.004), and 3) describe that normalization of the cortical structure is 

preserved beyond the window of intervention, postnatally at the vulnerable sensorimotor 

cortex (Figure 30B, P=0.001).  

 As a secondary measure of cellular growth and to examine (as in Chapter 2) 

whether differing cellular densities were at least partial contributors to our observations 

of alcohol-induced cortical thinning and neuroprotection by S-AMe supplementation, we 

quantified all cells present in a representative fraction of the cortical plate and report no 

differences in total cell number across all groups (Figure 31A). While neither alcohol nor 

S-AMe impacted cell densities in the E17 cortical plate, nuclear size was found to be 

significantly decreased by prenatal alcohol exposure, an effect mitigated significantly by 

S-AMe supplementation (Figure 31B, P<0.0001). Our findings echo the observations 

made in Chapter 2 and expand upon the neuroprotective contributions of S-AMe 

supplementation toward the preservation of nuclear area which may greatly contribute to 

cortical plate size.  

 Layer-specific analysis further revealed that nearly all cortical layers of the E17 

cortex were negatively impacted by alcohol exposure. At the P7 stage, the alcohol-

sensitivity of the sensorimotor cortex appears relegated to layers II-IV and VI. Similarly, 

while the normalizing capacity of Alc+S-AMe occurs in the SP and MZ at E17, it is 

restricted to the VI layer postnatally (Figure A-1, Appendix A). Regardless, total cortical 

thickness trends are echoed at least one week after birth. These results elucidate the 

persistent sensitivity of the cortex to gestational alcohol exposure and are the first to 

describe that S-AMe supplementation can protect against alcohol-induced cortical 

thinning in a lasting manner.  
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 To corroborate the structural findings of our experimental paradigm at a 

molecular level, various critical processes of cortical maturation and expansion were 

investigated. First, cellular proliferation was examined at the neurogenic zones of the 

cortex, the SVZ/VZ. Immunohistochemical detection of Ki67+ nuclei was performed and 

an automated cell counting tool was used to determine whether alcohol and/or S-AMe 

impacted the number of Ki67+ nuclei. We found that alcohol significantly decreased the 

number of Ki67+ nuclei, indicative of reduced proliferation of cortical progenitors and 

radial glial in the SVZ/VZ (Figure 32B, P=0.036), though the transcript for Ki67 was not 

significantly altered by either treatment. S-AMe supplementation did not exhibit 

significantly higher Ki67+ nuclei compared to the alcohol group however, it did not 

significantly differ from controls. These findings support our previous observation that 

alcohol reduces cortical proliferation but suggests that S-AMe supplementation may play 

a limited role in neurogenic proliferation.  

 A prominent regulator of intermediate progenitor conversion in the cortex, the 

transcription factor Tbr2 has been often used as a tool in the identification of cortical 

projection neuron precursors (Kowalczyk, Pontious et al. 2009). Previously, alcohol 

exposure has been shown to induce cytostasis of Tbr2+ populations, likely hindering the 

symmetric division of cortical precursors (Riar, Narasimhan et al. 2016).  Interestingly, 

Tbr2 deletion produces microcephaly-a hallmark feature of FASD (Baala, Briault et al. 

2007). Here we examined Tbr2 nuclei and fibers across the SVZ/VZ, IZ, and CP. Using 

immunohistochemistry we quantitatively assessed the number of Tbr2+ nuclei and found 

that alcohol exposure significantly decreased the detectable Tbr2+ nuclei in the IZ and 

CP (Figure 33B, IZ P=0.015; CP P=0.016), though not the SVZ/VZ as a previous fetal 
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alcohol report has shown (Hashimoto-Torii, Kawasawa et al. 2011). Further, though S-

AMe supplementation was not significantly neuroprotective of Tbr2 in the CP, it 

demonstrated ameliorating potential in the IZ, where migrating intermediate progenitors 

are most concentrated (Vasistha, Garcia-Moreno et al. 2015). Despite the proteomic 

observations, an assessment of Tbr2 mRNA in the cortex did not demonstrate either 

alcohol or S-AMe sensitivity (Figure 33C). 

 A frequent marker of neuronal maturity, NeuN is expressed in the nuclei of post-

mitotic (committed) neurons. Due to the well-demonstrated growth-inhibitory nature of 

alcohol on neurons, we investigated alcohol and S-AMe supplementation’s effects on the 

expression of NeuN in the embryonic cortex. As shown in Figure 34, alcohol 

significantly decreased NeuN in the upper cortical layers (SP, CP), where neuronal 

maturity is most advanced. This finding corroborates several previous reports (Powrozek 

and Zhou 2005, Teixeira, Santana et al. 2014). Though the gene encoding NeuN (Rbfox3) 

does not change in reaction to alcohol or S-AMe at E17, we did observe that S-AMe 

normalized the expression of NeuN protein in the SP and CP (Figure 34C-D, SP 

P=0.035; CP P= ≤0.0001).  

 Finally, to round out our phenotypic assessment of the molecular drivers of 

cortical development, we examined the expression of a presynaptic protein which plays 

an important role in glutamate transport and is expressed in neuron-rich regions. 

Vesicular glutamate transporter 1 (Vglut1) is a vesicle-bound, sodium-dependent 

phosphate transporter distributed at presynaptic membranes, where synaptic vesicles 

reside. Several studies have described the inhibitory action of prenatal alcohol on 

glutamatergic release (Yunes, Estrella et al. 2015) and glutamate receptors (Savage, 
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Montano et al. 1991). In contrast, other studies have reported that developmental alcohol 

exposure may actually increase glutamate release in the fetal cortex (Reynolds, Penning 

et al. 1995). Because glutamate dynamics can be a potent source of cytotoxicity in the 

brain, here, we examined the role of prenatal alcohol on the expression of Vglut1 in the 

cortex. We found prenatal alcohol increased the expression of Scl17a7 (the gene 

encoding Vglut1), though S-AMe did not appear to mitigate this upregulation (Figure 

35G, P=0.035). Immunohistochemical analysis confirmed the action of alcohol on the 

Vglut1 protein in the cortical plate. Comparatively, in this analysis, S-AMe demonstrated 

a protective role (Figure 35F, P <0.0001). Our results ultimately support the findings of 

Reynolds et al and hint that alcohol may abnormally upregulate glutamate transport and 

signaling during late gestation. Interestingly, alcohol-induced glutamatergic increase has 

been linked to increased frequency of excitatory post-synaptic currents in pyramidal 

neurons and anxiety- like behaviors in a third trimester model of FASD (Baculis, Diaz et 

al. 2015).  
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Figure 27. Alcohol does not impact gestational characteristics of experimental dams  

(A)Average weight gain of group dams from weight at conception to weight at E17 (B) 

Average daily intake of liquid diet from start of experimental treatment (E7) to end of 

experimental treatment (E16) (C) Daily Alcohol Intake calculated from average daily 

total liquid diet drinking of Alc and Alc+S-AMe experimental groups (E7-E16); no group 

differences in daily liquid diet or alcohol consumption were detected across gestation.  
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Figure 28. Alcohol transiently inhibits fetal body weight at E17 but does not impact brain 

weight  

(A)Average fetal body weight as determined by average fetal weight/litter at E17; 

alcohol-receiving groups demonstrated decreased fetal body weight though this effect did 

not persist postnatally (B) Average fetal brain weight/litter as determined by dissected 

brain weight at E17 (C) Average body weight of pups/litter as measured at P7 (D) 

Average brain weight of pups/litter as determined by dissected brain weight at P7 (E) 

Average number of pups/litter across all experimental groups. *p≤0.05; **p≤0.005. 
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Figure 29. Alcohol reversibly decreases liver but not brain Mat2a and liver and cortex-

wide 5mC  

(A)Liver Mat2a expression measured by quantitative PCR revealed that alcohol 

decreased the expression of the transcript in the fetal liver at E17, an effect normalized by 

supplementation with S-AMe. Unrestricted S-AMe diet demonstrated the highest 

expression of Mat2a. (B) Brain Mat2a expression did not reflect alcohol-related changes, 

though unrestricted S-AMe access significantly increased the expression of the transcript. 

(C) Liver and cortex 5mC was reduced tissue-wide by fetal alcohol exposure. S-AMe 

supplementation was not significantly different from either alcohol or controls. (D) Liver 

and cortex 5hmC was unchanged across all groups. *p≤0.05; **p≤0.005; ***p≤0.0005.  
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Figure 30. Alcohol- induced cortical thinning is persistently ameliorated by S-AMe 

supplementation  

(A)Cortical length was measured from the base of the SVZ to the roof of the MZ. 

Alcohol-induced reductions were detected across all zones except the MZ. In the SP and 

cumulatively, S-AMe supplementation protected the cortical laminae from Alcohol-

induced thinning. (B) Alcohol-induced cortical thinning persisted into postnatal (P) day 7 

in the sensorimotor region of the anterior cortex, particularly in the II-IV and VI layers of 

the cortex. S-AMe supplementation continued to provide neurprotection from Alcohol-

induced cortical thinning on P7. *p≤0.05, **p≤0.005; SVZ/VZ: subventricular 

zone/ventricular zone, IZ: intermediate zone, SP: subplate, CP: cortical plate, MZ: 

marginal zone. 
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Figure 31. Alcohol reversibly reduces nuclear area in the E17 cortical plate 

(A) Cell density was assessed using the Methyl-Green Nissl stain. Cell number was 

unchanged across groups within a 0.025 mm
2  

area selected from the mid cortical plate. 

(B) Nuclear morphology was evaluated from a random sample of 100 cells within the 

cortical plate. Alcohol group nuclei were significantly smaller than all other groups and 

S-AMe supplementation was neuroprotective against this nuclear size reduction. 

*p≤0.05; **p≤0.005; ***p≤0.0005.  
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Figure 32. Alcohol decreases the number of proliferating cells at the cortical 

neuroepithelium 

(A) Representative images from the SVZ/VZ stained for the cell proliferation marker 

Ki67. Area beneath the black dashed line denotes the SVZ/VZ regions. Black arrows 

demonstrate positively stained nuclei, blue arrows demonstrate Ki67 negative nuclei. (B) 

Average number of Ki67+ cells detected by automated particle analysis tool using ImageJ 

showed significant decline in Ki67+ cells in the Alcohol group compared to controls (C) 

Relative expression of Ki67 mRNA (encoded by the gene Mik67 across cortical tissue 

samples at E17 showed no detectable transcript changes. *p≤0.05; SVZ/VZ: 

subventricular zone/ventricular zone.  
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Figure 33. Alcohol-induced Tbr2 reduction is ameliorated by S-AMe supplementation in 

the intermediate zone 

(A) Qualitative representation from the CP and IZ of brain sections immunostained for 

Tbr2, a marker of intermediate progenitors of the cortex. Top row represent Tbr2+ nuclei 

and fibers in the CP. Bottom row represent Tbr2+ nuclei and fibers in the IZ. Black 

arrows indicate some examples of positively stained nuceli. (B) Quantitative examination 

of Tbr2+ nuclei showed no differences in the SVZ and an alcohol-related decrease in the 

IZ and CP. In the IZ, where Tbr2 abundance was highest, S-AMe supplementation 

demonstrated a protective effect. (C) Quantitative expression of the Tbr2 transcript 

revealed no significant changes across the groups. SVZ/VZ= subventricular 

zone/ventricular zone; CP=cortical plate; IZ=intermediate zone. *p≤0.05.  
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Figure 34. Alcohol-induced NeuN (im) decrease is ameliorated by S-AMe  

supplementation 

(A)Representative cortical sections immunostained for the neural maturation marker 

NeuN. Dashed lines represent the approximate borders of the cortical sublayers at E17. 

NeuN is expressed in the upper layers of the cortex, including the SP and CP (B) Relative 

expression of NeuN mRNA (encoded by the gene Rbfox3) across cortical tissue samples 

at E17 shows no detectable transcript changes (C-D) Measured immunoreactivity of cells 

as determined by H-scoring show a marked decrease in NeuN-im in the Alcohol group in 

the SP sublayer and the CP sublayer. *p≤0.05, **p≤0.005, ***p≤0.0005; SVZ/VZ: 

subventricular zone/ventricular zone, IZ: intermediate zone, SP: subplate, CP: cortical 

plate, MZ: marginal zone.  
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Figure 35. Alcohol increases Vglut1 expression in the cortical plate 

Representative immunoreactivity of Vglut1 in the cortical plate of (A) Chow (B) PF (C) 

Alcohol (D) Alc+SAM and (E) SAM treated offspring. The presynaptic protein mostly 

accumulated at the cellular membrane and can be observed in dense regions of the cell 

perimeter (d, black arrows). In comparison, the perikarya of Vglut1-negative cells is 

observable by methyl-green counterstaining but devoid of presynaptic Vglut1 densities 

(d, clear arrow). (F) The number of Vglut1+ neurons was significantly increased 

compared to controls. S-AMe supplementation significantly diminished this effect. (G) 

Slc17a7 expression (encoding Vglut1) was similarly upregulated by alcohol cortex-wide. 

