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ABSTRACT 

Nicole M. Ashpole 

 

THE EFFECTS OF CAMKII SIGNALING ON NEURONAL VIABILITY 

 

Calcium/calmodulin-dependent protein kinase II (CaMKII) is a critical 

modulator of synaptic function, plasticity, and learning and memory. In neurons 

and astrocytes, CaMKII regulates cellular excitability, cytoskeletal structure, and 

cell metabolism. A rapid increase in CaMKII activity is observed within the first 

few minutes of ischemic stroke in vivo; this calcium-dependent process is also 

observed following glutamate stimulation in vitro. Activation of CaMKII during 

pathological conditions is immediately followed by inactivation and aggregation of 

the kinase. The extent of CaMKII inactivation is directly correlated with the extent 

of neuronal damage. The studies presented here show that these fluctuations in 

CaMKII activity are not correlated with neuronal death; rather, they play a causal 

role in neuronal death. Pharmacological inhibition of CaMKII in the time 

immediately surrounding glutamate insult protects cultured cortical neurons from 

excitotoxicity. Interestingly, pharmacological inhibition of CaMKII during 

excitotoxic insult also prevents the aggregation and prolonged inactivation of the 

kinase, suggesting that CaMKII activity during excitotoxic glutamate signaling is 

detrimental to neuronal viability because it leads to a prolonged loss of CaMKII 

activity, culminating in neuronal death. In support of this, CaMKII inhibition in the 

absence of excitotoxic insult induces cortical neuron apoptosis by dysregulating 
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intracellular calcium homeostasis and increasing excitatory glutamate signaling. 

Blockade of the NMDA-receptors and enzymatic degradation of the extracellular 

glutamate signal affords neuroprotection from CaMKII inhibition-induced toxicity. 

Co-cultures of neurons and glutamate-buffering astrocytes also exhibit this slow-

induced excitotoxicity, as CaMKII inhibitors reduce glutamate uptake within the 

astrocytes. CaMKII inhibition also dysregulates calcium homeostasis in 

astrocytes and leads to increased ATP release, which was neurotoxic when 

applied to naïve cortical neurons. Together, these findings indicate that during 

aberrant calcium signaling, the activation of CaMKII is toxic because it supports 

aggregation and prolonged inactivation of the kinase. Without CaMKII activity, 

neurons and astrocytes release stores of transmitters that further exacerbate 

neuronal toxicity.   

 

                                                                                 Andy Hudmon, Ph.D.- Chair 
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INTRODUCTION  

Our brains are aging. As they age, our probability of developing a 

neurodegenerative disease increases. Whether these diseases are inherited 

(Huntington’s Disease), slowly manifesting (Alzheimer’s Disease), or rapidly 

acquired (ischemic stroke), the devastating effects of neurodegenerative 

diseases can play both an emotional and financial toll on patients, family 

members, and society. Ischemic stroke alone is known to affect nearly 800,000 

Americans annually and nationwide costs associated with stroke exceed 30 

billion dollars each year (Roger et al., 2012). Medical and societal advances have 

led to a longer life-span; thus, the incidences and costs of neurodegenerative 

diseases are only expected to grow. In order to develop better therapeutics for 

the treatment of these diseases, a deeper understanding of the mechanisms 

underlying how neurons die is essential.  

One common feature of neurodegenerative diseases is the dysregulation 

of intracellular calcium (Ca2+) signaling. Under physiological conditions, 

intracellular Ca2+ is maintained at a very low concentration (~100 nM) until 

stimulation induces a transient increase through influx and release of Ca2+ from 

intracellular stores (Figure 1) (Maravall et al., 2000). Through a variety of 

downstream Ca2+-effector proteins, this increase in Ca2+can regulate a wide 

array of cellular processes including transcription, translation, excitability, and 

cellular metabolism (Ghosh and Greenberg, 1995, Trewavas and Malho, 1998, 

Graef et al., 1999, McCormack and Denton, 1999, Santella and Bolsover, 1999). 

Excitable cells like neurons tolerate these increases in intracellular Ca2+ as long 
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as they are quickly buffered and the downstream Ca2+-effector pathways are 

effectively reset. The inability to buffer the increased Ca2+ and the continued 

transduction of the Ca2+ signal can cause physiological signaling pathways to 

become pathophysiological. This dysregulation is prevalent within several 

neurodegenerative diseases and is subsequently associated with a number of 

deleterious effects such as synaptic dysfunction, metabolic impairment, gliosis, 

macrophage infiltration, and ultimately cellular necrosis and/or apoptosis.  

This dissertation focuses on understanding the role of the 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathway in aberrant 

calcium signaling. Upon activation, this kinase is known to target a variety of 

substrates in a variety of cellular compartments, thereby impacting a wide array 

of cellular processes, including gene transcription, cytoskeletal rearrangement, 

and protein degradation (Figure 1) (reviewed by (Colbran, 1992, Hudmon and 

Schulman, 2002)). Activation of CaMKII during aberrant calcium signaling could 

be pathological for neurons and their support cells as both increases and/or 

decreases in CaMKII are associated with neurodegenerative insults marked by 

dysregulated calcium signaling (Aronowski et al., 1992, Perlin et al., 1992, 

Hanson et al., 1994, Westgate et al., 1994, Churn et al., 1995, Zalewska and 

Domanska-Janik, 1996). Whether these fluctuations- both the transient increase 

and prolonged inactivation- play a causal role in the ensuing cell death is not 

known. By examining the influence of aberrant activation and inactivation of 

CaMKII in neurons and astrocytes, we will be able to identify how CaMKII 

signaling influences normal and pathophysiological conditions in the brain.  



3 
 

 

 

 
Figure 1: Multifunctional CaMKII signaling. CaMKII is activated by 
increases in cytosolic calcium via ligand-gated and voltage-gated calcium 
channels as well as release of calcium from intracellular stores. Activation 
of CaMKII following increases in cytosolic calcium leads to the targeting of 
the enzyme to a wide variety of substrates in several cellular 
compartments, thereby influencing numerous cellular processes.  
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The next few sections will provide insights into the structure, regulation, 

and function of CaMKII. I will also examine the influence of CaMKII signaling in 

other model systems. Together, this knowledge is necessary to understand how 

CaMKII function may be altered by, and contribute to aberrant calcium signaling 

within the brain. 

CAMKII EXPRESSION 

CaMKII is a Ca2+-signaling Ser/Thr kinase ubiquitously-expressed 

throughout the body. There are four major isoforms of CaMKII- α β δ and γ- with 

several identified splice variants for each isoform. These isoforms are encoded 

by different genes that in humans are found on chromosome 5, 7, 4, and 10, 

respectively (Li et al., 1994, Epigenomics, 2012). Alignment of the entire full-

length protein of all four isoforms indicates that over 60% of the sequence is 

conserved. As might be expected, this conservation is highest within the catalytic 

domain of the kinase. Sequence alignment of the catalytic domain of the four 

major isoforms found in humans indicates that 95% of the sequence is conserved 

(Figure 2). The most divergence between isoforms is found in an area termed the 

variable region (within the hub domain), where sequence inserts known to 

contain substrate targeting motifs unique to each isoform exist. 

  CaMKII isoform expression is regulated by tissue specific expression, cell-

specific patterning, developmental patterning, and subcellular distribution (as 

reviewed by (Hanson and Schulman, 1992b, Hudmon and Schulman, 2002)). 

Robust αCaMKII expression is observed in skeletal muscle, while βCaMKII is 

found in immune cells, δCaMKII predominates in cardiomyocytes, and γCaMKII 



5 
 

 
 
Figure 2: Sequence alignment of the four human isoforms of CaMKII. 
 * indicates sequence identity while the : indicates conservation. The colored 
lines delineate the subunits of CaMKII: catalytic (green), autoregulatory 
(purple), and hub (orange). 
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is found in the lungs (Tobimatsu and Fujisawa, 1989, Karls et al., 1992). Within 

the nervous system, particularly within the brain, all four isoforms are expressed 

(Sakagami et al., 1992, Sakagami and Kondo, 1993, Bayer et al., 1999). The 

most abundant isoforms within neurons are αCaMKII and βCaMKII (Ouimet et 

al., 1984, Erondu and Kennedy, 1985, McGuinness et al., 1985, Burgin et al., 

1990a). Meanwhile, δCaMKII and γCaMKII expression has also been observed, 

albeit at lower levels than αCaMKII and βCaMKII (Bayer et al., 1999). While 

αCaMKII and βCaMKII are the predominant isoforms in neurons, δCaMKII 

predominates within astrocytes (Takeuchi et al, 2000). Interestingly, because the 

CaMKII holoenzyme within the cell consists of twelve kinase subunits, co-

assembly of various isoforms can occur (Vallano, 1989, Kolb et al., 1998, Brocke 

et al., 1999). Functional changes within the nervous system following CaMKII 

inhibitor application are often identified as αCaMKII-regulated changes because 

of the predominant expression of αCaMKII in excitatory neurons; however, it is 

important to recognize that these other isoforms may be contributing to observed 

effects.  

Within the brain, there appears to be a general tissue-specific patterning 

of αCaMKII and βCaMKII expression. αCaMKII expression predominates in the 

cortex and βCaMKII expression predominates in the cerebellum (Erondu and 

Kennedy, 1985, McGuinness et al., 1985, Miller and Kennedy, 1985). 

Interestingly, there are specific cell types within each of these areas that do not 

conform to this pattern. Purkinje cells within the cerebellum largely expressed 

αCaMKII (Walaas et al., 1988). Moreover, within the dentate gyrus of the 
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hippocampus, granule cells express βCaMKII (Churn et al., 1992b). Thus, while 

there does appear to be a pattern of expression within tissues, some cell types 

differ and express an isoform different than their counterparts within that tissue.  

Despite different tissue and cellular expression patterns, not much is 

known about the influence this variance in isoforms has on substrate selection 

within cells. In vitro studies to date have not identified differences in substrate 

affinity depending on which isoform is present. We have observed that the 

phosphorylation motif on the NR2B subunit of the N-methyl-D-Aspartate receptor 

(NMDA-R), which was first identified as an αCaMKII substrate, is also a high-

affinity δCaMKII substrate (personal communication with A Hudmon and D 

Johnson). However, differences in substrate targeting have been observed. 

βCaMKII has been shown to have an F-actin binding domain within the variable 

region that is not present in the other isoforms (Fink et al., 2003). Therefore, 

βCaMKII and not αCaMKII can bind this cytoskeletal protein. On the other hand, 

αCaMKII has been shown to bind substrates such as densin-180 which βCaMKII 

appears incapable of binding (Robison et al., 2005). This isoform-specific binding 

cannot be attributed to the variable domain as it appears that residues deep 

within the hub domain (residues 421-480, will be discussed later) confer αCaMKII 

binding to densin-180 (Robison et al., 2005). Another example of isoform-specific 

binding was observed with the ubiquitin proteasome system. Genetic knock-

down of αCaMKII, and not βCaMKII, disrupted the recruitment of the ubiquitin 

proteasome system to post-synaptic densities in neurons (Bingol et al., 2010). 

Thus, there appear to be differences in the ability of isoforms to target and 
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regulate substrates in situ. While it is possible that structural differences between 

isoforms (specifically in the variable region) may contribute to binding substrate 

selection, the true mechanism underlying this difference is not known.  

CAMKII STRUCTURE 

CaMKII is a dodecameric protein composed of twelve 50 to 60 kDa kinase 

subunits (Kuret and Schulman, 1984, Chao et al., 2010). Thus, the size of the 

CaMKII holoenzyme within a cell is roughly 600 kDa (Bennett et al., 1983, Kuret 

and Schulman, 1984). Each subunit of the holoenzyme consists of an N-terminal 

catalytic domain, an autoregulatory domain, and a C-terminal hub domain (Figure 

3). The catalytic domain contains the ATP binding pocket, catalytic cleft, and 

substrate targeting groove, making this domain the enzymatic mainstay of the 

CaMKII protein. The catalytic domain is tethered to the autoregulatory domain 

which is responsible for lying over the catalytic cleft thereby inhibiting kinase 

activity in the absence of Ca2+/calmodulin (CaM) (Colbran et al., 1989) (Figure 3). 

CaM is a ubiquitously-expressed Ca2+-binding protein that serves as an 

intermediate between cytosolic Ca2+ and downstream Ca2+/CaM-effector 

proteins, such as CaMKII (Babu et al., 1985, Zhang et al., 1995, Tjandra et al., 

1999). A CaM-binding motif is found on the C-terminal portion of the 

autoregulatory domain of CaMKII (Figure 3). When Ca2+/CaM binds this motif, 

the helical autoregulatory domain is pulled away from the catalytic surface, 

allowing kinase activity (Rellos et al., 2010, Chao et al., 2011). Downstream of 

the CaM-binding motif, lay the hub domain of the kinase which is responsible for 

associating or interacting with other subunits to form the dodecameric 
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Figure 3: Structure of CaMKII. A, Linear schematic (top) and crystal 
structure (bottom) of one CaMKII subunit (derived from pdb 3SOA). The 
colors of the schematic correspond with the structures throughout the 
figure. B, The crystal structure of autoinhibited CaMKII holoenzyme (as 
solved by Chao et al., 2011, pdb 3SOA). C, Structure of the autoregulatory 
domain laying across the catalytic cleft. D, Catalytic surface of CaMKII with 
highlighted catalytic cleft (white), substrate binding groove (pink), inhibitory 
groove (yellow). 
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holoenzyme (Figure 3). Of note, the start of the hub domain is marked by the 

variable region which, as explained above, contains inserts found in different 

splice variants of CaMKII isoforms (Figures 2 and 3).  

Much work has gone into understanding the unique architecture of 

CaMKII. Early studies using transmission electron microscopy indicated that 

CaMKII appeared to be a hexagonal ring with a hollow center (Woodgett et al., 

1983). Subsequent cryoetching was in agreement with this, and further 

suggested that arm-like structures appeared to radiate out from the center ring 

(Kanaseki et al., 1991). Over ten years later, modern biophysical approaches, 

such as small-angle X-ray scattering and 3-D reconstruction of electron 

microscopy, suggested that the hub domains within the CaMKII holoenzyme are 

responsible for the formation of the ring-like structure from which the catalytic 

heads radiate outwards (Hoelz et al., 2003, Gaertner et al., 2004, Rosenberg et 

al., 2005, Rellos et al., 2010). This hypothesis was recently verified when the 

crystal structure for inactive human αCaMKII (with a β7-CaMKII variant linker) 

was solved (pdb# 3SOA)(Chao et al., 2011). The crystal structure confirmed that 

hub domains come together to form hexameric rings, one ring on top of another, 

with the connected catalytic subunits tightly packed towards the rings like ‘petals’ 

(Figure 3). This multivalent architecture allows intraholoenzyme autoregulation 

(will be discussed later). It is interesting to note that monomeric subunits of 

CaMKII are able to bind and phosphorylate substrates; thus, it is possible that 

this unique architecture of the dodecamer may also alter substrate selection or 

regulation within the cell. 
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ACTIVATION OF CAMKII BY CA2+/CAM  

As mentioned, the activation of CaMKII is dependent on the binding of 

Ca2+-bound CaM to the autoregulatory domain of the kinase. A crystal structure 

of one active catalytic/autoregulatory domain has been solved (pdb #2WEL) and 

indicates that Ca2+/CaM binding does lead to the exposure of the catalytic cleft 

by removal of the autoregulatory domain from the catalytic surface (Rellos et al., 

2010). However, there is currently no crystal structure for an activated CaMKII 

holoenzyme. Thus, inferences on the how the entire holoenzyme structurally 

changes following activation remain largely speculative. Because the crystal 

structure of the inactive holoenzyme suggests that the CaM binding region of 

CaMKII appears to be buried within a tightly-packed interface between the 

catalytic and association domain, it is plausible that a dramatic structural 

rearrangement occurs in order to reach an active state (Hoffman et al., 2011).  

Residues 293 and 310 within the autoregulatory domain are recognized as 

the CaM binding motif on CaMKII (Figure 3) (Colbran et al., 1988, Payne et al., 

1988, Meador et al., 1993). A crystal structure of CaM bound to a peptide 

encompassing these residues indicates that the two lobes of CaM tightly wrap 

this binding domain (Meador et al., 1993). CaM binds in an antiparallel fashion 

with the C-terminal lobe of CaM binding on the N-terminal half of the binding 

domain, and the N-terminal lobe of CaM binding on the C-terminal portion of the 

binding domain (Evans and Shea, 2009). While both lobes ultimately bind, this 

binding occurs in a stepwise manner. The N-terminal lobe forms a contact with 

the autoregulatory domain and then if nucleotides are present, the C-terminal 
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lobe will flex and form contacts as well (Jama et al., 2011). Recent biochemical 

studies have revealed that while both lobes may wrap the binding motif, the N-

terminal lobe alone is able to bind and partially activate CaMKII (Shifman et al., 

2006, Forest et al., 2008). While the C-lobe may make more contacts with the 

kinase autoregulatory domain, binding of the C-lobe is not necessary for kinase 

activation (Forest et al., 2008, Evans and Shea, 2009). However, the C-terminal 

lobe does increase the affinity of Ca2+/CaM for the autoregulatory domain (Evans 

and Shea, 2009).   

The binding kinetics of CaM to CaMKII exhibit positive cooperativity. Hill 

coefficients of 2 to 3 have been reported for CaM activation of CaMKII (Gaertner 

et al., 2004, Forest et al., 2008, Byrne et al., 2009, Chao et al., 2010, Chao et al., 

2011). This indicates that the binding of Ca2+/CaM to one subunit of the 

holoenzyme alters the activation state of nearby subunits that are not yet in 

contact with CaM. While the mechanism of this is not yet understood, it is thought 

that activation of one subunit induces conformational changes that can affect 

other components of the holoenzyme. Consistent with fact that the N-lobe is 

sufficient to activate the kinase, the N-lobe alone has also been shown to exhibit 

cooperative binding with a Hill coefficient of nearly 3 (Forest et al., 2008). The 

presence of nucleotides has been shown to decrease the cooperativity of CaM 

activation (Forest et al., 2008). This may be a consequence of the binding of the 

second lobe of CaM to CaMKII when nucleotides are present. It is possible that 

when the second lobe binds, there is another rearrangement within the 

corresponding catalytic subunit that decreases the ability of nearby subunits to 
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find CaM partners. Another possibility is that when nucleotides are present, a 

previously-identified autophosphorylation event (Thr286- will be discussed later) 

occurs that alters the holoenzyme conformation. Interestingly, introduction of 

extended linkers between the CaM binding region and the hub domain have 

been shown to significantly impact the cooperativity of Ca2+/CaM activation 

(Chao et al., 2011). These data suggest that CaMKII relies on dynamic sampling 

of the environment in order to become activated and that the architecture of the 

holoenzyme plays a critical role in regulation of CaMKII activity. 

Despite this cooperativity in CaM binding, CaMKII exhibits a weak affinity 

for CaM with the Kd of activation around 1 μM in the absence of ATP (Forest et 

al., 2008). However, the presence of ATP increases this affinity to around 20-100 

nM (Gaertner et al., 2004, Forest et al., 2008). Ca2+/CaM activation in the 

presence of saturating levels of ATP can lead to an autophosphorylation event 

(discussed below); this autophosphorylation further increases the affinity of 

CaMKII to CaM roughly 1000-fold, to 20 picomolar (Meyer et al., 1992). This 

means that CaMKII transitions from being one of the weaker CaM targets in cells 

to one of the best targets identified to date. Because of this, CaMKII is thought to 

‘trap’ calmodulin (Meyer et al., 1992). The functional consequence of this CaM 

trapping is not fully understood; however, it is possible that CaMKII may serve as 

a CaM sink which, when activated, prevents the activation of other CaM signaling 

pathways. If this were true, then the trapping of CaM by CaMKII could impact a 

multitude of cellular processes.  
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 As mentioned above, ATP can impact the binding affinity of Ca2+/CaM to 

CaMKII. Similarly, CaM binding can impact ATP binding affinity. For instance, the 

Km of ATP for autophosphorylation is roughly 150 μM when Ca2+/CaM is not 

present (Colbran, 1993). When Ca2+/CaM is present, the Km of ATP decreases 

to 20 μM (Colbran, 1993). Thus, it appears as though the catalytic domain 

structure impacts both CaM and ATP binding affinities. This ATP affinity 

determined in the presence of activating Ca2+/CaM is within a similar range for 

other neuronal kinases in the presence of their activators, such as PKC (13 μM), 

PKA (15 μM), and CaMKI (30 μM ) (Cook et al., 1982, Nairn and Greengard, 

1987, Spitaler et al., 2000). The ATP binding pocket, which is fully conserved 

between the four CaMKII isoforms, is found on the face of the catalytic subunit, 

near where the autoregulatory domain lays (Figure 3). Thus, it is possible that 

there are interactions between the ATP binding pocket and the autoregulatory 

domain that allow them to influence each other, as previously proposed (Smith et 

al., 1992, Brickey et al., 1994, Praseeda et al., 2004, Pradeep et al., 2009).  

CAMKII AUTOPHOSPHORYLATION 

The unique architecture of the CaMKII holoenzyme affords opportunities 

for intraholoenzyme modulation of one kinase subunit by another nearby subunit. 

One example of this is the autophosphorylation of the autoregulatory domain. 

This domain contains a classical CaMKII consensus sequence (R-X-X-S/T) with 

the potential phosphorylation residue at Thr286. Indeed, CaMKII has been shown 

to phosphorylate this residue following kinase activation (Lou and Schulman, 

1989). Interestingly, this phosphorylation has been shown to be an 
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intraholoenzyme event in which one subunit within the holoenzyme 

phosphorylates a nearby subunit in the holoenzyme (Mukherji et al., 1994, 

Bradshaw et al., 2002). Phosphorylation of Thr286 leads to a unique enzymatic 

state in which the kinase is no longer dependent on Ca2+/CaM for activity; a state 

known as autonomy, or Ca2+/CaM-independent activity (Lai et al., 1986, Lou et 

al., 1986, Miller and Kennedy, 1986, Schworer et al., 1986, Schworer et al., 

1988). It is important to point out that while autonomous activity is not dependent 

on Ca2+/CaM, the autophosphorylation event that leads to autonomy is, as 

Thr286 is not accessible for phosphorylation in the absence of Ca2+/CaM binding 

(Chao et al., 2011, Hoffman et al., 2011). Interestingly, even though CaMKII 

autophosphorylation at Thr286 renders the kinase autonomous of Ca2+/CaM, this 

state is recognized as the high-affinity calmodulin binding state, ie CaM trapping 

state (Meyer et al., 1992).  

Mutation of Thr286 has been shown to have dramatic effects on kinase 

function. Introducing the phosphomimetic Asp at Thr286 renders the kinase 

constitutively active (Fong et al., 1989, Waldmann et al., 1990). Mutation of 

Thr286 to non-phosphorylatable Ala prevents the induction of autonomous 

activity (Fong et al., 1989, Waxham et al., 1990). Furthermore, this mutation 

disrupts the ability of the kinase to trap CaM (Meyer et al., 1992). Mutant 

Thr286Ala also causes a loss of CaMKII substrate targeting in neurons (Shen et 

al., 2000). Importantly, while CaM trapping and substrate targeting are disrupted, 

mutant Thr286Ala appears to phosphorylate substrates normally, because 

Ca2+/CaM can still activate the kinase (Fong et al., 1989). Thus, while 
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autophosphorylation may enhance CaMKII activity, it is not an absolute 

requirement for enzymatic phosphorylation of substrates.  

Neuronal stimulation induces a rise in intracellular calcium which leads to 

increased CaMKII autophosphorylation (Fukunaga and Soderling, 1990, 

Fukunaga et al., 1992). The extent of autonomous activity can be used as a 

read-out for CaMKII autophosphorylation. For this, Ca2+/CaM-independent 

activity can be compared to total CaMKII activity (in the presence of Ca2+/CaM) in 

vitro (Saitoh and Schwartz, 1985). Using percent autonomy as a read-out of 

autophosphorylation, 10-20% of CaMKII is autophosphorylated under basal 

conditions, suggesting that some CaMKII activity is still present under resting 

conditions. Neuronal stimulation increases the extent of autonomy to nearly 50% 

of total CaMKII activity (Molloy and Kennedy, 1991, Ocorr and Schulman, 1991). 

Because Ca2+ levels within cells can rapidly change, it is thought that CaMKII 

autonomy serves as a molecular memory device for Ca2+ signals in cells even 

when the increased Ca2+ has subsided. This concept is central to my studies, as 

it is possible that CaMKII can continue to signal during neurodegenerative 

calcium signaling, further perpetuating the toxicity cascade.  

Because phosphorylation of Thr286 renders the kinase autonomous of 

Ca2+/CaM regulation, cells have devised multiple mechanisms for reversing this 

phosphorylation in order to properly reset CaMKII activity. First, CaMKII itself can 

reverse this phosphorylation. The presence of high levels of ADP in vitro can 

lead to dephosphorylation of Thr286, resulting in a subsequent loss of 

autonomous activity (Kim et al., 2001). Furthermore, several protein 



17 
 

phosphatases have been shown to dephosphorylate Thr286, including Ca2+/CaM 

protein phosphatase, protein phosphatase 1, 2a, and 2c (Hashimoto et al., 1987, 

Fukunaga et al., 1993, Strack et al., 1997a). As expected, these phosphatases 

also reduce CaMKII autonomy (Hashimoto et al., 1987, Fukunaga et al., 1993). 

The presence of multiple avenues to dephosphorylate Thr286 suggesting that 

maintaining the proper level of CaMKII activity within the cell is critical for cellular 

physiology.  

Thr286 is not the only residue shown to be autophosphorylated by 

CaMKII. Thr253, Ser279, Thr305, and neighboring Thr306 have all been shown 

to be phosphorylated by CaMKII as well (Hanson et al., 1989, Lou and 

Schulman, 1989, Patton et al., 1990, Hanson and Schulman, 1992a, Colbran, 

1993). Recent studies suggest that while Thr253 phosphorylation does not have 

a direct effect on enzymatic activity, subcellular targeting of the enzyme is 

enhanced following this phosphorylation event (Migues et al., 2006). To date, the 

functional consequence of Ser279 phosphorylation is unknown, as it does not 

appear to effect enzymatic activity (Hanson et al., 1989). Unlike Ser279, 

phosphorylation of Thr305 and Thr306 plays a critical role in regulating kinase 

activity, as it prevents Ca2+/CaM activation (Colbran and Soderling, 1990, Patton 

et al., 1990, Hanson and Schulman, 1992a, Colbran, 1993). These residues are 

particularly interesting as they lie within the CaM binding motif on the 

autoregulatory domain. Thus, when Ca2+/CaM is bound, these residues are 

inaccessible. However, under a basal resting state, autophosphorylation of 

Thr305/Thr306 can occur which prevents Ca2+/CaM activation (Colbran, 1993). 
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Furthermore, Thr305/Thr306 autophosphorylation can reset CaMKII activity 

following CaM dissociation when intracellular Ca2+ resets following stimulation 

(Jama et al., 2009).  

INACTIVATION OF CAMKII 

 A major portion of this dissertation is focused on understanding the 

physiological impact of CaMKII inactivation. Within cells, several mechanisms 

contribute to inactivation. First, as mentioned above, CaMKII is maintained in an 

inactive state in the absence of Ca2+/CaM because basal phosphorylation of 

Thr305/Thr306 prevents Ca2+/CaM binding. Therefore, following Ca2+/CaM 

activation, kinase activity can be effectively reset by phosphorylation of 

Thr305/Thr306 following the dissociation of Ca2+/CaM from the autoregulatory 

domain. Other forms of CaMKII inactivation have also been identified. Unlike 

activation of CaMKII under conditions of saturating Ca2+/CaM and ATP, 

activation of the kinase under limiting ATP quickly induces inactivation (Lou et al., 

1986, Colbran, 1993). The propensity to inactivate under limiting ATP is 

enhanced by elevated temperatures (Hudmon et al., 1996). It was later shown 

that saturating levels of ADP can prevent CaMKII inactivation, suggesting that 

the presence of nucleotides, not just ATP, following Ca2+/CaM stimulation blocks 

inactivation. Interestingly, the presence of a CaMKII substrate that mimics the 

autoregulatory domain, termed Autocamtide (AC2), can prevent the induction of 

this inactivation (Ishida and Fujisawa, 1995). This suggests that the structure of 

the kinase becomes unstable when the catalytic domain is activated and 

autophosphorylation cannot occur which ultimately leads to CaMKII inactivation. 
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Thus, conditions in which Ca2+/CaM is present, nucleotides are limiting, and 

temperature is elevated are maximal for CaMKII inactivation (Lou and Schulman, 

1989, Hudmon et al., 1996). 

 Inactivation of CaMKII is also instigated by the aggregation of kinase 

holoenzymes during periods of cellular distress. This process is an activity-

dependent form of inactivation that is termed self-association as several CaMKII 

holoenzymes associate/aggregate together (Hudmon et al., 1996, Hudmon et al., 

2005). The details entailing the intiation and influence of self-association will be 

discussed later. However, it is important to recognize that several of the 

conditions that prevent CaMKII inactivation (saturating ATP levels/ 

autophosphorylation of Thr286) are known to prevent self-association. Thus, it is 

possible that the inactivation that is observed under these conditions is due to 

self-association/aggregation of the enzyme.  

REGULATORS OF CAMKII SIGNALING 

 Several post-translational modifications of CaMKII have been identified. 

As mentioned above, CaMKII autophosphorylates many residues within the 

catalytic subunit, most recognizably Thr286. Interestingly, other protein kinases, 

such as PKC, have been shown to phosphorylate CaMKII (Waxham and 

Aronowski, 1993). Scansite prediction software suggests that over 15 potential 

modulatory kinase phosphorylation/binding sites may exist in the CaMKII protein; 

however, most of these sites have not been validated experimentally. Several 

protein phosphatases play a key role in dephosphorylating these residues 

(Hashimoto et al., 1987, Fukunaga et al., 1993, Strack et al., 1997a). Recently, 
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several glycosylation sites on CaMKII have been identified (Trinidad et al., 2012). 

The effects of these glycosylation events are not known, as there appears to be 

no change in substrate targeting or enzymatic activity when the glycosylation 

groups are removed (Trinidad et al., 2012). It is interesting, however, that one of 

the residues observed to be glycosylated is Thr306, a residue which is critical for 

maintaining CaMKII in an inactive state in the absence of Ca2+/CaM (Trinidad et 

al., 2012).  

 Oxidation has also been shown to modulate CaMKII activity. In 

lymphocytes and cardiomyocytes, oxidative stress is associated with increased 

autonomous CaMKII activity (Howe et al., 2004, Zhu et al., 2007, Erickson et al., 

2008). Biochemical studies indicated that direct oxidation of Met281/Met282 

results in CaMKII autonomy (Erickson et al., 2008). The initiation of this 

autonomy is still dependent on Ca2+/CaM. However, unlike traditional 

autonomous activity, Thr286 phosphorylation is not required to maintain activity 

when these residues are oxidized, as best highlighted when the Thr286Ala 

mutant exhibited autonomous activity in the presence of oxidizing agents like 

H2O2 (Erickson et al., 2008). This was the first evidence of the generation of 

autonomous activity that bypassed Thr286 autophosphorylation, allowing the 

kinase to maintain activity under cellular distress; an effect which I hypothesize is 

detrimental to neuronal viability.   

CAMKII INHIBITORS 

 Post-translational modifications are not the only avenues of regulating 

CaMKII activity in situ. Yeast two-hybrid screens for CaMKII-interacting proteins 
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identified a novel family of endogenous inhibitory proteins in the brain (Chang et 

al., 1998, 2001). These small 6.5kDa inhibitory proteins, termed CaMKIIN (two 

isoforms CaMKIINα and CaMKIINβ), are high-affinity CaMKII binding proteins. 

They are encoded by two separate genes on chromosome 1 and 3. CaMKIIN is 

capable of inhibiting both autonomous (Ca2+/CaM independent) and total 

(Ca2+/CaM dependent) activity in a dose-dependent manner, with an IC50 of 100-

400 nM (Chang et al., 1998). The inhibitory domain of CaMKIIN was localized to 

27 residues within the carboxy-terminal of the protein (Chang et al., 1998). 

Importantly, these 27 residues were identical between the two CaMKIIN 

isoforms. A peptide encompassing these residues was generated and termed 

CaMKIINtide (Chang et al., 1998). Similar to the parent protein, CaMKIINtide was 

a potent inhibitor of CaMKII activity (Chang et al., 1998). Subsequent 

biochemical studies have shortened this inhibitory peptide to 21 residues (termed 

CN21, (Vest et al., 2007)), and most recently 19 residues (termed CN19, 

(Coultrap and Bayer, 2011)), without significantly affecting the affinity of 

inhibition. Importantly, CaMKIIN and its peptide derivatives are highly-selective 

for CaMKII, with greater than 100-fold potency of CaMKII inhibition over CaMKIV, 

another CaM-dependent kinase family member, as well as PKC, PKA, and MAP-

K1 (Vest et al., 2007).  

While the regulation of CaMKIIN is not fully understood, there appears to 

be differential expression of the two CaMKIIN isoforms in differing brain regions. 

CaMKIINβ is highly expressed in the cerebellum, while CaMKIINα is highly-

expressed in the cortex (Chang et al., 2001). Interestingly, the expression pattern 
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of these isoforms appears to mimic the expression pattern of αCaMKII and 

βCaMKII isoforms. Recent studies suggest that CaMKIIN expression is 

upregulated during the acquisition and consolidation of fear learning (Radwanska 

et al., 2010). Autonomous CaMKII activity has been shown to be critical for this 

form of learning and memory (Frankland et al., 2001, Frankland et al., 2004, 

Easton et al., 2011); thus, the authors propose that the upregulation of CaMKIIN, 

which can turn off this autonomous activity, is critical for the turnover of CaMKII 

activity for proper memory formation.   

Other peptide and small molecule inhibitors of CaMKII have also been 

identified. Autocamtide-2 (AC2) is a high-affinity CaMKII substrate derived to 

mimic the autoregulatory domain surrounding Thr286. Interestingly, mutation of 

the phosphoacceptor site of AC2 to Ala, resulted in a high-affinity peptide 

inhibitor of CaMKII with an IC50 of around 50 nM (Ishida et al., 1995). This 

peptide, termed AIP (AC-2-related inhibitor peptide) is also able to inhibit both 

autonomous (Ca2+/CaM independent) and total (Ca2+/CaM dependent) CaMKII 

activity (Ishida et al., 1995). Because AIP is derived from a substrate peptide, it is 

a competitive inhibitor of substrate phosphorylation with a Ki of 320 nM (with 

respect to parent AC2) (Ishida et al., 1995). However, the autoregulatory domain 

from which AIP is derived is also known to inhibit other CaM-kinase family 

members, PKC and MLCK, at concentrations above 10 μM (Smith et al., 1990). 

