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S. Louise Pay 

A Systemically-Delivered Stem Cell Therapy for Dry Age-Related Macular 

Degeneration  

Dry age-related macular degeneration (AMD) is a progressive neurodegenerative 

disorder characterized by geographical atrophy of the retinal pigment epithelium 

(RPE), causing irreversible central vision loss. Systemically-delivered bone 

marrow-derived cells (BMDCs), programmed to RPE-like cells via expression of 

human RPE65, regenerate damaged RPE and preserve vision in murine models 

of retinal degeneration. RPE65 rapidly activates adenylate cyclase (AC), which 

then activates endogenous Rpe65 and RPE-associated marker Cralbp. Previous 

studies expressed RPE65 from an integrating lentiviral vector (ILV), which is an 

unnecessary safety risk due to the potential for insertional mutagenesis, as long- 

term expression of RPE65 is not required for BMDC programming. Here, we 

developed a 3rd generation integrase-defective lentiviral vector (IDLV) for 

programming both murine and human BMDCs to RPE-like cells, reducing 

insertional mutagenesis risk and expanding the protocol to include human cells. 

We enhanced IDLV3-RPE65 infection of murine and human BMDCs by preloading 

concentrated vector on RetroNectin at MOI 50, and infecting with low-speed 

centrifugation, increasing RPE65 mRNA levels from ~12-fold to ~25-fold (p<0.05). 

IDLV3-RPE65 infection initiates expression of endogenous Rpe65 mRNA 

expression in murine BMDC and Cralbp/CRALBP mRNA in both murine and 

human BMDCs, indicating programming to RPE-like cells. Inhibiting AC in RPE65-

infected BMDCs abrogated expression of the endogenous genes, confirming the 
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role of AC activation in programming. Critically, IDLV3-RPE65-infected murine 

BMDCs are recruited to and incorporate into to the RPE layer, and preserve vision 

in murine models of retinal degeneration. We conclude that BMDCs programmed 

with IDLV3-RPE65 successfully prevent retinal degeneration progression and are 

appropriate for testing in human cells, with a view to move into human clinical trial 

for the treatment of dry AMD. This approach significantly increases the safety of 

the therapy and is, to the best of our knowledge, the first application of a single 

IDLV in the generation of therapeutic cells from adult stem cells. 
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S. Louise Pay 

 

A Systemically-Delivered Stem Cell Therapy for Dry Age-Related Macular 

Degeneration  

 

Dry age-related macular degeneration (AMD) is a progressive neurodegenerative 

disorder characterized by geographical atrophy of the retinal pigment epithelium 

(RPE), causing irreversible central vision loss. Systemically-delivered bone 

marrow-derived cells (BMDCs), programmed to RPE-like cells via expression of 

human RPE65, regenerate damaged RPE and preserve vision in murine models 

of retinal degeneration. RPE65 rapidly activates adenylate cyclase (AC), which 

then activates endogenous Rpe65 and RPE-associated marker Cralbp. Previous 

studies expressed RPE65 from an integrating lentiviral vector (ILV), which is an 

unnecessary safety risk due to the potential for insertional mutagenesis, as long- 

term expression of RPE65 is not required for BMDC programming. Here, we 

developed a 3rd generation integrase-defective lentiviral vector (IDLV) for 

programming both murine and human BMDCs to RPE-like cells, reducing 

insertional mutagenesis risk and expanding the protocol to include human cells. 

We enhanced IDLV3-RPE65 infection of murine and human BMDCs by preloading 

concentrated vector on RetroNectin at MOI 50, and infecting with low-speed 

centrifugation, increasing RPE65 mRNA levels from ~12-fold to ~25-fold (p<0.05). 

IDLV3-RPE65 infection initiates expression of endogenous Rpe65 mRNA 

expression in murine BMDC and Cralbp/CRALBP mRNA in both murine and 
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human BMDCs, indicating programming to RPE-like cells. Inhibiting AC in RPE65-

infected BMDCs abrogated expression of the endogenous genes, confirming the 

role of AC activation in programming. Critically, IDLV3-RPE65-infected murine 

BMDCs are recruited to and incorporate into to the RPE layer, and preserve vision 

in murine models of retinal degeneration. We conclude that BMDCs programmed 

with IDLV3-RPE65 successfully prevent retinal degeneration progression and are 

appropriate for testing in human cells, with a view to move into human clinical trial 

for the treatment of dry AMD. This approach significantly increases the safety of 

the therapy and is, to the best of our knowledge, the first application of a single 

IDLV in the generation of therapeutic cells from adult stem cells. 
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CHAPTER I: INTRODUCTION 

 

Introduction 

 

The biological process of aging is associated with an increased risk for developing 

a number of diseases, including cancers, [1] cardiovascular diseases, [2] arthritis, 

[3] and neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s 

disease. [4, 5] This increased risk is contributed to by a number of external factors. 

For example, genetic predisposition to disease, [2] environmental factors such as 

smoking and consumption of alcohol, [6] exposure to carcinogenic agents 

throughout life, [7] and pre-existing conditions such as diabetes. [8] 

 

The average life expectancy in the USA has increased significantly in the past 

~100 years, and we continue to develop life-lengthening treatments for infections, 

disorders, and diseases that have in the past resulted in a lower average life 

expectancy (Table 1.). Age-associated diseases are therefore increasingly 

becoming, and will continue to become, a significant concern.  

 

One of the most prevalent aging-associated diseases is Age-Related Macular 

Degeneration (AMD). Risk for developing AMD increased from age 50 onwards. 

[9] By 2020, an estimated 196 million people will be affected by AMD worldwide, 

increasing to 288 million by 2040. [10] AMD is a neurodegenerative disorder 

characterized by progressive, severe, and irreversible central vision loss resulting 
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from degeneration of critical retinal cells at the central region of the eye, known as 

the macula. [9] There are two forms of AMD: wet AMD, and dry AMD.  

 

Wet AMD is characterized by aberrant formation of blood vessels which invade the 

retinal pigment epithelial (RPE) layer and cause degeneration. Visual improvement 

has been observed in ~30% of wet AMD patients treated with anti-VEGF injections. 

[11] Dry AMD is characterized by geographical atrophy of the RPE at the macula 

and there are currently no effective treatments available. [12] Due to the nature of 

dry AMD and the lack of blood vessel invasion of the RPE/retina from the choroid, 

anti-VEGF therapies are not appropriate. The most viable and attractive option for 

targeting dry AMD in the early stages of disease is replacement of the damaged 

RPE. [12, 13] 

 

A number of studies have evaluated the potential for RPE cell transplant or RPE 

replacement with cells derived from adult RPE, embryonic stem cells (ESCs) and 

induced pluripotent stem cells (iPSC) in dry AMD. [14] While success has been 

observed in murine models this, has yet to carry over into human clinical trials. [12] 

Methods of harvesting RPE cells for transplant and delivering transplants of 

therapeutic cell sheets are highly invasive, [15] and cells transplanted by subretinal 

injection have been found to exhibit poor adhesion to the Bruch’s membrane. [16] 

Additionally, there are several safety concerns associated with the use of 

pluripotent cells. ESCs, and both autologous and non-patient-derived iPSCs, may 

be immunogenic, [17] and may form teratomas. [18] The first clinical trial using 
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iPSCs for AMD was interrupted by the discovery of genomic alterations in the 

iPSCs, which were not present in the patient cells from which the iPSCs were 

derived. [19] ESCs also have the added complication of well-documented ethical 

concerns, with their use restricted in several parts of the world due to the fact that 

their harvest requires the destruction of fertilized embryos.  

 

In this study, we present a minimally-invasive, systemically-delivered cell-based 

therapy for RPE replacement in dry AMD, using autologous adult bone marrow-

derived cells (BMDCs) modified with a single lentiviral (LV) vector.  

 

We assert that our approach will maximize recovery of vision, and delay the 

progression of the disease, as BMDC-derived RPE cells can be replaced before 

the neural retina, in particular the photoreceptor layer, has become damaged. 

Systemically injected cells, which are recruited to the RPE from the blood, integrate 

uniformly across the RPE layer as opposed to forming a ‘clump’ in one area, 

improving the potential for visual recovery. [13] The use of autologous BMDCs also 

reduces tumorigenic potential in comparison with iPSCs, due to the fact that the 

cells are not pluripotent. The use of autologous cells also reduces the potential for 

immunogenicity, and is less ethically problematic than the use of ESCs.  

 

In this chapter, we will review the structure and function of the RPE, the pathology 

of dry AMD, the application of stem cell-based therapies in AMD, and the use of 
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LV vectors. Finally, we will present an overview of the background, approach, and 

outcomes of our study.  
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Table 1. Life Expectancy and Leading Causes of Death from 1901 to 2014. 

The average life expectancy of males and females has increased from 47.6 and 

50.6 to 76.4 and 81.2 respectively between 1901 and 2014. The most prevalent 

causes of death have changed from predominantly infectious disease to lifestyle 

and age-related disease due to changes in the availability of treatments and 

changes in environmental factors which contribute to disease, along with the direct 

link between an increase in average life expectancy and the development with age-

related disease such as Alzheimer’s disease. 
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The Retinal Pigment Epithelium 

 

Overview of the Eye 

 

Almost every organism on Earth has evolved to use the light from the sun as a 

means of perceiving the world or as a source of energy, with over 95% of the 

world’s living organisms possessing a form of eye or a mechanism by which light 

can be processed, such as photosynthesis or carbon fixation. [20-22] The human 

eye is a complex structure consisting of several specialized components (Figure 

1.1) which are involved in the processing of light to generate signals which are 

then processed into images by the brain. At the front of the eye, the cornea, pupil, 

and iris function to control the entry and focusing of light into the eye. At the back 

of the eye, the retina, comprised of ten highly specialized layers, processes light 

into neural impulses, which are then transmitted to the brain via the optic nerve. 

[23]  

 

The retina, from the innermost to outermost layer, consists of: (1) the inner limiting 

membrane, (2) the nerve fiber layer, (3) the ganglion cell layer, (4) the inner 

plexiform layer, (5) the inner nuclear layer, (6) the outer plexiform layer, (7) the 

outer nuclear layer, (8) the outer limiting membrane, (9) the photoreceptor layer, 

and, finally (10,) the RPE. [23] (Figure 1.2). Layers 1-9 of the retina collectively 

comprise the neural retina, which is considered a part of the central nervous 

system (CNS). The neural retina and RPE layer develop separately, with the neural 
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retina formed from the inner wall of the optic cup, which is the evaginated optic 

vesicle that develops as an outgrowth of the diencephalon region of the brain, [24] 

and the RPE layer formed from the outer wall of the optic cup. [24]  
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Figure 1.1 
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Figure 1.1. The Structure of the Human Eye. Diagram of the human eye with 

major structures. (Image from: https://www.intechopen.com/books/autophagy-in-

current-trends-in-cellular-physiology-and-pathology/autophagy-in-ocular-

pathophysiology) 
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Figure 1.2 
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Figure 1.2. The Structure of the Retina. Diagrammatic cross-section of the 

retina, showing the neural retina layers, the underlying RPE, Bruch’s membrane, 

choroid and the specialized cell types at each layer. (Image from: 

https://www.intechopen.com/books/autophagy-in-current-trends-in-cellular-

physiology-and-pathology/autophagy-in-ocular-pathophysiology) 
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Structure and Function of the RPE 

 

Structure 

 

In humans, RPE cells are found at the highest density in the central macular region 

of the eye (Figure 1.1) and become less dense as the retina extends into the 

periphery, [25] with ~4220 cells/mm2 in the foveal region, decreasing to ~3002/mm2 

in the midperipheral regions, and ~1600/mm2 in the outer peripheral fundus.[26] 

Overall, the human RPE layer consists of ~3.5x106 (+/-4.9x105) cells.[26] Each 

RPE cell supports, on average, 30-40 photoreceptors. [27]  

 

The RPE is dysfunctional in most retinal degeneration disorders, and is the first 

cell type to degenerate in AMD. As RPE integrity and viability is critical for the 

maintenance of photoreceptor cells and, thus, the visual cycle and overall retinal 

function, we focused on regenerating the RPE layer in models similar to the 

pathology of dry AMD. The RPE is a highly specialized cell with a number of critical 

functions, the loss of which all contribute to retinal degeneration.  

 

The RPE consists of a monolayer of hexagonal cells which are held together by 

lateral tight junctions, adherens junctions, and gap junctions, forming the outer 

blood/retinal barrier. [28, 29] The RPE cells are polarized, with the apical microvilli 

extending into the interphotoreceptor matrix [30] of the subretinal space, and the 

infolded basal membrane tightly adhered to the underlying collagenous, acellular 
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Bruch’s membrane via integrin interaction (Figure 1.3). [29, 31] The apical microvilli 

of the RPE interact with the apical rod and cone photoreceptor outer segments in 

the outer nuclear layer of the neural retina. The choriocapillaris of the choroid lies 

directly beneath the Bruch’s membrane and consists of highly fenestrated 

endothelium and capillaries. [29, 32] Mature RPE cells are traditionally considered 

to be post-mitotic, meaning they are terminally differentiated and unable to divide; 

[33] however, it has recently been suggested that the lack of RPE division may be 

maintained by its close proximity with photoreceptor cells, resulting in contact 

inhibition as opposed to permanent inability to divide, which may contribute to 

disease in retinal detachment disorders. [34] While the normal RPE is non-

proliferative, the cells do retain the ability to proliferate as they can be stimulated 

to do so in culture, and become proliferative in some disease such as resulting 

from RPE injury or proliferative vitreoretinopathy. [35-37] 

 

The apical surface of the RPE is unusual in comparison with other epithelial cells 

as it is oriented toward the apical surface of the photoreceptors, as opposed to 

being oriented toward an inner vessel or other lumina. [38] The apical microvilli, 

approximately 5-7 μm long, [39] are intricately connected with, though not 

physically attached to, the apical membrane of the photoreceptor outer segments 

in the interphotoreceptor matrix of the subretinal space, which consists of proteins 

and other components required for the transport of nutrients to and from the retina 

and RPE. [30] This interaction is not only required for ‘communication’ between the 

photoreceptors and RPE, but also for maintaining retinal attachment to the RPE. 
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Disruptions in the interaction between RPE and photoreceptor cells in the 

interphotoreceptor matrix, such as during retinal detachment, results in 

degeneration of the photoreceptors due to their reliance on the RPE and 

subsequent loss of retinal integrity. Aquaporin-1 expressed on the RPE apical 

membrane contributes to maintaining the connection between the RPE and neural 

retina, aiding retinal attachment. [40] 

 

While specific localization of organelles and protein expression is typical in 

epithelial cells, some localization in RPE cells and protein expression differs 

significantly from other epithelial cell types – in contrast to the majority of epithelial 

cells, the sodium/potassium ATPase and associated ankyrin and fodrin proteins 

[41] are located at the apical membrane at the RPE. [38] The adhesion molecule 

N-CAM, [42] the extracellular matrix metalloproteinase inducer EMMPRIN/CD147 

[43, 44] and sodium/potassium/chlorine (Na+/K+/Cl-) transport proteins [38] are 

also located apically in the RPE. The difference in localization of channels and 

proteins is referred to as reverse polarity, [31, 44, 45] which is critical for the 

function of the RPE [38] as the sodium/potassium ATPase is necessary to maintain 

an ionic environment in the subretinal space that is conducive to 

phototransduction. [38] 

 

In contrast to the interaction between the apical membranes of the RPE and 

photoreceptor cells, the basal lamina of the RPE is directly attached to the Bruch’s 

membrane. The basal lamina of the RPE, as is typical for epithelia, is infolded, [46] 
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and considered to be the outermost layer of the Bruch’s membrane, [47] which is 

a permeable extracellular matrix of proteins that separates the RPE from the 

choriocapillaris. The basal lamina of the RPE is approximately 0.15 μm thick, [48, 

49] and contains an extracellular matrix of filamentous structures including 

fibronectin, heparan sulfate, proteoglycans, [47] type IV collagen isoforms alpha 1-

5. [50, 51] Laminins, for example laminins 1, 5, 10, and 11, are produced by the 

RPE cells and aid in the attachment of the RPE cell layer the Bruch’s membrane 

through interaction with integrins. [52] The attachments of the basement 

membrane and the actin cytoskeleton of the cell, adhering the RPE cell to the 

Bruch’s membrane, are observed as focal adhesions at the base of the RPE. [53] 

RPE cells are highly pigmented with melanin [54] and lipofuscin, with the former 

present during development, and the latter accumulating with age. [55] RPE cells 

contain several organelles including lysosomes, [56] phagosomes, [57] 

microperoxisomes, [58] and melanosomes. [31] Melanin is localized to elongated 

melanosomes, which are apically located and can extend into the apical microvilli. 

[59] Mitochondria and nuclei are basally localized, [31, 32] and the cytoplasm 

contains a large amount of smooth endoplasmic reticulum (ER) and minimal rough 

ER. [32]   

 

Finally, the lateral membranes of the RPE function as the outer blood/retinal barrier 

due to the presence of tight junctions near the apical membrane which control 

diffusion between cells, [28] adherens junctions, which are cell-cell adhesion 

molecules that bind cells together through interaction of cadherins with actin 
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filament,[60] and gap junctions, comprised of connexins, which facilitate the 

movement of small molecules and ions between the RPE cells. [61, 62] These cell-

cell adhesions are necessary for the regulation of transport of nutrients, ions, and 

water between the neural retina and the choriocapillaris [63] and to maintain the 

polarity of the RPE cells. [31]  
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Figure 1.3 
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Figure 1.3. The Retinal Pigment Epithelium. Diagrammatic representation of an 

RPE cell and underlying Bruch’s Membrane and choriocapillaris.  
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Function 

 

The specialized structure of the RPE cell contributes to its multiple functions, all of 

which are necessary to maintain the normal function of both the neural retina and 

the choroid, which the RPE cells support. As the RPE layer is situated between the 

photoreceptor layer and the choroid, and forms a tight barrier which is not 

permeable, the RPE functions to regulate the flow of nutrients, ions, and waste 

products to and from the choroid and the neural retina, maintain the 

photoreceptors, and to limit RPE cell damage resulting from its high metabolic 

activity and exposure to inducers of oxidative stress. [29, 64] While light absorption 

was one of the earliest elucidated functions of the RPE, and was thought for some 

time to be the only function of the RPE, it is now known that critical components of 

RPE functionality also include phagocytosis of the photoreceptor outer segments, 

the recycling of visual cycle substrates, spatial buffering of potassium, 

maintenance of the immune privileged status of the eye, and epithelial transport to 

and from the subretinal space and the choroid. [29, 64]  

 

Light Absorption and Pigments 

 

The pigmented melanin granules of the RPE primarily function to absorb scattered 

light. These pigmented granules, located in melanosomes, absorb light energy, 

protecting the photoreceptor cells and the RPE itself from extensive damage from 

excess light exposure. [65] This is important for maintaining RPE cells, as they are 
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constantly exposed to factors which contribute to oxidative stress and resulting 

oxidative damage and are not capable of regenerating in the event that they 

become damaged, due to their post-mitotic status.[66] RPE cells therefore require 

mechanisms to protect themselves against several sources of oxidative stress. [67] 

Melanin also functions as a metal ion scavenger.[68] Melanosomes in the RPE 

exhibit antioxidant properties against non-light-associated oxidative damage; for 

example, in cells expressing large numbers of melanosomes, oxidative damage 

from hydrogen peroxide was reduced in comparison with cells not expressing 

melanosomes. [67] 

 

In addition to melanosomes, RPE cells also contain lipofuscin and 

melanolipofuscin. Unlike melanosomes, which form during development and 

remain during the lifetime of the cell without the capacity to renew, lipofuscin and 

melanolipofuscin develop during the aging process. These pigments are implicated 

in age-related disorders of the RPE, and will be discussed in more detail in context 

with AMD pathology. Lipofuscinogenesis occurs as a result of autophagy [66] and 

incomplete phagocytosis of photoreceptor outer segments. [69] Melanolipofuscin, 

a combination of melanin and lipofuscin, has been associated with the cells’ post-

mitotic status. [70] 
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Phagocytosis of Photoreceptor Outer Segments 

 

Photoxidative damage to the photoreceptor outer segments results in daily 

shedding of damaged outer segment disc tips, which are constantly renewed at 

the base of the outer segment which is distal to the tip in order to maintain correct 

outer segment length. [71] The full outer segment is replaced in this manner 

approximately every ten days, with 10% of their length lost daily. [72, 73] Shedding 

follows a circadian pattern, with the initiation of disc shedding occurring once per 

day, coinciding with the onset of light. [74] The RPE phagocytoses the shed outer 

segment discs, and, as extensive photoreceptor degeneration is observed when 

the ability of RPE cells to phagocytose these discs is removed, this process is one 

of the most important roles of the RPE in supporting the neural retina. [75] Not only 

is it necessary for the RPE to remove these waste products to avoid pathological 

build-up of debris in the subretinal space, it is also necessary for the RPE cells to 

adequately break down the phagocytosed material to prevent damage to the RPE 

cells themselves – RPE cells must be capable of sustained, long-term processing 

of photoreceptor outer segments as they are non-dividing cells. [73] There are 

several regulated stages of photoreceptor outer segment phagocytosis by the 

RPE, which differs from traditional phagocytosis as RPE cells are not 

macrophages. [73, 75] 
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The first step is the recognition of the photoreceptor outer segment by the RPE, 

and subsequent binding, which is contributed to by phosphatidylserine, αvβ5 

integrin, CD36, and milk-fat-globule-EGF-factor-8 (MFG-E8).[73] 

Phosphatidylserine expression on the photoreceptor discs has been associated 

with recognition of these discs by the RPE as material to be phagocytosed, with 

segments expressing phosphatidylserine, a cell-surface marker indicating cell 

death, are recognized by the RPE.[73] It has been shown that αvβ5 integrin, which 

is apically localized in RPE cells, is required for the binding of shed outer segments 

to the RPE, with binding diminished in the presence of antibodies blocking its 

function in vitro and loss of in vivo phagocytosis observed in αvβ5-/- mice. [76, 77] 

Binding of αvβ5 integrin is facilitated by tetraspanin CD81, resulting in a decrease 

in binding when silenced. [78] MFG-E8, which is expressed early in the light cycle, 

around the same time that photoreceptor outer segment shedding occurs, 

contributes to the roles of αvβ5 integrin and phosphatidylserine, binding to αvβ5 

integrin and facilitating the interaction between the shed photoreceptor discs, αvβ5 

integrin, and the RPE. [73] In mice lacking MFG-E8, RPE phagocytosis of shed 

discs was reduced, and this could be restored by providing soluble MFG-E8, 

confirming its critical role in the phagocytosis process. [79] MFG-E8 and αvβ5 

integrin are not, however, required for the internalization of the segments.[76] This, 

instead, is mediated by expression of CD 36 receptors on the RPE, which has 

been reported to be both required and sufficient for the internalization of bound 

photoreceptor outer segments into the RPE, [76] required for the second step of 

phagocytosis.   
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This second step in RPE phagocytosis of photoreceptor outer segments is 

engulfment and phagosome formation, which is dependent on the expression MER 

proto-oncogene tyrosine kinase (Mertk), growth arrest-specific 6 (Gas6) or protein 

S, focal adhesion kinase (Fak), annexin A2, tubby, Tulp1, and myosin II. [73] The 

role of Fak in engulfment is related to the role of αvβ5 integrin in binding, as Fak 

forms a complex with, and is activated by, apical RPE αvβ5 integrin, and blocking 

this interaction in mice results in a lack of engulfment despite binding to the RPE. 

[80] Knocking out Annexin A2 delays Fak activation, leading to a buildup of 

phagosomes in the RPE. [81] Fak is also required for the phosphorylation of Mertk, 

which is also necessary for engulfment of photoreceptor outer segments by RPE 

cells. [80] In mice with the Mertk gene knocked down, photoreceptor outer segment 

debris builds up in the subretinal space, an absence of phagosomes, and exhibit 

retinal degeneration similar to that observed in the Royal College of Surgeons rat, 

which has an RPE with an inherent inability to phagocytose outer segments due 

to mutations in Mertk, demonstrating a critical role for Mertk in outer segment 

phagocytosis, and highlighting the critical importance of this phagocytosis in the 

support of the neural retina. [82, 83] Mertk binds to Gas6 and related protein, 

Protein S, the roles of which were first determined in the retina. [84] Both Gas6 

and Protein S are ligands of Mertk [85] and function independently to facilitate RPE 

phagocytosis of outer segments, as knocking out either gene does not affect the 

process; however, knocking out both results in a phenotype similar to that 

observed in the absence of Mertk. [84, 86] Additional Mertk ligands tubby and 

tubby-like protein 1 (Tulp) also activate Mertk, facilitate the organization of myosin 
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II in the RPE and colocalization with phagosomes, where tubby and Tulp1 were 

found to be colocalized with Lamp1, a marker of mature phagosomes. [85] 

 

The final step in RPE phagocytosis of photoreceptor outer segments is 

degradation, which requires myosin VIIa, caveolin-1, a decrease in lysosomal pH, 

and an increase in protease activity. [73] Myosin VIIa defects cause Usher 

syndrome, in which abnormal phagocytosis of photoreceptor outer segments leads 

to accumulation of disc segments in phagosomes within the RPE, resulting from 

an inhibition of fusion of the phagosome with the lysosome. [87] Phagosomes must 

be transported to the lysosome for degradation of the phagocytosed contents to 

occur. The protease Cathepsin D and Caveolin-1 are required for phagolysosomal 

degradation of engulfed outer segments,[88] and Caveolin-1 is recruited to the 

phagolysosome, where, in its absence, Cathepsin D levels decrease and 

lysosomal pH increases. [88] An acidic pH in the lysosome along with active 

protease activity is necessary for proper degradation to occur. Therefore, when 

this pH is increased, material will not be adequately cleared from the RPE. Severe, 

progressive vision loss occurs in Usher syndrome as a direct result of a build-up 

of unprocessed outer segment material in the RPE, highlighting the importance of 

clearing this material post-engulfment for maintaining the integrity and function of 

the RPE cell layer. Without the clearance of photoreceptor waste material, RPE 

cells are unable to adequately support the visual cycle.  
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Recycling of Visual Cycle Substrate 11-Cis-Retinal 

 

Another key mechanism by which RPE cells maintain the visual cycle is in the 

recycling of 11-cis-retinal for photoreceptor cells. During the visual cycle, the 

photoreceptor pigment rhodopsin component 11-cis-retinal, which is an isomer of 

retinaldehyde, is converted to all-trans-retinal, thus converting rhodopsin to its 

active form, metarhodopsin II. [89-91] This process is the ‘start signal’ of the visual 

cycle, which necessitates the rapid overturn of visual cycle substrates. 11-cis-

retinal must be available to convert metarhodopsin II back into rhodopsin for the 

next cycle, otherwise, the photoreceptor cells are no longer able to correctly 

polarize. Consequently, the ability of the cells to promote the visual cycle cascade 

is lost. [89-91] Photoreceptor cells, however, are unable to convert all-trans-retinal 

back to 11-cis-retinal, meaning that they are unable to independently generate the 

substrates required for the visual cycle to persist. [89-91] 

 

The RPE cells play a vital role in this process, converting all-trans-retinol into 11-

cis-retinal for the photoreceptors. All-trans-retinal is first converted to all-trans-

retinol in the photoreceptor cell, [92] then transported to the RPE cell, in which it is 

isomerized to form 11-cis-retinal. [89-91] This process involves six key proteins: 

the interphotoreceptor retinoid-binding protein (IRPB), the cellular retinol binding 

protein (CRBP), lecithin-retinol transferase (LRAT), the RPE protein 65kDa 

(RPE65), retinol dehydrogenases (RDH), and the cellular retinaldehyde-binding 

protein (CRALBP). [89-91] All-trans-retinol is chaperoned into RPE cell from the 
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photoreceptor by the interphotoreceptor retinoid-binding protein IRPB, [89-91] 

from which it is transferred to CRBP and is converted to all-trans-retinyl by LRAT. 

