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LOSS OF NMP4 IMPROVES DIVERSE OSTEOPOROSIS THERAPIES IN A 

PRE-CLINICAL MODEL: SKELETAL, CELLULAR, GENOMIC AND 

TRANSCRIPTOMIC APPROACHES 

 

 We have previously demonstrated that disabling the transcription factor 

Nuclear Matrix Protein 4 (NMP4) improved parathyroid hormone (PTH)-induced 

trabecular bone gain in ovariectomized (OVX) and healthy mice. Here we 

evaluated whether loss of Nmp4 enhanced bone restoration in OVX mice under 

concurrent PTH combination therapies and anti-catabolic mono-therapies. Wild 

type (WT) and Nmp4-/- mice were OVX at 12wks of age followed by therapy 

regimens, administered from 16wks-24wks, and included individually or 

combined PTH, alendronate (ALN), zoledronate (ZOL), and raloxifene (RAL). 

Generally the PTH+RAL and PTH+ZOL therapies were more effective in 

restoring bone than the PTH mono-therapy. Loss of Nmp4 further improved the 

restoration of femoral trabecular bone under these treatments. RAL and ZOL 

mono-therapies moderately increased bone volume but unexpectedly the Nmp4-/- 

mice showed an enhanced RAL-induced increase in femoral trabecular bone.  

Immunohistochemical and flow cytometry analyses of the bone marrow and 

serum profiling for markers of bone formation and resorption indicated that the 

heightened osteoanabolism of the Nmp4-/- mice under these diverse osteoporosis 

treatments was partially attributed to an expansion of the osteoprogenitor pool. 

 To address whether the enhanced bone formation observed in Nmp4-/- 

mice produced structurally sound tissue, mechanical testing was conducted on 

the femurs of healthy mice treated with intermittent PTH, RAL mono-therapy, or 

PTH+RAL. Nmp4-/- femurs showed modestly improved mechanical and material 

properties. At the cellular level, loss of Nmp4 accelerated mineralization in 

differentiating mesenchymal stem/progenitor cells (MSPCs). Transcriptomic and 

biochemical analyses indicated that loss of Nmp4 elevated ribosome biogenesis 

and expanded the capacity of the endoplasmic reticulum for processing protein. 



  

 vi 

Preliminary data showed that disabling Nmp4 increased both aerobic glycolysis 

and oxidative phosphorylation in osteoprogenitors, which is an emerging 

hallmark of anabolic osteogenic cells. Transcriptomic analysis also suggested 

NMP4 targeted pathways driving bone formation. These included but not limited 

to BMP, IGF1, TGFβ and Wnt signaling pathways. Finally, transcriptomic profiling 

revealed that Nmp4-/- MSPCs showed a significant perturbation in numerous 

immunomodulatory pathways, particularly in the interleukin system. The 

heightened osteoanabolism of the Nmp4-/- skeleton enhances the effectiveness 

of diverse osteoporosis treatments, providing a promising target pathway for 

identifying barriers to pharmacologically-induced bone formation. 
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CHAPTER 1 

 

BACKGROUND INTRODUCTION 

 

Basic bone biology 

 Human skeleton is comprised of two types of bones: 80% cortical bone 

and 20% trabecular bone. Cortical bone forms the dense protective cortex 

outside the bone cavity. It is mechanically stronger and plays a major role in 

weight bearing due to its high resistance to torsion, bending and other external 

forces (Figure 1-1A). Trabecular bone is highly porous and interconnected yet 

also fully mature bone. It is less dense and mostly found in the ends of the long 

bone or interior of vertebrae (Figure 1-1B).  

 There are several types of bone cells that contribute to the bone 

homeostasis. Osteoblast is a direct descendent from the mesenchymal lineage. It 

adopts the cubic morphology and is responsible for new bone formation via 

secreting collagen matrix and depositing inorganic bone mineral. After the high 

peak of bone formation, osteoblast gradually becomes flattened, inactive and 

turns into the bone lining cells. Upon fully buried inside the bone matrix, 

osteoblast is transformed into osteocyte, which possesses long processes to 

allow it in contact with other osteocytes or bone lining cells. On the other hand, 

osteoclast is multi-nuclei cell descending from the myeloid lineage. The cell 

attaches to the bone and degrade the bone matrix via secreting acid through the 

proton pumps. 

 Bone remodeling (or bone turnover) is a necessary physiological process 

to maintain healthy homeostasis. The first resorption phase of bone remodeling 

involves landing of osteoclasts onto the bone in a bone-remodeling unit (BRU) 

(Figure 1-1C). The osteoclasts then start degrading bone matrix under the cells, 

creating a pit. The next phase is reversal, which has not been fully understood 

yet but may involves mononuclear cells clearing the matrix remnants (Raggatt 

and Partridge, 2010). The osteoblasts then take over, secreting non-mineralized 

matrix “osteoid” into the pit. The osteoid mineralizes eventually and the new bone 
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is formed (Figure 1-1C). Bone remodeling requires delicate balancing and loss of 

balance usually leads to diseases such as osteoporosis. 

 

 

Figure 1-1: Basic bone biology [A] Cortical bone structure [B] Trabecular bone 

structure [C] bone remodeling can be divided into four phases-resorption, 

reversal, formation and mineralization (see text for details). Some of the key cell 

players include osteoclast and its progenitor, mononuclear cell, osteoblast and its 

progenitor, bone lining cell and osteocyte. To treat osteoporosis, osteoclast is 

targeted by anti-catabolic drugs whereas osteoblast activity is targeted by bone-

forming drugs. Modified based on illustration published by Kapinas and Delany, 

(Kapinas and Delany, 2011). 

. 

MSPC, an adult stem cell in controversy 

 Mesenchymal stem/progenitor cells (MSPCs) are more commonly known 

as mesenchymal stem cells (MSCs), which by definition can undergo self-
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renewal and give rise to three mature cell types: osteoblast, adipocyte and 

chondrocyte (Figure 1-2). MSC is a historical term and is often used 

inappropriately. The genuine MSCs are rare in our body and in cell culture more 

committed progenitor cells are abundant; “MSPCs” is therefore the more 

appropriate name (Frenette et al., 2013). Stringent functional assays for MSPC 

identification involve serial transplantation of these cells into allogenic recipients; 

if each time after the transplantation, heterotopic bone can be found in the 

recipient then it is concluded that the cells transplanted can self-renew and 

differentiate into osteogenic lineage (Mendez-Ferrer et al., 2010; Sacchetti et al., 

2007). In vitro identification of MSPCs relies heavily on cell surface markers and 

colony-forming unit fibroblast (CFU-F) assay.  

 Unfortunately there is no single combination of markers for MSPCs that 

can be uniformly accepted by all the researchers. MSPCs harvested from 

different species express different markers. The International Society of Cellular 

Therapy proposed a minimal set of human surface markers that include CD105, 

CD73 and CD90 and the cells must also be negative for CD45, CD34, CD14, 

CD11b, CD79a, CD19 and HLA-DR. Additionally, the cells must also be able to 

adhere to the plastic surface and differentiate into all the three cell types 

(Dominici et al., 2006). However, these criteria are out-of-date, because many 

more surface markers have been identified since then, including markers CD146, 

CD271 and STRO-1 (Sacchetti et al., 2007; Shi and Gronthos, 2003; Tormin et 

al., 2011).  

 At least one group of researchers has found MSPCs in non-adherent 

population (Zhang et al., 2009). Mouse MSPCs can be defined via different sets 

of markers as well such as Nestin+CD45-CD31-, CD51+CD105+CD90-CD45-Tie2- 

and PDGFRα+Sca1+CD45-Ter119- (Chan et al., 2009; Mendez-Ferrer et al., 2010; 

Morikawa et al., 2009). Some other markers include Osterix (OSX) and Leptin 

Receptor (LepR) (Matsuzaki et al., 2014; Mizoguchi et al., 2014). None of these 

markers are unique to MSPCs and therefore multiple markers have to be used 

for identification and sorting purposes. Moreover, several markers mentioned 

above are artificial and only appear in cell culturing environment such as CD44 
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and CD146 (Blocki et al., 2013; Qian et al., 2012), whereas SP7 (Osterix or OSX) 

appears to be an in vivo marker for MSPCs (Mizoguchi et al., 2014).  

 

 

Figure 1-2: BM MSPC differentiation. MSPCs can become committed to 

osteogenic (osteoblast-osteocyte), chondrogenic (chondroblast-chondrocyte) and 

adipogenic  (adipoblast-adipocyte) lineages. Modified based on illustration 

published by Frenette et al., (Frenette et al., 2013). 

 

 A major problem with using surface markers to define MSPCs is that 

MSPCs are highly heterogeneous. In the bone marrow, they occupy three 

different niches: endosteal, perivascular and stromal and it is still unclear whether 
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these cells can migrate between different niches (da Silva Meirelles et al., 2008; 

Mendez-Ferrer et al., 2010; Rasini et al., 2013). Upon isolation, MSPCs also 

exhibit distinct morphologies: some are extremely small and proliferative; some 

are medium-sized, spindle-shaped and modestly proliferative while others are 

larger, flattened and grow at a much slower pace (Digirolamo et al., 1999; 

Muraglia et al., 2000). Some markers such as Nestin and LepR are not 

universally expressed in all MSPCs. Nestin+ MSPCs play a role in supporting 

hematopoiesis and neurogenesis (Mendez-Ferrer et al., 2010; Wislet-Gendebien 

et al., 2004); LepR+ MSPCs are important contributor of osteogenesis and 

adipogenesis in the BM (Zhou et al., 2014). MSPCs can be isolated from all kinds 

of mesenchymal tissues besides BM such as fat, muscle, lung, skin, umbilical 

cord blood and fetal tissues (Mosna et al., 2010). Although these cells harvested 

from different sources can differentiate into all the three cell types but they 

express different surface markers. For instance, CD49d is expressed in MSPCs 

harvested from human adipose tissues but not those from BM; whilst CD106 

found in human BM MSPCs is not expressed in cells from the adipose tissue (De 

Ugarte et al., 2003). Different techniques used in MSPC isolation (e.g. BM 

flushing vs. compact bone grinding) may also result in different subpopulations of 

MSPCs being isolated (Bara et al., 2014).  

 The current MSPC culturing techniques remain to be further developed 

and optimized. One study conducted by Sacchetti et al., showed 50% isolated 

CD146+ MSPCs from human gave rise to compact bone but not bone marrow, 

suggesting that isolated MSPCs from marrow tend to become more committed 

towards the osteogenic lineage (Sacchetti et al., 2007). Furthermore, phenotypic 

shift is often observed during long-term MSPCs culturing and expansion. On one 

hand, multipotency was found to be gradually lost and more cells became 

committed to the osteogenic lineage (Banfi et al., 2002; Bruder et al., 1997; 

Wagner et al., 2008). On the other hand, there are reports showing that MSPCs 

expanded under normoxia condition are under stress from the high oxygen level; 

only cells that lose P53 and acquire immortality are more proliferative and more 

likely to form colonies. It is therefore recommended that MSPCs isolated from 
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BM be expanded under hypoxic condition to avoid spontaneous transformation 

(Boregowda et al., 2012). Generally speaking, MSPCs past p10 tend to become 

more granular with shortened telomeres and eventually lose the multipotency 

(Bonab et al., 2006). Some researchers have proposed to culture MSPCs in the 

three-dimensional environment, such as mesensphere. Just like neural stem cell 

and embryonic stem cell, MSPCs are also able to form “sphere” structures when 

grown under non-adherent condition, and both in vivo and in vitro evidences 

showed mesenspheres could maintain the stemness (i.e. self-renewal and 

multipotency) of MSPCs better and longer than the traditional monolayer 

culturing (Mendez-Ferrer et al., 2010). 

 There is intimate crosstalk among MSPCs, osteoblasts and hematopoietic 

stem cells (HSCs) inside the BM. MSPCs were found to be in physical contact 

with HSCs in endosteal and perivascular niches and MSPCs play supportive role 

in HSC maintenance (Mendez-Ferrer et al., 2010). For instance, C-X-C motif 

chemokine ligand 12 (CXCL12) secreted from osteoblasts and MSPCs in 

endosteal niche and MSPCs in perivascular niche is a crucial factor in 

maintaining the HSC pool; selectively disabling this gene in these cell types 

disrupted the self-renewal of HSCs and soon depleted the HSC pool (Calvi et al., 

2003; Greenbaum et al., 2013). Similarly, Notch signaling was also found to 

support ex vivo HSC persistence and expansion via CD146+ but not CD146- 

MSPCs (Corselli et al., 2013).  Other factors secreted by MSPCs that help 

maintain the HSC pool include 1) stem cell factor (SCF) that regulates HSC 

quiescence and adhesion (Kent et al., 2008), 2) Osteopontin, Angiopoietin-1 and 

Thrombopoietin-1 that also contribute to HSC quiescence (Arai et al., 2004; 

Nilsson et al., 2005; Qian et al., 2007; Yoshihara et al., 2007), and 3) vascular 

cell adhesion molecule-1 (VCAM-1) that regulate HSC adhesion as well 

(Papayannopoulou et al., 1995; Simmons et al., 1992). Conversely, HSCs may 

promote osteogenesis of MSPCs via inducers like bone morphogenetic proteins 

(BMPs) such as BMP2 and BMP6 (Jung et al., 2008). 

 MSPCs also impact the immune system in our bodies. In general, a good 

number of studies showed that MSPCs inhibited proliferation, differentiation and 
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activation of vast different types of immune cells such as B cells, T cells, dendritic 

cells, neutrophils and natural killer cells (Abomaray et al., 2015; Cassatella et al., 

2011; Gerdoni et al., 2007; Jiang et al., 2016; Selmani et al., 2008). In vitro 

proliferation studies indicated human MSPCs could effectively inhibit the 

proliferation of CD2+, CD4+ and CD8+ T lymphocytes through certain soluble 

factors and direct contact is not necessary (Di Nicola et al., 2002; Duffy et al., 

2011). However, some researchers suggested physical contact with immune 

cells could enhance the immunomodulation activity of MSPCs (English et al., 

2010). One clinical study showed that the symptoms of patients suffering from 

chronic graft-versus-host disease were greatly alleviated after receiving MSPC 

infusion (Le Blanc et al., 2008). The molecular mechanism of MSPC’s 

immunosuppressive activity remains to be elucidated but seemingly upon 

activation by interferon γ (IFNγ), MSPCs can release factors such as nitric oxide 

(NO) and indoleamine 2,3-dioxygenase (IDO) that inhibit immune cell 

proliferation and exert anti-inflammatory effect (François et al., 2012; Sato et al., 

2007; Schena et al., 2010). 

 MSPCs and mature osteoblasts are professional secretory cells that can 

release different factors into the BM stoma and bone matrix; these factors 

contribute to bone homeostasis, angiogenesis, hematopoiesis and neurogenesis 

(Chuang et al., 2012; Estrada et al., 2009; Giunti et al., 2012; Greenbaum et al., 

2013; Kim et al., 2013).  

 Finally, MSPCs may also have clinical value in regenerative medicine and 

tissue engineering (Caplan, 2007; Tae et al., 2006). The soluble factors secreted 

by MSPCs exert beneficial paracrine effect on multiple tissues and may be used 

to treat various diseases such as intestinal ischemia, diabetic retinopathy and 

lung injury caused by cigarette smoking (Jensen et al., 2016; Rajashekhar et al., 

2014; Schweitzer et al., 2011).  

 

Osteoporosis epidemic, cause and treatment 

 Osteoporosis is a chronic disease characterized by gradual and 

continuous bone loss, decreased bone strength, increased risk of bone fracture, 
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chronic pain, and decreased mobility (Glaser and Kaplan, 1997). Osteoporosis 

causes more than 9 million of fracture incidences worldwide every year and 

currently in the US around 14 million people are affected by osteoporosis, and 

this number is still increasing (Borrelli, 2012). Bone fractures caused by 

osteoporosis can occur anywhere across the skeleton, but most likely in the hip, 

wrist, and spine. At the tissue level, osteoporosis is mainly caused by loss of 

balance in bone formation and remodeling. In other words, bone resorption 

surpasses bone formation in each basic multicellular unit (BMU) in osteoporosis 

patients. 

 Several risk factors can contribute to this pathological characteristic of 

osteoporosis, including age, gender, race, smoking, Vitamin D deficiency, 

inactive life style, and medications (e.g. glucocorticoid) (Stevenson et al., 1989). 

Typically, post-menopausal women are a major population susceptible to this 

disease due to the sharp decline of estrogen levels. Estrogen can induce 

osteogenesis, inhibit adipogenesis, and promote osteoclast apoptosis (Dang et 

al., 2002; Hughes et al., 1996). Estrogen deficiency is the most common risk 

factor of osteoporosis and estrogen itself is used to treat the disease, although its 

use is heavily limited due to its severe side effects, which will be discussed later. 

 Current treatments of osteoporosis can be classified into three categories: 

nutritional supplement, anti-catabolic drugs, and anabolic drugs. Nutritional 

supplement mainly refers to repeated uptake of calcium and Vitamin D beyond 

dietary uptake; however, calcium deficiency is not the only cause of 

postmenopausal osteoporosis and this treatment is only supplemental to other 

therapies (Tucker, 2009). Anti-catabolic drugs inhibit bone resorption and are 

used most often in osteoporotic treatment. Estrogen replacement therapy used to 

be widely used to treat osteoporosis until its side effects, such as increased risks 

for breast cancer, endometrial cancer, and stroke (Bath and Gray, 2005; Grady 

et al., 1995; Shah and Wong, 2006). Today the use of estrogen is largely 

restricted to acute, short-term use, which is not consistent with treating chronic 

osteoporosis.  
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 Selective estrogen receptor modulators (SERM) were developed to 

replace the estrogen therapy. SERMs are capable of activating the estrogen 

receptors in certain tissues while inhibiting estrogen receptors in other tissues. 

Raloxifene (RAL) is a type of SERM that is used to treat osteoporosis and reduce 

the risk of invasive breast cancer (Cauley et al., 2001; Ettinger et al., 1999; 

Martino et al., 2004). Several clinical studies have shown that raloxifene can 

significantly reduce fracture frequency although the underlying mechanism 

remains to be determined (Delmas et al., 2002; Ettinger et al., 1999). 

Bisphosphonates are the largest group of anti-catabolic drugs, which can be 

absorbed by osteoclasts in the bone matrix during the resorption process and 

induce osteoclast apoptosis either by creating nonhydrolyzable ATP analogs or 

by disrupting protein prenylation. Bone resorption activity can be drastically 

suppressed by bisphosphonate and previous studies have shown 

bisphosphonate, such as alendronate (ALN) and zolendronate (ZOL), can 

maintain long-term increase of bone mineral density (BMD) (Adachi et al., 2001; 

Bolland et al., 2008; Michaelson et al., 2007). Several side effects are associated 

with the long-term use of bisphosphonate, such as gastrointestinal (GI) tract 

irritation and osteonecrosis of the jaw (Cryer and Bauer, 2002; Ruggiero et al., 

2004).  

 Denosumab is another type of anti-catabolic drug that targets receptor 

activator of nuclear factor kappa-B ligand (RANKL), which is a critical stimulator 

of osteoclast differentiation, activation and survival. Denosumab has been found 

to be able to potently reduce osteoclast number (Reid et al., 2010). Previous 

studies have shown that denosumab can significantly increase BMD and reduce 

the relative risk of bone fracture (Lewiecki et al., 2007; Papapoulos et al., 2012). 

As an anti-catabolic drug slightly more potent than bisphosphonate, denosumab 

can also cause different side effects such as hypocalcaemia and osteonecrosis 

of the jaw (Diz et al., 2012; McCormick et al., 2012; Okada et al., 2013; Olate et 

al., 2014).  

 Parathyroid hormone (PTH) and the PTH-related protein analog, 

abaloparatide, are the only FDA-approved bone anabolic drugs that can add new 
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bone to the skeleton. Clinical application of PTH involves teriparatide, which is 

the recombinant form of PTH consisting of the first 34 N-terminal amino acids of 

endogenous PTH but capable of binding to and activating the PTH receptor as 

well. Unlike bisphosphonate, intermittent PTH injection has been proven to 

accelerate the bone turnover rate. The bone formed during each remodeling 

cycle is always more than the bone resorbed and this creates a positive BMU 

balance.  

 At the cellular level, intermittent PTH is able to increase osteoblast 

development, inhibit osteoblast apoptosis and reactivate the matrix secretion 

activity of bone lining cells via molecular mechanisms that have not been fully 

elucidated (Bellido et al., 2003; Jilka et al., 1998; Kim et al., 2012; Kostenuik et 

al., 1999; Pettway et al., 2005). PTH binds to the PTH receptor 1 (PTHR1), a 7-

transmembrane receptor that activates the cyclic adenosine monophosphate 

(cAMP)/protein kinase A (PKA) pathway. Via its direct or indirect effects, PTH 

targets a broad spectrum of genes that in turn impact different aspects of bone 

formation. For instance, Runt-related transcription factor 2 (RUNX2) is a master 

regulator of osteoblast development and differentiation and insulin-like growth 

factor 1 (IGF1) exhibits pro-differentiating and pro-survival effect on osteoblasts. 

Studies have shown that PTH directly activates the expression of RUNX2 and 

IGF1; this activation was blocked by the use of PKA inhibitor (Wang et al., 2006). 

Interestingly, IGF1 is also an important mediator for PTH action and the anabolic 

effect of PTH disappeared in IGF1 null mice (Bikle et al., 2002). Furthermore, 

intermittent administration of PTH transiently suppressed sclerostin mRNA 

expression (Silvestrini et al., 2007), which is an inhibitor of Wnt signaling pathway 

that plays important roles in bone anabolism. Additionally, PTH induced transient 

production of RANKL (Dai et al., 2006; Huang et al., 2004), which in turn boosted 

osteoclastogenesis. PTH was shown to be able to attenuate adipogenesis by 

inhibiting PPARγ (Rickard et al., 2006). Finally, the anti-apoptotic effect of PTH 

was acting mainly through its impact on pro- or anti-apoptotic genes such as Bcl2 

and Bad (Bellido et al., 2003) 
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 All of aforementioned signaling events directly or indirectly contribute to 

accelerated bone turnover and positive bone formation under PTH treatment. 

The period during which the bone formation activity surpasses bone resorption 

activity under PTH treatment is known as the anabolic window of PTH. 

Unfortunately this anabolic window can only last for 1-2 years and eventually 

both bone formation and resorption activities decline back to the pre-treatment 

level (Cusano et al., 2011). The exact reason for this limited efficacy is still 

unclear. Furthermore, a potential adverse effect for PTH treatment is increased 

risk of osteosarcoma and the high price of this therapy severely limits the use of 

PTH in clinic. Numerous animal and clinical studies have been conducted to 

further expand the anabolic window of PTH and one potential strategy is to 

combine the hormone with anti-catabolic drugs (Bilezikian, 2008). 

 

Combination therapy, a potential solution for osteoporosis? 