KN-62 and KN-93 are allosteric small molecule CaMKII inhibitors (Tokumitsu et 

al., 1990, Sumi et al., 1991). Unlike their peptide inhibitor counterparts, these 

small molecule inhibitors prevent kinase activation and have no effect on 
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autonomous activity (Tokumitsu et al., 1990, Sumi et al., 1991). The KN drugs 

are competitive inhibitors of CaM binding with a Ki of 900 nM for KN-62 and a Ki 

of 370 nM for KN-93 (Tokumitsu et al., 1990, Sumi et al., 1991). While these 

inhibitors are cell-permeable, there are a variety of off-target effects associated 

with the KN family, including inhibition of other CaM-kinase family members, 

voltage gated calcium channels, and purinergic receptors (Smith et al., 1990, 

Enslen et al., 1994, Ledoux et al., 1999, Gao et al., 2006). However, studies 

using KN-93 can be properly controlled for using the inactive control KN-92.  

Because of off-target effects associated with the small molecule inhibitors, 

focus has shifted towards the use of the high-affinity, highly-selective peptide 

inhibitors such as CN21. While most peptide inhibitors are not inherently cell-

permeable, penetrating motifs and the addition of protein modifications such as 

myristolation can allow for peptide uptake in cells (Nelson et al., 2007). Several 

recent studies have shown that the addition of positively-charged amino acids 

allow for CaMKII inhibitors such as CN21 and AIP to be taken up by neurons 

(Vest et al., 2007, Buard et al., 2010, Vest et al., 2010, Lisman et al., 2012). One 

sequence often used in these studies is a series of subsequent Lys and Arg 

residues found in the HIV-associated coat protein Tat. Inhibitors conjugated to 

the Tat motif exhibit rapid cellular uptake (Vives et al., 1997, Silhol et al., 2002, 

Brooks et al., 2005, Richard et al., 2005). Thus, highly-selective peptide inhibitors 

are easily manipulated to allow for cellular application, thereby affording an 

opportunity to examine the physiological effects of CaMKII signaling within the 

native cell background.  



24 
 

TARGETS OF CAMKII IN THE NERVOUS SYSTEM 

My studies are focused on understanding the physiological impact of 

aberrant fluctuations in CaMKII activity. The following section highlights CaMKII-

regulated proteins that are critical for neuronal excitability and cell structure (see 

Figure 1). Understanding the impact that CaMKII regulation can have on the 

activity/stability of these proteins is essential to appreciate how dysregulation of 

CaMKII can affect cellular viability.  

Glutamate Receptors 

Within neurons, CaMKII is activated following increases in cytosolic 

calcium. Neurons express several voltage-gated and ligand-gated calcium 

channels that transduce calcium into the intracellular space. Receptors on 

intracellular stores of calcium can be activated to release calcium into the cytosol 

as well. While various sources of calcium may contribute to CaMKII activation, 

the most characterized pathway for activation is via the N-methyl-D-Aspartate 

receptor (NMDA-R). The NMDA-R is an ionotropic glutamate receptor widely-

expressed in neurons. This receptor is tetrameric with two NR1 subunits and two 

NR2 subunits (NR2A and NR2B), all of which come together to create a pore-

forming ion channel (Behe et al., 1995, Laube et al., 1998, Rosenmund et al., 

1998). Following activation by glutamate and the co-factor glycine, the NMDA-R 

transduces extracellular Ca2+ (and some sodium) into the intracellular cytosol. 

Calcium influx through the NMDA-R has been shown to lead to Thr286 

autophosphorylation, thereby inducing CaMKII autonomy (Shen and Meyer, 

1999). Following this activation, CaMKII then translocates to a variety of cellular 
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compartments, targeting a variety of substrates. Interestingly, one of the 

substrates that CaMKII is shown to target after activation is the NMDA-R (Shen 

and Meyer, 1999, Shen et al., 2000, Strack et al., 2000, Bayer et al., 2001). Once 

the kinase has translocated to the NMDA-R, it is able to both bind and 

phosphorylate this receptor, which has been shown to enhance NMDA-R 

desensitization (Sessoms-Sikes et al., 2005). Thus, there is a reciprocal 

relationship in which NMDA-R leads to CaMKII activation which then causes 

CaMKII translocation back to the NMDA-R to enhance receptor desensitiziation. 

The NR1, NR2A, and the NR2B subunits of the NMDA-R have all been 

shown to interact with CaMKII (Gardoni et al., 1999, Leonard et al., 1999, Bayer 

et al., 2001, Gardoni et al., 2001, Leonard et al., 2002). CaMKII phosphorylates 

both NR2A and NR2B (Gardoni et al., 1999). Furthermore, CaMKII has been 

shown to form a stable interaction with all three subunits (Gardoni et al., 1999, 

Leonard et al., 1999, Bayer et al., 2001, Leonard et al., 2002). Interestingly, the 

binding of CaMKII to the C-terminal portion of the NR2B subunit can affect the 

enzymatic function of CaMKII (Bayer et al., 2001). A peptide encompassing the 

binding region on NR2B has been shown to generate Ca2+/CaM-independent 

CaMKII activity in the absence of Thr286 autophosphorylation (Bayer et al., 

2001). When Ca2+/CaM induces a conformational change in the autoregulatory 

domain, a substrate binding groove on the catalytic surface is exposed (Bayer et 

al., 2006). This groove is separate from the catalytic cleft and the associated 

substrate phosphorylation groove. If Ca2+/CaM has removed the autoregulatory 

domain from the catalytic surface and the binding peptide from the NR2B subunit 
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is able to occupy the substrate binding groove, the catalytic surface is occluded 

and the autoregulatory domain is no longer able to re-bind (Bayer et al., 2006). 

The consequence of this is the generation of autonomous activity even in the 

absence of Thr286 phosphorylation. This is particularly interesting, as it suggests 

that CaMKII substrates can not only provide for feedback for their own regulation, 

they may also provide feed-forward modulation of proteins localized within the 

same subcellular compartment.  

NMDA-Rs can be found within the post-synaptic densities (PSD) and 

extrasynaptic spaces in neurons. The post-synaptic density is a specialized area 

within dendrites that receives signals from pre-synaptic connections. The PSD is 

a tightly-packed subcellular compartment full of CaMKII and CaMKII substrates. 

Nearly 18% of the PSD is composed of CaMKII (Miller and Kennedy, 1985). 

Along with CaMKII, the PSD contains cytoskeletal proteins and an array of 

voltage-gated and ligand-gated channels/receptors. As mentioned, following Ca2+ 

influx via the NMDA-R, CaMKII translocates to NR2B. Because the PSD contains 

NMDA-Rs, CaMKII is recruited to the PSD following activation (Strack et al., 

1997b). This recruitment is critical as a large number of CaMKII substrates are 

found within this small subcellular compartment. To date, over 30 CaMKII 

substrates have been identified in the PSD (Yoshimura et al., 2000, Yoshimura et 

al., 2002). Without proper translocation of the kinase to the PSD, the regulation 

of these substrates would be lost. In fact, in situ studies in HEK293 cells 

indicated that the presence of NR2B at the cell membrane induces translocation 

of CaMKII to the membrane which enhances the phosphorylation of other 
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membrane-bound proteins (Tsui et al., 2005). Thus, the dynamic interactions 

between CaMKII and the NMDA-R are essential for normal synaptic function.  

Ion Channels and Extracellular Receptors 

 CaMKII has been shown to regulate an array of other voltage-gated and 

ligand-gated ion channels in neurons and astrocytes. Sodium channels, 

potassium channels, calcium channels, and purinergic receptors have all been 

shown to be regulated by CaMKII (Table 1). Connexins are also regulated by 

CaMKII. These hemichannels are particularly interesting as they serve as 

regulators of intracellular ion concentration between connected cells. For 

example, CaMKII has been shown to phosphorylate Connexin43 (found in 

myocytes and astrocytes) which subsequently results in decreased gap junction 

open probability (Dermietzel et al., 1989, Huang et al., 2011, Xu et al., 2012). 

Thus, CaMKII regulation of Connexin43 is critical for turning off the calcium flux 

from one cell to another. The loss of CaMKII activity would then result in 

dispersion of increased cytosolic calcium to nearby, unstimulated astrocytes.  

Several metabotropic receptors, including glutamate and dopamine 

receptors, are also regulated by CaMKII. Table 1 summarizes several ionotropic 

and metabotropic receptors within neurons and astrocytes that CaMKII has been 

shown to regulate. CaMKII has also been shown to regulate several known 

channel/receptor modulators. This includes accessory subunits of these ion 

channels and G-coupled protein receptors as well as other signaling proteins that 

influence channel/receptor function, such as Stargazin, an accessory protein 

essential for AMPA-R insertion (Opazo et al., 2010). While Table 1 summarizes a 
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Ion Channel  Physiological Impact  Reference 

AMPA‐R  Increases current density, targets 
channel to synapse 

Yakel et al., 1995, Tan et 
al., 1994 

ASIC1a  Increases current density  Gao et al., 2005 

BK  Increases open probability  Van Welie and du Lac, 
2011 

Cav1.2  Increases calcium‐dependent 
facilitation 

Hudmon et al., 2005 

Cav2.1  Slows inactivation  Xiang et al., 2007 

Cav3.2  Decreases threshold of activation  Wolfe et al., 2002 

CLC‐3  Activates channel  Cuddapah et al., 2010 

GABA‐A  Increases current density, targets 
channel to membrane 

Houston and Smart, 
2006, Houston et al., 
2007 

GABA‐B1  Prevents internalization  Guetg et al., 2010 

Kv1.4  Slows inactivation  Roeper et al., 1997 

Kv4.2  Increases channel expression  Varga et al., 2004 

Nav1.8  Increases current density   Hudmon et al., 2008 

NMDA‐R  Enhances receptor desensitization  Sessoms‐Sikes et al., 
2005 

P2Y1  Internalizes receptor  Tulapurkar et al., 2006 

TRPV1  Sensitizes receptor  Oh et al, 2004 
 
 
Table 1: Neuronal ion channels and receptors regulated by CaMKII.   
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very small portion of the known CaMKII substrates, it is easy to appreciate that 

CaMKII signaling (or loss of it) can have dramatic effects on neuronal excitability 

and the ability of neurons to respond to external stimulation.  

Cytoskeletal Proteins 

CaMKII has also been shown to regulate a variety of cytoskeletal proteins 

in neurons and astrocytes. Cytoskeletal proteins are often dynamic in nature, 

assembling and disassembling in response to stimulation, allowing cell growth 

and motility. Furthermore, these proteins play a critical role in organelle trafficking 

throughout the cell. CaMKII phosphorylation can inhibit cytoskeleton dynamics. 

For example, CaMKII phosphorylation of α- and β-tubulin not only inhibits tubulin 

assembly, it also inhibits the interaction between tubulin and microtubule-

associated protein II (MAP-2), a key structural component of neurons (Wandosell 

et al., 1986). Similarly, CaMKII phosphorylation of actin also inhibits actin 

polymerization (O'Leary et al., 2006). Furthermore, CaMKII phosphorylation of 

tau, a microtubule-associated protein in neurons, prevents the binding and 

stabilization of tau to microtubules (Singh et al., 1996, Sironi et al., 1998). This is 

particularly interesting as the destabilization of tau within neurons is associated 

with many neurodegenerative diseases such as Alzheimer’s Disease and 

Parkinson’s Disease (as reviewed by (Lee et al., 2001, Morris et al., 2011)).  

CaMKII activity can also decrease cytoskeletal stability by leading to 

protein disassembly. For example, CaMKII phosphorylation of vimentin, a 

cytoskeletal protein in astrocytes, results in the disassembly of vimentin filaments 

in vitro and in situ (Inagaki et al., 1987, Oguri et al., 2006). Thus, in combination 



30 
 

with influencing cell excitability, CaMKII phosphorylation of key cytoskeletal 

proteins can greatly impact cell structure, and may ultimately affect processes 

controlled by the cytoskeleton, such as neurotransmitter release and organelle 

transport.   

PHYSIOLOGICAL CAMKII SIGNALING 

Synaptic Plasticity 

CaMKII activity is critical for altering the ability of neurons to strengthen or 

weaken synaptic connections in response to stimulation, a process termed 

synaptic plasticity. Several studies have shown that glutamate stimulation-

induced CaMKII activity can lead to the enhancement of synaptic connections by 

increasing excitatory AMPA-R signaling (reviewed by (Lisman et al., 2012)). 

CaMKII targets both the AMPA-R and a regulatory protein of the AMPA-R to 

directly and indirectly optimize AMPA-R signaling in the synapse. CaMKII 

phosphorylation of Stargazin, a calcium channel accessory subunit shown to 

interact with AMPA-R, results in mobilization of the AMPA-R (Tomita et al., 2005, 

Opazo et al., 2010). Because Stargazin also interacts with PSD-95, a key post-

synaptic density cytoskeletal protein, the AMPA-R is recruited to the PSD (Bats 

et al., 2007). The AMPA-R is an ionotropic glutamate receptor, thus subsequent 

synaptic stimulation can activate both the NMDA-R and the newly-inserted 

AMPA-R. CaMKII also phosphorylates AMPA-R (Tan et al., 1994, Yakel et al., 

1995). This phosphorylation event leads to increased channel conductance in 

response to stimulation (Lledo et al., 1995, Barria et al., 1997a, Barria et al., 

1997b, Derkach et al., 1999). Thus, both the insertion of the AMPA-R at the 
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synapse and the increased ability of the channel to pass ions into the 

extrasynaptic neuron are induced by CaMKII activity. Recently, CaMKII has also 

been shown to downregulate the AMPA-R regulating protein AKAP79/150, which 

is known to decrease AMPA-R current (Nikandrova et al., 2010). By turning off 

the negative feedback, CaMKII activity is able to maintain AMPA-R availability in 

the PSD thereby increasing synaptic strength and initiating long-term 

potentiation.  

The consequence of all of these modulatory events is the strengthening of 

the synaptic connection, a type of synaptic plasticity referred to as long-term 

potentiation (LTP). LTP is the cellular correlate for memory and learning and 

CaMKII activity plays a key role in this process (Malenka et al., 1989, Chen et al., 

2001). Considering that αCaMKII is the predominant isoform of CaMKII within the 

hippocampus, it is not surprising that αCaMKII knock-out animals exhibit both a 

loss of long-term potentiation and severe deficits in memory and learning (Silva 

et al., 1992). 

Not only does CaMKII signaling impact the initiation of LTP, it is also 

critical for its maintenance. Even after initiation, LTP is reversed by the addition 

of AIP and CN27/CN21 (Sanhueza et al., 2007, Sanhueza et al., 2011). It is 

proposed that CaMKII plays a structural role in the synapse. Because the 

maintenance phase of LTP is marked by changes in the structure of the synapse, 

it is possible that disrupting this role of CaMKII ultimately disrupts the 

maintenance of LTP. Recent studies have also identified a role for CaMKII in 

regulating protein turnover within the synapse, a process which is critical for 
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maintenance of LTP. Inhibitors of the ubiquitin proteasome system have been 

shown to reverse LTP (Dong et al., 2008). Following synaptic stimulation, the 

ubiquitin proteasome is recruited to the PSD to ensure proper turnover of 

proteins in this highly-active subcellular compartment. Interestingly, this 

translocation is dependent on CaMKII. CaMKII directly binds one of the 

proteasome subunits and as the kinase becomes activated and begins to 

translocate to NMDA-Rs in the PSD, it pulls the proteasome along with it (Bingol 

et al., 2010). Expression of a CaMKII mutant that does not translocate 

(Iso205Lys) results in a loss of proteasome recruitment to the PSD (Bingol et al., 

2010). Thus, CaMKII may play a direct and indirect role in maintaining synaptic 

strength by contributing to the structure of the PSD as well as by recruiting 

proteins to the synapse that are essential for this maintenance phase.  

Evolutionary Insight 

Genetic manipulations of CaMKII within transgenic mice have alluded to a 

critical need for maintaining CaMKII homeostasis for normal physiology. βCaMKII 

knock-out mice exhibit severe motor deficits and disrupted synaptic plasticity 

within the cerebellum (van Woerden et al., 2009). As mentioned, αCaMKII knock-

out animals display deficits in memory and learning. Furthermore, these mice are 

predisposed to neuronal damage following stroke (Silva et al., 1992). A gene 

dose-dependence of damage was observed when heterozygous and 

homozygous αCaMKII knock-out animals were subjected to middle cerebral 

artery occlusion. Additionally, αCaMKII knock-out mice exhibited increased 

hyperexcitability and were predisposed to epileptic seizures. Interestingly, 
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autoinhibitory-deficient transgenic mice (lacking Thr305/Thr306) also display 

enhanced susceptibility to seizure (Elgersma et al., 2002). Similarly, transgenic 

expression of constitutively-autonomous CaMKII (Thr286Asp) resulted in 

increased epilepsy, which was further associated with decreased life-span in 

males (Mayford et al., 1995). Thus, both a loss of CaMKII and an increase in 

CaMKII activity result in epilepsy and other pathophysiological outcomes, 

including deficits in memory and learning as well as decreased life-spans.  

Many insights into the potential physiological role of CaMKII can also be 

ascertained when we examine the evolutionary homologs and orthologs of 

CaMKII. CaM-dependent kinases are found in nearly all cell types, from single-

celled organisms to higher order multicellular systems. While nomenclature 

varies and there is a wide degree of sequence variability between different cell 

systems, CaMKII signaling proteins can be found from bacteria to plants to 

mammals. Several studies indicate that these CaMKII family members play 

critical roles in maintaining cellular function and viability. For example, 

overexpression of CMK2, the yeast (Schizosaccharomyces pombe) ortholog of 

CaMKII, locks the cell division cycle in the G2 (Gap 2) phase (Alemany et al., 

2002). Ultimately, the consequence of this is the arrest of cell division (Alemany 

et al., 2002). Genetic knockdown of CMK2 sensitizes yeast to oxidative stress 

and the ensuing cell death that can occur from it (Sanchez-Piris et al., 2002). 

This phenomena is particularly interesting because under periods of distress, 

CMK2 becomes activated and phosphorylated at the onset of insult (Sanchez-

Piris et al., 2002), analogous to the activation of CaMKII observed during 
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cerebral ischemia (will be discussed later). Moreover, the enhanced sensitization 

to further stress when CMK2 is inactive is analogous to the predisposition of 

neurons to ischemic death in the αCaMKII knock-out animals (Waxham et al., 

1996). 

Overexpression of CPK32, the thale cress (Arabidopsis thaliana) ortholog 

of CaMKII, is beneficial for plant survival following several insults. An example of 

this is the increased resistance to drought and decreased sensitivity to salt when 

CPK32 is overexpressed (Karve, 2009). Similar to CaMKII in neurons, cellular 

stress in these plants leads to activation and redistribution of CPK32 in the cell 

(Karve, 2009). Osmotic stress, wound formation, and biological stressors such as 

changes in climate all result in increased CPK32 activity (Karve, 2009). Based on 

the protective qualities associated with CPK32, it is inferred that CPK32 

activation is cytoprotective during multiple insults. Interestingly, genetic knock-

down of CPK32 results in an increased sensitivity of these plants to damage 

following insults (Karve, 2009). This is consistent with CMK2 knockdown in yeast 

and αCaMKII knock-out mice, which exhibit predisposition to death following 

excitatory insults (Waxham et al., 1996).  

One of the most radical effects of increased CaMKII activity is observed 

within Drosophila melanogaster. Mutation of CaMKII to a constitutively active 

form leads to Drosophila death as a failure of action potential propogation in the 

insect neurons ultimately induces cardiac failure (Park et al., 2002). Loss-of-

function CaMKII mutations in Drosophila also have profound effects on the 

insects. A loss of CaMKII activity decreases the ability to learn and detect 
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pheromone cues (Joiner Ml and Griffith, 1997, Mehren and Griffith, 2004). There 

is also increased muscle excitability when CaMKII signaling is lost (Wang et al., 

1994). On a cellular level, these changes in muscle excitability are due to 

increased motor neuron branching and increased excitatory synaptic release at 

neuromuscular junctions (Wang et al., 1994). This finding, in combination with 

predisposition to seizure observed in αCaMKII knock-out mice, suggests that a 

loss of CaMKII activity leads to hyperexcitability.  

Neuronal function is also altered in Caenorhabditis elegans when CaMKII, 

or Unc-43, is aberrantly regulated. A gain-of-function mutation results in loss of 

neurotransmitter release, which consequently, impairs the motor system (Reiner 

et al., 1999, Robatzek and Thomas, 2000, Liu et al., 2007). As expected, C 

elegans exhibit a trend in general hyperexcitability when Unc-43 (CaMKII 

homolog) function is decreased (Reiner et al., 1999). Enteric muscle excitability 

is significantly increased with loss-of-function mutations, which results in 

increased defecation. There is also a significant increase in egg laying due to 

hyperexcitability. The most robust effect in C elegans is the increased sensitivity 

to seizure-like convulsions when Unc-43 is knocked down (Reiner et al., 1999, 

Williams et al., 2004). It has been reported that loss-of-function mutants 

spontaneously exhibit repeating muscle bursts akin to seizures. Furthermore, the 

threshold for seizure induction following stimulant treatment is drastically 

decreased in these mutant worms (Williams et al., 2004). This is similar to the 

increased propensity to generate epileptic seizures in the αCaMKII knock-out 
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mice and increased excitability in Drosophila (Wang et al., 1994, Butler et al., 

1995).     

Thus, evolutionary alterations in CaMKII are unfavorable for cellular 

viability. Increased CaMKII signaling in several of these examples is associated 

with cellular death and dramatic decreases in the excitability of neurons. A loss of 

CaMKII function appears to decrease the ability of organisms to respond to 

insults and in higher order systems, this loss of function leads to increased 

cellular excitability. From these evolutionary counterparts, we can begin to 

recognize that a proper balance of CaMKII signaling is required for maintaining 

cellular physiology.   

Insight from other tissue systems 

 Several studies have examined the effects of aberrant CaMKII activity in 

other tissue systems. For example, increased CaMKII activity in cardiomyocytes 

is associated with increased cellular excitability and a predisposition to toxicity. 

The expression of δCaMKII, the predominant cardiac isoform, is significantly 

elevated during heart failure (Hoch et al., 1999, Kirchhefer et al., 1999, Zhang et 

al., 2003). Mechanistic studies have identified that when activated, CaMKII 

aberrantly regulates cardiac ion channels and initiates the transcription of several 

pro-hypertrophic and pro-inflammatory genes (as reviewed by (Singh and 

Anderson, 2011). Thus, inhibition of CaMKII during heart failure affords 

cardioprotection by decreasing these cardio-myopathies. Moreover, the δCaMKII 

knock-out mice are more resistant to heart failure (Backs et al., 2009). No 

changes in morphology or excitation were observed in these knock-outs, 
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indicating that a loss of CaMKII signaling in the heart does not have a detrimental 

effect on cardiac function.  

 Within the immune system, CaMKII signaling is required for cytokine 

production in T lymphocytes, activation of natural killer cells, and initiation of 

macrophage infiltration (Bui et al., 2000, Poggi et al., 2002a, Poggi et al., 2002b, 

Liu et al., 2008). Expression of constitutively-active CaMKII leads to increased 

cytokine production and release, while pharmacological and genetic inhibition of 

CaMKII is associated with a loss of cytokine signaling (Poggi et al., 2002b, Liu et 

al., 2008). Several of the cytokines that appear to be downstream of CaMKII 

signaling are implicated in autoimmune disorders and inflammation. Thus, 

studies suggest that alterations in CaMKII signaling may contribute to the 

pathophysiology of immune diseases. While changes in cellular viability of 

immune cells treated with constitutively-active CaMKII or CaMKII inhibitors has 

not been reported, it is evident that CaMKII signaling plays a key role in immune 

cell function.  

 Homeostatic regulation of CaMKII signaling is also critical within the 

reproductive system. CaMKII inhibition dramatically decreases sperm motility and 

negatively regulates the exocytotic mechanisms required for spermatozoa 

penetration of the ovum. (Schlingmann et al., 2007, Ackermann et al., 2009). 

Within females, a loss of CaMKII activity in Oocytes leads to apoptotic death. 

CaMKII phosphorylation of caspase-2 renders the pro-apoptotic caspase inactive 

to promote oocyte survival. Mutation of the phospho-acceptor site on caspase-2, 

Ser135, results in robust oocyte death within 8 hours (Nutt et al., 2005). Thus, a 
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loss of CaMKII activity in both male and female reproductive machinery can be 

detrimental to fertilization. 

There have also been several studies connecting CaMKII signaling and 

cancer. In general, a loss of CaMKII signaling appears to be toxic for cancer 

cells. Pharmacological CaMKII inhibitors and genetic ablation of CaMKII have 

been shown to induce apoptosis in malignant glioma, melanoma, osteosarcoma, 

and prostate cancer cells (Xiao et al., 2005, Song et al., 2006, Rokhlin et al., 

2007, Yuan et al., 2007). Furthermore, expression of the CaMKIIN inhibitory 

protein has been shown to arrest cell cycling and induce apoptosis in ovarian 

adenoblastomas (Ma et al., 2009). These findings are particularly interesting as 

fluctuations in CaMKIIN protein levels are associated with ovarian 

adenoblastomas (Ma et al., 2009). Robust levels of the CaMKIIN protein has 

been shown to be expressed in normal healthy ovarian tissue; however, 

adenocarcinomas are marked by a significant decrease in CaMKIIN protein (Ma 

et al., 2009). Thus, a reduction in the endogenous regulation of CaMKII may be a 

mechanism underlying how cancer cells evade death. These findings suggest 

that CaMKII activity is essential for the growth and survival of several variants of 

cancer.  

Together, the literature overwhelmingly suggests that dysregulation of 

CaMKII is detrimental to cellular function and viability. Fluctuations in activity are 

correlated with altered excitability, enhanced sensitivity to insults, and increased 

toxicity. From this, we postulate that a proper balance of CaMKII activity is 

essential for maintaining neuronal viability.  
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PATHOLOGICAL CAMKII SIGNALING 

Changes in CaMKII Signaling during Cerebral Ischemia 

Ischemic events within the brain can be devastating to neurons. Neurons 

require oxygen and glucose in order to generate and maintain their excitable 

membrane. Therefore, a loss of blood flow associated with ischemia is 

detrimental to neurons as metabolically-dependent functions such as the 

regulation of ion pumps are no longer able to be maintained. Because ion pumps 

are critical for the maintenance of membrane potential, the loss of pump activity 

during ischemic insult has been shown to lead to an aberrant neuronal 

depolarization from which the neurons are not able to recover (as reviewed by 

(Lipton and Rosenberg, 1994, Aronowski et al., 2000, Mark et al., 2001)). It is 

well-understood that neuronal depolarization can lead to neurotransmitter 

release. Thus, ischemic insults and the resulting periods of decreased energy 

availability are also marked by an increase in neurotransmitter release. While 

several factors can contribute to neuronal death following stroke (such as 

reactive oxygen species generation, mitochondrial dysfunction, lipase activation, 

and macrophage infiltration), the dysregulation of neuronal excitability and 

aberrant neurotransmitter release are key mechanisms underlying ischemic 

neuronal death.  

As mentioned, the terminal depolarization of ischemic neurons results in 

the release of neurotransmitter stores. The most abundant excitatory 

neurotransmitter in the cerebral cortex is the amino acid glutamate. Thus, 

extracellular concentrations of nearly 250 μM glutamate have been observed 
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within the ischemic tissue in a human stroke patient (Bullock et al., 1995). While 

glutamate is critical for excitatory synaptic signaling, the overabundance of 

extracellular glutamate in ischemia is detrimental to neuronal viability. In 1969, 

J.W. Olney first described the neurotoxic effects of increased glutamate in mice 

(Olney, 1969). Over the next 20 years, several groups identified that neuronal 

damage following ischemic stroke was correlated with excess glutamate 

signaling (reviewed by (Choi, 1988)). The hypothesis that excess glutamate 

played a causal role in neurotoxicity was supported by in situ analysis of 

neuronal viability in the hours following exogenous glutamate application. 

Neurons treated with high levels of glutamate exhibited the loss of neuritic 

processes, swollen somas, and increased membrane permeability (Olney et al., 

1986, Choi et al., 1987, Finkbeiner and Stevens, 1988). The process of 

glutamate-induced neuronal death was termed ‘excitotoxicity’; a term which 

highlights the connection between over-excitation and toxicity (Olney, 1969).  

Further work has identified that excitotoxicity is largely induced by 

glutamate activation of the NMDA-R (Choi, 1987, Murphy et al., 1987). While 

neurons express several metabotropic and ionotropic glutamate receptors, 

antagonism of the ionotropic NMDA-R has been shown to prevent excitotoxic 

neuronal death in situ (Choi et al., 1988, Frandsen et al., 1989). Furthermore, 

NMDA-R antagonists have been shown to reduce neuronal damage in animal 

models of stroke (Gotti et al., 1988, Park et al., 1988a, b, Bullock et al., 1990, 

Uematsu et al., 1991). While these findings have been critical for understanding 

the mechanism underlying the initiation of excitotoxicity, the optimism for NMDA-



41 
 

R antagonists in therapeutic treatment of ischemic stroke has been dampered by 

the inability of these inhibitors to be effective in clinical trials (as reviewed by 

(Ginsberg, 2008, 2009)). There are large disparities in the findings of these trials 

with some suggesting a neuroprotective effect, others suggesting no effect, and 

others suggesting that the negative side-effects of these drugs outweigh any 

potential benefits. Considering how efficacious these reagents were in animal 

models, the failure of these drugs to be neuroprotective in clinical trials is 

perplexing. As mentioned above, extracellular glutamate levels are significantly 

increased within minutes of insult (Benveniste et al., 1984, Globus et al., 1988, 

Butcher et al., 1990). While this extracellular glutamate has been shown to 

remain elevated for hours to days (Davalos et al., 1997), the therapeutic time 

window for NMDA-R antagonism appears to be much shorter. Because of this, 

recent studies have focused on examining the impact of signaling pathways 

downstream of the NMDA-R (Ginsberg, 2008).  

NMDA-R activation results in Ca2+ influx into neurons. This Ca2+ influx has 

been shown to play a causal role in the neurotoxic effects of glutamate 

stimulation, as buffering of extracellular Ca2+ can prevent excitotoxicty in vitro 

(Choi, 1985). As mentioned earlier, intracellular Ca2+ levels impact numerous 

signaling pathways, including CaMKII which is activated following the onset of 

ischemic insult (Westgate et al., 1994). This excitotoxic-induced activation is 

short-lived as CaMKII enters an inactive state within minutes (Aronowski et al., 

1992, Hanson et al., 1994, Aronowski and Grotta, 1996). This inactivation can 

last for hours to days, depending on the length of ischemic insult. Figure 4 
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summarizes the fluctuations in CaMKII activity in the time surrounding ischemic 

insult (based on previous literature (Aronowski et al., 1992, Hanson et al., 1994, 

Westgate et al., 1994)). 

The Role of CaMKII Inactivation 

These fluctuations in CaMKII activity during ischemic stroke are correlated 

with the extent of neuronal damage. In an animal model of stroke, CaMKII activity 

within the ischemic core was undetectable 24 hours following insult (Hanson et 

al., 1994). For reference, the ischemic core is the tissue that has directly lost 

blood supply. The area surrounding the ischemic core is known as the 

penumbra. This tissue retains partial blood supply; however, signals from the  

core render the penumbra sensitive to the insults that accompany stroke 

(glutamate and reactive oxygen species). Interestingly, CaMKII activity within the 

penumbral region is also decreased 24 hours following stroke (Hanson et al., 

1994). There was a striking pattern between CaMKII activity levels and neuronal 

damage. While the core exhibited the largest extent of CaMKII inactivation, this 

loss of activity radiated from the core into the surrounding penumbra (Hanson et 

al., 1994). This pattern of radiation directly mimicked the pattern of cell death, 

with the largest extent in the core and radiation outward away from insult into the 

penumbra (Hanson et al., 1994). Importantly, proteolytic degradation of the 

kinase does not underlie this decreased activity (Aronowski et al., 1992, 

Westgate et al., 1994, Shackelford et al., 1995). Interestingly, neuroprotective 

strategies that block NMDA-R function have been shown to prevent the loss of 
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Figure 4: Schematic of CaMKII activity in the time surrounding 
excitotoxic insult. 
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CaMKII activity, further supporting the correlation between CaMKII inactivation 

and the extent of neuronal death (Aronowski et al., 1993).  

The concept that CaMKII inactivation is detrimental to neuronal survival 

following stroke is also supported by studies in the αCaMKII knock-out mouse. 

Interestingly, αCaMKII knock-out mice displayed greater infarct size than their 

wild-type littermates (Waxham et al., 1996). Moreover, there was gene-dosage 

sensitivity to stroke damage, with the greatest damage in homozygous knock-out 

mice and moderate damage in heterozygous αCaMKII animals (Waxham et al., 

1996). Together, these data suggest that a loss of CaMKII activity could play a 

detrimental role in the ability of neurons to survive an ischemic/excitotoxic insult. 

The Role of Aberrant CaMKII Activation 

While inactivation of CaMKII correlates with neuronal death, an increase in 

CaMKII activity precedes this inactivation. Several studies have attempted to 

better understand the influence of CaMKII activation during periods of cellular 

distress. Application of small molecule inhibitor KN-93 prior to excitotoxic insult 

has been shown to afford neuroprotection to cortical, hippocampal, and retinal 

neurons (Hajimohammadreza et al., 1995, Takano et al., 2003, Vest et al., 2010). 

Peptide inhibitors of CaMKII, such as tat-CN21 and tat-AIP, have also been 

shown to be efficacious at reducing excitotoxicity (Laabich and Cooper, 2000, 

Fan et al., 2006, Goebel, 2009, Vest et al., 2010). However, these studies have 

been limited to inhibition of CaMKII prior to insult. Thus, our studies are focused 

on understanding the impact of CaMKII signaling in the time surrounding insult, 

by applying inhibitors at various time points before and after glutamate 
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stimulation. During the completion of our studies for Chapter 2, the Bayer lab 

indicated that injection of tat-CN21 an hour after the induction of middle cerebral 

artery occlusion in mice reduced infarct size 24 hours following insult (Vest et al., 

2010). These findings indicated that targeting CaMKII during ischemic stroke 

may be therapeutically advantageous. As will be discussed in Chapter 2, we 

have expanded on their findings to better address enzymatic changes in CaMKII 

that occur when the inhibitors are applied in the time surrounding insult.  