[89-91] RPE65 converts all-trans-retinyl to 11-cis-alchohol and, facilitated by 

CRALBP, retinol dehydrogenases convert this to 11-cis-retinal. [89-91] Finally, 

IRBP transports 11-cis-retinal back to the photoreceptor cells. [89-91] 

 

The photoreceptor pigment rhodopsin conversion to metarhodopsin as a result of 

the conversion of 11-cis-retinal to all-trans-retinal also necessitates the spatial 

buffering of potassium by RPE cells. Sodium and calcium decreases in the 

presence of light and photoreceptor polarization results in an increase in uptake of 

potassium from the subretinal space by the inner segments via Na+/K+-ATPase. 

[89] The apical membrane of the RPE first hyperpolarizes in response to the 

decrease in potassium. [64, 93-95] Following this, the basal membrane first 

hyperpolarizes, then depolarizes in response to the decrease in potassium, [94] 

resulting in a release of potassium into the subretinal space. [64] This potassium 

modulation is enabled by the expression of kir potassium channels on the surface 

of the apical plasma membrane of RPE cells, [96-98] and the electrical output of 

the hyperpolarization of the apical and basal membranes of the RPE during 

potassium channel response to photoreceptor polarization is a component of the 

c-wave of the electroretinogram. [99, 100] 
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Trans-Epithelial Transport between the Retina and Choroid 

 

In addition to the previously discussed mechanisms by which the RPE layer 

supports photoreceptor function, the RPE is also responsible for providing energy, 

in the form of glucose, and for transporting the fatty acid 22:6 omega 3 from the 

choriocapillaris to the photoreceptors. [101] Trans-epithelial transport is facilitated 

by sodium/potassium ATPase. [29] Glucose transport is critical to provide the 

energy required for phototransduction, and is transported into the subretinal space, 

for uptake by the neural retina, from the choroid. This is facilitated by the inducible 

glucose transporter GLUT1, and the constitutive glucose transporter GLUT3. [29] 

22:6 omega 3 is required for maintaining the structural integrity of the 

photoreceptor cells and synaptic membranes, [102] and is both transported to the 

subretinal space by the RPE and used by the RPE itself to generate neuroprotectin 

D1. [102, 103] Neuroprotectin D1 is both anti-inflammatory and anti-apoptotic, and 

has been shown to counteract RPE apoptosis following DNA hydrogen peroxide-

induced oxidative stress. [102, 103] 

 

The RPE cells also remove water from the subretinal space to the blood via the 

choriocapillaris, which is necessary to remove the water produced during 

phototransduction, and avoid a buildup of water in the retina. [38, 104-106] 
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Immune Modulation 

 

The microenvironment of the eye, including the subretinal space and the RPE, is 

protected by the prevention of the free movement of cells from the blood into and 

out of the eye, and therefore the eye is protected from inflammatory and immune 

responses through a combination of a physical barrier to entry of cells from the 

blood, comprised of the inner and outer blood/retinal barrier, inhibition through 

expression of immunosuppressive peptides, and active regulation of systemic 

immune cells. [107] The RPE plays several roles in maintaining the immune 

privileged status of the eye, [108] which is critical for preserving vision by protecting 

the eye from adverse inflammatory responses.  

 

Firstly, the outer blood/retinal barrier formed by the RPE prevents the entry of 

immune cells from the blood stream, effectively separating the eye from the 

systemic immune system. [64] Secondly, RPE cells are capable of directly 

influencing the adaptive immune response by releasing extracellular vesicles in 

response to inflammatory cytokines which are capable of inhibiting T-cells. [109] 

RPE cells express TGF-beta 1 and TGF-beta 2, [110] galectin-1, [111] interleukin 

1 receptor agonist (IL-1ra), [112] MHC molecule and adhesion molecules [29] 

resulting in a down regulation of immune responses. Human RPE cells also 

express the Fas ligand, which, when interacting with activated T-cells, induces 

programmed cell death in the T-cells, indicating that RPE cells are capable of 

directly killing activated T-cells to prevent immune cell invasion of the eye, as 
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blocking Fas ligand expression in the RPE inhibited FasL-associated T-cell death. 

[113] RPE cells also suppress the immune response through expression and 

secretion of complement factor H in response to inflammatory cytokine interferon 

gamma, [114] suggesting a potential mechanism for the involvement of 

complement factor H mutations in both promoting and protecting against the 

development of AMD.  

 

Regional Variations in the RPE 

 

The morphology, function, and size of RPE cells is not consistent across the whole 

human retina, with the number of RPE cells increasing, and size decreasing, 

according to location [115] and correlating with the number of photoreceptors 

requiring the RPE support. [26] Thus, the RPE cells at the macular region, where 

photoreceptors exist at their highest density, are present in larger numbers but are 

smaller (~14 μm) than those observed in the peripheral regions (~60 μm). [26, 116] 

The highest density of RPE cells exists in the fovea. In the peripheral retina, RPE 

cell density is at its highest in the nasal fundus.[26] Functionally, lysosomal 

enzymes acid phosphatase, B-glucoronidase, and N-acetyl-B-glucosaminidase 

have been found to be enriched in peripheral RPE cells in a canine model, [117] 

whereas in a bovine model, another lysosomal enzyme Cathepsin D was found to 

be enriched in the central region compared with the peripheral region, [118] 

indicating that lysosomal function varies across different locations in the eye. 
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Finally, sodium potassium pump expression varies regionally, with higher 

expression observed in the peripheral vs. macular region in humans. [119] 

 

Normal Aging Changes in the RPE 

 

Several changes occur in the RPE during aging which are not necessarily 

pathogenic, but may contribute to the development of retinal degeneration in some 

individuals. These changes include an overall density loss in RPE cells at a rate of 

approximately 0.3% per year with age, as determined by a study on 53 normal 

human eyes. [26] An increase in apoptotic RPE cells is observed in the macular 

region compared with the peripheral retina with aging; however, interestingly, the 

cell density in this region remains the same despite a high incidence of apoptotic 

cells, and it has been suggested that non-apoptotic peripheral RPE may be 

recruited to compensate for the loss of cells at the macula. [120]  

 

RPE cell pigmentation changes with normal aging, with a loss of melanin, an 

increase in complex melanin granules, and an increase in lipofuscin observed with 

age in a study of 50 eyes aged between 1-100, most pronounced in the macular 

region. [121] The presence of small sub-RPE deposits referred to as drusen is 

observed during normal aging. Numerous large drusen are considered a hallmark 

of AMD, but as small (<63 µm) drusen are also present in normal aging eyes, these 

are not considered indicative of disease in otherwise normal eyes. 
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Feher et al. described a decrease in mitochondrial number and function in normal 

aging eyes in conjunction with lipofuscin granule accumulation, [122] and it has 

also been reported that mitochondrial DNA damage accumulates with aging in 

rodents as a result of a change in the expression of enzymes necessary to repair 

mitochondrial DNA [123] which has become damaged as a result of exposure to 

reactive oxygen species, while the majority of the damage was observed in the 

photoreceptor cells, [124] mitochondrial DNA damage and lack of repair proteins 

was also observed in rodent RPE. [123] 

 

Collectively, while non-pathogenic in the context of vision loss, these aging-related 

changes may contribute to the development of RPE-related disorders such as dry 

AMD. 

 

Dry Age-Related Macular Degeneration 

 

Overview 

 

Senile macular degeneration was first identified by Otto Haab in 1885 as a 

pathological alteration of pigmentation and loss of retinal integrity around the 

macular region which correlated with progressive loss of vision in patients over 50 

years old. However, the disease was not fully characterized until the 1970s, when 

it was determined by Donald Gass that a build-up of sub-RPE deposits (referred 

to as drusen) prior to retinal degeneration at the macular region was a hallmark of 
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what is now referred to as AMD. AMD is a late-onset disorder, with symptoms 

typically appearing in adults age 50 and over. [125] In the 60-64-year-old age 

group, approximately 5% are affected by AMD in its early stages. [9] It is a 

multifactorial, heterogeneous neurodegenerative disorder characterized by the 

build-up of drusen, dysfunction and atrophy of the RPE prior to progressive loss of 

the photoreceptor cells. [125] Two forms of AMD are now known. Wet AMD is 

characterized by exudative choroidal neovascularization (CNV), whereas dry AMD 

is characterized by geographic atrophy in the absence of CNV, [125] though in the 

very late stages of disease, dry AMD can develop into wet AMD in some patients. 

As progression of dry AMD is considerably slower than progression of wet AMD, 

the ‘time window’ for treatment with a cell-based therapy is wider in dry AMD, and 

may allow for more effective early intervention if at-risk patients can be identified 

early in the development of RPE dysfunction. As there are no current effective 

therapeutic interventions available, we have focused on dry AMD in this project, 

hypothesizing that treatment early in the progression of the disease is more likely 

to preserve vision loss as it is easier to prevent further degeneration than to 

address severe vision loss after it has already occurred.  

 

In this section, we will review the normal aging process in the retina, the risk factors 

and pathology of dry AMD, and an overview of treatments which have been 

attempted in dry AMD.  
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Normal Aging Changes in the Retina 

 

The retina undergoes several ‘normal’ changes during aging in addition to the 

previously discussed changes in the RPE. In a study of 100 people aged 6-79 

(without retinal disease), Alamouti and Funk described an overall annual reduction 

in the thickness of the whole retina by 0.53 µM. [126] As much as 20% of retinal 

thinning is attributed to thinning of the retinal nerve fiber layer, [127] observed as 

a 0.44 µM annual reduction in thickness at this layer, [126] or 2.5 µM per decade 

of life. [128] This loss of thickness has been attributed to a loss of ganglion cells, 

with less thinning observed in the optic disc region. [128] The optic nerve itself is 

affected by aging, with the neuroretinal rim region decreasing by 0.28-0.39% 

annually. [129] An increase in both the vertical optic cup diameter and optic cup 

area is also observed during normal aging, resulting in an increase in the cup to 

disc ratio of 0.1 over a 40 year period in a study of 88 healthy individuals. [129] 

The density of cells in the photoreceptor layer also decreases annually with age, 

with a greater loss of rod photoreceptors in comparison with cone photoreceptors 

observed in a study of 55 normal eyes, with a mean yearly density loss of 0.37% 

and 0.18% respectively. [130] Photoreceptor loss occurs predominantly in the 

periphery of the retina and fovea, with the loss of rod cells preceding the loss of 

cone cells. [131] Retinal thinning also includes the macular region of the eye, with 

a loss in retinal thickness at the macular region observed as a loss of macular 

volume of 0.01mm3 per year. [127] 
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These age related changes, like those discussed in the RPE, are considered 

normal and are not typically associated with loss of visual function; however, 

changes in the thickness of the retina is observed in age-related disorders of the 

retina, indicating that the loss of retinal cells as part of the aging process may be 

a precursor to the development of retinal degeneration in people who are exposed 

to other risk factors.  

 

Risk Factors for Dry AMD 

 

The most significant risk factor for AMD is aging. Risk for developing wet or dry 

AMD increases from age 50 onwards, with Caucasian people over 75 years old 

having the greatest risk for developing the condition. [132] Other non-modifiable 

risk factors include gender, [133, 134] iris color, [135] and genetic susceptibility. 

[125, 136, 137] Several genetic loci are associated with either risk for, or protection 

against, developing AMD. [125, 136, 137] However, no single specific gene or 

mutation has been found to cause the disorder directly. Modifiable risk factors for 

AMD include smoking, [138] hypertension, [139] excessive alcohol use, [140] 

obesity, [141] and nutritional deficiencies in antioxidants and zinc. [142] 

 

The complexity of the risk factors, both genetic and environmental, and lack of a 

clear cause beyond aging itself as a common initiator in the development of either 

wet or dry AMD, therapeutic strategies are best aimed toward targeting the 

physiological damage to the retina and underlying RPE as opposed to correcting 
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the different factors which contribute to disease development. While genetic 

factors play a significant role in predisposing people to developing AMD, the 

complexity of the disorder makes it difficult to predict patient outcomes purely on 

the basis of genetics, or to design therapeutics for targeting a single gene, though 

identification and characterization of susceptibility alleles does provide insight into 

pathogenesis of the disease.   

 

Pathology of Dry AMD 

 

The fovea of the macula lutea (‘yellow spot’: Latin, macula = spot; lutea = yellow), 

located at the center of the retina in the human eye, [143] is the primary site of 

RPE degeneration in dry AMD. [144] It is clearly visible as a dark spot on fundus 

images of normal eyes (Figure 1.4). This region of the eye contains a dense 

concentration of cone photoreceptor cells and is responsible for central high acuity 

color vision. There are several clinical features which encompass dry AMD from 

the early to the late stages, including the accumulation of large soft drusen, RPE 

abnormalities, and geographic atrophy of the RPE.   

 

Early AMD 

 

Early dry AMD is largely asymptomatic in terms of altered vision, so it is important 

for early intervention that the disease is recognized before patients begin to 

experience vision loss, which typically presents as gradual diminished vision when 

performing activities such as driving or reading. [145] One or both eyes may be 
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affected, though in the early stages, unilateral vision loss is more common than 

bilateral vision loss. Patients with AMD in one eye have an increased risk for 

developing AMD in the other eye with increased severity where progression and 

severity in the affected eye can be a predictor for accelerated progression and 

severity in the unaffected eye in the future. [146] 

 

Early dry AMD features a thickening and breakdown of the Bruch’s membrane. 

[144, 147] Bruch’s membrane thickening is contributed to by the accumulation of 

primarily phospholipid deposits referred to as basal linear and basal laminar 

deposits within and around the membrane, [148] and also involves an increase in 

TIMP-3 expression in comparison with that observed with normal aging of the 

Bruch’s membrane [149] along with dysregulation of expression of other 

extracellular matrix proteins. [150] The earliest detectable signs of dry AMD are 

visualized as the accumulation of yellow-colored extracellular deposits known as 

drusen. [144] Drusen can be either ‘hard’ or ‘soft’, [151] with hard drusen typically 

<125 µm in diameter and soft drusen >125 µm in diameter. [152] While drusen are 

considered a ‘hallmark’ of AMD, it is important to note that the presence of drusen 

is not directly linked to AMD as some drusen are present at the macula of almost 

all eyes as a part of the normal aging process. [153] One subset of drusen, referred 

to as either pseudodrusen or reticular (‘net like’) drusen, are particularly associated 

with the development of late AMD. [154] 
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Drusen are located between the basement membrane of the RPE and the inner 

collagenous layer of the Bruch’s membrane (Figure 1.5). [155] While has been 

established for some time that the number and size of drusen can be predictive of 

the development of dry AMD, the composition of drusen and the process by which 

these deposits form is not fully understood. [155] It is generally accepted that 

drusen contain lipids, carbohydrates, and proteins [156] derived from both the RPE 

and Bruch’s membrane. [157] Interestingly, some drusen have been shown to 

contain amyloid beta, which is also found in plaques in Alzheimer’s disease. [158]  

Patients are classified as having early, intermediate, or late dry AMD depending 

on the appearance and features at the macular region. [159] Early dry AMD is 

characterized by the presence of drusen between 63 and 125µm in diameter 

(Figure 1.6a.). [159] These early presentations of drusen are not associated with 

vision loss. Changes in the pigmentation of the RPE are also indicative of the onset 

of dry AMD, [44] with hyperpigmentation observed in the presence of drusen which 

has been suggested to result from local RPE cell displacement (Figure 1.6a). [155] 

Intermediate dry AMD is characterized by the presence of medium drusen in 

combination with RPE abnormalities or large drusen (>125 µm) [159] (Figure 1.6b), 

and late-stage dry AMD is characterized by large confluent drusen, central vision 

loss and the presence of geographic atrophy, which is clearly visible as a large 

fluorescent spot in the macular region, with clearly visible choroidal vasculature 

due to regional RPE hypopigmentation. (Figure 1.6c).  
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Figure 1.4 
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Figure 1.4. Fundus photograph of a normal human eye showing the fovea of 

the macula and the optic nerve.  
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Figure 1.5 

 

 
Source: http://www.ophthotech.com 
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Figure 1.5. Diagrammatic Representation of the Location of Drusen in Dry AMD.  
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Figure 1.6 
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Figure 1.6. Fundus Photographs of Dry AMD Progression. (A) Fundus 

photograph of a human eye with early dry AMD. Arrow indicates RPE degeneration 

at the macular region of the eye. Circle indicates the presence of drusen. (B) 

Fundus photograph of a human eye with intermediate AMD. (C) Fundus 

photograph of a human eye with late dry AMD. 
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Late AMD 

 

As the disease progresses, geographic atrophy of the RPE results in loss of 

photoreceptor cells critical for high acuity vision at the macular region, 

autofluorescent lipofuscin granules accumulate in the RPE cells [160, 161] 

subretinal microgliosis develops, [162] and retinal morphology deteriorates. [125] 

The critical role of the RPE in maintaining the retina is first diminished, then lost, 

and the resulting loss of the photoreceptor cells results in irreversible loss of central 

high-acuity vision, as the greatest cell loss is observed at the macular region, 

though peripheral degeneration is also frequently observed. [160]  

 

The presence of geographic atrophy (GA) marks the progression of dry AMD from 

the early to the late stage of the disease, and is clearly visible by fluorescein 

angiography (Figure 1.6c). [163] The area of GA presents as a large 

autofluorescent patch on the fundus photograph, localized around the macular 

region of the eye.[163] The choroidal vessels are prominently visible around the 

area of GA as a result of a localized loss of RPE cell pigmentation, and the GA 

may be surrounded by areas of hyper- and hypo-pigmentation as a result of RPE 

dysfunction (Figure 1.6c). [163] While GA encompasses much of the macular 

region, in some cases identified earlier in the progression of the late stage of dry 

AMD, the area of GA will present in a ‘horseshoe’ figuration, with GA predominantly 

forming in the parafoveal area and not in the fovea itself, which is known as foveal 
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sparing (Figure 1.7), [163] as the involvement of the fovea may occur only in the 

later stages of late AMD, perhaps due to the migration of RPE cells from the 

periphery to the fovea as observed in normal aging. [164] Overall retinal thickness 

is significantly reduced in the region of GA in comparison with retinal thickness loss 

in normal aging, and RPE degeneration is often present in the periphery of the eye 

in addition to in the macular region. [163]  

 

At the very end stage of dry AMD, GA may progress to choroidal 

neovascularization, as observed in wet AMD. [163] This is observed in 

approximately 10-15% of patients with dry AMD, and involves the formation of 

abnormal blood vessels which invade the RPE layer and retina from the 

choriocapillaris, and will eventually lead to the formation of a disciform scar and 

severe vision loss. [163, 165] 
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Figure 1.7 
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Figure 1.7. Foveal Sparing in Human AMD. Asterisks mark the fovea surrounded 

by an area of foveal sparing located around the central region of the macula. This 

indicates areas of undamaged RPE/retina surrounded by areas of extensive 

damage, responsible for moderate preservation of vision at the very center of the 

visual field.  
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Therapies for Dry AMD 

 

As mentioned previously, there are no current effective therapies for dry AMD, 

though several approaches have been attempted in both animal studies and in 

human clinical trial. These include, but are not limited to, macular translocation 

surgery, [166] RPE transplantation, [163] retinal prosthesis implantation, [167] 

induced pluripotent and embryonic stem cell based therapies (iPSC and ESC), 

[168] all of which necessitate invasive surgery. Any procedure which involves 

transplantation into the subretinal space is associated with a significant risk for 

causing blindness due to intraocular hemorrhage, retinal detachment, or 

proliferative vitreoretinopathy as a result of retinal detachment. [169] The benefits 

of these treatments are therefore likely limited to patients in the later stages of 

disease, in order for the potential benefit to outweigh the potential risk, which limits 

the outcome in terms of visual recovery in comparison to what may be possible 

with a less invasive approach such as the one we describe in this study. One non-

invasive study by the Age-Related Eye Disease Study Research Group involving 

treatments with supplements containing a combination of antioxidants and zinc 

indicates that these may aid in preventing the progression of intermediate to late 

dry AMD, though little benefit was observed in patients with earlier stage AMD, 

[170] again making this an option which is unlikely to result in significant visual 

recovery due to the retinal damage already present.  
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The concept of macular translocation has predominantly been investigated in the 

context of wet AMD. Van Meurs et al. reported successful translocation of 

peripheral RPE, but observed deterioration of vision due to vitreoretinopathy in 3 

patients. [171] However, this surgery has been attempted in cases of geographic 

atrophy. The principle of the treatment is to detach and rotate the retina to 

relocalize the macular region in an attempt to preserve it. [163] This treatment is 

therefore highly invasive. Cahill et al. reported a study in which investigated the 

recurrence of RPE damage in dry AMD patients treated with macular translocation 

in 2005, finding that the translocation was insufficient to prevent the new 

development of pathology in the foveal region, indicating that this treatment is 

insufficient to preserve vision in dry AMD. [166] 

 

RPE transplantation was considered an attractive possibility in dry AMD due to the 

fact that it is widely accepted that loss of the RPE precedes damage to the neural 

retina. Therefore, replacing the damaged RPE with a new sheet of RPE cells was 

thought to be sufficient to preserve retinal function and, consequently, vision. The 

majority of human RPE transplantation studies have involved wet AMD with some, 

albeit limited, vision recovery in a small number of people. [172-175] While it was 

found that transplanting sections of a fetal RPE layer into the subretinal space of 

four dry AMD patients did not result in transplant rejection in comparison with 

results observed in wet AMD patients receiving the same treatment, and that visual 

function was not reduced as a result of the procedure in the dry AMD transplant 

recipients, [176] a patient treated with an RPE allograft developed leakage, 



51 
 

fibrosis, and anti-photoreceptor immune responses, indicating that while the eye is 

‘immune privileged’, immunosuppression is likely required for allografts and 

allogeneic transplants, which may be detrimental to the health of patients over the 

age of 65. [177] A subsequent trial in wet AMD demonstrated effective engraftment 

of an RPE allograft with immunosuppression, but no recovery of vision. [178] 

 

More recent advances in the development of organic retinal prostheses in a rat 

model [179] and the electrode-based Argus II Retinal Prosthesis System, which 

has been shown to be potentially beneficial in retinitis pigmentosa, [167] present 

an encouraging possibility for future use in humans, though retinal prosthesis 

insertion remains an invasive procedure.  

 

In recent years, researchers have been investigating the potential for stem cell 

treatment in RPE replacement through the subretinal transplant of RPE cells 

derived from ESC or iPSC, which have been successful in animal models. iPSC 

are advantageous as they can be derived from autologous cells and therefore do 

not require immunosuppressant therapy, though the transplant protocol for both of 

these cell types is, again, invasive as it necessitates invasion of the subretinal 

space. Unfortunately, while ESC have been shown to be relatively safe in terms of 

not generating teratomas or tumors, or tissue rejection, in one clinical trial, the 

visual recovery in the patients was limited, as was the patient number. [180] In 

terms of iPSC-derived RPE, the results of the first human clinical trial using these 

cells in AMD by Takahashi’s group in Japan revealed encouraging safety data, and 



52 
 

indicated that the treatment does not worsen vision, but again a lack of significant 

improvement in vision was observed. [181] This study was carried out on wet AMD 

patients as opposed to dry AMD, therefore it is not currently known if visual 

improvement can be obtained using these cells in dry AMD. [181] We propose that 

this lack of success in visual recovery is in part due to the fact that patients have 

been treated in the later stages of disease, and that subretinally-transplanted cells 

may not spread out enough to recover vision, as they have been shown to remain 

in a ‘clump’ at the site of injection. [180] The success and limitations of stem cell-

based therapy for dry AMD, along with our strategy for overcoming these 

limitations, will be discussed in more detail in the next section. 