 The basic rationale for combination therapy is that PTH stimulates bone 

formation and accelerates the remodeling rate, whereas the anti-catabolic drugs 

"freeze" the existing bone and prevent its further loss (Cusano and Bilezikian, 

2013; Pinkerton and Dalkin, 2007). However, previous studies of combination 

therapy often led to controversial or underwhelming conclusions (Finkelstein et 

al., 2010; Keaveny et al., 2008; Wu et al., 2010). For instance, a clinical study 

conducted by Finkelstein et al., recruited 93 postmenopausal women with low 

BMD; PTH, ALN or concurrent PTH+ALN therapies were given for 30 months; 

Higher spine and neck BMDs under PTH treatment than RAL and PTH+RAL 

were observed; patients under PTH treatment also showed higher level of bone 

formation markers: osteocalcin and type 1 collagen than patients receiving 

PTH+ALN treatment (Finkelstein et al., 2010). Another study conducted by 

Samadfam et al., pretreated ovariectomized (OVX) mice with either alendronate 

or osteoprotegerin (OPG, an inhibitor of RANKL) for 30 days and then continued 

the treatment for an additional 30 days in combination with PTH; It was reported 

that both of these two anti-catabolic drugs blunt the anabolic effect of PTH-

induced increases in BMD and bone volume (BV/TV) (Samadfam et al., 2007). 
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Indeed a meta-analysis performed by Zhang et al., involving a comprehensive 

literature search revealed the addition of alendronate to PTH therapy reduces the 

BMD at several skeletal sites (Wang et al., 2015). By contrast, the use of another 

bisphosphonate zolendronate in combination with PTH tends to yield more 

promising results. Cosman et al., conducted a randomized clinical study by giving 

412 osteoporotic women a single infusion of zolendronate followed by daily 

injection of PTH; the study lasted for a year and revealed significantly more 

increase in spine and hip BMD than patients who received PTH or zolendronate 

alone (Cosman et al., 2011).  An animal study using OVX rat showed similar 

result as PTH+ZOL provoked strongest response in terms of bone architecture 

and biomechanical strength (Li et al., 2012). Similarly, combination studies 

involving PTH and RAL also in general showed a trend of additive or synergistic 

effect. For example, a clinical study conducted by Deal et al., revealed a 

significant increase in hip BMD in osteoporotic patients receiving concurrent 

PTH+RAL compared to PTH alone; unlike most studies on PTH+bisphosphonate 

therapies, the addition of RAL to PTH treatment did not blunt the increase in 

serum bone formation marker (Deal et al., 2005).  A recent sequential 

combination study by Amugongo et al., using OVX rat showed both RAL and 

ALN could preserve the increase in bone area, thickness and strength after the 

3-month PTH treatment had been withdrawn (Amugongo et al., 2014).  

 The major debate for combination therapy is whether the addition of anti-

catabolic drug to PTH anabolic treatment is beneficial or harmful. Some suggest 

that the newly formed bone can be quickly lost after PTH treatment is withdrawn 

and anti-catabolic drugs can help preserve the bone for months or years (Cusano 

and Bilezikian, 2013; Pinkerton and Dalkin, 2007); this outcome may result when 

concurrent therapies or sequential treatment with PTH followed by an anti-

catabolic drugs were given. Alternatively, it has been proposed that the anabolic 

effect of PTH relies on the fast remodeling process on the bone surface and the 

use of anti-catabolic drug heavily reduces the space available for remodeling 

(Eriksen and Brown, 2016).  
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 There are several explanations for the conflicting results from previous 

animal and clinical studies. One variable is whether patients had been previously 

treated or not with any anti-catabolic drugs. Naïve untreated patients versus 

previously treated patients have major differences in active bone surface as well 

as effects of previous treatment on osteoblast/osteoclast function (e.g. altered 

osteoblast proliferation and differentiation, impaired osteoclast activity) and 

parathyroid dynamics (Cosman, 2014). The treatment sequence of the anabolic 

and anti-catabolic therapies may also play a role (Cosman et al., 2016b). It is 

clinically more common to give patients PTH treatment when the initial anti-

catabolic treatment becomes inadequate (e.g. effect wanes or side effect starts 

to show); during the ongoing PTH treatment, the initial anti-catabolic treatment 

may cease or continue; however as PTH becomes more popular in clinical use, 

doctors may also give naïve untreated patients PTH first followed by anti-

catabolic drugs to maintain the PTH-induced increase in bone.  

 Several studies have been conducted to explore all these potential 

sequences of drug combinations for osteoporosis therapy. It was noticed that 

when switching from anti-catabolic drugs to PTH, the patients might suffer a 

transient decease in hip BMD below baseline for 1-2 years, whereas adding PTH 

to ongoing anti-catabolic treatment did not cause such a problem (Boonen et al., 

2008; Cosman et al., 2013; Cosman et al., 2009; Ettinger et al., 2004). Switching 

from PTH to anti-catabolic drugs such as bisphosphonate could be beneficial in 

treating osteoporotic patients who had not been treated before, as studies have 

shown that their hip and femoral BMDs can be maintained and further improved 

after the switching (Leder et al., 2015; Prince et al., 2005). Some other factors 

that might influence the outcome of combination study include the type of anti-

catabolic drug used, the length of the study, the gender of the patients or animal, 

the type of response assessment (e.g. BMD, BV/TV, biomechanical properties, 

histomorphometry data and serum markers) and skeletal sites of interest.  

 In conclusion, the use of combination therapy to treat osteoporosis is a 

potential solution to overcome the limited anabolic window of PTH but there are 

still a lot of controversies over this therapy and further therapeutic improvement 
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is required to maximize its benefit before it can be used widely among clinics. 

Fortunately, the discovery of an anti-anabolic axis regulated by a transcription 

factor known as nuclear matrix protein 4 (NMP4) may shed light on improving the 

efficacy of combination therapy. 

 

NMP4, the structure, function and phenotype 

 The official name of NMP4 is zinc finger protein 384 (Zfp384 for rodent 

and Znf384 for human) and some researchers also named it Ciz (Cas-interacting 

zinc finger protein). NMP4 is an architectural transcription factor that is 

suggested to bind a homopolymeric deoxyribonucleic acid (DNA) consensus 

sequence (dA.dT) in the minor groove (Childress et al., 2015; Torrungruang et al., 

2002). It is expressed in almost all tissues. NMP4 possesses several functional 

domains, including a strong trans-activating domain at the N’ terminal, an 

overlapping SRC homology 3 (SH3) binding and AT-hook motif that can mediate 

interaction with proteins such as Crk-associated substrate (p130Cas), 5-8 

Cys2His2 zinc fingers that directly interact with the DNA consensus sequence and 

a weak trans-activating domain consisting of a poly(QA) tail at the C’ terminus 

(Figure 1-3). NMP4 protein shuttles between cytosol and the nucleus. In the 

cytoplasm, NMP4 binds to p130Cas directly in rat and indirectly through the focal 

plaque protein Zyxin (Janssen and Marynen, 2006). The protein p130Cas plays a 

role in focal adhesion and cell migration (Cary et al., 1998) but the involvement of 

NMP4 in this function remains to be elucidated. NMP4 primarily accumulates in 

the nucleus; it binds to AT-rich binding-site and bends the DNA (Alvarez et al., 

1998; Nakamoto et al., 2000). NMP4 is a context-dependent transcription factor 

that may either upregulate or downregulate its targets (Torrungruang et al., 2002). 

At least 7 isoforms of NMP4 with 5-8 zinc fingers exist as a result of alternative 

splicing (Thunyakitpisal et al., 2001). 
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Figure 1-3: Structure of NMP4 (see text for details) 

 

 The NMP4 gene itself is highly conserved across mammals. However, 

NMP4 is not essential as studies showed no major defects in Nmp4-/- mice but 

only some minor phenotypes (Robling et al., 2009). Nakamoto et al., showed 

impaired spermatogenesis in Nmp4-/- mice (Nakamoto et al., 2004). Fusion 

between NMP4 and another gene EWS RNA binding protein 1 (EWSR1) has 

been implicated in the development of acute leukemia, suggesting a role of 

NMP4 in lymphoid and myeloid development (Martini et al., 2002). Of interest, a 

recent report demonstrates that loss of Nmp4 suppresses the induction of serum 

transfer-induced arthritis (Nakamoto et al., 2016). Other than these, no obvious 

defects have been reported for Nmp4-/- mice when receiving no drug or chemical 

challenges. However, the Nmp4-/- mice exhibited enhanced response to bone 

anabolic agents such as PTH and BMP2 (Childress et al., 2015; Morinobu et al., 

2005; Robling et al., 2009). A most recent study conducted by Childress et al., 

showed significant enhancement of bone gain response to 4-week and 8-week 

PTH therapy in OVX Nmp4-/- mice (Childress et al., 2015). Nmp4-/- mice also 

exhibited enhanced recovery from bone marrow ablation as well as enhanced 

resistance to disuse-induced bone loss (Hino et al., 2007; Morinobu et al., 2005). 

All of these studies suggested NMP4 is a critical regulator in bone anabolism. 

 At the cellular level, MSPCs harvested from Nmp4-/- mice exhibited modest 

but significant increase in proliferation rate compared to their WT counterpart 

(Childress et al., 2015). Moreover, under osteogenic stimuli, the Nmp4-/- MSPCs 

showed accelerated mineralization rate, on average one week ahead of the WT 

MSPCs (Childress et al., 2015). In fact, the untreated Nmp4-/- mice exhibited 
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elevated number of BM CD45-/CD105+/CD146+/Nestin+ osteoprogenitors and BM 

CD8+ T cells, both of which contribute significantly to osteogenesis (Bedi et al., 

2012; Childress et al., 2015; He et al., 2013; Terauchi et al., 2009). 

 Early studies showed NMP4 regulates several genes that are important 

during osteogenesis, such as type I collagen α1 polypeptide chain (Col1a1) and 

matrix metalloproteinase (Mmp) genes (Shah et al., 2004; Torrungruang et al., 

2002). Most recently, chromatin immunoprecipitation sequencing (ChIP-Seq) 

analysis was used to identify genes that are directly targeted by NMP4 in 

MC3T3-E1 cells (pre-osteoblasts), murine embryonic stem cells and two blood 

cell lines (Childress et al., 2015). A total of 2114 NMP4 candidate target genes 

were found in these 4 cell lines. Bioinformatics analysis of the ChIP-seq data 

showed that the top five biological functions of genes associated with Nmp4 

binding included control of transcription, chromosome organization, protein 

catabolic process, chromatin modification and cell cycle. A custom TaqMan Low 

Density Array (TLDA) system was then used to further examine the expression 

profiles of some of these NMP4-target genes in undifferentiated and osteogenic-

differentiating MSPCs. Several pro-osteogenic genes including Igfbp2, Pdk1 and 

Plaur were found upregulated in Nmp4-/- cells; whereas some anti-osteogenic 

genes such as Igfbp4 and Cxcl12 were downregulated in the null cells (Calleja et 

al., 2014; Childress et al., 2015; Hamidouche et al., 2010; Kalbasi Anaraki et al., 

2013). These studies implied that NMP4 is an apex regulator of multiple 

pathways and impacts different aspects of cellular and biological functions, 

directly or indirectly. All of these pathways and functions are part of an anti-

anabolic bone axis of NMP4 (Childress et al., 2015). 

 As mentioned above, NMP4 is ubiquitously expressed in almost all kinds 

of cell types but its phenotype in bone anabolism is mainly manifested through 

MSPCs. At the molecular level, NMP4 was also found to impact the unfolded 

protein response (UPR) (Young et al., 2016). 
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The UPR pathway, guardian against ER stress 

 Endoplasmic reticulum (ER) stress occurs when misfolded or unfolded 

proteins accumulate in the ER lumen, detrimental to the normal cell function. 

Cells cope with ER stress by activating a transcriptional and translational gene 

expression program referred to as the UPR. The UPR pathway serves to expand 

the processing capacity of the ER to better manage increases in the secretory 

load. The UPR also adjusts cell metabolism and homeostasis level in the 

following ways: 1) the global protein translation is dampened; 2) lipid synthesis is 

elevated and ER capacity is expanded; and 3) cell apoptosis is induced if UPR 

continues to be activated (Walter and Ron, 2011). Recognition of ER stress and 

implementation of the UPR is achieved via three sensory proteins that are 

associated with the ER. These sensory proteins are activating transcription factor 

6 (ATF6), PRKR-like ER kinase (PERK) and inositol-requiring enzyme 1 (IRE1) 

(Figure 1-4) (Walter and Ron, 2011), which monitor by distinct mechanisms the 

perturbations in the lumen and membrane of the ER.  Collectively, these three 

sensory UPR proteins trigger gene expression programs that are integrated to 

restore protein homeostasis. 

 ATF6 is a transcription factor that spans across the ER membrane. ATF6 

is mainly responsible for proper protein folding, secretion and degradation upon 

ER stress. Once ATF6 senses the accumulation of unfolded proteins in the ER 

lumen, the protein is packaged into vesicle and released from ER; the protein is 

then delivered to Golgi apparatus where it is cleaved by two proteases: S1P and 

S1P; the N-terminal domain, which is a CREB/ATF bZIP transcription factor is 

subsequently released and transported to the nucleus (Haze et al., 1999; Okada 

et al., 2003; Schindler and Schekman, 2009). Upon entering the nucleus, ATF6 

activates different UPR target genes including genes involved in protein folding: 

BiP (Hspa5), glucose-regulated protein 94 (GRP94) and protein disulfide 

isomerase (Shen et al., 2002). This whole process of activation of ATF6 is known 

as regulated intramembrane proteolysis (RIP). ATF6 is crucial for early 

development, as disabling both isoforms of Atf6: Atf6α and Atf6β in mice is lethal 

at early embryonic stage (Wu et al., 2007; Yamamoto et al., 2007).  
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Figure 1-4: Unfolded protein response is initiated via three branches-ATF6, 

PERK and IRE1 (see text for details). Modified based on illustration published by 

Hetz et al., (Hetz et al., 2013). 

. 

 PERK initiates the second branch of the UPR response. It also resides on 

the ER membrane and possesses a serine/threonine kinase domain in the 

cytoplasm. Upon sensing the accumulation of the unfolded proteins in the ER 

lumen, PERK undergoes oligomerization and autophosphorylation; the kinase 

also phosphorylates the α subunit of eukaryotic translation initiation factor 2 (eIF2) 

(lurlaro and Muñoz-Pinedo, 2016). This translation factor combines with GTP and 

functions to delivery initiator tRNA to the translation apparatus during the 

initiation phase of protein synthesis. During ER stress, phosphorylation of eIF2α 

by the protein kinase PERK inhibits the activity of this translation initiation by 
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stabilizing the eIF2/GDP complex and thus lowers the formation of 

eIF2/GDP/Met-tRNAiMet that is required for global translation (Hinnebusch, 

2014); the influx of nascent proteins into ER is therefore reduced to mitigate the 

ER stress. On the other hand, activation of PERK-eIF2α pathway also selectively 

promotes the translation of several select UPR genes through bypass of inhibitor 

upstream open reading frames (ORFs) in these target mRNAs. One of UPR 

target genes is activating transcription factor 4 (ATF4). ATF4 promotes 

osteogenesis from MSPCs via β-catenin and RUNX2 (Lin et al., 2010; Yu et al., 

2013). ATF4 also targets and upregulates two specific genes: growth arrest and 

DNA damage-inducible 34 (Gadd34or Ppp1r15a) and transcription factor C/EBP 

homologous protein (Chop or Ddit3). Gadd34 encodes a regulatory subunit of 

protein phosphatase 1 (PP1) that dephosphorylates eIF2α and therefore acts as 

a negative regulator of PERK (Brush et al., 2003; Connor et al., 2001). This 

negative feedback loop is essential to keep the UPR translational control under 

check and prevent prolonged UPR responses once the ER stress has been 

mitigated. CHOP is a pro-apoptotic transcription factor that activates pro-

apoptotic genes including BCL2 like 11 (BCL2L11), Death receptor 5 (DR5) and 

telomere repeat binding factor 3 (TRB3); CHOP can also inhibit anti-apoptotic 

gene Bcl-2 (McCullough et al., 2001; Ohoka et al., 2005; Puthalakath et al., 2007; 

Yamaguchi and Wang, 2004). This mechanism ensures that if ER stress cannot 

be alleviated, the cell undergoes apoptosis before producing too many unfolded 

proteins. 

 IRE1 possesses both transmembrane kinase and endoribonuclease 

activities. It is the most conservative pathway among the three branches of UPR 

responses and actually the only UPR pathway in lower organisms such as yeast. 

Upon activation by unfolded proteins, the monomers of this endoribonuclease 

can form dimers and further become active oligomers. IRE1 can then cleave 

transcripts of a specific gene x-box binding protein 1 (Xbp1), which is 

subsequently ligated by a tRNA ligase RTCB (Jurkin et al., 2014). The spliced 

form of Xbp1 is then translated and become an active CREB/ATF basic leucine 

zipper (bZIP)-containing transcription factor (Walter and Ron, 2011). XBP1 
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upregulates a wide range of UPR-specific genes that in turn contribute to ER 

protein folding & secretion, ER expansion and ER-associated degradation 

(ERAD) (Reimold et al., 2001). Previous studies have shown a chaperon protein 

BiP binds to ATF6, PERK and IRE1 and keeps all of these three UPR signaling 

transducers inactive; the dissociation of BiP activates these three proteins and 

initiates the UPR response (Bertolotti et al., 2000; Shen et al., 2002); however, 

some other studies suggest that IRE1 can directly sense and respond to the 

unfolded proteins in ER and BiP is not necessarily required in this process 

(Credle et al., 2005; Pincus et al., 2010). Interestingly, in some specific 

professional secretory cells such as B cells, IRE1 can be activated by 

developmental cues rather than the ER stress (van Anken et al., 2003).  The 

endoribonuclease function of IRE1 can also degrade mRNAs in proximity of the 

ER to selectively lower portions of the transcriptome through a process referred 

to as Ire1-dependent decay (RIDD) (Hollien et al., 2009).  Hence the UPR can 

repress, as well as enhance, selective portions of the transcriptome. 

 MSPCs and osteoblasts are professional secretory cells that rely heavily 

on the ER to properly fold the growth factors and signaling molecules that are to 

be released to the bone matrix. Multiple genes in the UPR pathway were found to 

play critical role in osteoblast differentiation and development. For instance, in 

one earlier study Perk was found to be critical for osteoblast differentiation and 

Perk-/- mice suffered severe osteopenia; Loss of Perk also impaired the secretion 

of collagen I; meanwhile collagen I was abnormally accumulated in the ER lumen 

(Wei et al., 2008).  ATF4 is highly abundant in osteoblasts and one study 

confirmed ATF4 enhanced osteoblast function via crosstalk with BMP2 pathway 

(Saito et al., 2011). A most recent study has shown the UPR pathways may have 

profound contributions to the NMP4 phenotype in MSPCs derived from mouse 

BM (Young et al., 2016). The unfolded protein response (UPR) pathway is critical 

in protein synthesis and secretion; Previous ChIP-Seq analyses revealed that 

this pathway is the major target of NMP4 in pre-osteoblasts (Childress et al., 

2015) and therefore the UPR may be an important molecular mechanism 

underlying the NMP4 phenotype in bone and other tissues. 
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NMP4 regulates both ribosomal biogenesis and UPR pathways 

 In this study (Young et al., 2016), Young and her colleagues first 

examined Gadd34 expression in Nmp4-/- MSPCs and mice respectively and 

found Gadd34 was significantly upregulated in the null cells and multiple tissues 

from the null animal. This is consistent with what Childress et al., reported in a 

NMP4 ChIP-Seq study that Gadd34 is a candidate target of NMP4. Treatment 

with tunicamycin, an ER stress inducer further enhanced the upregulation of 

Gadd34 in Nmp4-/- MSPCs. Similarly c-MYC, which is an important ribosomal 

biogenesis activator, was also found upregulated in Nmp4-/- MSPCs. Further 

polysome profiling revealed that there was higher level of mRNA translation in 

Nmp4-/- MSPCs and this was accomplished by elevated level of ribosomal 

subunits. This phenotype could be reversed by the addition of salubrinal, an 

inhibitor of GADD34. The elevated Gadd34 level was found highly correlated with 

reduced induction of eIF2α and ATF4 in Nmp4-/- MSPCs under ER stress. 

Meanwhile, downstream targets of C-MYC including Rpl11, 45S rRNA and Rps6 

were all upregulated in Nmp4-/- MSPCs, supporting the idea that c-MYC is 

responsible for the upregulation of ribosomal biogenesis in the Nmp4-deficient 

cells. Finally, Nmp4-/- MSPCs were more sensitive to tunicamycin-induced ER 

stress. The general idea is that by disabling Nmp4, both c-Myc and Gadd34 are 

upregulated. Consequently, the protein synthesis machinery is induced and the 

PERK-eIF2α arm of the UPR pathway is inhibited; therefore global protein 

synthesis is high in Nmp4-/- MSPCs, supporting the super secretion in the cells, 

but any further ER stress may induce apoptosis (Young et al., 2016). 

 

Main research goals and significance 

 Three major questions are to be addressed for the projects described in 

this dissertation: 1) Does loss of Nmp4 improve the efficacies of PTH/anti-

catabolic combination therapies; 2) Does NMP4 interfere with the efficacies of 

anti-catabolic mono therapies and 3) What are the cellular/molecular 

mechanisms driving the Nmp4-/- hyper-anabolism phenotype? 
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 Previous studies have shown loss of Nmp4 improves the response of mice 

to PTH mono therapy (Childress et al., 2011; Childress et al., 2015). Meanwhile 

PTH combination therapies have not become a viable clinical option yet 

(Finkelstein et al., 2010; Keaveny et al., 2008; Wu et al., 2010). Studies aiming at 

the first two aforementioned research questions may facilitate the clinical use of 

different osteoporosis therapies in the future; Meanwhile it may also help us gain 

deeper understanding to the role of NMP4 in the resorption arm of the bone 

remodeling. Better understanding of the cellular/molecular mechanisms 

mediating the Nmp4-/- hyper-anabolism phenotype may lead to the identification 

of feasible pharmacological targets, translating the current animal experiment to 

clinical application. In fact, we recently found BM MSPCs and UPR pathway as 

the central part of the anti-anabolic axis governed by NMP4. We also extended 

our research from osteoporosis to influenza and type II diabetes. Preliminary 

data suggested Nmp4-/- mice exhibited improved survival rate upon infection with 

influenza and we proposed MSPCs and UPR pathways are critical in altering the 

immunomodulation process in the null mice (See Chapter 3 for details). 

Furthermore, the β cells from Nmp4-/- mice appeared to produce less insulin than 

the WT. More studies are required to better understand the mechanisms driving 

these phenotypes but NMP4 has proven to be a promising target for future 

clinical application in treating different diseases. 
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CHAPTER 2 

 

Improving Combination Osteoporosis Therapy In a Preclinical Model of 

Heightened Osteoanabolism 

  

INTRODUCTION  

 Our previous studies have revealed that Nmp4 inhibition represents an 

attractive strategy to enhance anabolic therapy in bone. However, it remains to 

be determined whether Nmp4 inhibition can enhance the efficacy of anti-

catabolic therapies in the skeleton. Therefore, the goal of this study was twofold: 

(1) to test the hypothesis that combining a sustained anabolic response to PTH 

with an anti-catabolic agent results in superior bone acquisition compared to PTH 

mono-therapy alone and (2) to test the hypothesis that Nmp4 does not interfere 

with the efficacy of anti-resorptive agents. To test these hypotheses we 

evaluated the efficacy of combining PTH therapies in ovariectomized mice 

(normal and Nmp4-null) with one of three anti-catabolic drugs: the nitrogen-

containing bisphosphonates alendronate and zoledronate and the selective 

estrogen receptor modulator (SERM) raloxifene. Our findings demonstrate that 

loss of Nmp4 significantly enhances the response of combining PTH with anti-

catabolics and intriguingly improves the skeletal effects of the RAL mono-

therapy, but not the bisphosphonate mono-therapies. The sustained anabolic 

effect may be driven, in part, by an expansion in the bone marrow pool of hyper-

anabolic osteoprogenitors. Nevertheless, disabling the Nmp4 anti-anabolic bone 

axis provides a novel potential strategy for improving diverse existing 

osteoporosis treatments. 