Self-Association 

How can both aberrant activation and inactivation of CaMKII play a role in 

excitotoxic neuronal death? The answer may lie in the functional consequences 

that activation of CaMKII during periods of cellular distress has on CaMKII 

stability and activity. Nearly 20 years ago, differential centrifugation of whole 

brain lysates taken from animals subjected to cerebral ischemia indicated that 

CaMKII transitioned from soluble to sedimentable fractions following insult 

(Aronowski et al., 1992, Yamamoto et al., 1992, Kolb et al., 1995, Shackelford et 

al., 1995). This transition occurs rapidly, and directly correlates with a loss of 

CaMKII activity (Aronowski et al., 1992, Kolb et al., 1995, Shackelford et al., 

1995). This translocation was consistent in hippocampal slices subject to 

ischemic insult in vitro (Kolb et al., 1995). Electron microscopy studies identified 

that ischemic-like insults induced the translocation of CaMKII to aggregate-like 

clusters in neurons (Dosemeci et al., 2000, Tao-Cheng et al., 2001, Tao-Cheng 

et al., 2002). These clusters were purified and mass spectrometry revealed that 

they were primarily composed of αCaMKII protein (Dosemeci et al., 2000). 
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Utilization of GFP-tagged αCaMKII allowed for real-time analysis of this CaMKII 

aggregation within neurons following excitotoxic glutamate stimulation (Hudmon 

et al., 2005). Interestingly, αCaMKII began to cluster within minutes of glutamate 

application, suggesting that excitotoxic insults rapidly cause CaMKII aggregation 

(Hudmon et al., 2005). To further understand this, purified αCaMKII was 

observed in ischemic-like conditions in vitro (limiting ATP, reduced pH; discussed 

below) (Hudmon et al., 1996, Hudmon et al., 2001, Hudmon et al., 2005). Light 

scattering analysis indicated that the shape and size of αCaMKII in solution was 

drastically different when the kinase was added to ‘ischemic-like’ solution 

compared to physiologically normal solution (pH 7.4 with saturating levels of 

ATP) (Hudmon et al., 2001). Transmission electron microscopy indicated that the 

size and shape difference between these two conditions was due to the 

formation of grape-like clusters of CaMKII holoenzymes (Hudmon et al., 2001). 

Because this process is an interholoenzyme association (ie multiple CaMKII 

holoenzymes cluster together) the process was termed ‘self-association’. 

Much work has gone into trying to understand the mechanism of CaMKII 

self-association. It is known that this process is activity-dependent in that it 

requires Ca2+/CaM activation (Hudmon et al., 1996). However, Ca2+/CaM binding 

is not sufficient to induce self-association, as under physiological conditions little 

CaMKII is self-associated. A role for ATP concentration has been established; 

self-association does not occur when free ATP levels are within 2-4 mM 

(Hudmon et al., 1996). However, when CaMKII is activated in limiting ATP, self-

association is observed (Hudmon et al., 1996). Interestingly, the kinase is unable 
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to self-associate when ATP is completely absent, suggesting a requirement for 

the presence of some nucleotides. Indeed, ADP and the ATP analog AMP-PNP 

are able to substitute for ATP and induce self-association when ATP is 

completely depleted (Vest et al., 2009). These data suggest that under periods of 

cellular distress that decrease ATP availability, CaMKII is sensitive to self-

association. During ischemic stroke in vivo, ATP concentration has been shown 

to plummet within minutes of insult (Kobayashi et al., 1977, Onodera et al., 1986, 

Eleff et al., 1991). Along with this loss in ATP, an increase in AMP levels has 

been observed (Kobayashi et al., 1977, Onodera et al., 1986) as well as a 

transient increase in ADP levels (Kobayashi et al., 1977). In situ excitotoxic 

insults show a similar effect with significant decreases in intracellular ATP levels 

following insult (Mattson et al., 1993, Budd et al., 2000). Thus, ischemic events 

create an environment that fosters CaMKII self-association.   

Another hallmark of ischemia that has been shown to regulate CaMKII 

self-association is a reduction in pH. Under physiological pH (7.3-7.4), αCaMKII 

does not self-associate, even when ATP levels are depleted (Hudmon et al., 

1996, Hudmon et al., 2001); however, as the pH decreases towards pH 7.0 or pH 

6.0, the sensitivity of the kinase to self-associate increases (Hudmon et al., 

2001). Because intracellular pH within neurons is maintained by proper 

oxygen/glucose availability, ischemic insults result in rapid decreases in pH; in 

vivo stroke models have shown that pH can reach levels as low as pH 6.2 in 

minutes (Silver and Erecinska, 1992). Decreased ATP and decreased pH 

additively affect the sensitivity of αCaMKII self-association. As mentioned, high 
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levels of ATP ( >1 mM) prevent self-association even when pH is significantly 

reduced (Hudmon et al., 1996). Furthermore, higher pH (pH 7.4) can prevent this 

aggregation from occurring even when ATP is depleted (Hudmon et al., 2001). 

While self-association is prevented at higher pH, the limiting levels of ATP still 

induce CaMKII inactivation (Hudmon et al., 1996, Hudmon et al., 2001). 

Together, a decrease in pH and a decrease in ATP lead to enhanced 

susceptibility to self-association.  

Interestingly, autophosphorylation of Thr286 prevents self-association 

even under periods of decreased ATP and pH. While phosphorylation of this 

residue is most often recognized as being essential to rendering CaMKII 

autonomous, Thr286 phosphorylation also appears to provide stability to the 

kinase by preventing this aggregation (Hudmon et al., 2005). It is thought that 

this protection that autophosphorylation affords may explain the ability of high 

levels of ATP to prevent self-association; increased ATP availability will result in 

increased Thr286 phosphorylation. The concept that the autophosphorylation 

state of Thr286 determines the sensitivity to self-association is supported by in 

situ studies with Thr286 mutants. Overexpression of autophosphorylation 

deficient Thr286Ala resulted in significantly higher levels of self-association in 

neurons and HEK293 cells subjected to ischemic-like insults, compared to wild-

type αCaMKII (Hudmon et al., 2005). The constitutively-autophosphorylated 

mutant Thr286Asp is more resistant to self-association than wild-type αCaMKII 

(Hudmon et al., 2005). Many theories exist as to how this residue may influence 

the stability/structure of the kinase; however, there is currently no crystal 
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structure available for autophosphorylated CaMKII. AC-2, the peptide mimetic of 

the autoregulatory domain, can prevent self-association (Hudmon et al., 2001). 

While the mechanism underlying self-association is not fully-understood, it has 

been hypothesized that the autoregulatory domain interacts with the surface of 

another holoenzyme causing the interholoenzyme aggregation (Hudmon et al., 

2001).  

Despite these speculations, the connection between self-association and 

CaMKII inactivation is apparent. Self-association results in the inactivation of 

CaMKII. It is important to point out that inactive kinase does not self-associate, 

rather self-association leads to inactivation. Phosphorylation of Thr305/Thr306 

results in inactivation (see CaMKII Inactivation section). Phosphomimetics at 

these residues (Thr305Asp/Thr306Asp) have been shown to be resistant to self-

association in situ (Hudmon et al., 2005). This is because CaMKII self-

association is dependent on Ca2+/CaM binding, which cannot occur when 

Thr305/Thr306 are phosphorylated. Thus, the loss of enzyme activity under 

ischemic-like conditions is likely due to inactivation subsequent to self-

association. The impact of self-association/inactivation on neuronal viability is still 

poorly-understood.  

RESEARCH GOALS 

Ultimately, a better understanding of how CaMKII activity contributes to 

neuronal physiology is essential in order to fully-appreciate the role of CaMKII in 

normal and diseased states. Neurodegenerative diseases such as cerebral 

ischemia destabilize CaMKII activity while inducing cellular death. It is apparent 
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that CaMKII signaling is correlated with excitotoxic neuronal death; however, 

whether CaMKII plays a causal role, rather than a correlative one, is still 

unknown. The purpose of this dissertation is to address this knowledge gap and 

solidify the role of CaMKII signaling in regulating/maintaining neuronal viability.   

I hypothesize that the large fluctuations in CaMKII activity- both the 

transient increase and prolonged inactivation observed following excitotoxic 

insult- play a causal role in the induction of neurotoxicity observed in the hours 

and days following insult. To address this, I will modulate CaMKII in the time 

surrounding excitotoxic insult to fully understand what impact overactivation of 

the kinase has on both neuronal viability and subsequent functional changes in 

CaMKII itself. Furthermore, we will also analyze the consequence of a rapid, yet 

prolonged decrease in neuronal CaMKII activity. Finally, we will examine the 

effect of CaMKII inhibition in astrocytes to identify how these cells can influence 

neuronal survival when CaMKII activity is decreased. These experiments will 

allow us to solidify a role for CaMKII activity as an important director of neuronal 

function and will highlight potential avenues for therapeutic targeting of CaMKII in 

neurodegenerative diseases.  
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PART I: EXCITOTOXIC NEUROPROTECTION AND VULNERABILITY WITH 

CAMKII INHIBITION 

SUMMARY 

Aberrant calcium signaling is a common feature of ischemia and multiple 

neurodegenerative diseases. While activation of Ca2+/CaM-dependent protein 

kinase II (CaMKII) is a key event in calcium signaling, its role in excitotoxicity is 

controversial. Our findings demonstrate neuroprotection in neuronal cultures 

treated with the small molecule (KN-93) and peptide (tat-AIP and tat-CN21) 

inhibitors of CaMKII immediately prior to excitotoxic glutamate/glycine insult. 

Unlike KN-93 which blocks CaMKII activation, but not constitutively active forms 

of CaMKII, tat-CN21 and tat-AIP significantly reduced excitotoxicity in cultured 

neurons when applied post-insult. We observed that the neuroprotective effects 

of tat-CN21 are greatest when applied before the toxic glutamate challenge and 

diminish with time, with the neuroprotection associated with CaMKII inhibition 

diminishing back to control 3 hours post glutamate insult. Mechanistically, tat-

CN21 inhibition of CaMKII resulted in an increase in CaMKII activity and the 

percentage of soluble αCaMKII observed in neuronal lysates 24 hours following 

glutamate stimulation. To address the impact of prolonged CaMKII inhibition prior 

to excitotoxic insult, neuronal cultures were treated with CaMKII inhibitors 

overnight and then subjected to a sub-maximal excitotoxic insult. In this model, 

CaMKII inhibition prior to insult exacerbated neuronal death, suggesting that a 

loss of CaMKII enhances neuronal vulnerability to glutamate. Although changes 

in αCaMKII or NR2B protein levels are not responsible for this enhanced 
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glutamate vulnerability, this process is blocked the protein translation inhibitor 

cycloheximide. Thus, the neuroprotection afforded by CaMKII inhibition can be 

seen as neuroprotective immediately surrounding the excitotoxic insult, whereas 

sustained CaMKII inhibition produced by excitotoxicity leads to neuronal death by 

enhancing neuronal vulnerability to glutamate.  

INTRODUCTION 

Finely-tuned transient increases in intracellular calcium are essential for 

neuronal development, communication and plasticity. However, dysregulated 

calcium signaling can produce neuronal death via necrotic and programmed cell 

death mechanisms (Portera-Cailliau et al., 1997, Dirnagl et al., 1999, Snider et 

al., 1999). Excitotoxicity is a hallmark of most neurodegenerative diseases; a 

process that leads to excessive accumulation of intracellular calcium via the 

over-activation of excitatory glutamate receptors. Because of its prominent role in 

neuronal calcium signaling, calcium/calmodulin-dependent protein kinase II 

(CaMKII) may contribute to excitotoxic neurodegeneration for the following 

reasons, 1) CaMKII is activated and autophosphorylated in stroke, brain trauma 

and epilepsy (Perlin et al., 1992, Churn et al., 1995, Morioka et al., 1995, 

Zalewska and Domanska-Janik, 1996), 2) the calmodulin inhibitor calmidazolium 

is a neuroprotective agent in ischemia (Pohorecki et al., 1990), and 3) ischemia 

induces CaMKII translocation (Aronowski et al., 1992, Morioka et al., 1995, 

Aronowski and Grotta, 1996, Hu et al., 1998, Dosemeci et al., 2001) and 

phosphorylation of key post-synaptic substrates (i.e. post-synaptic density) 

(Meng and Zhang, 2002, Takagi et al., 2003, Fu et al., 2004, Hao et al., 2005). 
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Previous studies using small molecule and peptide inhibitors of CaMKII such as 

KN-93 and autocamtide-2 inhibitory protein (AIP) have been shown to be 

neuroprotective when applied before an excitotoxic insult in vitro 

(Hajimohammadreza et al., 1995, Laabich and Cooper, 2000, Takano et al., 

2003, Fan et al., 2006, Goebel, 2009, Vest et al., 2010). However, because 

CaMKII also regulates substrates involved in neuronal survival (e.g. L-type 

calcium channels, CREB and BCL-2 etc.), it is also possible that inhibiting 

CaMKII may exacerbate excitotoxic neuronal death (Dash et al., 1991, Bok et al., 

2007, Wheeler et al., 2008). In support of this, an ischemic insult in αCaMKII 

knock-out mice leads to much greater neuronal death than in wild-type litter 

mates, suggesting that CaMKII activity is important for neuronal survival to 

excitotoxicity (Waxham et al., 1996).  

To date, the discrepancies found between the in vivo knock-out model and 

in situ small molecule and peptide inhibitor experiments are not understood. 

While it possible that differences could be due to model systems (genetic knock-

out versus pharmacological manipulation), the impact that both short-term and 

sustained CaMKII inhibition prior to excitotoxic insult have on neuronal survival 

has not been explored in one system concurrently. Furthermore, the small 

molecule and peptide inhibitors of CaMKII used in previous experiments have 

been shown to have a variety of off-target effectors. The family of KN-drugs has 

been shown to inhibit a variety of CaM-kinase family members as well as 

voltage-gated potassium and calcium channels (Enslen et al., 1994, Ledoux et 

al., 1999, Gao et al., 2006). AIP, which mimics the autoregulatory domain of 
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CaMKII, has also been shown to inhibit other CaM-kinase family members (Smith 

et al., 1990).  

In order to determine whether CaMKII inhibition is neuroprotective, a 

battery of CaMKII inhibitors including those presented in earlier studies (KN-93 

and AIP) as well as the highly-specific CaMKIINtide peptide inhibitor, CN21 (Vest 

et al., 2007), were applied either immediately before or after the onset of 

excitotoxic insult. KN-93, AIP, and CN21 all afforded neuroprotection when 

applied prior to the onset of an excitotoxic insult. Interestingly, only AIP and 

CN21, which inhibit the autonomous form of CaMKII (Ishida et al., 1995, Chang 

et al., 1998, Rose and Hargreaves, 2003), afforded neuroprotection when applied 

after insult. The translocation and loss of CaMKII activity observed 24 hours after 

glutamate excitotoxicity was prevented in a time-dependent manner by CaMKII 

inhibition. To examine the effect that prolonged loss of CaMKII activity has on 

neuronal sensitivity to excitotoxicity, neuronal cultures were treated with CaMKII 

inhibitors and were then subjected to a sub-maximal glutamate/glycine insult. 

Prolonged CaMKII inhibition (>8 hours) exacerbates neuronal death following an 

excitotoxic challenge; a process that requires protein synthesis. Taken together, 

these data indicate that acute inhibition of CaMKII is neuroprotective when 

applied immediately surrounding an excitotoxic insult, whereas prolonged 

inhibition enhances neuronal death to an excitotoxic challenge.  

EXPERIMENTAL PROCEDURES 

 Materials. CN21 (KRPPKLGQIGRSKRVVIEDDR), CN21c 

(GQIGRSKVVIEDDRIDDVLK), CN21Ala (KAPAKAAWAAASKRVVIEDDR), AIP 
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(RKKLRRQEAFDAL) as well as tat (YGRKKRRQRR)-conjugated peptides and 

Fam-labeled peptides were synthesized and HPLC purified by Biopeptide Co, 

Inc. San Diego, CA, USA. KN-93 and KN-92 were purchased from Calbiochem, 

EMD Biosciences, La Jolla, CA. Culture-grade glutamate, glycine, and 

cycloheximide was purchased from Sigma, St. Louis, MO.  

Embryonic cortical neuron culture. Cortical tissue from E18-E19 Sprague-Dawley 

rat pups was harvested according to approved IACUC guidelines as previously 

described (Hudmon et al., 2005) with the following modifications. Pelleted cortical 

cells were resuspended in neuronal growth media (Neurobasal media containing 

2% NuSerum (BD Biosciences, San Jose, CA), 2%NS21 (Chen et al., 2008), and 

penicillin (10 units/mL), streptomycin (10 µg/mL), and L-glutamine (29.2 µg/mL) 

at a density of 2.5 million cells/mL and seeded on poly-D-lysine (50 µg/mL) 

coated 15mm coverslips (German glass Number 0) or 60mm dishes. Forty-eight 

hours after plating, cultures are treated with 5-fluor-2’-deoxyuridine(1.5 µg/mL) 

(Sigma) and Uridine (3.5 mg/mL) to kill mitotically active cells. Neurons were fed 

every 48 hours, with half of the conditioned media replaced with fresh media.   

Immunocytochemistry of neuronal cultures. Neurons 7-8 days in vitro (DIV) were 

fixed in 4% paraformaldehyde (0.1 M phosphate buffer, pH 7.4) for 10 minutes 

and washed in phosphate buffered saline (PBS) three times. Cells were 

permeabilized in 0.5% Triton X-100 in PBS for 10 minutes at room temperature, 

washed in PBS three times, blocked for 1 hour in 2% BSA Fraction V, 20% 

normal goat serum, 0.1% Triton X-100 in PBS at room temperature, washed an 

additional three times in PBS. Cells were then incubated in primary antibodies, 
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monoclonal MAP-2 (1:1000 Sigma, St. Louis, MO), polyclonal GFAP (1:1000 

Sigma), mouse monoclonal anti-αCaMKII antibody (CBα2; 1:5000), or polyclonal 

pan CaMKII (1:1000 Cell Signaling, Danvers, MA) for 2 hours at room 

temperature. After three washes, secondary antibodies (goat anti-mouse 

DyLight800, 1:5000 or anti-rabbit Alexa594, 1:5000 (Molecular Probes, Eugene, 

OR)) were incubated PBS for one hour at room temperature. Coverslips were 

mounted in Prolong Gold Antifade with DAPI mounting media (Molecular Probes) 

and neurons imaged using a Nikon Ti-E inverted microscope. 

Excitotoxic stimulation. Neurons (7-8 or 14 DIV) were stimulated with varying 

amounts of glutamate/glycine as described in results. The standard excitotoxic 

condition used was 200 µM glutamate/20 µM glycine for 1 hour at 37oC. Half of 

the conditioned media is removed and fresh growth media containing 2x 

glutamate/glycine is added to each dish. Peptide inhibitors were diluted in fresh 

neuronal growth media from a 10 mM stock. When pretreatment with inhibitors is 

performed, media containing 2x peptide was added and allowed to incubate at 

37oC for 20 minutes at concentrations described in results. Half of this media is 

removed and stimulation media containing 2x glutamate/glycine supplemented 

with 1x peptide is then added for stimulation. When inhibitors are added during 

the excitotoxic insult, half of the excitation media is removed and fresh neuronal 

growth media containing 1x glutamate/glycine and 2x peptide is added. For 

application of peptide following the excitotoxic insult, stimulation media was 

washed and replaced with fresh neuronal growth media. At the time of 

application, half of this media is removed and 2x peptide is added for 1 hours at 
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37oC. Following all treatments, stimulation media is washed with fresh neuronal 

growth media three times. Half of the media is removed and conditioned media is 

added back to the wells at the end of stimulation or drug treatment. Cultures are 

incubated at 37oC 24 hours following stimulation. Manipulation of the neuronal 

cultures (multiple washes consistent with experimental manipulations) produces 

roughly 10-20% cell death compared to the percentage of dying cells measured 

in the absence of manipulation.  

Cell death assay. Twenty-four hours following glutamate/glycine stimulation, the 

coverslips were washed in PBS and stained using Live/Dead Cytotoxicity/Viability 

kit (Molecular Probes, Eugene, OR). Coverslips are incubated as directed by the 

manufacturer for 40 mins at room temperature, washed in PBS and immediately 

imaged on Nikon Ti-E inverted microscope (100x magnification). Each coverslip 

is imaged in three different fields using a Texas Red filter to detect cytotoxic cells 

and a FITC filter to detect viable cells. Cells were quantified using the automated 

counting software Nikon Elements 3.0. A threshold of cytotoxic nuclei was set to 

>20 µm2, as determined with DAPI co-staining. A viability threshold was set at 

>50 µm2, and anything smaller was disregarded as debris. Total cell number was 

determined by addition of cytotoxic and viable cells. Total cell number was not 

significantly different between experimental groups for each assay. Propidium 

iodide was also applied for a series of experiments to determine the rate of 

excitotoxic neuronal injury. Co-staining with DAPI allowed for the calculation of 

total cell number in these experiments. In some assays, cell death is normalized 

to excitotoxic stimulation control as indicated. 
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CaMKII activity assay. Recombinant αCaMKII was expressed in insect cells 

using baculovirus and purified as described previously (Bradshaw et al., 2002). 

CaMKII (25ngs) was incubated with 50 mM Hepes pH 7.4, 100 mM NaCl, 10 mM 

MgCl2, 100 µM ATP, 2 mM CaCl2, 5 µM CaM, 50 µM Syntide2 

(PLARTLSVAGLPGKK), and [γP32 ]-ATP (3 µCi per reaction) for 1 minute at 

30oC. The solution was then transferred to P81 filter papers (Whatman, GE 

Healthcare, Piscataway, NJ), washed with 75 mM phosphoric acid 3 times for 5 

minutes each, and counted in Beckman Beta Counter as described previously 

(Hudmon et al., 1996). The purified CaMKII routinely had a specific activity of 4-

15 µmols/min/mg. For activity assays performed with neuronal lysates, cells were 

lysed in lysis buffer containing ( 50 mM Hepes pH 7.4, 4 mM EGTA, 10 mM 

EDTA, 15 mM Na4P2O7-10H20, 100 mM β-glycerophosphate, 25 mM NaF, and 

protease inhibitor cocktail (#539137,Calbiochem)(Kolb et al., 1995)), sonicated, 

and incubated with 50 mM Hepes pH 7.4, 100 mM NaCl, 10 mM MgCl2, 100 µM 

ATP, 2 mM CaCl2, 5 µM CaM, 50 µM AC2 (KKALRRQETVDAL), and [γP32 ]-ATP 

(3 µCi per reaction) for 3 minutes at 30oC. Preliminary experiments indicated the 

linear range of the reaction extended from 30 seconds to 4 minutes. Protein 

levels were assessed and activity was normalized to total protein using a DC 

protein assay kit (Biorad, Hercules, CA).  

Peptide SPOTS arrays. Peptide arrays are constructed using the SPOTS-

synthesis method (Frank and Overwin, 1996, Frank, 2002). Standard 9-

fluorenylmethoxy carbonyl (Fmoc) chemistry is used to synthesize peptides on 

cellulose membranes prederivatized with a polyethylene glycerol spacer (Intavis 
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AG, Cologne, Germany). Fmoc protected and activated amino acids (Anaspec, 

Fremont, CA) are spotted in 20x30 arrays on 150 mm by 100 mm cellulose 

membranes using an Intavis robot (Intavis AG, Cologne, Germany). Peptides 

consist of CN21c (GQIGRSKVVIEDDRIDDVLK) and CN21Ala 

(KAPAKAAWAAASKRVVIEDDR) as well as a scanning mutagenesis (stepwise 

single amino acid replacement) of CN21 (KRPPKLGQIGRSKRVVIEDDR) with 

alanine. The ethanol dried membrane was stained in 0.1% bromophenol blue, 

washed, ethanol dried, and labeled for annotation. After imaging, the blot was 

deprotected in a solution of 49.9% trifluoroacetic acid, 49.9% dichloromethane, 

0.03% triisopropylsilane, and 0.02% water for one hour at room temperature. 

Followed by 4 X 25 mL washes with dichloromethane, 4 X 25 mL washes with 

dimethylformamide, and 2 X 25 mL washes with ethanol. The peptide membrane 

is blocked at room temperature for 1 hour in binding buffer (20 mM Tris, pH 7.4, 

200 mM NaCl, 1 mM EDTA, and 0.1% Tween-20) plus 5% BSA. Alexa800-labeled 

CaMKII is activated in a pre-reaction mixture as described previously (Hudmon et 

al., 1996). Autophosphorylated CaMKII was diluted in binding buffer plus 1% 

BSA and added to the membrane for 5 minutes at room temperature. After 5 

minutes, the blot was washed 3 times in binding buffer for 5 minutes each. 

CaMKII binding is visualized using a Licor imaging station. Intensity of binding is 

analyzed using Odyssey v1.2. CaMKII binding to blank areas (non-peptide 

containing spots) of the membrane were used to normalize for background and 

non-specific binding of CaMKII.   
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Measuring CaMKII translocation. Neurons were lysed in lysis Buffer (see above), 

sonicated, and protein concentration was quantified. Equal protein levels were 

centrifuged for 30 mins, 4 degrees, 15,000xg. The supernatant and pellet were 

resuspended in LDS/BME (final volume 250 μLs for all samples) and SDS-PAGE 

separation was performed. Western blotting was done using primary monoclonal 

αCaMKII (CBα2 1:1000) and βCaMKII (CBβ1 1:1000) antibodies followed by 

secondary DyLight800-labeled antibody. Immunostaining was quantified using a 

Licor imaging station and Odyssey v1.2 was used for analysis.  

Anisotropy. Fluorescent anisotropy was monitored in real-time using an AB-2 

fluorimeter with a λexcitation of 500 nm, λemission of 525 nm, and slit widths of 4 nm. 

An increase in anisotropic value indicates binding to the fluorescent-labeled 

NR2B peptide (Fam-MKAQKKNRNKLRRQHSYDTFDVDL). Baseline was 

attained for 30 seconds with anisotropy buffer (50 mM Tris pH 7.6 and 100 mM 

KCL), 100 nM Fam-NR2B, 10 mM MgCl2, 1 mM ADP, 5 µM CaM, and 2 mM 

CaCl2 (+/- inhibitor peptide), 1 µg purified αCaMKII was added, and 30 seconds 

later 5 mM EGTA was added to induce CaM-dissociation and reverse peptide 

binding.  

Immunoblotting. Neurons were lysed in lysis buffer (see above), sonicated, and 

protein concentration was determined using a DC kit (Biorad). Protein lysate 

levels were normalized and suspended in LDS-PAGE buffer (Invitrogen). 

Monoclonal αCaMKII (1:1000), monoclonal NR2B (1:1000), and monoclonal 

GAPDH (1:1000) antibodies were used along with secondary goat anti-mouse 

DyLight800-labeled and goat anti-rabbit Alexa680-labeled (1:10,000) antibodies. 
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Detection and quantification were peformed using a Licor imaging station 

(Odyssey v1.2).   

Fluorescent uptake assays. tat-CN21-Fam (KRPPKLGQIGRSKRVVIEDDR–

Fam) and tat-CN21Ala-Fam (KAPAKAAWAAASKRVVIEDDR –Fam) peptides 

were diluted in fresh neuronal growth media and applied at a final concentration 

of 10 µM for varying lengths of time to 96-well plates containing neurons 7-8 DIV. 

After treatment, neurons were washed with PBS 3 times, all media was removed 

and WallacV3 microplate reader used to detect total fluorescence in each well. 

Fam-labeled peptides were only used to examine uptake.   

Data analysis. One-way ANOVA with a subsequent Dunnett’s Test was 

conducted to compare differences between the means of each group (p<0.05, 

SEM) in all in situ cell death assays as well as many in vitro catalytic assays. 

Student t-test was also used when appropriate. Statistical analyses were 

performed using SigmaPlot 11 and statistical significance was accepted at 

p<0.05. 

RESULTS 

Characterization of Neuronal Cultures and Their Death Following 

Glutamate-Glycine Application in Cortical Neurons 

After 7-8 days in vitro (DIV), 97% of the cultured cortical cells are MAP2 

positive. Less than 2% of the remaining cells stained with the astrocyte marker 

GFAP, indicating that these cultures are predominantly neurons (Figure 5A-5B). 

Over 90% of the cultured cells were also CaMKII positive, as detected by both a 

monoclonal αCaMKII and polyclonal pan-CaMKII antibody (Figure 5B). Neuronal 
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viability was assessed using a differential calcein-AM (FITC green) to label vital 

cells and ethidium homodimer to label cytotoxic cells (Texas Red) (Figure 5C-D). 

Dose-dependent applications of glutamate/glycine indicated that 200 μM 

glutamate/20 μM glycine for one hour at 37oC is sufficient to induce maximal 

cytotoxicity (Figure 5E). Time-dependent application of 200 μM glutamate/20 μM 

glycine indicated that maximal death is achieved by one hour of stimulation 

(Figure 6A). Under these conditions, neuronal death did not exceed 40%-50% of 

total cell number. The inability to kill 100% of neurons in culture may be attributed 

the composition of NMDA receptors and the subsequent sensitivity of the NMDA 

receptors at this stage of neuronal development (Sinor et al., 2000). For 

normalization, cell death is expressed as a percentage of the maximal death 

observed 24 hrs following 200 μM glutamate/20 μM glycine for one hour, unless 

noted otherwise. Pre-treatment with 20 µM MK-801, an NMDA-receptor 

antagonist, completely prevents glutamate/glycine excitoxicity in this assay, 

indicative of classical NMDA-dependent excitotoxicity (Figure 5E inset). 

Morphologically, the neurons appear in brightfield as round and  

swollen immediately following glutamate/glycine treatment and visible 

degeneration of neuronal processes is observed within 4 hours (data not shown). 

A time course of propidium iodide staining indicated that by 4 hours following 

glutamate/glycine insult, 40-50% of cells have compromised membranes (Figure 

6B). Similarly, 40-50% of cells are cytotoxic 24 hours following stimulation, as 

detected by LIVE/DEAD staining. Consistent with necrotic death, cycloheximide 
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Figure 5: Glutamate-glycine induced excitotoxicity in cortical neuron 
cultures. A, Primary cortical neurons 7 DIV, stained with MAP-2 (green), 
GFAP (red), DAPI (blue). B, Average number of cells (±SD, n=3) stained 
for the neuronal marker (MAP-2), astrocyte marker (GFAP), αCaMKII, and 
pan-CaMKII at 7 DIV. C-D, Representative images of control cultures, C, 
and cultures treated with 200 μM glutamate/20 μM glycine for one hour, D, 
stained with LIVE/DEAD Viability/Cytotoxicity kit (Molecular probes) 24 
hours following treatment. This differentially stains viable cells (green) and 
cytotoxic cells (red). E, Average cell death (normalized to maximal death, 
±SEM, n=5-8) in control cultures and cultures treated with varying 
concentrations of glutamate. Inset, average cell death (±SEM, n=5-8) in 
control cultures, cultures stimulated with 200 μM glutamate/20 μM glycine, 
and cultures pretreated with 20 μM MK-801 followed by glutamate 
stimulation (*p<0.05; One-way ANOVA, post-hoc Dunnett’s test). 
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Figure 6: Characterization of glutamate/glycine induced excitotoxicity 
in 7-8 DIV cortical neurons. A, Average cell death (±SEM; n=5-12) with 
application of 200 µM glutamate/ 20 µM glycine for varying amounts of 
time as measured by Live/Dead Cytotoxicity/Viability kit. B, Average 
percentage of cells (±SEM; n=4-5) labeled with propidium iodide at varying 
times following 200 µM glutamate/20 µM glycine stimulation for 1 hour. The 
asterisk indicates a significant difference compared to control, no 
stimulation (*p<0.05; One-way ANOVA, post-hoc Dunnett’s test). C, 
Average cell death (±SEM, n=5) following glutamate stimulation with and 
without co-treatment with 0.5 mg/mL cycloheximide as measured by 
Live/Dead Cytotoxicity/Viability kit (*p<0.05; One-way ANOVA, post-hoc 
Dunnett’s test). 
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pretreatment did not prevent glutamate/glycine-triggered neuronal death (Figure 

6C) (Deshpande et al., 1992, Lipton, 1999, Bredesen, 2007).  

Validation of CaMKII Inhibitors and Controls 

The role of CaMKII in neuronal excitotoxicity was characterized using 

small molecule and peptide inhibitors. KN-93 is a membrane-permeable small 

molecule that inhibits CaMKII activation with a Ki of 370 nM (Sumi et al., 1991). A 

peptide derived from the autoregulatory domain of CaMKII, termed AIP, has also 

been established as a highly-potent CaMKII inhibitor with an IC50 of 40 nM 

(Ishida et al., 1995). However, like the KN-family of inhibitors, AIP has also been 

shown to inhibit multiple members of the CaM-kinase family (Smith et al., 1990, 

Enslen et al., 1994). We also examined the potential of peptides derived from the 

endogenous CaMKII inhibitor, CaMKII-Ntide (Chang et al., 1998). The 21 amino 

acid version of CaMKII-Ntide, termed CN21, has an IC50 of 100 nM (Vest et al., 

2007). A control for CN21, termed CN21c, had also been previously established 

(Vest et al., 2007). CN21c is a 21 amino acid peptide that was produced by a C-

terminal shift of 5 residues from the CN21 peptide on the CaMKIIN protein. In 

order to import these peptides into cells, we fused the cellular import sequence 

from Tat (tat) to the N-terminus of the CN21 peptide, as described previously 

(Vest et al., 2007), as well as the control CN21c peptide and the AIP peptide. We 

first verified the effects of the unconjugated and tat-conjugated CN21 and control 

CN21c in an in vitro CaMKII activity assay. Unconjugated tat alone did not have a 

significant impact on CaMKII (Figure 7A). Consistent with previous literature 

(Vest et al., 2007), CN21 effectively inhibited CaMKII phosphorylation of 
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Syntide2, a known substrate of CaMKII, in our in vitro catalytic assay (Figure 7A). 