Alc+SAM in this assay did not mitigate the alcohol-induced upreguatlion. *p≤0.05; 

**p≤0.005 
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3.3.3 Effect of Alcohol and S-AMe Supplementation on Genetic Targets of Cortico-

Development 

 Epigenetic studies have perpetually revealed the tissue and cellular specificity of 

DNA methylation landscapes across development. Similarly, high throughput studies 

continue to observe that DNA methylation is dynamic across genes, and even within 

different genetic elements (i.e. promoter, exon, intron, UTR, enhancer, etc.). As such, the 

future of DNA methylation study is contingent upon narrowing specific cellular 

populations and genetic contexts. With that in mind, we set out to explore the effects of 

fetal alcohol exposure and S-AMe supplementation on various genes across the timeline 

of cortical development in an attempt to narrow the alcohol and methyl-sensitive cortical 

transcriptome for future epigenetic study.  

 While several studies have used high-throughput methods like RNA-Seq to 

identify multitudes of genes and gene pathways altered by prenatal alcohol, to-date 

methyl-supplementation studies (particularly performed in an alcohol-context) have 

investigated only a handful of genes and gene networks. Based on the observation that 

both alcohol and S-AMe supplementation demonstrated significant impact across various 

molecular markers, it was important to investigate genetic correlates as the corresponding 

transcripts were not usually accountable in the E17 tissue. The strategy employed for 

genetic investigation of cortico-developmental genes was coverage spanning the early to 

late embryogenic pathways previously identified to be critical for cortical development 

and forebrain size. 

 One of the earliest pro-neural genes, Ascl1 is expressed from the most nascent 

cortical stages to late corticogenesis. The gene in its earliest context works to oppose the 
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Notch signaling pathway, diverting multipotent cells away from glial fates toward 

cortical progenitors. It is a positive regulator of Cajal-Retizus (MZ layer) neurons and has 

been shown to promote reelin and Tbr2 expression (Dixit, Zimmer et al. 2011). 

Interestingly, postnatally Ascl1 shifts to play a positive regulatory role on both cortical 

proliferation and oligodendrocyte specification, particularly in response to demyelinating 

insults (Nakatani, Martin et al. 2013). Finally, the gene has been identified as an effector 

and direct target of the RhoA suppressing Rnd3, a critical factor for cortical migration 

within the CP (Pacary, Heng et al. 2011).  

 A collaborator of Ascl1, the pro-neural gene Ngn2 has demonstrated similar 

capacity during corticogenesis. Genetic ablation and ectopic expression studies have 

revealed that Ascl1 and Ngn2 play important roles in establishing the ventral and dorsal 

telencephalon, respectively (Casarosa, Fode et al. 1999, Fode, Ma et al. 2000). 

Additionally, the two coordinate early neural specification and migration (Bertrand, 

Castro et al. 2002, Pacary, Heng et al. 2011). During later stages, Ngn2 works 

synergistically with the proneural Ngn1 in the specification of glutamatergic neurons 

deep layers (V/VI) of the cortex (Fode, Ma et al. 2000, Schuurmans, Armant et al. 2004). 

All the while, Ngn1 has the capacity to inhibit gliogenesis via sequestration and inhibition 

of transcription complexes like CPB-Smad and STATs at pro-glial genes (Sun, Nadal-

Vicens et al. 2001).  

Together, this network of early pro-neural genes plays a diverse and coordinated 

role in the early commitment and specification of multipotent progenitors toward neural 

lineages. Ascl1 and Ngn1 have been identified as epigenetic targets during neural 

development (Cimadamore, Amador-Arjona et al. 2013, Hirabayashi, Shiota et al. 2013) 
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and Ascl1 and Ngn2 have demonstrated sensitivity to prenatal alcohol exposure 

previously (Kim, Go et al. 2010). Examination of their alcohol and methyl sensitivity at 

E17 in this study revealed however, that neither of the three pro-neural genes were 

significantly changed by either alcohol of S-AMe supplementation (Figure 36B-D).  

 Next, we investigated genes involved in cortical specification, a process 

proceeding early pro-neural commitment. In the developing cortex, genetic ablation 

studies and ectopic expression studies have identified several key genes temporally 

regulated to produce the major subtypes of the cortex, cortico-cortico (i.e. callosal) 

projecting neurons, corticothalamic, and subcerebral projecting neurons. While Tbr2 

plays an early role in conferring intermediate precursors of cortical neurons, the 

transcription factor Tbr1 is highly expressed in early born (post-mitotic) glutamatergic 

cortical neurons (Hevner, Shi et al. 2001). Tbr1 is positively regulated by Satb2 and plays 

a crucial role in the specification of callosal projecting neurons of layers II-V (Srinivasan, 

Leone et al. 2012). During early cortical specification Satb2 (and to a lesser extent Ctip2) 

is enriched in and important for callosal specification (Alcamo, Chirivella et al. 2008). 

While callosal neurons are specified, both Tbr1 and Satb2 cooperatively act to suppress 

the regulators of the subcortical fate specifiers-Fezf2 and Ctip2 (Srinivasan, Leone et al. 

2012, Leone, Heavner et al. 2015). Subsequently, direct repression of Fezf2 by Tbr1 

binding at the 3’ region particularly promotes corticothalamic identity in layer VI neurons 

(Han, Kwan et al. 2011). The expression of Satb2 and Tbr1 subsides according to 

temporal transcriptional cues, giving rise to the expression of Fezf2 and downstream 

Ctip2 in the formation of deep-layer subcerebral projection neurons (Arlotta, Molyneaux 

et al. 2005, Chen, Wang et al. 2008). Like Tbr2 and Satb2, Fezf2 and Ctip2 cooperatively 
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suppress the callosal fate regulators (Tbr2 and Satb2) to guide cortical neurons toward 

subcortical fates (Canovas, Berndt et al. 2015). Finally, layer VI differentiation is 

mediated by the direct binding and inhibition of Fezf2 by Sox5 (Kwan, Lam et al. 2008).  

Collectively, this regulatory gene network gives rise to the major cortical subtypes 

and dysregulation, ectopic expression, and mutation of these profiles give rise to severe 

cortical phenotypes including microcephaly, intellectual deficiency, and propensity for 

later life diseases such as schizophrenia (Gulsuner, Walsh et al. , Rosenfeld, Ballif et al. 

2009, Zhang, Li et al. 2014).The determination of cortical subtypes via this network has 

been shown to be highly dependent on the timing of repressive elements and the shift to 

effector roles for several of these genes. Intriguingly, genes like Fezf2 have been targeted 

by Polycomb group (PcG) complex proteins, with the level of binding effectively driven 

by histone methylation at the Fezf2 promoter (Morimoto-Suzki, Hirabayashi et al. 2014). 

Moreover, other genes have demonstrated epigenetic regulation during development, 

including the histone methylation of Tbr1 (Büttner, Johnsen et al. 2010), the DNA 

methylation and histone modification of Ctip2 (Marban, Suzanne et al. 2007, Tan, Nishi 

et al. 2012), and the interaction of Satb2 with various chromatin remodeling elements in 

cortical specification (Gyorgy, Szemes et al. 2008).  

In the evaluation of the gene network’s sensitivity to prenatal alcohol exposure 

and the investigation of S-AMe supplementation as a potential neuroprotector, we found 

that while not all genes were altered by alcohol or S-AMe, the two important subcerebral 

fate specifiers, Fezf2 and Ctip2, were impacted. Specifically, Fezf2 was significantly 

reduced by alcohol and this inhibition was significantly ameliorated by S-AMe 

supplementation (Figure 37C, P=0.004). These effects were further corroborated by 
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immunohistochemical evaluation Fezf2 at the cortical plate (Figure A-2, Appendix A, 

P=0.038). Conversely, the Ctip2 transcript was significantly upregulated by alcohol, 

though S-AMe supplementation did not normalize its expression (Figure 37E, P=0.01). 

These results present a possible genetic route for the phenotypic manifestations of alcohol 

and S-AMe supplementation observed earlier in the experimental paradigm.  

3.3.4 Cortex-wide and Gene Specific Alcohol-induced Epigenetic Alteration and S-AMe 

normalization  

Finally, to investigate whether epigenetic correlates existed parallel to observed 

phenoyptic and genetic alterations of the experimental model, we performed gene 

expression analysis of critical epigenetic enzymes, particularly those involved in 

transmethylation reactions (i.e. DNA and histone methylation).  While in Chapter 2 some 

layer-by-layer DNA methylation examination was performed, here we expanded our 

approach to determine whether the normalizing potential of S-AMe supplementation 

could be traced to the epigenome. Due to the highly integrated nature of epigenetic 

modifications during cortical formation, we hypothesized that both alcohol and methyl-

supplementation would impact the cortical epigenome.  

Three critical methylation enzyme classes regulate all DNA and histone 

methylation reactions. The DNMT family regulates both maintenance (DNMT1) and de 

novo methylation, the latter of which is both dynamically performed by DNMT3a and 

DNMT3b during neural development (Watanabe, Uchiyama et al. 2006). The 

methylation of DNA is largely contingent upon the availability of the active methyl donor 

S-AMe, which upon loss of its methyl group to cytosine bases, is transformed to S-

adenosylhomocysteine (SAH). Methylated DNA can subsequently be converted to 
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hydroxymethylated DNA by the TET enzyme family. While all TET isoforms have been 

shown to play a role in neuronal differentiation, TET3 has been specifically identified as 

a critical role player in the terminal differentiation of neurons (Li, Yang et al. 2015). As 

discussed earlier in Chapter 1, TET enzymes may continue the conversion of 

hydroxymethylated DNA (5hmC) to produce 5fC and subsequently 5caC along a 

proposed demethylation pathway which could culminate in the deamination and 

decarboxylation of 5caC by thymidine DNA glycosylase (TDG) or base-excision repair 

enyzmes. Finally, S-AMe may alternatively donate its methyl group toward histone 

methylation. This process is conferred by a variety of histone methyltransferases (HMTs) 

including Ehmt2 (G9a), a conserved repressive histone 3 lysine 9 (H3K9) 

methylatranferase which has been implicated in dysregulated neuronal transcription, 

cognition, and environmental adaptation (Schaefer, Sampath et al. 2009). Unlike DNA 

methylation, histone methyltransfer is a reversible reaction mediated by a class of 

enzymes known as histone demethylases (HDMs), but little about them in the context of 

developmental alcohol models (Kyzar, Zhang et al. 2016).  

Cortex-wide, we investigated the gene expression patterns of DNMTs, TETs, and 

Ehmt2 across our experimental paradigm. We found that while DNMT transcripts are 

largely unaffected by alcohol or S-AMe at E17, the TET3 and Ehmt2 genes were 

significantly upregulated by alcohol (Figure 38 F-G; TET3 P=0.033; Ehmt2 P <0.0001). 

In both cases, S-AMe supplementation markedly prevented the alcohol-induced 

upregulation. Interestingly, an earlier examination of cortex-wide DNA methylation 

(Figure 29 C-D) demonstrated that 5mC but not 5hmC was downregulated by alcohol, 
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and in that instance S-AMe supplementation did not significantly normalize alcohol-

induced conditions.  

Taking a more cell-specific approach, we examined the distribution of 5mC and 

5hmC in the E17 cortex. Guided by our observations in Chapter 2, here we set out to 1) 

confirm the DNA methylation patterns of alcohol-exposed cortices and 2) evaluate the 

role of S-AMe supplementation. In the SVZ/VZ, 5mC showed a trend toward alcohol-

induced signal reduction, though this trend was not statistically significant (Figure 39B). 

In the mature upper cortical layers, the SP and CP, 5mC was significantly increased 

compared to controls (Figure 39C-D; SP P=0.008; CP P=0.023). Notably, the 

supplementation of alcohol with S-AMe prohibited the alcohol induced 

hypermethylation. While our earlier investigation found that 5hmC was dynamically 

altered by prenatal alcohol, in this experimental paradigm, no alcohol or S-AMe related 

alterations of the 5hmC immunosignal were observed (Figure 40). While trends in the 

SVZ/VZ veer toward our previous observation of alcohol-induced decrease of 5hmC, this 

was not statistically significant (Figure 40B, P=0.079). Overall, these results provide an 

alternative DNA methylation landscape for tissue-wide assessments and support our 

earlier findings of alcohol-induced DNA methylation alterations. Additionally, they 

provide evidence of layer-specific methyl-related normalization of the aberrant DNA 

methylation signature in the upper cortex. Taken together with patterns induced by 

alcohol and S-AMe at the genomic level of DNA and histone-methylation conferring 

genes, the case for epigenetic mechanisms as regulators of alcohol teratogenesis and 

methyl-induced neuroprotection is strengthened.  



163 

Beyond the cellular level, which we have previously addressed as an important 

contextual element of epigenetic dynamics, advances in commercial technology have 

allowed investigators to probe the epigenetic landscape at the nucleotide level. This high-

resolution strategy can be used to pinpoint precise regions of differential methylation 

which may be crucial for the transcription of the gene. The quest for these sites (referred 

hereto as functional DMRs) is a critical step toward the utilization of DNA methylation 

and other epigenetic landscapes as diagnostic tools. To demonstrate the capacity of this 

strategy in the embryonic cortex, we explored the DNA methylation landscape at various 

regions of the transcription factor Fezf2. Recall that Fezf2 is a crucial component in the 

specification of subcerebral fates and subcortical axon pathfinding during late 

embryogenesis. Additionally, Fezf2 plays an earlier role in the rostrocaudal patterning of 

the forebrain and Fezf2- deficient mice have demonstrated reduced neural progenitor 

differentiation, apoptosis, and reductions in forebrain size (McKenna, Betancourt et al. 