 

MATERIALS AND METHODS 

Mice  

 WT and Nmp4-/- mice were generated as previously described (Childress 

et al., 2015; Robling et al., 2009). Mice were maintained in our colony at Indiana 

University Bioresearch Facility, Indiana University School of Dentistry. Animals 
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for these experiments were randomly selected from litters produced by 

heterozygous x heterozygous, Nmp4-/- x WT, WT x WT, and Nmp4-/- x Nmp4-/- 

breeding pairs. Local Institute Animal Care and Use Committee have approved 

all husbandry practices and experimental procedures described in the present 

study. 

 

Bilateral ovariectomy surgery 

 The surgeries on 12 week-old virgin mice were performed as previously 

described in detail (Childress et al., 2015). To keep the study to 16 treatment 

groups we did not perform sham surgeries since we have previously shown 

ovariectomy induces significant bone loss in both genotypes and there is no 

difference between the baseline skeletal phenotypes in healthy and 

ovariectomized mice (Childress et al., 2015; Robling et al., 2009). 

 

Therapies 

 At 16 weeks of age the ovariectomized mice were sorted into 16 treatment 

groups by weight and genotype. All mice were housed typically 2-4 per cage 

under standard conditions with ad libitum access to water and regular chow 

(Laboratory Rodent Diet 5001, LabDiet St. Louis, MO, USA). Each mouse 

received two sequential 100 µl injections/day containing the drugs or vehicle(s) 7 

days/week for 8 weeks (see Figure 2-1 for full details). Zoledronate and 

alendronate were synthesized by the IUPUI Chemistry core facility, verified by 

NMR spectroscopy, and have been previously shown to produce the expected 

effects on bone remodeling (Burr et al., 2015; Newman et al., 2015). Mice 

receiving PTH were injected subcutaneously (sc) with synthetic human PTH 

(hPTH) 1–34 acetate salt (Bachem Bioscience, Inc) at 30 µg/kg/d, daily, a dose 

frequently used in mice to study PTH bone anabolic action in vivo. Doses of anti-

catabolic agents were based on human clinical doses. The standard ALN dose 

for treatment of osteoporosis is typically given as either a daily (10 mg) or weekly 

(70 mg) dose. Based on a 60 kg individual this is roughly 1.17 mg/kg/wk. The 

human dose is oral and has an estimated bioavailability of around 0.6%, meaning 
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that the absorbed dose is approximately 7 μg/kg/wk. We dosed via injection, 

assuming 100% absorption, thus we delivered ALN at 1 μg/kg/day (Ettinger et al., 

2004; Lui et al., 2013; Muschitz et al., 2013). RAL is typically given clinically as a 

60 mg daily dose. Based on a 60 kg patient, the dose would be 1 mg/kg/day. The 

assumption is 100% absorption thus the full dose is used when injecting (Cano et 

al., 2008; Ettinger et al., 2004). ZOL is typically given yearly at a dose of 5 mg. 

Based on a 60 kg patient, the dose is 0.083 mg/kg. Our single dose of 80 μg/kg 

approximates this amount (Cosman et al., 2011; Sheng et al., 2009).  

 

Figure 2-1: WT and Nmp4-/- mice were ovariectomized (ovx’d) at 12wks of age. 

At 16wks of age the mice were sorted into 16 treatment groups by weight and 

genotype. Each mouse received two sequential 100 µl injections/day containing 

the drugs or vehicle(s) as shown for 8wks. Mice were euthanized and the bones 

processed for analysis at 24wks of age. 

WT and Nmp4-/- mice were administered the following treatments:  

 Vehicle-control: inject subcutaneously (sc) 100 µl 0.2% Bovine serum 

albumin/0.1% 1.0 µN HCl in 0.9% NaCl (abbreviation BHN diluent for 
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PTH/alendronate (ALN)) + 100 µl 20% Hydroxypropyl--Cyclodextrin 

(abbreviation HBC diluent for raloxifene (RAL) diluent)  

 Daily alendronate (ALN): inject sc 100 µl ALN at 1μg/kg/d + 100 µl HBC  

 Daily zoledronate (ZOL): on Day 1 of treatment inject intraperitoneal (ip) 

100 µl ZOL at 80μg/kg in PBS. On Day 2 forward inject sc 100 µl BHN + 

100 µl HBC  

 Daily raloxifene (RAL): inject sc 100 µl RAL at 1mg/kg/d +100 µl BHN  

 Daily parathyroid hormone (PTH): inject sc 100 µl synthetic human PTH 

1–34 acetate salt, Bachem Bioscience Inc, PA, at 30 µg/kg/d + 100 µl 

HBC  

 Daily PTH+ALN: inject sc 100 µl PTH/ALN +100 µl HBC  

 Single dose ZOL followed by daily PTH: on Day 1 of treatment inject ip 

100 µl ZOL. On Day 2 forward inject sc 100 µl PTH + 100 µl HBC  

Daily PTH+RAL: inject sc 100 µl RAL +100 µl PTH. 
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Dual energy X-ray absorptiometry (DXA) 

 The postcranial skeleton and spine (L3-L5) areal bone mineral density 

(aBMD; mg/cm2) and bone mineral content (BMC; g) were evaluated in vivo 

using a PIXImus II densitometer as previously described (Childress et al., 2011; 

Robling et al., 2009).  

 

Micro-computed tomography (μCT) 

 Trabecular and cortical bone architectures were analyzed as we have 

previously described in detail (Childress et al., 2011; Childress et al., 2015). 

Briefly, after tissue preparation the distal femur metaphysis and the L5 vertebral 

body were scanned using a Skyscan 1172. All scans were conducted at a 6µm 

scan resolution. Three-dimensional reconstructions using Skyscan software 

provided the following parameters: trabecular bone volume per total volume 

(BV/TV, %), trabecular number (Tb.N, mm-1), trabecular thickness (Tb.Th, mm), 

and trabecular spacing (Tb.Sp, mm). Additionally, the Skyscan software provided 

the following data for femoral diaphysis cortical bone: periosteal perimeter (mm), 

endocortical perimeter (mm), total area (mm2), bone area (mm2), marrow area 

(mm2), cortical porosity (%), cortical thickness (mm), minimum moment of inertia 

(Imin, mm4), maximum moment of inertia (Imax, mm4), and polar moment of 

inertia (Ip, mm4). 

 

Serum biochemistry 

 Serum osteocalcin (OCN) was evaluated as a bone formation marker 

using ELISA BTI Mouse Osteocalcin EIA kit (Biomedical Technologies, Inc., 

Stoughton MA). Serum C-terminal telopeptides (CTX) was assessed as an 

indicator for resorption using the RatLapsTM ELISA (Immunodiagnostic System 

Inc., Scottsdale, AZ). Serum osteoprotegerin and serum receptor activator of 

nuclear factor-κB ligand (RANKL) were determine using Mouse Osteoprotegerin/ 

TNFRSF11B Immunoassay kit and the Mouse TRANCE/RANK L/TNFSF11 

Immunoassay kit, respectively (R&D Systems, Inc., Minneapolis, MN).  
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Immunohistochemistry 

 Osterix was detected on formalin-fixed, paraffin-embedded sections by 

using primary antibodies from AbCam (human anti-SP7/osterix, #ab 94744). We 

followed the protocol described by Nissenson and colleagues with some 

modifications (Hsiao et al., 2008; Wattanachanya et al., 2015). Briefly, slides 

were de-paraffinized at room temperature in Coplin jars in three washes of 

xylene, and rehydrated in a decreasing ethanol gradient. Endogenous 

peroxidases were deactivated with 3% H2O2 for 5 min, and sections were 

blocked in PBS supplemented with 1.5% goat serum (Gibco BRL) for 30 min at 

room temperature. Sections were incubated with primary antibody (1:25 dilution) 

in blocking solution overnight at 4°C. Sections were then washed in PBS and 

incubated with the biotinylated goat anti-rabbit IgG (VectaStain® Elite ABC Kit, 

Vector Laboratories, Inc. Burlingame, CA) for 45 min at room temperature. After 

washing with PBS, sections were incubated with VECTASTAIN® ABC Reagent 

for 30 minutes at room temperature, followed by washing in buffer for 5 minutes. 

Incubating sections in peroxidase substrate solution according to the 

manufacturer’s instructions achieved color development. Finally, counterstaining 

was accomplished by staining with 0.2% methyl green for 60-90 seconds, 

followed by dehydration in a series of ethanol and xylene changes and mounted 

using coverslips with xylene-based mounting media.  

 Tartrate-resistant acid phosphatase (TRAP) staining was performed using 

a modified protocol based on the method of Erlebacher and Derynchk 

(Erlebacher and Derynck, 1996). In brief, formalin-fixed, paraffin-embedded 

sections were de-paraffinized followed by rehydration via a sequential ethanol 

wash. Subsequently, slides were transferred to 0.2M acetate buffer (pH 5.0) for 

20 minutes at room temperature and then placed in medium containing napthol 

AS-MX phosphate (0.5mg/ml, Sigma-Aldrich, N4875) and fast red TR salt 

(1.1mg/ml, Sigma-Aldrich, E6760) in acetate buffer for 60 minutes at 37C before 

counterstaining with Toluidine Blue. Slides dried for 24 hrs Aqueous-base 

mounting media was added on top of the sample and coverslip was applied. 
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 Adipocytes were stained in de-paraffinized slides that had been 

rehydrated using a sequential ethanol wash. Sections were then incubated in 

Sudan Black B solution for 3 hours. Subsequently, the slides were rinsed 

thoroughly in two changes of 70% isopropyl alcohol followed by six changes of 

distilled water. The slides were counterstained in nuclear fast red solution for 10 

minutes and rinsed again with two changes of distilled water. Slides were 

coverslipped with an aqueous based mounting medium.  

 The stained bone marrow cells were counted using the Bioquant imaging 

software (Nashville Tennessee, USA). Bone marrow osteoprogenitors were 

counted within a 0.75-1 mm2 area approximately 1mm below the growth plate of 

the distal femur. Small, round cells within the marrow exhibiting a brown nucleus 

indicating positive staining for osterix, were counted as osteoprogenitors and 

then the count normalized to the tissue area selected. Adipocytes were counted 

within a 1.75-2 mm2 area adjacent to the growth plate at the distal femur. Empty-

appearing cells >30μm in diameter and exhibiting a membrane positively stained 

with Sudan Black were counted and then normalized to tissue area. Finally, to 

determine the osteoclast surface, a 1.75-2 mm2 area adjacent to the growth plate 

at the distal femur was selected; the surface of all TRAP+ cells and the total 

trabecular surface in this region were measured. The ratio of the two was then 

calculated (TRAP+ S/BS, %). 

 

Flow cytometry 

 Cellular marker profiles from bone marrow were assessed using the 

antibodies CD45, CD146, CD105, and nestin (BD Biosciences) as previously 

described (Childress et al., 2015; He et al., 2013). Stained cells were analyzed 

on a FACSCalibur (BD Biosciences) and results were quantified using FlowJo 

Version 8.8.6 software (TreeStar, Inc). 
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Statistical analysis 

 Statistical packages JMP version 7.0.1 (SAS Institute, Cary, NC) and the 

Statistical Analysis System version 9.4 (SAS, SAS Institute, Cary, NC) were used 

for analyses.  

 To test the hypothesis that combining a sustained anabolic response with 

an anti-catabolic agent results in superior bone acquisition compared to PTH 

mono-therapy we compared the anabolic therapies PTH+RAL, PTH+ZOL, 

PTH+ALN, and PTH to each other and to VEH. To test our second hypothesis 

that Nmp4 does not interfere with the efficacy of anti-resorptive agents we 

compared the anti-catabolic treatments ALN, ZOL, RAL to each other and to 

VEH. All data were first analyzed for outliers using the interquartile range (IQR) 

method to evaluate statistical dispersion (Moore DS, 2003). Data were then 

analyzed with a 2-way analysis of variance (ANOVA) for effects of genotype and 

treatment followed by a Tukey-Kramer post hoc test for comparison of more than 

two groups or Student t post hoc test for comparing WT and Nmp4-/- parameters 

as two groups. Statistical significance was set at p≤0.05. In these analyses all 

experimental data were grouped by either genotype or treatment to determine 

whether either or both impacted the value of the endpoint parameter as well as 

whether genotype influenced the response to treatment (genotype x treatment 

interaction). Finally, to determine if there was an interaction between PTH and 

any of the anti-catabolic drugs we performed a series of 2-way ANOVAs using 

PTH and the anti-resorptive drug in question as the independent variables. 

 

RESULTS 

Effect of Combination Treatments Using Anabolic Agents On Bone 

PTH+RAL and PTH+ZOL synergistically enhanced therapeutic bone restoration; 

loss of Nmp4 further improved the actions of these treatments on femoral 

trabecular bone 

 We have previously shown that loss of Nmp4 improves femoral trabecular 

bone response to PTH in both healthy and ovariectomized mice without 

compromising gains in cortical bone (Childress et al., 2011; Childress et al., 
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2015; He et al., 2013; Robling et al., 2009). To address the contribution of Nmp4 

in regulating the response of trabecular bone to concurrent PTH combination 

therapies we evaluated the distal femoral BV/TV of mice under these treatments. 

Mice administered the PTH+RAL and PTH+ZOL treatments yielded the highest 

femoral BV/TV in both WT and null mice and these combination therapies 

surpassed femoral BV/TV obtained with the PTH mono-therapy (Figures 2-2A&B, 

treatment effect p<0.0001). Moreover, PTH showed a greater-than-additive 

(synergistic) interaction with RAL and ZOL at this site (Table 2-1A). In contrast 

the femoral BV/TV values of mice under the PTH+ALN treatment were equivalent 

to those values of the PTH mono-therapy cohorts (Figure 2-2A and Table 2-1A).  

 Loss of Nmp4 improved the gains in femoral BV/TV of PTH+RAL, 

PTH+ZOL, and PTH treatments (genotype x treatment interaction p=0.0038, 

Figures 2-2A&B). The 3-D µCT images of the distal femur illustrate the 

differences in trabecular bone between the WT and Nmp4-/- VEH cohorts and 

various treatments (Figures 2-3A~D). Similarly, the 2-D µCT images show the 

more extensive bone formation in the Nmp4-/- mice treated with PTH or 

PTH+RAL compared to the WT animals (Figures 2-6A~D). 

 Loss of Nmp4 had similar effects on femoral trabecular architecture (Tb.N, 

Tb.Th, Tb.Sp) as observed for BV/TV. Null mice showed significantly higher Tb.N 

under the PTH+RAL, PTH+ZOL, and PTH therapies compared to the WT cohorts 

(Table 2-2A). Similarly, the Nmp4-/- mice exhibited a lower Tb.Sp under 

PTH+RAL, and PTH+ZOL compared to WT mice (Table 2-2A). Finally, loss of 

Nmp4 enhanced increases in Tb.Th under PTH+ZOL and PTH.  

 We next interrogated the impact of the therapies on vertebral trabecular 

bone. As we observed with the femoral BV/TV, the comparative efficacies of the 

anabolic treatment groups were PTH+RAL=PTH+ZOL>PTH+ALN=PTH>VEH 

(treatment effect p<0.0001, Figures 2-2D&E). PTH exhibited a greater-than-

additive (synergistic) interaction with RAL and ZOL at this site (Figure 2-2B and 

Table 2-1B).  

 The loss of Nmp4 did not further enhance the efficacy of the anabolic 

treatments for restoring L5 BV/TV (Figures 2-2D&E). However, the null mice 



  

 32 

showed an enhanced increase in Tb.Th under PTH+RAL, PTH+ZOL, and the 

PTH mono-therapy (Table 2-3A). The 3-D µCT images (Figures 2-4A~D) and 2-D 

µCT (Figures 2-7A-D) of the L5 vertebrae show comparative improvements we 

observed in the trabecular architecture with various treatments. 

 Over stimulation of the PTH receptor has been reported to increase 

trabecular bone but decrease cortical bone formation in transgenic mice (Calvi et 

al., 2001). Therefore, to address whether the cortical bone gains in the Nmp4-/- 

mice were compromised under the present experimental therapies we evaluated 

post-cranial whole body (WB) BMD and femoral cortical geometry. Both WT and 

Nmp4-/- mice administered PTH+RAL yielded the highest WB BMD exhibiting a 

strong treatment effect (p<0.0001) but without a genotype x treatment interaction 

(Figures 2-5A&B). The PTH+RAL and PTH+ZOL cohorts exceeded the WB BMD 

observed in the PTH mono-therapy cohorts but only the PTH and RAL drugs 

showed a synergistic interaction and only for the WT mice (Table 2-1C). 

Furthermore, PTH+RAL was the only combination treatment that significantly 

improved femoral cortical area over the PTH mono-therapy (Figures 2-5D&E) 

and the drugs showed a significant interaction in the WT animals for this 

parameter (Table 2-1D). Finally, the anabolic treatments were equally efficacious 

for improving other aspects of cortical geometry (Table 2-4A). Therefore, 

although the loss of Nmp4 did not further improve the combination treatments 

restorative efficacy, the gain in trabecular bone (Figures 2-2A&B) did not 

compromise the improved gains in the cortical compartment. 
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Figure 2-2: [A-C] Femoral BV/TV and [D-F] L5 BV/TV for all the experimental 

cohorts (age 24wks) comparing ovx’d WT and Nmp4-/- mice. [B, E] We compared 

the anabolic therapies PTH+RAL, PTH+ZOL, PTH+ALN, and PTH to each other 

and to VEH. [C, F] we compared the anti-catabolic treatments ALN, ZOL, RAL to 

each other and to VEH. Statistical analyses were performed using 2W ANOVAs 

setting genotype and treatment as the independent variables. Statistical 

significance was set at p≤0.05. The asterisk denotes genotype x treatment 

interaction. The data represents average ± SD, n=7-12 mice/group. See text for 

explanation of results. 
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Figure 2-3: The 3-D µCT images of the femoral distal femur from WT and Nmp4-

/- mice (24wks of age). Mice were ovx’ed at 12wks of age and treated with the 

indicated therapies from 16wks to 24wks [A] Vehicle control; [B] RAL mono-

therapy; [C] PTH mono-therapy; [D] PTH+RAL combination therapy. 
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Figure 2-4: 3-D µCT images of the L5 vertebra from from WT and Nmp4-/- mice 

(24wks of age). Mice ovx’ed at 12wks of age and treated with the indicated 

therapies from 16wks to 24wks [A] Vehicle control; [B] RAL mono-therapy; [C] 

PTH mono-therapy; [D] PTH+RAL combination therapy. 
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Figure 2-5: [A-C] Post-cranial (Whole Body) BMD and [D-F]] Cortical bone area 

of femoral diaphysis for all the experimental cohorts comparing ovx’d WT and 

Nmp4-/- mice (age 24wks). [B, E] We compared the anabolic therapies 

PTH+RAL, PTH+ZOL, PTH+ALN, and PTH to each other and to VEH. [C, F] we 

compared the anti-catabolic treatments ALN, ZOL, RAL to each other and to 

VEH. Statistical analyses were performed using 2W ANOVAs setting genotype 

and treatment as the independent variables. Statistical significance was set at 

p≤0.05. The data represents average ± SD, n=5-12 mice/group. See text for 

explanation of results. 
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Figure 2-6: The 2-D µCT images of the femoral distal femur from WT and Nmp4-

/- mice ovx’ed at 12wks of age and treated with the indicated therapies from 

16wks to 24wks [A] Vehicle control; [B] RAL mono-therapy; [C] PTH mono-

therapy; [D] PTH+RAL combination therapy. 
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Figure 2-7: 2-D µCT images of the L5 vertebra from mice ovx’ed at 12wks of age 

and treated with the indicated therapies from 16wks to 24wks [A] Vehicle control; 

[B] RAL mono-therapy; [C] PTH mono-therapy; [D] PTH+RAL combination 

therapy. 
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THERAPY p-value PTH Treatment p-value Anti-catabolic 
Treatment 

p-value PTH x Anti-
catabolic interaction 

Table 2-1A: FEMUR 
BV/TV 

   

PTH+ALN [WT] p<0.0001 p=0.0001 p=0.19 

PTH+ALN [Nmp4-/-] p<0.0001 p=0.55 p=0.91 

    

PTH+ZOL [WT] p<0.0001 p<0.0001 p=0.02 

PTH+ZOL [Nmp4-/-] p<0.0001 p<0.0001 p=0.01 

    

PTH+RAL [WT] p<0.0001 p<0.0001 p=0.0139 

PTH+RAL [Nmp4-/-] p<0.0001 p<0.0001 p=0.001 

Table 2-1B: L5 BV/TV    

PTH+ALN [WT] p<0.0001 p=0.05 p=0.31 

PTH+ALN [Nmp4-/-] p<0.0001 p=0.84 p=0.38 

    

PTH+ZOL [WT] p<0.0001 p<0.0001 p=0.02 

PTH+ZOL [Nmp4-/-] p<0.0001 p<0.0001 p<0.0001 

    

PTH+RAL [WT] p<0.0001 p<0.0001 p=0.0002 

PTH+RAL [Nmp4-/-] p<0.0001 p<0.0001 p<0.0001 

Table 2-1C: WB BMD    

PTH+ALN [WT] <0.0001 0.04 0.65 

PTH+ALN [Nmp4-/-] <0.0001 0.50 0.64 

    

PTH+ZOL [WT] <0.0001 0.0003 0.8258 

PTH+ZOL [Nmp4-/-] <0.0001 0.0034 0.3620 

    

PTH+RAL [WT] <0.0001 <0.0001 0.0007 

PTH+RAL [Nmp4-/-] <0.0001 <0.0001 0.1807 

Table 2-1D: CORTICAL 
BONE AREA 

   

PTH+ALN [WT] 0.0001 0.0867 0.9113 

PTH+ALN [Nmp4-/-] <0.0001 0.2717 0.3244 

    

PTH+ZOL [WT] <0.0001 0.0663 0.8497 

PTH+ZOL [Nmp4-/-] <0.0001 0.1095 0.5698 

    

PTH+RAL [WT] <0.0001 0.0081 0.0407 

PTH+RAL [Nmp4-/-]  0.0009 <0.0001 0.1487 

 

Table 2-1: Identification of synergy between PTH and anti-catabolic drugs using 

a series of 2 way ANOVAs comparing the efficacy of the PTH mono-therapy, a 

specific anti-catabolic mono-therapy and the combination of the two drugs. 