Similarly, tat-CN21 also inhibited phosphorylation of Syntide2 (Figure 7A). 

CaMKII was not inhibited with unconjugated control CN21c, consistent the 

previous report (Vest et al., 2007). Surprisingly, unlike unconjugated CN21c, tat-

CN21c significantly reduced CaMKII activity by 80% compared to control (Figure 

7A). A full dose-response curve shows that while tat-CN21 exhibited a lower IC50 

of CaMKII inhibition (0.0772 ± 0.012 µM), tat-CN21c also inhibited CaMKII 

activity at low doses, IC50 2.5574 ± .138 µM (Figure 7B). Sequence analysis of 

CN21, CN21c and tat-CN21c indicated that the addition of the highly charged tat 

sequence restores 3 of the 5 residues removed in the development of CN21c 

(Figure 7C). In support of this observation, addition of the tat motif resulted in an 

increase in CaMKII binding to immobilized peptides of CN21c (Figure 8A). Thus, 

when CN21c is conjugated to tat, the highly-charged cell-penetrant motif partially 

restores inhibitory efficacy.  

To develop a new control peptide for CN21, alanine (Ala) scanning 

mutagenesis was performed on the CN21 sequence to examine the impact that 

changes in amino acid size, charge and hydrophobicity has on CaMKII/CN21 

interaction. Activated Alexa800-labeled CaMKII was used to measure CaMKII 

binding to the immobilized peptide array (Figure 7D). The binding intensity of 

each peptide spot was compared to wild-type peptide; variance for the wild-type 

CN21 (n=3) is shown for comparison (black bar in Figure 7E). Analysis of the 

Alanine (Ala) scanning indicated seven residues in CN21 (Arg2, Pro4, Leu6, 

Gly7, Iso9, Gly10, Arg11) that reduced CaMKII binding by >40% (Figure 7E, 
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Figure 7: Effects of tat-conjugated inhibitory and control peptides on 
CaMKII substrate phosphorylation and identification of critical amino 
acids in CN21 required for CaMKII binding. A, Effects of 10 µM 
unconjugated and tat-conjugated inhibitory peptide CN21 as well as control 
CN21c on CaMKII phosphorylation of Syntide2 (±SD; n=3; *p<0.05; One-
way ANOVA, post-hoc Dunnett’s test). B, Dose-responses for tat-CN21 
and tat-CN21c inhibition of CaMKII phosphorylation of Syntide2 (±SD; 
n=3). C, Clustal alignment of CN21, CN21c, and tat-CN21c. * indicates 
identical residues and : indicates conserved residues. D, Image of 
Alexa800-labeled CaMKII bound to an immobilized peptide array of the 
CN21 peptide (wild-type) followed by Alanine (Ala) scanning. E, 
Quantification of Alexa800-labeled CaMKII binding to CN21 and Ala 
mutants. The hatched bars represents residues with greater than 40 
percent reduction of CaMKII binding when mutated, compared to wild-type 
(black bar). * indicates residues that were replaced to Ala in the CN21Ala 
control peptide. F, CaMKII phosphorylation of Syntide2 in the presence of 
control (DMSO), tat, or tat-CN21Ala (±SD; n=3; *p<0.05; One-way ANOVA, 
post-hoc Dunnett’s test).  
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Figure 8: Characterization of tat-CN21, tat-CN21c and tat-CN21Ala 
binding to CaMKII. A, Image (top) of Alexa800-labeled CaMKII bound to an 
immobilized peptide array containing CN21c, the first ten residues of 
CN21c (10merCN21c), and tat-10merCN21c, as indicated above. Bar 
graph indicates quantification of average fluorescent intensity (±SD; n=6). 
The asterisk indicates significant difference compared to CN21c (*p<0.05; 
One-way ANOVA, post-hoc Dunnett’s test). B, Average fluorescent 
intensity (±SD; n=5) of Alexa800-labeled CaMKII binding to immobilized 
CN21 or CN21Ala (*p<0.05; t-test). C, Fluorescent anisotropy of Fam-
NR2Bs binding to CaMKII in real time in the presence and absence of 10 
µM tat-CN21 and tat-CN21Ala. Baseline was determined (0-30 seconds) in 
the presence of Mg2+/ATP and Ca2+/CaM. 1 µg CaMKII was added (30-60 
seconds) and the binding reaction was reversed with the addition of 5 mM 
EGTA (60-90 seconds). D, Average changes in anisotropic value (±SD; 
n=3) from Supplemental Figure 2C. The asterisk indicates significant 
difference compared to control (*p<0.05, One-way ANOVA, post-hoc 
Dunnett’s test). 
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hatched boxes). Additional scanning with residues that would add variations in 

residue charge (Aspartate) and size/hydrophobicity (Phenylalanine) also 

indicated that mutation of these seven residues blocked CaMKII binding (data not 

shown). In development of the CN21c, Bayer and colleagues reported that 

multiple residues on the C-terminus of CN21 may also be important for binding to 

CaMKII (Vest et al., 2007). Our data indicate that the large pocket of charged 

amino acids in the C-terminus of CN21 (Glu-Asp-Asp-Arg) cannot be disrupted 

using single Ala replacements. A recent crystal structure of CN21 bound to 

CaMKII (PDB#3KL8) revealed that many of the residues identified by our 

biochemical/functional approach are in the appropriate orientation and position to 

interact with the catalytic surface of CaMKII (Chao et al., 2010). Accordingly, a 

new peptide containing Ala replacement of multiple key residues (Arg2Ala, 

Pro4Ala, Leu6Ala, Gly7Ala, Iso9Ala, Gly10Ala, Arg11Ala- marked with an 

asterisk in 7E) was synthesized and termed CN21Ala. CN21Ala reduced CaMKII 

binding to ~5% of wild-type CN21 (Figure 8B).  

We then tested whether tat-CN21Ala inhibited CaMKII substrate 

phosphorylation in an in vitro kinase assay. Unlike, tat-CN21c, tat-CN21Ala did 

not significantly decrease CaMKII activity under similar conditions (Figure 7F). 

Similarly, tat-CN21, and not tat-CN21Ala, inhibited CaMKII binding to a peptide 

derived from the NMDA-receptor subunit, a known targeting substrate (Figure 

8C-D). To verify that tat-CN21 and tat-CN21Ala were both taken up to a similar 

extent by neurons, we generated a C-terminal carboxyfluorescein-tagged (Fam) 

version of both peptides (termed tat-CN21-Fam and tat-CN21Ala-Fam) and 
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measured fluorescent uptake in a fluorescent microplate reader (Figure 8). 

Fluorescent labeling could be detected as early as 2 minutes and was maximal 

by 20 minutes in both tat-CN21-Fam and tat-CN21Ala-Fam groups (Figure 8), 

with no significant difference in peptide uptake detected.  

Pretreatment with CaMKII Inhibitors Affords Neuroprotection from 

Excitotoxicity 

We next examined if inhibition of CaMKII with tat-CN21 application prior to 

an excitotoxic insult is neuroprotective. Because uptake of tat-conjugated 

peptides was maximal by 20 minutes (Figure 9), neuronal cultures were pre-

treated with varying doses of tat-CN21 for 20 minutes before application of 

glutamate/glycine (200 μM glutamate/20 μM glycine at 37oC for one hour). tat-

CN21 afforded neuroprotection from the excitotoxic insult in a dose-dependent 

manner. The dose-response curve revealed that the optimal concentration of tat-

CN21 for neuroprotection is approximately 2-10 µM (Figure 10A). Doses 

exceeding 10 µM were less efficacious, which may be attributed to inhibition of 

CaMKIV with high levels of tat-CN21 (Vest et al., 2007). We also examined cell 

death levels 48 hours following insult to see if cultures treated with tat-CN21 

exhibited delayed degeneration compared to control cultures. Yet, even 48 hours 

later, neurotoxicity levels were no different than control (Figure 11A). Having 

determined that tat-CN21 is neuroprotective, we examined the impact of 

pretreatment with control peptides, tat-AIP, and the KN-drugs. Consistent with 

previous studies (Vaslin et al., 2009), 10 µM unconjugated tat provides slight, yet 

significant neuroprotection from excitotoxicity (Figure 10B). tat-CN21Ala (10 µM ) 
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Figure 9: Characterization of tat-CN21-Fam and tat-CN21Ala-Fam 
uptake in neurons. Average fluorescent uptake (±SD; n=3) was measured 
using Wallac3V multiplate reader following incubations with 10 µM tat-
CN21-Fam or tat-CN21Ala-Fam for varying times (0-25 minutes). The 
asterisk indicates significant difference compared to tat-CN21Ala-Fam 
(*p<0.05; t-test). 
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Figure 10: Neuroprotection from excitotoxicity using CaMKII 
inhibitors. A, Average cell death (±SEM; n=6-10) with application of 
varying concentrations of tat-CN21 prior to stimulation. Death is normalized 
to glutamate/glycine stimulation. The asterisk indicates significant 
difference compared to control, 0 µM (*p<0.05; One-way ANOVA, post-hoc 
Dunnett’s test). B, Average cell death (±SEM; n=7-14) 24 hours following 
glutamate/glycine stimulation with and without pretreatment with various 
CaMKII inhibitors, as indicated. Death is normalized to glutamate/glycine 
stimulation. Experimental groups were treated with 10 µM tat-CN21, tat-
CN21Ala, tat, and tat-AIP, as well as 1 µM KN-93 and KN-92. The pound 
symbol indicates significant difference compared to glutamate/glycine 
stimulation (#p<0.05, One-way ANOVA, post-hoc Dunnett’s test). The 
asterisk indicates significant difference compared to non-stimulated control 
(*p<0.05; One-way ANOVA, post-hoc Dunnett’s test).  
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Figure 11: tat-CN21 neuroprotection at 14 DIV and 48 hours following 
stimulation. A, Average cell death (±SEM, n=4-5) in neuronal cultures 24 
hours (gray bars) and 48 hours (white bars) following treatment as 
indicated. The asterisk indicates significant difference compared to the 
control of that time-point (*p<0.05, One-way ANOVA, post-hoc Dunnett’s 
test). B, Average cell death (±SEM, n=4) in 14 DIV cortical cultures 
exposed to glutamate stimulation with/without 10 µM tat-CN21 or 10 µM 
control tat-CN21Ala. The asterisk indicates significant difference compared 
to non-stimulated control. (*p<0.05, One-way ANOVA, post-hoc Dunnett’s 
test).  
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did not afford neuroprotection beyond that observed with unconjugated tat 

indicating that unlike tat-CN21, tat-CN21Ala is not neuroprotective (Figure 10B). 

The neuroprotective property of tat-CN21 pretreatment was also examined in 

older cultures (14 DIV). Despite an increase in excitotoxic vulnerability, neuronal 

cultures treated with tat-CN21, and not tat-CN21Ala, exhibited significantly 

reduced cell death, bringing cellular toxicity back to control levels (Figure 11B). 

Consistent with the in vitro kinase assay, tat-CN21c which maintained CaMKII 

inhibitory potency, also significantly reduced glutamate/glycine stimulated 

neuronal death to control levels (data not shown). Similar to tat-CN21, 

pretreatment with 10 µM tat-AIP completely abolished glutamate/glycine-induced 

excitotoxic neuronal death (Figure 10B). Pretreatment with 1 µM KN-93 

significantly decreases neuronal death when applied 20 minutes prior to 

glutamate/glycine stimulation (Figure 10B). Unexpectedly, the inactive analog 

KN-92 also reduced glutamate/glycine toxicity in this assay (Figure 10B), which 

may be consistent with off-target effects previously ascribed (Enslen et al., 1994, 

Ledoux et al., 1999, Gao et al., 2006). Peptide inhibitors AIP and CN21 were also 

tethered to another cell-penetrating motif, antennepedia. However, these 

peptides proved to be toxic when applied for 80 minutes (time of pretreatment 

and stimulation) and were omitted from further use (data not shown).  

CaMKII inhibitors Afford Neuroprotection when Applied Following an 

Excitotoxic Insult 

CaMKII undergoes an autophosphorylation reaction that bestows a unique 

form of activity (i.e. autonomous) that no longer requires its activator, 
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calcium/CaM (Saitoh and Schwartz, 1985, Miller and Kennedy, 1986). Thus, 

sustained intracellular calcium potentiates CaMKII signaling to support both 

aberrant phosphorylation of CaMKII substrates as well as autonomous activity, 

which together may be detrimental to neuronal survival. Although CN21 is not a 

potent inhibitor of autophosphorylation (Vest et al., 2007), it does inhibit activity of 

both the calcium/CaM dependent and autonomous forms of CaMKII (Chang et 

al., 1998). In contrast, the KN-family of drugs (KN-62 and KN-93) only blocks 

CaMKII activation and therefore does not inhibit CaMKII autonomous activity 

(Sumi et al., 1991). Thus, we hypothesized that KN-93 would not be 

neuroprotective when applied after an excitotoxic insult, whereas CN21 would be 

neuroprotective after the insult. Application of tat-CN21 at different time points 

during or after the glutamate/glycine challenge (Figure 12A) revealed a 

significant decrease in cell death even when applied 2 hours following the 

excitotoxic insult (Figure 12B). However, the protection afforded by tat-CN21 

under these conditions was lost when applied 3 hours after the onset of the 

excitotoxic insult. Although KN-93 pre-treatment is neuroprotective (Figure 10B), 

application of this drug one hour after the excitotoxic insult is not (Figure 12B) as 

cell death levels were equal to the glutamate/glycine challenge in the absence of 

any inhibitors. Like tat-CN21, tat-AIP, which also inhibits CaMKII in the presence     

or absence of calcium/calmodulin (Ishida et al., 1995, Rose and Hargreaves, 

2003), was also neuroprotective when applied one hour after the excitotoxic 

insult (Figure 12B). The levels of tat-CN21 and tat-AIP neuroprotection seen at 
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Figure 12: Time-dependent neuroprotection of tat-CN21 from 
excitotoxicity. A, Schematic timeline of inhibitor application and glutamate 
stimulation. B, Average cell death (±SEM; n=10-14) with varying time-
points of 10 µM tat-CN21 application as well as 1 µM KN-93 and 10 µM tat-
AIP at one hour following stimulation. All inhibitors were applied for one 
hour. The asterisk indicates significant difference compared to stimulation 
control (*p<0.05; One-way ANOVA, post-hoc Dunnett’s test). C, Average 
CaMKII activity (±SD; n=3) in neuronal lysates 24 hours following 
glutamate stimulation and application of 10 µM tat-CN21 at various time-
points after glutamate application. Activity was first normalized for equal 
protein amounts and then normalized to control, or non-treated cultures. 
The asterisk indicates significant difference compared to control, while the 
pound sign indicates significant difference compared to stimulation 
(*#p<0.05; One-way ANOVA, post-hoc Dunnett’s test). D, Western blots 
(top) of αCaMKII and βCaMKII in the supernatant (S) and particulate (P) 
fractions 24 hours following stimulation and application of 10 µM tat-CN21 
at various time points. Summary data (bottom) for particulate aMKII (±SD; 
n=3). The asterisk indicates a significant difference compared to control 
while the pound sign indicates a significant difference compared to 
stimulation (*#p<0.05, One-way ANOVA, post-hoc Dunnett’s test).  
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one hour were not significantly different (t-test, *p>0.05). Thus, only inhibitors of 

activated CaMKII are neuroprotective following an excitotoxic glutamate insult.  

Following cerebral ischemia, CaMKII has been shown to undergo periods 

of prolonged inactivation and the length of CaMKII inactivation has been 

correlated with extent neuronal death (Hanson et al., 1994). Therefore, we 

examined CaMKII activity within our neuronal cultures 24 hours after excitotoxic 

insult when tat-CN21 was applied at various points before and after the onset of 

stimulation. As expected, CaMKII activity was reduced 70% in stimulated cultures 

compared to control cultures (Figure 12C). However, CaMKII activity was 

significantly higher in cultures that tat-CN21 was applied to before and after the 

onset of insult. A time-dependent decrease in CaMKII activity correlates with the 

time-dependent increase in neuronal death (Figure 12B-C). Translocation of 

CaMKII from the supernatant to the particulate fraction is one key event that may 

result in prolonged inactivation of the kinase, a process that has been shown to 

occur under excitotoxic conditions (Aronowski et al., 1992, Kolb et al., 1995, 

Hudmon et al., 1996, Tao-Cheng et al., 2002) and may be due to self-association 

(Hudmon et al., 1996, Dosemeci et al., 2000, Hudmon et al., 2005). We 

hypothesized that tat-CN21 application was able to avert the induction of 

prolonged CaMKII inactivation, by preventing translocation of CaMKII. Compared 

to control conditions, glutamate stimulated cultures exhibited significantly more 

αCaMKII in the particulate fraction 24 hours following treatment (Figure 12D). At 

this stage of neuronal development, βCaMKII expression is predicted to be 

higher than αCaMKII (Burgin et al., 1990b, Fink et al., 2003); however, there was 
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no statistical change in levels of βCaMKII in the supernatant or particulate 

fractions (quantification not shown). Application of tat-CN21 prior to stimulation 

as well as up to 30 minutes after the onset of stimulation resulted in a significant 

decrease in the amount of αCaMKII found in the sedimentable, pelleted fraction 

(Figure 12D). Importantly, despite changes in activity and transitions to the 

particulate fraction, total αCaMKII levels were not changed in any treatment 

group (Figure 13). Thus, tat-CN21 decreased the levels of αCaMKII translocation 

and CaMKII inactivation. Together, this suggests that while inhibition of the 

transient increase in CaMKII activity may be neuroprotective, preventing a long-

term loss of activity is also beneficial for neuronal viability.  

CaMKII inhibition Predisposes Neurons to Excitotoxicity 

While small molecule and peptide inhibitors have neuroprotective effects 

when applied immediately surrounding the excitotoxic insult, knock-out studies 

indicated that the loss of αCaMKII resulted in increased infarct size following 

arterial occlusion in knock-out animals compared to wild-type littermates 

(Waxham et al., 1996). Thus, a loss of CaMKII predisposed neurons to ischemic 

death. This, along with the correlation between the levels of activatable CaMKII 

and neuronal viability, led us examine what impact prolonged loss of CaMKII 

prior to an excitotoxic insult has on neuronal survival. Treatment with a sub-

maximal excitotoxic insult (200 µM glutamate/20 µM glycine for 15 minutes) 

resulted in approximately 18% cell death after 48 hours (Figure 14B). Application 

of tat-CN21 for 24 hours, followed by wash and then further incubation for 24 

hours resulted in approximately 18% cell death (Figure 14B). Combination of 
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Figure 13: tat-CN21 application following onset of excitotoxic insult 
does not affect αCaMKII protein levels. A, Western blots of αCaMKII 
and loading control GAPDH in neuronal lysates 24 hours following 
stimulation with application of 10 µM tat-CN21 at various time-points 
surrounding glutamate/glycine stimulation. B, Summary data for 
normalized protein levels of αCaMKII quantified and plotted relative to 
GAPDH control (p>0.05, One-way ANOVA). 
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prolonged tat-CN21 application (24 hours) followed by sub-maximal 

glutamate/glycine stimulation synergistically increased neuronal toxicity to >50% 

which was significantly higher than glutamate/glycine alone or tat-CN21 

treatment alone (Figure 14B). This exacerbation of neuronal death was not seen 

in cultures treated with control tat-CN21Ala for 24 hours prior to 

glutamate/glycine stimulation (Figure 14B). Interestingly, the application of sub-

maximal glutamate followed by tat-CN21 overnight enhanced death compared to 

either treatment alone (Figure 14B), suggesting that CaMKII activity may be 

important for neuronal survival following excitotoxic insult.  

The time-frame in which CaMKII inhibition prior to excitotoxic insult 

predisposes cells to excitotoxicity was examined by applying tat-CN21 for varying 

lengths of time prior to insult. Interestingly inhibition for 4 hours or less had no 

impact on neuronal sensitivity to glutamate (Figure 14C). However, tat-CN21 

application for 8 or more hours resulted in a significant increase in neuronal 

death compared to glutamate/glycine stimulation alone (Figure 14C). Because 

this time frame would allow for potential changes in protein translation, we co-

applied cycloheximide with tat-CN21. This co-treatment prior to stimulation 

significantly reduced neurotoxicity levels compared to 24 hour tat-CN21 alone 

(Figure 14D). This suggests that protein translation plays a key role in the switch 

to increased glutamate sensitivity. We examined the levels of CaMKII and the 

NR2B subunit of the NMDA receptor to determine whether these key players are 

upregulated following prolonged CaMKII inhibition, however there was no change 
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Figure 14: tat-CN21 enhances neuronal vulnerability to excitotoxicity. 
A, Schematic indicating treatment protocols (A-E) used to characterize the 
effect of prolonged CaMKII inhibition prior to and before a sub-maximal 
glutamate stimulation (200 µM glutamate/glycine for 15 mins signified by 
black box E). B, Average cell death (±SEM; n=5-10) of neuronal cultures 
treated with tat-CN21 and tat-CN21Ala overnight before or after a sub-
maximal glutamate/glycine insult, (A-E). The asterisk indicates significant 
difference compared to tat-CN21 treatment alone (*p<0.05, One-Way 
ANOVA, post-hoc Dunnett’s test). The pound sign indicates significant 
difference between tat-CN21/glutamate vs glutamate/tat-CN21 (#p<0.05, t-
test). C, Average cell death (±SEM, n=5-6) in cultures exposed to 10 µM tat-
CN21 for varying amounts of time prior to a submaximal glutamate/glyine 
stimulation. Cell death is visualized 24 hours following stimulation. The 
asterisk indicates significant difference compared to control cultures (0 
hours) which received submaximal stimulation alone with no inhibitor 
application. (*p<0.05, One-way ANOVA, post-hoc Dunnett’s test). D, 
Average cell death (±SEM, n=5-6) in cultures exposed to 0.5mg/mL 
cycloheximide, 10 µM tat-CN21, or co-treatment with both 24 hours prior to 
submaximal stimulation. Cell death is visualized 24 hours following 
glutamate/glycine stimulation. The asterisk indicates significant difference 
compared to control while the pound sign indicates significant difference 
between co-treatment and tat-CN21 treatment alone. (*p<0.05, One-way 
ANOVA, post-hoc Dunnett’s test; #p<0.05, t-test). 
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in the levels of either protein (Figure 15). The protein(s) responsible for this 

switch have yet to be determined. 

DISCUSSION 

Aberrant release of the excitatory neurotransmitter L-glutamate has long 

been hypothesized to contribute to neuronal death in stroke and 

neurodegenerative disorders via over-excitation and calcium accumulation 

(Olney, 1969, Olney and Sharpe, 1969, Olney, 1971, Choi, 1985). Based on the 

success of in vitro and animal models (Foster et al., 1987, Omae et al., 1996, 

Suzuki et al., 2003, Hoyte et al., 2004), many were disappointed to discover that 

drug therapies designed solely to block or reduce glutamate receptor activation 

did not prevent neurodegeneration in clinical trials (Albers et al., 1999, Morris et 

al., 1999, Davis et al., 2000, Hoyte et al., 2004). Thus, focus now lays on 

searching for new mechanisms to modulate calcium entry or the downstream 

targets activated by aberrant calcium signaling (Szydlowska and Tymianski, 

2010). A key mediator of glutamate-induced calcium signaling is the 

multifunctional CaMKII; a Ser/Thr protein kinase implicated in synaptic plasticity 

(Hudmon and Schulman, 2002, Lisman et al., 2002). CaMKII is activated by 

excitotoxic calcium signaling (Westgate et al., 1994, Zalewska and Domanska-

Janik, 1996) and has been implicated in regulating a number of different 

substrates linked to excitotoxic calcium signaling as well as neuronal survival.   

Earlier studies have shown that pre-incubation with the small molecule CaMKII 

inhibitors KN-62 or KN-93 produce neuroprotection when given before an 
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Figure 15: Prolonged tat-CN21 treatment does not affect αCaMKII or 
NR2B protein levels. A, Western blots of NR2B, αCaMKII and GAPDH in 
neuronal lysates 24 hours following application of 10 µM tat-CN21 or tat-
CN21Ala. Summary data for normalized protein levels of NR2B, B, and 
αCaMKII, C, quantified and plotted relative to control (p>0.05).  
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excitotoxic challenge (Hajimohammadreza et al., 1995, Takano et al., 2003, Vest 

et al., 2010 ). We also observed neuroprotection with KN-93 pretreatment (Figure 

10B), however, it was difficult to interpret that the neuroprotection was due to 

CaMKII inhibition because the inactive analog, KN-92, was also protective in our 

assays (Figure 10B). The myristoylated CaMKII peptide inhibitor AIP (Ishida et 

al., 1995) has also been shown to display neuroprotective activity in vivo and in 

cultured neurons exposed to toxic levels of NMDA (Laabich and Cooper, 2000, 

Fan et al., 2006, Goebel, 2009). We observed potent neuroprotection using the 

AIP peptide as well as a peptide derived from the endogenous CaMKII inhibitor, 

CN21, when tagged with the tat cellular import sequence to enhance membrane 

permeability (Figure 10B). Because recent data indicates that cellular import 

sequences can inhibit neurotoxicity to glutamate (Vaslin et al., 2009), we also 

validated the specificity of these peptide inhibitors to control peptides. We relied 

on tat alone to serve as a control for AIP yet optimized a control peptide for CN21 

by identifying and mutating critical residues responsible for binding to CaMKII. 

Compared to the active peptides (tat-CN21 and tat-AIP), very little inhibition was 

observed for tat-CN21Ala or the tat peptide in either in vitro or cell based assays, 

suggesting that the neuroprotection observed with the active peptides is not due 

to the cellular import sequence nor to peptide sequences that do not interact with 

CaMKII. In total, our data favor the hypothesis that excitotoxic calcium signaling 

induces neurotoxic CaMKII activity. Interestingly, both tat-AIP and tat-CN21, 

which inhibit activated and/or autophosphorylated CaMKII (Ishida et al., 1995, 

Chang et al., 1998, Rose and Hargreaves, 2003), were also neuroprotective 
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when applied after the excitotoxic challenge (Figure 12B). These data are 

intriguing as KN-93, which can only inhibit CaMKII activation, was not 

neuroprotective when applied after an excitotoxic insult (Figure 12B); a result that 

suggests that only inhibitors of activated/autophosphorylated CaMKII are 

efficacious following the onset of excitotoxic calcium signaling.  

During the preparation of this manuscript, it was reported that tat-CN21 

was neuroprotective in vitro as well as in an animal model of stroke (Vest et al., 

2010). However, in these studies, the neuroprotection afforded by tat-CN21 in 

cultured hippocampal neurons was not diminished even after 6 hours following 

the excitotoxic glutamate insult, the longest time-point reported in their study 

(Vest et al., 2010). We observed that the neuroprotective effects of tat-CN21 are 

greatest when applied before the toxic glutamate challenge and diminish with 

time (Figure 12B), with the neuroprotection associated with CaMKII inhibition 

diminishing back to control after 3 hours post glutamate insult. We found that this 

time window of neuroprotection correlates to changes in neuronal membrane 

integrity (see Figure 6B). Thus, our data favor a model whereby the pathological 

contributions of CaMKII to excitotoxic damage may be limited to a 2-3 hour 

period post excitotoxic injury. Potential reasons for different outcomes between 

our study and that of Vest et al., include differences in the glutamate stimulation 

protocol (200 µM for 1 hour versus 400 µM for 5 mins) as well as the type of 

culture (7-8 DIV cortical neurons versus 7 DIV hippocampal neurons obtained 

from embryonic (highly pure) versus post-natal (mixed), respectively). However, it 

should be noted that the in vivo experiment performed by Bayer and colleagues 
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was, in fact, performed at one hour post-ischemia (Vest et al., 2010); a time point 

our study finds to be neuroprotective in cultured neurons. 

The potential therapeutic utility of inhibiting CaMKII to enhance neuronal 

survival following an excitotoxic glutamate exposure is intriguing, as following 

activation in excitotoxic conditions (Westgate et al., 1994, Zalewska and 

Domanska-Janik, 1996), CaMKII undergoes functional changes that at face-

value would appear to be designed to limit aberrant CaMKII activity. We 

observed a significant decrease in CaMKII activity 24 hours following an 

excitotoxic glutamate insult (Figure 12C). In addition, unlike βCaMKII, excitotoxic 

calcium signaling induces αCaMKII to translocate form the soluble to the 

particulate fraction (Figure 12D). Soluble to particulate accumulation of CaMKII 

may be due to activity-dependent translocation of CaMKII to specific subcellular 

compartments, like the post-synaptic density (Aronowski et al., 1992, Suzuki et 

al., 1994) and/or the formation of CaMKII aggregates (Dosemeci et al., 2000, 

Tao-Cheng et al., 2002, Hudmon et al., 2005). These functional changes in 

CaMKII activity and localization are not limited to our neuronal culture model, as 

both CaMKII inactivation and soluble to particulate translocations are observed in 

vivo and in slice models of ischemia (Aronowski et al., 1992, Hanson et al., 1994, 

Kolb et al., 1995, Aronowski and Grotta, 1996, Zalewska et al., 1996). 

Importantly, the glutamate-induced translocation and loss of CaMKII activity are 

reduced by tat-CN21 application in a time-dependent fashion (Figure 12C and 

12D), suggesting that maintaining a soluble and activatable pool of CaMKII for 24 

hours after an excitotoxic insult enhances neuronal survival (Hanson et al., 



87 
 

1994). These data are consistent with a functional switch from CaMKII playing a 

neurotoxic role with the induction of the excitotoxic insult to a neuroprotective role 

2-3 hours after the insult. One might envision that sustained loss of CaMKII 

activity induced by excitotoxic calcium signaling could be detrimental for neuronal 

survival, as a number of CaMKII substrates are pro-survival (e.g. CREB and L-

type channels) (Dash et al., 1991, Wheeler et al., 2008). CaMKII regulation of 

substrates that limit neuronal excitability and glutamate signaling could function 

as a “brake” for subsequent excitotoxic calcium signaling. For example, CaMKII 

phosphorylation of NMDA-receptors leads to desensitization (Sessoms-Sikes et 

al., 2005) whereas CaMKII upregulation of GABA-receptors could be a form of 

feed-forward inhibition that could limit the activity of neuronal circuits (Houston 

and Smart, 2006). In these scenarios, sustained loss of CaMKII could be 

maladaptive for future recovery or susceptibility to excitotoxicity. In support of this 

model, we observed that inhibition of CaMKII for 8-24 hours prior to a sub-

maximal glutamate/glycine challenge exacerbates neuronal death (Figure 14B-

C). This enhanced neuronal vulnerability to an excitotoxic insult is also seen in 

vivo, as genetic knockdown of αCaMKII doubles the size of the infarct volume in 

knockout mice exposed to focal ischemia compared to wild-type littermates 

(Waxham et al., 1996). Changes in neither αCaMKII nor NR2B protein levels 

appear to be responsible for this enhanced glutamate vulnerability (Figure 15A-

C), although this process does require protein synthesis (Figure 14D). Although 

the mechanism(s) of this shift from neuroprotection to enhanced neuronal 

vulnerability to glutamate following CaMKII inhibition warrants further 
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investigation, our data suggests that inhibition of CaMKII via tat-CN21/AIP prior 

to or immediately after an excitotoxic insult functions to limit aberrant CaMKII 

activity and reduce the long-term inactivation of CaMKII following aberrant 

calcium signaling (Figure 12C and 12D). Thus, the neuroprotection afforded by 

CaMKII inhibition can be seen as neuroprotective immediately surrounding the 

excitotoxic insult, whereas sustained CaMKII inhibition produced by excitotoxicity 

leads to neuronal death by enhancing neuronal vulnerability to glutamate.  

In summary, our data supports the hypothesis that inhibition of CaMKII 

activity either at the onset or soon after an excitotoxic insult is neuroprotective. 

CaMKII activated by excitotoxic calcium signaling is neurotoxic and therefore, 

inhibition of this activity within a limited time-window around the excitotoxic insult 

enhances neuronal survival. However, these data also support a model whereby 

sustained loss of CaMKII activity predisposes neurons to glutamate excitotoxicity. 

The role of CaMKII in promoting neuronal survival and recovery from an 

excitotoxic challenge must be taken into consideration when pursuing CaMKII 

inhibition as a therapeutic intervention to ischemic stroke or other 

neurodegenerative diseases.  

 

*This manuscript was published in Molecular and Cellular Neuroscience* 

Ashpole NM and Hudmon A (2011) Excitotoxic neuroprotection and vulnerability 

with CaMKII inhibition. Mol Cell Neurosci. 46(4):720-30.   
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PART II: CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE II 

INHIBITION INDUCES NEUROTOXICITY VIA DYSREGULATION OF 

GLUTAMATE/CALCIUM SIGNALING AND HYPEREXCITABILITY 

SUMMARY 

Aberrant glutamate and calcium signaling are neurotoxic to specific 

neuronal populations. Calcium/calmodulin-dependent kinase II (CaMKII), a 

multifunctional serine/threonine protein kinase in neurons, is believed to regulate 

neurotransmission and synaptic plasticity in response to calcium signaling 

produced by neuronal activity. Importantly, several CaMKII substrates control 

neuronal structure, excitability, and plasticity. Here, we demonstrate that CaMKII 

inhibition for >4 hours using small molecule and peptide inhibitors induces 

apoptosis in cultured cortical neurons. The neuronal death produced by 

prolonged CaMKII inhibition is associated with an increase in TUNEL staining, 

caspase-3 cleavage, and is blocked with translation inhibitor cycloheximide. 

Thus, this neurotoxicity is consistent with apoptotic mechanisms, a conclusion 

that is further supported by dysregulated calcium signaling with CaMKII inhibition. 

CaMKII inhibitory peptides also enhance the number of action potentials 

generated by a ramp depolarization, suggesting increased neuronal excitability 

with a loss of CaMKII activity. Extracellular glutamate concentrations are 

augmented with prolonged inhibition of CaMKII. Enzymatic buffering of 

extracellular glutamate and antagonism of the NMDA subtype of glutamate 

receptors prevent the calcium dysregulation and neurotoxicity associated with 

prolonged CaMKII inhibition. However, in the absence of CaMKII inhibition, 
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elevated glutamate levels do not induce neurotoxicity, suggesting that a 

combination of CaMKII inhibition and elevated extracellular glutamate levels 

results in neuronal death. In sum, the loss of CaMKII observed with multiple 

pathological states in the central nervous system, including epilepsy, brain 

trauma, and ischemia, likely exacerbates programmed cell death by sensitizing 

vulnerable neuronal populations to excitotoxic glutamate signaling and inducing 

an excitotoxic insult itself.  