  

Stem Cell-Based Therapy for Dry AMD 

 

Stem cell-based therapies for both wet and dry AMD have been under investigation 

for several years. Multiple sources of cells for cell-based therapy for diseases of 

the retina have been evaluated in murine models and human clinical trials, 

including mature cells such as RPE from the patient or a donor (of either fetal or 

adult origin), [169] iris pigment epithelial cells, [182] Schwann cell, [183] and a wide 

range of stem cells, including: mesenchymal stem cells, [184] adipose stem cells, 

[185] RPE cells derived from ESC, [180, 186] iPSC, [181] and bone marrow-

derived cells. [13, 187] The majority of recent studies have focused on stem cell-

based therapies as opposed to using developed RPE cells as stem cells have the 

capacity to proliferate, whereas using autologous or donor RPE is limited by the 
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limited proliferation potential of the cells. Stem cell-derived RPE cells are also 

easier to isolate and purify in larger numbers than RPE cells from the patient’s own 

eye or from donor eyes.  

 

Although these therapies have shown considerable promise in animal studies, the 

successful transfer into the clinic for treatment of humans has been limited to date. 

Several complications with the procedures for developing and delivering the cells 

contribute to this, including highly invasive cell delivery protocols, immune system 

rejection of cells where cells are not autologous, the inability of the cells to 

adequately differentiate and spread out across the RPE layer, inability of cells to 

adhere to the aged Bruch’s membrane, and the fact that most studies address late-

stage disease, at a point where replacing the RPE may be insufficient to recover 

vision as a result of involvement of the neural retina in disease development prior 

to treatment with cells.  

 

In order to develop a successful stem cell-based therapy for dry AMD, several 

factors must be considered: (1) the origin of the cells, (2) the cell delivery 

mechanism, and (3) the ability of the cells to integrate and function at the site of 

degeneration. The origin of the cell is closely linked to the available delivery 

mechanisms, of which there are three options: intravitreal, subretinal, and 

systemic. The majority of stem cells must be delivered subretinally for RPE repair, 

though improvement of vision has been observed in murine models with intravitreal 

injections.  
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Systemic delivery is the least invasive method, and is thought to only be 

appropriate for cells of bone marrow origin. In order for systemic delivery to result 

in adequate localization of cells to the RPE, the cells must be able to circulate in 

the blood stream, and it is not clear that any cell type besides the bone marrow 

progenitor-derived RPE and mesenchymal stem cells would have the capacity to 

do this. Bone marrow-derived cells are a particularly attractive cell source for RPE 

replacement therapy because they are easily obtained and can be delivered with 

the minimally invasive systemic injection approach, which provides the potential 

for treating in the early stages of disease. We have therefore focused on bone 

marrow-derived cells in our study. In this section, we will review the results of stem 

cell-based therapies in dry AMD to date, and introduce our approach for the use 

of bone marrow-derived cells, which will be discussed in greater detail in the 

subsequent section.  

 

Stem Cells in the Normal Retina/RPE 

 

Unlike the retinae of fish [188] and amphibians, [189] mammal retinae possess 

limited potential for regenerating damaged tissue. [190-192] There are, however, 

some cell types which contribute to low level neuronal regeneration following 

injury, which can also be induced by exposure to growth factors or drugs. [190-

192] Müller cells, which are neurogenic in fish, [190] have been found to express 

similarities to neural stem cells when activated following retinal injury [190, 193] or 
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exposure to an agonist of the alpha-7 nicotinic receptor. [192] Murine and human 

Müller cells have been found to have potent neurogenic potential when cultured ex 

vivo, indicating that the microenvironment of the mammalian retina actively 

suppresses its own regeneration potential. [193, 194] RPE cells have also been 

shown to be able to proliferate while outside of the retinal microenvironment, and 

a population of cells which have been described as adult RPE stem cells 

(RPESCs) have been isolated from the human retina. [195] Removing these cells 

and activating them ex vivo, or pharmacologically activating them in vivo may be 

a viable option for repair using endogenous mechanisms. [195]  

 

As RPESCs are a relatively recent discovery, few studies have evaluated their 

potential in RPE regeneration in retinal degeneration diseases; however, Stanzel 

et al. reported in 2014 that sheets of RPE generated from human RPE stem cells 

could be transplanted into rabbits and were capable of engrafting and persisting 

without immune system targeting, [196] suggesting that transplant of cells derived 

from RPE stem cells may be more capable of restoring visual function than 

transplant of mature RPE. This is likely to be due to the stem cell status of the 

cells, as immature RPE are more likely to mimic developing RPE than the 

transplant of fully differentiated RPE – if attachment of the cells to the Bruch’s 

membrane following transplant is dependent on the age of the cells, [16] it is 

possible that developing RPE stem cell-derived RPE layers may be able to engraft 

whereas adult RPE may not as a result of expression of early markers that the 

adult RPE would no longer express.  
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Stem Cells in Dry AMD 

 

Embryonic Stem Cell-Derived RPE 

 

ESCs self-renew and can give rise to any cell type. [197] They are associated with 

significant ethical concerns due to their embryonic origin, [198] and ESC-derived 

cells are highly immunogenic, [199] which limits their potential in regenerative 

medicine, especially in cases where giving immunosuppressants to address their 

immunogenicity would be contraindicated for the patient. Immunosuppressant 

therapy is associated with an increased risk for developing infection [200, 201] and 

malignancies. [202, 203] Nevertheless, ESCs have been applied in retinal 

degeneration disorders such as Stargardt’s macular dystrophy and dry AMD in 

three landmark clinical trials. The first two trials were carried out by Massachusetts 

company Ocata Therapeutics (formerly Advanced Cell Technology), [180, 186] 

and the third by a Korean group using cells obtained from Ocata Therapeutics. 

[204] 

 

In the first Ocata Therapeutics trial, reported by Schwartz et al., ESC-derived RPE 

cell transplants in one Stargardt’s muscular dystrophy patient, and one dry AMD 

patient, were not rejected and were not tumorigenic over the 4 month period in 

which patients were monitored. [180] While limited visual recovery was reported, 

the study was designed to evaluate safety, not therapeutic performance, and 

therefore the minimal recovery to 20/800 in the Stargardt’s muscular dystrophy 



57 
 

patient, and 7-letter improvement in the dry AMD patient, should not be interpreted 

to indicate that significant visual improvement could not be attained in future 

studies. [180, 205] In the second study, involving 18 patients (nine with Stargardt’s 

muscular dystrophy, and 9 with dry AMD), the ESC-derived RPE were again found 

not to be hyperproliferative. Again, minimal improvements in vision were reported, 

though only in 10 eyes. Additionally, a decrease in visual acuity was observed in 

one eye. [186] In the third trial, a lack of tumorigenicity and rejection was observed 

and visual acuity was improved by 9-19 letters in three out of four patients (two 

with dry AMD and two with Stargardt’s muscular dystrophy). [204] 

 

While these trials provide invaluable information on the tolerability and engraftment 

capacity of transplanted RPE, [180, 186, 204] they have received criticism for the 

statistical relevance of their findings due to the small sample size (24 patients 

total), [206] and the majority of observed improvement in visual acuity could be 

accounted for by the high variability of the mechanisms used to measure vision. 

[207-209] Larger trials are therefore necessary to determine the accuracy of the 

findings. Additionally, the patients were monitored from 4 months up to a year, 

which raises concerns regarding the validity of the authors’ claims that the ESC-

derived RPE are not tumorigenic, since this has not been investigated long-term.  
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IPSC-Derived RPE 

 

iPSC were developed by Takahashi and Yamanaka in Japan in 2007, who 

reported that retroviral vector-mediated expression of Klf4, Sox2, Oct4, and c-Myc 

in human fibroblasts resulted in the dedifferentiation of the cells to an ESC-like cell 

with pluripotent properties. Later modifications to this protocol eliminated c-myc, 

improving the cells’ safety as c-myc is a known oncogene. Expression of two 

additional genes, NANOG and LIN20 in combination with the previously mentioned 

factors enhances the production of iPSCs. [210] The advantages of iPSC as a 

source of RPE cells over ESC are clear: there are no ethical concerns associated 

with their development, and they can be derived from the patients’ autologous 

fibroblasts, reducing their immunogenicity. There are, however, some safety 

concerns with iPSC – Riggs et al. used transcriptome comparisons of iPSC and 

oncogenic foci to determine that the transcriptional alterations associated with 

dedifferentiation of fibroblasts to generate iPSCs are similar to the changes 

associated with the development of cancers. [211] While this in itself should not be 

taken to indicate that the iPSCs themselves are tumorigenic, it highlights that the 

potential for iPSCs to become tumorigenic may be higher than that of ESCs or 

other stem cell types. This may be overcome by screening of iPSCs prior to use in 

regenerative medicine approaches to filter out any tumorigenic cells prior to 

delivery. [212]  
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The most recent study involving iPSC-derived RPE cells was carried out in Japan 

by Yamanaka and Takahashi, the pioneers of iPSC development. While the study 

focused only on wet AMD, it provides valuable insight into the use of iPSC in retinal 

degeneration. First and foremost, the subretinal transplant of a sheet of iPSC-

derived RPE was tolerated and not degraded by the immune system. [181] 

Additionally, no significant adverse effects were observed in any of the patients 

treated. [181] These findings suggest that, while the procedure was invasive, it 

was also safe and did not result in any significant loss of vision, which is 

encouraging for the future potential of iPSC-derived RPE cells in humans. 

Unfortunately, however, as was the case in previously discussed clinical trials, 

none of the patients tested had any improvement in their visual function 1 year 

after the placement of the iPSC-derived sheets. [181] This suggests that lack of 

immunogenicity and retention of the graft over long periods of time may be 

insufficient for visual recovery in patients. While it is encouraging that vision was 

not found to worsen after treatment, the lack of improvement is a significant 

concern, as theoretically the replacement of the RPE layer should improve vision 

if no other complications are present. Some potential reasons for the lack of 

recovery of vision include inadequate ‘communication’ between the RPE and the 

photoreceptors or choroid, inadequate RPE function in terms of supporting 

photoreceptors and the choroid, or, as previously discussed, the photoreceptors, 

choroid, and/or neural retina may have already been too damaged for any recovery 

in vision to occur. It would be interesting to compare, in the long term, the use of 

this technique in patients with early AMD with late-stage AMD patients. Replacing 
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the RPE layer early in disease may preserve vision by delaying the progression 

from early to late AMD; however, obtaining approval to carry out iPSC-derived RPE 

cell sheet transplants on patients who do not yet have substantial vision loss may 

be difficult to obtain. At present it is not known whether or not the RPE sheets are 

capable of supporting vision at all, meaning that they could cause immediate and 

severe worsening blindness in early-stage patients. Further investigation is 

therefore required to determine whether or not the RPE sheets can be functional 

in terms of supporting high acuity vision prior to testing in these patients.  

 

Mesenchymal Stem Cells 

 

Mesenchymal stem cells (MSCs) have been shown to differentiate into an RPE-

like phenotype, expressing RPE65 and the RPE-associated CRALBP gene 

following exposure to RPE-conditioned media, or coculture with RPE cells, 

photoreceptor outer segments, or a combination of these techniques. [213] Rat 

bone marrow-derived MSCs differentiate into RPE, photoreceptor, and glial cells 

in a sodium iodate model [214] and retinal neural cells in a mechanical injury 

model. [215] MSCs have been evaluated in a clinical setting for the treatment of 

retinitis pigmentosa, which is an inherited disorder of the RPE, in which adipose 

tissue-derived MSCs which had not been differentiated to RPE-like cells prior to 

delivery were subretinally injected in 11 patients with advanced disease. [184] 

Complications included the development of choroidal neovascularization at the site 

of injection, and five developed epiretinal membranes requiring further treatment, 
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[184] highlighting the potential damaging effect of subretinal delivery. While none 

of the patients experienced loss of vision as a result of the treatment, only one 

reported an improvement in visual acuity. [184] 

 

Adipose Stem Cells 

 

Recently a study which lacked appropriate FDA approval tested the use of 

autologous adipose tissue-derived stem cells. The cells were injected intravitreally 

and bilaterally, and resulted in severe and irreversible blindness in both eyes of all 

3 patients treated with the procedure within 7 days of treatments. [185] This 

highlights several important issues: (1) that adequate safety studies must be 

carried out prior to use in humans, (2) that stem cell-based therapy must be 

regulated more stringently by the FDA, and, (3) that autologous stem cells are not 

necessarily safe. Autologous cells have long been touted as non-immunogenic. In 

principle, they are – these cells are ‘self’ and should therefore not be recognized 

as foreign when injected back into the patient. However, the treatment of 

autologous cells ex vivo has a significant potential to result in an immunogenic cell 

population when injected back into the patient. ‘Transformation’ of autologous cells 

to cells with an allogeneic phenotype may occur, for example, due exposure of 

cells to serum or growth factors that are either not human or not from the patient. 

Even if the cells themselves are not immunogenic, there is a potential for injecting 

components of reagents or media used to culture or expand cells along with the 

cells if the cell preparation protocol is not adequately monitored, as has been 
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suggested as the reason for the adverse response in the aforementioned clinical 

trial. While some changes to the cells may result in the cells being killed by the 

immune system, the presence of components of culture media have the potential 

to trigger, for example, a type I hypersensitivity reaction in the patient, if injected 

repeatedly. It is therefore vital that autologous cells are handled in such a way that 

they do not become immunogenic in order to protect patients treated with these 

cells. 

 

Bone Marrow Cells 

 

Bone marrow derived cells have traditionally been thought to be limited to 

differentiating along hematopoietic lineages. In recent years, however, it has been 

reported in several studies that these cells may be capable of differentiating along 

non-hematopoietic lineages. [216] Bone marrow-derived cells have an advantage 

over other cell types due to their ability to home to sites of injury; in particular, their 

expression of CXCR4 [217] aids migration to areas of cellular injury that involve 

the release of the cytokine CXCL12/SDF-1, the CXCR4 ligand. [217, 218] Both 

SDF-1 and CXCR4 have been localized to the photoreceptor layer and the retinal 

pigment epithelium in AMD, [219] indicating that the migration of bone marrow-

derived cells to the site of injury in AMD is a potential mechanism for reparative 

processes. The critical advantage of using a bone marrow-derived cell approach 

is that, due to the cells; natural ability to be recruited to sites of injury from the 

bloodstream, therapeutic bone marrow-derived cells can be delivered systemically. 
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This eliminates the need for invasive delivery mechanisms such as subretinal 

injection and subretinal transplant.  

 

It has been shown in two mouse models, one similar to wet AMD involving VEGF 

overexpression, and one similar to dry AMD, resulting from sodium iodate-induced 

RPE injury, that unmanipulated bone marrow-derived cells are recruited to the site 

of injury and regenerate damaged RPE in mice. [220] In this study, GFP LSK cells 

were transplanted into irradiated wild type mice with retinal injury. GFP+ cells were 

found in the RPE layer of these mice and were not found to be a result of cell fusion 

in XY FISH analysis, [220] indicating true incorporation of these cells at the site of 

injury.  

 

Because unmodified BMDCs are capable of genuine integration at the RPE layer, 

the potential for modifying these cells and ‘exploiting’ their regenerative capacity is 

an attractive prospect for treating dry AMD. BMDCs are advantageous because 

they are not pluripotent in the same way that ESCs and iPSCs are – these cells 

will not become any cell type or differentiate into multiple cell types without an 

external factor such as having been recruited to a site of cellular injury. They are 

also not able to form teratomas, as they will not form tumors originating from 

multiple germ layers. These cells are therefore significantly less likely to result in 

adverse side effects than ESC and iPSC. Additionally, they can be obtained from 

the patient, eliminating the need for immunosuppressants as autologous cells will 

not be rejected if handled appropriately ex vivo prior to reinjection. While iPSCs 
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are also autologous, BMDCs have the advantage that they only need to be 

differentiated from BMDC to RPE, as opposed to being dedifferentiated into iPSC 

prior to differentiation into RPE. As previously mentioned, this makes them 

considerably less likely to be tumorigenic as they are being directed to differentiate 

into a specific cell type from a starting point which is not designed to be able to be 

pluripotent.  

 

We have therefore focused on BMDCs in dry AMD. Prior to this study, our group 

published evidence that BMDCs programmed with the RPE65 gene are recruited 

to and integrate into the RPE layer of mice with either sodium iodate [216] RPE 

damage or SOD2 knockdown-mediated RPE damage.[13] In both of these models, 

expressing the human RPE65 gene resulted in enhanced migration to and 

integration into the RPE layer of BMDCs in comparison with mice treated with 

naïve BMDCs. This approach is thought to work for a number of reasons: (1) 

expressing the RPE65 gene provides a critical RPE function to the cells, (2) 

expressing the RPE65 gene activates expression of a second gene, Cralbp, and, 

(3) enhancing the BMDCs differentiation into RPE likely enhances their integration 

at the site of injury. Additionally, the minimally invasive systemic delivery allows for 

early intervention.  

 

Given that evidence in the literature suggests that mature RPE – either autologous, 

donor-derived, or stem cell-derived – does not integrate into and adequately 

adhere to Bruch’s membrane whereas immature RPE cells do, our approach offers 
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a significant advantage over other approaches. The reason for this is that our 

programming process for differentiating BMDCs results in an immature cell type 

which fully differentiates into mature RPE only in the microenvironment of the 

retina. This process mimics development, as the cells are incapable of fully 

differentiating ex vivo and likely rely on factors present in the retina itself to form 

fully functional RPE. These cells are therefore more likely to be functional than 

cells which have been transplanted after being fully differentiated ex vivo such as 

iPSC and ESC-derived RPE.  

 

Modifying BMDCs to express RPE associated genes prior to delivery likely 

enhances the therapeutic potential of the cells due to their ability to perform the 

function of normal RPE following recruitment for the bloodstream, and expression 

of RPE65 in the cells may also aid in recruiting the cells to the site of injury. While 

the lentiviral vector-mediated approach used in the aforementioned studies has 

proven successful, [13, 187] safety concerns still exist regarding the insertional 

mutagenesis and subsequent tumorigenic potential of lentiviral vectors. In this 

study, we therefore aimed to improve the safety of the RPE65 gene delivery 

approach.  

 

Lentiviral Vectors 

 

Stable integration of replication-incompetent LVs into the host genome allows for 

long-term expression of therapeutic transgenes in quiescent and rapidly dividing 
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cells. [221] However, not all LV transduction applications necessitate stable 

integration or long-term expression of a transgene. [222-224] Since the RPE65 

transgene activates expression of adenylate cyclase in BMDCs, and this in turn 

switches on expression of endogenous Rpe65, [216] we suggested that transient 

expression of the RPE65 transgene may result in sufficient programming in the 

absence of integration, further enhancing the safety of our approach for human 

clinical trials.  

 

In this study, we therefore carried out a systematic optimization of a 3rd generation 

non-integrating lentiviral vector (IDLV) expressing human RPE65 for programming 

both murine and human BMDCs.  

 

LV vectors are an attractive mechanism for gene therapy [225] for several reasons, 

including a high capacity for packaging large amounts of genomic material in 

comparison with retroviral vectors, [225, 226] low rate of replication-competent 

virion production capacity in self-inactivating LV vectors, [227] and the ability to 

generate LV vectors capable of infecting a wide range of cell types. [228, 229] Cell 

types which have been targeted with LV vectors include, but are not limited to, 

direct transduction into muscle cells, [230] neurons, [231] photoreceptors, [232] 

bone marrow-derived cells, [13, 216] hepatocytes, [230] and T-cells. [233] LV 

vector design has been extensively modified since the first use of the vectors, 

incorporating several safety features such as the development of self-inactivating 

vectors and the use of multiple plasmids to generate virions as a means of reducing 
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the probability of producing replication-competent lentivirus (RCL). [227, 234, 235] 

Avoiding RCL is critical to avoid off-target and deleterious effects arising from the 

infection of non-target cell types with the transduced vector, as typically vectors 

used in LV-based gene therapy have the capacity to infect a wide range of cell 

types. [236-238] RCL have not been observed in cells transduced with the most 

commonly used modified LV vectors, referred to as 3rd generation LV vectors. [239]  

 

Lentiviral Vector Structure 

 

The lentiviral vector genome is derived from the naturally occurring human 

immunodeficiency virus strain 1 (HIV-1).[234] Third generation LV vectors, in 

contrast with 1st generation LV vectors which utilized all of the HIV-1 genome with 

the exception of the env gene, are generated with only gag, pol, and rev. [234] This 

significantly improves vector biosafety. [234] Third generation vectors were 

developed by Dull et al., in 1998 and are generated by the transient transfection of 

HEK-293T cells with four plasmids: (a) an expression vector, containing the 

transgene under the control of an appropriate promoter along with the Rev 

responsive element (RRE) for nuclear export, the central polypurine tract (cPPT) 

to aid transduction into non-dividing cells, [240] the packaging signal (ψ), [234] the 

Woodchuck Post-Transcriptional Response Element (WPRE) for stabilizing the 

mRNA, [241, 242] and flanking 5’LTR with a self-inactivating 3’LTR (SIN-LTR) 

[227, 235], (b) a packaging plasmid expressing gag and pol for capsid formation 

and integration, [234] an RRE, and a polyA tail, (c) an envelope plasmid 
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expressing the desired envelope for pseudotyping the vector (typically vesicular 

stomatitis virus G protein, VSV-G), [234, 243] and, finally, (d) a rev-expressing 

plasmid. [234] Rev binds the RRE to nuclear export machinery and facilitates the 

nuclear transport of RRE-expressing transcripts. [234, 244] Together, these 

plasmids provide everything necessary to generate a LV vector expressing the 

desired expression vector which is capable of vector particle formation and stable 

integration into the host cell genome, but not replication. [234] 

                       

The stable integration of standard LV vectors into the host cell genome in both 

dividing and non-dividing cells [245] is a significant advantage of LV vector-based 

therapy for a wide range of diseases. [245] For example, in monogenic disorders 

such as β-thalassemia, caused by mutations in the HBB gene, and 

adrenoleukodystrophy, caused by mutations in the ABCD1 gene, the stable 

integration of LV vectors expressing the normal gene in hematopoietic stem cells 

(HSCs) used for transplant has yielded positive results in clinical trials. [246, 247] 

Success has also been achieved in LV vector-based clinical trials targeting 

Wiskott-Aldrich syndrome, caused by WASp mutations, [229, 248] metachromatic 

leukodystrophy, caused by a deficiency in arylsulfatase A, [249] and blood cancers 

arising from CD19+ cells such as chronic lymphocytic leukemia, acute 

lymphoblastic leukemia, and lymphomas. [233, 250-252] LV vectors have been 

established as considerably safer than other gene therapy approaches such 

oncogenic gamma retroviral vectors and adenoviral vectors, which have resulted 

in severe adverse effects such as the development of T-cell leukemia [253] and 
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fatal inflammatory responses [254] respectively. LV vectors are known to exhibit 

relatively low activation of immune responses against cells expressing the vector 

in comparison with other vectors such the adenoviral vector used in the 

aforementioned clinical trial, [255, 256] making them a safer alternative to these 

vectors.     

 

Integrase-Deficient Lentiviral Vectors 

 

Despite stable integration being advantageous in many LV vector-based therapies, 

integration is associated with the risk of insertional mutagenesis. [257] Insertional 

mutagenesis occurs when the vector inserts within a region of the genome which 

alters the expression of another gene, either through directly interrupting the 

coding sequence or through disruption of elements controlling gene expression 

such as promoter and enhancer regions. [257] Consequences of insertional 

mutagenesis include the development of cancer due to oncogene activation, loss 

of tumor suppressor genes, and other dysregulation of the cell cycle and cell death 

pathways. [258] Additionally, as more and more roles for non-coding regions of the 

genome are being identified, for example, long non-coding RNA and micro-RNAs, 

[259-261] it is becoming clear that LV vector integration may result in aberrant 

gene expression or gene expression control even when not inserted into coding 

regions of the genome. As a result, in applications where permanent expression 

of a transgene may not be required, the use of an integration defective LV (IDLV) 
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vector may significantly reduce the risk of LV vector-based pathologies following 

treatment.  

 

In order for vectors to integrate into the host genome, several enzymes are 

required to be present including the reverse transcriptase, polymerase, and 

protease enzymes generated by the HIV-1 pol gene, [262] the viral integrase 

enzyme, and integrase interactor 1(INI1/hSNF5). [262-266] A simple modification 

to one of these enzymes, the integrase enzyme, in the LV packaging plasmid 

results in the production of a LV vector which retains most of the function of a 

standard LV vector, but is incapable of integrating into the host genome. [267, 268] 

This vector remains episomal and is not retained as cells divide as a result of an 

Aspartic Acid to Asparagine substitution at position 116 in the integrase gene, 

referred to as D116N, which was first found to diminish integrase in a study in 

which the integrase gene was mutated in wild-type HIV-1. [267] When packaged 

with a packaging plasmid, such as the commonly used pMDL [269] or pCD-

NL/BH*DDD [270] packaging plasmids containing the D116N mutation, lentiviral 

particles are no longer capable of integrating into the host cell genome, and 

transgene expression reduces over time as cells divide. pMDL with the D116N 

mutation in its integrase enzyme demonstrates significantly reduced integration in 

comparison with its integrating counterpart, though its efficiency is markedly lower 

.[271]  
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Some residual integration does occur with IDLVs as a result of non-integrase-

mediated integration; however, the rate of residual integration is significantly lower 

than that observed with an integrating virus, and therefore the risk associated with 

insertional mutagenesis is significantly lower. [271] IDLVs have been successfully 

used in several studies in which transient expression of the transgene was 

sufficient, for example expression of zinc finger nucleases or gene editing. [222, 

224, 272-276] 

 

Project Summary 

 

In this study, we have addressed two major concerns in cell-based therapy for dry 

AMD. Firstly, we have established a non-integrating lentiviral vector-mediated 

approach for generating therapeutic cells, significantly reducing the potential for 

off-target effects resulting from insertional mutagenesis. Secondly, we have 

demonstrated that BMDCs treated with these non-integrating vectors are recruited 

to and regenerate damaged RPE in vivo. The use of autologous BMDCs is 

advantageous for four reasons: (1) the cells are not immunogenic as they are 

derived from the patients’ own bone marrow, (2) unlike ESCs, BMDCs are not 

associated with ethical concerns, (3) the cells are not pluripotent and are therefore 

less likely to result in tumorigenesis or teratomas formation in comparison with 

ESC and iPSC, and, (4) the cells can be given to the patient systemically, reducing 

the invasiveness of the treatment in comparison with strategies that involve 
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invasion of the subretinal space. Systemic delivery therefore allows for treatment 

early in the progression of the disease, and thus is more likely to preserve vision.  