Statistical significance was set at p≤0.05. 
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Table 2-2A: femoral trabecular parameters anabolic therapies 

GROUP FEMORAL Tb.N FEMORAL Tb.Th FEMORAL Tb.Sp 

VEH: 
WT/Nmp4-/- 

0.910.23/1.180.09 0.0460.006/0.0450.003 0.3310.023/0.2850.011 

PTH: 
WT/Nmp4-/- 

1.270.17/1.990.21 0.0580.002/0.0650.002 0.3450.038/0.2640.023 

PTH+ALN: 
WT/Nmp4-/- 

1.710.43/1.960.45 0.0590.004/0.0630.004 0.2750.020/0.2630.029 

PTH+ZOL: 
WT/Nmp4-/- 

2.070.65/2.740.47 0.0720.008/0.0810.006 0.2820.039/0.2350.034 

PTH+RAL: 
WT/Nmp4-/- 

2.160.78/3.230.49 0.0750.005/0.0810.008 0.2630.041/0.2020.032 

Anabolic 
Therapy 
 

G: p<0.0001 
T: p<0.0001 
GxT: p=0.02 
Nmp4-/- PTH+RAL A 
Nmp4-/- PTH+ZOL AB 
WT PTH+RAL BC 
WT PTH+ZOL C 
Nmp4-/- PTH C 
Nmp4-/- PTH+ALN C 
WT PTH+ALN CD 
WT PTH  DE 
Nmp4-/- VEH DE 
WT VEH  E 

G: p<0.0001 
T: p<0.0001 
GxT: p=0.0427 
Nmp4-/- PTH+RAL A 
Nmp4-/- PTH+ZOL A 
WT PTH+RAL AB 
WT PTH+ZOL BC 
Nmp4-/- PTH CD 
Nmp4-/- PTH+ALN DE 
WT PTH+ALN DE 
WT PTH  E 
Nmp4-/- VEH F 
WT VEH  F 

G: p<0.0001 
T: p<0.0001 
GxT: p=0.0123 
WT PTH  A 
WT VEH  A 
Nmp4-/- VEH B 
WT PTH+ZOL B 
WT PTH+ALN BC 
Nmp4-/- PTH BC 
WT PTH+RAL BC 
Nmp4-/- PTH+ALN BC 
Nmp4-/- PTH+ZOL CD 
Nmp4-/- PTH+RAL D 

 

 

Table 2-2B: femoral trabecular parameters anti-catabolic therapies 

GROUP FEMORAL Tb.N FEMORAL Tb.Th FEMORAL Tb.Sp 

VEH: 
WT/Nmp4-/- 

0.910.23/1.180.09 0.0460.006/0.0450.003 0.3310.023/0.2850.011 

ALN: 
WT/Nmp4-/- 

1.170.25/1.140.29 0.0510.006/0.0460.004 0.3020.007/0.2940.023 

ZOL: 
WT/Nmp4-/- 

1.380.38/1.470.47 0.0520.003/0.0490.007 0.3160.032/0.2820.029 

RAL: 
WT/Nmp4-/- 

1.210.36/1.740.13 0.0600.003/0.0590.005 0.3130.023/0.2740.011 

Anti-Catabolic 
Therapy 

G: p=0.0024 
T: p<0.0001 
GxT: p=0.0306 
Nmp4-/- RAL A 
Nmp4-/- ZOL AB 
WT ZOL  AB 
WT RAL  BC 
Nmp4-/- VEH BC 
WT ALN  BC 
Nmp4-/- ALN BC 
WT VEH  C 

G: p=0.0701 
T: p<0.0001 
RAL  A 
ZOL  B 
ALN  B 
VEH  B 

GxT: p=0.22 

 

G: p<0.0001 
T: p<0.2017 
GxT: p=0.04 
WT VEH  A 
WT ZOL  AB 
WT RAL  AB 
WT ALN  ABC 
Nmp4-/- ALN BC 
Nmp4-/- VEH BC 
Nmp4-/- ZOL BC 
Nmp4-/- RAL C 
 

 

 

Table 2-2: The µCT analyses of the femoral architecture in mice treated with [A] 

the anabolic therapies and [B] mice treated with the anti-catabolic therapies. The 

data were analyzed using 2 way ANOVAs using genotype and treatment as the 
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independent variables. Statistical significance was set at p≤0.05 and levels not 

connected by the same letter are significantly different. The data represents 

average±SD, n=7-12 mice/group. 
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Table 2-3A: L5 trabecular parameters anabolic therapies 

GROUP L5 Tb.N L5 Tb.Th L5 Tb.Sp 

VEH: 
WT/Nmp4-/- 

3.710.21/3.790.15 0.0510.003/0.0540.003 0.2500.013/0.2390.017 

PTH: 
WT/Nmp4-/- 

5.820.64/6.260.49 0.0470.002/0.0540.002 0.1910.020/0.1820.021 

PTH+ALN: 
WT/Nmp4-/- 

6.240.93/6.490.62 0.0490.002/0.0530.003 0.1880.025/0.1700.017 

PTH+ZOL: 
WT/Nmp4-/- 

8.240.1.87/9.00.85 0.0530.003/0.0570.002 0.1560.044/0.1350.023 

PTH+RAL: 
WT/Nmp4-/- 

7.790.65/8.050.81 0.0520.002/0.0610.002 0.1720.003/0.1590.027 

Anabolic 
Therapy 
 

G: p=0.0483 
T: p<0.0001 
PTH+ZOL A 
PTH+RAL A 
PTH+ALN B 
WT PTH  B 
VEH  C 
GxT: p=0.76 

G: p<0.0001 
T: p<0.0001 
GxT: p=0.0010 
Nmp4-/- PTH+RAL A 
Nmp4-/- PTH+ZOL B 
Nmp4-/- PTH BC 
Nmp4-/- VEH BCD 
WT PTH+ZOL CD 
Nmp4-/- PTH+ALN CD 
WT PTH+RAL CD 
WT VEH  DE 
WT PTH+ALN EF 
WT PTH  F 

 

G: p=0.0091 
T: p<0.0001 
VEH  A 
PTH  B 
PTH+ALN B 
PTH+RAL BC 
PTH+ZOL C 

GxT: p=0.94 

 
 

Table 2-3B: L5 trabecular parameters anti-catabolic therapies 

GROUP L5 Tb.N L5 Tb.Th L5 Tb.Sp 

VEH: 
WT/Nmp4-/- 

3.710.21/3.790.15 0.0510.003/0.0540.003 0.2500.013/0.2390.017 

ALN: 
WT/Nmp4-/- 

3.810.29/3.660.27 0.0510.003/0.0550.003 0.2470.008/0.2410.018 

ZOL: 
WT/Nmp4-/- 

5.080.89/4.420.54 0.0490.004/0.0530.001 0.2320.028/0.2330.021 

RAL: 
WT/Nmp4-/- 

4.010.40/4.440.34 0.0490.003/0.0540.002 0.2450.026/0.2300.019 

Anti-Catabolic 
Therapy 

G: p=0.4554 
T: p<0.0001 
ZOL A 
RAL B 
VEH C 
ALN C 
GxT: p=0.0067 

 

 

G: p<0.0001 
T: p=0.31 
GxT: p=0.87 

 

G: p=0.12 
T: p=0.23 
GxT: p=0.64 

 

 

Table 2-3: The µCT analyses of the L5 trabecular architecture in mice treated 

with [A] the anabolic therapies and [B] mice treated with the anti-catabolic 

therapies. The data were analyzed using 2 way ANOVAs comparing the anabolic 

therapies and the anti-catabolic mono-therapies. Statistical significance was set 
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at p≤0.05 and levels not connected by the same letter are significantly different. 

The data represents average ± SD, n=7-12 mice/group. 
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Table 2-4A: cortical geometry anabolic therapies 

GROUP Cortical 
Thickness 

Marrow Area Total Area Endocortical 
Perimeter 

Periosteal 
Perimeter 

VEH: 
WT/KO 

0.1900.016/

0.1840.007 

0.9640.096/

0.9580.026 

1.8410.109/

1.8340.092 

3.8430.185/

3.8610.121 

5.2430.167/

5.2420.175 

PTH: 
WT/KO 

0.2010.009/

0.1960.009 

1.0290.090/

0.9920.069 

2.0280.118/

2.0240.096 

2.0280.118/

3.9550.088 

5.5080.172/

5.4760.130 

PTH+ALN: 
WT/KO 

0.2000.014/

0.1970.007 

1.0460.082/

0.9070.129 

2.0740.078/

2.0150.145 

4.1040.214/

4.0230.302 

5.6330.076/

5.4970.235 

PTH+ZOL: 
WT/KO 

0.2070.009/

0.1980.011 

1.0120.084/

0.9570.092 

2.0740.159/

2.0610.126 

4.0380.151/

4.3010.477 

5.5950.246/

5.5430.220 

PTH+RAL: 
WT/KO 

0.2060.015/

0.2030.020 

0.8910.136/

0.8220.149 

2.0610.116/

2.0050.111 

3.9580.404/

3.8600.262 

5.5500.225/

5.5460.327 

Anabolic 
Therapy 
 

G: p=0.0501 
 
T: p=0.0003 
PTH+RAL A 
PTH+ZOL A 
PTH A 
PTH+ALN A 
VEH B 
 
GxT: p=0.92 
 

G: p=0.0028 
 
T: p<0.0001 
PTH A 
PTH+ZOL A 
PTH+ALN A 
VEH A 
PTH+RAL B 
 
GxT: p=0.92 
 

G: p=0.23 
 
T: p<0.0001 
PTH+ZOL A 
PTH+ALN A 
PTH+RAL A 
PTH A 
VEH B 
 
GxT: p=0.89 
 

G: p=0.9952 
 
T: p=0.0029 
PTH+ZOL A 
PTH+ALN AB 
PTH AB 
PTH+RAL B 
VEH B 
 
GxT: p=0.18 

 
 

 

G: p=0.28 
 
T: p<0.0001 
PTH+ZOL A 
PTH+ALN A 
PTH+RAL A 
PTH A 
VEH B 
 
GxT: p=0.86 

 

 

Table 2-4B: cortical geometry anti-catabolic therapies 

GROUP Cortical 
Thickness 

Marrow Area Total Area Endocortical 
Perimeter 

Periosteal 
Perimeter 

VEH: 
WT/KO 

0.1900.016/

0.1840.007 

0.9640.096/

0.9580.026 

1.8410.109/

1.8340.092 

3.8430.185/

3.8610.121 

5.2430.167/

5.2420.175 

ALN: 
WT/KO 

0.1870.013/

0.1810.012 

0.9680.050/

0.9630.085 

1.8650.099/

1.8360.112 

3.8700.143/

3.8740.161 

5.2510.105/

5.2040.162 

ZOL: 
WT/KO 

0.1890.010/

0.1920.007 

1.0330.091/

0.9940.072 

1.9440.080/

1.8790.078 

4.1160.183/

3.9250.158 

5.4770.170/

5.3080.140 

RAL: 
WT/KO 

0.2020.010/

0.2060.010 

0.8560.076/

0.8920.054 

1.7570.063/

1.8270.084 

3.7610.123/

3.8200.125 

5.1530.098/

5.2710.191 

Anti-
Catabolic 
Therapy 

G: p=0.62 
 
T: p<0.0001 
RAL A 
ZOL B 
VEH B 
ALN B 

 
GxT: p=0.92 

 

G: p=0.83 
 
T: p<0.0001 
ZOL A 
ALN A 
VEH A 
RAL B 

 
GxT: p=0.58 

 

G: p=0.72 
 
T: p=0.0094 
ZOL A 
ALN AB 
VEH AB 
RAL B 

 
GxT: p=0.25 

 

G: p=0.46 

 
T: p=0.0010 

ZOL A 
ALN B 
VEH B 
RAL B 
 
GxT: p=0.12 
 

G: p=0.52 

 
T: p=0.0073 

ZOL A 
VEH B 
ALN B 
RAL B 
 
GxT: p=0.10 

 

Table 2-4: The µCT analyses of the femoral cortical geometry in mice treated 

with [A] the anabolic therapies and [B] mice treated with the anti-catabolic 

therapies.. The data were analyzed using 2 way ANOVAs comparing the 

anabolic therapies and the anti-catabolic mono-therapies. Statistical significance 
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was set at p≤0.05 and levels not connected by the same letter are significantly 

different. The data represents average ± SD, n=7-12 mice/group. 
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Effects of Anti-Catabolic Treatments On Bone 

RAL and ZOL promoted modest bone restoration; loss of Nmp4 further 

augmented RAL-induced increases in femoral trabecular bone 

 The Nmp4 skeletal phenotype appears to be largely driven by the hyper-

anabolic activity of osteogenic cells (Childress et al., 2015; He et al., 2013; Hino 

et al., 2007). Nevertheless, the response of the Nmp4-/- mice to anti-resorptive 

therapy alone had not been reported therefore we analyzed the therapeutic 

efficacy of the SERM RAL, and the bisphosphosphonates ALN and ZOL on 

ovariectomized WT and null mice. The RAL and ZOL mono-therapies, 

significantly improved femoral and L5 BV/TV (Figures 2-2C&F), as well as WB 

BMD and cortical bone area (Figures 2-5C&F). However, RAL was particularly 

notable in that it was the only anti-catabolic that increased femoral Tb.Th in both 

genotypes (Table 2-2B), enhanced cortical area over the VEH cohorts (Figure 2-

5F), and the only anti-resorptive that increased femoral cortical thickness and 

decreased femoral marrow area (Table 2-4B). 

 Unexpectedly, loss of Nmp4 enhanced RAL-induced increases in femoral 

BV/TV compared to WT mice (genotype x treatment interaction p=0.03, Figure 2-

2C). Moreover, under the RAL mono-therapy the null cohorts showed 

significantly higher femoral Tb.N and exhibited a lower femoral Tb.Sp compared 

to WT mice (Table 2-2B). Disabling Nmp4 did not amplify the response to the 

bisphosphonates. This would suggest that Nmp4 suppresses a SERM-mediated 

pathway(s) mediating femoral trabecular bone restoration in our preclinical 

model.  

 

The Effects of Combination Treatments using Anabolic Agents on 

Osteoprogenitor Cells 

The combination of PTH, RAL and loss of Nmp4 significantly expanded the bone 

marrow osteoprogenitor pool but had no similar impact on the number of marrow 

adipocytes or TRAP+ cells 

 To address the cellular basis underlying the improved femoral trabecular 

bone response of Nmp4-/- mice over the WT animals we counted various cell 
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types in formalin-fixed, paraffin-embedded bone marrow sections using 

immunohistochemical analysis. We also employed flow cytometry to obtain bone 

marrow cellular profiles. Based on the µCT imaging results we largely limited our 

focus to vehicle-control, the RAL, ZOL, and PTH mono-therapies, and the 

PTH+RAL and PTH+ZOL combination treatments.  

 We counted bone marrow cells that were positive for the early osteoblast-

specific transcription factor Osterix (Nakashima et al., 2002) as one method to 

identify osteoprogenitors (Figures 2-9A-F). Nmp4-/- mice under the PTH+RAL 

therapy harbored more osteoprogenitors than the WT cohorts treated with this 

regimen (genotype x treatment effect p=0.0048, Figures 2-8A&B). Additionally, 

the null mice harbored significantly more bone marrow osteoprogenitors under 

the PTH+RAL therapy than under the PTH+ZOL treatment but the WT cohorts 

did not exhibit this dichotomy (Figures 2-8A&B). As a complementary approach 

we performed flow cytometry analysis of WT and Nmp4-/- bone marrow CD45-

/CD105+/CD146+/nestin+ cells, which have been used as markers to identify 

MSPC/osteoprogenitors (Mizoguchi et al., 2014; Sacchetti et al., 2007) (Figure 2-

8D&E). As observed with IHC staining the Nmp4-/- mice under the PTH+RAL 

therapy exhibited a significantly expanded population of these cells compared to 

WT mice treated with this combination regimen (treatment x genotype p=0.0004, 

Figures 2-8D&E). Moreover, as determined with the IHC analysis, the flow 

cytometry analysis revealed that the null mice harbored significantly more bone 

marrow CD45-/CD105+/CD146+/nestin+ cells under the PTH+RAL therapy than 

under the PTH+ZOL treatment and that the WT cohorts did not exhibit this 

contrast (Figures 2-8D&E). 

 We next addressed whether the anabolic treatment regimens and/or loss 

of Nmp4 altered bone marrow adiposity because in addition to osteoprogenitors, 

MSPCs can differentiate into bone marrow fat cells. Treatments that included 

PTH, i.e. PTH mono-therapy, PTH+ZOL and PTH+RAL significantly decreased 

the number of bone marrow adipocytes (Figures 2-10A&B). Bone marrow 

sections from the VEH cohorts exhibited a high number of adipocytes throughout 

the marrow and near the growth plate, but adipocyte numbers were strikingly 
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lower in marrow from cohorts that included PTH in the treatment regimen 

(Figures 2-11A&B). However unlike the case with the osteoprogenitors, loss of 

Nmp4 did not alter the frequency of these cells in the bone marrow and therefore 

did not appear to have a direct or indirect effect on adipogenic lineage 

commitment in our model. 

 We assessed femoral TRAP+S/BS as an indicator of osteoclast activity 

and whether Nmp4 regulated the number of these cells under the anabolic 

treatments (Figures 2-10D&E). In contrast to the osteoprogenitor profiles, loss of 

Nmp4 did not impact the number of TRAP+ cells under the PTH+RAL regimen or 

any of the other anabolic treatments (genotype x treatment p=0.08, Figure 2-

10B). The PTH+RAL WT/Nmp4-/- cohorts had fewer TRAP+ cells than the PTH 

groups but both were equivalent to PTH+ZOL- and VEH-treated mice (treatment 

effect p=0.02, Figure 2-10E). 

 

 

Figure 2-8: [A-C] Bone marrow osterix+ cells and [D-F] Flow cytometry analysis 

of the means of the frequency of femoral bone marrow CD45−/CD105+/CD146+ 

/CD105+/nestin+ cells in ovx’ed WT and Nmp4−/− mice (24wks of age). [B, E] We 
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compared the anabolic therapies PTH+RAL, PTH+ZOL, PTH, with each other 

and with VEH using either osterix+ expression or the expression profile of 

CD45−/CD105+/CD146+/CD105+/nestin+ as the endpoints. [C] We compared the 

number of osterix+ cells in the WT and Nmp4-/- RAL mono-therapy cohorts [F] 

We compared the anti-catabolic treatments ZOL and RAL to each other and to 

VEH using the expression profile of CD45−/CD105+/CD146+/CD105+/nestin+ as 

the endpoint. Statistical analyses were performed using 2W ANOVAs setting 

genotype and treatment as the independent variables. Statistical significance 

was set at p≤0.05. The asterisk denotes genotype x treatment interaction. The 

data represents average ± SD, n=4-6 osterix+ cells and n=7-12 mice/group for 

flow cytometry. See text for explanation of results. 
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Figure 2-9: Immunohistochemical analysis of bone marrow osterix-positive cells. 

Osterix was detected as a brown coloration in the cell nucleus (arrowheads) on 

formalin-fixed, paraffin-embedded sections as described in the Materials and 

Methods. Representative sections are shown from [A, B] the WT and Nmp4-/- 

VEH cohorts, [C, D] the WT and Nmp4-/- PTH+RAL cohorts, and [E, F] the WT 

and Nmp4-/- PTH+ZOL cohorts. 
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Figure 2-10: [A-C] Bone marrow adipocytes and [D-F] TRAP+ S/BS for WT and 

Nmp4-/- mice (24wks of age). [B, E] We compared the anabolic therapies 

PTH+RAL, PTH+ZOL and PTH, with each other and with VEH using either 

adipocyte number or TRAP+S/BS as the endpoints [C, F] We compared the 

number of adipocytes or the TRAP+S/BS in the WT and Nmp4-/- RAL mono-

therapy cohorts. Statistical analyses were performed using 2W ANOVAs setting 

genotype and treatment as the independent variables. Statistical significance 

was set at p≤0.05. The data represents average ± SD, n=5 fields from 6 

mice/cohort for the adipocytes and n=6 mice/group (TRAP+ S/BS). See text for 

explanation of results. 
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Figure 2-11: Immunohistochemical analysis of bone marrow adiposity. 

Adipocytes were detected with Sudan Black B (arrowheads) on formalin-fixed, 

paraffin-embedded sections as described in the Materials and Methods. Tissue 

sections stained with Sudan Black B showed the relatively small number of 

adipocytes in the WT and Nmp4-/- PTH+RAL cohort compared to the vehicle-

treated groups. 
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Effects of Anti-Catabolic Treatments on Osteoprogenitor Cells 

 We next addressed the impact of RAL, ZOL, and Nmp4 on the bone 

marrow osteoprogenitor pool in the anti-catabolic arm of the study. The RAL 

mono-therapy significantly elevated the number of osteoprogenitors compared to 

VEH cohorts as determined by both IHC and flow cytometry analyses but loss of 

Nmp4 did not impact the response of these cell populations to this anti-resorptive 

(Figures 2-8C&F). ZOL mono-therapy did not significantly alter the number of 

CD45-/CD105+/CD146+/nestin+ cells compared to the VEH cohorts (Figure 2-8F). 

RAL mono-therapy had no impact on adipocyte number (p=0.57, Figure 10C) or 

TRAP+ S/BS (treatment effect p=0.46, Figure 2-10F) in our preclinical model. 

The statistical comparison between the RAL mono-therapy and VEH cohorts 

indicated that the null mice harbored fewer TRAP+ cells than WT animals 

(genotype effect p=0.02, Figure 2-10F). This genotype difference was not 

observed when analyzing the anabolic cohorts (Figure 2-10E).  

 We conclude that the combination of PTH, RAL, and loss of Nmp4 is 

strongly restorative or nurturing for bone marrow osteoprogenitors and that the 

substitution of ZOL for RAL abrogates this tonic effect in the null mice. Moreover, 

the loss of Nmp4 does not influence the number of bone marrow adipocytes or 

TRAP+ cells under the strongly anabolic PTH+RAL therapy.  

 

Effects of Treatments on Bone Turnover Markers 

Nmp4 status did not influence serum profile response to any treatment 

 To address the impact of Nmp4 on serum bone formation and resorption 

makers of select therapies we evaluated osteocalcin, CTX, and the RANKL/OPG 

ratio in mice under the PTH, RAL, PTH+RAL, PTH+ZOL and VEH therapies. 

Loss of Nmp4 elevated levels of the serum bone formation marker osteocalcin in 

mice under the anabolic therapies however there was no genotype x treatment 

interaction (genotype effect, p=0.01, genotype x treatment, p=0.12, Figures 2-

12A&B). The treatment groups PTH and PTH+ZOL exhibited significantly 

elevated serum osteocalcin compared to VEH controls whereas the PTH+RAL 
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cohorts were not significantly different from either VEH or the other two groups 

(treatment effect, p=0.0022, Figure 2-12B).  

 Disabling Nmp4 had no impact on serum CTX and serum RANKL/OPG 

(no genotype effect or genotype x treatment interaction, Figures 2-12C~G). 

Analysis by treatment groups showed that mice from the PTH+RAL therapy 

exhibited significantly elevated serum CTX levels compared to mice from the 

PTH+ZOL and VEH treatments (Figure 2-12D). The PTH+ZOL cohorts exhibited 

a significantly larger RANKL/OPG ratio than PTH and PTH+RAL but none of 

these treatments were statistically different from the VEH controls (Figure 2-12F).  