INTRODUCTION 

Precisely-regulated calcium signaling is essential for normal neuronal 

growth and survival. While slight fluctuations in intracellular calcium 

concentration are tolerated by neurons, and necessary for a variety of 

physiological processes, dysregulation of intracellular calcium leads to neuronal 

death. Intracellular calcium overload can lead to mitochondrial depolarization and 

the over-activation of the downstream signaling pathways regulated by calcium. 

One important signaling pathway that is activated by calcium signaling is 

calcium/calmodulin (CaM)-dependent protein kinase II (CaMKII). Following 

activation with calcium-bound calmodulin, CaMKII targets to and phosphorylates 

a number of substrates in neurons, including voltage- and ligand-gated calcium 

channels, CREB, ERK, and voltage-gated sodium channels (as previously 

reviewed (Hudmon and Schulman, 2002, Colbran, 2004, Coultrap et al., 2011)).  

Fluctuations in CaMKII activity have been associated with neuronal 

disease states that exhibit excitotoxic calcium dysregulation, such as stroke, 

epilepsy, and traumatic brain injury (Aronowski et al., 1992, Perlin et al., 1992, 



91 
 

Hanson et al., 1994, Westgate et al., 1994, Churn et al., 1995, Zalewska and 

Domanska-Janik, 1996, Schwarzbach et al., 2006, Folkerts et al., 2007). 

Immediately following the onset of excitotoxic stimulation, CaMKII is activated 

(Westgate et al., 1994, Zalewska and Domanska-Janik, 1996) and inhibition of 

CaMKII prior to excitotoxic insult prevents neuronal damage both in vitro and in 

vivo (Hajimohammadreza et al., 1995, Laabich and Cooper, 2000, Fan et al., 

2006, Goebel, 2009, Vest et al., 2010, Ashpole and Hudmon, 2011). However, 

αCaMKII knock-out animals paradoxically exhibit a significant increase in 

neuronal damage following stroke compared to wild-type littermates (Waxham et 

al., 1996). Moreover, we recently showed that prolonged pharmacological 

inhibition of CaMKII actually exacerbated excitotoxicity following a submaximal 

glutamate challenge (Ashpole and Hudmon, 2011). Thus, while an acute loss of 

CaMKII may protect neurons from excitotoxic insult, a prolonged loss of CaMKII 

activity sensitizes neurons to glutamate toxicity; an observation we hypothesize 

contributes to programmed cell death in the penumbral region associated with 

ischemia and brain trauma. In support of this hypothesis, a loss of CaMKII 

activity has been shown to be spatially correlated with the extent of neuronal 

damage following focal ischemia (Hanson et al., 1994). The region immediately 

surrounding the infarct not only displays the greatest damage but also the 

greatest loss in CaMKII activity (Hanson et al., 1994). However, the ischemic 

environment is associated with complex biochemical changes that are associated 

with aberrant glutamate signaling, including enhanced ROS activity, acidosis, 

and a decrease in energy availability. Thus, we choose to investigate neuronal 
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survival, calcium signaling, and excitability following a loss of CaMKII activity 

induced by a broad spectrum of CaMKII inhibitors in the absence of an 

exogenous glutamate challenge. Our data supports a model whereby prolonged 

inhibition of CaMKII produces apoptosis in cortical neurons by a feed-forward 

process associated with neuronal hyperexcitabilty and dysregulated calcium and 

glutamate signaling.   

EXPERIMENTAL PROCEDURES 

Materials. Unconjugated tat (YGRKKRRQRR), CN21 

(KRPPKLGQIGRSKRVVIEDDR), CN21Ala (KAPAKAAWAAASKRVVIEDDR), 

CN21C (GQIGRSKRVVIEDDRIDDVLK), tat-AIP (YGRKKRRQRR-

RKKLRRQEAFDAL), tat-CN21, tat-CN21Ala, as well as Fam-labeled versions of 

these peptides were synthesized and HPLC purified by Biopeptide Co, Inc. San 

Diego, CA, USA. Myristolated AIP (myr-AIP; 64929) was purchased from 

Anaspec, Fremont, CA. KN-93 (422708) and KN-92 (422709) were purchased 

from Calbiochem, EMD Biosciences, La Jolla, CA. STO-609 (1551) was 

purchased from Tocris Bioscience, Ellisville, MO. MK-801 (M107), Nifedipine 

(N7634), Nimodipine (N149), Tetrodotoxin (T8024), Omega-Conotoxin (C9915), 

Ifenprodil (I2892), and Memantine (M9292) were purchased from Sigma Aldrich, 

St. Louis, MO.  

Neuronal cultures. Cortical neurons were harvested from E18-E19 Sprague-

Dawley rat pups according to approved IACUC guidelines as previously 

described (Ashpole and Hudmon, 2011). Primary hippocampal neurons were 

prepared from postnatal day 1 Sprague-Dawley rat pups as previously described 
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(Dubinsky, 1993, Brustovetsky et al., 2009). For most experiments, cortical 

neurons were seeded at a density of 2.5 million cells/mL and seeded on poly-D-

lysine (50 µg/mL) coated 15 mm coverslips (German glass Number 0) or 60 mm 

dishes. For experiments looking at neuronal viability at different stages of culture 

development, neurons were seeded at 1.25 million cells/mL. Cultures were 

treated with 5-fluor-2’-deoxyuridine (15 mg/mL) (Sigma, F0503) and Uridine (35 

mg/mL) (Sigma, U3750) to kill mitotically active cells on day 2-4. Co-cultures of 

neurons and astrocytes were not treated with these mitotic inhibitors. 

Cell death assay. Following treatment, the coverslips were washed in PBS and 

stained using Live/Dead Cytotoxicity/Viability kit (Molecular Probes, Eugene, OR) 

as previously described (Ashpole and Hudmon, 2011). Each coverslip is imaged 

in three different fields using a Texas Red filter to detect cytotoxic cells and a 

FITC filter to detect viable cells on a Nikon Ti-E inverted microscope (100x 

magnification). Cells were quantified using the automated counting software 

Nikon Elements 3.0 as previously described (Ashpole and Hudmon, 2011). Total 

cell number was determined by addition of cytotoxic and viable cells. Complete 

media exchanges and washing conditions routinely induced cytotoxicity in about 

5-10% of cultured neurons. 

Immunocytochemistry of neuronal cultures. Neurons (8-9 DIV) treated with 

CaMKII inhibitors were fixed in 4% paraformaldehyde (0.1 M phosphate buffer, 

pH 7.4) for 10 minutes and washed in phosphate buffered saline (PBS) three 

times. For labeling, cells were permeabilized in 0.5% Triton X-100 in PBS for 10 

minutes at room temperature, washed in PBS three times, blocked for 1 hour in 
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2% BSA Fraction V, 20% normal goat serum, 0.1% Triton X-100 in PBS at room 

temperature, washed an additional three times in PBS. Cells were then incubated 

in primary polyclonal cleaved caspase 3 antibody (1:500, Cell Signaling (#9661), 

Beverly, MA) for 2 hours at room temperature. After three washes, secondary 

antibodies (anti-rabbit Alexa594, 1:5000 (Molecular Probes, Eugene, OR)) were 

applied for one hour at room temperature. Coverslips were washed in PBS three 

times and were subsequently mounted in Prolong Gold Antifade with DAPI 

mounting media (Molecular Probes) and cells were imaged using a Zeiss Axio 

ObserverZ1 and processed with Axiovision 4. 

CaMKII activity assay. Neuronal cultures were lysed in lysis buffer containing (50 

mM HEPES pH 7.4, 4 mM EGTA, 10 mM EDTA, 15 mM Na4P2O7-10H20, 100 

mM β-glycerophosphate, 25 mM NaF, 1% Triton-X 100, and protease inhibitor 

cocktail (Calbiochem, 539137) as described previously (Kolb et al., 1995), 

sonicated, and incubated with 50 mM HEPES pH 7.4, 100 mM NaCl, 10 mM 

MgCl2, 100 µM ATP, 2 mM CaCl2, 5 µM CaM, 50 µM AC2 (KKALRRQETVDAL), 

and [γP32 ]-ATP (3µCi per reaction) for 3 minutes at 30oC. The linear range of the 

reaction extended from 30 seconds to 4 minutes. Protein levels were assessed 

and activity was normalized to total protein using DC protein assay kit (Biorad, 

Hercules, CA).  

Calcium imaging. Hippocampal neurons 10-12 DIV were loaded with 2.6 M 

Fura-2FF-AM (Molecular Probes, Invitrogen) and 1.7 M Rhodamine 123 and 

subsequently imaged as previously described (Brustovetsky et al., 2009, 

Brustovetsky et al., 2011). During imaging, the neurons were maintained in a 
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bath solution containing 10 mM HEPES, pH 7.4, 139 mM NaCl, 3 mM KCl, 0.8 

mM MgCl2, 1.8 mM CaCl2, 5 mM glucose and 65 mM sucrose. For Fluo-4 

experiments, cortical neurons were incubated with 5 µM Fluo-4-AM (Molecular 

Probes, Invitrogen) diluted in rat physiological saline (138 mM NaCl, 2.7 mM KCl, 

1.8 mM CaCl2, 1.06 mM MgCl2, 12.4 mM HEPES pH 7.4, 5.6 mM glucose; final 

pH adjusted to 7.3) for 30 minutes at 37oC. Following incubation cells were 

washed with rat physiological saline 3 times for 5 minutes each. A Nikon Ti-E 

inverted microscope with a FITC filter was employed to monitor Fluo-4 levels 

once every thirty seconds. Baseline was monitored for 5 minutes. In all 

experiments with CaMKII inhibitor application, the inhibitor was added 10 minutes 

after start of imaging, some experiments called for the addition of other inhibitors 

as indicated. For these, the drugs were applied at the 5 minute mark in order to 

identify whether the drug itself had an impact on calcium levels prior to CaMKII 

inhibitor application at minute 10. Analysis was performed using Nikon Elements 

v3.0 in which Fluo-4 levels were measured in ~20 cells per field and 3 fields per 

coverslip. Neurons were identified at the start of the experiment with a 20 mM 

KCl depolarization with a subsequent wash. The fluorescent intensity of each cell 

was normalized to time 0, as the drug was applied. 

Electrophysiology. Action potential studies were carried out using the whole cell 

patch-clamp technique under the current clamp mode. Whole cell voltages were 

recorded with HEKA software (HEKA electronic). The neuronal growth media on 

the cortical neurons (8-10 DIV) was gradually replaced by the extracellular 

recording solution before the patch clamp recording. The extracellular solution 
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consisted of rat physiological saline (as previously described). The intracellular 

solution contains 140 mM potassium gluconate, 2 mM KCl, 3 mM MgCl2, 10 mM 

HEPES, 5 mM phosphocreatine, 2 mM K-ATP, 0.2 mM Na-GTP; final pH 

adjusted to 7.4. Pipette resistance was 2-4 MΩ when filled with the internal 

solution. Data were acquired and analyzed using the Pulsefit software following 

previously established protocols (Wang et al., 2005, Zhang et al., 2008). Cortical 

neurons were held at their resting potentials by injection of steady current 

throughout the experiment. To determine the current threshold for action 

potential initiation, neurons were injected with a series of depolarizing currents 

with variable amplitudes for 200 ms. The sampling frequency was 10 kHz. 

Following identification of the current threshold for action potential generation, 

the neurons were injected with a 1 second depolarizing ramp current that 

subsequently elicited one to two action potentials. Neurons that maintain initial 

resting membrane potentials more negative than -50 mV after whole cell 

configuration and had less than 3 action potentials at the starting point were 

included in this study. We compared the change in the number of APs obtained 

10 minutes after establishing the whole cell configuration to the number obtained 

at the initial starting time point when the peptide had not diffused into the 

intracellular environment. The current clamp studies were performed at room 

temperature (~21oC).  

Glutamate measurements. Glutamate concentrations in the neuronal media were 

assessed using Amplex Red Glutamatic Acid/Glutamate Oxidase Assay per 

manufacturer protocol (Molecular Probes, Invitrogen). The glutamate detection 
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assay standard curve was linear from 180 nM to >6 µM glutamate. For high high-

performance liquid chromatography quantification, glutamate was measured by 

HPLC separation and electrochemical detection of an OPA-mercaptoethanol 

derivative using modifications of the method of Donzanti and Yamamoto 

(Donzanti and Yamamoto, 1988). See Supplemental Figure 4 for more detail.   

Data analysis. Electrophysiology data are presented as the mean ± S.E.M. 

Statistical significance between groups was determined using one-way ANOVA 

with a post-hoc Bonferroni’s test. One-way ANOVA with a subsequent Dunnett’s 

Test was conducted to compare differences between the means of each group in 

all in situ cell death assays, in vitro catalytic assays, and calcium imaging 

experiments. Student t-test was also used when appropriate. Statistical 

significance was accepted at p<0.05. Analysis was performed using SigmaPlot 

11 software. 

RESULTS 

Neurotoxicity with CaMKII Inhibition 

To test the hypothesis that CaMKII inhibition induces neuronal death, we 

subjected cortical neurons (8 DIV) to acute (1 hour) and prolonged (24 hours) 

pharmacological inhibition of CaMKII using multiple inhibitors. Peptides derived 

from the endogenous inhibitor of CaMKII, termed CN21, and the autoinhibitory 

domain of CaMKII itself (AIP) were used because of their high specificity to inhibit 

CaMKII (Ishida et al., 1995, Chang et al., 1998, Vest et al., 2007). As previously 

described (Vest et al., 2007, Vest et al., 2010, Ashpole and Hudmon, 2011), 

conjugation of peptide inhibitors to the cell-penetrant motif, tat, affords the ability 
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to examine the effects of CaMKII inhibition with cell penetrating peptides in both 

cultures and in vivo. In addition to the peptide inhibitors, we also utilized the 

allosteric CaMKII inhibitor KN-93 (Sumi et al., 1991, Ishida et al., 1995, Vest et 

al., 2007, Ashpole and Hudmon, 2011). We applied 10 µM tat-CN21, tat-AIP, and 

1 µM KN-93 to cortical neuronal cultures for 1 or 24 hours and subsequently 

examined viability/cytotoxicity levels 24 hours following the start of treatment 

(Ashpole and Hudmon, 2011). To compensate for the decreased bioavailability 

associated with tat-based peptides accumulating in non-cytoplasmic 

compartments (Tunnemann et al., 2006), the concentrations of the peptide 

inhibitors used in this study are roughly 100 fold above the in vitro IC50 for CN21 

(77-100 nM) (Vest et al., 2007, Ashpole and Hudmon, 2011). To control for 

potential off target effects, we applied KN-92, the inactive control for KN-93, or a 

peptide control, tat-CN21-Ala (Ashpole and Hudmon, 2011). For each neuronal 

death experiment, data was normalized by subtracting average neuronal death 

observed in control cultures. The control cultures in each experimental group 

consistently exhibited 5-10% toxicity. Cortical neuron viability was no different 

than control cultures (DMSO treated) when CaMKII inhibitors were applied for 

one hour (Figure 16A, gray bars). In contrast, all three CaMKII inhibitors (KN93, 

tat-CN21, tat-AIP) significantly increased neuronal death 12-18% when applied 

for 24 hours (Figure 16A, black bars). Compared to control cultures, lower 

concentrations of tat-CN21 also induced neurotoxicity when applied overnight (1 

µM tat-CN21 5.3% ± 2.4%; p<0.05). Importantly, cultures treated with the 

inactivecontrols, tat-CN21Ala and KN-92, for 24 hours did not exhibit significant 
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changes in neuronal viability (Figure 16A), suggesting that the neurotoxic effects 

are specific to the application of active small molecule and peptide CaMKII 

inhibitors. Furthermore, the tat motif, itself, was not toxic when applied for 24 

hours (0.533 ± 1.6%; p>0.5). Utilization of a myristolated-AIP peptide inhibitor of 

CaMKII also induced neurotoxicity (29.6 ± 4.2%; p<0.05). Thus, CaMKII inhibition 

using both small molecule and peptide inhibitors conjugated to tat and 

myristolated cell-penetrating motifs induce neuronal death when applied for 24 

hours.  

While a significant increase in neurotoxicity was observed within our 

neuronal cultures when CaMKII was inhibited at 8 DIV, we tested whether the 

age of the culture affected this neuronal death. While no differences were 

observed in neuronal viability between control groups at 8 DIV, 14 DIV and 21 

DIV, 24 hour inhibition of CaMKII with tat-CN21 significantly enhanced 

neurotoxicity with respect to time in culture (Figure 16B). Compared to cultures 8 

DIV, 14 DIV cultures exhibited nearly 25% toxicity while nearly 75% of cells were 

compromised when CaMKII was inhibited at 21 DIV. The cell death observed 

with CaMKII inhibition is not limited to highly enriched cortical cultures (>95% 

MAP-2 immunopositive (Ashpole and Hudmon, 2011), as a similar level of 

toxicity was observed in neurons cultured with glia (Figure 16C). In these co-

cultures, a monolayer of GFAP positive astrocytes underlying MAP2 positive 

cortical neurons represent an astrocytes to neurons ratio of 3:2 (Figure 17). 

Thus, the toxicity produced by CaMKII inhibition is enhanced by culture age and 
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Figure 16: Neurotoxicity with CaMKII inhibition. A, Neuronal death 
(mean ± SEM, n=3-15) normalized to control when CaMKII inhibitors (10 
µM peptide inhibitors and 1 µM small molecule inhibitors) were applied to 
neuronal cultures (8 DIV) for 1 hr (gray bars) or 24 hrs (black bars). 
*p<0.05 compared to control (One-Way ANOVA, post-hoc Dunnett’s test). 
B, Neuronal death (mean ± SEM, n=4-17) normalized to control when 10 
µM tat-CN21 or tat-CN21Ala was applied to neuronal cultures for 24 hours 
at 8, 14, and 21 DIV. *p<0.05 compared to control at that time point, 
#p<0.05 compared to 8 DIV tat-CN21 treatment (One-Way ANOVA, post-
hoc Dunnett’s test). @p<0.05 for 14 DIV tat-CN21 treatment vs 21 DIV tat-
CN21 treatment (t-test). C, Neuronal death (mean ± SEM, n=4) normalized 
to control when 10 µM tat-CN21 or tat-CN21Ala was applied to co-cultures 
for 24 hours. *p<0.05 compared to control (One-Way ANOVA, post-hoc 
Dunnett’s test). 
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Figure 17: Characterization of co-cultures of neurons and astrocytes. 
Representative image of immunostained co-cultures with MAP2 positive 
neurons (green) and GFAP positive glia (red). The inset indicates average 
percentage of cells (± SEM; n=4) that are MAP2 positive.  
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observed in both highly pure cultures of cortical neurons as well as cortical 

neurons cultured with astrocytes.     

In Figure 16A we report that CaMKII inhibition for acute (1 hour) versus 

prolonged (24 hours) differentially affects neuronal death. To determine the 

minimal time where CaMKII inhibition-induced cell death, we applied tat-CN21 for 

various times between 1 and 24 hours. In addition, we explored exposure times 

longer than 24 hours to determine if neurotoxicity was saturated. Once again, a 1 

hour exposure of neurons to tat-CN21 failed to produce cell death (Figure 18A). 

CaMKII inhibition for 4 hours or less was also not toxic to neurons (Figure 18A). 

Progressively increasing neuronal death as a function of CaMKII inhibition time 

was observed up to 12 hours. However, longer incubation times (24 or 48 hrs) 

did not produce additional neurotoxicity (Figure 18A), suggesting that events 

occurring within the first 12 hours largely determine the neuronal death 

associated with CaMKII inhibition.    

The extent of CaMKII inactivation produced by focal ischemia in vivo was 

previously shown to correlate with the extent of neuronal damage (Hanson et al., 

1994). Because we observed a time-dependence in the neurotoxicity produced 

by CaMKII inhibition, we determined if neuronal death in cortical cultures is 

correlated with functional changes in CaMKII. We observed a time-dependent 

loss in the activatable pool of CaMKII that correlated with exposure time of the 

CaMKII inhibitor. Application of tat-CN21 for ≥4 hours resulted in a significant 

decrease in activatable CaMKII compared to vehicle-treated control neurons 

(Figure 18B). A maximal 50% loss of activity occurred when tat-CN21 was 
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Figure 18: Time-dependence of neurotoxicity and CaMKII inactivation 
with CaMKII inhibition. A, Neuronal death (mean ± SEM, n=7-12) 
normalized to control when 10 µM tat-CN21 was applied to neuronal 
cultures for varying lengths of time. *p<0.05 compared to control (One-Way 
ANOVA, post-hoc Dunnett’s test). B, Kinase activity (mean ± S.D., n=3-4) 
in neuronal lysates subjected to an in vitro CaMKII assay in the presence 
of calcium/calmodulin after 10 µM tat-CN21 (or tat-CN21Ala) was applied 
to cortical neurons for varying lengths of time. *p<0.05 compared to control 
(One-Way ANOVA, post-hoc Dunnett’s test).   
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applied for 24 hours. Importantly, neurons treated with inactive tat-CN21Ala for 

24 hours did not exhibit a decrease in activatable CaMKII (Figure 18B).  

We previously showed that neuronal uptake of fluorescent 

carboxyfluorescein (Fam) labeled tat-CN21 and control tat-CN21Ala (Fam 

conjugated to the C-terminus) were similar in our cortical cultures (Ashpole and 

Hudmon, 2011). Using these Fam-labeled peptides, we measured peptide 

uptake and neuronal death in order to identify whether fluorescently labeled 

neurons are preferentially dying in our assay. Using fluorescent microscopy, we 

observed that ~25% of cells display substantial tat-CN21-Fam or tat-CN21Ala-

Fam uptake (Figure 19). However, a large proportion of cells exhibit low, but still 

above background levels of fluorescent peptide, suggesting that CaMKII activity 

may be reduced in more than the 25% of cells (Figure 19). It is noteworthy that 

peptide uptake (~25%) correlates with neuronal death (~25%). The disconnect 

between maximal cell death (~25%) and the 50% decrease in CaMKII activity 

could be explained by the observation that not all cells exhibit the same levels of 

peptide uptake, suggesting that low levels of CaMKII inhibition may not reach a 

threshold that is required for neurotoxicity. While the mechanism behind the 

differential peptide uptake and loss of CaMKII activity is not known, there is a 

clear correlation with cytotoxicity and CaMKII inhibitor uptake as nearly 80% of 

cytotoxic cells exhibit tat-CN21-Fam co-localization (Figure 19).  

CaMKII Inhibition Induces Apoptosis 

The time-dependence of CaMKII inhibition (>4 hours) leading to toxicity is 

consistent with apoptosis. To test if neurons were undergoing apoptosis in 
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Figure 19: Neurotoxicity is predominantly found in neurons that have 
CaMKII inhibitor uptake. A, Representative image of neurons treated with 
tat-CN21-Fam (green) for 24 hours and stained with ethidium homodimer 
(red) and Hoescht staining (blue). B, Average number of cytotoxic cells (± 
SEM; n=8) per field found to co-localize or not co-localize with tat-CN21-
Fam.  
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response to prolonged CaMKII inhibition, cultures were co-treated with tat-CN21 

and the protein translation inhibitor cycloheximide. Co-application of 0.5 mg/mL 

cycloheximide blocked tat-CN21-induced neurotoxicity (Figure 20A). Similarly, 

co-treatment of tat-AIP and cycloheximide abolished the tat-AIP-induced toxicity 

(Figure 21). In further support of apoptosis, there was a significant increase in 

TUNEL staining of cultures treated with tat-CN21 for 24 hours compared to 

control and cultures co-treated with 0.5 mg/mL cycloheximide (Figure 20B). To 

confirm that the apoptosis occurred within cells that took up the CaMKII 

inhibitors, we next examined levels of activated caspase-3, a neuronal marker for 

apoptosis. Overnight application of tat-CN21-Fam was used in order to identify 

neuron uptake of the CaMKII inhibitor. Activated caspase-3 labeling was limited 

to cells that contained tat-CN21-Fam (Figure 20C). Not all neurons that were tat-

CN21-Fam positive displayed caspase-3 activation. However, nearly all of the 

neurons that contained tat-CN21-Fam had pyknotic and fragmented nuclei, 

indicating that the neurons were compromised (Figure 20C). Thus, while some 

necrotic cell death may not be ruled out, CaMKII inhibition does lead to 

apoptosis. 

Calcium Dysregulation with CaMKII Inhibition 

One prominent mechanism underlying neurodegeneration is dysregulated 

calcium signaling (as reviewed by (Orrenius et al., 2003)). Cultured hippocampal 

neurons (DIV 14) were loaded with Fura-2FF-AM and intracellular calcium levels 

were measured using ratiometric fluorescent imaging. While tat-CN21Ala or tat 

did not alter intracellular calcium levels, tat-CN21 led to a gradual rise in 
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Figure 20: Neuronal apoptosis with CaMKII inhibition. Neuronal death 
(mean ± SEM, n=5-10) following treatment with tat-CN21 with or without 
0.5 mg/mL cycloheximide as measured by A, ethidium homodimer 
membrane permeability dye, or B, TUNEL staining. *p<0.05 compared to 
control while #p<0.05 compared to tat-CN21 alone (One-Way ANOVA, 
post-hoc Dunnett’s test). C, Representative image of a field of neurons 
treated with 10 µM tat-CN21-Fam for 24 hours (top left) immunostained for 
cleaved caspase-3 (top right), nuclear marker Hoechst (bottom left), and a 
merge of all three channels (bottom right). Arrows indicate fragmented or 
pyknotic nuclei.  
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Figure 21: CaMKII inhibitor tat-AIP also induces apoptosis. Neuronal 
death (mean ± SEM; n=5-7) following 24 hour treatment with 10 µM tat-AIP 
in the absence or presence of 0.5 mg/mL cycloheximide. *p<0.05 
compared to control (One-Way ANOVA, post-hoc Dunnett’s test). 
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intracellular calcium (Figure 22B-D), suggesting that CaMKII inhibition leads to a 

slow, tonic increase in intracellular calcium. This calcium dysregulation is also 

observed in cortical neurons loaded with Fluo-4AM. Using this high affinity 

calcium indictor, we observed significantly elevated intracellular calcium levels 

occurring within 10 minutes exposure to tat-CN21 application (Figure 22E-F). 

Again, no changes in intracellular calcium were observed with tatCN21-Ala 

(Figure 22E). Similar to tat-CN21, 10 µM tat-AIP (data not shown) and 10 µM 

myristolated-AIP (Figure 22F) induced a significant increase in intracellular 

calcium concentration. In contrast, inhibition of the CaMKK pathway (CaMKI and 

CaMKIV (Tokumitsu et al., 2002, Schmitt et al., 2005)), using STO-609, does not 

induce calcium dysregulation (Figure 22F). Thus, acute CaMKII inhibition leads a 

slow increase in intracellular calcium levels. 

Low extracellular calcium largely prevented the tat-CN21-induced calcium 

influx (Figure 22F), indicating that calcium is likely derived from extracellular 

sources. L-type voltage-gated calcium channels do not appear to contribute to 

this process because pretreatment with 10 µM nimodipine had no effect on tat-

CN21 induced calcium dysregulation (Figure 22F). However, synaptic 

transmission may contribute to the increase in intracellular calcium, as 1 µM N-

type calcium channel blocker omega-conotoxin abolished calcium dysregulation 

prior to tat-CN21 treatment. Because N-type calcium channels play a prominent 

role in synaptic activity, we tested if neuronal activity was essential for this 

process by inhibiting AMPA receptors. Indeed, inhibition of AMPA receptors, 
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Figure 22: Calcium dysregulation with CaMKII inhibition in neurons. 
A, Representative bright-field and, B-C, fluorescent images of Fura-2FF-
loaded hippocampal neurons, B, before and, C, after treatment with 10 µM 
tat-CN21. D, Cytoplasmic calcium levels, [Ca2+]C, (mean ± SEM) before 
and after application of 10 µM tat-CN21, tat-CN21Ala, or tat. E, Neuronal 
intracellular calcium levels (mean ± SEM) before (-300 to 0 seconds) and 
after (0 to 1200 seconds) application of 10 µM tat-CN21, tat-CN21Ala, or 
tat, as measured by Fluo-4 (n=4). F, Average integral of fluorescent 
intensity from 0-1200 seconds in E (mean ± SEM, n=3-6) with application 
of CaMKII inhibitors with and without pharmacological blockers of neuronal 
excitability. The integral was normalized to the calcium influx observed with 
application of 10 µM tat-CN21. *p<0.05 compared to tat-CN21 alone (One-
Way ANOVA, post-hoc Dunnett’s test).  

FURA Imaging Courtesy of the Brustovetsky Lab 
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using 10 µM CNQX, blocked calcium dysregulation following CaMKII inhibition. In 

further support for neuronal activity being essential for the tonic increase in 

intracelluar calcium observed with CaMKII inhibition, inhibition of voltage-gated 

sodium channels using TTX (1 µM) prior to tat-CN21 treatment completely 

abolished the calcium influx (Figure 22F). These data are consistent with 

neuronal activity being essential for the calcium influx associated with inhibition 

of CaMKII.   

Enhanced Neuronal Excitability with CaMKII Inhibition 

To address the potential for CaMKII inhibition to alter neuronal excitability, 

we employed whole cell current-clamp to measure action potential firing in 

response to a depolarizing voltage ramp. In these experiments we used lower 

peptide concentration (1 µM) because the patch pipette provides direct access to 

the cytosol. We used inhibitory peptides without the cell-penetrating tat motif to 

affect only the cell from which we were recording. Each cell served as its own 

control by determining the number of action potentials generated immediately 

after establishing whole-cell configuration versus 10 minutes later when the 

peptide inhibitors have had the opportunity to diffuse from the pipette to inhibit 

CaMKII. Cortical neurons exposed to 1 µM CN21 for 10 minutes exhibited a 

three-fold increase in the number of action potentials compared to neurons 

treated with 1 µM inactive peptide CN21Ala (Figure 23A-B). CN21C, another 

previously established control for CN21 (Vest et al., 2010, Ashpole and Hudmon, 

2011), did not result in a significant increase in action potential number compared 
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Figure 23: CaMKII inhibition augments neuronal excitability. A, 
Representative traces from cortical neurons at time 0 and 10 minutes 
following diffusion of either 1 µM CN21 or 1 µM CN21Ala. Neurons were 
held at their resting membrane potentials and injected with 1 second 
depolarizing current ramps to evoke action potentials. B, Number of action 
potentials (mean ± SD) evoked at time 0 or 10 minutes after whole cell 
configuration in the presence of CN21 or control CN21Ala or CN21C. 
*p<0.01 between the number of action potentials between time 0 and 10 
minutes (One-Way ANOVA, post-hoc Bonferroni).  

Courtesy of Weihua Song 
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to baseline. Overall, these data support the hypothesis that CaMKII inhibition 

enhances neuronal excitability. 

CaMKII Inhibition Predisposes Neurons to Excitotoxic Insults 

Our observed increase in neuronal excitability with a loss of CaMKII 

activity supports previous reports indicating that genetic αCaMKII knock-out 

animals are predisposed to epilepsy (Butler et al., 1995). We hypothesize that 

this increased excitability not only underlies the observed neurotoxicity, but also 

mechanistically underlies the decreased ability of the neurons to handle 

excitatory insults. As mentioned, αCaMKII knock-out animals also exhibit greater 

neuronal damage following middle cerebral artery occlusion than their wild-type 

littermates (Waxham et al., 1996). Similarly, overnight inhibition of CaMKII with 

tat-CN21 exacerbated cortical cell death following application of exogenous 

glutamate in an in vitro model of excitotoxicity (Ashpole and Hudmon, 2011). To 

further explore the role of CaMKII inhibition in sensitizing neurons to excitotoxic-

related insults, we sought to identify whether prolonged CaMKII inhibition 

predisposed neurons specifically to NMDA-R activation and/or sensitized 

neurons to the deleterious effect of reactive oxygen species. Thus, 10 µM tat-

CN21 was applied to cortical neurons for 24 hours. Following overnight inhibition 

of CaMKII, the neurons were subjected to submaximal levels of 100 µM 

NMDA/10 µM glycine or H2O2 for 5 minutes, washed, and 24 hours later cell 

viability assessed. Compared to cultures that were treated with NMDA for 5 

minutes alone, cultures subjected to CaMKII inhibition prior to NMDA-R 

stimulation exhibited significantly increased neuronal death (15% vs 45%) 
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(Figure 24). Similarly, neurons treated with tat-CN21 also exhibited significantly 

higher levels of toxicity when treated with H2O2, compared to H2O2 alone (Figure 

24). Neuronal sensitivity to Microcystin-LR, a cell-permeable protein phosphatase 

1 and 2A inhibitor, was also assessed as CaMKII activity has been shown to be 

necessary for microcystin-induced apoptosis (35). Interestingly, prolonged 

CaMKII inhibition was not synergistic nor additive with microcystin toxicity (Figure 

24), suggesting that CaMKII inhibition via tat-CN21 blocks neurotoxicity produced 

by microcystin treatment and that the neuronal death induced by CaMKII 

inhibition is not obstructed by protein phosphatase inhibitors. Together these 

data suggest that a prolonged loss of CaMKII sensitizes neurons to ROS and 

NMDA-R mediated excitotoxicity. Thus, CaMKII inhibition appears toxic to 

neurons both directly via inducing calcium dysregulation and hyperexcitabilty and 

indirectly through predisposing neurons to glutamate excitotoxicity.  

Glutamate Dysregulation with CaMKII Inhibition 

Because a loss of CaMKII predisposes neurons to glutamate 

excitotoxicity, we questioned whether CaMKII inhibition itself affected glutamate 

levels within our cultures. To address this question, cultures were treated with 

tat-CN21 for varying lengths of time and glutamate concentration in the media 

was assessed using a glutamate oxidase assay. There was a significant increase 

in glutamate concentration in the media as early as 20 minutes following tat-

CN21 application (Figure 25A). Twenty-four hours following tat-CN21 application 

the concentration of glutamate in the bath solution was 4-5 µM while tat-CN21Ala 

failed to raise glutamate levels compared to control without treatment (0.5-1 µM). 
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Figure 24: Prolonged CaMKII inhibition sensitizes neurons to 
excitotoxic-related insults. Neuronal death (mean ± SEM, n=3-7) 
following treatment with various combinations of tat-CN21, NMDA, H2O2, or 
microcystin-LR. All cell death measurements were made 48 hours from the 
start of treatments. Cultures were treated with NMDA, H2O2, or 
microcystin-LR independently or in combination with a 24 hour pre-
treatment of 10 µM tat-CN21. The clear boxes highlight the potential levels 
of cytotoxicity if the average death induced by tat-CN21 treatment alone 
would be additive. *p<0.05 compared to control (One-Way ANOVA, post-
hoc Dunnett’s test). #p<0.05 compared to NMDA treatment alone (t-test). 
@p<0.05 compared to H2O2 alone (t-test).  
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Figure 25: CaMKII inhibition results in increased glutamate in 
conditioned neuronal media. Glutamate concentration (mean ± SD, n=3-
6) in neuronal media following incubation with 10 µM tat-CN21 or tat-
CN21Ala for varying lengths of time, as measured by a glutamate oxidase 
assay. *p<0.05 compared to vehicle control (DMSO) (One-Way ANOVA, 
post-hoc Dunnett’s test).  
 