2011, Zhang, Li et al. 2014).  

Due to the sensitivity of the Fezf2 transcript to both alcohol and S-AMe 

supplementation (Figure 37C), we set out to probe various regulatory regions for 

differential methylation with the aim of identifying a novel functional DMR. The Fezf2 

gene consists of a 2.7Kb promoter and four exons. Within the gene, a large portion of the 

promoter and a small introductory portion of exon 1 overlap with a CG rich region (CpG 

island). Due to the regulatory importance of the transcription start site (TSS) and areas 

immediately up and downstream, we investigated a 60 bp and 50 bp region of the 

promoter and exon 1, respectively. Additionally, based on an earlier report identifying 

multiple conserved regulatory regions around the Fezf2 locus which are particularly 
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active during cortical formation, we selected a region ~3.5kb downstream of the fourth 

Fezf2 exon, an area hereto referred as enhancer 434. This site is particularly active in 

cortical progenitors and bears direct binding sites for the cortico-developmental genes 

Tbr1, Sox5, NFIB, and FOXG1 (Eckler, Larkin et al. 2014). A detailed illustration of the 

loci and aforementioned regulatory regions can be found in Figure 41.  

Various transcription factors of relevance were predicted to bind the sequenced 

regions including AP-1, a transcription factor enriched during developmental plasticity in 

the sensory cortex (Kaminska, Mosieniak et al. 1995). Interestingly, AP-1 has 

demonstrated brain responsivity to environmental insults such as lead and lithium 

exposure (Ozaki and Chuang 1997, Pennypacker, Xiao et al. 1997). In alcohol treated 

cortical neurons, AP-1 binding and activity was elevated at the critical glutamate receptor 

subunit gene Nr2b (Qiang and Ticku 2005). The transcription factor E2F-1 has been 

implicated in regulation of neuronal cell death and has been identified in a previous study 

to be upregulated by alcohol exposure during early neurulation (Hou, Callaghan et al. 

2000, Anthony, Zhou et al. 2008). Like AP-1, the transcription factor NF-kB has 

demonstrated redox sensitivity in response to alcohol-mediated oxidative stress. 

Particularly, the NF-kB neuroimmune cascade is induced in the frontal cortex by binge 

ethanol administration (Anton, Alen et al. 2017) and its DNA-binding properties 

modulated during alcohol dependence (Mittal, Nathan et al. 1999). Recently, an 

Ayurvedic compound (traditional Indian medicine) Ksheerabala (101) demonstrated the 

ability to prevent the alcohol-induced upregulation of NF-kB in the brain, concomitantly 

reducing measures of neurotoxicity (Rejitha, Prathibha et al. 2015).  
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 In addition to alcohol-sensitive transcription factors, the examined regions have 

been predicted to bind various neurodevelopmental elements, particularly at the 434 

enhancer. Beside the previously described cortical specification genes Tbr1 and Sox5, the 

binding of HES-1 was predicted at the Fezf2 promoter. HES-1 is involved in Notch 

signaling and the repression of neuronal differentiation. Its suppression has been 

implicated in the promotion of cortical neurogenesis (Ciarapica, Methot et al. 2014). 

Finally, the enhancer 434 region was enriched with POU domain transcription factor 

binding. POU domain TFs are a family of regulatory genes identified in the development 

of the mammalian brain (He, Treacy et al. 1989). Detailed investigation has previously 

characterized the spatiotemporal patterns of POU genes in the regional specification of 

the early neuroepithelium as well as laminar specification in cortical development 

(Alvarez-Bolado, Rosenfeld et al. 1995).  

 Here we observed that alcohol induced DNA hypermethylation at the Fezf2 

promoter (Figure 42A, P <0.0001).While S-AMe supplementation demonstrated a 

normalized group average, the effect was not statistically significant. In the exon 1 

region, no alcohol or S-AMe effects were detected (Figure 42B). Finally, in the enhancer 

434, a regulatory region required for Fezf2 expression in the cortex (Shim, Kwan et al. 

2012), alcohol once again induced hypermethylation. In the enhancer, S-AMe 

supplementation significantly mitigated this hypermethylation cumulatively (Figure 42C, 

P=0.038). Total methylation of the promoter region was the highest among the examined 

regions, ranging from 13-23% methylation depending on experimental condition. By 

comparison, enhancer 434 and the exonic region ranged from 8-15%, depending on 

experimental group. Interestingly, the promoter and enhancer share critical regulatory 
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roles and a degree of overlapping transcription factor binding sites and as such are 

proposed to work together with the enhancer 1316 to mediate the dynamic expression of 

Fezf2 during cortical specification (Eckler, Larkin et al. 2014). Here, we observed the 

parallel hypermethylation of the crucial regulatory regions and gene suppression by 

alcohol. Conversely, S-AMe supplementation normalized DNA methylation levels in the 

enhancer region parallel to the normalization of gene expression levels, presenting 

evidence that important Fezf2 regulatory sites may mediate gene regulation via DNA 

methylation status. An interesting thing to note was that methyl-sequencing of regulatory 

regions in alcohol and S-AMe unaltered transcripts (Ascl1, Ngn1, Syt2) revealed no 

differential methylation (Table B-6, Appendix B). While only complete gene coverage or 

site-directed epigenetic manipulation will positively resolve the functional relevance of 

the genomic DNA methylation landscape, our evidence here supports the thematic 

conclusion that indeed DNA methylation alterations play a role in permissible expression 

and consequent phenotypes.  
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Figure 36. Alcohol does not impact early pro-neural gene expression in the E17 cortex  

(A)Gene networks of three pro-neural genes Ascl1, Ngn2, and Ngn1. Arrows indicate 

gene-associated positive regulation and T-shaped lines denote negative regulation. The 

networks represent a partial illustration of the known actions and gene targets of the pro-

neural genes in the developing forebrain. Gene interactions ultimately manifest in 

contributions to broad, corticogenic processes (bold, italic font). (B) Gene expression 

analysis of Ascl1 (C) Ngn2 and (D) Ngn1 in the E17 embryonic cortex revealed no 

alcohol or methyl-sensitivity. 
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Figure 37. S-AMe supplementation partially normalizes alcohol-induced dysregulation of 

cortical specification genes  

(A) Gene networks of the canonical cortical specification pathway including Sox5, Fezf2, 

Ctip2, Satb2, and Tbr1. Arrows indicate gene-associated positive regulation and T-

shaped lines denote negative regulation. Dashed arrow denotes an early corticogenic 

relationship (relative to the remaining network).The networks represent a partial 

illustration of the known actions and gene targets of the cortical specification pathway as 

determined by multiple genetic loss and gain of function studies. Gene interactions 

ultimately manifest in contributions to broad, corticogenic processes (bold, italic font). 

(B) Gene expression analysis of Sox5 (C) Fezf2 and (D) Satb2 and (E) Ctip2 in the E17 

embryonic cortex. While Sox5 and Satb2 were unchanged by experimental treatment, 

Fezf2 and Ctip2 were significantly affected by fetal alcohol. Only the Fezf2 gene showed 

normalization in the presence of S-AMe supplementation. *p≤0.05, **p≤0.005. 
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Figure 38. Alcohol- induced upregulation of the epigenetic genes Tet3 and Ehmt2 is 

mitigated by S-AMe supplementation  

(A) The DNA and Histone Methylation Pathway consists of a series of biochemical 

conversions of cytosine bases (red) and histone proteins and histone tails. Using the 

active methyl donor (S-AMe), DNMT enzymes transfer the methyl group from S-AMe to 

the cytosine base, yielding 5mC and SAH in its wake. Next, TET enzymes, using 5mC as 
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its substrate, are responsible for the conversion of the methylated cytosine into a 

hydroxymethylated cytosine base (5hmC). Consequently, TET enzymes can continue the 

conversion of 5hmC to 5fC and 5caC, which may then go on to deamination and base 

excision repair processes (TDG/BER) in a demethylation path. Alternatively, S-AMe 

may donate its methyl group toward the methylation of histone core proteins or histone 

tails via the HMT enzyme families in a reversible manner. (B-D) Cortex-wide gene 

expression analysis showed that neither alcohol nor S-AMe produced significant 

transcriptional alterations of the DNMT family enzymes. On the other hand, the TET3 

enzyme (F) and the histone methyltransferase Ehmt2 (G) were significantly upregulated 

by alcohol and markedly normalized by the alcohol+S-AMe treatment. *p≤0.05, 

**p≤0.005.  
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Figure 39. Alcohol-induced laminar 5mC upregulation is normalized by S-AMe 

supplementation  

(A)Representative cortical columns immunostained for the methyl marker 5mC at E17 

reveal the layer-specific distribution of 5mC. (B) Semi quantitative examination of the 

average intensity of the nuclear immunosignal in the SVZ/VZ identify a trend toward 

hypomethylation though this was not statistically significant. (C-D) In the mature layers 

of the cortical plate (the subplate and cortical plate), alcohol significantly increased 5mC 

abundance. S-AMe supplementaion of the alcohol liquid diet in all layers demonstrated a 

normalizing trend. *p≤0.05; SVZ/VZ: subventricular zone/ventricular zone, IZ: 

intermediate zone, SP: subplate, CP: cortical plate, MZ: marginal zone.  
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Figure 40. Laminar 5hmC is unaffected by alcohol or S-AMe in the E17 cortex 

(A) Representative cortical columns immunostained for the methyl marker 5hmC at E17 

reveal the layer-specific distribution of 5hmC. (B-D) Unlike 5mC, abundance of 5hmC 

was quantitatively unaffected by alcohol and S-AMe in both the neurogenic and mature 

layers of the cortical column. *p≤0.05; SVZ/VZ: subventricular zone/ventricular zone, 

IZ: intermediate zone, SP: subplate, CP: cortical plate, MZ: marginal zone. 
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Figure 41. Fezf2 gene, regulatory regions, and predicted transcription factor binding sites 

Fezf2 mouse gene contains a 2.7kb promoter, four exons, and two conserved regulatory 

enhancers which are enriched in cortical neurons (Enhancer 1316 not shown). A 60bp 

segment of the promoter directly upstream of the transcription start site (TSS), an 

introductory segment at exon1, and a large portion of the enhancer 434 region were 

chosen for DNA methyl-sequencing. Circles denote predicted transcription factor (TF) 

binding elements. Red circles denote TFs demonstrably modified by alcohol exposure in 

the brain. Blue circles indicate TFs known to be critical regulators of neural and cortical 

development. E: Exon; 434 denotes a conserved enhancer region of the Fezf2 promoter; 

lollipops denote CpG sites within the sequenced region. 
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Figure 42. Fezf2 promoter and enhancer 434 are hypermethylated by alcohol treatment 

and partially normalized by S-AMe supplementation  

(A) CpG methylation (%) distribution at each CpG within the coverage region of the 

Fezf2 promoter. Cumulative methylation (SUM) revealed that alcohol significantly 

hypermethylated the promoter region compared to PF and SAM controls. While S-AMe 

supplementation indicated a normalizing trend, this was not statistically significant. (B) 

0

5

10

15

20

25

30

CpG1 CpG2 CpG3 CpG4 CpG5 CpG6 SUM

C
p

G
 M

e
th

yl
at

io
n

 (
%

) 

Fezf2 promoter  

Chow (n=7)

PF (n=6)

Alc (n=9)

Alc+SAM (n=8)

SAM (n=6)

* ** 

0

5

10

15

20

CpG1 CpG2 CpG3 CpG4 CpG5 SUM

C
p

G
 M

e
th

yl
at

io
n

 (
%

) 

Fezf2 Exon 1 

Chow (n=7)

PF (n=6)

Alc (n=7)

Alc+SAM (n=8)

SAM (n=6)

B 

A 

0

5

10

15

20

CpG1 CpG2 CpG3 CpG4 SUM

%
 C

p
G

 M
e

th
yl

at
io

n
 

Fezf2 Enhancer 434 

Chow (n=8)

PF (n=10)

Alc (n=9)

Alc+SAM (n=9)

SAM (n=7)

*

* 

* 

C 



176 

No group differences were detected overall in the exon 1 region (C) Alcohol treatment 

induced hypermethylation at the enhancer 434 region similar to the promoter. In this 

region, the normalizing effect of S-AMe supplementation was statistically significant. 

*p≤0.05;**p≤0.005.  
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3.4 DISCUSSION 

3.4.1 Neuroprotective Role of S-AMe in Alcohol-induced Cortical Deficits 

 Dietary supplementation strategies have been regarded as promising therapeutic 

avenues in developmental disease. Due to the importance of methyl metabolism in neural 

development, developmental disorders with robust neuroteratogenic profiles have been 

particularly eyed for methyl-donor supplementation. As described earlier, methyl-

supplementation across various models of developmental alcohol exposure have been 

previously performed (Table B-3, Appendix B). While the protective range of the 

strategy is expansive, its capacity in corticogenesis has not been closely scrutinized. The 

well-documented disruption of methyl metabolism by alcohol and the demonstrated 

teratogenic impact of alcohol in the embryonic cortex (Chapter 2) prompted our 

examination of methyl-donor supplementation in our FASD model. 