In addition, we have expanded our approach to include human BMDCs in vitro, 

demonstrating that these cells can be induced to express RPE-associated markers 

in the same way as murine BMDCs, indicating that our approach is suitable for 

future analysis using human BMDCs in an immune-suppressed murine model of 

retinal degeneration. Furthermore, we have confirmed that adenylate cyclase 

activation plays a critical role in the programming of BMDCs to RPE-like cells in 

vitro.  

 

In Chapter III, we present the results of our first specific aim, which was to generate 

a 3rd generation IDLV expressing RPE65 (IDLV3-RPE65) for programming murine 

and human BMDCs to RPE-like cells. Our previous observation that expressing 

RPE65 induces expression of the endogenous Rpe65 gene; we therefore 

hypothesized that transient RPE65 expression from an IDLV may be sufficient. We 

demonstrate that IDLV3-RPE65 successfully infects both murine and human 

BMDCs and have optimized the infection protocol to address a significant 

difference in the normal infection efficiency of IDLVs vs. ILVs to include (1) high 

titer concentration with LentiX Concentration Reagent, (2) preloading of viral 

particles on RetroNectin, and, (3) spinoculation of cells. We show that BMDCs 

infected with IDLV3-RPE65 express the endogenous Rpe65 gene and RPE-

associated Cralbp gene at similar levels to that observed in cells infected with the 

integrating RPE65 viruses.  
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In Chapter IV, we present the results of our second specific aim, which was to 

evaluate the efficacy of systemically-delivered IDLV3-RPE65-programmed murine 

BMDCs in regenerating the RPE layer in models of retinal degeneration. We 

hypothesized that, as BMDCs infected with IDLV3-RPE65 expressed RPE-

associated genes at a similar level to BMDCs infected with the integrating 3rd 

generation RPE65 vector, ILV3-RPE65, these cells would be capable of 

regenerating the RPE and preserving vision in vivo. In this set of experiments, we 

also included a second set of IDLV and ILV vectors expressing both RPE65 and 

the development-associated gene micropthalmia-associate transcription factor 

(MITF), hypothesizing that this would enhance BMDC programming and 

consequently enhance preservation of vision. Unfortunately, we did not observe 

any advantage in using vectors expressing RPE65-MITF in comparison with 

RPE65 alone. However, we have shown that systemically-delivered murine 

BMDCs programmed ex vivo with IDLV3-RPE65 are recruited to and regenerate 

damaged RPE in both the acute and chronic models of retinal degeneration in 

mice, with improved visual function and evidence of RPE regeneration at the RPE 

layer in mice treated with the vector-modified cells.  

 

Finally, in Chapter V, we present the results of our third specific aim, which was to 

investigate the potential for pharmacological programming of BMDCs to RPE-like 

cells. As we have previously demonstrated that adenylate cyclase activation 

precedes the activation of the endogenous Rpe65 gene following RPE65 vector 
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infection, we hypothesized that activating adenylate cyclase may also promote the 

programming of BMDCs to RPE-like cells with the ability to travel to and regenerate 

the RPE when injected systemically. Using inhibitors of adenylate cyclase, we 

demonstrate that the activation of adenylate cyclase is critical for expression of 

both Rpe65 and Cralbp mRNA, with minimal expression observed in cells treated 

with the inhibitors after exposure to either adenylate cyclase activators or 

lentiviruses expressing RPE65. While BMDCs exposed to these drugs were not 

recruited to the eye in murine models of retinal degeneration, in this study, 

modifications to the protocol are likely to result in successful application of drug-

treated cells in future.  

 

Overall, we have expanded the knowledge of our field by contributing evidence 

that IDLVs may be sufficient to program BMDCs to RPE-like cells for systemic 

delivery, and demonstrated that human BMDCs can also be induced to express 

RPE-associated markers following infection with RPE65 vectors. This allows us to 

move the project another step closer to clinical trials in humans, with experiments 

currently underway to evaluate human BDMCs programmed with RPE65 in an 

immune-suppressed murine model of retinal degeneration.  

 

To the best of our knowledge, our study comprises first example of the use of a 

single IDLV in programming an adult BMDC to differentiate into a cell of non-

hematopoietic lineage.   
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CHAPTER II: MATERIALS AND METHODS 

 

In Vitro Methods 

 

Bacterial Growth 

 

All bacteria were grown in Luria-Bertani (LB) broth or on LB agar. LB broth was 

prepared with 10 g bacto-tryptone, 5 g yeast extract, and 10 g sodium chloride 

(NaCL) (Fisher Bioreagents, BP1427-500) in 800 mL dH2O, mixed using a 

magnetic stirrer and heat plate set at room temperature for 15 minutes. pH was 

adjusted to 7.5 with sodium hydroxide (NaOH; Fisher Bioreagents, BP1425-212) 

prior to adjusting the total volume to 1 L with dH2O. LB broth was then sterilized by 

autoclaving for 20 minutes on the Liquid cycle. For LB agar, 15 g of agar was 

added prior to adjusting the total volume to 1 L. Following sterilization, LB agar 

was allowed to cool to 50⁰C in a waterbath. The required antibiotics were then 

added: for Ampicillin (Fisher Scientific, BP1760-25), 100 µg/mL was used; for 

Kanamycin (Teknova, K2127), 50 µg/mL was used. Agar was mixed well by stirring 

and 12mL poured into petri dishes using aseptic technique. Where air bubbles 

formed, the Bunsen burner flame was briefly held over the plate. Plates were then 

cooled at room temperature for 1-3 hours and stored in plate sleeves at 4⁰C until 

use.  
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Transformation into JM110 Bacteria 

 

Prior to cloning, all plasmids were transformed into dam/dcm-negative Escheriscia 

coli strain JM110 obtained from Agilent (Catalog #200239) due to the presence of 

methylation-sensitive restriction sites in the cloning protocols. JM110 bacteria 

were stored on the bottom shelf of a -80⁰C freezer (Thermo Scientific) until use. 

For all transformations, JM110 bacteria were thawed on ice for 30 minutes prior to 

transferring 50 µL bacteria per transformation to 14 mL polypropylene round-

bottom tube (BD Falcon catalog #352059). Two extra tubes containing 25 µL 

JM110 bacteria were prepared each time a transformation was performed – one 

for the pUC18 positive control, and one for a negative control (i.e. untransformed). 

Prior to adding plasmid DNA, 0.85 µL beta-mercaptoethanol was added to each 

aliquot of cells and mixed gently by swirling. 1-5 µg plasmid DNA was then added 

to each tube; 0.5 µL pUC18 plasmid DNA was added to the positive control tube, 

and 0.5 µL dH2O was added to the negative control tube. Tubes were then 

incubated on ice for 30 minutes, heat-shocked for 45 seconds in a waterbath 

preheated to 42⁰C, and incubated on ice for a further two minutes. 250 mL plain 

LB broth was then added to each tube, and tubes were incubated for 1h at 37⁰C 

at 250 rpm. Transformations were then diluted 1:10 and 1:100 and plated on LB 

agar containing the required antibiotic (200 µL of the pUC18 control 

transformations were plated on LB agar containing ampicillin; negative control 

transformations were plated on plates containing all antibiotics used to propagate 

the plasmids being transformed). Plates were left to dry for one hour, inverted, and 



77 
 

incubated for 16-20h at 37⁰C. Transformations were considered successful where 

colonies were obtained on the pUC18 plate (~100 colonies) and no colonies were 

obtained on the negative control plate. 12-24 colonies were picked immediately 

after transformation and patched onto a numbered LB agar plate containing the 

required antibiotic. Patch plates were inverted and incubated overnight at 37⁰C 

before being transferred to the cold room. Bacteria was then picked off each colony 

and grown in preparation for miniprepping to screen for the plasmid of interest. 

Once identified, one colony containing the correct plasmid was maxiprepped and 

bacteria were stored long-term as a glycerol stock (80% glycerol in plain LB broth). 

 

Transformation into TOP10 Bacteria 

 

Following cloning, plasmids generated using the JM110 strain were transformed 

into the dam/dcm-positive E. coli ‘One-Shot TOP10’ strain obtained from Thermo 

Fisher (C404010). TOP10 cells were stored on the bottom shelf of a -80⁰C freezer 

prior to use. For transformations, cells were thawed on ice for 30 minutes and 

transferred into pre-chilled 14 mL BD Falcon tubes as previously described, at a 

volume of 25 µL cells per tube per transformation, plus a positive (pUC18) and 

negative (no plasmid) control as previously described. 1-5 µL plasmid was added 

to each tube and mixed by swirling gently. Transformations were incubated on ice 

for 30 minutes, heat-shocked at 42C for 60 seconds, and placed on ice for 1 

minute. 250 µL plain LB broth was added to each tube and tubes were incubated 

for 1 hour at 37⁰C, at 225 rpm. Transformations were then diluted 1:10 and 1:100 
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and plated on LB agar containing the required antibiotic (200 µL of the pUC18 

control transformations were plated on LB agar containing ampicillin; negative 

control transformations were plated on plates containing all antibiotics used to 

propagate the plasmids being transformed). Plates were left to dry for one hour, 

inverted, and incubated for 16-20 hours at 37⁰C. Transformations were considered 

successful where colonies were obtained on the pUC18 plate (~100 colonies) and 

no colonies were obtained on the negative control plate. 12-24 colonies were 

picked immediately after transformation and patched onto a numbered LB agar 

plate containing the required antibiotic. Patch plates were inverted and incubated 

overnight at 37⁰C before being transferred to the cold room. Bacteria was then 

picked off each colony and grown in preparation for miniprepping to screen for the 

plasmid of interest (see: Plasmid Preparation). Once identified, one colony 

containing the correct plasmid was maxiprepped and bacteria were stored long-

term as a glycerol stock (80% glycerol in plain LB broth). 

 

Plasmid Miniprep 

 

Plasmid minipreps were used to obtain plasmid for sequence verification and in 

the intermediate stages of vector cloning. The QIAGen Spin Miniprep Kit (QIAgen, 

27106) was used as per manufacturer’s instructions with the following 

specifications/modifications: single colonies were grown in 5 mL LB broth 

containing the required antibiotic (prepared as previously described) per miniprep 

for 16 hours at 37⁰C at 220 rpm in 14 mL BD Falcon polystyrene tubes (BD, 
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352051), and harvested by centrifugation at 5400 g for 10 minutes at 4⁰C. Where 

JM110 bacteria was used to propagate the plasmid, the extra wash step (step #7 

in the QIAPrep Miniprep Handbook, pg. 21) was carried out. 30 µL sterile nuclease-

free water was used to elute plasmid DNA.  

 

Plasmid Maxiprep  

 

Plasmids used for the production of lentiviruses were prepared by maxiprep to 

ensure that the DNA obtained was of high quality and high concentration (800 

ng/µL – 2 µg/µL). Initially, the PureLink HiPure Plasmid Filter Maxiprep Kit 

(Invitrogen, K210017) was used as per manufacturer’s directions; however, after 

several kits failed to produce good quality DNA, maxipreps were carried out using 

the QIAgen Plasmid Maxi Kit (QIAgen, 12165). As such, the pcz-VSVG lentiviral 

vector envelope plasmid, the pMDL 3rd generation lentiviral packaging plasmid, 

and the pMDL-D116N integrase-deficient lentiviral vector packaging plasmid were 

prepared using the Invitrogen kit, and all other plasmids were prepared using the 

QIAgen kit as per manufacturer’s directions with the following 

specifications/modifications: single colonies were grown in 200 µL LB broth 

containing the required antibiotic (prepared as previously described) at 37⁰C, 

220rpm for 1 hour to generate a starter culture which was then added to 250mL 

LB broth containing the required antibiotic, which was then incubated for 16h at 

37C, 220rpm. Bacterial cells were harvested by centrifugation at 5000 g for 15 

minutes at 4⁰C. Pellets were frozen overnight at 20⁰C as we have previously 
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determined that freezing pellets prior to harvesting plasmids results in a higher 

plasmid yield. The following day, pellets were thawed at room temperature for an 

hour. LyseBlue was added to Buffer P1 for all maxipreps. Buffer P3 was stored at 

4⁰C. Following air-drying of the pellet, the pellet was covered in 300-500 µL sterile 

nuclease-free water and incubated at 4⁰C overnight as we have previously 

determined that this increases the DNA concentration obtained. The following day, 

plasmid DNA was transferred to a sterile microfuge tube and stored at -20⁰C. 

Plasmid DNA concentration was measured as described below.  

 

Measurement of Plasmid Concentration 

 

Plasmid concentration was measured on a NanoDrop 2000 Spectrophotometer 

(Thermo Scientific, SO6497) in the Nucleic Acid>DNA category. Prior to each use, 

the arm of the NanoDrop was raised, and the upper and lower pedestals were 

cleaned with water to ensure no nucleic acids were present on the instrument 

before measurement. The instrument was then blanked using 1uL sterile nuclease-

free water. Water was cleaned from the upper and lower pedestals, and 1 µL 

plasmid was measured for each preparation. Where multiple plasmids were 

measured, the upper and lower pedestals were cleaned with water to avoid cross-

contamination. DNA was considered to be of suitable quality where the 260/280 

ratio of absorbance was between 1.8 and 2.0. Where ratios were considerably 

lower, plasmid preparation was repeated. 
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Plasmid Storage 

 

Bacteria containing plasmids plated on LB agar were kept in the cold room at 4⁰C 

for up to 1 month. Plasmid DNA was stored at -20⁰C in sterile nuclease-free dH2O 

for up to 6 months and at -80⁰C indefinitely. Glycerol stocks of bacteria containing 

plasmids were stored at -80⁰C. 200 µL of an overnight culture of bacteria was 

combined with 200 µL 80% glycerol (prepared in sterile dH2O) in a 2 mL cryovial 

and mixed by inverting. Cryovials were then flash-frozen in liquid nitrogen and 

stored at -80⁰C for up to 1 year. 

 

Plasmids 

 

The 3rd generation lentiviral vector expression plasmid pCDH-EF1-T2A-copGFP 

was obtained from Systems Biosciences (CD823A-1), and the packaging plasmids 

pMDL and pMDL-D116N along with helper plasmid Rev were obtained from the IU 

Vector Production Facility. The pcz-VSVG envelope plasmid was obtained from 

Dirk Lindemann (University of Dresden). The RPE65 gene and the MITF cDNA 

inserts were obtained from GeneArt Gene Synthesis Service. The pTYF-RPE65 

and pTYF-LacZ lentiviral vectors were provided by Lung-Ji Chang (University of 

Florida), packaged with pHP-VSVG.[13, 216]  
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Restriction Enzyme Digests 

 

Restriction enzymes were obtained from New England Biolabs. For cloning of the 

MITF gene into the GeneArt RPE65 plasmid, 1 µg of GeneArt RPE65 (Appendix 

1) and 1 µg of the GeneArt MITF (Appendix 1) plasmid were digested with 1 unit 

each of BamH1 (R3136) and EcoR1 (R3101) in 5 µL CutSmart Buffer and dH2O 

to 20 µL for 1 hour at 37⁰C. For cloning the RPE65 gene and the combined RPE65-

T2A-MITF construct into pCDH-EF1-T2A-GFP (Appendix 1), 1 µg GeneArt RPE65 

and 1 µg pCDH-EF1-T2A-GFP plasmids were digested with 1 unit each of Xba1 

(R0145S) and Sal1 (R3138) in 5 µL CutSmart Buffer and dH2O to 20 µL for 1 hour 

at 37⁰C. Following digest with restriction enzymes, all enzymes were inactivated 

as per manufacturer’s directions and bands separated on a gel.  

 

Agarose Gel Separation of Digested DNA Fragments 

 

To separate required bands from undesired bands, entire restriction digests were 

run on a 0.8% agarose gel containing 10 µL ethidium bromide/100 µL agarose for 

1 hour after enzymes were inactivated with an appropriate DNA ladder to 

determine the size of the correct band(s) to be excised. Bands were excised under 

UV light using a razor blade. 
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Gel Extraction of Digested DNA Fragments 

 

Digested bands separated by agarose gradient were extracted from agarose gel 

using a Gel Extraction Kit (QIAgen, 28704) as per manufacturer’s directions with 

no protocol modifications. Fragments were eluted in 30 µL dH2O.  

 

Ligation 

 

T4 DNA ligase was used for all ligations (New England Biolabs, M0202S) as per 

manufacturer’s directions with a 3:1 ratio of insert to vector as calculated using the 

New England Biolabs Online Ligation Calculator. Ligations were transformed into 

TOP10 bacteria as previously described, screened, and verified as previously 

described. The resulting plasmid pCDH-RPE65 was used to generate vectors 

ILV3-RPE65 and IDLV3-RPE65. The plasmid pCDH-RPE65-MITF was used to 

generate vectors ILV3-RPE65-MITF and IDLV3-RPE65-MITF. (Figure 2.1). 
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Figure 2.1 
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Figure 2.1.  Plasmid Maps for pCDH-RPE65 (A) and pCDH-RPE65-MITF (B). 

Generated in Serial Cloner.  
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Lentiviral Production and Titer 

 

All lentiviral vectors were produced by transfection of HEK-293T cells (ATCC, HEK 

293T/17 ATCC-CRL-11268) at IU School of Medicine with the exception of the 1st 

generation vector LV-RPE65, obtained from Lung-Ji Chang (University of Florida). 

HEK-293T cells were maintained in high glucose DMEM containing L-Glutamine, 

sodium pyruvate (ThermoFisher, 11995-081), 10% heat-inactivated fetal bovine 

serum (HI-FBS; ThermoFisher, 10437-010) and 1% penicillin/streptomycin (Gibco, 

15070-063), referred to as ‘complete DMEM’. Cells were split every 2-3 days and 

maintained under 80% confluence for no more than 45 passages.  

 

On Day One, HEK-293T cells were plated for infection. Seven 10 cm tissue culture 

dishes (Corning, CLS430167) per viral vector were coated with 6ml Attachment 

Factor (ThermoFisher, S006100) for 3 hours at 37⁰C. Attachment Factor was then 

aspirated and 8x106 HEK-293T cells were plated per plate in 10 mL complete 

DMEM. Plates were swirled to ensure even distribution of the cells across the 

plates. Plates were then incubated for 16-24 hours at 37⁰C. On Day Two, media 

was aspirated from all plates and replaced with 4 mL high glucose DMEM 

containing L-Glutamine, sodium pyruvate, 15% HI-FBS and 1% 

penicillin/streptomycin. For each plate, one 2 mL cryogenic vial containing 955 µL 

plain DMEM and 45 µL of 1 mg/mL polyethylenimine (PEI; Sigma Aldrich, 9002-

98-6 diluted in PBS, Sigma Aldrich 46-013-CM) was prepared. DNA mixture for 

each plate was then prepared in 2 mL cryogenic vials as follows: 1 mL plain DMEM 
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with 5 µg pcz-VSV-G envelope plasmid, 10 µg lentiviral vector (pCDH-RPE65 or 

pCDH-RPE65-MITF), 5 µg packaging plasmid (pMDL or pMDL-D116N), and 1 µg 

Rev. DNA mixture was added to one cryovial of PEI mixture per plate and mixed 

well by vortexing for 30 seconds. Tubes were then incubated at room temperature 

in the dark for 20 minutes. One tube (containing 2mL DNA/PEI mixture) was then 

added to each plate containing HEK-293T cells for a final volume of 6 mL per plate 

and a final HI-FBS concentration of 10%. Cells were incubated for 16 h at 37⁰C. 

On Day Three, media was aspirated and replaced with 5 mL fresh complete DMEM 

and plates were incubated for 20-24 hours. To titer the virus, 50,000 HT1080 cells 

obtained from Dr. David Gilley (IU School of Medicine) were plated per well in two 

6-well plates, coated with 1 mL Attachment Factor for 3 hours prior to plating of 

cells, in 3 mL complete DMEM. On Day Four, the viral supernatant (media on the 

plates containing the DNA/PEI mixture added on Day Two) was harvested and 

filtered through a polyethersulfone membrane with a mesh size of 0.45 µm 

(ThermoScientific Nalgene Filter Unit, 166-0045). Viral supernatant was then 

concentrated by centrifugation at 10,000 g for 2 hrs, or mixed with Lenti-X 

Concentrator (ClonTech, PT4421-2), 1 volume Lenti-X per 3 volumes viral 

supernatant. Lenti-X/viral supernatant mixture was then incubated for 1 hour at 

4⁰C, and centrifuged at 1500 g for 45 minutes. Supernatant was poured off and 

pellet was resuspended to yield a 10-20x concentration by resuspending in sterile 

PBS by carefully pipetting up and down 50x without generating air bubbles. Virus-

containing PBS was then aliquoted in 20-50 µL aliquots and snap-frozen in liquid 

nitrogen. Aliquots were stored at -80⁰C until use.  
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Immediately after freezing, one vial of virus was thawed and titered on HT1080 

cells plated on Day Three. 1.8 mL complete DMEM containing 8 µg/mL Polybrene 

was added to each of 11 sterile Eppendorf tubes. 200 µL viral supernatant was 

added to the first tube to bring the volume to 2 mL and vortexed to mix, to generate 

a 10x dilution. 200 mL was then taken from tube 1 and added to tube 2 and 

repeated until tube 11 to serially dilute the virus for titer measurement. 1 mL of 

each dilution was added to 1 well per tube of the 6-well plates of HT1080, with one 

well as a negative control. After incubating for 16-24 hours at 37⁰C, 3mL complete 

DMEM without Polybrene (Specialty Media, TR-10003-9) was added to each well. 

Plates were then incubated for 48 hours at 37⁰C. Viral titer was determined by 

qRT-PCR for the gene expressed (e.g. RPE65). Titer was confirmed by qRT-PCR 

in murine BMPCs by adding 2.5 µL or 10 µL viral supernatant to 50,000 cells as 

described below.  

 

Calculation of Viral Titer  

 

As the lentiviral vectors used in this study lack a reporter gene, viral titers cannot 

be obtained via FACS. Instead, a standard curve was generated by comparing 2-

∆∆CT values with flow cytometric data for GFP positive cells, to allow a comparison 

between 2-∆∆CT values and viral titer. The pCDH-EF1-GFP virus was serially diluted 

and titered as previously described. The viral titer was determined using the 

following equation:  
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(#𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑥𝑥 2 𝑥𝑥 %𝐺𝐺𝐺𝐺𝐺𝐺 +
100 𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�  

The titer was considered accurate where linear with the dilution factor. The virus 

was then serially diluted and GFP expression was measured by qRT-PCR (as 

described below) to obtain 2-∆∆CT values corresponding with viral titer. A 2-∆∆CT 

value of 30 where 10 µL viral supernatant was added per well containing 50,000 

cells was considered to represent a viral titer of 108 at MOI 50; where a 2-∆∆CT value 

of 30 was obtained with 2.5 µL viral supernatant, viral titer was ~109 at MOI 50. 

 

Lineage Negative Cell Enrichment 

 

All lineage depletion was carried out using the EasySep Mouse Hematopoietic 

Progenitor Cell Enrichment Kit (StemCell Technologies, 19856), which removes 

non-hematopoietic and non-progenitor cells using an antibody cocktail of anti-CD5, 

anti-CD11b, anti-CD19, anti-CD45R/B220, anti-Ly6G/C, and anti-TER119. 

Manufacturer’s directions were followed without modification. The additional wash 

step was not carried out. Following isolation, cells were counted on a 1:10 dilution 

and prepared for Sca1+ cell isolation by FACS.  

 

Sca1 Positive Cell Selection 

 

Cells were resuspended at a concentration of 1x108 cells/mL in flushing buffer. 

20µL Sca1 PE Positive Labeling Reagent (StemCell Technologies, 18756) was 

added per mL of cells and cells were mixed well by pipetting and incubated for 20 
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minutes at room temperature in the dark. Cells were then washed 2x in flushing 

buffer by centrifugation at 350 g for 5 minutes, 1x in PBS by centrifugation at 350 

g for 5 minutes, and finally resuspended at a concentration of 10 million cells per 

mL for FACS sorting. Where GFP cells were used, cells were sorted for double 

positive GFP(cells)/PE(Sca1+) with a 7-12% recovery. Where wild-type cells were 

used, cells were sorted for PE (Sca1+) with a 7-12% recovery. Sorted cells were 

post-sorted to verify purity and were typically >95% pure. For the majority of 

experiments in which cells were not injected back into mice, the Sca1+ isolation 

was carried out using the StemCell Technologies Sca1+ Isolation Kit (18756).   