117 
 

Similarly, HPLC analysis of glutamate concentration in the media also indicated 

that 24 hour application of tat-CN21 resulted in more than a two-fold elevation in 

glutamate concentration compared to inactive tat-CN21Ala (Figure 26).  

To determine whether this slight elevation in glutamate is important for 

calcium dysregulation and cell death, we sought to attenuate the glutamate rise 

enzymatically to dissociate CaMKII inhibition with the increased extracellular 

glutamate. Glutamate pyruvate transaminase (GPT), in the presence of pyruvate, 

catalyzes the conversion of glutamate to -ketoglutarate and alanine (Beaton et 

al., 1957). Thus, we added 0.25 mg/mL GPT and 2 mM pyruvate in combination 

with the CaMKII inhibitory peptide tat-CN21 to the cortical neurons and measured 

extracellular glutamate levels using the oxidase assay. Twenty-four hour 

application of tat-CN21 resulted in a significant increase in glutamate in the 

media of the cultured cortical neurons (Figure 27A). Co-application of GPT and 

pyruvate with tat-CN21 brought glutamate levels back to control. When pyruvate 

was omitted from the treatment, a significant increase in glutamate concentration 

was seen with tat-CN21 (Figure 27A). Furthermore, when GPT was boiled prior 

to application, GPT and pyruvate failed to bring tat-CN21-induced glutamate 

release back to control levels (Figure 27A).  

Having successfully buffered the prolonged rise in extracellular glutamate 

when CaMKII was inhibited, we measured acute changes in intracellular calcium 

concentrations with Fluo-4AM when GPT and pyruvate was present. As before, 

10 µM tat-CN21 induced significant dysregulation of intracellular calcium 

concentrations within minutes of application (Figure 27B). Interestingly, 
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Figure 26: CaMKII inhibition results in increased glutamate in the 
media. Average concentration of glutamate in the media (± SEM, n=3) 
following treatment with CaMKII inhibitor tat-CN21 or control tat-CN21Ala, 
as measured by HPLC. *p<0.05 between the groups (t-test). For 
calculation of concentration, 5 µl of sample was transferred to assay tubes 
and placed in an autosampler tray at 8°C. Internal standard (20 µl 
homoserine) was added to each sample, then the sample was derivatized 
by the addition and mixing of 20 µl of the OPA/β-mercaptoethanol reagent. 
One minute and thirty seconds after the addition of the reagent 10 µl of the 
sample-reagent mixture was injected onto an HPLC column (HR-80; ESA, 
Chelmsford, MA). Separations were carried out isocratically with a mobile 
phase containing 0.1 M sodium phosphate dibasic (pH 6.75), and 25% 
methanol at a flow rate of 410 µl/minutes and a column temperature of 
40°C. Electrochemical detection was performed by an ESA (Chelmsford, 
MA) Coulochem II detection system with a guard cell set at 700 mV, and 
dual electrodes set at 300 mV (E1), and 600 mV (E2) for oxidization of the 
glutamate derivative. Peak areas were calculated based on standard 
curves and adjusted for the value of the internal standard.  

Courtesy of Dr. Eric Engleman 
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Figure 27: Enzymatic catalysis of glutamate prevents acute and 
prolonged effects of CaMKII inhibition. A, Glutamate concentration 
(mean ± S.D., n=4-8) in neuronal media following incubation with 10 µM 
tat-CN21 for 24 hours with and without co-application of glutamate 
pyruvate transaminase (GPT)/pyruvate, GPT alone, or boiled 
GPT/pyruvate. *p<0.05 compared to control while #p<0.05 compared to 
tat-CN21/GPT/pyruvate treatment (One-Way ANOVA, post-hoc Dunnett’s 
test). B, Neuronal intracellular calcium levels (mean ± SEM, n=3) following 
application of tat-CN21 in the presence or absence of GPT/pyruvate. Bar 
graph inset indicates the average integral from 0-1200 seconds (mean ± 
SEM, n=3) for these treatment groups. C, Neuronal death (mean ± SEM, 
n=3-6) after 24 hour treatment with 10 µM tat-CN21 alone or co-application 
with GPT/pyruvate, GPT alone, or boiled GPT/pyruvate. *p<0.05 compared 
to control while #p<0.05 compared to tat-CN21/GPT/pyruvate treatment 
(One-Way ANOVA, post-hoc Dunnett’s test).  
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application of GPT and pyruvate prevented tat-CN21-induced calcium influx 

(Figure 27B). Co-application of tat-CN21 with pyruvate alone did not alter calcium 

influx with CaMKII inhibition (0.85 ± .24, normalized to tat-CN21).  

Neuronal viability following CaMKII inhibition was also assessed with 

extracellular glutamate buffering. Consistent with the glutamate experiments, the 

tat-CN21-induced neurotoxicity was abolished by co-treatment with GPT and 

pyruvate (Figure 27C). Cultures treated with GPT/tat-CN21 exhibited a statistical 

increase in neuronal death, similar to cultures treated with tat-CN21 alone 

(Figure 27C). Significant neurotoxicity was also observed when cultures were 

treated with pyruvate and tat-CN21 (19.077 ±1.876%). Once more, both omission 

of pyruvate and boiling of GPT prior to application resulted in a failure in 

preventing tat-CN21-induced neurotoxicity (Figure 27C). Together, these data 

indicate that enzymatically degrading the glutamate released after CaMKII 

inhibition prevents calcium dysregulation and neuronal death.    

We next examined if calcium entering through glutamate receptors, 

specifically the NMDA receptors contributes to the observed calcium influx. 

Application of 20 µM MK-801 reduced tat-CN21-induced calcium influx by ~80% 

(Figure 28A). As mentioned earlier, the calcium influx induced by CaMKII 

inhibition was also blocked by pharmacological antagonism of synaptic activity 

(via blockade of VGSCs, AMPA-Rs, and VGCCs). To determine the contribution 

of synaptic NMDA receptors in this calcium dysregulation, cortical neurons were 

treated with bicuculline to induce synaptic activity by inhibiting GABAergic 

signaling as described previously (Hardingham et al., 2002, Ivanov et al., 2006). 
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Figure 28: Pharmacological antagonism of the NMDA receptor 
prevents acute and prolonged effects of CaMKII inhibition. A, Average 
integral of fluorescent intensity from 0-1200 seconds (mean ± SEM, n=3-6) 
reflecting calcium influx in control neurons, or neurons subjected to 
treatment with tat-CN21 alone or in combination with 20 µM MK-801 or in 
combination with a prior synaptic NMDA-R blockade. To block synaptic 
NMDA-Rs before tat-CN21 treatment, 10 µM bicuculline was applied to 
allow synaptic activity, followed by the addition of 20 µM MK-801 to inhibit 
the synaptic NMDA-Rs opened as a result of this synaptic activity. *p<0.05 
compared to control while #p<0.05 compared to tat-CN21 (One-Way 
ANOVA, post-hoc Dunnett’s test). B, Neuronal death (mean ± SEM, n=4-
24) after 24 hour treatment with 10 µM tat-CN21 alone or in the presence 
of 20 µM MK-801, 10 µM ifenprodil, 1 µM memantine, or 200 nM TTX. 
*p<0.05 compared to control while #p<0.05 compared to tat-CN21 (One-
Way ANOVA, post-hoc Dunnett’s test).  
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Rapid increases in cytoplasmic calcium were observed with bicuculline 

treatment. MK-801 was added immediately following exposure to bicuculline to 

block the open NMDA-Rs (Huettner and Bean, 1988) (Figure 29). The CaMKII 

inhibitor, tat-CN21, was then applied and subsequent changes in intracellular 

calcium concentration were monitored. Interestingly, this blockade of synaptic 

NMDA-Rs significantly blunted tat-CN21-induced calcium influx (Figure 28A). 

However, this treatment did not maintain levels of intracellular calcium to those 

observed in control, indicating that while much of the calcium influx observed with 

CaMKII inhibition was via the synaptic NMDA receptors, calcium entering through 

extrasynaptic NMDA-Rs may also contribute to this process. 

Because antagonism of the NMDA receptor successfully blunted the acute 

increase in calcium influx, we hypothesized that MK-801 would also reduce the 

neurotoxicity induced by CaMKII inhibition. Compared to cultures treated with tat-

CN21 alone, neurotoxicity was reduced nearly 80% when tat-CN21 was co-

applied with 20 µM MK-801 (Figure 28B). We next attempted to block 

extrasynaptic NMDA-Rs to determine the influence of extrasynaptic versus 

synaptic NMDA-Rs to the neurotoxicity induced by CaMKII inhibition. Low levels 

of ifenprodil and memantine have been shown to be preferential antagonists to 

the NR2B-containing extrasynaptic NMDA-Rs (Thomas et al., 2006, Xia et al., 

2010). There was still a significant increase in the observed neurotoxicity when 

tat-CN21 was co-applied with 10 µM ifenprodil or 1 µM memantine, with neither 

drug affecting viability alone (Figure 9B). However, ifenprodil does reduce the 

levels of toxicity below that observed with tat-CN21 alone (Figure 28B), 



123 
 

 
 
 
Figure 29: Calcium influx with CaMKII inhibition is blunted by 
synaptic blockade. Representative traces of intracellular calcium levels in 
a field of control cortical neurons or a field treated with tat-CN21 
with/without prior synaptic blockade. To induce synaptic blockade (dark 
gray trace), 10 µM bicuculline was applied to the bath (see arrow). When 
intracellular calcium levels became elevated, 20 µM MK-801 was applied 
(see arrow). At -300 seconds, control and antagonist-treated cultures were 
washed with physiological saline before application of 10 µM tat-CN21 at 
time 0.   
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suggesting that extrasynaptic NMDA-Rs may play a partial role in the toxicity 

associated with the loss of CaMKII signaling. Increasing the dose of memantine 

to 10 µM, a level that inhibits not only extrasynaptic NMDA-Rs but also partially 

inhibits synaptic NMDA-Rs, does significantly reduce neuronal death (13.6 ± 

4.6%). When cultures were treated with low levels of TTX (200 nM) to block 

action potential-induced synaptic activity, tat-CN21-induced toxicity was brought 

back to baseline (Figure 28B). Thus, while extrasynaptic NMDA-Rs cannot be 

ruled out, it is quite convincing that synaptic activity is necessary for both the 

calcium dysregulation and neurotoxicity associated with a loss of CaMKII 

signaling (Thomas et al., 2006, Xia et al., 2010). In total, these data suggest that 

CaMKII inhibition induces a slow-tonic excitotoxic event via calcium 

dysregulation, enhanced neuronal excitability, and augmented extracellular 

glutamate levels.  

Finally, to determine if the accumulation of glutamate in the bath solution 

was solely responsible for this neurotoxicity, cortical neurons were treated for 24 

hours with 10 µM tat-CN21. Then, the conditioned media was removed from 

these cultures and directly applied to naïve cortical neurons. Neurons treated 

with the conditioned media did not display a significant difference in viability 

compared to non-treated control cultures (Figure 30). We also did not observe 

significant neuronal death when 4 µM glutamate was applied to our cortical 

cultures for 24 hours (6.9 ± 3.1% vs control 5.8 ± 2.2%), suggesting that this 

glutamate concentration in the media is not sufficient to induce neuronal death in 

the absence of CaMKII inhibition. Thus, while the increased extracellular 
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Figure 30: Conditioned media from neurons treated with CaMKII 
inhibitors does not induce neurotoxicity. Neuronal death (mean ± SEM, 
n=3-9) in neurons treated with 10 µM tat-CN21 for 24 hours or naïve 
neurons treated for 24 hours with media removed from tat-CN21-treated 
neurons. *p<0.05 compared to control (One-Way ANOVA, post-hoc 
Dunnett’s test). 
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glutamate resulting from CaMKII inhibition is necessary for the observed 

neurotoxicity, it is not sufficient to produce the toxicity itself. Together, these data 

indicate that the combination of elevated glutamate with the loss of CaMKII 

activity induces toxicity. Thus, the mechanism underlying the neurotoxicity with 

CaMKII inhibition is the decreased ability of neurons to tolerate glutamate 

stimulation, including the stimulation resulting from the low levels of glutamate 

associated with the neuronal hyperactivity directly resulting from CaMKII 

inhibition.  

DISCUSSION 

Prolonged CaMKII inhibition using both small molecule (KN-93) and 

peptide (tat-AIP, myr-AIP, and tat-CN21) inhibitors is toxic to cultured neurons in 

the presence and absence of astrocytes. Although an acute one hour exposure is 

not toxic, all of these inhibitors produced neuronal death after 24 hours. We 

elected to use pharmacological approaches over genetic knockdown of CaMKII 

in order to better mimic the time-course of CaMKII inactivation associated with 

ischemic brain trauma and other diseases associated with aberrant neuronal 

activity. Pharmacological inhibitors afford the opportunity to determine acute 

changes in neuronal activity and calcium homeostasis with CaMKII inhibition. 

Plus, the CaMKII inhibitors used are not thought to display any isoform 

specificity, avoiding potential complications associated with isoform 

compensation associated with genetic knockdown. Multiple pharmacological 

inhibitors (small molecule and peptide) employing different methodologies for cell 

uptake (cell permeable small molecule versus tat and myristolated peptide import 
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strategies) were used to limit the possibility of off-target effects confounding our 

conclusions.  

The concentration of tat-CN21 (10 µM) used throughout this study is 

similar previous studies using this CaMKII inhibitor to explore neurite extension 

(Vest et al., 2007) and neuroprotection to a glutamate-insult (Vest et al., 2010, 

Ashpole and Hudmon, 2011). Although these values are ~100 fold over the IC50 

for CN21 in vitro (Vest et al., 2007, Ashpole and Hudmon, 2011), cell uptake and 

bioavailability can be limiting for intracellular peptide inhibitors (Tunnemann et al., 

2006), making the peptide concentrations used in this and other studies 

reasonable pharmacological concentrations. Finally, previously established 

inactive controls for KN-93 (KN-92) (Sumi et al, 1991) and tat-CN21 (tat-

CN21Ala) (Ashpole and Hudmon, 2011) did not induce neuronal death at the 

concentration of the active inhibitors that clearly produced toxicity, suggesting 

that the neuronal toxicity observed is due to CaMKII inactivation.  

Prolonged CaMKII inhibition is consistent with features of both necrotic 

and apoptotic cell death. Apoptotic cell death is supported by the following 

observations: 1) application of the inhibitors required an incubation period of >8 

hours to induce toxicity, 2) inhibitor application led to an increase in TUNEL 

staining, 3) colocalization between neurons that take up fluorescent tat-CN21 

and cleaved caspase-3 was observed, and 4) cell death was prevented by the 

protein translation inhibitor, cycloheximide. The pro-apoptotic Bcl-2-associated 

death promoter (BAD) protein is inactivated by CaMKII phosphorylation. Thus, it 

is possible that the prolonged inhibition of CaMKII activity dysinhibits the BAD 
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cascade, leading to apoptosis (Bok et al., 2007). A population of neurons 

containing the CaMKII inhibitor did not exhibit caspase-3 staining, yet these 

neurons consistently exhibited morphological changes in the nucleus 

(condensation and fragmentation). It is unclear whether these neurons represent 

a continuum between necrosis and apoptosis, or whether this could be 

specifically related to apoptosis with secondary necrosis (Bonfoco et al., 1995).  

CaMKII inhibition results in a slow sustained increase in intracellular 

calcium levels that is accompanied by elevated glutamate and enhanced 

neuronal excitability. Calcium dysregulation occurs within 10-20 minutes of 

exposure to tat-CN21; a time-course that correlates with maximal fluorescent 

uptake of tat-based peptides in our cortical cultures (Ashpole and Hudmon, 

2011). Although L-type voltage-gated calcium channels do not appear to 

contribute to calcium dysregulation following CaMKII inhibition, ion channels 

regulating neuronal activity (voltage-gated sodium channels and N-type voltage-

gated calcium channel) are critical for this process. Consistent with synaptic 

coupling required for calcium dysregulation, we observed that functional 

glutamate receptors (AMPA- and NMDA-subtypes) as well as elevated glutamate 

to be necessary for this process. While synaptic NMDA-Rs appeared to largely 

dictate calcium dysregulation and neuronal toxicity to CaMKII inhibition, we 

cannot rule out a contribution played by extrasynaptic NMDA-Rs in these 

processes. The involvement of both synaptic and extrasynaptic NMDA-Rs in 

calcium dysregulation and toxicity is reasonable considering that elevated levels 

of glutamate appear to accumulate in the media over time, with enhanced 
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extracellular glutamate levels observed as early as 20 minutes following 

exposure to CaMKII inhibitors. Thus, while increased synaptic transmission may 

be necessary, it is possible that once glutamate accumulates in the milieu, it can 

also activate receptors outside of the synaptic cleft. Interestingly, exposure to 

elevated glutamate using conditioned media or exogenous glutamate is not toxic 

in the absence of CaMKII inhibition, suggesting that glutamate by itself is not 

sufficient for neurotoxicity in the absence of CaMKII inhibition. However, the 

elevated extracellular glutamate in conjunction with CaMKII inhibition appears to 

be essential to both calcium dysregulation and neurotoxicity, as enzymatic 

buffering of extracellular glutamate or pharmacological inhibition of the AMPA or 

NMDA receptors prevents calcium dysregulation. The fact that media exchange 

after 4 hours prevents neuronal toxicity to CaMKII inhibition is consistent with 

these observations, further supporting an important functional and temporal 

association between CaMKII inhibition and neuronal activity in this form of 

neurotoxicity.  

Although our data does not rule out the possibility that elevated 

extracellular glutamate is produced by cell lysis, the observation that an increase 

in the number of action potentials induced by a depolarizing current following 

CaMKII inhibition by localized delivery of the CN21 inhibitor to individual cortical 

neurons supports the hypothesis that CaMKII inhibition directly enhances 

neuronal excitability. This acute response in neuronal excitability to CaMKII 

inhibition is novel. However, genetic knock down of αCaMKII in mice (Butler et 

al., 1995) or neuronal cultures by siRNA (Carter et al., 2006) support these 
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findings. Thus, results from experiments examining the effect of CaMKII inhibition 

via pharmacological (this study) or genetic approaches (Butler et al., 1995, Carter 

et al., 2006) support the hypothesis that CaMKII is a major regulator of neuronal 

excitability.  

Our experiments favor a model whereby the sustained inhibition of CaMKII 

activity instigated a vicious cycle of sustained increases in intracellular calcium 

due to sustained glutamate release. In essence, CaMKII inhibition initiates an 

excitotoxic cycle by increasing neuronal excitability which subsequently supports 

enhanced glutamate levels in the media; a feed forward cycle that can be broken 

by preventing neuronal activity, blocking calcium dysregulation or by removing 

extracellular glutamate. These data suggest that CaMKII may be viewed to 

function in neurons as a brake for glutamate-excitation and/or as a master 

regulator of neuronal excitability and calcium homeostasis. Finally, the observed 

results do not appear to be limited to highly purified cortical cultures, as co-

cultures of cortical neurons with astrocytes also display neuronal death following 

CaMKII inhibition. We cannot rule out the potential of glial function or viability 

being altered following CaMKII inhibition in mixed cultures, as glial cells also 

express CaMKII (δCaMKII (Takeuchi et al., 2000)), thus on-going experiments 

will need to examine consequences of CaMKII inhibition in astrocyte function and 

survival.  

How could CaMKII inhibition impact calcium-induced neuronal death 

during ischemia and other excitotoxic stimuli? CaMKII has been shown to 

inactivate in the core of an ischemic insult in vivo as well as in the surrounding 



131 
 

penumbral tissue (Hanson et al., 1994); a phenomena also observed following 

aberrant neuronal activity in epilepsy (Yamagata et al., 2006). The mechanism of 

CaMKII inactivation in these diseases is not well understood, but it is known that 

CaMKII proteolysis is preceeded by post-translational modifications (Churn et al., 

1992a), including a soluble to particulate transition consistent with CaMKII 

aggregation following ischemia (Aronowski et al., 1992, Hanson et al., 1994, Tao-

Cheng et al., 2002). Inactivation associated with aggregation is consistent with 

CaMKII self-association; a form of catalytic aggregation that requires calcium-

CaM activation and is maximized under ischemic conditions (i.e. reduced energy) 

(Hudmon et al., 1996, Hudmon et al., 2005). In the current study, we have 

attempted to mimic one consequence of CaMKII self-association via 

pharmacological inhibition of enzymatic activity. Similar to in vivo studies 

characterizing functional changes in CaMKII associated with aberrant neuronal 

activity, we have observed a sustained loss of activatable CaMKII with long-term 

tat-CN21 exposure in cultured cortical neurons. This sustained inactivation and 

transition of αCaMKII from the soluble to particulate fractions has been previously 

shown to also accompany excitotoxic glutamate-glycine insults in neuronal 

cultures (Hudmon et al., 2005, Ashpole and Hudmon, 2011). An intriguing 

hypothesis is that the neuroprotection produced by acute exposure to CaMKII 

inhibitors may be limiting neurotoxicity to excitotoxic glutamate/glycine 

challenges by paradoxically preventing excitotoxic-induced CaMKII inactivation-

aggregation.  
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Independent of this speculation, the present results indicate that sustained 

inactivation of CaMKII leads to neuronal cell death through engagement of 

apoptotic/necrotic pathways induced by calcium dysregulation and 

hyperexcitability, which contributes to the decreased capacity of neurons to cope 

with excitatory insults. These data may provide further mechanistic insight into 

the increased infarct size observed within αCaMKII knock-out animals (Waxham 

et al., 1996), and moreover, to the phenomenon of expanding neuronal damage 

in the ischemic penumbra. Peri-infarct depolarizations have been shown to 

underlie the progression of neuronal damage from the core throughout the 

penumbra (Mies et al., 1993, Ohta et al., 2001, Fujioka et al., 2004). Interestingly, 

these depolarizations have been shown to be calcium dependent and are 

significantly reduced by NMDA receptor antagonism (Ohta et al., 2001). These 

findings are consistent with the functional consequences of CaMKII inactivation 

highlighted in this study. Thus, our working hypothesis is that the extent of 

neuronal damage in the penumbral region is governed by the loss of CaMKII, 

which increases neuronal activity and heightens susceptibility to excitotoxic-

related insults, such as glutamate and ROS activity. 

 

*This manuscript was published in the Journal of Biological Chemistry* 
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TR, Hudmon A. (2012) Calcium/calmodulin-dependent protein kinase II (CaMKII) 

inhibition induces neurotoxicity via dysregulation of glutamate/calcium signaling 

and hyperexcitability. 287(11):8495-506.  
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Part III: LOSS OF CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE 

II ACTIVITY IN CORTICAL ASTROCYTES INDUCES NEUROTOXIC ATP 

RELEASE 

SUMMARY 

The extent of calcium/calmodulin-dependent protein kinase II (CaMKII) 

inactivation in the brain following ischemia directly correlates with the extent of 

damage. We have previously shown that a loss of CaMKII in neurons is 

detrimental to neuronal viability. In the current study, we detail functional 

changes in cortical astrocytes with CaMKII inhibition along with examining how 

these changes impact neurons. CaMKII inhibition in cultured astrocytes using 

either a small molecule (KN-93) or a peptide inhibitor (tat-CN21) is associated 

with calcium oscillations and dysregulated intracellular calcium levels. 

Surprisingly, this calcium influx could be blocked by the N-type calcium channel 

antagonist, omega-conotoxin. While the function of N-type calcium channels 

within astrocytes is controversial, these voltage-gated calcium channels have 

been linked to calcium-dependent vesicular gliotransmitter release. When 

extracellular glutamate and ATP levels were measured following CaMKII 

inhibition, we observed glutamate levels were not altered, whereas ATP levels in 

the extracellular environment increased with CaMKII inhibition. Extracellular ATP 

accumulation associated with CaMKII inhibition contributes both to calcium 

dysregulation within astrocytes and cortical neuron toxicity. Thus, CaMKII 

inhibition within astrocytes dysregulates calcium signaling supporting ATP 
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release – a process that fuels calcium oscillations and dysregulation in astrocytes 

along with toxic gliotransmitter activity in neurons.  

INTRODUCTION 

Astrocytes play a critical role in regulating neuronal function and plasticity 

by providing structural support, releasing neurotrophic factors, tuning synaptic 

transmission, and buffering neurotoxic ions/neurotransmitters produced by 

normal/aberrant neuronal activity (Banker, 1980, Rosenberg and Aizenman, 

1989, Pfrieger and Barres, 1997, Barres, 2008, Ransom and Ransom, 2012). 

The excitatory neurotransmitter glutamate is essential for normal synaptic activity 

amongst a majority of neuronal synapses; however, the aberrant neuronal 

activity and damage that accompanies ischemia and traumatic brain injury lead 

to toxic levels of extracellular glutamate – a process classically defined as 

excitotoxicity. Importantly, astrocytes have been shown to decrease the 

sensitivity of neurons to glutamate excitotoxicity 100-fold in culture systems, 

presumably by their ability to take-up and buffer extracellular glutamate 

(Rosenberg and Aizenman, 1989). We have previously shown that inhibition of 

calcium/calmodulin-dependent protein kinase II (CaMKII) within cultured cortical 

neurons leads to the induction of excitotoxic glutamate release. Inclusion of 

astrocytes in these neuronal cultures did not alleviate neuronal toxicity, 

suggesting that astrocyte-neuronal communication is compromised when CaMKII 

is inhibited.  

A significant decrease in CaMKII is seen within the core and penumbral 

tissue regions following a stroke (Hanson et al., 1994). The extent in the loss of 
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CaMKII signaling directly correlates with the extent of tissue damage, supporting 

the hypothesis that CaMKII inhibition may be detrimental to neuronal survival 

(Hanson et al., 1994). This model is further supported by data showing that 

pharmacological and genetic CaMKII inhibition compromises neuronal survival to 

excitotoxic insults (Waxham et al., 1996, Ashpole and Hudmon, 2011, Ashpole et 

al., 2012). However, what role or contribution that CaMKII inhibition plays in 

astrocytes and other support cells to glial-neuronal function and communication 

is unknown.  

Although CaMKII is best known for its function in neurons, CaMKII is 

expressed throughout several cell types in the brain, including glial and 

endothelial cells (Fukunaga et al., 1988, Takeuchi et al., 2000). For example, 

while αCaMKII is the predominant isoform in neurons (Ouimet et al., 1984), the 

δCaMKII variant appears to be the predominant isoform within astrocytes 

(Takeuchi et al., 2000). Within astrocytes, CaMKII signaling regulates 

cytoskeletal networks (Yano et al., 1994, Ogawara et al., 1995), gene expression 

(Yano et al., 1996), and apoptosis (Kubes et al., 1998, Song et al., 2006). Thus, it 

is conceivable that the loss of CaMKII activity within ischemic tissue represents 

CaMKII inactivation in neurons as wells as astrocytes and other supporting cells. 

In the current study, we used acute and chronic application of CaMKII inhibitors 

to investigate calcium signaling and gliotransmitter release in cultured cortical 

astrocytes. These data support a feed-forward model by which CaMKII inhibition 

in astrocytes compromises astrocyte calcium homeostasis and ultimately 

neuronal survival via ATP release. Thus, we propose a model whereby a loss 
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CaMKII activity in astrocytes further compromises neuronal survival to aberrant 

glutamate signaling through extracellular accumulation of ATP; a process that 

could greatly impact the spread and severity of the neuronal death in the 

penumbral and border zones of an ischemic insult.  

EXPERIMENTAL PROCEDURES 

Materials. Peptide inhibitors including tat-CN21 (YGRKKRRQRR-

KRPPKLGQIGRSKRVVIEDDR) and tat-CN21Ala (YGRKKRRQRR-

KAPAKAAQAAASKRVVIEDDR) as well as Fam-labeled versions of these 

peptides were synthesized by Biopeptide Co. Inc, San Diego, CA. KN-93 

(422708) and KN-92 (422709) were purchased from Calbiochem. Myristolated 

AIP (64929) was purchased from Anaspec, Fremont, CA. MRS 2179 (0900), A 

740003 (3701), and ARL 67156 (1283) were purchased from Tocris. MK-801 

(M107), CNQX (C239), nifedipine (N7634), omega-conotoxin (C9915), and 

suramin (S2671) were purchased from Sigma.  

Neuron and astrocyte cultures. Mixed co-cultures of neurons (both cortical and 

hippocampal) and astrocytes were derived from E18 to E19 Sprague-Dawley rat 

pups according to approved IACUC guidelines as described previously (Ashpole 

et al., 2012). Pure astrocytes were derived from postnatal day 1-3 Sprague-

Dawley rat pups following methods established by McCarthy and de Vellis 

(McCarthy and de Vellis, 1980). Following dissociation, digestion, and titruation, 

cortical cells were resuspended in growth media (DMEM containing 2% 

NuSerum, penicillin (10 units/mL), streptomycin (10 μg/mL), and L-glutamine 

(29.2 μg/mL)) at a density of 2.5 million cells/mL and seeded on poly-d-lysine 
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(50 μg/mL) coated 10 cm dishes. Cells were feed every 3-4 days, with half of the 

conditioned media being replaced with fresh growth media. When the cultures 

became confluent (7-8 DIV), the plates were shaken to remove oligodendrocytes. 

Following a wash, the astrocytes were then split (using trypsin), and seeded on 

12 mm or 15 mm coverslips coated in poly-d-lysine. The cultures were then 

grown in neuronal growth media (Neurobasal containing 2% NuSerum, 2% 

NS21, penicillin (10 units/mL), streptomycin (10 μg/mL), and L-glutamine 

(29.2 μg/mL) until treatment (following an additional 3-4 DIV). Pure cortical 

neurons were grown on 12 mm or 15 mm poly-d-lysine coverslips as previously 

described (Ashpole et al., 2012) for 8-10 DIV until treatment.  

Calcium imaging. Co-cultures of neurons and astrocytes (10-12 DIV) as well as 

cultures of pure astrocytes were loaded with Fluo-4AM or 2.6 μm Fura-2FF-AM 

and subsequently imaged as described previously (Ashpole et al., 2012). The 

use of Fluo-4AM or Fura-2FF-AM is highlighted in the Results. During imaging, 

the cultures were incubated in rat physiological saline (138 mM NaCl, 2.7 mM 

KCl, 1.8 mM CaCl2, 1.06 mM MgCl2, 12.4 mM HEPES, pH 7.4, 5.6 mM glucose; 

final pH adjusted to 7.3) as described (Ashpole et al., 2012). A Nikon Ti-E 

inverted fluorescent microscope was utilized to monitor fluorescent intensity once 

every 5-10 seconds. Baseline was monitored for 2-5 minutes. To identify neurons 

in the co-culture experiments, a 20mM KCl depolarization at the start of the 

imaging was employed. Neurons were identified as cells that immediately 

responded to KCl with a robust increase in calcium. In all experiments with 

CaMKII inhibitor application, the inhibitor was added 5 minutes after start of 



138 
 

imaging. For experiments requiring various receptor/channel antagonists, the 

drugs were applied at the 2 minute mark to identify whether the drug itself had an 

impact on calcium levels prior to CaMKII inhibitor application. Analysis was 

performed using Nikon Elements v3.0 in which fluorescent intensity measured in 

at least 10 cells per field. The fluorescent intensity of each cell was normalized to 

time 0 (or the 5 minute mark), as the CaMKII inhibitor was applied.   

Glutamate uptake. Glial cultures (3-4 DIV following split unto coverslips) were 

treated with CaMKII inhibitors in combination with 1.5 µCi/mL H3-glutamate and 

0.5 µM unlabeled glutamate for various lengths of time, as indicated. Cultures 

were then washed in cold PBS and lysed in 20 mM Tris, pH 7.4, 200 mM NaCl, 

0.1 mM EDTA, and 2X protease inhibitor mixture (Calbiochem, 539137) as 

described previously (Ashpole and Hudmon, 2011, Ashpole et al., 2012). The 

lysate was then diluted in Ready Safe liquid scintillation cocktail (Beckman 

Coulter), vortexed, and H3 was measured using a liquid scintillation β-counter.  

Immunocytochemistry of astrocyte cultures. Glial cultures (3-4 DIV following split 

unto coverslips) were immunostained as previously described (Ashpole and 

Hudmon, 2011, Ashpole et al., 2012). Following fixation, permeabilization, and 

blocking, the cultures were incubated in polyclonal anti-GFAP, monoclonal anti-

OX-42, polyclonal anti-pan-CaMKII, or monoclonal anti-vimentin overnight at 4 

degrees. After three washes, secondary antibodies (anti-rabbit Alexa680 or anti-

mouse Alexa594, 1:5000 (Molecular Probes)) were applied for 1 h at room 

temperature. Coverslips were washed in PBS three times and were subsequently 

mounted in Prolong Gold Antifade with DAPI mounting media (Molecular 
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Probes), and cells were imaged using a Zeiss Axio ObserverZ1 and processed 

with Axiovision 4.  

CaMKII activity assay. Astrocyte cultures were lysed in 20mM Tris, pH 7.4, 200 

mM NaCl, 0.1 mM EDTA, and 2X protease inhibitor mixture (Calbiochem, 

539137) as described previously (Ashpole and Hudmon, 2011, Ashpole et al., 

2012), sonicated, and incubated with 0.1% Triton-X-100 for 5 minutes. To 

measure total CaMKII activity, a portion of the lysate was then incubated with 50 

mM HEPES, pH 7.4, 100 mM NaCl, 10 mM MgCl2, 100 μM ATP, 2 mM CaCl2, 5 

μM CaM, 50 μm AC-2 (KKALRRQETVDAL), and [γ-32P]ATP (3 μCi per reaction) 

for 3 minutes at 30oC. To measure autonomous CaMKII activity, a portion of the 

lysate was incubated in 50 mM HEPES, pH 7.4, 100 mM NaCl, 10 mM MgCl2, 

100 μM ATP, 5 mM EGTA, 50 μm AC-2, and [γ-32P]ATP (3 μCi per reaction) for 3 

minutes at 30oC. The linear range of the phosphorylation reactions extended 

from 1 to 10 minutes. Protein levels were assessed using the DC protein assay 

kit (Bio-RAD) and activity was normalized to total protein.  