 The RAL mono-therapy did not alter serum osteocalcin or CTX. This 

treatment did however elevate RANKL/OPG (Figure 2-12G). Therefore only 

serum osteocalcin, and not the resorption markers, could broadly discriminate 

between the genotypes (genotype effect p=0.0107, Figure 2-12B). However, 

Nmp4 status did not influence how any of treatments altered serum marker 

profiles (no genotype x treatment interactions, Figure 2-12A~G). Finally, we 

noticed that the parameters of osteoclast size and bone resorption did not 

necessarily move in a parallel manner in our analysis. We have reported on this 

phenomenon before in healthy, non-ovariectomized Nmp4-/- mice (Childress et 

al., 2011). This dissociation between CTX levels and osteoclast area may be due 

in part to the fact that CTX is a systemic measurement whereas osteoclast area 

is a local measurement. An example of a similar observation is described in the 

Prx1-Cre; RBPjkf/f mouse (Tu et al., 2012). Finally, Weinstein and colleagues 

report that long-term alendronate treatment 412 is associated with an increase in 

the number of osteoclasts, and an increase in osteoclast size in healthy 

postmenopausal women (Weinstein et al., 2009). 
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FIGURE 2-12: [A, B] Serum osteocaclin (OCN) [C, D] serum CTX, and [E, F] 

serum RANKL/OPG for WT and Nmp4-/- mice (24wks of age). [B, D, F] We 

compared the anabolic therapies PTH+RAL, PTH+ZOL and PTH, with each other 

and with VEH using the three serum parameters as endpoints [G] We compared 

VEH with RAL-monotherapy using RANKL/OPG as the endpoint. Statistical 

analyses were performed using 2W ANOVAs setting genotype and treatment as 

the independent variables. Statistical significance was set at p≤0.05. The data 

represents average ± SD, n=6-7 (OCN, CTX, RANKL/OPG). See text for 

explanation of results. 
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DISCUSSION 

 The blunting of PTH bone-forming efficacy may be a principal limitation of 

osteoporosis combination therapies (Eriksen and Brown, 2016). We have 

previously demonstrated that deletion of Nmp4 enhances PTH-induced 

trabecular bone formation in experimental mice and as such the goals of this 

study were to determine whether combining this sustained anabolic response 

with an anti-catabolic results in superior bone acquisition compared to either PTH 

mono-therapy. Additionally we inquired whether Nmp4 interferes with anti-

catabolic efficacy. In principle, PTH combination therapies have the potential to 

maximize skeletal mass while maintaining a tonic level of remodeling by boosting 

bias toward bone formation and minimizing loss from resorption. We evaluated 7 

therapies against a control including three anti-catabolics singly and in 

concurrent combination with PTH in a preclinical osteoporosis model, comparing 

skeletal improvement in WT and Nmp4-/- mice. The PTH+RAL and PTH+ZOL 

combination treatments outperformed the PTH mono-therapy throughout the 

skeleton and loss of Nmp4 further leveraged the potency of these bone-restoring 

osteoanabolic regimens in some of the trabecular compartments. Unexpectedly, 

the Nmp4-/- mice also exhibited an enhanced femoral BV/TV response to RAL 

mono-therapy. These improvements in the restoration of the trabecular bone 

compartment did not come at the expense of gains in cortical bone. Altogether, 

this is an exciting proof of principle in scenarios of heightened osteoanabolism 

combination treatment can be more effective than PTH alone. 

 The bone-forming efficacy of the concurrent PTH combination treatments 

in this study generally corresponded with PTH+RAL=PTH+ZOL>PTH+ALN 

=PTH>VEH, which parallels the results observed in several individual clinical 

studies thus supporting the medical relevance of our novel findings and the 

potential clinical impact of disabling Nmp4. Deal et al. compared the efficacy of 

PTH mono-therapy with concurrent PTH+RAL in 117 postmenopausal women 

over a 6-month period (Deal et al., 2005). BMD in the concurrent group was 

numerically higher than the PTH mono-therapy at the spine and hip, but this 

increase was only statistically significant at the hip (Deal et al., 2005). In the 
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PATH study (Black et al., 2003) treatments of naive women were randomized to 

3 groups: i) PTH mono-therapy; ii) ALN mono-therapy and iii) concurrent 

PTH+ALN. Quantitative computed tomography (QCT) revealed severe blunting of 

BMD increases to PTH in the PTH+ALN group. Finally, patients on concurrent 

PTH+ZOL therapy were compared to patients on ZOL alone or PTH mono-

therapy (Cosman et al., 2011). Contrary to the results obtained with ALN in the 

PATH study, greater increases in BMD were observed with concurrent PTH+ZOL 

treatment, than the mono-therapies (Black et al., 2003; Cosman et al., 2011; 

Deal et al., 2005; Eriksen and Brown, 2016). In the present study PTH and RAL 

showed a synergistic drug interaction throughout the analyzed skeletal sites 

including the whole body BMD, cortical bone area, femur and L5 trabecular bone 

volume. PTH+ZOL generally equaled the therapeutic performance of PTH+RAL 

with respect to bone gain but the synergistic interaction of PTH and ZOL was 

more limited with respect to skeletal sites. PTH+ALN was the least efficacious of 

the concurrent combination therapies and did not outperform the PTH mono-

therapy.  

 The loss of Nmp4 further improved the gains in femoral trabecular bone 

obtained with the concurrent PTH+RAL and PTH+ZOL combination treatments 

and with the RAL mono-therapy, resolving our primary queries as to whether the 

heightened osteoanabolism of the Nmp4-/- skeleton would boost the restorative 

response to diverse osteoporosis treatments. We observed a strong genotype x 

treatment interaction under the anabolic therapies of PTH, PTH+RAL, and 

PTH+ZOL for femoral BV/TV and for multiple trabecular bone architectural 

parameters. The improved RAL mono-therapy-induced increases in femoral 

BV/TV and other trabecular architectural parameters were unanticipated since 

the Nmp4-/- skeletal phenotype is distinguished by the exaggerated response to 

anabolic cues (Childress et al., 2015; He et al., 2013; Hino et al., 2007; Morinobu 

et al., 2005; Yang et al., 2010). And indeed in the present study the Nmp4-/- mice 

showed no improved response with the bisphosphonates. 

 The hyper-anabolic phenotype of the Nmp4-/- bone marrow 

osteoprogenitors and their progeny likely drive the improved responses to the 
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osteoporosis therapies observed in the present study. Moreover, loss of Nmp4 

had no effect on the cellular or serum parameters of the resorption arm in cohorts 

under the anabolic therapies. The elevated expressions of c-MYC and GADD34 

in the Nmp4-/- cells (Young et al., 2016) may underlie their precocious and 

enhanced mineralization in culture (Childress et al., 2015). c-MYC is a potent 

inducer of ribosome biogenesis (Van Riggelen et al., 2010) and the Nmp4-/- 

MSPCs show significantly elevated global protein synthesis (Young et al., 2016), 

consistent with the increased bone matrix production. The subsequent increase 

in the load of ER client proteins typically triggers the UPR, which in turn 

diminishes global protein synthesis via the phosphorylation of eIF2α (Chambers 

and Marciniak, 2014). Upon resolution of ER stress GADD34 serves as a 

feedback mechanism to dephosphorylate eIF2α, facilitating resumption of protein 

synthesis. However in the Nmp4-/- cells the high expression of GADD34 

maintains elevated matrix synthesis throughout UPR activation without initiating 

apoptosis (Young et al., 2016). 

 In the present study, the PTH+RAL therapy significantly expanded the 

bone marrow pool of the Nmp4-/- hyper-anabolic osteoprogenitors. Although the 

RAL mono-therapy increased the number of these cells in both genotypes the 

heightened osteoanabolism of the Nmp4-/- osteoprogenitors and their progeny is 

consistent with the enhanced RAL-induced increase in femoral BV/TV compared 

to the WT mice. RAL has been shown to have tonic effects on osteogenic cells 

both in vivo and in vitro, depending on the model system, and the concentration 

and duration of exposure to this drug (Giner et al., 2011; Lin et al., 2004; Liu et 

al., 2000; Matsumori et al., 2009; Miki et al., 2009; Somjen et al., 2011; Taranta 

et al., 2002; Viereck et al., 2003). The ZOL mono-therapy had no impact on this 

bone marrow population in our study but the substitution of ZOL for RAL in the 

concurrent combination regimen abrogated the expansion of the Nmp4-/- 

osteoprogenitor pool suggesting that the PTH+ZOL combination lacked the boost 

to this cell population provided by combining PTH with RAL. Bisphosphonates 

have both tonic as well as toxic effects on osteogenic cells depending on various 

factors (Corrado et al., 2010; Lezcano et al., 2014; Pan et al., 2004; Plotkin et al., 
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1999; Pozzi et al., 2009). Therefore, Nmp4 may play a role in osteogenic cell 

response to anti-catabolics without influencing the impact of these drugs on the 

resorption arm. This may explain why treatment with the amino-bisphosphonate 

ALN was less successful at enhancing bone mass than the amino-

bisphosphonate ZOL when applied either alone or in combination with PTH. 

There are a number of factors that may explain the differences between ALN and 

ZOL efficacy in our study. ZOL is a significantly more potent bisphosphonate 

than ALN due in part to its stronger binding to both farnesyl pyrophosphate 

synthase enzyme and to bone (Russell et al., 2008). Interesting, the frequency of 

dosing may also contribute to the differences obtained in our investigation and 

prior studies. Specifically, osteoblasts may take up bisphosphonates by 

pinocytosis leading to the inhibition of the mevalonate pathway and it has been 

speculated that the more frequent dosing with ALN compared to ZOL may 

increase exposure of osteoblasts to bisphosphonates from the interstitial fluid 

(Eriksen and Brown, 2016). However, in the present model the PTH+ZOL 

therapy was equally effective as the PTH+RAL treatment at increasing femoral 

BV/TV. This observation is consistent with a previous study showing that 

intermittent PTH significantly increased the luciferase activity of tagged bone 

marrow stromal cells (BMSCs) used to generate bony ossicles implanted in 

immuno-compromised mice, but combining ZOL with PTH treatment reduced this 

hormone-mediated increase in luciferase activity without attenuating the PTH-

induced increase in total bone (Pettway et al., 2008). Therefore it is likely that 

osteoprogenitors alone do not drive the heightened pharmacologically-induced 

osteoanabolism of the Nmp4-/- mouse and that bone lining cells, osteoblasts, and 

perhaps osteocytes also contribute to this phenotype. Studies using conditional 

deletion of this gene are required to fully interrogate the cellular hierarchy of the 

Nmp4-/- skeletal phenotype.  

 The implication regarding osteoporosis treatment is that disabling Nmp4 

will boost whatever anabolic activity is associated with any particular therapy. 

Suppression of sclerostin, a bone formation inhibitor with the drug romosozumab 

represents a route to bone anabolism and is proof of principle that impeding 
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osteogenic inhibitors is a powerful approach to therapy (Jilka, 2009). Nmp4 is 

another kind of inhibitor in that its inactivation boosts the response potency to 

osteoanabolics but unlike romozosumab does not impact baseline skeletal 

phenotype. 

 The expansion of the Nmp4-/- osteogenic reserve did not appear to occur 

at the expense of marrow adipogenic potential. Bone marrow fat cells derive from 

heterogeneous populations of MSPCs, not all of which have the capacity for 

committing to the adipogenic lineage (Chan et al., 2015; Yue et al., 2016). Our 

present data revealed no genotype effect for adipocyte number. However, these 

data showed a strong treatment effect in that PTH-based therapies reduced bone 

marrow adipogenesis in both the WT and Nmp4-/- mice. This is consistent with 

the previous observations that osteoporosis patients as well as ovariectomized 

rats exhibit an enhanced fat in the marrow (Cordes et al., 2016; Kulkarni et al., 

2007) and that PTH attenuates marrow adiposity in both rats(Kulkarni et al., 

2007) and in postmenopausal osteopenic women (Yang et al., 2016).  

 The improved gains in the Nmp4-/- L5 trabecular architecture were more 

moderate than those observed in the femur although loss of Nmp4 increased L5 

BV/TV across the anabolic treatment groups as a whole and improved anabolic 

therapeutic thickening of the trabeculae. The observed weaker response of the 

rodent spine to PTH-based therapies compared with that of the femur is 

consistent with previous observations in C57BL/6 mice and is perhaps related to 

weight bearing (Iida-Klein et al., 2002).  

 The exaggerated recovery of Nmp4-/- trabecular bone did not come at the 

cost of therapeutic gains in the cortical compartment. We previously 

demonstrated that the Nmp4-/- osteoprogenitors express elevated levels of the 

PTH1R receptor and that these null cells exhibited an exaggerated response to 

hormone challenge (Childress et al., 2015). Calvi et al., reported that 

constitutively active PTH1R in osteoblasts resulted in mice with increased 

trabecular bone volume but decreased cortical thickness (Calvi et al., 2001). 

Additionally, the elevation in PTH-induced remodeling typically leads to increased 

cortical porosity (Burr et al., 2001; Dempster et al., 1993; Fox et al., 2007; 
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Hansen et al., 2013) with potentially detrimental effects on bone strength 

(Eriksen and Brown, 2016). However, our present data showed that the 

exaggerated response to PTH and the concurrent combination therapies in the 

Nmp4-/- mice did not compromise improvements in cortical area and cortical 

thickness nor WB BMD, which is typically 80% cortical.    

 “The quest will continue for the ‘holy grail’ of anabolic osteoporosis 

therapies, which will optimize the impact on bone formation relative to resorption” 

(Black and Schafer, 2013). This medical objective requires the use of clinical, 

preclinical, and basic science research. Jilka has incisively described the 

advantages and limitations of mouse models for investigating the 

pathophysiology of osteoporosis and its treatment (Jilka, 2013) and the present 

model is no exception. However, the principal extraordinary feature of the Nmp4-/- 

phenotype is the exaggerated skeletal responses to diverse osteoanabolic 

therapies while bone development, growth and baseline phenotype are all largely 

unexceptional in the absence of provocation (Childress et al., 2011; Childress et 

al., 2015; Morinobu et al., 2005; Robling et al., 2009). This demonstrates a clear 

and unique advantage of developing Nmp4 or one of its upstream/downstream 

components as a target to significantly improve efficacy of existing therapies. 

Moreover, since the loss of Nmp4 appears to enhance the response potency to 

other anabolic signals (Morinobu et al., 2005), we propose that abaloparatide or 

other PTH peptides may produce a similar heightened anabolism in these mice. 

Finally, this unique preclinical tool provides an opportunity for investigating the 

intrinsic critical barriers to pharmacologically-induced bone formation. 

 

CONTRIBUTIONS 

 In the project described above, I took part in the mice treatment, DXA 

scanning and tissue collection (i.e. serum and bone); I also conducted the 

immunohistochemistry, part of the serum analysis (i.e. OCN) and part of the 

statistical analysis. 
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CHAPTER 3 

 

MAPPING THE Nmp4 ANTI-ANABOLIC BONE TRANSCRIPTOME 

INTRODUCTION 

 
 Several questions remain to be addressed to clarify the cellular and 

molecular mechanisms driving the Nmp4-/- hyper-anabolism phenotype. What 

pathways and biological functions are altered in naïve and early-differentiating 

MSPCs? What key regulators are involved in these pathways and biological 

functions altered by NMP4? How do these alterations contribute to the Nmp4-/- 

anabolic phenotype? To answer these questions, we undertook transcriptome 

analysis of non-differentiated and early osteogenic-differentiating MSPCs. 

Pathway analysis and results from manually annotating this RNA-seq data 

provided a more comprehensive overview of the Nmp4-/- osteogenic cell 

phenotype. For example loss of Nmp4 alters the expression profile of multiple 

matrix proteins that regulate the mechanical properties of bone. Additionally, the 

alterations in the null cell transcriptome indicated that NMP4 regulates cellular 

metabolism. This analysis provided thorough descriptions of the changes 

induced by disabling Nmp4 in pathways controlling the secretory machinery of 

the cell. Of interest disabling NMP4 also perturbs pathways that regulate the 

immunomodulatory phenotype of mesenchymal stem cells. Guided by this 

pathway analysis we evaluated some aspects of (i) bone material properties, (ii) 

cell metabolism, and (iii) the unfolded protein response.  

MATERIALS AND METHODS 

Cell culture 

 Expanded mesenchymal stem/progenitor cell (MSPC) cultures were 

established as previously described (Childress et al., 2015; Wu et al., 2006). 

Briefly, the BM mononuclear cells (BMMNCs) were flushed from the femurs and 

tibias of 6~8-week old WT or Nmp4-/- mice, isolated by Ficoll gradient, plated in 

MesencultTM Media+MesencultTM Stimuatory Supplement (StemCellTM 

Technologies, Vancouver BC, Canada) and maintained in culture for 3-4 weeks 
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without passaging. Every 5-7 days 50% of the culture media was replaced. The 

cells were then passaged at 1:3 dilutions for 5 passages at 80% confluence. The 

cells were only used for experiments between passage 5 and 10.  

 To induce osteogenic differentiation of MSPCs, WT and Nmp4-/- MSPCs 

between passage 5 and 10 were seeded into 12-well plates at 25,000 cells/well 

in αMEM medium. After 48 hours, the medium was replaced by osteogenic 

medium, which was comprised of αMEM medium supplemented with 50 µg/ml 

ascorbic acid (Sigma-Aldrich), 10mM glycerol 2-phosphate disodium salt hydrate 

(BGP, Sigma-Aldrich) and 10nM dexamethasone (Sigma-Aldrich). The 

osteogenic medium was replenished on a regular basis until clear sign of 

mineralization could be observed under the microscope and the cells were 

stained with Alizarin red. To study the effect of GADD34 inhibition on 

mineralization, the aforementioned protocol was used and 5µM of salubrinal or 

same amount of dimethyl sulfoxide (DMSO as vehicle) was added to the medium 

48 hours after the initial seeding. 

 To prepare naïve and early-differentiating MSPCs for RNA-Seq analysis, 

WT and Nmp4-/- MSPCs between passage 5 and 10 were seeded into 12-well 

plates at either 10,000 cells/well or 25,000 cells/well. The plates with 10,000 

cells/well were cultured in Mesencult Medium supplemented with Mesencult 

Stimulatory Supplement for 3 days before harvest. The plates with 25,000 

cells/well were induced for osteogenic differentiation as described above and the 

cells were harvested on Day 7 post-seeding. RNeasy Mini Kit (QIAGEN) was 

used to harvest mRNA. Each sample had 4 replicates. 

 

Alizarin red staining for mineralization 

 The mineralized cells were washed in 1X Hank’s balanced salt solution 

(HBSS), fixed in 10% formalin for 30 minutes, and then washed in water. 

Subsequently, the cells were stained with Alizarin red S (pH=4.2) for 7 minutes 

and washed in water 3 times before scanning for images.  

RNA-Seq 

 Total RNA was harvested; the concentration and quality of each RNA 
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sample were measured and evaluated. Only samples with the ratio of 260/280 >2 

and RNA integrity number (RIN) >8 were used for subsequent RNA-Seq assay. 

Samples were submitted to Beijing Genomics Institute (BGI) for transcriptome 

sequencing. In brief, magnetic beads with Oligo (dT) were used to isolate mRNA 

and synthesize cDNA. The cDNA was fragmented and then constructed into 

HiSeq 2000 strand-specific libraries.  The 2 × 100-nt paired-end reads were 

generated by Illumina HiSeqTM 2000.  Clean reads filtered from raw sequence 

reads were returned from BGI. The following rules were used by BGI to filter raw 

reads into clean reads: 1) Remove reads in which the percentage of bases with 

quality <10 was >50%. 2) Remove reads in which unknown bases were more 

than 10%. 3) Remove reads with adapters. The clean reads were mapped to 

Mus musculus reference mm10 using STAR (version 2.4.2a) (Dobin et al., 2013). 

Gene-based expression levels were quantified with featureCounts (Liao et al., 

2014). Differential expression of genes across different treatments was 

determined with edgeR (Robinson et al., 2010). Expression of all genes was 

normalized based on the expression of Gusb.  

Bioinformatics profiling 

 The RNA-Seq data on day 3 was filtered by the following criteria: 1) Fold 

change between Nmp4-/- and WT counts per million (cpm) must be greater than 2 

or less than -2; 2) FDR<0.05. In this scenario, only genes that are differentially 

expressed in WT and Nmp4-/- MSPCs would be selected and submitted to IPA. 

The RNA-Seq data on day 7 was analyzed in the same way. The genes passing 

these filters were defined as “candidate NMP4 targets”. IPA produced two 

parameters for each pathway: p-value and activation z-score. While the p-value 

described whether the impact of NMP4 on a specific pathway was statistically 

significant; the activation z-score described whether the pathway was activated 

(z-score>2) or inhibited (z-score<-2) in Nmp4-/- cells. Pathways of interests were 

then selected. Other than direct IPA output, We also manually annotated the 

RNA-seq data set by compiling gene lists of pathways or proteins of special 

interest in osteoblast biology. All of these genes for each pathway or function of 

interests were presented in heat maps made by “ggplot2” package in R (R Core 
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Team). We also determined whether these genes of interest have NMP4 binding 

sites in the promoter and intron regions based on our previous ChIP-Seq study 

(Childress et al., 2015). The genes were defined as “direct candidate NMP4 

targets” if they have binding sites for NMP4 in the promoter and intron regions; 

otherwise, the genes were defined as “indirect candidate NMP4 targets”. 

Seahorse Assay for mitochondria stress test 

 To determine the profiles of mitochondrial respiration between WT and 

Nmp4-/- MSPC cells, Seahorse Assay was performed using XF Cell Mito Stress 

Test Kit (Agilent Technologies). Cells were seeded (70,000 cells/well) into XF 

Cell Culture Microplate 24 hours prior to the experiment. Meanwhile, cartridges 

were hydrated by placing 1mL of calibrant into each of the wells in the utility plate 

and place in a non-CO2 37°C incubator overnight. On the next day, assay 

medium (pH=7.4) that contained XF Base Medium (Agilent Technologies) 

supplemented with 10 mM glucose, 1 mM pyruvate and 2 mM L-glutamine was 

added to XF Cell Culture Microplate and incubated for 1 hour in the non-CO2 

37°C incubator. Four compounds including 1 µM oligomycin, 1 µM carbonyl 

cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and 1 µM Rotenone/ 

Antimycin A were then added sequentially to the ports adjacent to each well. The 

addition of oligomycin leads to suppression of ATP synthase activity, allowing the 

calculation of oxygen consumption coupled to ATP production; FCCP disrupts 

the proton gradient across the mitochondrial membrane and uncouples oxygen 

consumption from ATP production, stimulating the oxygen consumption to the 

maximum; rotenone and antimycin A are inhibitors of electron transfer complex 

(ETC) I and III respectively, the addition of which shut down the whole 

mitochondrial respiration and allow the calculation of non-mitochondrial 

respiration driven by the process other than mitochondria. The plate was then 

loaded into and read by XFe24 Analyzer (Agilent Technologies). During this 

process, the oxygen consumption rate (OCR) was first measured without the 

addition of any compounds. The compounds mentioned above were then 

injected into the wells serially 30 minutes in between and OCRs were measured 

in each phase. The raw data were then normalized with cell count in each well 
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and analyzed via Wave (Agilent Technologies). 

 Several respiration parameters were derived or calculated based on the 

raw Seahorse Assay data. The OCR before the addition of any compounds 

represents the basal level respiration (OCRbasal). ATP production is represented 

by oligomycin-induced OCR decrease (OCRoligomycin-OCRbasal). Proton leak is the 

remaining basal respiration not coupled to ATP production (OCRoligomycin). The 

maximal respiration (OCRFCCP) is induced by FCCP to stimulate the full capacity 

of the respiratory chain. The spare respiratory capacity is measured by the OCR 

increase induced by FCCP (OCRFCCP-OCRbasal) and is an indicator of cell fitness 

and flexibility when an energetic demand is needed. Finally, the non-

mitochondrial respiration (OCRrotenone & antimycin A) is derived upon the addition of 

rotenone and antimycin A to the wells. 