 

Isolation of BMDCs from Human Blood 

 

Cord blood CD34+ were isolated by the IU AngioBiocore with a purity of >99% by 

flow cytometry assisted cell sorting (FACS) or were obtained from cord blood 

isolations performed in other laboratories. Where CD34+ cells were obtained from 

blood bank samples or healthy donors, white blood cells were first isolated in the 

laboratory by Ficoll gradient followed by flow cytometry assisted cell sorting 

(FACS) for CD34+ cells stained with AlexaFluor488 anti-human CD34 antibody 

(BioLegend, 344518) or bead separation (StemCell Technologies EasySep 

Human CD34 Positive Selection Kit, 18056). For Ficoll separation, blood was 

aliquoted into 25 mL aliquots in 50mL conical tubes and diluted by topping off with 

25 mL PBS containing 2% FBS. A gradient for separation consisting of 1 part Ficoll 

to 2 parts diluted blood was prepared by adding 12.5mL Ficoll to empty 50mL tubes 
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and gently adding diluted blood to the Ficoll, ensuring that the blood sits on top of 

the Ficoll with no mixing. Samples were then centrifuged for 30 minutes at 2300 

rpm in an Eppendorf Centrifuge #5804 with the centrifuge brake off. The interphase 

layer was then transferred to new 50 mL tubes (10-20 mL per tube) and topped off 

with PBS containing 2% FBS and 1 mM EDTA. Samples were centrifuged for 10 

minutes at 350 g.  (Eppendorf Centrifuge 5804). Pellets were resuspended in 1 mL 

PBS containing 2% FBS and 1 mM EDTA. Red blood cells were then lysed by 

adding ammonium chloride (5-9 mL) to the sample and incubating on ice for 15 

minutes. Samples were then washed three times with PBS containing 2% FBS and 

1mM EDTA by centrifugation at 350 g (Eppendorf Centrifuge 5804). Cells were 

counted on a 1:100 dilution and prepared for isolation of CD34+ cells. Where the 

EasySep Kit was used, cells were isolated as per manufacturer’s directions with 

no modifications. Where FACS was used, cells were resuspended at 10 million 

cells/mL and incubated for 20 minutes at room temperature in the dark with 5 

µL/million cells of Alexa Fluor 488 anti-human RPE65 antibody. Cells were then 

washed 3x with PBS by centrifugation at 350 g and resuspended at a volume of 

10 million cells/mL for flow sorting.  

 

Lentiviral Vector Infection of Primary Cells for Injection 

 

Where cells were injected into mice, and unless otherwise specified in the text, all 

infections were done by 2 hour spinoculation at 150 g, 21⁰C on RetroNectin 

(ClonTech, T100B) as per manufacturer’s directions with the exception of the 
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concentration used: tubes and plates were coated with RetroNectin at a 

concentration of 2 µg/cm3. All cells were infected at a concentration of 1x105 cells 

per mL at an MOI of 50 in tubes with all integrating vectors, unless a higher or 

lower MOI is indicated. Following infection, cells were immediately washed 3x in 

PBS and resuspended in PBS at a concentration of 50,000 cells/100 µL for 

injection into mice.  

 

Lentiviral Infections for Optimization of Protocols 

 

Infections were carried out using a number of different methods to identify the 

optimum procedure. Briefly, BMDCs were infected overnight for 16 hour or by 2 

hour spinoculation at 150 g, 21oC, with no reagent, Polybrene, Protamine, 

RetroNectin at a concentration of 0-12 μg/mL added to media, or on RetroNectin 

at 0-12 μg/cm3.  RetroNectin was either pre-loaded with virus for 30 min at 37oC 

prior to infection, or cells and virus were added together at the same time as the 

infection. RetroNectin was used to coat up to 4 plates per preparation. 5000-

100,000 cells per well were infected at an MOI of 50 unless a higher or lower MOI 

is indicated in the text. Where Polybrene or Protamine Sulfate was used for in vitro 

experiments, Polybrene was used at a concentration of 8 µg/mL, and Protamine 

Sulfate was used at a concentration of 10 µg/mL. Where RetroNectin plates or 

tubes were pre-loaded with either cells or viral particles, pre-loading was carried 

out for 30 min at 37oC in the lowest volume of medium required to cover the surface 

of the plates. Where RetroNectin was added to the media instead of being used to 
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coat plates, the same volume that would have been used should the plates have 

been coated was added to the media.  

 

RNA Isolation from Cells 

 

The RNAEasy Mini Kit was used for all RNA isolations. Cells were harvested by 

centrifugation for 5 minutes at 350 g and resuspended in 350 µL buffer RLT. 1 

volume of freshly prepared 70% ethanol in RNAse-free water was added to each 

sample and mixed well by pipetting. Samples were then added to a RNAEasy Mini 

Spin Column in a 2 mL collection tube (contained in the kit) and centrifuged for 30 

seconds at >8000 g. Samples were then prepared as per the manufacturer’s 

directions and eluted in 20 µL RNAse-free dH20 in the final step. RNA 

concentration was measured on the Nano-Drop as described below.  

 

NanoDrop RNA Quantification 

 

All RNA was measured on the NanoDrop 2000 Spectrophotometer (Thermo 

Scientific, SO6497) in the Nucleic Acid>RNA setting. Prior to each use, the arm of 

the NanoDrop was raised, and the upper and lower pedestals were cleaned with 

water to ensure no nucleic acids were present on the instrument before 

measurement. The instrument was then blanked using 1 µL sterile RNAse-free 

water. Water was cleaned from the upper and lower pedestals, and 1 µL RNA was 

measured for each preparation. Where multiple RNAs were measured, the upper 
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and lower pedestals were cleaned with water to avoid cross-contamination. RNA 

was considered to be of suitable quality where the 260/280 ratio of absorbance 

was around 2.0. Where ratios were considerably lower (<1.6), the experiment was 

repeated. 

 

Synthesis of cDNA 

 

All RNA was converted to cDNA immediately after isolation as cDNA is more stable 

than RNA, allowing for storage at -20⁰C until use without the risk of degradation. 

RNA was prepared to yield 25 ng of cDNA per microliter to allow for adding 1uL 

cDNA per well of subsequent qRT-PCR experiments as the SsoFast Advanced 

qRT-PCR kit recommends use of a concentration of 0.00005-50 ng cDNA per 

reaction. cDNA at a concentration of 25 ng per microliter was generated using 500 

ng RNA in a 20 µL reaction of cDNA synthesis iScript kit (BioRad, 1708891). cDNA 

syntheses were set up in Hard-Shell 96-well PCR plates (BioRad, HSP9601) from 

a sealed bag. Mastermixes of iScript and reverse transcription mix were set up 

containing 4 µL reaction mix and 1 µL reverse transcriptase per reaction. 

Mastermixes were mixed well and 5 µL mastermix was added to one well of the 

plate per reaction. Wells were labeled directly on the plate. 500 ng RNA was then 

added to each well as required and mixed well by pipetting. The total volume of 

each well was then brought to 20 µL using RNAse-free dH2O. Plates were then 

sealed by rubbing a Kim wipe in a circular motion around the wells to ensure a tight 

seal with Microseal ‘A’ PCR Plate Sealing Film (BioRad, MSA5001). Plates were 
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briefly centrifuged to collect sample at the bottom of the wells with no air bubbles. 

The plates were then transferred to a PCR machine set to: 5 minutes at 25⁰C, 30 

minutes at 42⁰C, 5 minutes at 85⁰C, hold at 4⁰C. Samples were then stored at -

20⁰C until use. cDNA concentration was calculated from the amount of RNA added 

as opposed to using the NanoDrop to measure cDNA concentration directly as 

cDNA concentration cannot be accurately measured. Unless specified, all cDNA 

was prepared as 25 ng/µL from 500 ng RNA per 20 µL reaction.  

 

qRT-PCR Reaction   

 

A BioRad CFX96 or CFX384 Touch Real-Time PCR Detection System (BioRad 

catalog #1855195) was used for all qRT-PCR experiments. BioRad SSoFast 

Advanced Universal Probes Supermix (BioRad catalog, 1725284) was used for all 

qRT-PCR experiments. Where available, BioRad PrimePCR validated primers 

were used for all qRT-PCR experiments. Mastermixes were set up containing (per 

reaction) 5 µL SsoFast Supermix, 500 nM forward primer, 500 nM reverse primer, 

and nuclease-free water to a total volume of 9 uL mastermix per reaction. 9 uL 

mastermix was then added to each well of a Hard-Shell 96-well PCR plate as 

required – each sample was prepared in triplicate and each measurement was 

made in triplicate to allow for statistical analysis, so 9 wells per treatment were set 

up (3 samples, in triplicate). 25 ng cDNA was then added to each well of mastermix 

as required. Positive PCR controls for RPE65 experiments consisted of cDNA 

prepared from low-passage ARPE19 cells; for GFP experiments, positive controls 



96 
 

consisted of cDNA prepared from the bone marrow of GFP+ mice. Negative 

controls for qRT-PCRs consisted of a no-template control (1 µL d H2O instead of 

25 ng cDNA); negative controls for experiments consisted of uninfected or 

untreated cells. GAPDH or beta-Actin was used as internal controls for all qRT-

PCR experiments. Wells were mixed by pipetting and plates sealed using 

Microseal ‘A’ PCR Plate Sealing Film, and centrifuged briefly prior to running on 

the CFX96 machine set to cycle as follows: 98C for 2 minutes (1 cycle), 98⁰C 1-5 

seconds & 60-65⁰C 1-5 seconds (30-40 cycles), 65-95⁰C (in 0.5C inc) 2-5 

seconds/step, hold at 4⁰C. The CT values per well in the FAM setting (for SsoFast 

Advanced) were then recorded and analyzed using the comparative CT (2-∆∆CT) 

method to compare the CT value of the target gene with the internal control gene. 

Internal control values were considered to be good where CT values were <20, 

with 16-18 being optimum. Negative controls typically resulted in CT values 

between 36-39; positive controls typically resulted in CT values between 17 and 

20. Experiments were considered successful where no amplification was observed 

in the no-template control. If the no-template control produced a CT value, the PCR 

was repeated.  

 

Whole Eye Flat Mounts 

 

Eyes were enucleated, cleaned of fat and muscle, and the lens, vitreous, and 

cornea were carefully removed. Four shallow incisions were then made in the 

eyeball, allowing for separation of the retina from the RPE/choroid with minimal 
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cross-contamination. The RPE/choroid was then flattened on a glass slide with the 

RPE facing upward and gently covered with a glass coverslip. Flat mounts were 

imaged using a ZEISS confocal microscope. The relative number of cells per eye 

was calculated by counting the number of cells in set areas of each section of the 

flat mount, corresponding to approximately 10% of the whole flat mount surface, 

as shown below (Figure 2.2).  
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Figure 2.2 
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Figure 2.2 Areas of tissue quantified for GFP+ cells per flat mounted eye. 
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Tissue Sectioning 

 

Eyes were enucleated and fixed in 4% Paraformaldehyde overnight, then washed 

3x with PBS and transferred to 70% ethanol for sectioning. Whole eyes were 

paraffin-embedded, sectioned, and stained with H&E at the Histology Core of the 

Department of Anatomy and Cell Biology at IU School of Medicine. Sections were 

imaged with a ZEISS fluorescence microscope.  

 

Pharmacological In Vitro Differentiation of BMDCs and Inhibition 

 

Mouse and human BMDCs were isolated as previously described. 5000-50,000 

cells per well were added to flat bottomed 96-well plates in 100 µL complete 

DMEM. DMEM was supplemented with Forskolin (10 µmol/l; Tocris Biosciences 

1099), Rolipram (1 µmol/l; Sigma Aldrich, 61313-54-5), KH7 (50 µmol/l; Tocris 

Biosciences 3834), BPIPP (50 µmol/l; Tocris Biosciences 3635), or NKY80 (50 

µmol/l Tocris Biosciences 5071) as required. Cells were cultured for 1-7 days as 

required before being harvested and prepared for qRT-PCR as previously 

described.  
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In Vivo Methods 

 

Animals 

  

All animal studies were conducted under protocols approved by the Institutional 

Animal Care and Use Committee (IACUC) of IU School of Medicine and according 

to National Institutes of Health and the Association for Research in Vision and 

Ophthalmology guidelines. Adult (6–8 week old; or 12 month old) female C57BL/6J 

mice and homozygous GFP transgenic (C57BL/6-Tg (UBC-GFP)) mice were 

purchased from Jackson Laboratories, Bar Harbor, ME.  

 

Calculation of Number of Mice Required 

 

The number of mice needed for each isolation was calculated based on the 

average number of BMPCs (Lin-/Sca1+) obtained per mouse minus 50,000 to 

allow for isolation of fewer cells than expected. In general, 200,000 Lin-/Sca1+ 

cells were isolated from each mouse, therefore the cell number was calculated as 

#cells required/150,000.  

 

Sacrifice of Mice 

 

Mice were sacrificed by isoflurane (Aldrich, CDS019936) sedation followed by 

cervical dislocation. 
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Bone Marrow Cell Harvest 

 

Immediately after sacrifice, both hind legs were removed and dipped in 70% 

ethanol. Tissue was then cleaned off the tibiae and fibiae using Kimwipes. Bone 

marrow was then flushed out of each bone using a 15mL syringe with a 27g needle 

in room temperature flushing buffer (PBS containing 2% FBS and 1mM EDTA). 

Bone marrow was then filtered through a 100uM mesh cell strainer into 50mL 

conical tubes. Tubes were topped up with flushing buffer to 45mL and centrifuged 

at 350 g (Eppendorf Centrifuge 5804) for 5 minutes at room temperature. 

Supernatant was carefully poured off and 2 mL ammonium chloride red blood cell 

lysis buffer was added per mouse to each tube. Tubes were then incubated on ice 

for 15 minutes and centrifuged at 350 g (Eppendorf Centrifuge 5804) for 5 minutes 

at 4⁰C. Supernatant was removed and cells were resuspended in 4 mL flushing 

buffer and counted on a 1:100 dilution. Cells were then resuspended at a volume 

of 1x108 cells/mL as required for lineage depletion.  

 

Sodium Iodate Murine Model 

 

Sodium iodate (Fisher Scientific, S322100) in water at a concentration of 100 

mg/kg was injected intraperitoneally to acutely ablate the RPE layer. Cells were 

injected 8 hours after sodium iodate injection. Control mice received sodium iodate 

but no cells or 100 µL water by IP injection and no cells. 

Superoxide Dismutase 2 Knockdown Model 
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Wild-type C57BL/6J mice were injected subretinally with 1 μL of 2.5×1012 

particles/mL of recombinant AAV1 construct AAV1-Rz-SOD2 in the right eye. The 

left eye remained untreated. AAV1-Rz-SOD2, based on the pTR-UF2 vector, 

expresses the Rz432 SOD2-specific ribozyme Rz432 driven by the RPE-specific 

promoter VMD2, leading to chronic degradation of the RPE layer as described in 

Justilien et al., 200.[277] and was obtained from the University of Florida. 3-4 

SOD2-KD mice were used for each treatment group. Control injections consisted 

of rAAV-inactive ribozyme (AAV1-Rz-inactive), also obtained from the University 

of Florida in one group of mice per experiment. (Figure 2.3). 
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Figure 2.3 
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Figure 2.3. The Structure of the Mn-SOD and Inactive Hammerhead 

Ribozymes (A) and rAAV Vectors (B) for the SOD2-KD mouse model. The Mn-

SOD ribozyme degrades SOD2 messenger RNA. The control (inactive) ribozyme 

consists of the same structure with a GC mutation which blocks the ability of the 

ribozyme to target SOD2 mRNA. Source: Justilien et al. [277] 
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Systemic Delivery of Cells into Mice 

 

One month following SOD2-KD, mice received a systemic injection of 5x104 Lin-

/Sca1+/GFP+ BMDCs (either naïve BMDC, BMDC-ILV3-RPE65, BMDC-ILV3-

RPE65-MITF, BMDC-IDLV3-RPE65, BMDC-IDLV3-RPE65-MITF) in 100 μL of 

PBS, via the tail vein (n=3 or n=4 per group). Injections were performed by the IU 

In Vivo Therapeutics Core. Negative controls consisted of naïve BMDCs and mice 

injected with PBS (vehicle control), and the untreated left eye in the SOD2-KD 

model mice was the normal positive control. 

 

Measurement of Visual Function 

 

Two visual function tests, electroretinogram (ERG) and optokinetic nystagmus 

(OKN) were performed three months following injection of BMDCs as previously 

described. [13, 216] 

 

Statistical Analysis 

 

Experiments were carried out in triplicate. Results are expressed as mean ± SEM. 

ANOVA with Tukey post hoc tests were carried out to determine significance of 

results. Statistical analysis was performed using Prism 5 ver. 5.01 (GraphPad 

Software, Inc., La Jolla, CA) with p<0.05 considered statistically significant 

. 
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CHAPTER III: IMPROVING THE INFECTION OF BONE MARROW-DERIVED CELLS 

WITH AN INTEGRASE-DEFECTIVE LENTIVIRAL VECTOR. 

 

Introduction 

 

We have previously demonstrated that systemic delivery of immature bone 

marrow-derived cells (Lin-/Sca1+; BMDC), programmed ex vivo by inserting a 

stable RPE65 transgene using an integrating LV vector, can regenerate an efficient 

and functional retinal pigment epithelial (RPE) cell layer that restores visual 

function in mouse models of retinal degeneration. [13, 216] This has significant 

implications for the treatment of dry age-related macular degeneration (AMD), 

which is a major cause of vision loss in the elderly. [10] The primary defect in dry 

AMD is believed to be at the RPE, which shows cellular dysfunction, atrophy, and 

cell loss, particularly in the central retina. [221, 278] The most viable and attractive 

option for targeting dry AMD is in the early stages by replacement of damaged 

RPE using a minimally invasive approach, such as systemic delivery of 

programmed BMDC, as we have shown in animal models. [13, 216]  As success 

has been observed in murine models with murine cells, it is necessary to optimize 

and further develop our BMDC programming technique for safe and efficient 

application in human cells.  

 

Since we have previously found that the expression of RPE65 mRNA activates 

expression of adenylate cyclase in BMDCs within hours of infection, [216] and this 

in turn switches on expression of endogenous Rpe65 and RPE-associated marker 
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Cellular Retinaldehyde-Binding Protein-1 (Cralbp), [216] we hypothesized that 

transient expression of RPE65 from an IDLV may result in sufficient programming 

in the absence of integration. Limiting integration significantly reduces the risk of 

insertional mutagenesis, which can result in deleterious effects resulting from LV 

insertion in coding regions or regulatory elements). [224, 257, 258, 271, 279] This 

vector is ideal for programming BMDCs for use in human clinical trials.  

 

IDLVs are known to be less efficient than ILVs for a number of reasons, including 

low infection rates and episomal silencing. [224, 271, 280] Silencing post-

transduction is a significant concern for long-term expression of a transgene from 

IDLVs in non-dividing cells. [280] For our application, however, short term 

expression of RPE65 is thought to be sufficient for the programming of BMDCs, as 

we have shown that cells express the endogenous Rpe65 and Cralbp mRNAs 

within hours of infection with the integrating RPE65 vector. [13, 216]  This study, 

therefore, focused on improving the protocol for infecting BMDCs with IDLV-

RPE65 to maximize the number of cells infected with the virus.  

 

We demonstrate that IDLV3-RPE65 infection can be increased by: (a) increasing 

the concentration of the viral supernatant to reduce the volume required to obtain 

a high MOI, (b) pre-loading viral supernatant on RetroNectin prior to infection, and, 

(c) using a spinoculation method to infect the cells. In the process of optimizing the 

protocol IDLV3-RPE65 infection, we included measures to reduce the costs 

associated with RetroNectin use for LV transduction can be minimized by: (a) 
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confirming that using 2 μg/cm2 to coat plates is sufficient to achieve transduction 

with LV vectors, as has been reported in retroviral vectors, [281] and (b) re-using 

the 2 μg/cm2 preparation to coat up to three wells. IDLV3-RPE65 infected in this 

manner induces activation of the endogenous RPE-associated genes Rpe65 and 

Cralbp in murine BMDCs and CRALBP in human BMDCs at a similar level to ILV3-

RPE65 infection. This indicates that IDLV3-RPE65 is capable of initiating the 

differentiation of both mouse and human BMDCs to RPE-like cells in vitro, 

rendering them suitable for therapeutic transplantation in dry AMD.  

 

Results 

 

Infection of BMDCs with Third Generation ILV and IDLV Vectors. 

 

Infection of murine BMDCs with ILV3-RPE65 at a multiplicity of infection of 50 

(MOI; 50 viral particles per cell) resulted in a ~30-fold (p<0.05) increase in 

expression of human RPE65 mRNA compared with the null control (Figure 3.1A). 

Expression of murine Rpe65 mRNA was increased ~6-fold, and Cralbp ~5-fold 

(Figure 3.1A). As expression of these endogenous murine mRNAs is a critical step 

in BMDC programming, [216] we concluded that ILV3-RPE65 is appropriate for 

use in programming BMDCs, and for packaging as an IDLV. The average 

expression of human RPE65 mRNA from ILV3-RPE65 in murine BMDCs was ~28-

fold (p<0.05) higher than expression in the uninfected control, and expression of 

human RPE65 mRNA from IDLV3-RPE65 was ~3.6-fold (p<0.05) lower than 
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expression obtained with ILV3-RPE65 at the same MOI (Figure 3.1B). We 

therefore focused on improving IDLV3-RPE65 infection.  

 

To confirm that IDLV3 vectors have limited integration potential, we infected 

HT1080 cells with IDLV3-GFP and monitored the percentage of GFP+ cells for 12 

days. Expression of GFP from IDLV3-GFP-infected cells was significantly 

decreased (p<0.05) at day 6 in comparison with day 1, with a 2.1-fold decrease in 

expression of GFP at day 6 compared with day 1 (Figure 3.1C). Expression of GFP 

was almost absent by day 12 (Figure 3.1C), with a 14.9-fold decrease in 

expression compared with day 1 and a 7.2-fold decrease compared with day 6 

(p<0.05). Overall, between day 1 and day 12, the percentage of cells expressing 

GFP decreased from ~13% to ~1% (p<0.05). The residual expression of GFP 

retained at the end of the experiment is likely a result of a small number of viral 

integrations, as some residual integration does occur with IDLVs. [282] In contrast, 

ILV3-GFP stably integrates into the genome, with expression rising from ~65% to 

-~82% (p<0.05) from day 1 to day 4 before stabilizing at ~75% from day 5 through 

day 12 (Figure 3.1D). Together, Figure 3.1 shows that infection with IDLV3-

RPE65/GFP or ILV3-RPE65/GFP results in low integration and stable integration 

respectively – as expected, the starting percentage of GFP+ cells where the IDLV-

GFP vector was transduced into HT1080 cells was considerably lower than that of 

HT1080 cells infected with ILV-GFP (Figure 3.1C-D). HT1080 fibroblasts were 

used in this experiment as the BMDCs cannot be maintained in culture for long 

periods of time without the addition of growth factors, which would have altered the 
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cells in comparison with the cells kept in culture for a short period of time as used 

for future in vivo experiments. The HT1080 cell line was chosen as this cell line is 

traditionally used for titering lentiviral vectors.   
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Figure 3.1: IDLVs Infect Murine BMDC and Induce Expression of 

Endogenous mRNA, and Infect HT1080 Cells with Minimal Integration.  

Murine Lin-/Sca1+ cells were isolated from whole bone marrow of C57BL6/J mice, 

and infected at an MOI of 50 with ILV3-RPE65 (A) or IDLV3-RPE65 (B) on 

RetroNectin-coated plates (2 µg/cm2 RetroNectin in PBS, incubated at 4ºC 

overnight) by centrifugation for 2h at 150 g prior to harvest for qRT-PCR analysis. 

50,000 HT1080 cells per well were infected with IDLV3-GFP (C) or ILV3-GFP (D) 

at an MOI of 50 with Polybrene for 16h and cultured for 1-12 days with GFP 

expression measured each day by counting the number of positive and negative 

cells and calculating the percentage of cells expressing GFP. Uninfected cells 

were used as a negative control. For the GFP assays, cells stably expressing GFP 

were used as a positive control. In order to achieve the MOI of 50 for integrating 

vectors, 10 µL of viral supernatant was added as the vector titer was 109. For non-

integrating vectors, 250 µL of viral supernatant was added as the vector titer was 

~107. (A) Expression of RPE65 mRNA from ILV3-RPE65 was ~30-fold higher than 

in untreated cells respectively. Cells also expressed the endogenous Rpe65, and 

Cralbp mRNA ~6 and ~4-fold higher than uninfected cells respectively (p<0.05). 

(*=p<0.05; n(per experiment)=3, n(experiments)=9). (B) Expression of RPE65 

mRNA from ILV3-RPE65 was ~28-fold higher than expression in the negative 

control (p<0.05). Expression of RPE65 mRNA from IDLV3-RPE65 was ~8-fold 

higher than in the negative control (p<0.05). Expression of RPE65 was significantly 

lower from IDLV3-RPE65 than ILV3-RPE65 (p>0.05). (*=p<0.05; n(per 

experiment)=3; n(experiments)=3). (C) The percentage of cells expressing GFP 
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was measured each day. Between Day 1 and Day 6, expression of GFP reduced 

from ~13% to ~6% (p<0.05). Expression further reduced between Day 6 and Day 

12 from ~6% to ~1% (p<0.05). (*=p<0.05; n(per experiment)=3; 

n(experiments)=3). (D) The percentage of cells expressing GFP was measured 

each day. Between Day 1 and Day 4, GFP expression increased from ~64% to 

82% (p<0.05) before stabilizing at ~75% through Day 12.  

(*=p<0.05; n(per experiment)=3; n(experiments)=3) 
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Optimization of the Use of RetroNectin in BMDCs 

 

The colocalization of cells and LV particles is critical for efficient infection, and the 

goal of infection-promoting reagents such as polycations and the recombinant 

human fibronectin fragment RetroNectin is to enhance the nonspecific adhesion of 

the virions to the target cell surface. [281, 283] Previously published experiments 

were carried out using Polybrene; [13, 216] however, as Polybrene is known to be 

toxic to some cell lines and primary cells, we first compared infection efficiencies 

with Polybrene, the less toxic polycation Protamine Sulfate, and RetroNectin.  