 As discussed previously, while the nuances of alcohol exposure likely play a role 

in the observed outcomes of the cortical structure, in this study our model reliably 

produced cortical thinning in the E17 mouse forebrain. Expanding on those findings, here 

we observed that this prominent alcohol-related feature was substantially ameliorated by 

supplementation with the active methyl donor S-AMe, as cumulative normalization of the 

cortical length was seen in the Alc+SAM group. While previous studies have highlighted 

the ability of methyl-supplements to protect against gross morphological features like 

reduced brain weight and microcephaly (Xu, Tang et al. 2008, Thomas, Abou et al. 

2009), this is the first known report of methyl-supplemented neuroprotection of the 

cortical length. This was in contrast to the most similar examination to-date, performed 

with choline supplementation in six month old lambs (Birch, Lenox et al. 2016) and 
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which failed to observe improved brain volumetrics. However, the absence of regional 

measures (i.e. cortex) and the high-dose binge ethanol paradigm (with BECs twice that 

observed in this FASD model) greatly limit the comparative value of this study with our 

own. Another question that was uniquely addressed here was whether the neuroprotective 

influence of S-AMe was persistent beyond in utero exposure. We observed that in a 

distinct region of the frontal cortex (sensorimotor) at postnatal day 7 (~10 days after the 

final administration of experimental treatments), both alcohol and S-AMe maintained 

their impacts on the cortex. While FASD intervention models throughout the literature 

vary (methyl-donor pretreatment, simultaneous administration, and post-alcohol 

intervention), none to our knowledge have explored neural, molecular characteristics 

through the lens of lasting impact. As such, our study is the first to demonstrate that 

gestational intervention can produce enduring, protective effects on the most vulnerable 

cortical regions. Future longitudinal studies would need to be performed to resolve 

exactly how far into development these phenomena can detectably persist. Moreover, as 

human studies have linked cortical thickness of infants to long-term verbal learning and 

executive function (Nam, Castellanos et al. 2015), it would be interesting to investigate 

whether methyl-based cortical protection could translate into parallel behavioral 

(functional) outcomes within the same study population.  

 In Chapter 2, we set out to examine various potential underlying factors of 

alcohol-induced cortical thinning. Based upon on those findings, here we set out to 

answer whether S-AMe neuroprotection could be traced to each of these phenotypic 

parameters. This was particularly important given that FASD methyl-supplementation 

studies have not focused on corticogenic processes. Only one previous study was found 
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which examined cortical apoptosis. This study reported that prenatal alcohol increased 

apoptotic enzyme activity and apoptosis in the P0 rat, both of which were mitigated by 

folic acid (Sogut, Uysal et al. 2017). Here, we expand the neuroprotective repertoire of 

methyl-supplementation in the FASD cortex by presenting evidence that it mitigates 

alcohol-induced deficits of nuclear area, Tbr2, and NeuN expression, as well as abnormal 

Vglut1 upregulation. From this we can reasonably extrapolate that through the protection 

of multiple indicators (growth, migration, commitment, and functional maturity, 

respectively) S-AMe may collectively negate the deficits of alcohol on the laminar 

cortical structure.  

 Of course it should be noted that S-AMe neuroprotection was not ubiquitously 

observed. A survey of the protective and non-protective effects of methyl-

supplementation in FASD studies (Table B-3, Appendix B) supports the idea that the 

capacity of methyl donor neuroprotection is often limited. Here, a prominent marker of 

cell proliferation (Ki67) was not normalized by S-AMe supplementation during alcohol 

insult. Interestingly neuroprotection of mitosis at the SVZ/VZ has also escaped methyl 

supplementation strategies in a model of methyl-insufficiency (Craciunescu, Johnson et 

al. 2010). It might be the case that pre-mitotic cells of the neocortex are less responsive to 

methyl-supplementation. This would be fitting with lack of neuroprotection observed in 

the SVZ/VZ thickness though a more detailed investigation is required. Though 

proliferation is one of the major phenotypic processes of the cortex, it has been highly 

disregarded in methyl-supplemented alcohol studies to-date. Considering cortical 

neuroprotection in the context of structural preservation, the absence of protected 

proliferation is perplexing (diminished cell number plays a major role in cortical 
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thickness). One may consider that the use of Ki67 as an immunohistochemical marker of 

cell proliferation can perhaps be improved or complimented by a more precise molecular 

proliferation marker such as BrdU. Alternatively, as mentioned in Chapter 2, not all 

cortical cells originate from the neurogenic SVZ/VZ. A large portion of inhibitory 

interneurons proliferate at the medial ganglionic eminence which was not evaluated here. 

It is possible that proliferative neuroprotection may be observed elsewhere in future 

studies.  

3.4.2 Genomic and Epigenetic Normalization of FASD targets via S-AMe 

supplementation 

Despite the observation of cortical normalization across various processes, the 

question remains how methyl supplementation (metabolism) mediates phenotypic 

outcomes on a molecular scale. The most logical starting point is the consideration that 

methyl-supplementation can normalize the aberrant methyl metabolism demonstrated by 

alcohol (for a review see (Resendiz 2016)). Developmentally, alcohol may also alter the 

dynamics of maternal-fetal methyl transport, influencing metabolic and biochemical 

outcomes in the fetus. Previously, in a guinea pig model of FASD, chronic folic acid 

supplementation was protective against reductions in fetal liver folate (Hewitt, Knuff et 

al. 2011). Another study observed improvements in embryonic methyl metabolism 

through the evaluation of hyperhomocysteinemia (homocysteine accumulation results 

from the diminished conversion of the substrate to methionine by betaine-homocysteine 

methyltransferase (BHMT) and methionine synthase (MS)) (Shi, Li et al. 2014).  

Here, to evaluate the role of S-AMe supplementation on the normalization of 

methyl-metabolism, we investigated the enzyme conferring the active methyl donor form 
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S-AMe, MAT2A, in the fetal liver and brain. We found that in the fetal liver, alcohol 

predictably diminished MAT2A expression while S-AMe supplementation normalized 

the expression of the transcript. Because S-AMe metabolism is cyclical in nature (S-AMe 

byproducts are recycled into methionine), we can confidently extrapolate that these 

observations are indicative of cycle-wide trends. In the brain, MAT2A was not apparently 

sensitive to alcohol, though S-AMe supplementation increased MAT2A transcript levels 

(consistent with hepatic trends). Interestingly, this pattern was also observed in the 

Hewitt study, where liver folate but not brain folate was normalized in the presence of 

folic acid supplementation (Hewitt, Knuff et al. 2011). This increased hepatic sensitivity 

may be rooted in the fact that it is the predominant site of S-AMe production by MATs 

(Finkelstein 1990).  

It should be noted that though transcriptional activity of the enzyme was altered 

by the experimental treatment, no enzymatic activity assay was performed. In the future, 

it would be more accurate to supplement gene expression analysis with molecular 

enzymatic assays as ultimately, enzyme activity and not simply abundance is truly 

reflective of metabolic activity. Due to the indirect nature of our methyl-metabolism 

probe, we examined liver and cortex-wide DNA methylation as a secondary function of 

methyl metabolism (S-AMe availability determines, among other things, DNA 

methylation). Consistent with alcohol-diminished methyl-metabolism, we observed liver 

and cortex-wide 5mC hypomethylation, but not 5hmC hypomethylation. Moreover, 

though S-AMe supplementation demonstrated normalizing capacity for liver Mat2a 

expression, the treatment did not normalize alcohol-induced liver nor cortical 5mC 

hypomethylation.  As discussed in Chapter 2, the absence of a treatment sensitivity of 
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5hmC on a tissue-wide scale may be due to 1) the relatively lower abundance of the 

methyl mark (~1/10 of 5mC in the brain and even lower in the liver) and/or 2) the cellular 

specificity of 5hmC in more mature cortical cells (proportionately less than the 

neurogenic cells which make up the cortical column). 

  Regarding the normalizing capacity of S-AMe toward DNA hypomethylation in 

the neurogenic zones, ample evidence across non-alcohol associated hypomethylating 

conditions has previously substantiated the neuroprotective role of S-AMe (Cravo, Pinto 

et al. 1998, Tian, Zhao et al. 2012, Carlin, George et al. 2013). Here, the absence of a 

statistically significant difference between the Alc+S-AMe group and all controls may 

hint at a partially normative effect in lieu of a statistically significant differences between 

the Alc and Alc+S-AMe groups in some cases. This subtlety may perhaps be due the 

diversion of supplemented S-AMe across histone methylation, DNA methylation, and 

polyamine synthesis (Petrossian and Clarke 2011). Another consideration is that due to 

the context-specificity of DNA methylation across development, dietary methyl-

supplementation may similarly exhibit site or cell specific impact. Support for this can be 

taken from the relatively more defined nature of methyl-supplementation in gene-specific 

studies versus global tissue assays. For example, in the male offspring of alcohol-treated 

rats, POMC gene hypermethylation was prevented by choline supplementation (Bekdash, 

Zhang et al. 2013). Alternatively a tissue-wide assay of alcohol-treated rat offspring 

revealed a more complex function, where choline supplementation alleviated 

hippocampal hypermethylation but not cortical hypermethylation (Otero, Thomas et al. 

2012). The context specificity of DNA methylation normalization is also substantiated 

here. Though tissue-wide assays hint at the normalizing capacity of S-AMe, 
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immunohistochemical examination of the cortex (a more cell discriminatory method) 

distinctly demonstrates its role in the normalization of upper layer (SP and CP) DNA 

methylation (5mC). Clearly, the FASD methyl-supplementation literature to-date bears 

an emerging epigenetic view and much more investigation is required to unravel the 

dynamics of methyl supplementation and neuroprotective outcomes. Despite this, 

collective findings are building the case that like alcohol, S-AMe and other methyl 

donors do not unilaterally alter the epigenome. Future studies will have to address the 

mechanisms mediating this proposed methyl-selectivity of the genome and reconcile 

those with alcohol-sensitive epigenetic recruitment elements.  

One crucial aspect of alcohol-related neuroteratogenicity that was not thoroughly 

addressed in this study and which plays a critical role in DNA and histone methylation is 

the direct inhibition of alcohol on the activity of epigenetic enzymes. While donor 

supplementation significantly mitigated cortico-developmental deficiencies and to a 

degree methyl metabolism and DNA methylation, it is important to keep in mind that 

enzyme activity ultimately dictates the rate of methylation. Though technical constraints 

limited our assessment of enzyme activity, a genomic screen of DNMTs, TETs, and an 

HMT was performed. Interestingly our expression analyses revealed that while DNMT 

transcripts were not impacted significantly by alcohol or S-AMe, Tet3 and Ehmt2 (G9a) 

were substantially upregulated by alcohol and normalized by S-AMe. Our observations 

both corroborate and deviate from previous observations made in a choline-

supplementation FASD model. In that report, Ehmt2 expression in the mediobasal 

hypothalamus of adult male offspring agreed with our findings in the embryonic cortex, 

where methyl-supplementation normalized the upregulation of the HMT. Assessing 
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DNMT genes, however, the authors observed upregulation of the DNMT1 transcript but 

erroneously conclude that choline supplementation exerted a normalizing effect. In fact, 

their data shows that choline supplementation actually reduced the expression of DNMT1 

to levels significantly lower than all controls. Their assessment of the DNMT3a transcript 

further revealed that while no alcohol-effect was detected, the gene was significantly 

upregulated by both alc+choline and the choline control. Though significant variations in 

our models restrict our comparison (age, sex, brain region, methyl-donor), collectively 

our data suggest that perhaps HMT sensitivity to alcohol and methyl donors are more 

conserved across development and brain region while DNMTs may be more contextual in 

nature. Our report validates and extends the existing literature by presenting TET analysis 

and identifying Tet3 as a potential contributor to the DNA methylation landscape. 

Though our genomic analysis does not completely reconcile our cortex-wide DNA 

methylation outcomes, it certainly presents evidence that the normalizing potential of S-

AMe supplementation transcends phenotypic observations, complementing molecular 

aspects of methyl-metabolism and DNA methylation, the complexities of which remain 

to be unraveled.  

In continuation of our genomic assessment of S-AMe’s role on alcohol-

dysregulation, various critical neurodevelopmental targets were examined. While early 

pronerual genes did not reveal significant genomic sensitivity to either experimental 

treatment, an important network of cortical-specification genes was demonstrably 

impacted by alcohol and S-AMe. Because nearly all examined genes have previously 

demonstrated developmental sensitivity to alcohol across the literature, it is possible that 

our observational timepoint was beyond the window of transcriptional impact for the 
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early pro-neural genes. For example, Ascl1 and Ngn1 play a role in regionalization of the 

cortical neuroepithelium and early neural differentiation (Ma, Sommer et al. 1997). 