Inhibitor uptake analysis. Fluorescently conjugated peptides (tat-CN21-Fam and 

tat-CN21Ala-Fam) were diluted in fresh neuronal growth media and applied to 

astrocyte cultures at a final concentration of 10 μM for varying lengths of time (0-

2 min). After treatment, coverslips were washed 3 times in PBS before blotting 

and were then mounted in Prolong Gold Antifade with DAPI mounting media. 

Coverslips were then imaged in three different fields with a Zeiss Axio Observer 

Z1 and processed with Axiovision 4. The total cell number (DAPI staining) and 

the total number of cells containing the fluorescent peptides (FITC detection) 
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were then quantified. No fluorescence was detected in cultures that were not 

treated with the fluorescent peptides.   

ATP measurements. ATP concentrations in the media were assessed using the 

Enlighten ATP Assay System per manufacturer's protocol (Promega). The 

luciferase was detected and quantified using a Victor V3 plate reader. The ATP 

detection assay standard curve was linear from 0.001 nM to 0.1 μM.  

Cell death measurements. Neuronal coverslips were stained using Live/Dead 

Cytotoxicity/Viability kit (Molecular Probes) as previously described (Ashpole and 

Hudmon, 2011, Ashpole et al., 2012). The cells were imaged using a Zeiss Axio 

Observer Z1 and processed with Axiovision 4 (x100 magnification). Each 

coverslip was imaged in three different fields. The images were exported and 

automated cell counting software (Nikon Elements v3.0) was used to quantify 

cytotoxic cells (Texas red filter), viable cells (FITC filter), or total cell number 

(DAPI filter).  

Data analysis. Statistical analysis was performed using SigmaPlot v11 software. 

One-way ANOVA with a subsequent Dunnett's test was used to compare 

differences between the means of each group in the in situ calcium imaging 

experiments, in vitro catalytic assays, and in situ cell death assays. When 

appropriate, a Student's t test was also performed. 

RESULTS 

Calcium Dysregulation with CaMKII inhibition in Neuronal/Glial Cultures 

The degree of CaMKII inactivation within the brain following stroke directly 

correlates with the extent of neuronal damage (Hanson et al., 1994). We have 
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previously shown that inhibition of CaMKII in cultured cortical neurons induced an 

excitotoxic neuronal death cascade (Ashpole et al., 2012). This neuronal death 

was also observed in co-cultures of neurons and astrocytes, suggesting that 

perhaps the neuroprotective function of astrocytes was compromised when 

CaMKII was inhibited (Ashpole et al., 2012). Because aberrant neuronal calcium 

influx contributed to the neurotoxicity induced by CaMKII inhibition, we first 

examined whether similar patterns of calcium dysregulation were observed in the 

co-cultures of neurons and astrocytes following application of CaMKII inhibitors 

as previously observed in our pure neuronal cultures. For this, we optically 

monitored intracellular calcium levels using Fluo-4AM in our co-cultures of 

neurons and astrocytes. Previously, we characterized the cellular content of 

these co-cultures and identified that roughly 40% of cells in these cultures were 

MAP-2 positive neurons and nearly 60% were GFAP-positive astrocytes 

(Ashpole et al., 2012). To inhibit CaMKII, we used the specific CaMKII inhibitor, 

tat-CN21 (Vest et al., 2007, Ashpole and Hudmon, 2011, Ashpole et al., 2012). 

CN21 is a peptide inhibitor derived from the endogenous CaMKII inhibitory 

protein in the brain originally termed CAMKII-N (Chang et al., 1998). Because the 

peptide inhibitor is not membrane permeable, it was conjugated to the cell-

penetrant motif, tat, for intracellular delivery of the peptide inhibitor as described 

previously (Vest et al., 2010, Ashpole and Hudmon, 2011, Ashpole et al., 2012). 

As shown previously in highly enriched neuronal cultures (Ashpole et al., 2012), 

we observed that application of tat-CN21 peptide resulted in increased 

intracellular calcium levels (Figure 1A); however, the kinetics of this increase in 
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intracellular calcium appeared markedly different than the slow-onset previously 

observed in our enriched cortical cultures. The increase in intracellular calcium 

levels seen with the active CaMKII inhibitor tat-CN21 were not seen using our 

control peptide, tat-CN21Ala (Ashpole and Hudmon, 2011). To tease apart the 

contribution of changes in Fluo-4AM fluorescence within the mixed culture 

system, a KCl depolarization stimulation was used to identify the fluorescent 

calcium signatures of neurons. Because nearly all of the cells that were not MAP-

2 positive in these co-cultures were GFAP-positive (Ashpole et al., 2012), the 

cells that did not immediately respond to the KCl were considered astrocytes. 

Using this method to deconvolute the calcium signatures of neurons versus glial 

cells, we found that as we described previously (Ashpole et al., 2012), neurons 

undergo a characteristic delayed calcium dysregulation (Figure 31B). Astrocytes 

appear quite different in both the time of onset and oscillatory nature of the 

kinetics for changes in intracellular calcium levels (Figure 31B-C). In addition, 

unlike the dysregulated calcium levels seen in neurons, the dysregulated 

intracellular calcium levels did not appear to keep increasing over time in the glial 

cells (Figure 31C). These findings in mixed cortical cultures were consistent 

when co-cultures of hippocampal neurons and astrocytes were loaded with Fura-

2FF as the calcium indicator and subjected to CaMKII inhibitor application 

(Figure 32). These data demonstrate that the calcium dysregulation seen in 

cultured cortical neurons and hippocampal neurons is accompanied by aberrant 
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Figure 31: Calcium dysregulation in neuronal/astrocyte cultures with 
CaMKII inhibition. A, Average trace (+/- SEM, n=3) of calcium response 
in mixed cultures of cortical neurons and astrocytes treated with 10 µM tat-
CN21 or tat-CN21Ala, as measured by Fluo-4AM. B, Average trace (+/- 
SEM, n=3) of calcium response with tat-CN21 or tat-CN21Ala application 
in cells within the field of interest that responded to a depolarizing 20 mM 
KCl pulse at time -300 seconds (considered neurons). C, Average trace 
(+/- SEM, n=3) of calcium response with tat-CN21 or tat-CN21Ala 
application in cells that did not respond to the KCl pulse at time -300 
seconds(considered astrocytes).  
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Figure 32: CaMKII inhibition dysregulates calcium in neurons and 
astrocytes. A, Representative traces of Fura-2FF calcium response in 
hippocampal neurons (identified by KCl pulse at time 0) following 10 µM 
tat-CN21 application. B, Representative traces of Fura-2FF calcium 
response in astrocytes (which did not respond to KCl at time 0) following 
tat-CN21 application. 

Courtesy of the Brustovetsky Lab 
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calcium signaling of different kinetics (faster onset, oscillations, and decay) than 

the surrounding astrocytes.  

CaMKII Inhibition in Astrocytes 

In order to better understand the impact of CaMKII inhibition specifically 

within the one population of neuronal support cells, cortical astrocytes devoid of 

neurons were cultured. Although we employed a well-characterized methodology 

for astrocyte cultures (McCarthy and de Vellis, 1980)(see Methods), we used 

immunohistochemistry to further characterize the cellular content of specific 

cellular markers within these cultures. Fluorescent immunostaining shows that 

93.9 +/- 10.8 % (n = 6) of these cells were GFAP positive and 78.9 +/- 21.2% (n 

= 6) were vimentin positive (Figure 33A-C), while only 2.3 +/- 3.9% (n = 6) were 

OX42 positive, suggesting these cultures were predominantly reactive astrocytes 

with little microglial contamination. We do not see any MAP-2 immunostaining in 

these enriched astrocyte cultures. In addition, 93.0 +/- 9.8% of our astrocytes in 

culture exhibited CaMKII staining using a pan-CaMKII primary antibody (Figure 

33B-C).  

In addition, because one study has previously published that a significant 

fraction of CaMKII existed in the activated (i.e. autophosphorylated) state in 

cultured astrocytes (Song et al., 2006), we also measured the Ca2+/CaM-

dependent and Ca2+/CaM-independent CaMKII activity, using the highly specific 

CaMKII peptide, AC-2, in our well-characterized in vitro kinase assays (Hudmon 

et al., 1996, Ashpole et al., 2012). The CaMKII activity measured in the presence 

of Ca2+/CaM is defined as the total pool of CaMKII activity, whereas, the CaMKII 
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Figure 33: CaMKII expression and activity in cultured cortical 
astrocytes. A, Representative image of a field of astrocytes 
immunostained with GFAP (green), OX42 (red), and Hoecsht (blue). B, 
Representative image of field of astrocytes immunostained with vimentin 
(red) and pan-CaMKII (green). C, Average number of cells (n=3, +/- SEM) 
positively stained with GFAP, vimentin, OX42, and CaMKII. D, Average 
Ca2+/CaM-stimulated (total) CaMKII activity within astrocyte lysates treated 
with 10 µM tat-CN21 or tat-CN21Ala. Inhibitors were added to the cultures 
10 minutes before lysis and activity was measured in vitro via P-32 
incorporation unto AC-2, a known CaMKII substrate. The asterisk indicates 
significant difference compared to control (*p<0.05, One-Way ANOVA, 
post-hoc Dunnett’s test). E, Average CaM-independent (autonomous) 
CaMKII activity within astrocyte lysates treated with 10 µM tat-CN21 or tat-
CN21Ala as described in D. The asterisk indicates significant difference 
compared to control (*p<0.05, One-Way ANOVA, post-hoc Dunnett’s test). 
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activity measured in the absence of Ca2+/CaM is defined as the pool of 

autonomous, or Thr286 autophosphorylated pool of CaMKII (Lai et al., 1986, Lou 

et al., 1986, Schworer et al., 1988). The fraction of CaMKII autophosphorylated 

at Thr286 is believed to represent the pool of CaMKII activated in situ. We 

observed that under basal conditions, 14.0 +/- 2.6% (n = 4) of the total CaMKII 

activity within our cultured astrocytes was autonomous. Although these results 

differ from a previous study showing that CaMKII is largely autophosphorylated in 

cultured astrocytes (Song et al., 2006), it is important to note that the percentage 

of this autophosphorylated activity can be influenced by the “state” of the 

astrocytes as well during the tissue processing required to make the 

measurement. Thus, we do not see fully autophosphorylated CaMKII within our 

highly enriched astrocyte cultures; however, as shown in neurons and other cell 

types, our data favor the hypothesis that astrocyte activation and calcium 

signaling can further enhance the extent of activated-autophosphorylated 

CaMKII.  

Next, we examined the effect of the high-affinity CaMKII inhibitor, tat-

CN21 (Vest et al., 2007, Ashpole and Hudmon, 2011), on CaMKII activity in the 

astrocyte cultures. To address this, we measured Ca2+/CaM-stimulated and 

autonomous CaMKII activity in the astrocytes after 10 minute exposure to the 

active and control tat-CN21 inhibitor. As expected, tat-CN21 significantly reduced 

autonomous CaMKII activity. We observed a 40.8 +/- 19.9% and 38.7 +/- 13.5% 

decrease in autonomous CaMKII activity in tat-CN21 cultures compared to 

cultures treated with DMSO or control tat-CN21Ala (Figure 33D-E). In an effort to 
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correlate the reduction in CaMKII activity with the uptake of the CaMKII inhibitors, 

we applied the carboxyfluorescein-tagged tat-CN21 to astrocytes and measured 

cellular uptake using fluorescent microscopy. Interestingly, tat-CN21-Fam uptake 

was maximal within minutes (Figure 34), with 46.3 +/- 7.4% of astrocytes 

exhibiting robust inhibitor uptake (tat-CN21Ala taken up in 44.8 +/- 3.1% of cells). 

Remarkably, fluorescent peptide uptake is optically seen by 30 seconds (Figure 

34). These data show that both the uptake of the control CaMKII inhibitor (tat-

CN21Ala-Fam) and the active CaMKII inhibitor (tat-CN21-Fam) is seen in rapidly 

(within seconds) and within 50% of the cells. Together, these data indicate that 

there is a correlation between the percentage of astrocytes that take up the 

peptide inhibitor (45%) and the extent of CaMKII inhibition (40%). The uptake of 

the peptide inhibitors in cultured astrocytes is faster than we previously observed 

in cortical neurons (Ashpole and Hudmon, 2011), suggesting that the rate of 

calcium dysregulation in both cell types is correlated to the rate of peptide 

inhibitor uptake.  

Decreased Glutamate Uptake in Astrocytes 

Our previous studies indicated that inhibition of glutamate signaling 

prevented neurotoxicity associated with CaMKII inhibition. Because the inclusion 

of astrocytes in the neuronal cultures did not prevent this neurotoxicity or the 

calcium dysregulation associated with CaMKII inhibition, we hypothesized that 

CaMKII inhibitors were negatively impacting glutamate uptake in astrocytes. To 

address this, we applied H3-glutamate to astrocytes and measured its uptake in 

the presence and absence of the CaMKII inhibitor tat-CN21. As expected, 10 µM 
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Figure 34: CaMKII inhibitors are rapidly taken up by astrocytes. 
Fluorescently-conjugated tat-CN21 and tat-CN21Ala (10 µM) were applied 
to astrocytes for varying lengths of time. The average number of cells that 
exhibited uptake was examined using fluorescent microscopy. Total cell 
number was determined by Hoecsht staining. Inset, Average number of 
cells with fluorescently conjugated tat-CN21 and tat-CN21Ala 20 minutes 
after application, identified as described above.  
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tat-CN21 significantly reduced the level of H3-glutamate uptake in astrocytes 

compared to control cultures, and cultures treated with inactive tat-CN21Ala 

(Figure 35). Glutamate uptake was reduced when CaMKII inhibitors were applied 

for 4 hours (73.3 +/- 0.96 %), 8 hours (75.9 +/- 7.4%), or 24 hours (78.8 +/- 

1.75%), suggesting that a loss of CaMKII activity in astrocytes negatively affects 

the ability of astrocytes to buffer extracellular glutamate.   

Calcium Dysregulation in Astrocytes 

Having identified that CaMKII inhibition effects astrocyte homeostasis in 

our enriched astrocyte cultures, we next aimed to identify mechanisms that 

contribute to the calcium dysregulation in these cultures when CaMKII is 

inhibited. As in the mixed cultures, application of tat-CN21 rapidly induced 

oscillatory increases in the intracellular calcium levels within astrocytes. Calcium 

transients in a single imaged astrocyte is shown in Figure 36A, whereas time 

traces for multiple astrocytes are shown in Figure 36B. In contrast to the mixed 

culture glia, the intracellular calcium dysregulation seen in pure astrocyte cultures 

peaks (~30 seconds following application) and is slowly reduced over a period of 

several minutes (Figure 36C). As before, only the active CaMKII inhibitor tat-

CN21 and not tat-CN21Ala the inactive control peptide dysregulated intracellular 

calcium levels in astrocytes (Figure 36C-D). Not all cells exhibited this calcium 

dysregulation with tat-CN21 application, which is likely attributed to the limited 

uptake of the inhibitors within the cultures (Figure 34). Although we were initially 

surprised at how quickly we observed calcium dysregulation in astrocytes 

compared to what was observed previously in neurons, the rapid calcium 
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Figure 35: CaMKII inhibition decreases glutamate uptake in 
Astrocytes. Astrocytes were treated with 10 µM tat-CN21 or tat-CN21Ala 
for 20 minutes following which 1.5 µCi/mL [H3]-glutamate/ 0.5 µM 
unlabeled-glutamate were applied for 2 hours. Following incubation, liquid 
scintillation counting of cellular lysates indicated levels of H3-glutamate in 
the cells. Counts were normalized for protein concentration. * indicates 
significant difference compared to tat-CN21Ala (*p<0.05, t-test). 

 

*



152 
 

 
 
Figure 36: Calcium dysregulation in astrocytes with CaMKII inhibition. 
A, Representative image of an astrocyte loaded with Fluo-4AM responding 
to 10 µM tat-CN21 application. B, Representative traces of a field of 
astrocytes in response to tat-CN21 application at time 0. C, Average trace 
(+/-SEM, n=3) of calcium response in astrocytes treated with DMSO 
control, 10 µM tat-CN21, or tat-CN21Ala. D, Average area under the curve 
from time 0-500 seconds (+/- SEM, n=3-5) following treatment with tat-
CN21 and/or co-treatment with various other pharmacological inhibitors, as 
indicated. Pharmacological inhibitors were added at -120 sec; none of the 
inhibitors altered baseline. Asterisk indicates significant difference 
compared to control while the pound sign indicates a significant difference 
compared to tat-CN21 (*#p<0.05, One-way ANOVA, post-hoc Dunnett’s 
test). 
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response induced by CaMKII inhibition is consistent with the rate of peptide 

inhibitor uptake we observed using fluorescently labeled peptides (Figure 34). 

The small membrane permeable inhibitor of CaMKII, KN-93, also produced a 

rapid increase in intracellular calcium concentrations while KN-92 (inactive 

control) had no effect (Figure 36D). Thus, both peptide and small molecule 

inhibitors of CaMKII rapidly dysregulate astrocyte calcium homeostasis. Because 

the calcium dysregulation induced by CaMKII inhibition is rapid and was blocked 

by low extracellular calcium (Figure 36D), we probed the role of multiple CaMKII 

substrates within the plasma membrane that are known modulators of calcium 

signaling. 

Although the functional role of many of the voltage- and ligand-gated 

channels in the astrocyte plasma membrane is not fully appreciated, astrocytes 

express several of these proteins, including L-type (CaV1.2) and N-type (CaV2.2) 

calcium channels and the NMDA receptor (Latour et al., 2003, D'Ascenzo et al., 

2004, Zhou et al., 2010). Thus, pharmacological antagonists of these receptors 

were applied to the astrocytes two minutes before tat-CN21 was administered. 

Pretreatment with MK-801, the NMDA-receptor blocker, had no effect on the 

calcium influx induced by tat-CN21 (Figure 36D). Furthermore, CNQX, the 

AMPA-receptor blocker, and Nifedipine, the L-type calcium channel antagonist, 

did not reduce the calcium influx associated with the CaMKII inhibitors (Figure 

36D). The N-type calcium channel antagonist, omega-conotoxin, completely 

prevented the calcium influx associated with tat-CN21 application (Figure 36D). 

While the contribution of N-type calcium channels in astrocyte signaling is not 
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fully understood, it has been shown that gliotransmitter release (ATP and 

glutamate) from astrocytes is dependent on calcium/SNARE-dependent 

exocytosis (Araque et al., 2000, Parpura and Zorec, 2010, Yaguchi and 

Nishizaki, 2010, Liu et al., 2011, Yasuda et al., 2011). The potential for the 

gliotransmitter ATP being aberrantly released by CaMKII inhibition is particularly 

intriguing, as this glia-neurotransmitter has been shown to regulate calcium 

signaling in neurons and calcium oscillations in astrocytes (McCarthy and Salm, 

1991, Salter and Hicks, 1994, Centemeri et al., 1997, Guthrie et al., 1999). 

CaMKII Inhibition Induces ATP Release 

To test the hypothesis that perhaps aberrant gliotransmitter release is 

produced during CaMKII inhibition, we first determined whether CaMKII inhibition 

led to the accumulation of extracellular glutamate in the astrocyte media after 24 

hours. Previously we had used both a glutamate oxidase assay and HPLC 

chromatography to show that glutamate levels are elevated in the neuronal 

media as soon as 20 minutes following CaMKII inhibition in neurons (Ashpole et 

al., 2012). However, in astrocytes, neither the peptide inhibitor tat-CN21 nor the 

small molecule inhibitor KN-93 were observed to alter the levels of extracellular 

glutamate compared to control astrocytes (Figure 37A). Next we measured 

changes in ATP accumulation in the media using a luciferase assay to measure 

ATP levels in the media. ATP has been shown previously to be one of the most 

abundant gliotransmitters within cortical astrocytes (Guthrie et al., 1999, Cotrina 

et al., 2000, Coco et al., 2003) where its release has been shown to modulate a 

number of different purinergic receptors in neurons and astrocytes (Inoue et al., 
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2007, Koles et al., 2011). Unlike extracellular glutamate, we observed that both 

tat-CN21 and KN-93 significantly increased extracellular ATP concentration 

compared to their matched control inhibitors (i.e. tat-CN21Ala and KN-92) (Figure 

37B). Furthermore, a myristolated version of the autoinhibitory protein of CaMKII, 

termed myr-AIP, also significantly increased extracellular ATP with a 1.88 +/- 

0.50 fold increase over control, suggesting that both small molecule and peptide 

inhibitors of CaMKII with various cell-penetrant motifs are able to induce ATP 

accumulation in the extracellular media.  

Because N-type calcium channel inhibition blocked intracellular calcium 

dysregulation, we pretreated astrocytes with omega-conotoxin and again 

measured extracellular ATP content following CaMKII inhibition. Application of 

omega-conotoxin indeed prevented the accumulation of extracellular ATP when 

CaMKII was inhibited (Figure 37C). This data suggests that CaMKII inhibition 

leads to calcium influx through the N-type voltage-gated calcium channel and 

ATP exocytosis. Because purinergic signaling within astrocytes has been shown 

to induce further release of ATP, we measured extracellular ATP levels when tat-

CN21 was applied to astrocytes in combination with various purinergic receptor 

antagonists. As expected, suramin, the non-selective purinergic receptor blocker, 

decreased extracellular ATP levels compared to cultures treated with tat-CN21 

alone (Figure 37C). However, the small increase in ATP levels were significantly 

different than control astrocytes (Figure 37C), suggesting that the initial phase of 

CaMKII-induced ATP release produced downstream of N-type calcium channel-

activity is initially independent of puringeric receptors. While astrocytes express 
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Figure 37: Aberrant gliotransmitter release with CaMKII inhibition. A, 
Average change in extracellular glutamate concentration (n=6, St Dev) in 
astrocyte cultures following 24 hour application of various CaMKII inhibitors 
and controls (p>0.05, One-Way ANOVA). B, Average change in 
extracellular ATP concentration (n=6, St Dev) in astrocyte cultures 
following 24 hour application of various CaMKII inhibitors and control. The 
asterisk indicates significant difference compared to control (*p<0.05, One-
way ANOVA, post-hoc Dunnett’s test). C, Average change in extracellular 
ATP concentration when tat-CN21 was applied alone or in combination 
with various pharmacological modulators of purinergic signaling and the N-
type calcium channel blocker, omega-conotoxin. The asterisk indicates 
significant difference compared to tat-CN21 while the pound sign indicates 
significant difference compared to control (*#p<0.05, One-way ANOVA, 
post-hoc Dunnett’s test).  



157 
 

several purinergic receptors, CaMKII signaling has been previously linked to 

P2Y1 and P2X7 receptors (Leon et al., 2006). Thus, we next examined whether 

pharmacological antagonists of these subtypes of purinergic receptors reduced 

the aberrant increase extracellular ATP concentration induced by CaMKII 

inhibition. Interestingly, co-application of tat-CN21 with either MRS 2179, the 

P2Y1 antagonist, or A 74003, the P2X7 antagonist, led to a significant reduction 

in extracellular ATP concentrations compared to tat-CN21 alone (Figure 37C). 

Importantly, none of the purinergic receptor antagonists had an effect on basal 

ATP concentration (i.e. without tat-CN21) (Figure 38). Although we observed a 

statistical difference in the levels extracellular ATP after 24 hrs following CaMKII 

inhibition, we went ahead and determined the contribution of ectoATPases on the 

level of ATP measured in the astrocyte media following CaMKII inhibition. We 

observed a robust increase in level of extracellular ATP under these conditions 

(Figure 37C), suggesting that CaMKII inhibition within astrocytes negatively 

impacts astrocyte homeostasis by leading to calcium dysregulation and release 

of the gliotransmitter ATP.  

To further connect the immediate dysregulation of intracellular calcium 

homeostasis observed with CaMKII inhibition (Figure 36) to the long-term 

accumulation of extracellular ATP (Figure 37), intracellular calcium levels were 

monitored when purinergic receptors were antagonized prior to tat-CN21 

application. Interestingly, suramin, MRS 2179, and A 74003 all significantly 

reduced the total calcium influx induced by CaMKII inhibition (Figure 39). The 

inability of these inhibitors to reduce calcium influx back to baseline is not 
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Figure 38: Pharmacological purinergic signaling modulators had no 
effect on basal extracellular ATP. Average fold change in extracellular 
ATP levels (n=3-4, St Dev) when astrocytes were treated with various 
pharmacological modulators of purinergic signaling, compared to control 
(p>0.05, One-Way ANOVA).  
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surprising, as the N-type calcium channels appear to be responsible for the initial 

phase of calcium dysregulation and release of ATP. Interestingly, when multiple 

calcium wave forms for the individual astrocytes are plotted rather than simply 

integrating the are under the curve as shown in Figure 5A, it become quite 

apparent that the oscillations of calcium observed with tat-CN21 (Figure 39A-B) 

are absent in the presence of purinergic antagonists (Figure 39B). Together, 

these data support the model that CaMKII inhibition in astrocytes leads to 

aberrant activation of N-type calcium channels which in turn leads to ATP release 

and a feed-forward loop of subsequent calcium dysregulation supported by ATP 

release.  

CaMKII Inhibition in Astrocytes is Detrimental for Neuronal Viability 

Astrocytes play a critical role in maintaining neuronal viability, thus 

alterations in astrocyte homeostasis could have dire consequences on neuronal 

survival. Thus, we examined neuronal viability when neurons were treated with 

astrocyte-conditioned media following astrocyte exposure to CaMKII inhibitors. 

Compared to control media, conditioned media from astrocytes treated with tat-

CN21 significantly increased levels of neurotoxicity (Figure 40). Importantly, 

conditioned media from astrocytes treated with the inactive control, tat-CN21Ala, 

did not induce neuronal death (Figure 40). As described earlier, astrocytes 

treated with tat-CN21 in combination with P2Y1 or P2X7 antagonists (MRS 2179 

or A 74003, respectively) reduced extracellular ATP concentrations compared to 

tat-CN21 alone. Similarly, these combinatorial treatments reduced neuronal 
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Figure 39: ATP signaling contributes to calcium dysregulation with 
CaMKII inhibition. A, Average area under the curve (+/- SEM, n=3-5) for 
calcium influx following treatment with tat-CN21 and/or co-treatment with 
various other pharmacological inhibitors, as indicated. Pharmacological 
inhibitors were added at -120 sec; none of the inhibitors altered baseline. 
Asterisk indicates significant difference compared to control while the 
pound sign indicates a significant difference compared to tat-CN21 (One-
way ANOVA, post-hoc Dunnett’s test, *#p<0.05). B, Representative traces 
of astrocytic calcium response following tat-CN21 application at time 0 with 
suramin pre-treatment at time -120 seconds.  
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Figure 40: Neuronal death with conditioned media from astrocytes 
treated with CaMKII inhibitors. Average neuronal death (n=5-8, ± SEM) 
in neurons treated (24 hr) with conditioned media from astrocytes 
subjected to 10 µM tat-CN21Ala or tat-CN21 alone, or in combination with 
MRS 2179, A 74003, or ARL 67156 for 24 hr. The asterisk indicates 
significant difference compared to control while the pound sign indicates 
significant difference compared to tat-CN21 alone (*#p<0.05, One-Way 
ANOVA, post-hoc Dunnett’s test). 
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death (Figure 40). In Figure 5B, we show that ectoATPase treatment significantly 

increased extracellular ATP concentrations compared to tat-CN21 alone. In 

parallel, we see that this media with the highest ATP concentration results in the 

highest level of neuronal death (Figure 40). Thus, there is a direct correlation 

between the level of extracellular ATP released by astrocytes following CaMKII 

inhibition and the extent of neuronal death. Together, these data indicate that 

CaMKII inhibition in astrocytes dysregulates calcium homeostasis and leads to 

ATP release, which not only exacerbates the calcium dysregulation in astrocytes, 

also ultimately induces neuronal death.     

DISCUSSION 

Following an ischemic stroke, astrocytes are activated and accumulate 

within the ischemic core and penumbral regions (Petito et al., 1998, Kajihara et 

al., 2001, Schmidt-Kastner et al., 2005, Zamanian et al., 2012). This infiltration 

and activation has been shown to have both beneficial and harmful effects. 

Neuroprotection can be seen when astrocytes are properly functioning and are 

able to take up glutamate, buffer K+, and scavenge reactive oxygen species. 

However, astrocytes within this region can also contribute to neuronal death 

when these neuroprotective effects are reversed and glutamate, reactive oxygen 

species, and ATP are released from the astrocytes (Takahashi et al., 1997, 

Parpura et al., 2004, Zhang et al., 2007). Thus, the dysregulation of astrocyte 

homeostasis within the core and penumbral regions contributes to the 

subsequent neuronal death. Interestingly, the extent of damage observed within 

these regions is also correlated with a decrease in CaMKII activity. We have 
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previously shown that CaMKII inhibition within neurons is detrimental to neuronal 

viability by inducing an excitotoxic-like cascade. We now show that inhibition of 

CaMKII in the supporting astrocytes can also negatively affect neuronal viability. 

CaMKII inhibitors induced an aberrant calcium influx in astrocytes immediately 

after entering the cells. While the initial calcium response appears to be the 

largest, the intracellular calcium concentration continues to remain elevated over 

time and oscillations of calcium are prevalent throughout the culture. Calcium 

oscillations and wave propagation from one astrocyte to a nearby astrocyte are 

dependent on purinergic receptor activation (Cotrina et al., 2000, Suadicani et al., 

2006). Consistent with this, we saw that blockade of purinergic receptors resulted 

in a decrease in the calcium influx and ablation of the calcium oscillations 

induced by CaMKII inhibition. Furthermore, an increase in extracellular ATP 

concentration was observed. Importantly, there was a direct correlation between 

the aberrant calcium influx and ATP accumulation; antagonists that reduced 

calcium influx, also reduced extracellular ATP concentrations. These findings are 

in line with the well-understood cyclic relationship between intracellular calcium 

and extracellular ATP within astrocytes. Increases in cytotosolic calcium underlie 

vesicular ATP release (Coco et al., 2003, Pryazhnikov and Khiroug, 2008), which 

then activates purinergic receptors to induce further influx of calcium (McCarthy 

and Salm, 1991, Salter and Hicks, 1994, Centemeri et al., 1997, Guthrie et al., 

1999) thereby inducing a cascade of calcium influx and ATP release. 

Increased purinergic signaling has long-been implicated in 

neurodegeneration (reviewed by (Franke and Illes, 2006)). Upregulation of 
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purinergic receptors and increased extracellular ATP have been associated with 

ischemia (Phillis et al., 1994, Volonte et al., 2003, Franke et al., 2004), traumatic 

brain and spinal cord injury (Ryu et al., 2002, Wang et al., 2004), epilepsy, 

Parkinson’s disease, and Alzheimer’s disease (reviewed by (Franke and Illes, 

2006)). Antagonism of purinergic receptors has been shown to decrease infarct 

size following stroke (Lammer et al., 2006, Kuboyama et al., 2011), and improve 

functional recovery after stroke and spinal cord injury (Wang et al., 2004, 

Kuboyama et al., 2011, Lammer et al., 2011). Although a decrease in overall 

ATP availability is seen within the ischemic core and penumbral regions, there is 

a significant increase in extracellular ATP concentration, suggesting that either 

ATP release is increased or ATP breakdown mechanisms are impaired (Melani 

et al., 2005). Our data suggest that purinergic signaling initiated by CaMKII 

inhibition negatively impacts both astrocytes and neurons. Within astrocytes, it 

sustains the calcium dysregulation initiated by N-type calcium channels. The 

increased ATP in the astrocyte-conditioned media then instigates neurotoxicity 

when applied to cultured cortical neurons. While neurons and astrocytes express 

a variety of purinergic receptors, we chose to focus on two receptors, P2Y1 and 

P2X7; both of which are known to play a role in maintaining astrocyte function 

and regulating neuronal viability. P2X7 receptor activation has been shown to 

produce gliotransmitter release (Sperlagh et al., 2002, Duan et al., 2003, 

Suadicani et al., 2006) and is often associated with cellular death signaling in 

both neurons and astrocytes (Schulze-Lohoff et al., 1998, Ferrari et al., 1999). 

P2Y1 signaling has also been implicated in gliotransmitter release (Jourdain et 
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al., 2007), apoptosis (Sellers et al., 2001, Mamedova et al., 2006), and calcium 

dysregulation (Gallagher and Salter, 2003). Thus, it was not surprising when the 

highly-selective antagonists of both P2Y1 and P2X7 were effective at reducing 

the dysregulation observed in both astrocyte and neuronal cultures. However, we 

initially did not expect both MRS 2179 (P2Y1 antagonist) and A 74003 (P2X7 

antagonist) to be equally effective at preventing ATP accumulation within the 

astrocyte media. This may be explained by the fact that both receptor subtypes 

influence intracellular calcium concentrations and ATP release (Hamilton et al., 

2008) and perhaps blunting one of the effectors is sufficient to block the 

regenerative cascade of calcium influx and ATP release.  

Purinergic receptor signaling has been shown to activate a variety of 

downstream signaling pathways, including the CaMKII pathway. Both P2Y1 and 

P2X7 receptor activation has been shown to lead to the phosphorylation and 

activation of CaMKII (Leon et al., 2006). Not only is CaMKII activated by the 

calcium influx following P2 activation, CaMKII also regulates purinergic receptor 

signaling. For example, P2Y1 receptor internalization secondary to receptor 

activation is dependent on CaMKII activity (Tulapurkar et al., 2006). It is 

interesting to note that several CaMKII substrates (P2Y1, GluN2B, AMPA-R) are 

also known to play a role in regulating CaMKII activity. It is possible that the 

cellular response to a loss of CaMKII activity is to attempt to re-instate the loss of 

this calcium-sensor by enhancing further calcium flux. Our data is consistent with 

this theory. We previously showed that CaMKII inhibition induces glutamate 

release from neurons which subsequently increases intracellular calcium. Here, 
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we show that CaMKII inhibition induces ATP release from astrocytes which also 

subsequently increases intracellular calcium. While excessive levels of 

extracellular glutamate have been shown to lead to CaMKII inactivation, it is not 

known whether excessive extracellular ATP induces CaMKII inactivation as well.  