ILV3-RPE65 and IDLV3-RPE65 infection with Protamine Sulfate was significantly 

less efficient than infection in the presence of Polybrene or RetroNectin (p<0.05; 

Figure 3.2A, B). Protamine Sulfate yielded an ~8-fold and ~11-fold increase in 

RPE65 mRNA from ILV3-RPE65 in murine and human BMDCs respectively, 

whereas Polybrene or RetroNectin yielded a ~25-fold and ~24-fold increase in 

ILV3-RPE65-infected cells (p<0.05; Figure 3.2A). In IDLV3-RPE65 infected cells, 

a ~5 and ~4-fold increase in RPE65 mRNA was observed with Protamine Sulfate 

in murine and human BMDCs respectively, compared with a ~14 and 13-fold 

increase in the presence of RetroNectin, and ~12-fold and ~13-fold increase in the 

presence of Polybrene (p<0.05; Figure 3.2B). Interestingly, combining RetroNectin 

and Polybrene together resulted in a lower infection efficiency than when each 

reagent was used individually, with an average fold increase of ~28 (p<0.05) in 

RPE65 mRNA from ILV3-RPE65 when used individually compared with an 

average fold increase of ~21.5 (p<0.05) when used together (Figure 3.2C). A 
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similar effect was observed with IDLV3-RPE65, with a ~16-fold (p<0.05) increase 

in RPE65 mRNA with both Polybrene and RetroNectin individually compared with 

a ~13-fold (p<0.05) increase in expression when used in combination (Figure 

3.2D).  

 

The infection efficiency of ILV3-RPE65 and IDLV3-RPE65 vectors on increasing 

concentrations of RetroNectin was compared to determine the lowest 

concentration required to yield high levels of infection. The instruction manual 

suggests a concentration of 4-20 µg/cm2, but it has been reported that cells can 

be infected with retroviral vectors on 2 µg/cm2 RetroNectin. [281] A >25-fold 

(p<0.05) increase in RPE65 mRNA from ILV3-RPE65 in both murine and human 

BMDCs was observed when infected on 2 µg/cm2 RetroNectin (Figure 3.2E). 

Infection was not significantly enhanced by transducing the cells on 4 µg/cm2 or 

12 µg/cm2 RetroNectin (Figure 3.2E). Similarly, infection with the IDLV results in a 

~12-fold (p<0.05) increase in mRNA in murine and human BMDCs infected on 2 

µg/cm2 RetroNectin, which is not significantly enhanced when the concentration of 

RetroNectin is increased, with a similar fold increase observed when cells are 

infected on 4 µg/cm2 or 12 µg/cm2 RetroNectin (Figure 3.2F). We have therefore 

confirmed that the use of 2 µg/cm2 RetroNectin is appropriate for infecting murine 

and human BMDCs with ILV3-RPE65 and IDLV3-RPE65.   

 

Next, we investigated the binding capacity of RetroNectin when used to coat 

multiple plates. Instead of discarding the RetroNectin after coating the first plate, 
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we transferred it to a new plate and repeated the coating procedure up to three 

times. As shown in Figure 2G, RPE65 mRNA in both human and murine BMDCs 

was found to be ~27-fold (p<0.05) higher than in the control in cells infected on 

RetroNectin used 1, 2, and 3 times. In contrast, on the 4th use of RetroNectin, 

RPE65 mRNA levels dropped to ~8-fold over the control, indicating that 

RetroNectin cannot be used more than three times.  

 

Finally, we investigated whether or not adding RetroNectin to the media could also 

facilitate infection. RetroNectin was added to the media at a concentration of 0-12 

µg/µL, and human RPE65 mRNA levels were compared to those achieved on 

plates coated with 2 µg/cm2 RetroNectin following infection with ILV3-RPE65. 

Adding RetroNectin to the culture media does not facilitate ILV3-RPE65 infection 

murine or human BMDCs, with no significant RPE65 mRNA increase observed 

(Figure 3.2H). In comparison with cells infected on a RetroNectin-coated plate, 

cells infected with 2, 4, or 12 µg/mL RetroNectin in the media were found to 

express RPE65 mRNA ~16, ~10, and ~8-fold (p<0.05) less respectively (Figure 

3.2H).  
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Figure 3.2. Optimization of the Use of RetroNectin in BMDCs 

 

Murine (Lin-/Sca1+) or human (CD34+) BMDCs were infected at an MOI of 50with 

ILV3-RPE65 or IDLV3-RPE65 with Polybrene (8 μg/μL), Protamine Sulfate (10 

μg/μL), or RetroNectin (2, 4, or 12 μg/μL; or 2, 4, or 12 μg/cm3), or a combination 

of Polybrene and RetroNectin (2 μg/cm3). Cells were infected for 12 h and 

harvested for qRT-PCR analysis at 16 h. (A) Human RPE65 mRNA levels were 

increased ~25-fold over control in murine BMDCs and ~23-fold in human BMDCs 

infected with ILV3-RPE65 using RetroNectin. Similar levels were observed in 

BMDCs infected with ILV3-RPE65 using Polybrene, with a 24-fold (p<0.05) 

increase in murine BMDCs and a 23-fold (p<0.05) increase in human BMDCs. 

Expression in cells infected with ILV3-RPE65 with Protamine Sulfate was lower 

than that observed with RetroNectin or Polybrene, with an ~8-fold (p<0.05) 

increase in murine BMDC and a ~10-fold (p<0.05) increase in human BMDCs.  (B) 

Human RPE65 mRNA levels were increased ~15-fold (p<0.05) over control in 

murine BMDCs and ~14-fold (p<0.05) in human BMDCs infected with IDLV3-

RPE65 using RetroNectin. Similar levels were observed in BMDCs infected with 

IDLV3-RPE65 using Polybrene, with a 13-fold (p<0.05) increase in murine BMDCs 

and a 14-fold (p<0.05) increase in human BMDCs. Expression in cells infected with 

IDLV3-RPE65 with Protamine Sulfate was lower than that observed with 

RetroNectin or Polybrene, with a ~6-fold (p<0.05) increase in murine BMDC and a 

~5-fold increase in human BMDCs (p<0.05). (C) Human RPE65 mRNA levels were 

increased ~29-fold over control in murine BMDCs and ~28-fold in human BMDCs 
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infected with ILV3-RPE65 using RetroNectin. Similar levels were observed in 

BMDCs infected with ILV3-RPE65 using Polybrene, with a 27-fold (p<0.05) 

increase in murine BMDCs and a 28-fold (p<0.05) increase in human BMDCs. 

Expression in cells infected with ILV3-RPE65 with Polybrene and RetroNectin in 

combination was lower than that observed with RetroNectin or Polybrene, with a 

~21-fold (p<0.05) increase in murine BMDC and a ~20-fold (p<0.05) increase in 

human BMDCs. (D) Human RPE65 mRNA levels were increased ~16-fold over 

control in human BMDCs infected with ILDV3-RPE65 using RetroNectin. Similar 

levels were observed in BMDCs infected with ILVD3-RPE65 using Polybrene, with 

a 16-fold (p<0.05) increase vs. control. Expression in cells infected with IDLV3-

RPE65 with Polybrene and RetroNectin in combination was lower than that 

observed with RetroNectin or Polybrene, with a ~13-fold (p<0.05) increase vs. 

control.  (E) Murine and human BMDCs infected with ILV3-RPE65 in the presence 

of 2µg/cm2 RetroNectin expressed human RPE65 mRNA 27- and 28-fold over 

control (p<0.05) respectively. Expression was not increased in either cell type with 

an increase in RetroNectin concentration to 4 µg/cm2 or 12 µg/cm2. (F) Murine and 

human BMDCs infected with IDLV3-RPE65 in the presence of 2µg/cm2 

RetroNectin expressed human RPE65 mRNA 13-fold over control (p<0.05) in both 

cell types. Expression was not increased in either cell type with an increase in 

RetroNectin concentration to 4µg/cm2 or 12µg/cm2. (G) Murine and human BMDCs 

infected with ILV3-RPE65 in the presence of 2µg/cm2 RetroNectin used to coat 1 

plate expressed human RPE65 mRNA 23- and 24-fold over control (p<0.05) 

respectively. Levels did not increase or decrease in cells infected with ILV3-RPE65 
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in the presence of 2µg/cm2 RetroNectin used to coat 2 or 3 plates. In contrast, 

where 2µg/cm2 RetroNectin was used to coat a 4th plate, RPE65 mRNA levels 

were only 7- and 8-fold over control (p<0.05) in murine and human cells 

respectively. (H) Murine and human BMDCs infected with ILV3-RPE65 on 2µg/cm2 

RetroNectin-coated plates expressed human RPE65 mRNA 24- and 25-fold over 

control respectively (p<0.05). Cells infected with media containing 2, 4, or 12 µg/µL 

RetroNectin did not significantly express RPE65 mRNA.  

(*=p<0.05; n(per experiment)=3; n(experiments)=3). 
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Enhancing the Infection of BMDCs with IDLV3-RPE65 

 

IDLV3-RPE65 transduces murine and human cells at a lower efficiency than ILV3-

RPE65 (Figure 3.1, 3.2). RPE65 mRNA levels IDLV3-RPE65 are approximately 8-

15-fold higher than control in IDLV3-RPE65-infected cells, whereas in ILV3-

RPE65-infected cells, mRNA levels are 27-30-fold higher than control. This is 

consistent with previously reported findings that IDLVs do not infect as efficiently 

as ILVs.[271] As maximizing the number of infected cells is, we investigated 

methods by which IDLV3-RPE65 infection of BMDCs could be enhanced. 

 

Increasing the MOI does not significantly enhance expression in HT1080 cells 

infected with IDLV3-GFP, with GFP mRNA remaining at ~8-fold over control in 

IDLV3-GFP-infected cells, despite an increase of the MOI from 50 to 500 (Figure 

3.3A). In contrast, increasing the MOI of ILV3-GFP from 50 to 500 significantly 

enhances GFP mRNA levels, with a ~27-fold (p<0.05) increase over the control 

with MOI 50, and a ~150-fold increase at MOI 500 (p<0.05). As increasing the MOI 

did not enhance infection, we next modified the procedure by which the viral 

particles were concentrated. Increasing the centrifugation time from 1 hour to 2 

hours increased the virion recovery of IDLV3-RPE65, with an increase in human 

RPE65 mRNA in cells infected with 20 µL supernatant from ~8-fold over control at 

1h to ~12-fold over control at 2h (Figure 3.3B). Further increasing the concentration 

time to 3 hours did not enhance virion recovery. Additionally, centrifuging the viral 
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particles for 4 hours significantly reduced recovery, with RPE65 mRNA observed 

at less than 5-fold over the control in BMDCs infected with 20 µL IDLV3-RPE65 

supernatant.  

 

To further investigate whether the concentration protocol could be modified to 

enhance IDLV3-RPE65 infection, we concentrated the viral supernatant with 

LentiX Lentiviral Vector Concentrating Reagent (Catalog #PT4421-2, ClonTech). 

Concentrating the viral supernatant 10x with LentiX resulted in a ~12-fold (p<0.05) 

increase in expression over the control when infected at an MOI of 50. IDLV3-

RPE65 concentrated at 20x resulted in a significant increase in RPE65 mRNA, 

with a ~20-fold (p<0.05) increase at the same MOI (Figure 3.3C).  

 

While Lenti-X concentration of IDLV3-RPE65 enhanced infection efficiency in 

comparison with the centrifugation-concentrated vector, the efficiency was still 

lower than that of ILV3-RPE65, with a ~20-fold increase with IDLV3-RPE65 

compared with an average 27-fold increase with ILV3-RPE65. It has been reported 

that preloading retroviral vectors onto RetroNectin, either once or up to five times, 

significantly enhances gene transfer.[281] We therefore evaluated the use of 

preloading in ILV3-RPE65 and IDLV3-RPE65 infections. RPE65 mRNA levels 

after ILV3-RPE65 infection remained at ~27-fold (p<0.05) over control when 

murine BMDCs were infected with or without preloading (Figure 3.3D). In contrast, 

RPE65 mRNA increased from ~13-fold (p<0.05) over control on RetroNectin alone 

to ~23-fold (p<0.05) in murine BMDCs infected with IDLV3-RPE65 preloaded on 
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the RetroNectin (Figure 3.3D). Preloading the plate twice enhances IDLV3-RPE65 

infection (p<0.05) (Figure 3.3E). No significant improvement is observed between 

2 and 3 preloads. (Figure 3.3E).  

 

As RetroNectin binds to both the virus and the cells, we also looked at infection on 

plates that had been preloaded with cells prior to the addition of the virus. No 

advantage in preloading cells in comparison with preloading viral supernatant was 

observed (Figure 3.3F).  

 

Despite the increase in IDLV3-RPE65 infection with preloading, RPE65 mRNA 

levels were still lower (~23-fold over control) than those obtained with ILV3-RPE65 

~27-fold over control). As a final modification to the protocol, we combined 

RetroNectin preloading with infection by centrifugation, referred to as 

spinoculation. Spinoculating murine BMDCs with preloaded IDLV3-RPE65 results 

in a ~27-fold increase in expression of the vector when combined with preloading 

on RetroNectin without spinoculation (p<0.05) (Figure 3.3G).  

 

We have therefore demonstrated that concentrating IDLV3-RPE65 20x with LentiX 

followed by infection of cells on 2µg/cm2 RetroNectin, pre-loaded with the virus at 

an MOI of 50, with spinoculation, increases RPE65 mRNA at a similar level to 

ILV3-RPE65.   
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Figure 3.3. Enhancing the Infection of BMDCs with IDLV3-RPE65 
 
HT1080, murine (Lin-/Sca1+), or human (CD34+) BMDCs were infected with ILV3-

GFP (A), ILDV-GFP (A), ILV3-RPE65 or IDLV-RPE65 (B-G) at an MOI of 50 (A, 

C-G), 100 (A), or 500 (A), or with 20 μL concentrated viral supernatant (B). 

RetroNectin at 2 μg/cm3 was used for all infections, and was either used by itself 

(A-C) or with preloading of vectors (D-G) or cells (F). Cells were infected for 12 h 

and harvested for analysis at 16 h unless spinoculated (G), where cells were 

infected for 2h at 150 g and harvested for analysis at 4h. (A) Increasing the MOI 

of ILV3-RPE65 increased RPE65 mRNA levels from ~27-fold over control (p<0.05) 

at MOI 50 to ~68-fold over control (p<0.05) at MOI 100 and ~150-fold over control 

(p<0.05) with MOI 500. Increasing the MOI of IDLV3-RPE65 did had no significant 

effect on expression, with RPE65 levels remaining at ~7-fold over control (p<0.05). 

(B) Centrifugation of IDLV3-RPE65 supernatant for 2 hours increased recovery of 

virions, with a ~10-fold increase in infection of murine BMDCs with concentrated 

supernatant at the same volume in comparison with 8-fold observed at 1 hour. 

Centrifugation for 3 hours did not enhance infection efficiency, and centrifuging for 

4 hours reduced the viability of virions, with RPE65 expression only 3-fold over 

control (p<0.05). (C) Concentrating viral supernatant 20x enhanced the infection 

of IDLV3-RPE65 in comparison with concentrating 10x and infecting at the same 

MOI, with a 19-fold (p<0.05) increase in RPE65 mRNA observed at MOI 50 with 

the 10X concentrated vector and 10-fold (p<0.05) with the 20X concentrated vector 

at the same MOI. (D) Preloading ILV3-RPE65 on RetroNectin for 30 minutes prior 
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to adding murine BMDCs did not enhance infection, with a 28-fold increase 

(p<0.05) observed with or without preloading. In contrast, with IDLV3-RPE65, 

preloading increased RPE65 expression from 15-fold over control (p<0.05) to 23-

fold over control (p<0.05). (E) Preloading ILV3-RPE65 on RetroNectin up to three 

times did not result in an increase in human RPE65expression. Preloading IDLV3-

RPE65 twice increased infection, with RPE65 mRNA levels increasing from 21-

fold to 24-fold over control (p<0.05). No increase was observed with three 

preloads. (F) Murine BMDCs infected with IDLV-RPE65 expressed RPE65 the 

highest level when viral particles were preloaded onto RetroNectin, with a 24-fold 

increase (p<0.05) in expression vs 10-fold with no preload (p<0.05). Preloading 

the cells instead of the virus yielded an increase in RPE65 expression, with a 17-

fold increase vs. control (p<0.05); however, this was lower than observed when 

viral particles were preloaded, indicating no advantage in preloading cells (G) 

IDLV-RPE65 infects murine BMDCs at the highest efficiency when the virus is 

preloaded onto RetroNectin followed by infection by spinoculation, with an 26-fold 

increase (p<0.05) in expression over control in comparison with 20-fold with 

preload alone (p<0.05), and 22-fold with spinoculation alone (p<0.05).  

(*=p<0.05; n(per experiment)=3; n(experiments)=3). 
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In Vitro Differentiation of Human and Murine BMDCs with IDLV3-RPE65  

 

We have previously reported that pTYF-RPE65 infection of murine BMDCs 

initiates expression of the endogenous murine Rpe65 and Cralbp mRNAs.[216] 

Murine BMDCs infected with either ILV3-RPE65 or IDLV3-RPE65 vectors express 

endogenous Rpe65, and Cralbp mRNAs 5-10-fold (p<0.05) over control (Figure 

3.4A). This indicates that IDLV3-RPE65 is likely to be sufficient for promoting the 

expression of the RPE-associated genes that contribute to the programming of the 

BMDCs to RPE-like cells.  

 

In human BMDCs, a ~5-fold increase in expression of CRALBP mRNA is observed 

in cells infected with either ILV3-RPE65 or IDLV3-RPE65 (Figure 3.4B). This 

indicates that IDLV3-RPE65 may also be capable of promoting differentiation of 

human BMDCs to RPE-like cells.  
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Figure 3.4. In Vitro Differentiation of Human and Murine BMDCs with IDLV3-

RPE65. 

 

 Murine Lin-/Sca1+ BMDCs (A) or human CD34+ cells (B) were infected at MOI 50 

with ILV3-RPE65 on RetroNectin (2 µg/cm2) by spinoculation for 2h at 150g, or 

with IDLV3-RPE65 pre-loaded on RetroNectin (2 µg/cm2) prior to spinoculation. 

Cells were then harvested and lysed for qRT-PCR analysis. RPE65 expression 

was ~32-fold over control and ~28-fold over null control in murine (A) and human 

(B) BMDCs infected with ILV3-RPE65 respectively (p<0.05). RPE65 mRNA levels 

were ~13,4-fold over control in both murine (A) and human (B) BMDCs infected 

with the IDLV vector respectively (p<0.05). In murine BMDCs, endogenous Rpe65 

mRNA levels were increased ~6- and ~7-fold vs control in cells infected with ILV3-

RPE65 and IDLV3-RPE65 respectively, and Cralbp mRNA levels were increased 

7- and 8-fold vs control in cells infected with ILV3-RPE65 and IDLV3-RPE65 

respectively (A). In human BMDCs, CRALBP mRNA levels were 5-fold over control 

in cells infected with either vector. 

 

 (*=p<0.05; n(per experiment)=3; n(experiments)=12 [murine BMDC, ILV3-

RPE65]; n(per experiment)=3; n(experiments)=3 [human BMDC, ILV3-RPE65; 

murine and human BMDC, IDLV3-RPE65]).  
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Discussion 

 

We have previously shown in two murine models of RPE damage that adult 

BMDCs modified ex vivo with an ILV expressing RPE65 are recruited to and 

preserve the RPE and retina following systemic delivery. [13, 216]  Compounding 

factors facilitating the lack of visual recovery in humans after cell-based therapy 

for dry AMD to date [180, 181, 186] include treatment in the late stages of disease, 

limited motility of cells across the RPE layer post-injection, and side effects of 

invasive cell delivery.[13, 216] [219, 220]  

 

Transient expression of RPE65 is likely to be sufficient, as we previously reported 

that the endogenous Rpe65 and Cralbp genes are activated within hours of RPE65 

vector infection. [13, 216]  IDLVs lack the integrase gene, and integrate at a 500-

1250-fold lower rate than integrating vectors, [282] with residual integration likely 

occurring through integrase-independent mechanisms, such as DNA break-

induced non-LTR-mediated integration. [284] In a clinical setting, inclusion of a 

suicide gene in the transducing vector would allow for rapid elimination of cells 

containing integrated virus if off-target effects resulting from insertional 

mutagenesis were to occur. Suicide gene-mediated inducible apoptosis has been 

demonstrated to be safe and effective in human clinical trials.[285, 286] Our 

findings are consistent with observations that low-level transgene expression is 

maintained 10-14 days post-infection. [287-289] 
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It has been well established in the literature that IDLVs are less efficient than ILVs. 

[224, 271] Critical difficulties in the application of IDLVs have arisen for a number 

of reasons, primarily a low number of virions entering cells, [224] and 

downregulation of transgene expression due to episome inhibition, [280] which has 

been shown to be counteracted by a deletion in the U3 region of the virus. [280] 

Several groups have published modifications to the transducing vector which 

improve the stability of expression from episomal IDLV particles. These 

modifications include codon-optimization of the transgene, [290, 291] the use of a 

strong promoter such as SV40 [292] instead of the CMV promoter which is 

susceptible to silencing, [293] and inhibiting viral life cycle proteins. [294, 295] We 

have utilized some of these modifications here through the use of the EF-1α 

promoter, which is constitutively expressed at a similar level in all cell types, and 

codon-optimization of the RPE65 cDNA for use in human cells.  

 

Overall, we focused on increasing the number of virions entering cells as opposed 

to further modifying the transducing vector, as retention of transgene expression 

was not thought to be required for our application. The critical difference between 

our use of IDLV3-RPE65 and the majority of IDLV3-based studies published to 

date is that we only require expression of RPE65 at a high level for a few hours 

post-infection for the vector to activate the endogenous genes, and are therefore 

using it as a molecular ‘switch’ as opposed to a long-term modification. 

Consequently, we measure expression at 4 hours post-infection, in contrast with 

typical lentiviral vector expression studies which measure transgene expression 
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after several days in culture. [222, 224, 231, 262, 265, 267, 268, 271-273, 275, 

280, 282, 289, 291, 292, 295] This time point was chosen as we have previously 

demonstrated that RPE65 induces Rpe65 and Cralbp expression within the first 

few hours of infection. [216] 

 

We propose that the method outlined here is optimal for the application of IDLVs 

in studies in which short-term (1-12 hrs) expression is sufficient, as the increase in 

expression in the early stages post-infection may not be sustained – our success 

in improving expression through increasing viral number per cell is likely to precede 

silencing of the episome. [280] For studies in which longer-term expression of the 

transgene is required, vector modifications such as U3 deletions may be necessary 

to maintain transgene expression after increasing the infection efficiency. [280] 

To improve IDLV3-RPE65 infection efficiency, the infection protocol was 

systematically modified. Infection is dependent on direct virion-cell interaction. 

Viral particles have a half-life of around 4-8hrs, [296, 297] during which they are 

capable traveling 580-610 microns, [298] and are negatively charged. It is 

therefore necessary to enhance the localization of cells and virions using reagents 

which either bind both, or eliminate the negative charge of both the cells and the 

virions. RetroNectin enhances infection efficiency via co-localization of virions and 

cells [299, 300] through binding by a heparin binding domain and VLA5/VLA4 

binding domains respectively, [281, 283] and is frequently used to maintain 

retroviral gene transfer in hematopoietic stem cells (HSCs) derived from primates, 

canines, and humans. [301-303] It has advantages over the commonly used 



134 
 

polycation Polybrene, which facilitates gene transfer by counteracting the negative 

charge of the cells and virions, in that it is less toxic to cells, yet produces similarly 

efficient infections. Protamine Sulfate has been shown to be as effective as 

Polybrene with the mouse SAX retroviral vector; [304] however, we found it to be 

significantly less effective than Polybrene or RetroNectin in BMDCs. Therefore, we 

focused on using RetroNectin to enhance infection with IDLV3-RPE65.  

 

Efficient infection of the HEL cell line and human CD34+ cells with retroviral vectors 

has been reported on plates coated with 2 µg/cm2 RetroNectin, [281] despite the 

instruction manual indicating a requirement for 4-20 µg/cm2. Our findings support 

this data, indicating that lentiviral vectors also transduce both human and mouse 

BMDCs on 2 µg/cm2 RetroNectin. Additionally, we show that a single preparation 

of 2 µg/cm2 RetroNectin can be removed and used to coat up to three wells before 

any reduction in efficiency. Both of these findings minimize the cost of LV 

approaches using RetroNectin. Also consistent with the literature, in which it has 

been reported that preloading of retroviral vectors on RetroNectin enhances gene 

transfer, [281] preloading of IDLV on RetroNectin prior to infection of cells resulted 

in a higher infection efficiency, [281] indicating that preloading is effective for 

infection with lentiviral as well as retroviral vectors.  

 

Expression of the endogenous Rpe65 and Cralbp genes in murine BMDCs 

infected with IDLV3-RPE65 confirm that the IDLV is functioning in a similar way to 

the ILV. Expression of CRALBP in human BMDCs infected with ILV3-RPE65 or 
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IDLV3-RPE65 indicates that expression of RPE65 in these cells is functioning in a 

similar way as expression in murine BMDCs, and suggests that expression of this 

is likely to result in human BMDC differentiation into RPE-like cells. This is of 

significant importance for the therapeutic potential of this technique in humans, 

which will be the focus of our future studies. 

 

To summarize, use of IDLV3-RPE65 significantly reduces the risk of our LV-based 

approach, as the number of viral integrations per cell and the subsequent risk of 

insertional mutagenesis is markedly reduced. IDLV3-RPE65 successfully initiates 

the expression of endogenous genes, which we believe to be responsible for the 

ability of RPE65-infected BMDCs to integrate into and regenerate damaged RPE 

in mouse models of RPE degeneration, in both murine and human BMDCs. 

Efficacy is significantly enhanced by modifying the infection protocol with 

RetroNectin. Our approach is quick and ideal for applications in which short term 

transient expression may be sufficient, avoiding time-consuming and costly 

modifications of the transducing vector.  
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CHAPTER IV: MURINE BONE MARROW-DERIVED CELLS PROGRAMMED 

WITH 3RD GENERATION INTEGRATING AND INTEGRASE-DEFICIENT 

LENTIVIRAL VECTORS PREVENT RETINAL DEGENERATION. 