Mice 

 As described before, global Nmp4-/- mice together with their wild type (WT) 

littermates were generated by backcrossing with C57BL/6J mice for 7 

generations (Robling et al., 2009). The mice were maintained in our colony at 

Indiana University Bioresearch Facility, Indiana University School of Dentistry. All 

the husbandry practices and experimental procedures mentioned in this study 

have been approved by our local Institute Animal Care and Use Committee. 

Therapies 

 At 10wks of age WT and Nmp4-/- female mice, intact (estrogen replete) 

were sorted by weight into eight treatment groups into 8 groups: 1) vehicle-

treated WT; 2) vehicle-treated Nmp4-/-; 3) PTH-treated WT; 4) PTH-treated 

Nmp4-/-; 5) RAL-treated WT; 6) RAL-treated Nmp4-/-; 7) PTH+RAL-treated WT; 8) 

PTH+RAL-treated Nmp4-/-. For vehicle control, the mice received daily 

subcutaneous injection of PTH diluent (0.2% BSA/1.0 μN HCl in saline, Abbott 

Laboratory, North Chicago, IL) and RAL diluent (20% hydroxypropyl-β-

cyclodextrin). Mice receiving PTH mono treatment were injected daily 

subcutaneously with one dose of synthetic human PTH (hPTH) 1–34 acetate salt 

(Bachem Bioscience, Inc) at 30 µg/kg and one dose of RAL diluent. Mice 

receiving RAL mono treatment were injected daily subcutaneously with one dose 
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of RAL at 1 mg/kg and one dose of PTH diluent. Mice getting PTH+RAL 

treatment received both PTH and RAL injections subcutaneously every day. All 

the treatments lasted for 7 weeks (Figure 3-1). 

Figure 3-1: At 10wks of age, WT and Nmp4-/- mice were sorted into 8 treatment 

groups by weight and genotype. Each mouse received two sequential 100µl 

injections/day containing the drugs or vehicle(s) as shown for 7wks. Mice were 

euthanized and the bones processed for analysis at 17wks of age. 

WT and Nmp4-/- mice were administered the following treatments:  

 Vehicle-control: inject subcutaneously (sc) 100 µl 0.2% Bovine serum 

albumin/0.1% 1.0 µN HCl in 0.9% NaCl (abbreviation BHN diluent for 

PTH) + 100 µl 20% Hydroxypropyl--Cyclodextrin (abbreviation HBC 

diluent for raloxifene (RAL) diluent)  

 Daily raloxifene (RAL): inject sc 100 µl RAL at 1 mg/kg/d +100 µl BHN  

 Daily parathyroid hormone (PTH): inject sc 100 µl synthetic human PTH 

1–34 acetate salt, Bachem Bioscience Inc, PA, at 30 µg/kg/d + 100 µl 

HBC  

 Daily PTH+RAL: inject sc 100 µl RAL +100 µl PTH. 

Bone Storage 

 After 7-week treatment, femurs, tibias and L5 vertebrae were collected 

from 17-week-old WT and Nmp4-/- mice. Femurs and tibias were soaked in 0.9% 
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saline, wrapped with gauze and preserved in -20°C for mechanical testing. L5 

vertebra were placed in 10% buffered formalin, 4°C for 48 hours before 

transferred to 70% ethanol at 4°C until analyzed. 

Microcomputed tomography (μCT) 

  For µCT analysis of the femur, a section of 2.6 mm at the excised distal 

femoral metaphysis was scanned using a Skyscan 1172. All scans were 

conducted at a 6 µm scan resolution. For the vertebra the whole bone was 

scanned by standard methods (Skyscan 1172). The reconstruction and analysis 

of the bone were then performed using the manufacturer's software. The 

trabecular and cortical bones were analyzed separately. From the three-

dimensional reconstruction, several parameters were acquired using the Skyscan 

software analysis: trabecular bone volume per total volume (BV/TV, %), 

trabecular number (Tb.N, mm-1), trabecular thickness (Tb.Th, mm), trabecular 

spacing (Tb.Sp, mm) and cortical bone area (mm-2). The Skyscan software also 

afforded the following data for femoral cortical bone: periosteal perimeter (mm), 

endocortical perimeter (mm), total area (mm2), marrow area (mm2), bone area 

(mm2), cortical thickness (mm), cortical porosity (%), maximum moment of inertia 

(Imax, mm4), minimum moment of inertia (Imin, mm4), and polar moment of 

inertia (Ip, mm4). 

Three-point bending 

 Left femurs from each animal were slowly thawed to room temperature 

and monotonically tested to failure in three-point bending at a displacement rate 

of 0.025 mm/sec using a support span of 9 mm. The bones were placed in the 

anterior-posterior direction with the anterior side in tension. The moment of 

inertia about the medial-lateral axis and the extreme fiber in the anterior direction 

were obtained from the μCT images using a seven slice region centered on the 

failure site, and were utilized to map load-displacement to stress-strain, 

employing standard beam bending equations. Structural-level and tissue-level 

mechanical properties were then obtained from the load-displacement and 

stress-strain curves.  
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 Typical mechanical parameters obtained through this study included yield 

force and ultimate force. The yield force is the maximal force reached in the 

elastic phase, when the displacement of the bone can be fully recovered if the 

external force is removed. The ultimate force is the maximal force reached before 

the bone fracture occurs. Typical material parameters obtained included yield 

stress and ultimate stress, both of which were generated from yield force and 

ultimate force respectively normalized with the bone geometry.  

 Some other mechanical parameters that interest us include post-yield 

displacement, total displacement and work to yield; post-yield displacement is 

measurement of displacement in the plastic phase and is a measure of ductility; 

total displacement is the displacement from beginning to fracture; work to yield is 

the total energy absorbed during the elastic phase. Some other material 

parameters that interest us include total strain, modulus and resilience; total 

strain is the total deformation withstood by the specimen; modulus is a measure 

of material stiffness; resilience is the energy absorbed per unit volume during the 

elastic phase. 

Influenza infection 

 WT and Nmp4-/- mice were anesthetized with intraperitoneal injection of 

Ketamine/Xylazine. After the anesthetization, the animals were held at an upright 

position and inoculated with influenza A/PR8 (H1N1), ~150 plaque-forming units 

(pfu) (diluted in serum-free medium) drop wise into the nares. The survival rate of 

was then observed over 15 days. 

Statistical analysis (for bone mechanical study and Seahorse Assay) 

 To determine the treatment response of WT and Nmp4-/- mice to 

combination therapies and phenotypic difference between WT and Nmp4-/- 

MSPCs (e.g. oxygen consumption rate), the statistical package JMP version 

7.0.1 was employed (SAS Institute, Cary, NC). Some analyses were performed 

using SAS version 9.4 (SAS Institute, Cary, NC). Data were first screened for 

outliers using the IQR method to evaluate the distribution dispersion and all the 

outliers identified were removed from further analysis. Analyses comparing only 

two groups were run via student’s t test; analyses comparing more than two 
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groups and involving two independent variables (e.g. genotype and treatment) 

were run via 2-way ANOVA followed by Tukey-Kramer post hoc test for multiple 

comparison purposes. The statistic significance was set at p≤0.05. 

 

RESULTS 

Differentiating Nmp4-/- MSPCs mineralize earlier than WT MSPCs 

 One noteworthy phenotype in Nmp4-/- MSPCs is the cells mineralize faster 

than the WT counterpart when cultured in osteogenic medium (Childress et al., 

2015). We further expanded this study to evaluate the mineralization capacity in 

other MSPC cell lines, each of which was derived from a single mouse. Of the six 

MSPC cell lines recruited, two were male WTs, two male Nmp4-/-, one female WT 

and one female Nmp4-/-. More specifically, one WT line and one Nmp4-/- line were 

derived from biological brothers. The mineralization assay showed the Nmp4-/- 

cells mineralized within 7-9 days after initial seeding, whereas WT cells took 15-

24 days to show first sign of mineralization (Figure 3-2). Furthermore, all the 

Nmp4-/- MSPC lines were heavily mineralized 3 days after mineralization first 

started while two WT MSPC lines remained lightly mineralized after 3 days 

(Figure 3-2). The accelerated mineralization in Nmp4-/- MSPCs was consistently 

observed among different cell lines. Our experimental observations that (i) Nmp4-

/- mice exhibit an enhanced PTH-induced increase in bone formation (Childress 

et al., 2015; Robling et al., 2009; Yu Shao, 2017), (ii) that these mice harbor 

more bone marrow osteoprogenitors (Childress et al., 2015; He et al., 2013), and 

(iii) that isolated Nmp4-/- MPSCs exhibit a precocious and enhanced 

mineralization raised a number of questions about the phenotype of these cells. 

Do these cells elaborate a unique bone matrix that leads to improved bone 

material properties? Does loss of Nmp4 lead to alterations in the differentiation 

process? How are the pathways that regulate osteoblast secretion altered? What 

other changes in the transcriptome support the hyper-anabolic phenotype of 

these cells? 
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Figure 3-2: Alizarin red staining of the differentiating WT and Nmp4-/- MSPCs [A] 

Two male and one female Nmp4-/- MSPC lines were stained on the first day when 

mineralization emerged. [B] The same three Nmp4-/- MSPC lines were stained 

again 3 days after their first staining. [C] Two male and one female WT MSPC 

lines were stained on the first day when mineralization emerged. [D] The same 

three WT MSPC lines were stained again 3 days after their first staining. 
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Loss of Nmp4 significantly alters extracellular matrix/mineralization transcriptome 

 NMP4 is expressed in almost all cell types (Nakamoto et al., 2000; 

Thunyakitpisal et al., 2001; Young et al., 2016). Our previous ChIP-Seq study 

showed 2114 core genes were candidate direct targets of NMP4 in 4 different 

cell lines and NMP4 exerts significant impacts on different cellular and biological 

functions (Childress et al., 2015). Moreover NMP4 is context-dependent 

architectural transcription factor that can either upregulate or downregulate a 

certain gene (Torrungruang et al., 2002). To further understand this anti-anabolic 

axis regulated by NMP4, it was helpful for us to acquire the gene expression 

profiles of MSPCs upon osteogenic differentiation. As a follow-up study of our 

previous ChIP-Seq analysis, the RNA-Seq experiment was conducted to 

compare expression profiles between WT and Nmp4-/- MSPCs when 

undifferentiated (Day 3) and during early osteogenic differentiation (Day 7). 

 As the first step of our transcriptome analysis in Nmp4-/- MSPCs, we 

measured the expression of extracellular matrix (ECM) genes and genes 

regulating mineralization. We manually annotated 77 genes (Chiellini et al., 2008; 

Kim et al., 2013; Morgan et al., 2015; Robey and Boskey, 2009; Romanello et al., 

2014) from our RNA-Seq database into the multiple protein classes that comprise 

the osteoblast secretome and generated a heatmap from this gene list (Figure 3-

3). The ratio of Nmp4-/-: WT mRNA expression at Day 3 in culture (uncommitted 

MSPCs) and Day 7 (early osteogenesis) was calculated in the form of log fold 

change (logFC) and was color coded. Based on our previous findings from our 

ChIP-Seq analysis, NMP4 might directly regulates multiple ECM genes, 

particularly the collagenous proteins, proteoglycans, and most importantly those 

affecting bone mechanical properties; Most of these genes were upregulated 

upon loss of Nmp4 (Figure 3-3). For instance, osteocalcin (Bglap2) was 

upregulated 24-fold in differentiating Nmp4-/- MSPCs compared to the WT cells 

on Day 7, which is consistent with our previous published finding that PTH-

treated Nmp4-/- mice exhibited elevated level of serum osteocalcin (Childress et 

al., 2011; He et al., 2013). Furthermore, several genes that were known to 

promote mineralization were also upregulated in Nmp4-/- MSPCs (Figure 3-3). For 
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instance, PHOSPHO1 is a direct target of NMP4 and was upregulated in Nmp4-/- 

MSPCs by 12-fold on Day 3 and Day 7; previous studies showed PHOSPHO1 is 

responsible for generating inorganic phosphate for matrix mineralization while 

ablation of this gene resulted in loss of skeletal mineralization in mice (Stewart et 

al., 2006; Yadav et al., 2011). These findings may explain at least in part the 

accelerated and enhanced mineralization we observed in differentiating Nmp4-/- 

MSPCs. 

 Of interest, the expression of multiple genes involved in mediating bone 

strength was impacted by loss of Nmp4. For example, mRNA expression of 

osteocalcin (Bglap2) and osteopontin (Spp1) were significantly elevated on Day 7. 

Osteocalcin and osteopontin have been implicated in playing roles in bone 

quality, formation of collagen fibrils and their organization, hydroxyapatite 

crystallinity, and bone material properties (Morgan et al., 2015). For example, 

Vashishth and colleagues found that osteocalcin, osteopontin and other non-

collagenous proteins (NCPs) acted as “glue” at the collagen-mineral interface to 

resist the separation of the mineralized fibrils and consequently enhanced bone 

toughness (Morgan et al., 2015; Nikel et al., 2013; Poundarik et al., 2012). 

Therefore anabolic therapies that induce the formation of osteocalcin/ 

osteopontin-enriched bone may further reduce fracture risk. 

 



  

 75 

 

Figure 3-3: Loss of Nmp4 alters the ECM secretome of MSPCs and osteoblasts. 

On the left: The Nmp4-/- osteoprogenitor/osteoblast ECM secretome profile; loss 

of Nmp4 alters 1) the expression of multiple ECM genes which may change the 

matrix composition and thus bone material property; 2) the expression of multiple 

genes that regulate mineralization. On the right: The heatmap of ECM secretome; 

red-upregulation in the null cells; green-downregulation in the null cells; left-Day 

3 expression; right-Day 7 expression; star-direct candidate NMP4 target (ChIP-

Seq). 
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Loss of Nmp4 improved trabecular bone gain in healthy mice treated with PTH 

and PTH+RAL therapies 

  To generate bone samples for our biomechanical analyses, we treated 

healthy, estrogen-replete WT and Nmp4-/- mice with PTH, RAL, PTH+RAL and 

vehicle control for 7 weeks (see Materials and Methods). These results 

recapitulated what we have previously observed (Childress et al., 2015; Robling 

et al., 2009; Yu Shao, 2017), i.e. PTH+RAL was the most efficacious therapy for 

adding trabecular bone to the skeleton and loss of NMP4 enhanced this 

response. We summarize the bone geometry parameters obtained with these 

mice in Figures 3-4, 3-5 and Table 3-1.  

 

Figure 3-4: Femoral BV/TV (17wks of age) for WT and Nmp4-/- mice under all 

treatment groups [A] The bar graph represents the means of femoral BV/TVs for 

all the experimental cohorts. The data were analyzed using a 2W ANOVA using 

genotype and treatment as the independent variables. [B] There was a significant 

genotype effect (p<0.0001). A Student’s t post hoc test showed that the Nmp4-/- 
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mice as a group exhibited a higher femoral BV/TV than the WT mice. [C] There 

was a significant treatment effect (p<0.0001). A Tukey-Kramer HSD post hoc test 

revealed the differences between all the means of the treatment cohorts combing 

WT and Nmp4-/- mice. The mice under the PTH+RAL therapy had the highest 

femoral BV/TV. PTH treatment produced the second highest and this was 

followed by RAL therapy. All the 3 therapies gave rise to higher BV/TV than the 

VEH control [D] There was a strong genotype x treatment (G x T) interaction. A 

Tukey-Kramer HSD post hoc test revealed that loss of Nmp4 improved the 

PTH+RAL- and PTH-induced gain in femoral BV/TV. The data represents 

average ± SD, n=7-14 mice/group. 
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Figure 3-5: L5 (17wks of age) for WT and Nmp4-/- mice under all treatment 

groups. The data were analyzed using a 2W ANOVA using genotype and 

treatment as the independent variables followed by a Student’s t or Tukey-

Kramer HSD post-hoc test. [A] The bar graph represents the means of L5 

BV/TVs for all the experimental cohorts. [B] There was a significant genotype 

effect (p<0.0001). A Student’s t post hoc test showed that the Nmp4-/- mice as a 

group exhibited a higher L5 BV/TV than the WT mice. [C] There was a significant 

treatment effect (p<0.0001). A Tukey-Kramer HSD post hoc test revealed the 

differences between all the means of the treatment cohorts combining WT and 

Nmp4-/- mice using the connecting letter format. [D] There was a strong genotype 

x treatment (G x T) interaction (p=0.0067). A Tukey-Kramer HSD post hoc test 

revealed that loss of Nmp4 improved the PTH+RAL-induced gain in L5 BV/TV. 

The data represents average ± SD, n=7-14 mice/group 
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Table 3-1 

GROUP Total CSA 
(mm2) 

Marrow Area 
(mm2) 

Cortical 
Thickness (mm) 

Periosteal BS 
(mm) 

Endocortical 
BS (mm) 

AP Width (mm) ML Width 
(mm) 

WT VEH 1.770.10 0.9400.049 0.2040.008 5.3930.139 4.1400.114 1.330.03 1.740.06 

Nmp4-/- VEH 1.750.06 0.9130.049 0.2090.009 5.3530.090 4.0780.106 1.320.03 1.730.06 

WT RAL 1.760.09 0.8950.064 0.2160.006 5.3440.090 4.0190.095 1.310.02 1.740.04 

Nmp4-/- RAL 1.730.08 0.8790.039 0.2180.010 5.3320.111 4.0040.103 1.320.04 1.720.04 

WT PTH 1.940.13 0.9690.048 0.2210.010 5.6170.196 4.2130.108 1.390.04 1.820.09 

Nmp4-/- PTH 1.890.04 0.9310.064 0.2300.012 5.5640.087 4.1420.116 1.380.03 1.780.07 

WT 
PTH+RAL 

1.890.10 0.8920.043 0.2390.007 5.5520.152 4.0840.106 1.370.03 1.820.08 

Nmp4-/- 
PTH+RAL 

1.850.09 0.8520.029 0.2490.013 5.4720.124 3.9700.047 1.380.03 1.750.05 

2W ANOVA G: p=0.83 
T: p<0.0001 
PTH: A 
PTH+RAL: A 
VEH: B 
RAL: B 
GXT: p=0.95 

G: p=0.0035 
T: p<0.0001 
PTH: A 
VEH: A 
RAL: B 
PTH+RAL: B 
GXT: p=0.81 

G: p=0.0023 
T: p<0.0001 
PTH+RAL: A 
PTH: B 
RAL: C 
VEH: D 
GXT: p=0.46 

G: p=0.0407 
T: p<0.0001 
PTH: A 
PTH+RAL: A 
VEH: B 
RAL: B 
GXT: p=0.95 

G: p=0.0025 
T: p<0.0001 
PTH: A 
VEH: A 
PTH+RAL: B 
RAL: B 
GXT: p=0.42 

G: p=0.57 
T: p<0.0001 
PTH: A 
PTH+RAL: A 
VEH: B 
RAL: B 
GXT: p=0.60 

G: p=0.0102 
T: p=0.0002 
PTH: A 
PTH+RAL: A 
VEH: B 
RAL: B 
GXT: p=0.41 

Table 3-1: The femoral cortical data of various groups show significant treatment effect. PTH+RAL and PTH-only 

therapies resulted in largest cortical area (CSA) and PTH+RAL resulted in thickest cortical bone. There was no 

difference in femoral cortical area between the WT and Nmp4-/- mice. However, Nmp4-/- mice exhibited a modest 

but significantly greater cortical thickness. Additionally, the Nmp4-/- animals exhibited a moderate but significant 

decrease in femoral marrow area, periosteal bone surface, endocortical bone surface and ML width compared to 

the WT mice. 
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Loss of Nmp4 improves bone structural and estimated material properties 

 To evaluate the bone mechanical and material properties of our treated 

mice, 3-point bending test was performed on the left femurs. For both yield force 

and ultimate force, significant genotype effects were observed (p=0.0058 and 

0.0362 respectively, Figures 3-6A-D), which implies that femurs from Nmp4-/- 

mice could sustain a higher external force prior to failure compared to WT mice. 

Meanwhile, mice (both WT and Nmp4-/-) receiving PTH+RAL therapy acquired 

the highest ultimate force among all the treatment groups; PTH+RAL therapy 

also improved the yield force compared to mice receiving VEH control (Figures 3-

6A-D). The bone material properties, which account for difference in bone 

geometry, also showed significant genotype effect with yield stress and ultimate 

stress (p=0.0092 and 0.0016 respectively, Figures 3-7A-D), suggesting that 

deletion of Nmp4 imparts mechanical benefit by enhancing the tissue properties. 

No G x T interaction was found, indicating the improvement of bone strength 

under PTH+RAL treatment was not further enhanced by disabling Nmp4 (Figures 

3-7A&C). For the treatment effect on bone material property, PTH+RAL gave rise 

to the highest ultimate stress; surprisingly, PTH treatment led to lower yield 

stress than RAL and VEH treatment (Figures 3-7A&C).  

 Interestingly, even though some other mechanical and material 

parameters showed limited or no statistical difference (i.e. p close to or greater 

than 0.05), it was still noticeable that a trend of difference between WT and 

Nmp4-/- bones existed when we analyzed post-yield displacement, total 

displacement, work to yield, total strain, modulus and resilience (Tables 3-2, 3-3 

and Figure 3-8), suggesting that Nmp4-/- bones in general exhibited increased 

bone strength, stiffness and energy absorbed before fracture. Treatment-wise, 

PTH and PTH+RAL therapies improved bone mechanical properties (Table 3-2). 

We summarized the mechanical and material properties obtained in these mice 

in Tables 3-2 and 3-3. These results suggest that loss of Nmp4 improves bone 

material and mechanical properties, irrespective of the treatment status; our 

transcriptome data provides an accurate guide to understanding at the cellular 

and molecular level of the Nmp4-/- phenotype.  
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Figure 3-6: 3-point binding results and statistical analysis of the femur from the 

four treatment groups (17wks of age) for WT and Nmp4-/- mice [A] The bar graph 

represents the means of femoral ultimate force. The data were analyzed using a 

2W ANOVA using genotype and treatment as the independent variables. [B] 

There was a significant genoytpe effect (p=0.0362). A Students t-test reveals that 

loss of Nmp4 modestly but significantly enhances ultimate force. A Tukey-Kramer 

post hoc test showed that PTH+RAL>PTH>RAL=VEH (treatment effect 

p<0.0001). [C] The bar graph represents the means of femoral yield force. [D] 

There was a significant genoytpe effect (p=0.0058). A Students t-test reveals that 

loss of Nmp4 modestly but significantly enhances yield force. A Tukey-Kramer 

post hoc test showed that PTH+RAL>VEH. PTH and RAL did not signficantly 

increase yield force over VEH. However, PTH and RAL were not signficantly 

different from PTH+RAL. The data represents average ± SD, n=7-14 mice/group. 