Though they go on to play developmental roles in post-mitotic neurons, peak expression 

occurs around E12 (Castro, Martynoga et al. 2011).  Ascl1 and Ngn2 subsequently play a 

role in radial migration and deleterious effects of Ascl1 (up to E14.5) bear demonstrable 

phenotypic consequences (reduction of radial glial migration) in late gestation (Pacary, 

Heng et al. 2011). These results suggest that genomic cortico-developmental changes 

may precede phenotypic presentation and perhaps explain why early proneural gene 

networks are not seemingly responsive to the experimental treatment transcriptionally at 

E17.   

In that vein, we assessed a network of cortical specification genes with mid-late 

peak embryonic expression. These included cotrico-cortico and subcerebral projection 

genes including Sox5 and Ctip2, which, though peak in expression ~E14, continue to be 

genetically relevant as late as P0 (Lai, Jabaudon et al. 2008). Ablation studies also reveal 

that though peak expression of Satb2 (a callosal projection gene) occurs early in 

corticogenesis, it maintains functional axonal guidance capacity as far as E18.5 (Alcamo, 

Chirivella et al. 2008). Finally, the Fezf2 gene plays an extremely dynamic role 

throughout neural development. Expressed as early as E8.5, it plays an early role in 

rostrocaudal patterning and progenitor differentiation. In late gestation, the transcription 

factor maintains a prominent role in subcortical axon pathfinding and uniquely, maintains 

its expression into adulthood where it regulates motor cortex circuitry (Tantirigama, 

Oswald et al. 2014). We indeed found that the subcerebral axonal guidance factors Ctip2 

and Fezf2 were significantly altered by alcohol. Of these, only Fezf2 was significantly 
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normalized by S-AMe supplementation. These results (in addition to the observed 

upregulation of Vglut1) appear to support our proposition that genomic presentation of 

environmental influences may rely on temporal expression, a factor that should be 

considered when genomic elements are investigated in the future. To further support this 

idea, it would be necessary to investigate the early proneural gene network at an earlier 

embryonic time point. Ascl1, for example, does demonstrate both transcriptional and 

epigenetic sensitivity to alcohol in cultured neural stem cells (Lo, Choudhury et al. 2017). 

Our genomic findings also echo an earlier theme which paints S-AMe supplementation as 

possessing a more potent intervention capacity in mature versus early stage cells and 

transcripts.  

As discussed in the epigenetic gene findings, there remains a pressing need to 

understand what makes a gene more liable to alcohol or S-AMe sensitivity. If the answer 

were strictly surrounding DNA or histone methylation mechanisms, it is likely that 

normalization of epigenetic methylation and the conferring enzymes would be prominent 

and neuroprotection ubiquitous-a phenomenon that has eluded a significant portion of all 

methyl-supplement FASD studies, including our own. The more likely scenario is that 

alcohol-induced neuropathy in the fetal organism, though largely rooted in the metabolic 

action of alcohol and methyl donor production, diverts into other pathways beyond the 

reach of restorative supplementation. For example, alcohol metabolism produces harmful 

reaction oxygen species (ROS), the likes of which play roles as second messengers in 

signal transduction, potentially altering gene expression and post-translational 

modification of proteins (Covarrubias, Hernández-García et al. 2008). S-AMe also plays 

a role in the production of glutathione S-transferase, an enzyme critical for the reduction 
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of harmful ROS’ (Tchantchou, Graves et al. 2004)). The interaction of S-AMe and ROS’ 

is just one example of how S-AMe mediated alcohol neuroteratogenicity may utilize non-

epigenetic pathways to confer phenotypic outcomes, reconciling why aberrant DNA 

methylation cannot fully account for the myriad of alcohol-related biological disruption. 

3.4.3 Identification of a Novel, Functional DMR in the Cortical Specification Gene Fezf2 

Ultimately, the epigenetic footprint of alcohol and S-AMe as a supplementation 

strategy was meaningful and far-reaching, presenting prominent structural, molecular, 

and to some degree transcriptional neuroprotection. Combined with the normalizing role 

of S-AMe supplementation on methyl metabolism, layer-specific DNA methylation and 

epigenetic correlates, we attempted to answer whether we could define a novel 

differentially methylated region (DMR) which could substantiate the hypothesis that 

DNA methylation plays a regulatory role in gene expression and the molecular 

transduction of environmental impacts at the nucleotide level. The cortical specification 

gene Fezf2 was selected for proof of concept due to its dynamic roles throughout cortical 

development and it ties to abnormalities in cortical structure and reduction of forebrain 

size (Chen, Wang et al. 2008, Zhang, Li et al. 2014).  

The characterization of this alcohol and S-AMe sensitive target was informed by 

previous literature reporting conserved regulatory regions critical for the expression of 

the gene in cortical progenitors and for subcerebral projection neuron identity and 

connectivity (Shim, Kwan et al. 2012). Additionally, we examined a region of the 

promoter around the TSS which shares several overlapping transcription factor elements 

and is essential for expression. We hypothesized that DMRs would be more likely 

observed in gene regulatory regions and as such, we included an exonic region 
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downstream of the TSS for contrast.  We found that alcohol sensitivity was present at 

both the promoter and enhancer 434, where alcohol hypermethylated the region. This was 

in agreement with our observations of 5mC in the upper layers charged with production 

of subcerebral projection neurons. While S-AMe supplementation did not normalize 

DNA hypermethylation at the promoter, it did so at the critical enhancer. On the other 

hand, the exonic region demonstrated no statistically significant response to either 

alcohol or S-AMe, supporting the notion that DMRs may be confined to regulatory gene 

regions. As Eckler et al propose, however, the enrichment of Fezf2 (and similar 

specification genes) at the upper cortical layers suggests the existence of repressor 

sequences to restrict its expression to the appropriate cells (Eckler et al 2014). How and 

where these are presented in the DNA methylation landscape requires future 

investigation. 

Finally, the absence of 5hmC-specific methyl sequencing prevents us from fully 

understanding the DNA methylation landscape of Fezf2. For example we cannot account 

for existing 5hmC within the gene body (i.e. exons) or other regions which may be 

differentially expressed in response to alcohol or S-AMe. Additionally, while two 

important regulatory regions were presented, there remains a substantial amount of 

uncovered loci which could reveal a more complicated relationship between the 

occurrence of DMRs and gene expression. Advances in epigenetic tools, including 

TALEN technology now allow for the site-directed manipulation of epigenetic effectors, 

including DNMTs and TETs. Their use in verifying the functional contributions of 

suspected regulatory DMRs in the future will be crucial to our understanding of that 

relationship. 
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3.4.4 Summary and Conclusions 

 In this study we observed that alcohol-mediated disruption of cortical 

development in late gestation was widespread, reaching elements of cellular maturity, 

migration, fate-specification, and synaptic plasticity. These observations were correlated 

with the alteration of important epigenetic regulators. Consequently, alcohol impacted 

both global and layer-specific abundance of the DNA methylation marker 5mC, which 

has been largely supported as a transcriptional influence in neural development. How 

alcohol achieves molecular outcomes was the major investigative course herein. 

Particularly, the role of alcohol metabolism on the methyl metabolism and DNA 

methylation biogenesis pathways provided rationale that the methyl-donor S-AMe could 

be culpable. As such, we examined whether supplementation of prenatal alcohol with S-

AMe could mitigate epigenetic dysregulation and improve developmental outcomes. 

 We found that S-AMe was a normalizing factor across structural, cellular, and 

morphological aspects of development in the cortex. Moreover, the protective nature was 

detectable at the level of methyl metabolism and DNA methylation as evaluated in a 

layer-specific manner. Probing deeper into the genomic level, we found that both alcohol 

and S-AMe neuroprotection were detectable at nucleotide resolution. Apparently 

selective for regulatory regions, differential methylation patterns of the two external 

stimuli dually impacted gene expression, supporting the regulatory nature of the DNA 

methylation program in the developing cortex.  

 Though prominent, S-AMe neuroprotection was not as widespread as alcohol’s 

impact. In many cases, S-AMe supplemented groups showed normalizing trends but did 

not achieve significance statistically, reflecting a probable muted action of S-AMe in 
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some respects. This limited capacity of methyl supplementation strategies (relative to 

alcohol) has been a feature of much of the FASD literature. Perhaps rooted in the non-

exclusive nature of S-AMe as a DNA methyl donor (it is a critical donor for histone 

methylation and polyamine synthesis), supplemented S-AMe may be diverted toward 

other biological pathways. Another very likely scenario is that alcohol metabolism 

inflicts damage to the cell through non-epigenetic pathways. For example, the production 

of ROS and mitochondrial dysfunction by alcohol has been shown to induce oxidative 

damage in the brain. Overall, the embryonic cortex appears to be a highly responsive 

target of both alcohol and methyl supplementation and more importantly, demonstrates a 

rectifiable nature. This is substantial as a significant population is (knowingly or 

unknowingly) at risk for some level of gestational alcohol exposure. 

 A common observation throughout the evaluation of our findings was that not all 

cell types, phenotypes, or genes responded equally to methyl supplementation. 

Consistently, a pattern emerged pointing to mature cell types and late-specified genes as 

more susceptible to neuroprotection (versus proliferating neruogenic cells, early genes, 

etc.) at the examined age. The selective nature of some genomic regions versus others 

was similarly apparent, indicating that, perhaps, intrinsic context selectively defines the 

response to S-AMe. At this time however, it remains unclear if and how genome context 

could dictate environmental sensitivity of a gene or cell. Additionally, it is not known 

how this mechanism may register stimuli differentially. Another unanswered question 

features the reconciliation of unilateral alcohol and methyl supplementation effects at the 

metabolic level with bivalent outcomes at the genomic, epigenetic, and phenotypic level. 

For example, alcohol has consistently demonstrated an inhibitory role, and methyl 
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supplementation an enhancing role in the methyl metabolism cycle. Examination of DNA 

methylation across various contexts, however, describes the simultaneous up and 

downregulation of various alcohol targets. DNA methylation follows suit, displaying 

hyper and hypomethylation in a gene or cell-dependent manner. The unknown 

mechanisms at work conferring the bivalence of alcohol are apparently also at work 

communicating the normalizing action of S-AMe, as directionality of its effect was 

almost always alcohol-dependent. Importantly, here we observed that S-AMe 

consumption (no alcohol, ad libitum) in and of itself did not overstimulate the production 

of DNA methylation (tissue or cell wide) or negatively impact gene expression or 

phenotypes throughout the cortex. This is important because several lines of evidence 

have demonstrated that over-consumption of dietary methyl precursors can be detrimental 

throughout development (Pickell, Brown et al. 2011, Mikael, Deng et al. 2013). This 

finding hints that alcohol-driven epigenetic dysregulation may not be strictly dictated by  

methyl-donor insufficiency, since unrestricted methyl supplementation observed 

normative epigenetic, genetic, and phenotypic  outcomes. A more thorough investigation 

in the future should reconcile enzymatic activity with the exposure patterns observed 

here. Regardless, our findings speak to the tolerability of S-AMe at this dosage and 

support its potential utility as a therapeutic in developmental disease.  
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COMPREHENSIVE DISCUSSION 

 

In this Dissertation we describe that DNA methylation, as a principle epigenetic 

mechanism, is a dynamic and cell-unique landscape. Developmental study in the 

cerebellum and embryonic cortex revealed that no two cell types experience the exact 

presentation of DNA methylation at any given time. Rather, cells may both acquire and 

lose DNA methylation in unique patterns, or, “programs” that align with their 

developmental events. In support of this phenomenon, epigenetic correlates, including 

methyl-DNA binding proteins, compliment these DNA methylation programs. More 

importantly, developmental DNA methylation may be a crucial component regulating 

gene expression. For example, we demonstrated that key Purkinje cell genes reflect cell-

wide DNA methylation trends at the genomic level. While simultaneous expression 

change was observed, it remains unclear whether DNA methylation precedes expression 

and developmental processes (supportive of DNA methylation as a developmental 

regulator) or whether DNA methylation is a by-product of cellular development. This 

examination also shed light on some important DNA methylation dynamics, including the 

mutual exclusivity of 5mC and 5hmC within the nucleus during the first postnatal week, 

and the gradual overlapping presentation that likely reflects genome-wide DNA 

methylation re-distribution. Additionally, throughout the cerebellum and in the 

embryonic cortex, we observe 5hmC as reliably strengthened in maturing cell types.   

To build evidence for DNA methylation as a regulatory mechanism we 

investigated DNA methylation landscapes in an environmentally-mediated disease-state 

which has been transcriptionally and phenotypically linked to wide-spread brain 
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abnormalities for decades. A mouse model of FASD not only confirmed cortex-wide 

neuropathy (including reduced proliferation, migration, and maturation) but also 

demonstrated cumulative manifestation of the environmental insult at a structural level 

which could underlie a host of cognitive deficits attributed to FASD in later life. 

Interestingly, these events were accompanied by parallel alteration of the cortical DNA 

methylation program, further supporting its sensitivity to environmental exposures and 

relevance as a developmental device. This study importantly showed that though the 

impact of alcohol was identifiable from the tissue to the gene level, the DNA methylation 

profile of prenatal alcohol exposure was divergent across cell types. This recurring 

observation reiterated the cell-specificity of the developmental DNA methylation 

program and implies it as a mechanism that determines how a cell or loci may uniquely 

internalize environmental inputs.  