 

Introduction 

 

In order to verify that murine BMDCs programmed with ILV3-RPE65 or IDLV3-

RPE65 are functional in terms of regenerating damaged RPE, it was necessary to 

evaluate the ability of these cells to repair RPE in murine models of retinal 

degeneration. We have previously demonstrated that pTYF-RPE65-infected 

BMDCs prevent retinal degeneration and preserves visual function in an acute 

[216] and a chronic [13] model of RPE damage. Critically, in these studies, the cells 

were administered systemically, either via the retro-orbital sinus vein [216] or the 

tail vein, [13] eliminating the need for invasive subretinal transplant of the cells and 

making the treatment considerably more desirable and feasible for use in human 

patients with early-stage retinal degeneration. [216]. It was demonstrated that the 

RPE65-expressing lentiviral vector was critical for the process of programming 

regeneration-capable BMDCs as the cells which were infected with the same 

lentiviral vector expressing a control LacZ gene did not result in significant recovery 

of vision or preservation of retinal morphology. This indicates that it is the 

expression of RPE65 from the vector that results in cellular differentiation, as 

opposed to the process of infecting the cells with the lentiviral vector and/or the 

integration of viral particles into the host cell genome. [13, 216] 
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In this current study, we evaluated BMDCs infected with ILV3-RPE65 and IDLV3-

RPE65 in the two previously published models, the acute injury sodium iodate 

model, [216] and the chronic injury superoxide dismustase 2 knock-down (SOD2-

KD) model of retinal degeneration. [13] We also evaluated BMDCs infected with 

two additional vectors, ILV3-RPE65-MITF and IDLV3-RPE65-MITF. The rationale 

for this is that micropthalmia-associated transcription factor MITF isoforms are both 

involved in the development of the retina and RPE cells, [305] and expressed in 

terminally differentiated RPE cells. [306] MITF-M is expressed in differentiated 

RPE. [306] MITF-A and J are present during the development of the retina and 

RPE, and MITF-H and MITF-D are present in the RPE, with MITF-D expressed 

only in the RPE [305]. Defects in MITF isoforms have been found to result in 

micropthalmia [307] and hyperproliferation of hypopigmented RPE cell and lack of 

RPE layer formation, [308] along with other non-ocular phenotypes resulting from 

deficiency in melanin production such as white fur in mice with MITF aberrations. 

[307] In addition to being expressed in terminally differentiated RPE cells, the M 

isoform of MITF has been found to be activated following exposure to an inhibitor 

of cAMP degradation, which in turn stimulates the production of melanin. [309] As 

we have consistently been unable to observe the development of pigmented RPE 

in vitro following infection with pTYF-RPE65 or ILV3/IDLV3-RPE65, [13] and as we 

have previously demonstrated the involvement of the cAMP/adenylate cyclase 

pathway in the differentiation of BMDCs with pTYF-RPE65, [216] we hypothesized 

that including MITF-M in the infecting vector may enhance the differentiation 

process.  
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The sodium iodate model consists of an intraperitoneal injection of 100mg/kg 

sodium iodate per mouse, which selectively and immediately results in necrosis of 

the RPE, photoreceptor cell death, and activation of the immune response in the 

retina. [310] As this model results in rapid, severe retinal degeneration, it is not the 

most accurate representation of the process of pathogenesis in human AMD. It is, 

however, valuable in initial studies into the efficacy of the 3rd generation vector-

treated cells, as results are available within 7-28 days [216] as opposed to 3-6 

months in the chronic SOD2-KD model. [13] The sodium iodate damage resembles 

the pathology of human AMD in the late stages, though cell death is necrotic 

whereas in human AMD death occurs mainly through apoptosis. [277, 310] The 

SOD2-KD model closely resembles human AMD in the early stages, with the 

exception that retinal degeneration is widespread across the retina in mice as 

opposed to being central as it is in humans, as mice do not have a macula. [277] 

Therefore, it is advantageous to evaluate the cells in both models in order to 

determine their suitability for treatment in both late and early-stage disease, though 

our ultimate goal is to treat early in disease to maximize retinal protection. When 

other cell types such as photoreceptors have already begun to degenerate, visual 

recovery via RPE replacement will be limited.  

 

The SOD2-KD model involves subretinally injecting an adeno-associated viral 

vector (AAV) containing a hammerhead ribozyme to SOD2 mRNA, expressed 

under the control of a chicken beta-actin (CBA) promoter and the cytomegalovirus 

(CMV) enhancer. (Figure 2.4). [277] This vector results in progressive oxidative 
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damage, due to a lack of the manganese superoxide dismutase required for the 

conversion of superoxide in the mitochondria to hydrogen peroxide and oxygen. 

This in turn leads to an increase in reactive oxygen species in the mitochondria, 

which initiates apoptotic cell death. [277] SOD2-KD-induced retinal degeneration 

progresses slowly over a period of 4 months. [277] This model is a close 

representation to early dry AMD, as it results in progressive loss of retinal function, 

the vacuolation and depigmentation and degeneration of the RPE cells, thickening 

of Bruch’s membrane, and a progressive shortening of the photoreceptor outer and 

inner segments which eventually leads to the death of photoreceptor cells by 

apoptosis. [277] As we have previously determined that recovery of vision is 

optimal in SOD2-KD mice when BMDCs infected with pTYF-RPE65 were given at 

the 1 month time point, [13] we selected this time point for treatment in the current 

study.  

 

Here, we investigated the ILV3-RPE65 and IDLV3-RPE65 treated cells in the 

sodium iodate model prior to the SOD2-KD model and determined that cells 

treated with either vector (a) are recruited to the eye, (b) integrate into the RPE 

layer, and, (c) preserve visual function as measured by electroretinography, which 

determines the electrical response of the retina to light, and by optokinetic 

nystagmus analysis (OKN), which measures the visual acuity of the mouse. In the 

SOD2-KD model, we observed similar results and further expanded the analysis 

to include a 6-month measurement of visual acuity in these mice. We determined 

that RPE recovery following injection with BMDCs programmed with either the 
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ILV3-RPE65 or IDLV3-RPE65 is maintained for at least 6 months. The timing of 

injection of BMDC post-infection with ILV3-RPE65 is of particular importance for 

cellular recruitment to the RPE, with cells injected 16h post-infection failing to be 

recruited to the RPE. We hypothesize that the BMDCs need to be in an early stage 

of programming when injected, retaining characteristics of bone marrow-derived 

cells, in order to effectively circulate in the blood to travel to the intended area of 

the eye.  

 

Results 

 

ILVs and IDLVs Expressing Both RPE65 and MITF Activate Expression of 

Endogenous Murine Rpe65 and Cralbp mRNA.  

 

ILV3-RPE65 and IDLV3-RPE65 were compared with the new vectors, ILV3-

RPE65-MITF and IDLV3-RPE65-MITF, to confirm that the inclusion of the MITF 

gene in these vectors did not have a detrimental effect on the expression of the 

endogenous Rpe65 and Cralbp mRNAs. Expression of RPE65 and MITF via 

infection of the same cells with two vectors each expressing one gene, as opposed 

to one vector expressing two genes, results in an approximately 50% reduction in 

expression of both genes in comparison to expression when cells are transduced 

with either vector alone. BMDCs infected with RPE65 or MITF independently 

expressed the genes 40-fold and 20-fold over control respectively, which reduced 

to 22-fold and 13-fold over control when BMDCs were infected with both viruses 
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together (Figure 4.1A). We therefore expressed MITF from the same vector as 

RPE65, linked by a T2A site, resulting in similar expression of RPE65 and MITF at 

~33-fold and ~35-fold over control from the ILV3 vectors and ~5-fold and ~6-fold 

from the IDLV3 vectors respectively (p<0.05) (Figure 4.1A). Additionally, 

expression of RPE65 was similar in BMDCs infected with both ILV3 vectors, with 

an approximately 33-fold increase in expression over control, and ~5-fold and ~7-

fold over control in BMDCs infected with IDLV3 vectors (p<0.05) (Figure 4.1A). 

 

Inclusion of MITF in the vector did not reduce expression of Rpe65 in infected 

BMDCs. Expression of Rpe65 was 3-fold over control in ILV3-RPE65-infected 

cells, ~7-fold over control in ILV3-RPE65-MITF-infected cells, and ~5-fold over 

control in BMDCs infected with either of the IDLV3 vectors (p<0.05) (Figure 4.1B). 

Expression of Cralbp was 8-fold over control in BMDCs infected with either ILV3 

vector, and ~4-fold  and ~3-fold over control in BMDCs infected with IDLV3-RPE65 

and IDLV3-RPE65-MITF respectively (p<0.05) (Figure 4.1B). It is important to note 

for continuity that this experiment was performed prior to the experiments outlined 

in Chapter 1, which accounts for the low infection efficiency observed with the 

IDLVs in Figure 4.1B.  
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Figure 4.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

B 
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Figure 4.1. ILV3-RPE65-MITF and IDLV3-RPE65-MITF Initiate Expression of 

human Rpe65 and Mitf mRNA in Murine BMDCs. 

 

(A) Murine Lin-/Sca1+ BMDCs were isolated from whole bone marrow of C57BL6/J 

mice infected at an MOI of 50 on RetroNectin (2 µg/cm2) with ILV3-RPE65, ILV3-

MITF, either alone or in combination, or with ILV3-RPE65-MITF by spinoculation 

for 2h at 150 g, 21ºC, prior to harvest for mRNA analysis. Expression of RPE65 

was ~40-fold over control when infected alone, dropping to ~22-fold when infected 

with ILV3-MITF (p<0.04). ILV3-MITF infected alone resulted in a ~20-fold increase 

in expression, dropping to ~13-fold when infected with ILV3-RPE65 (p<0.05). ILV3-

RPE65-MITF infection resulted in a ~33-fold increase in expression of both 

mRNAs. (*=p<0.05, n(per experiment)=3; n(experiments)=3) (B) Murine Lin-

/Sca1+ BMDCs were isolated from whole bone marrow of C57BL6/J mice infected 

at an MOI of 50 on RetroNectin (2 µg/cm2) with ILV3-RPE65, IDLV3-RPE65, ILV3-

RPE65-MITF, or IDLV3-RPE65-MITF for 2 hrs at 150 g, 21ºC, and harvested for 

qRT-PCR analysis after 4 hrs. Human RPE65 mRNA was expressed ~33-fold over 

control in ILV3-RPE65 and ILV3-RPE65-MITF-infected cells (p<0.05), and human 

MITF mRNA was expressed ~35-fold over control in ILV3-RPE65-MITF-infected 

cells (p<0.05). Human RPE65 mRNA was 7- and 4-fold over control in IDLV3-

RPE65 and IDLV3-RPE65-MITF-infected cells respectively, and human MITF 

mRNA was ~7-fold over control in IDLV3-RPE65-MITF-infected cells. Cells 

infected with all viruses expressed the endogenous Rpe65 and Cralbp mRNAs, 

with expression in ILV3-RPE65 and ILV3-RPE65-MITF-infected cells 3-fold and 6-
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fold, and ~8-fold respectively. In IDLV3-RPE65 and IDLV3-RPE65-MITF-infected 

cells, Rpe65 expression was ~5-fold over control and Cralbp expression was ~4-

fold and ~3-fold over control respectively. (n(per experiment)=3, 

n(experiments)=12; *=p<0.05).  
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Timing of Injection of RPE65-Programmed BMDCs is Critical for Preserving 

Retinal Morphology and Visual Function 

 
 
In the previously published studies, RPE65-BMDCs were injected into sodium 

iodate or SOD2-KD mice immediately after infection with pTYF-RPE65. [216] 

However, as expression of lentiviral vectors increases as the vectors integrate into 

the genome, it was thought that injecting the cells up to 24 hours after transducing 

may increase retinal preservation and visual function. Surprisingly, we found that 

culturing murine BMDCs for 16-20 hours after infection with ILV3-RPE65 

significantly diminished the ability of the cells to regenerate damaged RPE or 

preserve retinal function.  

 

As shown in Figure 4.2A, sodium iodate treated mice injected with 50,000 BMDCs 

infected with ILV3-RPE65 via the tail vein had almost ‘flat’ ERG traces in 

comparison with the untreated mice, which had normal A-wave and B-wave 

patterns. The B-wave was almost absent in all sodium iodate treated mice treated 

with BMDC-ILV3-RPE65. These results were observed consistently in all three 

treated mice (Figure 4.2A). The average A-wave in normal mice was ~275 (+/- 25), 

decreasing significantly to ~12 (+/- 3) in sodium iodate treated mice injected with 

BMDC-ILV3-RPE65 (p<0.05) (Figure 4.2B). Similarly, while the average B-wave in 

normal mice was ~650 (+/- 50), the average B-wave in treated mice was ~5 (+/- 2) 

(p<0.05), demonstrating a significant decrease in retinal function (Figure 4.2B).  
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ERG data was backed up by OCT, with significant areas of damage visible in the 

retinas of treated mice in comparison with the wild type normal control. Finally, we 

found that no GFP+ cells were present in the RPE layer of these mice (Figure 

4.2D). Overall, we found that injecting cells that have been cultured overnight after 

infection with ILV3-RPE65 do not rescue RPE damage in vivo and likely are not 

recruited to the RPE layer, as no cells were found in the RPE of these mice.  

Consequently, for the remainder of these studies, we injected the BMDCs 

immediately after transducing them with lentiviral vectors.  
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Figure 4.2 
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Figure 4.2. BMDC-ILV3-RPE65 Incubated Overnight Following Infection Do 

Not Preserve Vision or Are Recruited to the RPE Layer. Lin-/Sca1+ cells were 

isolated from the femurs and tibiae of ~8-week-old GFP+ mice and infected at MOI 

50 with ILV3-RPE65 by spinoculation with Polybrene and incubated for 16 hrs 

post-infection. 50,000 cells were injected via the tail vein per mouse in C57BL6/J 

mice which had been given a 100mg/kg IP injection 1 day prior to injection of 

BMDC-ILV3-RPE65. OCT and ERG was carried out approximately 7 days after 

treatment with cells. Mice were then sacrificed and eyes enucleated, fixed in 

paraformaldehyde, and flat mounted for analysis. (A) Scotopic ERG traces in the 

OS and OD of the normal control mice show typical pattern for normal mice, with 

a well-defined A-wave and B-wave. In contrast, the A-wave and B-wave is almost 

absent in Sodium Iodate treated mice treated with BMDC-ILV3-RPE65. (B) Normal 

mice had an average A-wave of 275 µV and an average B-wave of 650 µV. Sodium 

Iodate-treated mice treated with BMDC-ILV3-RPE65 had an average A-wave of 

12 µV and an average B-wave of 5 µV. (C) Retinae of Sodium Iodate treated mice 

treated with BMDC-ILV3-RPE65 is clearly visible with OCT. Arrows show areas of 

pathology. (D) No GFP+ cells are visible in flat mounted eyes of Sodium Iodate-

treated mice treated with BMDC-ILV3-RPE65. (n=3, *=p<0.05) 
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BMDCs Infected ILV3-RPE65 Immediately After Infection Are Recruited to 

the RPE and Preserve Retinal Function in Sodium Iodate-Treated Mice.  

 

To confirm that the lack of recruitment observed in Figure 4.2 was in fact a direct 

result of the 16 hr time point used, and not a deficiency in the programming of 

BMDCs with ILV3-RPE65, we conducted a short term experiment with the acute 

sodium iodate model of retinal degeneration. This was necessary to confirm the 

ability of ILV3-RPE65-infected cells to be recruited to and restore vision in our 

mouse models as BMDCs used in all of the previous studies were infected with 

pTYF-RPE65 as opposed to ILV3-RPE65. Mice injected with ILV3-RPE65-infected 

GFP+ BMDCs immediately after spinoculation of the BMDCs as opposed to 16 hr 

later demonstrated significant recovery of vision in comparison with mice injected 

with null (uninfected Lin-/Sca1+) cells. Electroretinography demonstrated near-

normal pattern in mice injected with ILV3-RPE65-infected BMDCs in comparison 

with an almost flat ERG trace observed in mice injected with null BMDCs. The A-

wave was improved from ~44 µV in the null BMDC-treated mice to ~104 µV in 

BMDC-ILV3-RPE65-treated mice, in comparison with ~146 µV in the normal 

control (Figure 4.3A). The B-wave showed similar recovery, with an improvement 

from ~88 µV n the null BMDC-treated mice to ~236 µV in BMDC-ILV3-RPE65-

treated mice, in comparison with ~330 µV in the normal control (Figure 4.3B). 

 

We also injected a group of mice with 200k ILV3-RPE65-infected cells as opposed 

to the usual 50k, hypothesizing that an increase in cell number may enhance 
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migration and recovery of vision. While it was found that mice injected with 200k 

cells had greater coverage of GFP+ cells at the RPE layer, with ~40% coverage in 

eyes from mice injected with 200k cells compared with ~20% in mice injected with 

50k cells (Figure 4.3C), injecting with 200k cells did not significantly improve visual 

function over mice injected with 50k cells, with optokinetic nystagmus analysis 

demonstrating a spatial frequency of 0.482 c/d in the former and 0.505 c/d in the 

latter, in comparison with normal and vehicle control mice, which had spatial 

frequencies of 0.643 c/d and 0.593 c/d respectively (Figure 4.3D). We therefore 

carried out the remainder of the in vivo studies with 50k cells.  
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Figure 4.3 
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Figure 4.3. BMDC-ILV3-RPE65 Cells Are Recruited to and Preserve Vision in 

Sodium Iodate Treated Mice.  

 

Wild-type C57BL6/J mice were injected with 100 mg/kg sodium iodate in water 1 

day prior to systemic delivery of GFP+ cells isolated from C57BL6/J GFP+ mice. 

Cells injected were either null (uninfected) GFP+ BMDCs, 50k GFP+ BMDCs 

infected at an MOI of 50 with ILV3-RPE65, or 200k GFP+ BMDCs infected at an 

MOI of 50 with ILV3-RPE65. All infections were done on RetroNectin (2 µg/cm2) 

by spinoculation at 150 g for 2h at 21C. Cells were injected into mice immediately 

after infection. For the sodium iodate control, mice were injected with water instead 

of sodium iodate. For the vehicle control for the cell injections, mice were injected 

with PBS instead of cells. 7 days after injection with cells, mice were evaluate by 

electroretinography and OKN. Eyes were then enucleated and the RPE/Choroid 

layers whole-mounted onto slides to determine the presence of GFP cells in the 

RPE layer.; (A) Electroretinography (ERG) demonstrates improvement of the A-

wave in BMDC-ILV3-RPE65-treated mice in comparison with null BMDC treated 

mice. The average A-wave of normal mice was ~146 µV, ~44 µV in null BMDC-

treated mice, and ~103 µV in BMDC-ILV3-RPE65-treated mice. (n=4) (B) ERG 

also demonstrates an improved B-wave in BMDC-ILV3-RPE65-treated mice in 

comparison with null BMDC treated mice. The average A-wave of normal mice 

was ~330 µV, ~87 µV in null BMDC-treated mice, and ~236 µV in BMDC-ILV3-

RPE65-treated mice. (n=4) (C) GFP+ cells were observed in the flat-mounted RPE 

layer of mice injected with BMDC-ILV3-RPE65, with a fluorescence intensity of 
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approximately 20% in one eye from a mouse injected with 50k cells, and 40% in 

an eye from a mouse injected with 200k cells. Images show two different areas of 

the same eye. (n=1) (D) Optokinetic nystagmus analysis (OKN) revealed improved 

spatial frequency in sodium iodate treated mice treated with either 50k or 200k 

cells in comparison with BMDC-null or vehicle control treated mice. Normal and 

sodium iodate control (water-injected) mice had an average spatial frequency of 

0.648 c/d and 0.652 c/d respectively. Vehicle control and null mice had an average 

spatial frequency of 0.126 c/d and 0.192 c/d respectively. Mice treated with 50k or 

200k BMDC-ILV3-RPE65 had an average spatial frequency of 0.496 c/d and 0.503 

c/d respectively, with no significant difference between these two groups (n=3, 

*=p<0.05). 
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BMDCs Infected with Non-Integrating IDLV Are Recruited to and Preserve 

Retinal Function in Sodium Iodate-Treated Mice. 

 

Having confirmed that BMDC-ILV3-RPE65 recover vision in sodium iodate treated 

mice when injected at the correct time point, we injected sodium iodate-treated 

mice with BMDCs infected with ILV3-RPE65-MITF and the two IDLV3 vectors as 

a preliminary study. ERG results show clear improvement in both the A-wave and 

B-wave of mice treated with the IDLV3 vectors. The normal A-wave was measured 

at ~140 µV, dropping to ~40 µV in mice treated with null BMDCs (Figure 4.4A). In 

contrast, the A-wave was ~100 µV and 80 µV in mice treated with BMDC-ILV3-

RPE65 or BMDC-IDLV3-RPE65, and ~120 µV and ~70 µV in mice treated with 

BMDC-ILV3-RPE65-MITF and BMDC-IDLV3-RPE65-MITF respectively (Figure 

4.4B). Similarly, improvement in the B-wave was also observed, with normal mice 

having an average B-wave of ~320 µV, mice treated with null cells ~20 µV,  BMDC-

ILV3-RPE65 ~230 µV, BMDC-IDLV3-RPE65 220 µV, BMDC-ILV3-RPE65-MITF 

170 µV, and BMDC-IDLV3-RPE65-MITF 190 µV. Optokinetic nystagmus analysis 

confirmed that the presence of GFP+ cells in the RPE layer of these mice 

contributed to a recovery in vision, with a spatial frequency average of 0.192 c/d in 

null-BMDC-treated mice increasing to 0.496 c/d, 0.415 c/d, 0.315 c/d, and 0.453 

c/d in BMDC-ILV3-RPE65, BMDC-ILV3-RPE65-MITF, BMDC-IDLV3-RPE65, and 

BMDC-IDLV3-RPE65-MITF-treated mice respectively (Figure 4.4C). 
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Figure 4.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



156 
 

Figure 4.4. BMDCs Programmed with IDLV3 Vectors Preserve Vision in 

Sodium Iodate-Treated Mice.  

 

Wild type C57BL6/J mice were treated with 100 mg/kg sodium iodate in water or 

water (control) 1 day prior to tail vein delivery of BMDC-null, BMDC-ILV3-RPE65, 

BMDC-ILV3-RPE65-MITF, BMDC-IDLV3-RPE65, or BMDC-IDLV3-RPE65-MITF. 

All infections were done on RetroNectin (2 µg/cm2) by spinoculation at 150 g for 

2h at 21C. Cells were injected into mice immediately after infection. (A) The A-

wave was improved in BMDC-ILV3-RPE65, BMDC-ILV3-RPE65-MITF, BMDC-

IDLV3-RPE65, or BMDC-IDLV3-RPE65-MITF-treated mice in comparison with 

BMDC-null-treated mice, with an average of 100 µV, 120 µV, 80 µV, and 70 µV 

respectively, compared to 40 µV in the null-treated mice. (B) The B-wave was 

improved in BMDC-ILV3-RPE65, BMDC-ILV3-RPE65-MITF, BMDC-IDLV3-

RPE65, or BMDC-IDLV3-RPE65-MITF-treated mice in comparison with BMDC-

null-treated mice, with an average of 230 µV, 220 µV, 170 µV, and 190 µV 

respectively, compared to 20 µV in the null-treated mice. (C) The visual acuity of 

BMDC-ILV3-RPE65, BMDC-ILV3-RPE65-MITF, BMDC-IDLV3-RPE65, or BMDC-

IDLV3-RPE65-MITF-treated mice in comparison with BMDC-null-treated mice, 

with an average of 0.496 c/d, 0.415 c/d, 0.315 c/d, and 0.453 c/d respectively, 

compared to x in the null-treated mice. (n=2-3) 
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BMDCs Infected with Non-Integrating IDLV Are Recruited to and Preserve 

Retinal Function in SOD2-KD Mice. 

 

The primary goal of our study was to evaluate IDLV3-based vectors in the chronic 

SOD2-KD model of retinal degeneration, as this model is as similar to human AMD 

as is possible in a mouse. After confirming that the IDLV3-based vectors are 

capable of generating BMDCs which are recruited to and recover vision in the 

sodium iodate model, we next tested these cells in the SOD2-KD model. As we 

are primarily interested in applying this treatment in early AMD, and as our 

previously published studies indicate that early treatment yields the best results, 

we injected all mice with 50k BMDCs 1 month after subretinal injection of the right 

eye (OD) with an adeno-associated virus containing a ribozyme to SOD2 (rAAV-

SOD2). The untreated left eye (OS) acted as an internal normal control. OCT was 

performed at the 3 month time point after BMDC injection. Electroretinography and 

OKN were performed 3 and 6 months after treatment with BMDCs. After visual 

function testing, eyes were enucleated and either flat mounted to quantify 

integrated BMDCs at the RPE layer, or sectioned to observe RPE and retinal 

morphology.  

 

In all mice injected with BMDCs infected with ILV3 or IDLV3-based vectors, GFP+ 

cells were found at the RPE layer of the rAAV-SOD2-injected eye (Figure 4.5A). 

Mice injected with BMDC-ILV3-RPE65 had the greatest number of cells in the RPE 

layer, with an average of 976 cells across 10% of each flat mounted eye (Figure 
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4.5B). Mice injected with BMDC-ILV3-RPE65-MITF had an average of 637 cells 

across 10% of each flat mounted RPE, BMDC-IDLV3-RPE65 645 cells, and 

BMDC-IDLV3-RPE65-MITF 557 cells, and null-BMDCs 20 cells (Figure 4.5B). In 

addition, GFP+ cells observed at the RPE layer in BMDC-ILV3-RPE65-treated 

mice were found to co-express ZO-1 (experiment performed by Dr. Xiaoping 

Qi)[13] a marker of tight junctions that are characteristic of RPE cells (Figure 4.5C), 

and rhodopsin (experiment performed by Dr. Xiaoping Qi),[13] which indicates that 

the cells are capable of phagocytosing photoreceptor outer segments (Figure 

4.5D), further confirming that these BMDCs take on an RPE-like phenotype in vivo. 