However, several studies suggest that excessive calcium influx under 

circumstances of decreased intracellular ATP availability lead to the inactivation 

and/or aggregation of CaMKII. Thus, it is possible that CaMKII becomes 

inactivated when P2 signaling is excessively increased. If this were the case, our 

data suggests that CaMKII inactivation would continue the vicious cycle of 

extracellular ATP accumulation and aberrant calcium influx. Regardless of this 

speculation, our data supports our previous model in which a loss of CaMKII 

activity is detrimental to neuronal survival. From this study we can add to our 

model that CaMKII inhibition in astrocytes is also neurotoxic as inhibition leads to 

calcium influx and ATP release from astrocytes which inevitably induces 

neurotoxicity. These data suggest that the loss of CaMKII activity within the core 

and penumbral regions of an ischemic stroke is detrimental for neuronal survival 

by altering neuronal-neuronal and glial-neuronal communications. Therefore, 

avenues of restoring CaMKII activity within these ischemic tissues may be 

imperative for affording neuroprotection and stopping the expansion of cellular 

death away from the core following the insult.  

*This manuscript is under review * 

Ashpole NM, Martin MP, Brustovetsky T, Brustovetsky N, Hudmon A  
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DISCUSSION 

GENERAL CONCLUSIONS 

Over thirty years of work has gone into understanding the role of CaMKII 

signaling within the brain. Since it was first identified, CaMKII has been shown to 

regulate neurotransmitter release, membrane excitability, cellular metabolism, 

and a variety of other cellular processes (as reviewed by (Colbran, 1992, 

Hudmon and Schulman, 2002)). The most recognized role of CaMKII signaling is 

the one it serves as a master regulator of LTP. Following activation, CaMKII 

transduces the incoming calcium signals into long-lasting effects with neurons, 

thereby enhancing synaptic plasticity (see Figure 41). My findings expand the 

role of CaMKII signaling in neurons, identifying that in addition to enhancing 

synaptic plasticity, CaMKII serves as a regulator of neuronal viability. Activation 

of CaMKII during periods of cellular distress leads to prolonged inactivation (≥8 

hours) of the kinase and ultimately induces neuronal death (Figure 41).  

Fluctuations in CaMKII activity have long-been associated with excitotoxic 

insults such as ischemic stroke (Aronowski et al., 1992, Westgate et al., 1994, 

Zalewska and Domanska-Janik, 1996, Zalewska et al., 1996). CaMKII is known 

to be activated following the onset of ischemia (Westgate et al., 1994, Zalewska 

and Domanska-Janik, 1996, Zalewska et al., 1996). This activation is followed by 

a rapid inactivation (Aronowski et al., 1992, Zalewska et al., 1996). The extent of 

CaMKII inactivation in the hours following insult is temporally correlated with the 

extent of neuronal death (Hanson et al., 1994). Despite these correlations, 
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Figure 41: Working model of CaMKII signaling following activation 
under physiological and pathophysiological conditions. Under 
physiological conditions, CaMKII activation leads to substrate targeting and 
synaptic plasticity. Excitotoxic insults can lead to decreased ATP 
availability and decreased pH, which support the prolonged inactivation 
and self-association of CaMKII and ultimately result in neuronal death.  
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chemical and genomic inhibition studies had yielded conflicting results as to 

whether or not it is toxic or beneficial to inhibit CaMKII during excitotoxic calcium 

signaling. Small molecule and peptide inhibitor studies suggest CaMKII activity is 

detrimental to neuronal survival, as inhibition of the kinase during insult is 

neuroprotective (Hajimohammadreza et al., 1995, Hou et al., 2009, Vest et al., 

2010). Yet, αCaMKII knock-out animals exhibit increased infarct size following 

stroke, suggesting the loss of αCaMKII activity predisposes neurons in the 

ischemic area to death (Waxham et al., 1996). While the in vitro studies 

suggested increased CaMKII activity was harmful and the in vivo studies 

suggested decreased CaMKII activity was harmful, one theme was consistent: 

aberrant fluctuations in CaMKII are tied to neuronal death. Thus, we decided to 

examine both the aberrant activation and inactivation of CaMKII in one simplified 

model system, allowing us to identify the contributions of CaMKII activity in 

neuronal death associated with excitotoxic calcium signaling.   

The data presented here unites the concepts that both aberrant activation 

and inactivation of CaMKII contribute to neuronal death. Small molecule and 

highly-specific cell-permeable peptide inhibitors of CaMKII were neuroprotective 

when applied prior to excitotoxic insult. This is consistent with a recent report 

indicating that the peptide inhibitor tat-CN21 is neuroprotective within an 

excitotoxic insult in situ and an in vivo animal model of ischemic stroke (Vest et 

al., 2010). Because aberrant CaMKII activation during times of cellular distress is 

known to lead to aggregation and prolonged inactivation of the kinase, we 

questioned whether these secondary effects were altered by the application of 
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the CaMKII inhibitors during excitotoxic insult. Interestingly, we observed that 

pharmacological inhibition of CaMKII during excitotoxic insult prevented both the 

aggregation and prolonged inactivation of the kinase. These findings led to the 

hypothesis that the activation of CaMKII during excitotoxic conditions is 

detrimental to neuronal viability because it leads to a prolonged loss of CaMKII 

activity, which ultimately underlies neuronal death. While we can not separate 

that aberrant CaMKII activation causes neuronal death because it leads to 

inactivation, we present strong evidence that the long-term inhibition which is 

known to occur following activation under these conditions predisposes neurons 

to excitotoxicity. Moreover, CaMKII inhibition in the absence of excitotoxic insult 

induced cortical neuron apoptosis by dysregulating intracellular calcium 

homeostasis and increasing excitatory glutamate signaling. This led to the 

accumulation of extracellular glutamate which perpetuated a slow-induced 

excitotoxic cascade within the cortical neurons. Blockade of the NMDA-receptors 

and enzymatic degradation of the extracellular glutamate signal afforded 

neuroprotection from CaMKII inhibition-induced toxicity. Surprisingly, co-cultures 

of neurons with glutamate-buffering astrocytes still exhibited toxicity with CaMKII 

inhibition. This was a result of CaMKII inhibitors reducing the ability of astrocytes 

to buffer extracellular glutamate. Furthermore, CaMKII inhibition dysregulated 

calcium homeostasis in astrocytes and led to increased ATP release. This 

increased ATP was neurotoxic when applied to naïve cortical neurons, 

suggesting that, similar to our observations in neurons, a loss of CaMKII activity 
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in astrocytes leads to calcium dysregulation with subsequent neurotoxic 

transmitter release.  

Together, these findings suggest that activation of CaMKII during periods 

of cellular distress is toxic as it leads to aggregation and prolonged inactivation of 

the kinase. Without CaMKII activity, neurons and astrocytes release stores of 

transmitters and perpetuate the neurotoxic signals. Thus, the role of CaMKII 

signaling in neurons extends beyond a modulator of synaptic plasticity; CaMKII 

serves as a critical regulator of neuronal viability by functioning as a feedback 

mechanism that maintains glutamate/calcium homeostasis.   

BENEFITS AND LIMITATIONS OF THE MODEL SYSTEM 

Several neurodegenerative diseases are marked by excitotoxicity, 

including ischemic stroke. A majority of ischemic strokes occur within the middle 

cerebral artery (del Zoppo et al., 1992). This artery is responsible for providing 

blood supply to the surface of the cerebral cortex and the basal ganglia. Ischemic 

stroke patients often manifest a loss in language expression and comprehension 

because the middle cerebral artery is essential for blood supply to the Broca’s 

and Wernicke’s language areas of the frontal and temporal lobes. Furthermore, 

the blood supply of the motor cortex and sensory cortex are also supplied by the 

middle cerebral artery, which underlies the deficits in movement and sensation in 

stroke patients. Thus, several of the phenotypical characteristics of ischemic 

stroke are produced by the occlusion of blood supply from the middle cerebral 

artery to the cerebral cortex. Because of this, cortical cultures are an optimal 
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avenue for uncovering mechanisms underlying the excitotoxicity that ensues 

following stroke.  

The development of techniques to derive neurons from embryonic mouse 

and rat cortex has afforded the ability of using cortical cultures to model 

excitotoxicity for over 20 years (Dichter, 1978, Choi et al., 1987). While in vivo 

models mimic the pathological disease state, they inherently contain more 

variables than a reduced culture system. Our culture model allowed us to 

effectively answer our questions regarding the physiological role of CaMKII 

signaling in neurons and astrocytes without complications from exogenous 

variables such as immune cell activation and infiltration. While we opted to use 

cortical cultures because the cortex is most-often the site of ischemic stroke 

damage, many studies also use hippocampal cultures to model excitotoxic-

related insults. Hippocampal neurons, particularly within the CA1 region, are 

extremely vulnerable to excitotoxicity (Benveniste et al., 1984, Kirino and Sano, 

1984, Mattson and Kater, 1989). However, the hippocampus is also marked by 

neuronal populations within dentate gyrus that are resistant to this toxicity (Kirino 

and Sano, 1984, Mattson and Kater, 1989). Therefore, hippocampal cultures 

contain a mixture of excitotoxic-sensitive and excitotoxic-resistant neurons. 

Several of our key findings were replicated in hippocampal cultures. For 

example, tat-CN21 was recently reported to display neuroprotection in 

hippocampal neurons subjected to excitotoxic insult in a dose- and time-

dependent manner, similar to my findings (Vest et al, 2010). Moreover, in 

collaboration with our lab, the Brustovetsky lab identified that neurons and 
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astrocytes derived from the hippocampus also displayed robust calcium 

dysregulation when CaMKII was inhibited. Thus, both model systems indicate 

that aberrant activation and inactivation of CaMKII can be detrimental to neuronal 

physiology.  

Proper neuron-astrocyte communication allows for regulation of neuronal 

excitability, synaptic plasticity, and viability. Because excitotoxic insults are 

marked by both neuron and astrocyte dysfunction (and subsequent changes in 

excitability and viability), it was critical to examine the effects of CaMKII 

independently in cultures of neurons or astrocytes, and together within co-

cultures of both cell types. Our in situ model system also afforded the ability to 

manipulate the levels of astrocytes within the neuronal cultures so we could 

address the effects of CaMKII inhibition both in the absence and presence of 

astrocytes. Moreover, this system allowed us to perform live measurements in 

order to determine the immediate cellular response to CaMKII activation and 

inactivation in neurons and astrocytes. Thus, there were several advantages to 

using acutely-dissociated cortical cultures. 

Excessive glutamate stimulation in dissociated neurons is known to induce 

significant levels of neuronal death by activating the NMDA-R and causing 

calcium overload (Choi, 1985, 1987, Choi et al., 1987). Our findings were 

consistent with previous reports indicating that the glutamate concentration which 

induced neurotoxicity is within the range of glutamate observed within ischemic 

brain tissue (Benveniste et al., 1984, Kanthan et al., 1995). The rapid neuronal 

death observed following our stimulation protocol is consistent with the induction 



174 
 

of necrosis often observed following excitotoxic glutamate stimulation (Figure 

42). Lower levels of glutamate are known to induce a slow-induced excitotoxic 

apoptosis when applied to neurons for prolonged length of time (Cheung et al., 

1998). The data presented here suggests that CaMKII inhibition in naïve cortical 

neurons resulted in the accumulation of 2-4 μM extracellular glutamate, which 

induced apoptotic cell death (Figure 42). These levels are in line with previous 

concentrations identified to induce apoptosis. Thus, our experimental models and 

acquired data that identify the concentration of glutamate required to induce 

necrosis or apoptosis within neurons are consistent with previous literature. 

Both genetic and pharmacological approaches can be used to determine 

the physiological role of CaMKII signaling in neurons. As stated previously, 

αCaMKII knock-out mice exhibit a predisposition to stroke damage. Furthermore, 

these animals are more prone to epilepsy. Studies using siRNA against αCaMKII 

indicate that knock-down increases basal calcium concentration and reduces the 

ability of hippocampal neurons to restore intracellular calcium concentration in 

response to stimulation (Carter et al., 2006). Thus, these genetic studies have 

yielded similar to results to ours (increased excitability, dysregulated calcium 

homeostasis, predisposition to toxicity); however, genetic studies have largely 

been focused on αCaMKII. While αCaMKII is the predominant isoform within the 

mature cortex (Ouimet et al., 1984, Erondu and Kennedy, 1985), other isoforms 

of CaMKII are expressed in the brain. There are robust levels of βCaMKII 

expression throughout development; the mature brain still cortex still maintains 
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Figure 42: Model of dysregulated CaMKII signaling following excitotoxic 
activation or inactivation in neurons. Under resting conditions (top), 
intracellular calcium is maintained at a low level and vesicles of glutamate are 
ready for release. Excitotoxic stimulation (left), which activates CaMKII, 
induces rapid necrosis by increasing sodium and calcium influx and 
subsequently resulting in hyperexcitability and the release of stores of 
glutamate. On the post-synaptic side, CaMKII activation can lead to increased 
AMPA-R insertion and the perpetuation of increased neuronal excitability and 
increased calcium influx. Prolonged inactivation of CaMKII (right) induces a 
slow-excitotoxic cascade by leading to increased Cav2.2 calcium influx and 
increased glutamate release. This can subsequently increase the excitability of 
post-synaptic neurons and further dysregulate intracellular calcium. The effects 
of both activation and inactivation lead to neuronal death either via necrotic or 
apoptotic mechanisms.  
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low levels of βCaMKII expression as well. Furthermore, δCaMKII and γCaMKII 

are ubiquitously expressed, thus low levels of these two isoforms are also found 

throughout the brain, with δCaMKII predominating in astrocytes (Ouimet et al., 

1984, Erondu and Kennedy, 1985, McGuinness et al., 1985, Burgin et al., 

1990a). Thus, genetic knock-down studies are hampered by the presence of 

multiple CaMKII isoforms in cells. Further studies using genetic knock-down 

techniques may provide insight into the contribution of each isoform during 

excitotoxic calcium signaling. 

We opted to use pharmacological CaMKII inhibitors to examine the role of 

CaMKII activity in aberrant calcium signaling. This was advantageous for multiple 

reasons. First, these pharmacological inhibitors presumably target all CaMKII 

isoforms. Furthermore, pharmacological inhibitors have a distinct advantage for 

potential therapeutic use. While we went on to show multiple disadvantages to 

inhibition of CaMKII, we initially observed that inhibiting CaMKII up to two hours 

after the onset of excitotoxic insult was neuroprotective, potentially within a 

therapeutic time window for ischemic stroke patients. The pharmacological 

inhibitors also allowed us to inhibit CaMKII activity at several different time points 

before and after the onset of excitotoxic insult. This allowed for a better 

understanding of the contribution of CaMKII activity in the hours following insult. 

Furthermore, application of pharmacological inhibitors allowed us to quickly 

reduce CaMKII activity within cells and monitor rapid changes in cellular 

physiology as CaMKII became inhibited. This was particularly beneficial for 

modeling the loss of CaMKII activity observed during excitotoxic insults without 
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having the confounding increased activity that is observed at the onset of insult. 

Thus, pharmacological inhibitors allowed us to tease apart the contributions of 

the aberrant activation and inactivation of CaMKII in a controlled manner. 

Together, I believe our model system was optimal for uncovering the influence 

that changes in CaMKII activity have on neuronal viability.  

SUBSTRATES DYSREGULATED DURING ABBERANT CAMKII SIGNALING 

CaMKII has been shown to regulate a number of proteins associated with 

synaptic function and neuronal excitability. Our data suggests that aberrant 

CaMKII activity dysregulates critical ion channels, leading to dysregulated 

calcium and glutamate homeostasis as well as disrupted neuronal excitability. 

CaMKII activity contributes to excitotoxic signaling following neuronal glutamate 

stimulation. While we did not fully-delineate which downstream substrates were 

responsible for this, increased AMPA-R signaling likely contributes, as illustrated 

in Figure 42. Pharmacological antagonists of the AMPA-R have been shown to 

be neuroprotective in animal models of stroke (Sheardown Nielsen Hansen 

Science 1990, Graham Chen Simon 1996). As described earlier, CaMKII 

phosphorylation of AMPA-R and its accessory protein Stargazin result in 

increased AMPA-R trafficking and increased channel conductance. Thus, it is 

possible the initial activation of CaMKII during excitotoxic Ca2+-signaling leads to 

increased AMPA-R signaling, which further contributes to over-excitation, 

calcium dysregulation, and neuronal death (Figure 42).  

Conversly, inactivation of CaMKII also dysregulates ion channel signaling. 

Pharmacological inhibition of CaMKII led to increased calcium influx. While 
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several voltage-gated calcium channels have been linked to CaMKII signaling 

(See Table 1), only pharmacological antagonism of the N-type calcium channel 

(CaV2.2) prevented the aberrant increase in calcium associated with CaMKII 

inhibition. This is particularly interesting, as CaMKII regulation of CaV2.2 has not 

yet been reported. CaV2.2 plays a critical role in neurotransmitter release 

following neuronal depolarization; thus, it was not surprising when the calcium 

influx associated with CaMKII inhibition correlated with increased neuronal 

excitability and increased neurotransmitter release. While we do not know which 

substrate(s) was essential for the initiation of the neurotoxic cascade, our data 

suggests that increased CaV2.2 activity led to increased calcium accumulation 

and increased release of excitotoxic glutamate. This glutamate subsequently 

activated NMDA-Rs and AMPA-Rs to further perpetuate the neurotoxic signal 

(Figure 42). Together, these data indicate that CaMKII serves as a brake for 

substrates regulating neuronal activity, therefore CaMKII inactivation results in 

aberrant excitability.  

It is interesting that CaV2.2 appears to be dysregulated when CaMKII is 

inhibited within astrocytes as well. Our working model suggests that similar to 

neurons, this increase in calcium influx through CaV2.2 is also accompanied by 

increased transmitter release (Figure 43). However, unlike in neurons, the 

neurotransmitter that is released is ATP, not glutamate. While our data indicates 

that CaV2.2 activity is increased when CaMKII is inactivated, we cannot rule out 

that aberrant regulation of other synaptic release machinery, such as members of 

the SNARE complex, play a role in the increased transmitter release with CaMKII 
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Figure 43: Model of CaMKII inactivation in astrocytes and subsequent 
effects on neuronal viability. Under resting conditions (top), intracellular 
calcium is maintained at a low level, extracellular glutamate is readily taken 
up, and vesicles of ATP are ready for release. Prolonged inactivation of 
CaMKII (bottom) reduces glutamate uptake, increases Cav2.2 calcium 
influx, and increases inter-astrocyte calcium flux. ATP release is also 
increased with CaMKII inactivation, which leads to increased purinergic 
receptor signaling that further dysregulates calcium homeostasis. While 
under physiological conditions astrocytes buffer neurotoxic signals and 
release neurotrophic factors, the decreased glutamate uptake and 
increased ATP release associated with CaMKII inhibition can lead to 
neurotoxicity.  
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inhibition. Indeed, CaMKII has been shown to regulate syntaxin and 

synaptobrevin, two critical proteins within the SNARE complex (Greengard et al., 

1987, Nielander et al., 1995, Verona et al., 2000, Ohyama et al., 2002). Thus, it 

is possible that transmitter release is increased via multiple avenues, including 

dysregulated transmitter machinery and increased calcium channel activity.   

Glutamate uptake mechanisms in astrocytes are also negatively regulated 

when CaMKII is inhibited. Further studies may identify which component of the 

glutamate uptake system is directly affected by CaMKII inhibition as, to date, 

glutamate transporters have not been identified as CaMKII substrates. The 

increased ATP release is associated with increased purinergic signaling within 

the astrocytes. Previously, P2X7 and P2Y1 have been linked to CaMKII 

signaling. Our data suggests that inhibition of these purinergic signaling 

pathways (P2X7 and P2Y1) reduces calcium dysregulation following ATP 

stimulation. Together, all of these examples highlight that multiple ion 

channels/receptors and other cellular proteins may be dysregulated by aberrant 

CaMKII activity (Figures 42-43), which subsequently negatively effect neuronal 

viability.  

A NEED FOR UNDERSTANDING MECHANISMS OF SELF-ASSOCIATION 

As previously discussed, it is well-documented that CaMKII undergoes 

prolonged inactivation after the onset of ischemia (Aronowski et al., 1992, 

Hanson et al., 1994, Zalewska et al., 1996). Several mechanisms may underlie 

this inactivation. While it was first hypothesized that proteolysis may account for 

the loss of enzymatic activity, only prolonged ischemia in one animal model 
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(gerbil) exhibited a significant reduction in CaMKII protein levels (Yamamoto et 

al., 1992) whereas other rodent models of stroke (rats) do not see this reduction 

in protein levels (Aronowski et al., 1992, Hanson et al., 1994). Similarly, I did not 

see a reduction in overall CaMKII protein 24 hours following excitotoxic insult. 

However; I did observe a significant reduction in CaMKII activity, suggesting that 

CaMKII was enzymatically inactivating without being proteolyzed.  

The activation of CaMKII under conditions of limiting ATP has also been 

shown to lead to inactivation of the kinase (Hudmon et al., 1996). Saturating 

levels of ADP and the non-hydroloyzable ATP analog AMP-PNP are able to 

prevent this inactivation, suggesting that occupation of the nucleotide binding 

pocket affords stability of activated enzyme (Hudmon et al., 1996, Vest et al., 

2009). While the mechanisms underlying this inactivation are not fully-

understood, it is interesting that autophosphorylation of Thr253 coincides with 

activation of CaMKII in limiting ATP. It is possible that a structural rearrangement 

occurs during inactivation that allows Thr253 to be available for phosphorylation. 

Importantly, mutagenesis of Thr253 to non-phosphorylatable Ala does not 

prevent CaMKII inactivation, indicating that this phosphorylation event is simply 

correlated with inactivation in low ATP but is not necessary to induce inactivation. 

Recently, an antibody against phospho-Thr253 was used to characterize CaMKII 

inactivation in an animal model of stroke (Skelding et al., 2012). Because the 

phosphorylation of Thr253 appears to be a hallmark of inactivation, this phospho-

antibody opens the possibility of characterizing CaMKII inactivation states in 

other neurodegenerative diseases.  
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 The early studies that showed CaMKII isolated from animal models of 

stroke exhibited a loss of enzymatic activity also indicated that CaMKII 

translocated from the supernatant fractions to the pellet following differential 

centrifugation (Aronowski et al., 1992, Kolb et al., 1995). In fact, this 

phenomenon also led to a gross over-estimation of the levels of CaMKII within 

the post-synaptic density (which is isolated using differential centrifugation) 

(Suzuki et al., 1994). Immunohistochemical analysis demonstrated the formation 

of CaMKII clusters within individual neurons following ischemic-like stimulation 

(Tao-Cheng et al., 2002, Tao-Cheng et al., 2007). These changes in subcellular 

localization correlated with an aggregation of CaMKII holoenzymes (Hudmon et 

al., 2001). Biochemical studies illustrated an activity-dependent aggregation, 

termed self-association, when purified αCaMKII was exposed to an ischemic-like 

environment – reduced pH, reduced ATP availability, and increased calcium 

(Hudmon et al., 1996, Hudmon et al., 2001). My studies suggest that self-

association-induced inactivation is detrimental to neuronal survival, as inhibitors 

that prevent self-association are neuroprotective in excitotoxic insults and a 

prolonged loss of activity (as is seen with self-association) leads to neurotoxicity.  

We directly show that application of CaMKII inhibitors during excitotoxic 

glutamate insult prevent neurotoxicity, αCaMKII self-association, and inactivation.  

While αCaMKII is sensitive to self-association under ischemic conditions, 

βCaMKII exhibits resistance (Hudmon et al., 2001). It is interesting that αCaMKII 

expression is limited in tissues that are less sensitive to excitotoxicity. As 

mentioned before, robust αCaMKII expression predominates in the cortex and 
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βCaMKII expression predominates in the cerebellum (Erondu and Kennedy, 

1985, McGuinness et al., 1985, Miller and Kennedy, 1985). Cerebellar neurons 

(βCaMKII) are more resistant to glutamate toxicity in culture than cortical neurons 

(αCaMKII). Moreover, the CA1 region of the hippocampus is predominantly 

marked by αCaMKII expression and is highly-vulnerable to excitotoxicity. 

However, the granule cells of the dentate gyrus in the hippocampus which is 

resistant to excitotoxicity express βCaMKII (Churn et al., 1992b). Thus, cells that 

are sensitive to excitotoxicity predominantly express αCaMKII; the isoform that is 

predisposed to inactivation via self-association.  

This concept that the expression of αCaMKII underlies neuronal sensitivity 

to excitotoxic calcium signaling is further supported when looking at the 

developmental regulation of CaMKII expression. As neurons mature, they 

become increasingly more vulnerable to excitotoxic damage. Within the nervous 

system, βCaMKII is also largely expressed during development. This is true even 

in tissue types such as the cortex and hippocampus that are largely recognized 

as areas dominated by αCaMKII expression. In early post natal days, αCaMKII 

expression begins to increase (Scholz et al., 1988, Burgin et al., 1990a). By the 

time the tissue is fully matured, αCaMKII will out-number βCaMKII 3 to 1 in the 

hippocampus while during embryonic development, βCaMKII out-numbers 

αCaMKII (Miller and Kennedy, 1985, Burgin et al., 1990a). Several other factors 

may influence the increased sensitivity of neurons to excitotoxicity throughout 

development, such as NMDA receptor expression patterns; however, it is 
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possible that prevalence of a self-association sensitive isoform of CaMKII plays a 

critical role in this vulnerability.   

The mechanism underlying the ability of αCaMKII to self-associate while 

βCaMKII cannot, has not been identified, although we hypothesize that the 

molecular variations between these two isoforms play a key role in this 

sensitivity. The variable domain is typically asserted as the primary difference 

among the CaMKII isoforms (Hudmon and Schulman, 2002); however, we have 

recently identified many residues in both the autoregulatory and catalytic 

domains that vary between αCaMKII and βCaMKII, which may produce this 

isoform-specific sensitivity to aggregation. Recent crystallographic data indicates 

that several of these residues lie in regions that may be important for anchoring 

the regulatory domain to the catalytic domain during activation (pdb #2WEL and 

#2VN9). In the future, it would be interesting to mutate these residues between 

the catalytic surface and autoregulatory domain in αCaMKII to the residues seen 

in βCaMKII in hopes to disrupt αCaMKII self-association in an animal model. 

Preliminary data indicates that mutation of Ser272/His273 in αCaMKII to 

βCaMKII residues (Cys/Gln) prevents self-association in vitro (Ashpole and 

Hudmon, unpublished). Further in situ analysis is required to identify whether 

these residues are the mechanisms that underlie isoform-dependent sensitivity to 

self-association. Once the molecular mechanism has been deciphered, these 

effects of self-association on neuronal viability can be assessed. For this, 

endogenous CaMKII in neurons could be replaced with mutants that are more 

resistant or more vulnerable to self-association and viability could be measured 
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in the absence and presence of excitotoxic insults. A mechanistic understanding 

of the role that CaMKII self-association plays in neuronal viability will illuminate 

long-standing questions associated with the changes in CaMKII localization and 

activity during ischemia. Importantly, these studies may identify a mechanism to 

therapeutically target CaMKII in the time following ischemia/excitotoxic insult.   

My data support the idea that therapeutic intervention should aim at 

restoring the availability of CaMKII after insult rather than inhibiting it. While 

pharmacological inhibitors afforded neuroprotection when applied in the time 

immediately surrounding insult, I believe this was because they prevented 

prolonged inactivation, which induces toxicity. However, it is also conceivable 

that these inhibitors prevented the phosphorylation of key proteins that 

destabilize neuronal excitability and survival during excitotoxic calcium signaling. 

The therapeutic time window for CaMKII inhibitors may be relatively brief, as 

CaMKII is already inactivating and aggregating in the time following insult. To 

date, no inhibitor has been shown to be able to restore activity or reverse 

aggregation. As suggested above, deciphering the mechanism behind isoform-

dependent self-association may provide key information as to how to therapeutic 

target this process following an ischemic event. Furthermore, because protein 

aggregation has become a hallmark of many disease states, we believe self-

association may provide additional insights into how protein aggregation 

influences neuronal survival and function following cellular stress.  
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IMPLICATIONS TOWARDS OTHER NEURODEGENERATIVE DISEASES 

Excitotoxicity that accompanies several neurodegenerative diseases is 

marked by dysregulated calcium signaling, limited ATP availability, decreased 

pH, and the generation of reactive oxygen species. While roles for ATP and pH in 

CaMKII self-association and inactivation have been established, the role 

oxidative stress plays is not understood. As mentioned before, oxidation of 

residues within the autoregulatory domain (Met281/Met282) has been shown to 

increase CaMKII activity in other cell systems (Erickson et al., 2008). 

Interestingly, oxidative stress has been associated with aggregation and 

inactivation within synaptosomes (Shetty et al., 2008). Based on these findings, 

we hypothesize that increased reactive oxygen species may aberrantly increase 

CaMKII activity during periods of cellular stress such as excitotoxic insult, thereby 

enhancing the sensitivity of αCaMKII to self-associate. Consistent with this, we 

have preliminary data correlating increased reactive oxygen species generation 

in neurons following excitotoxic stimulation and the presence of self-associated 

αCaMKII (Ashpole and Hudmon, unpublished). Moreover, in vitro analysis 

indicates that H2O2 treatment induces αCaMKII aggregation (Ashpole and 

Hudmon, unpublished). Thus, oxidative stress during excitotoxic insult could 

contribute to self-association and inactivation of CaMKII.  

Based on the findings presented here, it is likely that CaMKII is aberrantly-

regulated within several neurodegenerative diseases, as they are associated with 

increased intracellular calcium, decreased energy availability, and reduced 

intracellular pH. Aberrant increases in CaMKII activity have been identified 
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following traumatic brain injury (Atkins et al., 2006, Folkerts et al., 2007). 

Inhibition of CaMKII signaling with small molecule KN-62 reduced the extent of 

neuronal damage following traumatic brain injury (Zhang et al., 2012). 

Interestingly, isoforms of CaMKII has been shown to be differentially regulated 

following traumatic brain injury. αCaMKII levels are significantly lower in animal 

models of traumatic brain injury while δCaMKII levels are significantly increased 

in the days following injury (Schwarzbach et al., 2006, Zhang et al., 2012). 

Together, these findings indicate that CaMKII expression and activity are altered 

during traumatic brain injury and may contribute to the damage observed 

following insult.  

Alzheimer’s disease is marked by the formation of cellular plaques and 

tangles, and is associated with a subsequent excitotoxic neurodegeneration. 

Interestingly, the Alzheimer’s associated protein β-amyloid has been shown to 

decrease Thr286 autophosphorylation when applied to neurons in situ (Zhao et 

al., 2004). Furthermore, application of the β-amyloid peptide 1-42 resulted in a 

redistribution of CaMKII away from the dendritic process to the soma (Reese et 

al., 2011). Similarly, the distribution of CaMKII is altered in human patients with 

mild cognitive impairment and late stage Alzheimer’s disease (Reese et al., 

2011). The hallmark senile plaques observed in Alzheimer’s disease have been 

shown to co-localize with αCaMKII (Xiao et al., 1996). While a direct link between 

CaMKII self-association and β-Amyloid plaques has not yet been made, it is 

interesting that Alzheimer’s disease is marked by a decrease in phospho-Thr286, 
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as this decrease would render αCaMKII susceptible to self-association (a 

process I propose contributes to neuronal death).   

A commonality between disease states with aberrant CaMKII activity is 

their association with glutamate-induced neurodegeneration. Ischemia, traumatic 

brain injury, and Alzheimer’s disease are all marked by increased glutamate 

release and neuronal excitation. Several other disease states, such as 

Huntington’s disease, amyotrophic lateral sclerosis, and Parkinson’s disease, are 

all associated glutamate toxicity as well. While CaMKII signaling has not yet been 

implicated in these diseases, it is possible that because aberrant glutamate 

signaling dramatically impacts CaMKII function, CaMKII dysregulation occurs 

with these diseases as well. Further characterization of CaMKII in these disease 

states is necessary. As mentioned above, the phospho-Thr253 antibody may be 

beneficial as an indicator of CaMKII inactivation in these disease states. 

Several HIV-related proteins have also been shown to lead to increased 

neuronal activity, increased glutamate release, and dysregulated intracellular 

calcium. As a consequence, neuronal dysfunction is prevalent within patients 

infected with HIV. One HIV protein that has been implicated in these devastating 

changes is the HIV-coat protein, Tat. Immunological studies have identified that 

many CaMKII signaling pathways are disrupted by HIV-Tat (Poggi et al., 2002a, 

Poggi et al., 2002b). Recent unpublished findings from our lab indicate that HIV-

Tat interacts with CaMKII in neurons and is an effective CaMKII inhibitor 

(Ashpole and Hudmon, unpublished). The portion of Tat that is responsible for 

CaMKII inhibition (a region upstream of the cell-penetrant motif used throughout 
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my studies) has also been shown to dysregulate calcium homeostasis and 

induce neurotoxicity (Ashpole and Hudmon, unpublished). Thus, it is possible 

that some of the deficits associated with HIV-Tat or other HIV-associated 

proteins are due to the disruption of CaMKII signaling. It will be interesting to see 

if disease models of HIV exhibit reduced CaMKII activity. Together, these studies 

would solidify a role for CaMKII inactivation as a global initiator of neuronal 

death.   

CONCLUSIONS 

The findings of this dissertation deepen the understanding of the 

physiological and pathophysiological role of CaMKII signaling in neurons. We 

have strong evidence that aberrant fluctuations in CaMKII activity play a causal 

role in neuronal death. The increases in activity during periods of neuronal stress 

are detrimental as they lead to a prolonged inactivation of the kinase,which 

increases neuronal excitabililty, dysregulates calcium homeostasis, induces 

toxicity, and predisposes neurons to other cellular stressors. These findings are 

consistent with previous studies in other cell systems (bacteria, plants, and 

invertebrates) indicating that the dysregulation of CaMKII leads to toxicity and 

predisposes cells to subsequent toxic insults. Thus, my findings support a role for 

CaMKII within neurons as a master regulator of viability, and universal role for 

CaMKII as a governor of cellular responsiveness to insults.  
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