In order to investigate how alcohol as an external signal could act upon the DNA 

methylation signature (and consequently, gene expression), we exploited a known methyl 

metabolism deficit induced by alcohol. Methyl metabolism has been reported to be 

crucial for early brain development and insufficiency of various metabolites producing 

the active methyl donor S-AMe have been linked to neuropathy and cognitive deficits 

similar to FASD. Because S-AMe is the sole donor for DNA and histone methylation, our 

previous observations of alcohol dysregulation of DNA methylation prompted us to 

examine whether manipulation of S-AMe in the presence of alcohol could inhibit its 

neuroteratogenicity. We found that indeed S-AMe was an effective (though not 

ubiquitous) protector against alcohol-induced structural and phenotypic deficits in the 

cortex. This provided support for our proposition that alcohol as an environmental insult 
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utilized epigenetic pathways to communicate its detrimental action at the cellular level. A 

missing piece of the picture, genomic analysis was subsequently undertaken to confirm 

the regulatory nature of DNA methylation and the environmental sensitivity of relevant 

genomic regions to both detrimental and neuroprotective external stimuli. Through this 

analysis we found that a critical gene involved in cortical fate specification and axonal 

guidance was hypermethylated at regulatory promoter and enhancer sites, and 

simultaneously exhibited transcriptional fluctuations. S-AMe’s protective action was 

once more observed at the nucleotide and transcriptional level, indicating that the same 

dynamics at work in the cellular landscape of the embryonic cortex could be 

demonstrated at the genomic level.  

While the limitations of the work are detailed throughout, much understanding 

was gained from these studies, individually and collectively. The major and recurrent 

themes included the cell-unique nature of DNA methylation patterns. Recall from 

Chapter 1that evolving DNA methylation landscapes have been previously characterized 

during neural specification. The evidence described here confirms those observations in 

vivo and proposes that the DNA methylation program, by shaping the cellular 

transcriptome, may underlie cell-uniqueness.  

Through normal and disease states, our work also highlights the regulatory 

capacity that DNA methylation possesses during development. Beyond spatial, temporal, 

phenotypic, and genomic correlation, DNA methylation analysis at the nucleotide level 

provides evidence that even minute methyl signatures (at critical regions) can suffice to 

alter the course of gene expression. Of course, this proposition requires expansive 

confirmation in the form of multiple genes, gene regions, and 5mC/5hmC discriminatory 
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sequencing. Finally, in addition to its emerging regulatory role, DNA methylation is 

capable of internalizing environmental information, positioning the mechanism at the 

forefront of environmentally-driven disease. Interestingly, here we illuminate the dual 

nature of this external communication mechanism, describing that the DNA methylome 

can be driven bimodally by distinct stimuli. Though the particulars of the 

alcohol/methyl/epigenetic triad likely span beyond the limits of methyl metabolism (i.e. 

non-epigenetic elements, alcohol-mediated oxidative stress, enzyme activity, etc.), the 

epigenetic and phenotypic outcomes of alcohol and S-AMe share bilateral characteristics. 

Again, this diversity is likely dictated by genomic elements beyond our current 

understanding but nonetheless demonstrate the sensitivity and rectifiable nature of the 

DNA methylation program in development. The prominent role we have laid out implies 

that normal neural development is likely contingent upon undisrupted epigenetic 

progression. While not likely all-encompassing, DNA methylation may shed some light 

on developmental disease etiology across various environmentally-mediated states in the 

future.  

Epigenetics as a mechanism of organismal diversity has filled a long-held void 

which failed to reconcile intrinsic biological factors with environmental exposures. 

Though the precise molecular mechanisms of environmental transduction have eluded 

researchers, today, epigenetic modifications like DNA methylation are offering answers. 

Uniquely positioned at the intersection of environmental input and epigenetic 

biochemistry, alcohol as an environmental pressure during development offered a 

window by which to view the molecular transduction of environmental inputs (Figure 

43). Through this modality we probed the dynamics of epigenetic mechanisms in 
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response to the environment. The evidence-based concepts built here push forward a 

better understanding and establishment of epigenetic states or signatures which are 

critical to transcriptional regulation, phenotypic, and functional outcomes. Using what we 

learned here, the future of DNA methylation in development promises a wealth of 

possibilities for the landscape as a diagnostic tool. Further, epigenetic editing and 

epigenetic-altering compounds may become useful therapeutic tools in developmental 

disease. 
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FUTURE DIRECTIONS 

 

 The notion that DNA methylation bears capacity as a developmental regulator, 

though continually mounting has taken a back seat in recent years to a shifting focus of 

the field toward the examination of the mechanistic particulars of the feat. As such, the 

future of DNA methylation research will extensively feature genomic methyl profiling 

and targeted manipulation. Methyl profiling will be crucial toward our understanding of 

cell and gene-unique programs as high-throughput assays could clarify the cell-unique 

methylation patterns down to the level of the cellular transcriptome. Additionally, 

methyl-sequencing of disease experiencing patients may aid in the development of 

biomarkers for environmentally-driven disease (a tool already heavily employed in 

cancer and emerging in alcohol disease) (Wittenberger, Sleigh et al. 2014, Liu, Marioni et 

al. 2016). In fact, the use of methyl-profiling of the genome in disease is a crucial 

element toward our understanding of methylation and expression “thresholds” which 

trigger the onset of a disease phenotype. This will be particularly relevant in diseases 

driven by “Latent Early- life Associated Regulation”, which proposes that epigenetic 

landscapes in the somatic cells can enduringly carry early life “experiences” in a 

cumulative fashion which may or may not eventually achieve pathological thresholds 

(Lahiri, Maloney et al. 2009, Maloney and Lahiri 2016). The value of such investigation 

in FASD is extremely relevant as many exposed offspring, through subtlety of early life 

phenotypes, escape diagnosis but maintain a propensity for neural and behavioral deficits 

in later life. Finally, DNA methylation profiles spanning larger regions of the genome 

will additionally clarify patterns which may underlie environmental propensity. 
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Ultimately, the goal is the utilization of DNA methylation signatures as quantifiable 

predictors of life outcomes. 

On the other hand, epigenetic manipulation may be used in vitro to either 

challenge the prevailing theory of DNA methylation as a transcriptional regulator or to 

pinpoint obligatory elements. Further, these tools tackle the “chicken versus egg” 

dilemma that has plagued the field of epigenetics for years. Ongoing work in our lab has 

demonstrated the functionality of epigenetic editing in neural stem cells and confirmed 

the critical nature of DNA methylation at the regulatory promoter of the pro-neural Ascl1 

(Lo, Choudhury et al. 2017). Though the subfield of epigenetic editing has only recently 

taken flight, the strategy of engineering DNA-binding domains to manipulate and 

normalize disease-modified landscapes remains a long-term goal.  

 Reflecting on our current study, recurrent gaps for future consideration included 

the need for a better understanding of not just genomic methylation landscapes, but also 

the interaction of these sites with the appropriate downstream transcriptional elements 

(i.e. direct transcription factor binding, methyl-binding proteins, RNA polymerases, etc.). 

Excitingly, emerging tools including affinity assays and SILAC-based proteomic analysis 

and high-fidelity Fluorescence Lifetime Imaging based Forster Resonance Energy 

Transfer (FLIM-FRET) are beginning to unravel the mechanisms by which sequence 

elements like DNA methylation either recruit or prohibit binding and influence 

transcription (Bartke, Vermeulen et al. 2010, Chen, Damayanti et al. 2014), clarifying our 

understanding of the functional associations of the DNA methylome. These tools will 

likely prove equally useful in our understanding of inter-epigenetic frameworks. While 

not detailed here, cross talk between epigenetic elements (i.e. DNA methylation, histone 
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methylation, microRNAs) is likely prominent and will further add to the complexities of 

DNA methylation as a regulatory mechanism. It will be crucial in advanced epigenetic 

study, to consider the multitude of epigenetic mechanisms which may converge on a 

regulatory region to confer meaningful change.  

 Finally, the promising structural and molecular neuroprotection of S-AMe as a 

dietary intervention strategy beckons further optimization in high-risk pregnancies such 

as FASD. Some literature has proposed that the co-administration of methyl-

supplementation and methyl metabolism co-factors (i.e. vitamin B, zinc, omega-3) may 

enhance the protective reach of methyl precursors, though others have found that this 

strategy is not consistently optimizing (Seyoum and Persaud 1997, Xu, Li et al. 2006, 

Kusat Ol, Kanbak et al. 2016, Sogut, Uysal et al. 2017). Future study of methyl-

intervention across methyl-insufficiency associated developmental disease should further 

probe the differential outcomes of variable methyl supplement source (i.e. folic acid 

versus choline or S-AMe), dose, administration window (i.e. pretreatment versus post-

exposure intervention, etc.), and/or the compound action of multiple donors and co-

factors. Moreover, the identification of novel nutrient-sensitive differentially methylated 

regions (ns-DMRs) here should be followed by the investigation of additional ns-DMRs 

in nutrient-affected developmental disease, as they offer a wealth of opportunity for the 

safe and effective use of dietary intervention which may rival current therapeutics. 
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Figure 43. Environmental signal integration is mediated by methyl metabolism and 

epigenetic regulation of the genome 

Conceptual illustration depicts the dual integrative nature of the methyl metabolism cycle 

toward dietary factors including alcohol and dietary folic acid. The output of the cycle, S-

AMe, is the obligatory donor for DNA and histone transmethylation (middle). DNA and 

histone methylation (along with other epigenetic factors) influence the structure of 

chromatin and, ultimately, the transcription factors which dictate gene expression and 

confer cellular phenotypes. TF: Transcription factor, Me: Methylation, Me-OH: 

Hydroxymethylation, PcG: Polycomb group repressor complex, RNA Pol: RNA 

Polymerases, NSCs: Neural stem cells 
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APPENDIX A 

 

Figure A-1. Cortical Length and NeuN Distribution Across the Cortical Column at P7 

Representative cortical columns of the postnatal (P) day 7 sensorimotor cortex across 

groups stained for the nuclear neuronal antigen NeuN. The cortical column at P7 

maintains a sensitivity to alcohol at the sensorimotor region, where alcohol-induced 

cortical thinning persists. Offspring of groups supplemented with S-AMe are protected 

from cortical thinning. Numerals denote the approximate borders of the six cortical 

layers.  
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Figure A-2. The transcription factor Fezf2 is decreased by alcohol in the cortical plate 

and normalized by S-AMe supplementation 

(A) Representative images of the cortical plate reflecting the immunoreactivity of the 

Fezf2 protein (B) Relative expression of Fezf2 mRNA across cortical tissue samples at 

E17 showed a decreased expression of the transcript in the alcohol, normalized by S-

AMe supplementation (C) A similar pattern was found in the quantitation of Fezf2 

immunoreactivity in the CP. All data are presented as Mean±SEM. *p≤0.05, **p≤0.005; 

CP: cortical plate. N reflect the number of independent litters represented in each group 
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APPENDIX B 

 

Primers used for qmethyl study

Name Sequence Annealing temp

Gsbs_promoter_F ATCATTGTGGTGTCCTGCAA 62

Gsbs_promoter_R CCAGTTGCTGGTGAGAAGGT 62

Gsbs_genebody_F CCTGTAAGACCCGACACCAT 62

Gsbs_genebody_R TATGAAGAGCTGGGCCTGAT 62

Itpr1_promoter_F TCAGACACAAGTTCGCAACC 60

Itpr1_promoter_R GCTTCAGCAGAACATCCACA 60

Itpr1_6835-7035_F CCACCCTCCCCTGTCTATTT 62

Itpr1_6835-7035_R GCAGAGACCAGGATGTAGGG 62

Itpr1_1481-1717_F CGGTCCAGAATGCTCTGTTT 62

Itpr1_1481-1717_R GCACAGTCAATAGGCGTCAA 62

Itpr1_8480-8753_F ACCCACATCACCTTCCTGAG 62

Itpr1_8480-8753_R TCAGCAATCGAGAGAGTCCA 62

Grid2_5625-5953_F CATGTCTGGTGTCTGGCATC 62

Grid2_5625-5953_R TGTTCCTTTCTGGCAGTCCT 62

Baiap2_4867-5122_F GTTGCTGCTCTTGGTCTGGT 62

Baiap2_4867-5259_R CTCAGACACCCCTTCCTGTC 62

Cacna1g_6602-7380_F TCTGCTTCATGCAGGCTCTA 62

Cacna1g_6602-7380_R CATCTCCTTCCTCCTCATCG 62

Cacna1g_0388-0643_F AACAAGATGGGAGGGGAGAC 62

Cacna1g_0388-0643_R TGTGGTGGAAGAACAGCAAG 62

Cacna1g_4907-5732_F TCTTGGTGTTCAGAGGCAGA 62

Cacna1g_4907-5732_R GCTTACCCTGCAGCCAAGT 62

Cacna1g_6856-7487_F GGCTGTGGGTACCAGAGAAA 62

Cacna1g_6856-7487_R ACCCCATCTTGGCAACTG 62

Atp2a3_4894-5532_F CCTGGGAAGCTAGGAAAACC 62

Atp2a3_4894-5532_R AGAGACAGACCTGGGGTGAA 62

Syt2_3350-4406_F ATGTGGATTAGGGAAGATCAGCAT 62

Syt2_3350-4406_R GAGGGACAGTGGACTTCTATTGGT 62

Nrxn2_7997-8822_F GGATCAGGTCAGAAATGTGACAAC 62

Nrxn2_7997-8822_R GCTCACTCATCCTTCAAGGTCTAA 62

Nrxn2_7791-8396_F TGGATTGTTCTATAGGATGGCTCA 62

Nrxn2_7791-8396_R AGAAAACACAGATAAAGGGCTTGG 62

Rgs8_6651-7232_F TCTTTAGGTCCTGGTCCTCTTGTC 62

Rgs8_6651-7232_R GCAGGAACACACACACAAGTACAG 62

Rgs8_7941-8550_F CTCAGTCTCCTAAGAACCCATCCT 62

Rgs8_7941-8550_R TCACCTCAAAGTCTTCACCTCTTG 62

Rims1_6189-6687_F CACACACAATCCTGATGTGAAGAC 62

Rims1_6189-6687_R AGAGCACCAGTGTAAGTGGAGAGA 62

Rims1_2011-2429_F TGGCTAAGTAGGGTTATTTTACCTTC 62

Rims1_2011-2429_R AGGACTGCTTGACAGTCAGGTTTC 62

Rims1_880-1414_F CTAGAGCAAAGAGGATGGAACACA 62

Rims1_880-1414_R CTGACTGCTACACCAATCTTCAGG 62

Fgf14_5025-5307_F TAGAGCCCGTTACTTGGTTCCTAC 62

Fgf14_5025-5307_R CCATTTACTGAAAACACCAAGTGC 62

Gene Assay ID

Amplicon Size

(bp)