 

 

  



  

 82 

Figure 3-7: 3-point binding results and statistical analysis of the femur from the 

four treatment groups (17wks of age) for WT and Nmp4-/- mice [A] The bar graph 

represents the means of femoral ultimate stress. The data were analyzed using a 

2W ANOVA using genotype and treatment as the independent variables. [B] 

There was a significant genoytpe effect (p=0.0016). A Student’s t-test reveals 

that loss of Nmp4 modestly but significantly enhances ultimate stress. A Tukey-

Kramer post hoc test showed that PTH+RAL>RAL=PTH>VEH (treatment effect 

p<0.0001). [C] The bar graph represents the means of femoral yield stress. [D] 

There was a significant genoytpe effect (p=0.0092). A Student’s t-test reveals 

that loss of Nmp4 modestly but significantly enhances yield stress. A Tukey-

Kramer post hoc test showed considerable oveall between the treatments but 

RAL and VEH> PTH. The data represents average ± SD, n=7-14 mice/group. 
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Figure 3-8: Select femoral mechanical and material parameters. The data were 

analyzed using a 2W ANOVA using genotype and treatment as the independent 

variables followed by a Student’s t or Tukey-Kramer HSD post-hoc test. [A-C] the 

mechanical parameters post-yield displacement, total displacement and work to 

yield were shown. Refer to Table 3-2 for more details. [D-F] the material 

parameters total strain, modulus and resilience were shown. Refer to Table 3-3 

for more details. The data represents average ± SD, n=7-14 mice/group. 
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Table 3-2 

PARAMETER GENOTYPE TREATMENT GXT COMMENTS 

Yield Force (N) p=0.0058 
Nmp4-/-=12.22     A 
WT      =10.97       B 

p=0.0239 
PTH+RAL=12.61     A 
RAL         =11.76     AB 
PTH         =11.13     AB 
VEH         =10.87       B 

p=0.9252 Loss of Nmp4 significantly enhances YIELD FORCE. PTH+RAL 
therapy significantly elevated yield force compared to VEH 

Ultimate Force (N) p=0.0362 
Nmp4-/-=16.63     A 
WT      =15.90       B 

p<0.0001 
PTH+RAL=18.91   A 
PTH         =17.14     B 
RAL         =15.12       C 
VEH         =13.90       C 

p=0.9252 Loss of Nmp4 significantly enhances ULTIMATE FORCE. 
PTH+RAL therapy elevates ultimate stress over all other treatments 

Displacement to Yield 
(mm) 

p=0.9103 p=0.0149 
RAL         =172.81    A 
VEH         =167.57    AB 
PTH         =155.0      AB 
PTH+RAL =153.51     B 

p=0.2527 RAL has the highest DISPLACEMENT TO YIELD and is 
significantly higher than PTH+RAL but there is considerable overlap 
between the treatments 

Post Yield Displacement 
(mm) 

p=0.1102 p=0.0020 
VEH         =754.34    A 
PTH         =726.78    A 
RAL         =642.02    AB 
PTH+RAL =499.63     B 

p=0.5447 PTH+RAL has the lowest POST YIELD DISPLACEMENT and is 
significantly lower than the VEH and PTH treatments 

Total Displacement 
(mm) 

p=0.1160 p=0.0011 
VEH          =921.92    A 
PTH          =884.59    A 
RAL          =815.41    AB 
PTH+RAL =654.05      B 

p=0.6091 PTH+RAL has the lowest TOTAL DISPLACEMENT and is 
significantly lower than the VEH and PTH treatments 

Stiffness (N/mm) p=0.3316 p<0.0001 
PTH+RAL=131.66    A 
PTH         =120.97    A 
RAL         =105.74      B 
VEH         =100.06      B 

p=0.7575 PTH+RAL and PTH enhance femoral STIFFNESS compared to 
RAL and VEH 

Work to Yield (mJ) p=0.0438 
Nmp4-/-=1.11     A 
WT      =0.975     B 

p=0.1011 p=0.3990 Loss of Nmp4 enhances WORK TO YIELD 

Post Yield Work (mJ) p=0.8291 p=0.0103 
PTH          =9.84      A 
RAL          =7.87        B 
PTH+RAL =7.83        B 
VEH          =7.77        B 

p=0.7762 PTH has the highest POST YIELD WORK and there is no 
difference between the other treatments 

Total Work p=0.8989 p=0.0159 
PTH          =10.78      A 
RAL          =9.03        AB 
PTH+RAL =8.95          B 
VEH          =8.78          B 

p=0.8461 PTH has the highest TOTAL WORK and is significantly higher than 
PTH+RAL and VEH 
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Table 3-2: The femoral mechanical properties of WT and Nmp4-/- mice. Loss of Nmp4 improved the yield force, 

ultimate force and work to yield. PTH and PTH+RAL treatments increase bone strength, stiffness and energy 

absorbed during the experiment. See comments for details of each parameter. 
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Table 3-3 

PARAMETER GENOTYPE TREATMENT GXT COMMENTS 

Yield Stress (MPa) p=0.0092 
Nmp4-/-=116.09   A 
WT      =106.31     B 

p<0.0001 
RAL         =123.34   A 
VEH         =113.48   AB 
PTH+RAL=110.39   AB 
PTH         =97.60       B 

p=0.4417 Loss of Nmp4 significantly enhances YIELD STRESS. RAL is 
significantly higher than PTH but there is considerable overlap 
between the treatments 

Ultimate Stress (MPa) p=0.0016 
Nmp4-/-=159.92   A 
WT      =153.35     B 

p<0.0001 
PTH+RAL=169.84   A 
RAL         =157.48     B 
PTH         =153.63     B 
VEH         =145.60       C 

p=0.8526 Loss of Nmp4 significantly enhances ULTIMATE STRESS. 
PTH+RAL therapy elevates ultimate stress over all other 
treatments 

Strain to Yield (me) p=0.8617 p=0.5483 
 

p=0.1791 STRAIN TO YIELD was not influenced by genotype or treatment 

Total Strain (me) p=0.1310 p=0.0016 
PTH         =90864.45   A 
VEH         =90703.78   A 
RAL         =79736.66  AB 
PTH+RAL =66816.31   B 

p=0.6425 PTH+RAL and RAL has the lowest TOTAL STRAIN and the 
former is significantly lower than the VEH and PTH treatments 

Modulus (GPa) p=0.0635 p=0.0520 
 

p=0.3999 There is a nearly significant increase in the bone MODULUS with 
loss of Nmp4  

Resilience (MPa) p=0.1304 p=0.0031 
RAL          =1.13       A 
VEH         =1.01       AB 
PTH+RAL=0.94       AB 
PTH         =0.84         B 

p=0.6545 RAL is significantly higher than PTH but there is considerable 
overlap between the treatments 

Toughness (MPa) p=0.8913 
 

p=0.0553 p=0.7901 TOUGHNESS was not influenced by genotype or treatment 

Table 3-3: The femoral material properties of WT and Nmp4-/- mice. Loss of Nmp4 improved the yield stress and 

ultimate stress. See comments for details of each parameter. 
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Loss of Nmp4 biased MSPCs towards osteogenesis 

 Does loss of Nmp4 lead to alterations in the differentiation process? Our 

previous study indicated that although loss of Nmp4 leads to precocious 

mineralization in MSPCs, the alkaline phosphatase activity as an indicator of 

osteoblast activity remains the same between the WT and Nmp4-/- MSPCs during 

osteogenic differentiation (Childress et al., 2015). As the next step of our analysis, 

we then examined the expression profiles of some select MSPC markers as well 

as differentiation markers. We observed that many well-accepted MSPC markers, 

including Vcam1 (CD106), Atxn1 (SCA1) and Nes (Nestin), were each expressed 

(absolute read count mean>10) in both WT and Nmp4-/- MSPCs on Day 3 and 

Day 7 (Table 3-4). On Day 3, expression of Atxn1 and Nes were elevated in the 

Nmp4-/- MSPCs, whereas Vcam1 was downregulated. On Day 7, Vcam1 and Nes 

were downregulated in the null cells. Furthermore, Atxn1 was maintained at the 

similar level with the WT (Table 3-4). Two key transcription factors Runx2 and 

Sp7 that promote osteogenesis exhibited no significant expression difference on 

both days with |log2(cpm fold change)|<1 (Figure 3-9,Table 3-4). By comparison, 

the key transcription factors that drive adipogenesis and chondrogenesis were 

largely downregulated in the null cells (e.g. Ppapγ, Sox5 and Sox9, Figure 3-9). 

The transcription factors Atf4 and Ddit3 were over-expressed in the Nmp4-/- 

MSPCs (Figure 3-9). These proteins drive osteoblast differentiation (Pereira et al., 

2004; Saito et al., 2011). They also act cooperatively to induce multiple genes 

involved in amino acid synthesis, transport and protein delivery (e.g. ribosome 

biogenesis, tRNA charging, and the UPR) (Dey et al., 2012; Fusakio et al., 2016). 

Therefore, Atf4 and Ddit3 over-expression may contribute to the precocious and 

enhanced mineralization observed in Nmp4-/- cell cultures. We conclude that loss 

of Nmp4 enhances part of the osteogenic differentiation process in MSPCs, 

possibly by promoting their secretory capacity; the Nmp4-/- MSPCs are more 

biased towards osteogenesis but we lack clear evidence to claim the WT and 

Nmp4-/- MSPCs are completely two different cell types by Day 7 of differentiation. 
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Figure 3-9: Loss of Nmp4 biases MSPCs towards osteogenic lineage. On the left: 

heatmap for the cell fate/differentiation transcription factor (TF) expression; red-

upregulation in the null cells; green-downregulation in the null cells; left-Day 3 

expression; right-Day 7 expression; star-direct candidate NMP4 target (ChIP-

Seq); the genes were clustered into 3 categories: TFs promote 

osteogenic/chondrogenic/adipogenic lineages. On the right: on Day 3 several key 

TFs (e.g. Sox5, Sox9, Pparγ and Cebpα) that promote chondrogenesis and 

adipogenesis were downregulated in the Nmp4-/- MSPCs; while on both days 

several key TFs (e.g. Atf4, Tcf4 and Ddit3) driving osteogenesis were 

upregulated in the Nmp4-/- MSPCs; Notice Runx2 and Sp7 exhibit no significant 

expression difference. 
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Table 3-4 

MSPC Markers 

 Day 3 Day 7 

Gene WT-CPM mean Nmp4-/--CPM mean Fold change WT-CPM mean Nmp4-/--CPM mean Fold change 

Vcam1 246.864 93.325 0.378 187.210 72.227 0.386 

Atxn1 31.907 65.300 2.047 24.570 29.194 1.188 

Nes 19.965 66.607 3.336 16.271 5.059 0.311 

Osteogenic Differentiation Markers 

 Day 3 Day 7 

Gene WT-CPM mean Nmp4-/--CPM mean Fold change WT-CPM mean Nmp4-/--CPM mean Fold change 

Sp7 66.479 49.529 0.745 139.111 173.428 1.247 

Runx2 91.622 166.514 1.817 114.618 213.123 1.860 

Table 3-4: The expression profiles of select MSPC markers and osteogenic differentiation markers in WT and 

Nmp4-/- MSPCs on Day 3 and Day 7. On Day 3, Atxn1 and Nes were elevated in the Nmp4-/- MSPCs; while Vcam1 

was downregulated; On Day 7, Vcam1 and Nes were downregulated in the null cells; while Atxn1 was maintained 

at the similar level with the WT. Two key transcription factors Runx2 and Sp7 that promote osteogenesis exhibited 

no significant expression difference on both days with cpm fold change<2. 
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Loss of Nmp4 promotes pathways that directly regulate osteoblast function and 

bone formation 

 To further explore the impact of NMP4 on the development of the 

osteoblast phenotype, we expanded our analysis of RNA-Seq data. Data from 

Day 3 and Day 7 were separated into two datasets; any genes with log2(cpm fold 

change) or logFC>1 or <-1 and FDR<0.05 were selected and uploaded to IPA; 

the predicted pathways were further filtered by p-value<0.05. More than 200 

pathways were identified, suggesting once again that NMP4 impacts the 

activities of many molecular pathways.  

 Multiple pathways that directly affect osteoblast function and bone 

formation were perturbed by the loss of Nmp4. The transforming growth factor 

beta (TGFβ) signaling pathway was significantly activated (p<0.0001, z 

score=3.29 on Day 3; p=0.0003, z score=2.5 on Day 7; see Materials and 

Methods for explanation; Table 3-5); several genes involved in this pathway were 

upregulated in Nmp4-/- MSPCs, such as Smad2, Smad4 and Tgfbr2 (Figure 3-

10A). This pathway is particularly relevant to the Nmp4 phenotype. TGFβ 

signaling favors bone formation by promoting osteoprogenitor enrichment, pre-

osteoblast commitment and early differentiation (Crane et al., 2016; Matsunobu 

et al., 2009; Tang et al., 2009). This finding was consistent with what we 

observed in vivo and in vitro (Childress et al., 2015; He et al., 2013). The IGF-1 

pathway is highly upregulated on Day 3 (z score=4.13); on Day 7, this pathway 

does not pass our filter (p-value=0.0562) but it is still highly activated (z 

score=2.59) (Table 3-5). Our ChIP-Seq data indicated multiple genes in this 

pathway are candidate direct targets of NMP4 (Childress et al., 2015) and here 

we show 49 genes affected by NMP4 in MSPCs are involved in this pathway 

(Figure 3-10B). For instance, the secreted IGF binding proteins (IGFBPs: Igfbp2, 

Igfbp3, Igfbp4, Igfbp5 and Igfbp6) are all affected by NMP4 and are known to 

affect osteogenesis via direct binding to IGF-1 in the blood circulation; Igf1r and 

several of its downstream pathway factors (e.g. MAP kinases, Grb10, Akt2, Akt3 

and Ptpn11) are upregulated in the null cells (Figure 3-10B). Previous studies 

have shown IGF-1 signaling is required for the anabolic action of PTH (Bikle et 
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al., 2002; Esen et al., 2015). IGF-1 signaling has also been shown to be 

important for osteoblast differentiation and mineralization (Fujita et al., 2004; 

Zhang et al., 2002). All of these again matched the anabolic phenotype we 

observed in Nmp4-/- animal and cells (Childress et al., 2015; He et al., 2013). 

 Other pathways that play a role in osteoblast development & functions 

such as BMP signaling (z score=3.4 on Day 3 and 2.84 on Day 7) and Wnt 

pathway (z score= 1.73 on Day 3 and 1.04 on Day 7) are also under impact from 

NMP4 (Figures 3-10C&D, Table 3-5). We paid particular interest to these two 

pathways since just like IGF-1 pathway, Wnt is known to mediate the anabolic 

action of PTH; both Wnt and BMP pathways can promote osteoblast 

mineralization (Guo et al., 2010; Rawadi et al., 2003). All of these 4 pathways 

mentioned above may mediate the Nmp4-/- phenotype and shed light on the 

molecular mechanism of NMP4.   
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Figure 3-10: Loss of Nmp4 activates multiple pathways that promote 

osteoprogenitor expansion, osteoblast differentiation and bone formation. The 

heatmaps presented include genes with 1) FDR<0.05 and 2) fold change of 

Nmp4: WT>2 or <-2 for [A] IGF pathway, [B] BMP pathway, [C] TGFβ pathway 

and [D] Wnt pathway. Red-upregulation in the null cells; green-downregulation in 

the null cells; left-Day 3 expression; right-Day 7 expression; star-direct candidate 

NMP4 gene target (ChIP-Seq). 
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Bone-Related Pathways p-value Z-SCORE 
# OF 
GENES 

DAY 3 IGF-1 Signaling 2.69153E-05 4.131 40 

DAY 7 IGF-1 Signaling 0.056234133 2.558 31 

DAY 3 Ephrin Receptor Signaling 8.70964E-06 3.479 60 

DAY 7 Ephrin Receptor Signaling 3.80189E-05 3.569 62 

DAY 3 Glucocorticoid Receptor Signaling 1.34896E-07   96 

DAY 7 Glucocorticoid Receptor Signaling 0.003162278   84 

DAY 3 Wnt/β-catenin Signaling 8.70964E-07 1.732 61 

DAY 7 Wnt/β-catenin Signaling 0.000724436 1.043 56 

DAY 3 STAT3 Pathway 6.91831E-09 3.781 37 

DAY 7 STAT3 Pathway 0.012589254 3 25 

DAY 3 Estrogen Receptor Signaling 1.91E-04   43 

DAY 7 Estrogen Receptor Signaling 0.00676083   41 

DAY 3 VEGF Signaling 2.0893E-06 4 43 

DAY 7 VEGF Signaling 0.000512861 3.43 38 

DAY 3 TGF-β Signaling 1.25893E-06 3.286 37 

DAY 7 TGF-β Signaling 0.000295121 2.502 34 

DAY 3 BMP signaling pathway 0.001380384 3.4 27 

DAY 7 BMP signaling pathway 0.064565423 2.837 23 

 

Table 3-5: Manually annotated bone-related pathways affected by NMP4. The p-

value of each pathway, predicted activation z-score and number of genes being 

affected by NMP4 were also listed. 
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Loss of Nmp4 affects unfolded protein response (UPR) and ribosomal biogenesis  

 Our transcriptome analysis also revealed that several pathways affected 

by NMP4 are important in regulating protein synthesis and associated functions 

(Table 3-6). Among these pathways, the UPR pathway together with the c-MYC-

mediated ribosomal biogenesis has been studied by us before (Young et al., 

2016). Based on the IPA output, 34 out of 63 UPR genes were found significantly 

altered in the null cells on either Day 3 or Day 7; majority of these genes’ 

expression was further intensified (upregulated or downregulated) on Day 7 

(Figure 3-11). Some genes that play major roles in regulating the UPR pathway 

such as Atf4, Atf6, Xbp1, Gadd34 (Ppp1r15a) and Chop (Ddit3) were highly 

upregulated, suggesting a major alteration of the UPR pathway in the null cells 

(Figure 3-11), although the activation z-score could not be determined by IPA. 

Since MSPCs and osteoblasts are professional secretory cells that rely heavily 

on functioning ER for protein processing, it is likely that UPR pathway plays a 

critical role in bone formation. For instance, Perk-/- mice were found to develop 

osteopenia and studies also indicated CHOP can induce osteoblast 

differentiation (Pereira et al., 2004; Wei et al., 2008).  

 Of these altered UPR genes, ATF4 is highly expressed in osteoblast and 

modestly upregulated in Nmp4-/- MSPCs (2-fold on Day 3 and 4-fold on Day 7, 

Figure 3-11). Not only does it induce expression of key UPR genes Gadd34 and 

Chop, it also plays a central role in osteoblast differentiation and bone formation 

via crosstalk with other pathways important for osteoblast functions. For instance, 

ATF4 is known to be able to promote osteogenesis from MSPCs via β-catenin 

and RUNX2 (Lin et al., 2010; Yu et al., 2013). Another study confirmed ATF4 

enhanced osteoblast function via interaction with BMP2 pathway (Saito et al., 

2011). 

 According to our previous finding, GADD34 and c-MYC are important 

mediators of the Nmp4 null phenotype, making the null cells super-secretory 

(Young et al., 2016). Our transcriptome analysis further confirmed this finding. 

GADD34 was upregulated by 6-fold on Day 3 and 16-fold on Day 7 in the null 

cells; while c-MYC was modestly upregulated by 3-fold on both days in the null 
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cells (Figure 3-11). A previous study showed c-MYC is capable of enhancing 

BMP2-induced osteogenesis (Piek et al., 2010). 

 To evaluate the impact of GADD34 on precocious mineralization of Nmp4-

/- MSPCs, we performed preliminary study by challenging WT and Nmp4-/- 

MSPCs with salubrinal, a selective inhibitor of GADD34 during osteogenic 

differentiation. The mineralization in one null MSPC line under salubrinal 

treatment was largely attenuated on Day 7 when the null cells first started to 

mineralize (Figure 3-12). The extent of mineralization for the null MSPC line was 

similar to that of the WT MSPC line on Day 12, when the WT cells first started to 

mineralize (Figure 3-12). We observed inhibition of salubrinal-induced 

mineralization in another set of WT and Nmp4-/- lines. Notice that the inhibition of 

GADD34 also affected the mineralization of the WT line (Figure 3-12). This raises 

the question whether the null cells are more sensitive to the inhibition of GADD34 

and further quantitative studies are required to address this question. 

 

 

Figure 3-11: Loss of Nmp4 alters UPR pathways and enhances ribosomal 

biogenesis. On the left: Loss of Nmp4 boosts osteoblast matrix production & 
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delivery via enhanced ribosome biogenesis and altered UPR pathways; 1) c-

MYC drives ribosome biogenesis fueling protein synthesis; 2) BiP modulates 

protein folding; 3) increase in ER protein load triggers UPR; 4) PERK 

phosphorylation of eIF2α halts protein synthesis; 5) UPR activates Atf4 and Chop; 

6) ATF4/CHOP activate Gadd34, releasing protein synthesis block, which further 

drive osteoblast differentiation and activate amino acid metabolism. On the right: 

heatmap for the UPR pathways and ribosome biogenesis; red-upregulation in the 

null cells; green-downregulation in the null cells; left-Day 3 expression; right-Day 

7 expression; star-direct candidate NMP4 target (ChIP-Seq). 
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Figure 3-12: Inhibition of GADD34 partially rescues the enhanced mineralization 

phenotype of the Nmp4-/- MSPCs. On the left: the alizarin red staining of one 

Nmp4-/- MSPC line under vehicle and 10µM salubrinal treatments on Day 7. On 

the right: the alizarin red staining of one WT MSPC line under vehicle and 10µM 

salubrinal treatments on Day 12. 
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Protein Synthesis and Associated Pathways p-value Z-SCORE 
# OF 
GENES 

DAY 3 Regulation of eIF4 and p70S6K Signaling 7.14E-06 3.16 56 

DAY 7 Regulation of eIF4 and p70S6K Signaling 0.001122018 2.558 52 

DAY 3 tRNA Charging 1.26E-01   21 

DAY 7 tRNA Charging 1.47911E-07   24 

DAY 3 Unfolded protein response 2.99E-02   17 

DAY 7 Unfolded protein response 1.86209E-06   28 

DAY 3 mTOR Signaling 4.90E-04 2.949 61 

DAY 7 mTOR Signaling 0.000776247 2.714 64 

DAY 3 AMPK Signaling 9.33254E-05 1.98 64 

DAY 7 AMPK Signaling 0.002630268 1.64 59 

DAY 3 NRF2-mediated Oxidative Stress Response 1.02329E-06 4.333 67 

DAY 7 NRF2-mediated Oxidative Stress Response 2.51189E-05 4.226 68 

DAY 3 Assembly of RNA Polymerase II Complex 0.000870964   20 

DAY 7 Assembly of RNA Polymerase II Complex 0.001380384   21 

DAY 3 Glycolysis I 0.023442288   14 

DAY 7 Glycolysis I 0.00025704   14 

 

Table 3-6: Manually annotated protein synthesis and associated pathways 

affected by NMP4. The p-value of each pathway, predicted activation z-score 

and number of genes being affected by NMP4 were also listed.  
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Loss of Nmp4 alters glycolysis and enhances mitochondrial respiration capacity 

 To fulfill the increased anabolic activity in Nmp4 null MSPCs, the cells 

need a generally higher level of catabolism for glucose and other energy sources 

(Funes et al., 2007; Mylotte et al., 2008). As revealed by our IPA output, 

glycolysis was significantly impacted by loss of Nmp4 (Table 3-6). Combined with 

manual annotation (Damman et al., 2015; Soltysova et al., 2015) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database, the data suggested 

multiple genes involved in glycolysis were significantly altered; these included but 

not limited to the glucose transporter genes Slc2a1, Slc2a3 and Slc2a4, genes 

encoding for key enzymes in glycolysis: Aldoa, Pgk1, Eno3 and Pkm, regulatory 

genes such as Pdk1, which inhibits pyruvate from going into the tricarboxylic acid 

(TCA) cycle as well as lactate transporter genes such as Slc16a3 (Figure 3-13). 

Interestingly, several genes encoding for enzymes in the TCA cycle: Pdha1, 

Pdhb and Pdhx were also mildly upregulated (Figure 3-13).  