Cacna1g Mm00486572_m1 85

Grid2 Mm00515053_m1 86

Syt2 Mm00436864_m1 64

Rgs8 Mm01290239_m1 68

Gapdh Mm99999915_g1 107

TaqMan gene expression assay
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Table B-1. List of Primers for Q-methyl Study and Taqman Probes 

F: forward primer; R: reverse primer. All TaqMan gene expression assays were obtained 

from Applied Biosystems (Thermo Fisher Scientific) and are labeled with the appropriate 

catalog number. 
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Table B-2. Developmental Gene Regulation of Purkinje Cells and Cerebellar Synaptic 

Targets 

Developmental gene expression changes in Purkinje cell characteristic and synaptic 

genes. A. Table of genes predominantly expressed in Purkinje cells of the cerebellum and 

their expression levels at comparable stages of postnatal development. B. Table of genes 

playing prominent roles in synapse formation in the brain and their expression levels at 

comparable stages of postnatal development. Data compiled from CDT-DB database 

(http://www.cdtdb.neuroinf.jp/CDT/Top.jsp) and Szulwach et al 2011
 

 

http://www.cdtdb.neuroinf.jp/CDT/Top.jsp
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Table B-3. Methyl-supplementation Strategies Across Developmental Alcohol Models.  

A comprehensive summary of methyl-supplementation studies performed across various 

models of developmental alcohol exposure. Categories include acute and chronic 

embryonic exposure, postnatal exposure, studies focued on behavioral outcomes, and 

human studies. E: Embryonic Day, GD: Gestational Day, PCD: postconception day, P: 

Postnatal Day, C:Choline, C(Cl): Choline Chloride, SAMe: S-adenosylmethionine, FA: 

Folic acid, CDP-C: CDP-Choline, VB12:vitamin B12, MTHF: 5-methyltetrahydrofolate, 

Met: L-methionine, Bet: Betaine, O-3: omega-3 fatty acid, Zn: Zinc 

Alc. Frequency Form Met. Frequency Protective

Acute, Embryonic

300mg/100mL media (E9.5-E11.5) S-AMe 0.05-3mM (E9.5-E11.5) embryopathic effects

2.0-8mg/mL (GD8.5-10.5) FA 0.01mmol/L-1mg/mL (GD8.5-10.5) head length, embryo morphology, microcephaly, neural folds; miR10a; Hoxa1 mRNA

4.0 mg/ml ethanol, (GD8.5-10.5) FA/VB12 FA (10−5, 10−4 mol/l) or VB12 (10−6, 10−5 mol/l), GD8.5-10.5 embryopathy, NTD defects

1-4% MTHF microinjection, N/A neurocristopathies; hyperhomocystemia

two doses, 0.0 15 ml/g (PCD 8) FA 5 mg/ml at 1 µl/h (PCD 6-7) N/A

single dose 25% (E7 or E8) Met 70 -150 mg/kg (E7 or E8) cleft palate, limb malformation

Chronic, Embryonic

6.4% (E6-E12 liquid diet) Met+ Zn Zinc (15mg/kg)+ Met (200mg/kg), E6-12

2.4%-7.2% (E6-E22 liquid diet) Bet+FA Bet 1% w/v +FA 60mg/kg (E3-P0) cortical neuroapoptosis, apoptotic proteins

3-4g/kg (GD2-68 (5x week)) FA 2mg/kg, (GD2-68 (5x week)) liver folate

5.0 g/kg (GD6-15) FA 60.0 mg/kg (G1-16) microcephaly, energy production, signal pathways and protein translation genes

5.8g/kg (GD9-birth) cocktail 3SZM methyl diet (2 wks preconception-gestation) embryonic weight, prenatal mortality, vertebral malformations

Postnatal

2.5 g/kg (GD4-41) C 10 mg/kg (GD4-148) N/A

3.0 g/kg (P2-P10) C 100mg/kg (P2-P20) hipp hypermethylation, ameliorated by Choline supp

6.7% (G7-G21 liquid diet) C 642mg/L liquid diet (G11-birth) POMC and histone hypermethylation, DNMT1 and MeCP2

5.25 mg/kg (P4-P9) C 100 mg/kg (P4-30) hyperactivity and increased M2/4 receptor density

6.0g/kg/day (GD5-20) C 250mg/kg (G5-20) brain weight, behavioral outcomes

35%, liquid diet CDP-C 100mg (P0-P21) Pukinje cell maturity

4.8-7.2% (E6-P21 liquid diet) Bet+ O-3 30 mg/100 g (dam wt.),E3-P21 apoptosis and neurodegeneration

Behavioral

5.25 g/kg (P4-9) C 100 mg/kg (PD 11-20, PD 21-30, or PD 11-30) spatial memory, learning

6.0 g/kg (P5) C(Cl) 10 μL of 18.8 mg/ml (P1-5  and P6-20) balance and coordination

5.25g/kg (P4-P9) C(Cl) 100 mg/kg (PD 40 to 60) working memory

5.25 mg/kg (P4-P9) C 100 mg/kg (P10-30) trace eyelblink conditioning deficits

35% (GD 6-20) C(Cl)  25 mg/ml (PD 2 to 21) visuospatial discrimination

6.6 g/kg (PD4-9) C(Cl) 18.8 mg/kg (PD4-30) hyperactivity, spatial discrimination reversal learning

6.0 g/kg (P4-9) C(Cl) 10, 50, or 100 mg/kg (PD 10-30) open field hyperactivity, spatial learning

Human

"heavy drinking" C 750 mg, daily (Avg. 19 weeks-birth) Bayley Mental Development Standard Score

variable C 750 mg, daily (Avg. 19 weeks-birth) hear rate during visual habituation

variable C 500mg, daily (9 mo) long-delay memory

high exposure C 625mg/d (6 weeks) N/A
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Table B-4. Table of Methyl-pyrosequencing Primers and Taqman probes 

All proprietary primer sequences were obtained from Qiagen and are labeled with the 

appropriate catalog number. F: forward primer; R: reverse primer (biotinylated); 

S:sequencing primer. All TaqMan gene expression assays were obtained from Applied 

Biosystems (Thermo Fisher Scientific) and are labeled with the appropriate catalog 

number 

Primers used for methyl pyrosequencing study

Name Sequence Annealing temp

Ascl1_05_F Qiagen, PM00219695 52

Ascl1_05_R Qiagen, PM00219695 52

Ascl1_05_S Qiagen, PM00219695

Ngn1_Promoter1_F TTTTAGGAGGGGGGTTGG 57

Ngn1_Promoter1_R ACCCACCTCAAAACCCCTTAAATAC 57

Ngn1_Promoter1_S CCTCCCTAACCACCT

Ngn2_Promoter1_F GGGAGGAGGTGGTTAGGGA 55

Ngn2_Promoter1_R ATCAACTCCTATAAACACCAAATATAA 55

Ngn2_Promoter1_S GAGGTGGTTAGGGAG

Syt2_02_F Qiagen, PM00208894 55

Syt2_02_R Qiagen, PM00208894 55

Syt2_02_S Qiagen, PM00208894

Fezf2_Promoter_F GGGTTAAGGGATATTTTGGTGATTAGA 54

Fezf2_Promoter_R AACCCAAACCTAAACAAAATTCCT 54

Fezf2_Promoter_S GGGGTTTTTTGAGGT

Fezf2_Exon1_F GGGAGTTAGTTGTTTTTTTTAAAGTTTGAG 55

Fezf2_Exon1_R ACCATACAACCTATCTCTTCTATCACATTT 55

Fezf2_Exon1_S GGGGGAAAGTAGGGTTT

Fezf2_Enhancer434_F GTTGGGAAATAAATAATTTTAAGGTAGTTG 53

Fezf2_Enhancer434_R TCTTTTCTTCCTATCCCAAACAAT 53

Fezf2_Enhancer434_S AGTTTGTTTTTAGAAATATGTTA

Gene Assay ID Amplicon (bp)

Ascl1 Mm03058063_m1 67

Ngn1 Mm00440466_s1 82

Syt2 Mm00436864_m1     64

Fezf2 Mm01320619_m1      76

18S Mm03928990_g1 61

TaqMan gene expression assay
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Figure 27

HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

A 0.283 0.354 1.125 14 13 13 13 7 10.0214 11.3462 10.5692 9.9692 10.3943

0.51143 0.28071 0.66152 0.548 0.74228

B 0.391 0.227 1.517 10 10 10 10 13.1269 12.3816 12.0206 13.275

0.56273 0.50341 0.46022 0.40446

C E7 13 12 16.3382 15.8995

0.181 0.685 0.169 0.52548 0.95377

E8 15 12 18.0108 18.0554

0.625 0.966 0.002 0.70357 0.73647

E9 15 12 17.8916 18.5409

0.393 0.389 0.769 0.4378 0.62219

E10 15 11 18.2217 17.4457

0.013 0.615 0.49241 1.42073

E11 15 13 17.0459 16.7571

0.038 0.823 0.46937 1.18227

E12 11 13 17.8325 16.5473

0.412 0.336 0.968 0.71462 1.03633

E13 13 10 16.9853 17.9381

0.112 0.516 0.436 1.18586 0.5536

E14 12 13 18.2874 16.9284

0.803 0.176 1.948 0.71968 0.65862

E15 10 12 18.5684 17.7958

0.509 0.556 0.359 0.7176 1.01055

E16 10 12 17.8721 17.2302

0.99 0.631 0.237 0.99009 0.87517

N numbers Mean ± SEM

Figure 28

HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

A 0.115 0.001 5.467 13 10 15 13 5 0.5658 0.5068 0.4914 0.4728 0.5724

0.02705 0.01507 0.0107 0.01336 0.01598

B 0.223 0.31 1.268 7 6 6 5 5 0.057 0.055 0.0548 0.0531 0.0593

0.00252 0.00181 0.00073 0.00174 0.00229

C 0.116 0.84 0.279 8 6 13 5 3.9073 3.8758 3.7375 3.9623

0.12674 0.27122 0.1649 0.2429

D 0.007 0.729 5 6 5 5 0.2966 0.2728 0.2684 0.2666

0.0238 0.01566 0.00495 0.00722

E 0.097 0.978 0.11 12 13 12 16 6 6.5 6.1538 6.5 6.5625 5.3333

0.3371 0.56439 0.71244 0.35479 0.66667

N numbers Mean ± SEM

Figure 29

HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

A 0.569 <0.0001 9.803 7 5 9 8 9 18.6775 18.303 19.2365 18.6855 17.881

0.18337 0.13626 0.18782 0.1564 0.15904

B 8 5 9 7 5 18.2086 18.2222 18.2731 17.9459 17.4791

0.07016 0.17032 0.07935 0.06715 0.17089

C Cort 0.017 0.051 7 5 9 8 9 1.0777 1.0205 0.862 0.9336 1.0167

0.04436 0.07404 0.04496 0.11013 0.07862

Liver 0.0417 0.028 8 5 9 7 5 1.016 0.9779 0.691 0.8225 0.932

0.14259 0.11516 0.03653 0.07069 0.14255

D Cort 0.337 0.537 0.792 8 5 9 7 5 1.0084 0.9166 0.8148 0.931 0.9217

0.05759 0.09219 0.06608 0.10351 0.07338

Liver 0.666 0.848 0.342 10 11 8 8 8 1 1.0808 1.0121 0.9963 0.9513

0.09344 0.08937 0.06943 0.0815 0.05607

Mean ± SEMN numbers
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Figure 30 

A HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

SVZ 0.729 0.05 2.546 15 11 13 12 9 236.2667 217 192.4615 216.1667 209.444

10.18003 11.97194 10.14802 7.77996 13.18786

IZ 0.434 0.013 3.47 15 11 13 12 9 358.6 362.0909 291.3845 345.5 335.44

16.77209 19.66652 12.12411 13.05727 15.9104

SP 0.047 0.001 15 11 13 12 9 144.4 148.3636 112.1538 136.5833 135.6667

8.90361 6.83743 4.59912 6.29389 8.21922

CP 0.805 0.028 2.963 14 11 13 12 9 321.6429 290.7273 264.3077 304.25 268

16.70218 13.04823 13.15557 13.2757 13.71536

MZ 0.288 0.046 2.609 14 11 13 12 9 77.2143 73.6364 65.8462 81.25 70.1111

2.38627 4.62262 3.21424 4.06598 5.27163

Total 0.123 0.004 4.328 14 11 13 12 9 1131.5 1091.8182 926 1085.033 1020.888

47.73781 47.62408 24.90289 34.51333 41.50249

B I 0.254 0.16 1.831 8 10 10 10 358.6 362.0909 291.3845 345.5

16.77209 19.66652 12.12411 13.05727

II-IV 0.61 0.002 5.846 8 10 10 10 321.3638 275.548 259.0782 273.334

13.35783 10.59526 9.99467 8.92807

V 0.452 0.218 1.555 8 10 10 10 230.7 225.529 210.7676 220.271

7.61334 6.82727 8.00427 3.95667

VI 0.615 0.018 3.82 8 10 10 10 342.6863 363.014 319.8105 340.9239

6.08174 8.04106 12.34289 8.25141

Total 0.995 0.001 6.628 9 8 9 9 919.9701 909.5708 813.9099 894.8541

18.88182 19.28196 20.25341 17.02551

N numbers Mean ± SEM

Figure 31

HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

A 0.677 0.898 0.266 6 8 8 7 6 192.5556 190.9167 192.8 190.444 193.3

2.20549 2.9961 2.1746 1.9084 2.08725

B 0.034 <0.0001 8.194 5 5 5 6 5 0.2285 0.2442 0.1887 0.2525 0.2415

0.00771 0.00778 0.01293 0.0077 0.00673

N numbers Mean ± SEM

Figure 32

HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

B 0.669 0.036 2.844 11 9 9 9 7 326.1818 319.4444 255 271.6667 325.2857

18.52017 19.84671 13.38013 17.87689 31.50337

C 0.014 0.358 8 11 9 7 6 16.475 16.3971 16.398 16.2321 15.9931

0.13051 0.13788 0.07956 0.08616 0.24876

N numbers Mean ± SEM

Figure 33

B HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

SVZ 0.022 0.208 12 6 13 8 5 100.5 94.33 92.46 95.75 96.6

0.427 3.98 3.601 3.89 1.469

IZ 0.591 0.015 3.642 9 6 12 6 5 86.67 82.67 76.75 86.83 85.4

2.357 1.58 2.35 2.257 3.44

CP 0.144 0.016 3.485 11 6 12 8 5 93 83 78.83 85 86.2

2.802 2.489 3.239 3.54 0.9695

C 0.385 0.977 0.113 8 9 9 9 4 16.34 16.45 16.348 16.38 16.47

0.1935 0.1437 0.197 0.1128 0.1029

N numbers Mean ± SEM
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Figure 34

HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

B 0.599 0.112 2.028 8 7 9 9 6 16.2545 16.3128 16.4042 16.1855 16.1031

0.05407 0.07311 0.07212 0.08329 0.12028

C 0.26 0.035 2.775 16 12 15 14 9 108.2193 114.2537 66.234 109.6958 145.2366

14.93126 17.09372 8.81676 17.92579 25.09812

D 0.003 ≤.0001 8 6 8 8 5 189.9061 135.5317 40.9872 116.1035 186.1549

38.68389 28.20116 10.86077 12.70205 20.02522

N numbers Mean ± SEM

Figure 35

HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

F 0.078 <0.0001 12.643 8 7 9 8 5 69.735 72.8571 102.7778 80.8333 68.3

3.55034 3.05059 4.74748 5.08216 0.93005

G 0.26 0.035 2.775 8 6 9 9 6 16.7706 16.8613 16.3064 16.2374 16.7953

0.16142 0.21273 0.0794 0.07286 0.3746

N numbers Mean ± SEM

Figure 36

HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

B 0.67 0.055 2.61 8 5 9 9 6 16.8731 16.5978 16.6904 16.7915 16.1694

0.09835 0.18236 0.19015 0.16397 0.11801

C 0.956 0.549 0.774 8 12 9 9 6 17.9911 17.9425 17.6296 17.781 18.0581

0.21437 0.15887 0.20554 0.16811 0.21724

D 0.807 0.157 1.771 8 8 9 8 6 22.2637 21.4591 22.0243 22.1537 21.5282

0.33887 0.27376 0.21806 0.22797 0.29917

N numbers Mean ± SEM

Figure 37

HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

B 0.033 0.647 8 11 9 9 6 15.4469 15.3947 15.5607 15.3829 15.4451

0.12166 0.10403 0.06954 0.11869 0.21055

C 0.183 0.004 4.785 8 9 9 9 8 16.6002 16.3064 16.839 16.5301 16.1236

0.16697 0.08689 0.05717 0.13506 0.10759

D 0.431 0.451 0.943 8 8 9 9 6 15.4588 15.4926 15.787 15.4689 15.2794

0.21113 0.26266 0.09489 0.1408 0.22257

E 0.038 0.01 8 13 9 9 6 16.0129 16.1466 15.7544 15.7636 15.9354

0.06173 0.17419 0.03556 0.05608 0.06885

N numbers Mean ± SEM

Figure 38

HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

B 0.046 0.256 8 6 9 7 6 15.5996 15.8202 15.4285 15.7175 15.7974

0.14878 0.03323 0.19911 0.07473 0.08026

C 0.135 0.166 1.739 8 5 9 9 6 16.5664 16.8325 16.393 16.5924 16.5897

0.08008 0.09333 0.04947 0.08804 0.23422

D 0.267 0.511 0.837 8 8 9 8 6 21.8189 21.9562 21.601 21.7305 21.8687

0.10344 0.08006 0.16306 0.11781 0.29336

E 0.006 0.945 8 6 9 8 6 18.503 18.3844 18.4605 18.4742 18.6763

0.10743 0.25197 0.15188 0.24121 0.24471

F 0.02 0.033 8 12 9 9 6 14.7215 14.8799 13.4655 14.2254 14.6163

0.35643 0.11493 0.44562 0.21267 0.17038

G 0.575 <0.0001 8.034 8 13 9 7 6 15.5308 15.7742 14.9718 15.3653 15.927

0.11137 0.09689 0.1782 0.12971 0.10624

N numbers Mean ± SEM
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Table B-5. Fetal, Phenotypic, and Genomic Summary of Statistics  

Summary of statistics are presented for each indicated Figure. HOV: Homogeneity of 

Variance statistic, ANOVA: one-way analysis of variance, F: ANOVA F value. N 

numbers reflect litter number represented in each assay. All gene expression assays are 

presented as gene fold changes in the graph though statistical analysis was performed 

using delta Ct values reflected here.  

 

 

Figure 39

HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

B 0.734 0.058 2.538 11 7 10 7 7 153.0897 137.4183 71.1351 148.4189 163.2351

24.90935 20.274 16.91295 32.4203 26.07562

C 0.11 0.008 4.275 9 6 9 6 6 51.5951 40.6877 97.8914 40.4939 45.2203

9.161 8.2889 16.67153 9.36787 13.6269

D 0.637 0.023 3.353 8 9 5 6 6 61.8255 67.2669 140.4998 70.8933 64.9849

16.33265 13.73923 15.31996 17.48187 17.68008

N numbers Mean ± SEM

Figure 40

HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

B 0.346 0.429 0.998 7 5 8 6 5 158.1197 132.1434 70.3354 148.1909 133.1606

31.52755 23.64219 29.94231 44.9286 27.10446

C 0.658 0.975 0.118 10 9 7 6 5 132.5583 131.0069 144.9134 133.9567 135.464

10.35864 13.75152 17.85435 27.39017 17.18245

D 0.718 0.24 1.452 5 7 7 6 5 70.829 67.2669 115.1993 70.8933 64.9849

16.98646 13.73923 19.45655 17.48187 17.68008

N numbers Mean ± SEM

Figure 42

HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

A <0.0001 0.013 7 6 9 8 6 16.1818 13.2 20.9231 18.6923 13.2857

1.72056 0.51208 2.83852 1.88919 0.52164

B 0.48 0.079 2.287 7 6 7 8 6 10.25 10.5 14 14.625 11.625

1.544 0.61914 1.74574 1.52289 1.26685

C 0.031 0.038 8 10 9 9 7 9.125 7.9 14 8.7778 9.8571

0.875 1.19675 1.40216 1.12183 0.70735

N numbers Mean ± SEM

Supp Figure 2

HOV ANOVA F Welchs Chow PF Alc Alc+SAM SAM Chow PF Alc Alc+SAM SAM

B 0.183 0.004 4.785 8 8 9 9 5 16.6002 16.3064 16.839 16.5301 16.1236

0.16697 0.08689 0.05717 0.13506 0.10759

C 0.111 0.038 2.735 11 13 14 14 9 127.511 86.7957 67.6655 99.0575 90.478

18.6457 12.3548 7.8335 14.7767 8.91328

N numbers Mean ± SEM
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Table B-6. Methyl-pyrosequencing of Multiple Neurodevelopmental Gene Targets 

Cumulative methylation analysis of Ascl1, Ngn1, Syt2, and Fezf2 was performed by 

methyl-pyrosequencing. Results are presented parallel to relative gene expression 

Chow (n=5) 13.4±1.56 Chow (n=8) 1.0±0.065

PF (n=3) 15±2.0 PF (n=5) 1.21±0.143

Alc (n=5) 17.2±4.17 Alc (n=9) 1.13±0.140

Alc+SAM (n=5) 15±4.34 Alc+SAM (n=9) 1.05±0.165

SAM (n=2) 12.2±3.5 SAM (n=6) 1.07±0.068

Chow (n=4) 74.4±12.43 Chow (n=8) 1.0±0.209

PF (n=5) 89.4±9.62 PF (n=5) 1.25±0.34

Alc (n=5) 87.2±9.3 Alc (n=9) 1.18±0.165

Alc+SAM (n=4) 73±4.01 Alc+SAM (n=8) 1.07±0.157

SAM (n=2) 72±3.0 SAM (n=6) 1.10±0.261

Chow (n=4) 24.25±0.83

PF (n=4) 24.75±0.95

Alc (n=4) 23.5±1.08

Alc+SAM (n=4) 25±0.79

SAM (n=2) 27±0.0

Chow (n=3) 22.67±3.25 Chow (n=8) 1.0±0.133

PF (n=4) 32.25±13.57 PF (n=8) 1.24±0.107

Alc (n=4) 28±5.93 Alc (n=9) 1.14±0.152

Alc+SAM (n=3) 21±6.13 Alc+SAM (n=9) 0.90±0.106

SAM (N/A) SAM (n=6) 0.97±0.119

Chow (n=4) 16.2±1.84 Chow (n=8) 1.0±0.104

PF (n=5) 13.2±0.99 PF (n=9) 0.99±0.110

Alc (n=5) 21.76.2±3.11*# Alc (n=9) 0.80±0.031*#§

Alc+SAM (n=8) 17.86±2.23 Alc+SAM (n=9) 0.99±0.089

SAM (n=6) 13.29±1.30 SAM (n=6) 1.32±0.177

Chow (n=4) 10.25±1.77

PF (n=4) 10.50±0.84

Alc (n=4) 13.99±1.88

Alc+SAM (n=8) 14.63±1.69

SAM (n=6) 11.63±1.60

Chow (n=4) 9.13±0.88

PF (n=4) 7.90±1.20

Alc (n=4) 14.0±2.14§ƚ#

Alc+SAM (n=9) 7.90±1.40

SAM (n=7) 9.86±1.12

Gene Expression (relative)

Fezf2  Promoter (6CpG coverage)

Sum Methylation (%) Gene Expression (relative)

Ascl1  Promoter (4CpG coverage)

Ngn1  Promoter 1 (9CpG coverage)

Ngn1  Promoter 2 (6CpG coverage)

Sum Methylation (%)

Sum Methylation (%) Gene Expression (relative)

Gene Expression (relative)

Fezf2  Exon 1 (4CpG coverage)

Sum Methylation (%)

Fezf2  Enhancer 434(5CpG coverage)

Sum Methylation (%)

Sum Methylation (%)

Syt2 Promoter (5CpG coverage)

Sum Methylation (%)
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analysis. ƚ p≤0.05 vs Chow;*p≤0.05 vs SAM; #p≤0.05 vs PF; § p≤0.05 vs Alc+SAM. 

Neither gene expression nor promoter DNA methylation was significantly altered by 

alcohol or S-AMe supplementation except in the case of the Fezf2 which is detailed in 

Chapter 3 Figure 40.  
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