 The Seahorse Mito Stress Assay was performed to evaluate the impact of 

NMP4 on oxidative phosphorylation in MSPCs. One WT MSPC line and one 

Nmp4-/- MSPC line were used to measure their OCRs under challenges from 

different drugs. The null cells exhibited higher OCRs within each phase of the 

assay, indicating a higher respiratory rate at basal and maximal level of these 

cells (Figures 3-14A-C). The ATP production is higher in the Nmp4-/- MSPCs 

(Figures 3-14E), suggesting a higher energy production and consumption level in 

these cells. The null cells also presented higher spare respiratory capacity 

(Figures 3-14D). This indicated these cells might have larger potential to cope 

with the increasing energetic demand to meet their metabolic challenge by 

quickly oxidizing the substrates (e.g. sugar, fat and protein). This finding fits well 

into our RNA-Seq result that loss of Nmp4 enhances cellular metabolism. 
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Figure 3-13: Loss of Nmp4 impacts aerobic glycolysis and oxidative 

phosphorylation. Genes important for glycolysis and oxidative phosphorylation 

were generated from IPA and also manually annotated. In the heatmap: red-

upregulation in the null cells; green-downregulation in the null cells; left-Day 3 

expression; right-Day 7 expression; star-direct candidate NMP4 target (ChIP-

Seq). 
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Figure 3-14: The oxidative phosphorylation activity of WT and Nmp4-/- MSPCs. 

[A] the oxygen consumption rates of WT and Nmp4-/- MSPCs upon different drug 

challenges; the drugs (i.e. oligomycin, FCCP and rotenone & antimycin A) were 

sequentially added to the culture; OCRs were normalized with cell number [B-E] 

to compare the aerobic respiration levels between WT and Nmp4-/- MSPCs, 

student’s t test was used after basal respiration (p=0.053), maximal respiration 

(p=0.014), spare respiratory capacity (p=0.019) and ATP production (p=0.044) 

were measured or calculated. The data represents average ± SD. 
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Loss of Nmp4 impacts immunomodulation 

 MSPC is an important and active player in immunomodulation; more 

specifically MSPCs quench down immune response by inhibiting proliferation, 

differentiation and activation of multiple immune cell types (Abomaray et al., 2015; 

Cassatella et al., 2011; Gerdoni et al., 2007; Jiang et al., 2016; Selmani et al., 

2008). The toll-like receptors (TLRs) were altered in Nmp4-/- cells on Day 3 (z-

score=-0.5, Table 3-7). Tlr1-Trl3 and Tlr5-Tlr8 were significantly attenuated in 

mRNA expression in the Nmp4-/- cells (Figure 3-15A). Furthermore, multiple 

immunomodulation pathways in interleukin system were upregulated (Table 3-7). 

Totally 93 genes directly or indirectly involved in IL-6 signaling are affected by 

NMP4 (z-score=2.897 on Day 3 and 2.596 on Day 7) (Figure 3-15B, Table 3-7).  

These include but not limit to major MAP kinase (MAPK) pathway components, 

AKT family, PI3K complex as well as several downstream targets such as Vegf 

and Socs3. All of these suggested an enhanced anti-inflammatory effect of 

Nmp4-/- MSPCs. 

 To further evaluate the immunomodulatory effect of MSPCs upon loss of 

Nmp4, we performed preliminary study by infecting both WT and Nmp4-/- mice 

with influenza. Our data showed Nmp4-/- mice exhibited improved survival to 

auto-immune response induced by influenza infection, as 15 days after influenza 

infection, there was no fatality incurring to the null mice, while 60% of WT mice 

were dead (Figure 3-15C). This suggested NMP4 plays a major role in 

immunomodulation. 

  



  

 104 

 

Figure 3-15A: Loss of Nmp4 impacts immunomodulation, typically through TLR 

and interleukin pathways. [A] On the left: the schematic of the toll-like receptor 

signaling pathway; The TLR pathway was significantly enriched for genes 

showing at least a 2-fold increase or decrease in expression (IPA p≤0.05, z 

score=-0.5). Tlr1-Trl3 and Tlr5-Tlr8 were significantly attenuated in mRNA 

expression in the Nmp4-/- cells. On the right: The heatmap of TLR pathway on 

Day 3 only; red-upregulation in the null cells; green-downregulation in the null 

cells. 

  



  

 105 

 
Figures 3-15B&C: [B] heatmap for the IL-6 pathway; red-upregulation in the null 

cells; green-downregulation in the null cells; left-Day 3 expression; right-Day 7 

expression. [C] Percentage survival curve of influenza-infected WT and Nmp4-/- 

mice. N=5 mice per group. 
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Immunomodulation p-value Z-SCORE 
# OF 
GENES 

DAY 3 IL-1 0.000933254  0.816 32 

DAY 7 IL-1 0.037153523 1.964 28 

Day 3 IL-2 7.94328E-06 2.353 29 

Day 7 IL-2 0.033884416 1.789 21 

DAY 3 IL-3 2.5704E-05 1 33 

DAY 7 IL-3 0.095499259 1.342 24 

Day 3 IL-4 0.000489779   32 

Day 7 IL-4  0.047863009   27 

Day 3 IL-6 7.24436E-05 2.897 44 

Day 7 IL-6 0.016595869 2.596 39 

Day 3 IL-8 1.20226E-09 3.064 77 

Day 7 IL-8 0.000331131 2.994 65 

 

Table 3-7: Manually annotated immunomodulation pathways affected by NMP4. 

The p-value of each pathway, predicted activation z-score and number of genes 

being affected by NMP4 were also listed. 
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DISCUSSION 

 The analysis on MSPC secretome showed Loss of Nmp4 significantly 

altered extracellular matrix/mineralization transcriptome, which might exert direct 

impact on bone mechanical and material properties in Nmp4-/- animal. Our bone 

mechanical study involving PTH and PTH+RAL combo therapies first 

recapitulated what we found in the past that both of these therapies can result in 

more trabecular bone in the distal femur and L5; meanwhile loss of Nmp4 further 

enhances the efficacy of these two therapies in both healthy and OVX mice. On 

the other hand, however, increased bone turnover and enhanced bone formation 

often lead to compromised bone quality; for instance, sodium fluoride (NaF) 

enhances bone formation but the newly formed trabecular bone under NaF 

treatment is weak with abnormality in the mineral deposit and less trabecular 

connectivity (Carter and Beaupré, 1990; Everett, 2011; Riggs et al., 1990; 

Søgaard et al., 1994). Mechanical load can promote bone anabolism but high 

mechanical load often triggers the formation of woven bone with disorganized 

bone material and inferior mechanical property (Hernandez et al., 2004; McBride 

and Silva, 2012). Our study showed loss of Nmp4 enhanced bone formation 

under PTH or PTH+RAL treatments, but this was not at the cost of losing bone 

mechanical properties. This study addresses important question we have with 

our NMP4 knowledge and is crucial for any further evaluation of this pre-clinical 

model. 

 The Nmp4 null MSPCs exhibited accelerated mineralization capacity in 

osteogenic medium and this conclusion was further consolidated in this study by 

using MSPC cell lines derived from different mice of different genders. One pair 

of MSPC cell lines derived from WT and Nmp4-/- brothers were used in this study, 

making the evidence more compelling. Our transcriptome analysis revealed 

multiple genes promoting adipogenesis and chondrogenesis were dampened 

and several pathways that promote osteoblast differentiation/proliferation were 

upregulated. Notice that osteogenic differentiation is a delicate, complex and 

fine-tuned process; it requires multiple transcription factors and signaling 

pathways to exert their regulatory effects coherently. Loss of Nmp4 clearly alters 
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part of this phenotype. For instance, Nmp4-/- MSPCs over-expressed Atf4 and 

Ddit3, both of which promote osteogenesis (Pereira et al., 2004; Saito et al., 

2011), but these two transcription factors also play a second role in UPR 

pathway, protein synthesis and secretion (Dey et al., 2012; Fusakio et al., 2016; 

Willy et al., 2015), which implies the upregulation of these two genes might not 

necessarily correspond to enhancement of early osteogenesis. Furthermore, 

although BMP and TGFβ signaling pathways were highly activated in the null 

cells, several genes in these pathways (e.g. Bmp3 and Runx3) were known to 

either inhibit osteogenesis or favor the differentiation towards other lineages 

(Kokabu et al., 2012; Soung et al., 2007; Yoshida et al., 2004). Most importantly, 

the master osteogenic transcription factors RUNX2 and OSTERIX exhibited no 

significant expression difference between WT and Nmp4-/- cells. Collectively, all 

of these suggest that the Nmp4-/- MSPCs are more biased towards osteogenesis 

as part of the differentiation phenotype is activated, which coincides with our 

previous findings of precocious mineralization in Nmp4-/- MSPCs and elevated 

osteoprogenitor number in the null animal (Childress et al., 2015; He et al., 2013). 

 Our previous ChIP-Seq analysis and TLDA assay showed that NMP4 

exerts its impact on a great variety of pathways and biological/cellular functions 

(Childress et al., 2015). Our RNA-Seq data supported this finding. The 

expressions of hundreds of genes were altered with the loss of Nmp4. Loss of 

Nmp4 impacts IGF1, Wnt, BMP, and TGF-β signaling pathways, all of which 

were known to promote osteoblast differentiation, proliferation, mineralization and 

bone formation (Day et al., 2005; De Boer et al., 2004; Hughes-Fulford and Li, 

2011; Jia and Heersche, 2000; Mbalaviele et al., 2005; Raucci et al., 2008; 

Suzuki et al., 2014; Tonna et al., 2014; Xing et al., 2010). Most importantly, 

crosstalk between these pathways is required for osteoblast development. For 

example, in one study Wnt/β-catenin can activate BMP2 expression in osteoblast 

(Zhang et al., 2013). On the contrary, BMP2 signaling can activate Dkk1 and 

Sost, the inhibitors of Wnt signaling (Kamiya et al., 2010). TGF-β upregulates 

IGF1 expression in osteoblast, while prolonged exposure to TGF-β suppresses 
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osteoblast differentiation via inhibition of IGF1 expression (Ochiai et al., 2012; 

Okazaki et al., 1995).  

 A large number of pathways targeted by NMP4 regulate the protein 

synthesis and associated functions, particularly in cell metabolism, homeostasis 

and stress response. Loss of Nmp4 results in upregulation of secretome delivery 

(expanded ER capacity and UPR pathway), protein synthesis (ribosome 

biogenesis, tRNA charging, amino acid biosynthesis), redox maintenance and 

bioenergetics & biosynthesis (Figure 3-16). Two important mediators: mTOR and 

c-MYC are involved in the upregulation of protein synthesis (Figure 3-16). Loss of 

Nmp4 also impacts the TCA cycle via upregulating aerobic glycolysis, the same 

mechanism exploited by cancer cells to fulfill their high metabolic demands 

(Cairns et al., 2011; Daye and Wellen, 2012; Hsu and Sabatini, 2008; Wise and 

Thompson, 2010) (Figure 3-16). All of these altered protein synthesis and 

associated pathways correlated with increased cell proliferation & differentiation 

and decreased apoptosis. Meanwhile, we also noticed an increased expression 

of Pthr and gp130, suggesting a hyper-responsiveness to PTH (Figure 3-16). 

These changes may explain the anabolic phenotype we observed in Nmp4-/- mice, 

though further confirmatory studies are required.  

 Glycolysis, especially lactate-producing aerobic glycolysis plays an 

essential role in regulating osteoblast function. One study showed both aerobic 

glycolysis and oxidative phosphorylation were utilized during osteoblast 

differentiation (Guntur et al., 2014). Wnt signaling as a crucial pathway 

stimulating osteoblast differentiation was found to induce aerobic glycolysis 

during this process (Esen et al., 2013). Moreover, a recent study showed 

intermittent PTH induced IGF1 signaling, which in turn promoted bone anabolism 

via aerobic glycolysis (Esen et al., 2015). All of these findings make glycolysis as 

well as oxidative phosphorylation promising targets in the anti-anabolic axis of 

NMP4 for further study. Additionally, as shown by the IPA output, tRNA charging 

was also a major target of NMP4. Previous studies implied this pathway might 

also be able to contribute to osteogenesis via promoting osteoblast survival and 

function (Park et al., 2009; Yamaguchi and Sugimoto, 2000). Together with 
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enhanced c-MYC mediated ribosomal biogenesis and the UPR pathway, the 

Nmp4 null MSPCs become super-secretory and hyper-anabolic. 

 

 

Figure 3-16: The Nmp4 Anti-Anabolic Bone Axis. Nmp4 is an apex regulator of 

several pathways that are important for protein synthesis and associated 

functions, driving PTH-induced osteoprogenitor proliferation and osteoblast bone 

matrix synthesis and delivery. Not shown, the loss of Nmp4 biases MSPC 

lineage commitment toward osteogenesis. Only a few of the Nmp4 target genes 

(direct and indirect based on genomic and transcriptomic data) are shown. 
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 Finally, our study showed that NMP4 impacts pathways involving 

immunomodulation. MSPCs are known to suppress immune response by 

inhibiting proliferation, differentiation and activation of multiple immune cell types 

(Abomaray et al., 2015; Cassatella et al., 2011; Gerdoni et al., 2007; Jiang et al., 

2016; Selmani et al., 2008). Multiple reports have associated the 

immunomodulation function of MSPCs with interleukin families and TLR 

pathways. For instance, MSPCs exhibit anti-inflammatory effect via secreting IL-1, 

IL-6 and expressing Tlr3/Tlr4 (Liotta et al., 2008; Melief et al., 2013; Ortiz et al., 

2007). More interestingly, our preliminary data showed that the Nmp4-/- mice 

were more resistant to the host immune response induced by influenza virus 

(Figure 3-15C). In fact, we propose that the improved survival of infected Nmp4-/- 

mice was caused by 1) super-secretory activity of lung alveolar type 2 (AT2) cells 

due to the global alteration of UPR pathways in Nmp4-/- mice and enhanced 

clearance of apoptotic neutrophils (PMNs) and 2) Altered TLR pathways in 

Nmp4-/- MSPCs that enhanced their anti-inflammatory effect on PMNs. To clarify 

the role of NMP4 in immunomodulation, more studies are needed.  

 Although Nmp4 is expressed in almost all tissues in the body, our previous 

ChIP-Seq data revealed that its candidate gene targets are not exactly the same 

between different cell types (Childress et al., 2015). This is possibly due to the 

fact that different cells adopt different chromatin structures, making the targets of 

NMP4 more or less likely to get access to (Li, 2002). Moreover, NMP4 is a 

context-dependent transcription factor that may exert different impacts on the 

same gene in different cell types (Torrungruang et al., 2002). Collectively, these 

clues may imply different transcriptome profiles are present in tissues other than 

bone and explain why loss of Nmp4 does not cause a global phenotype of 

enhanced anabolism.  

 

NEW QUESTIONS AND FUTURE DIRECTIONS 

 Although we have collected a lot of evidence to delineate the molecular 

mechanism of Nmp4’s phenotype in bone, we still lack solid confirmatory data to 

consolidate our findings through the transcriptome profiling. The expression 
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profiles of several representative genes such as c-Myc, Atf4 and Gadd34 need to 

be determined in other MSPC lines. Our Seahorse Assay showed NMP4 restricts 

the level of oxidative phosphorylation in MSPCs but more experiments are 

needed to evaluate the glycolytic levels between WT and null cells. Our 

salubrinal-induced phenotype rescue experiment requires quantitation and 

further optimization. To conclude, this study is not yet complete, but we are 

confident to claim thousands of genes and multiple signaling pathways are 

candidate NMP4 targets, each of which to some degree may contribute to the 

bone phenotype of Nmp4; at the tissue level, loss of Nmp4 may affect bone 

development, function as well as ECM secretome via altered UPR pathway and 

elevated ribosomal biogenesis, and thus improves the mechanical and material 

properties of the bone. 

 

CONTRIBUTIONS 

 In the project described above, I grow and expanded MSPCs, filtered and 

sorted the RNA-Seq data, ran IPA analysis and generated heatmaps for 

pathways and biological functions; I took part in the mice treatment, bone 

collection/storage and was involved in the three-point bending experiment. I 

conducted the MSPC mineralization assay and the phenotype rescue experiment 

with salubrinal as well. I also worked with my colleague Kylie Jacob in the 

Seahorse Mitochondria Stress Test. 
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CHAPTER 4 

 

SUMMARY 

 

 We demonstrated that the heightened osteoanabolism of the Nmp4-/- 

skeleton enhances the effectiveness of diverse osteoporosis treatments, in part 

by increasing hyper-anabolic osteoprogenitors. In general, the efficacies of 

anabolic therapies corresponded with PTH+RAL=PTH+ZOL>PTH+ALN= 

PTH>VEH. The enhanced trabecular bone gain in Nmp4-/- mice did not impair the 

gain in cortical bone under PTH+RAL or PTH+ZOL. The response of WT and 

Nmp4-/- mice to single anti-catabolic drugs was also examined and the result 

revealed both RAL and ZOL treatments resulted in modest but significant 

restoration of bone. Unexpectedly, loss of Nmp4 improved RAL treatment 

response at the site of femoral trabeculae.  Immunohistochemistry and flow 

cytometry revealed elevated number of BM osteoprogenitors in Nmp4-/- mice 

under PTH+RAL but not PTH+ZOL treatment compared to the WT counterpart; 

while the WT cohorts did not show this dichotomy. Our data suggest that the 

enhanced response to anabolic therapies observed in Nmp4-/- mice could be 

partially but not completely attributed to the expanded osteoprogenitor pool. Loss 

of Nmp4 did not affect adipogenesis or osteoclastogenesis in the BM. Nmp4 

status did not influence bone serum marker responses to treatments but Nmp4-/- 

mice as a group showed elevated levels of the bone formation marker 

osteocalcin. The implication regarding osteoporosis treatment is that disabling 

Nmp4 will boost the anabolic activity associated with any particular therapy. 

Suppression of the bone formation inhibitor sclerostin with the drug 

romosozumab represents a route to bone anabolism and is proof of principle that 

impeding osteogenic inhibitors is a powerful approach to therapy (Cosman et al., 

2016a). NMP4 is another kind of inhibitor in that its inactivation boosts the 

response potency to osteoanabolics, but unlike romosozumab it does not impact 

baseline skeletal phenotype. 
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  Consistent with previous in vivo studies (Childress et al., 2015; Robling et 

al., 2009) we found evidence that the Nmp4-/- MSPCs exhibited enhanced and 

accelerated mineralization capacity over the WT counterpart upon osteogenic 

differentiation. The MSPCs in general tended to mineralize 7-14 days earlier than 

the WT cells. Furthermore, the mineral deposit in Nmp4-/- MSPCs tended to 

accumulate faster than the WT, as they became heavily mineralized within 3 

days after the first sign of mineralization.  

 The transcriptome analysis demonstrated the Nmp4-/- MSPCs exhibited 

altered secretome profile including multiple ECM proteins and genes promoting 

mineralization and bone integrity, which suggested strengthened bone material 

and mechanical properties in the null animal. Our 3-point binding studies provide 

convincing preliminary data that this is indeed the case. The Nmp4-/- bones 

showed a significant increase in ultimate stress, which is the force necessary to 

fracture a bone under specified conditions, normalized for the bone geometry. 

Yield stress, the force applied to the bone after which there is permanent 

damage, normalized for geometry, was also significantly higher in the Nmp4-/- 

femurs. The study suggested no compromise was made to the bone quality for 

more rapid and increased bone formation in Nmp4-/- mice. 

 Differential transcriptome analysis showed NMP4 directly or indirectly 

impacted several hundred pathways that could be classified into 3 categories: 

protein synthesis and associated pathways, bone-related pathways and 

immunomodulation pathways. For protein synthesis and associated pathways, 

pathways involving in protein synthesis and secretion (e.g. tRNA charging, 

ribosomal biogenesis, RNA polymerase II assembly and mTOR pathway) and 

metabolism (e.g. glycolysis) were upregulated or altered in Nmp4-/- MSPCs. 

Bone-related pathways included but not limited to IGF-1, Ephrin, Glucocorticoid, 

Wnt/β catenin, STAT3, estrogen receptor, VEGF, TGF-β and BMP signaling 

pathways; most of these pathways were upregulated in Nmp4-/- MSPCs. NMP4 

affected different aspects of immunomodulation and one particular group of 

pathways affecting MSPC function fell into the interleukin system.  
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 Specifically, loss of Nmp4 activates IGF1, Wnt, BMP and TGF-β signaling 

pathways, all of which play important roles in osteoprogenitor proliferation, 

osteoblast differentiation, mineralization and bone formation (Day et al., 2005; De 

Boer et al., 2004; Hughes-Fulford and Li, 2011; Jia and Heersche, 2000; 

Mbalaviele et al., 2005; Raucci et al., 2008; Suzuki et al., 2014; Tonna et al., 

2014; Xing et al., 2010); moreover, the crosstalk between these pathways 

promotes osteogenesis (Kamiya et al., 2010; Ochiai et al., 2012; Zhang et al., 

2013).  Loss of Nmp4 also alters expression of several key genes in the UPR 

pathway and ribosomal biogenesis (Figure 4-1); many of these genes (e.g. Perk, 

Atf4, Ddit3 and Myc) have been found to be important for osteoblast 

differentiation and bone formation. Inhibition of GADD34 via salubrinal resulted in 

attenuated mineralization in Nmp4-/- MSPCs, suggesting the UPR pathway 

mediates part of Nmp4-/- phenotype potentially by making the null cells super-

secretory. Furthermore, loss of Nmp4 also alters aerobic glycolysis, which was 

found to be intimately associated with osteogenesis (Esen et al., 2015; Guntur et 

al., 2014). Our Seahorse Assay showed elevated basal and spared capacities for 

oxidative phosphorylation in Nmp4-/- MSPCs. The elevated oxidative 

phosphorylation in Nmp4-/- MSPCs also resulted in much more ATP production 

compared to their WT counterparts. Finally, our preliminary data showed Nmp4-/- 

mice exhibited stronger resistance to host immune response induced by 

influenza virus, providing direct evidence of the impact of disabling Nmp4 on 

immunomodulation. We concluded that NMP4 is an apex regulator impacting 

directly or indirectly multiple protein synthesis and associated pathways, bone-

related pathways and immunomodulation pathways; these pathways in turn 

affect protein synthesis and secretion, glucose metabolism, osteoprogenitor 

proliferation, osteoblast differentiation/ mineralization and immune response.    

 To complete the transcriptome analysis of NMP4, a few more follow-up 

studies shall be performed in the near future. The expression profiles of several 

key genes such as c-Myc, Atf4 and Gadd34 need to be determined in multiple 

other MSPC lines. The glycolytic levels of several WT and Nmp4-/- MSPC lines 
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also need to be evaluated. Our salubrinal-induced phenotype rescue experiment 

requires quantitation and further optimization. 

 

 

Figure 4-1: c-MYC and GADD34 are the key regulators that drive the Nmp4-/- 

hyper-anabolism phenotype. Loss of Nmp4 upregulates the expression of c-MYC 
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and GADD34. c-MYC promotes aerobic glycolysis (Shim et al., 1997), 

maintaining an elevated level of anabolic metabolism; c-MYC also enhances 

ribosomal biogenesis (Boon et al., 2001), leading to increased level of global 

protein synthesis. On the other hand, upregulated GADD34 suppresses eIF2α 

upon activation the UPR pathway. This leads to sustained level of protein 

translation during ER expansion. Collectively, these changes in Nmp4-/- MSPCs 

result in hyper-anabolic and super-secretory cells, making the bone improve both 

in quantity and quality.  
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