These markers will also be stained for in BMDC-IDLV3-treated cells in future 

experiments.  
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Figure 4.5 
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Figure 4.5. BMDCs Programmed with ILV3 or IDLV3 Vectors Are Recruited to 

and Integrate at the RPE Layer in SOD2-KD Mice.  

 

Vector-Infected BMDCs are Recruited to the RPE Layer in SOD2-KD Mice, where 

they Integrate and Adopt and RPE-Like Phenotype. Wild-type C57BL6/J mice were 

injected subretinally with AAV-SOD2 or AAV-inactive 1 month prior to tail vein 

injection with 50k GFP+ lin-/Sca1+ BMDCs infected at an MOI of 50 with ILV3-

RPE65, IDLV3-RPE65, ILV3-RPE65-MITF, or IDLV3-RPE65-MITF. All infections 

were carried out on 2 µg/cm2 RetroNectin by spinoculation at 150g for 2h at 21ºC. 

Eyes were enucleated, fixed in 4% PFA overnight, and the RPE/Choroid layer was 

flat mounted on slides 3 months after injection with cells. Eyes were also fixed and 

paraffin embedded followed by cross sectioning and staining for the presence of 

rhodopsin. Recruitment of injected cells to the RPE layer was visualized as GFP+ 

cells at the RPE/Choroid layer using confocal microscopy and quantified as the 

number of cells present in ~10% of the total flat mount. To observe expression of 

tight junctions, flat mounts were stained with an antibody to ZO-1. Experiments for 

figure 6 C and D were performed by Dr. Xiaoping Qi. (A) GFP cells were observed 

in the RPE layers of mice treated with BMDC-ILV3-RPE65, BMDC-IDLV3-RPE65, 

BMDC-ILV3-RPE65-MITF, or BMDC-IDLV3-RPE65-MITF. Each panel shows 

areas of the RPE/Choroid from the eyes of two mice per group (B) Quantification 

of cell number was carried out using a confocal microscope. Approximately 10% 

of the surface of each eye was quantified by counting the number of cells present 

in a visual field through the microscope using the 10x objective. Mice injected with 



161 
 

BMDC-ILV3-RPE65, BMDC-IDLV3-RPE65, BMDC-ILV3-RPE65-MITF, or BMDC-

IDLV3-RPE65-MITF had an average of 976, 637, 645, and 557 GFP+ cells in the 

RPE layer respectively. The average number of GFP+ cells in the RPE layer of 

BMDC-null-treated mice was 20. (n=3) (C) Integrated GFP+ BMDCs infected with 

ILV3-RPE65 co-expressed ZO-1, a marker of tight junctions characteristic to RPE 

cells (data: Dr. Xiaoping Qi). (D) Integrated GFP+ BMDCs infected with ILV3-

RPE65 co-expressed Rhodopsin, present in photoreceptor outer segments, 

indicating that the cells are functioning as RPE cells in phagocytosing 

photoreceptor outer segments (data: Dr. Xiaoping Qi).  

(*p<0.05; n=3).  
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Histology demonstrated significant regeneration of the RPE layer in comparison 

with mice treated with null-BMDCs in mice treated with BMDCs infected with all 4 

vectors (Figure 4.6, A-G). While pathology in some of the eyes and in parts of the 

RPE were present in mice treated with vector-infected BMDCs, RPE morphology 

was consistently improved, with a clear monolayer of pigmented cells present in 

comparison with the vacuolated degenerating RPE cell layer observed in mice 

treated with null BMDCs (Figure 4.6 A-G). In these mice, significant pathology was 

observed along with areas of normal retina, though the RPE was degenerated 

throughout, which is consistent with the progressive nature of the SOD2-KD model 

(Figure 4.6C).  

 

Electroretinography at the 3-month time point revealed significant preservation of 

visual function in mice treated with ILV3 or IDLV3-based vectors in comparison 

with mice treated with null BMDCs (control), with near-normal ERG traces in the 

vector-infected BMDC-treated mice compared with an almost flat ERG trace in 

null-BMDC-treated mice (Figure 4.7A). The A-wave in the normal eyes averaged 

at 132 µV, 46 µV in null-BMDC-treated mice, and 116 µV, 140 µV, 93 µV, 86 µV in 

BMDC-ILV3-RPE65, BMDC-LV3-RPE65-MITF, BMDC-IDLV3-RPE65, and 

BMDC-IDLV3-RPE65-MITF-treated SOD2-KD eyes respectively (Figure 4.7B). 

The B-wave demonstrates a similar pattern, with an average of 286 µV in normal 

mice, 80 µV in null-BMDC-treated mice, and 240 µV, 315 µV, 266 µV, 243 µV in 

BMDC-ILV3-RPE65, BMDC-ILV3-RPE65-MITF, BMDC-IDLV3-RPE65, and 

BMDC-IDLV3-RPE65-MITF-treated SOD2-KD eyes respectively (Figure 4.7C). 



163 
 

The inactive ribozyme (positive control for the SOD2 ribozyme) did reduce both 

the A-wave and the B-wave (73 µV and 173 µV respectively), indicating that some 

of the injury to the RPE observed may be due to the injection procedure itself in 

addition to the SOD2-KD.  

 

As ERG does not necessarily correspond with visual acuity in mice, OKN was 

carried out to back up the ERG results. The spatial frequency of the normal eye 

consistently averaged at around 0.6 c/d. rAAV-inactive-injected eyes had a 

reduction in spatial frequency to ~0.5, thought to result from lack of recovery at of 

the injection site, due to the invasive nature of subretinal delivery (Figure 4.7D). In 

SOD2-KD eyes of mice injected with null BMDCs, the spatial frequency averaged 

at 0.06 cd, considerably lower than that observed in SOD2-KD eyes which 

received vector-infected BMDCs (Figure 4.7D). In BMDC-ILV3-RPE65-treated 

mice, the average spatial frequency was 0.524 c/d (Figure 4.7D). In BMDC-ILV3-

RPE65-MITF-treated mice, the average spatial frequency was 0.498 c/d (Figure 

4.7D), in BMDC-IDLV3-RPE65-treated mice 0.538 c/d, and finally in BMDC-IDLV3-

RPE65-MITF-treated mice, 0.489 c/d (Figure 4.7D). While all spatial frequencies 

remained significantly lower than normal (p<0.05), they were also significantly 

higher than that observed in null-BMDC-treated mice, demonstrating that this 

improvement is a result of the infection of the BMDCs with the vectors.  
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Figure 4.6  
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Figure 4.6. BMDCs Programmed with ILV3 or IDLV3 Vectors Preserve Retinal 

Integrity in SOD2-KD Mice.  

 

Wild-type C57BL6/J mice were injected subretinally with AAV-SOD2 or AAV-

inactive 1 month prior to tail vein injection with 50k GFP+ lin-/Sca1+ BMDCs 

infected at an MOI of 50 with ILV3-RPE65, IDLV3-RPE65, ILV3-RPE65-MITF, or 

IDLV3-RPE65-MITF. All infections were carried out on 2 µg/cm2 RetroNectin by 

spinoculation at 150g for 2h at 21ºC. Eyes were enucleated, fixed in 4% PFA 

overnight, and sectioned 3 months after injection with cells. Haemotoxylin and 

Eosin-Stained Cross Sections of Retinae Show Improved Morphology in SOD2-

KD Mice Treated with Vector-Infected BMDCS. Eyes were enucleated and 

immediately transferred to 4% paraformaldehyde for fixing for approximately 72 

hrs, paraffin-embedded, and sectioned by the IU Histology Core. Sections were 

imaged on a Zeiss upright microscope with a color camera and images captured 

using Zeiss Zen software. All main images were taken with the 20x objective; 

insets were taken with the 40x objective. (A) RPE layer of a normal retina (oculus 

sinister [OS]; left eye, untreated), with normal pigmentation and morphology. (B) 

RPE of a retina of a mouse injected with the control AAV containing an inactive 

ribozyme (oculus dexter [OD]; right eye), which has normal pigmentation and 

morphology. (C) RPE of retina from a mouse injected with the AAV containing a 

ribozyme to SOD2 followed by systemic injection of null BMDCs, which appears 

highly depigmented, vacuolated, and degenerated. (OD) (D-G) RPE from the 

retina of mice injected with AAV-Rz-SOD2 followed by systemic treatment with 
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BMDCs infected with (D) ILV3-RPE65, (E) IDLV3-RPE65, (F) ILV3-RPE65-MITF, 

or (G) IDLV3-RPE65-MITF. RPE cells demonstrating significant pigmentation in 

comparison with the null control are shown in K-N. RPE recovery is most 

pronounced in mice treated with BMDC-ILV3-RPE65 or BMDC-IDLV3-RPE65, 

with highly pigmented cells in particular observed in the BMDC-IDLV3-RPE65-

treated eye.  

(*p<0.05; n=3) 
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Figure 4.7 
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Figure 4.7. BMDCs Programmed with ILV3 or IDLV3 Vectors Preserve Visual 

Function in SOD2-KD Mice. Wild-type C57BL6/J mice were injected subretinally 

with AAV-SOD2 or AAV-inactive 1 month prior to tail vein injection with 50k GFP+ 

lin-/Sca1+ BMDCs infected at an MOI of 50 with ILV3-RPE65, IDLV3-RPE65, 

ILV3-RPE65-MITF, or IDLV3-RPE65-MITF. All infections were carried out on 2 

µg/cm2 RetroNectin by spinoculation at 150g for 2h at 21ºC. Electroretinography 

and Optical Nystagmus testing was carried out 3 months after injection of the cells. 

Mice demonstrated improved visual function in mice treated with AAV-Rz-SOD2 

following injection with vector-infected BMDCs but not in mice treated with null 

BMDCs. (A) ERG trace patterns in mice treated with vector-infected BMDCs show 

a normal pattern with reduced amplitude. In null mice, the ERG trace was flattened. 

Mice injected with the inactive ribozyme also had reduced amplitude. (B) The A-

wave amplitude in normal mice was 132 µV. In SOD2-KD mice treated with BMDC-

null, it was reduced to 46 µV. In mice treated with BMDC-ILV3-RPE65, BMDC-

ILV3-RPE65-MITF, BMDC-IDLV3-RPE65, or BMDC-IDLV3-RPE65-MITF, the A-

wave was 116 µV, 140 µV, 93 µV, and 86 µV respectively. (B) The B-wave 

amplitude in normal mice was 286 µV. In SOD2-KD mice treated with BMDC-null, 

it was reduced to 80 µV. In mice treated with BMDC-ILV3-RPE65, BMDC-ILV3-

RPE65-MITF, BMDC-IDLV3-RPE65, or BMDC-IDLV3-RPE65-MITF, the A-wave 

was 240 µV, 315 µV, 266 µV, and 243 µV respectively. (C) The spatial frequency 

in BMDC-null treated mice was reduced to 0.06 c/d compared with an overall 

average of 0.6 in the normal eye across all groups. In mice treated with BMDC-

ILV3-RPE65, BMDC-ILV3-RPE65-MITF, BMDC-IDLV3-RPE65, or BMDC-IDLV3-
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RPE65-MITF, spatial frequencies averaged at 0.524 c/d, 0.498 c/d, 0.538 c/d, and 

0.489 c/d respectively. (*p>0.05, n=3) 
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At 6-months post-injection of BMDCs, visual recovery was largely retained, though 

significant variation was observed between mice in each group at this time point in 

the ERG measurements, including in the normal mice (Figure 4.8A). In normal 

eyes, the A-wave was ~124 µV and the B-wave was ~289 µV, and in null control 

SOD2-KD mice, the A-wave was ~27.5 µV and the B-wave was ~70 µV. In BMDC-

ILV3-RPE65-treated mice, the A-wave was ~150 µV and the B-wave was ~353 

µV. In BMDC-ILV3-RPE65-MITF-treated mice, the A-wave was ~90 µV and the B-

wave was ~205 µV. In BMDC-IDLV3-RPE65-treated mice, the A-wave was ~100 

µV and the B-wave was ~220 µV. In BMDC-IDLV3-RPE65-MITF-treated mice, the 

A-wave was ~52.5 µV and the B-wave was ~137.5 µV.  (Figure 4.8A). 

 

OKN results were less variable and in the normal eyes, the average spatial 

frequency was ~0.650 c/d, in null-BMDC-treated SOD2-KD eyes it was ~0.15 c/d, 

in ILV3 and IDLV3-BMDC treated mice, the average was around 0.600 c/d (Figure 

4.8B).  
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Figure 4.8. 
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Figure 4.8. Improvement in Visual Function in SOD2-KD Mice Treated with 

ILV3 or IDLV3 Vectors Persists for At Least Six Months. A group of mice 

treated with SOD2-KD followed by vector-infected BMDC tail vein injection (50k 

cells) were retained for 6 months for a later ERG and OKN time point. (A, B) In 

normal eyes, the A-wave was ~124 µV and the B-wave was ~289 µV, and in null 

control SOD2-KD mice, the A-wave was ~27.5 µV and the B-wave was ~70 µV. In 

BMDC-ILV3-RPE65-treated mice, the A-wave was ~150 µV and the B-wave was 

~353 µV. In BMDC-ILV3-RPE65-MITF-treated mice, the A-wave was ~90 µV and 

the B-wave was ~205 µV. In BMDC-IDLV3-RPE65-treated mice, the A-wave was 

~100 µV and the B-wave was ~220 µV. In BMDC-IDLV3-RPE65-MITF-treated 

mice, the A-wave was ~52.5 µV and the B-wave was ~137.5 µV.  (C) In normal 

mice, the spatial frequency was ~0.7 c/d in all normal eyes. In BMDC-ILV3-RPE65, 

BMDC-ILV3-RPE65-MITF, BMDC-IDLV3-RPE65, and BMDC-IDLV3-RPE65-

MITF-treated mice, the spatial frequency was 0.621 c/d, 0.622 c/d, 0.602 c/d, and 

0.586 c/d respectively. In BMDC-null treated mice, the spatial frequency was 0.140 

c/d. (*p>0.05, n=3) 
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Discussion  

 

Insertion of a lentiviral vector in the HMGA2 gene in a lentiviral vector-based 

therapy for beta-thalassemia [247] highlights the importance for considering the 

safety of lentiviral vectors when using them to manipulate therapeutic cells. Due to 

the risk of insertional mutagenesis, it is advantageous to use a vector which does 

not integrate where possible. [311] Here, we have focused on an approach which 

exploits the transient nature of IDLV expression, as programming BMDCs in this 

context does not require permanent expression of the transgene. Other 

applications in which this is advantageous include the use of CRISPR/Cas9, where 

IDLVs can be used to deliver gene-editing sequences (Chang et al., personal 

correspondence) and also as a tool for detecting off-target cleavage in both 

CRISPR/Cas9 and TALENs-based approaches. [312] IDLVs are also 

advantageous for in vivo gene therapy in non-dividing cells, where the transgene 

can be stably and persistently expressed. [282] 

 

We have shown that IDLV3-RPE65 is sufficient to program BMDCs to RPE-like 

cells, which are then capable of migrating to the retina, integrating into the RPE 

layer, and preserving vision in mice with retinal degeneration. The SOD2-KD mice 

were injected with BMDC-derived RPE-like cells programmed using IDLV3s 

infected with the modified protocol. Despite this difference in the programming of 

the BMDCs with the IDLV3s between these two models, visual preservation was 

not markedly lower in mice treated with cells that had been infected at a 
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significantly lower efficiency. This suggests that either (a) additional mechanisms, 

on top of infection itself, promote the programming of the cells, for example cell-

cell communication in vitro during or after infection, or (b) visual recovery is 

attainable with a smaller number of cells than injected. It is more likely that our 

finding is due to the latter, as the cells are not kept in vitro for more than 30 minutes 

prior to injection following infection, on top of the fact that in the initial study by 

Sengupta et al., [216] mice only received 5K cells, whereas in our later [13] and 

current studies, mice were given 50K cells. This indicates that as little as 10% of 

the injected cells may be necessary for visual recovery – which is, coincidentally, 

the approximate number of cells expressing the viral construct when IDLV3-based 

vectors are used to infect without the modifications made to the infection protocol 

outlined in Chapter 3.  

 

There is, however, a potential for infected cells to influence the programming of 

neighboring un-infected cells. Conditioned medium has been shown in several 

studies to enhance cellular differentiation or regeneration. [313-318] Experiments 

to determine whether or not conditioned medium from ILV3 or IDLV3-based vector-

infected BMDCs is capable of inducing differentiation of naïve BMDCs to an RPE-

like cell would provide further insights into this as a potential mechanism in the 

programming of our cells. Indeed, should exposure to conditioned media be 

sufficient to promote BMDC programming, future applications could avoid injection 

of infected cells altogether, using the vectors only as a means to generate the 

medium required to program the cells for therapeutic application. [316]  
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Our finding that visual preservation with IDLV3-programmed BMDCs is not 

significantly lower in mice treated with the IDLV3-programmed cells in comparison 

with ILV3-programmed cells strongly supports the use of IDLV3-RPE65 for 

reprogramming BMDCs for application in human cells. Although adding MITF-M to 

the infecting vector in the current study did not provide any measurable advantage 

over using vectors containing RPE65 alone, this does not necessarily suggest that 

inclusion of MITF overall cannot improve BMDC programming, as we have only 

tested one isoform of MITF. Instead of using MITF-M, expressed in differentiated 

RPE, isoforms H and D, which are present in developing retina and/or RPE cells, 

may function to enhance BMDC programming at a greater level than MITF-M. For 

future studies, the inclusion of MITF-D in the infecting vector as opposed to MITF-

M may yield better results – preferential over MITF-H, as MITF-D is only expressed 

in the RPE, whereas MITF-H is present in both the RPE and neural retina, and A 

and J are mainly localized in the neural retina. [305-308] It would be interesting to 

determine whether or not expression of the MITF isoform involved in development, 

MITF-D, is capable of activating expression of the differentiated RPE isoform, 

MITF-M in vitro, as we did not observe significant or consistent expression of Mitf 

in murine or human BMDCs infected with vectors expressing human RPE65 or 

RPE65-MITF (data not shown).  

 

The relatively lower number of cells found in the RPE layer in mice injected with 

BMDCs programmed with IDLV3-based vectors in comparison with mice injected 

with the ILV3-RPE65 programmed BMDCs raises an interesting question about 
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the mechanism of action of the BMDC-derived RPE-like cells in vivo. If the cells 

themselves were solely responsible for preserving vision, we would have expected 

to have observed a proportionately lower recovery of vision in mice with fewer cells 

at the RPE layer. Instead, however, we observed very similar ERG and OKN data 

in mice treated with cells programmed with either ILV3-RPE65 or IDLV3-based 

vectors. As a result, it is likely that the BMDC-derived RPE-like cells not only 

function to support the retina/choroid independently of the existing RPE, but also 

act in a neuroprotective manner, preserving the existing RPE in addition to 

regenerating it. Paracrine activity by stem cells has been widely reported .[319] In 

the eye, it has been shown in a study on glaucoma, in which mesenchymal stem 

cells were injected intravitreally, that the presence of these cells is neuroprotective, 

enhancing the protection of the retinal ganglion cell layer in rats. [320] Another 

study used a lentiviral vector approach to generate neuroprotective neural stem 

cells for intravitreal delivery in retinal degeneration disorders, showing rescue of 

degenerating photoreceptor cells in murine models. [321] 

 

The consistency between this study and our previously published studies, [13, 216] 

along with our findings that human BMDCs infected with the RPE65 viruses also 

express the endogenous markers believed to be necessary for cellular 

programming, indicates that this approach is ready to be applied with human 

BMDCs in vivo. Sustained visual improvement at the 6-month time point is 

encouraging, as our previously published models only measured vision up to the 

3-month time point. Although multiple injections with autologous BMDC-derived 
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RPE-like cells are technically feasible and safe, should visual recovery be 

temporary, the ability to address the problem with a single delivery of cells is 

advantageous for a number of reasons. Firstly, obtaining large numbers of cells 

for multiple treatments increases the invasiveness of the therapy, which is ideally 

avoided. Secondly, while autologous cells are generally thought to be non-

immunogenic, any ex vivo modification of cells has the potential to increase the 

immunogenicity in terms of ‘priming’ the immune system to respond in the event 

of a second exposure. This type of reaction would be rare, but potentially fatal in 

the case of an allergic response to repeated injections of the cells. A ‘one shot’ 

therapy is therefore desirable, and sustained vision to the 6-month time point in 

mice indicates that long-term recovery from one treatment may be viable.  

 

While beyond the scope of the focus of this study, since the completion of testing 

murine BMDC-derived RPE-like cells in murine models, our laboratory has 

demonstrated improvement of vision, as measured by ERG, in a preliminary study 

with NOD-SCID-gamma-null SOD2-KD mice injected with human CD34+ cells 

infected with ILV3-RPE65 (Godoy  et al., personal communication), further backing 

up our claim that the techniques outlined in the current study are appropriate for 

further development for use in human clinical trials for dry AMD. 

 

As a final note on the safety of this application in humans, is generally accepted 

that stem cell-based therapies that are delivered to the eye via intravitreal or 

subretinal injection should be applied in one eye at a time, to ensure that, should 
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patients have an adverse reaction to the treatment resulting in worsening of vision 

or blindness, one eye remains unaffected. A recent treatment given by a US “stem 

cell” company involving intravitreal injection of adipose-derived stem cells resulted 

in blindness in three women who received simultaneous bilateral injections.[185] 

Systemic delivery of cells does not allow for the treatment of one eye at a time. 

However, the risk associated with a systemically-delivered therapy is significantly 

smaller than the risk associated with injections into the eye itself. Firstly, any 

components of cell culture medium – which is likely to have contributed to the 

severe damage observed in the aforementioned patients[185] – will not be directly 

delivered to the eye and therefore are unlikely to cause damage to the eye. 

Secondly, our model relies on injury-based recruitment of cells from the 

bloodstream, meaning that large numbers of cells that are not required are not 

likely to be recruited to the retina, unlike in intravitreal and subretinal injection 

where the cells are directly delivered to the eye. We have also consistently 

demonstrated throughout our studies that the normal eyes of mice which have 

received systemic injections with our cells retain normal vision and normal retinal 

morphology, and that the injected cells are recruited primarily to the injured eye in 

the same mice, suggesting that this recruitment is largely tissue-specific and that 

the cells are very unlikely to be recruited to the eye in numbers large enough to 

cause pathology in areas in which significant damage is not present. We therefore 

believe that systemic delivery of this cell type is not a safety concern, and does not 

constitute ‘bilateral treatment’ in the same way as giving injections of cell 

preparations directly into the eye. 
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CHAPTER V: PHARMACOLOGICAL TREATMENT OF MURINE AND HUMAN 

BONE MARROW-DERIVED CELLS INDUCES DIFFERENTIATION TO RPE-

LIKE CELLS IN VITRO AND PROVIDES INSIGHTS INTO THE MECHANISM 

OF PROGRAMMING. 

 

Introduction 

 

We have previously demonstrated using Ingenuity Pathway Analyses that 

adenylate cyclases 1, 3, and 5 are upregulated in murine BMDCs following 

expression of the human RPE65 gene from the 1st generation ILV-RPE65. [216] In 

this study, it was also found that exposure of murine BMDCs to adenylate cyclase 

activator Forskolin, and cAMP degeneration inhibitor Rolipram, resulted in 

expression of the RPE-associated protein CRALBP, [216] indicating a potential 

critical role for adenylate cyclase activation in the differentiation of these cells to 

an RPE-like phenotype.  

 

In the current study, we have further analyzed the role of adenylate cyclase in 

murine and human BMDC differentiation to an RPE-like phenotype. As adenylate 

cyclase activation appeared to be directly involved in the differentiation of BMDCs 

to RPE-like cells, we postulated that inhibiting adenylate cyclase expression would 

prevent the expression of RPE-associated markers in both murine and human 

BMDCs treated with either Forskolin/Rolipram or the RPE65-expressing LV vector. 

To test this hypothesis, we compared expression of Rpe65/RPE65, 



180 
 

Cralbp/CRALBP, and Mitf/MITF in murine and human BMDCs exposed to either 

Forskolin/Rolipram or the 3rd generation ILV-RPE65, with or without inhibitors of 

adenylate cyclase. The inhibitors used included BPIPP, a non-competitive inhibitor 

of both adenylate cyclase and guanylate cyclase which inhibits Forskolin-induced 

adenylate cyclase activation,[322] NKY 80 which primarily inhibits adenylate 

cyclase 5 but also inhibits adenylate cyclases 2 and 3,[323, 324] and KH 7, an 

inhibitor of the soluble adenylate cyclase 10 which was intended as a control 

inhibitor due to its inert activity against the transmembrane adenylate cyclases 

observed as upregulated in the previously published study. [216] 

 

We observed that the presence of all the inhibitors tested reduced the expression 

of RPE-associated genes in Forskolin/Rolipram-treated BMDCs of both mouse 

and human origin, with BPIPP and NKY 80 resulting in the most efficient inhibition 

of these genes. KH 7 resulted in some downregulation of expression, suggesting 

that soluble adenylate cyclase may also be involved in BMDC to RPE-like cell 

differentiation. We also observed almost 100% inhibition of RPE-associated gene 

expression in mouse and human BMDCs treated with the inhibitors following ILV3-

RPE65 infection. Collectively, these data confirm that activation of adenylate 

cyclase plays a critical role in the programming of BMDCs to RPE-like cells.  

 

Finally, we attempted to evaluate the regenerative potential of Forskolin/Rolipram-

derived RPE-like cells from murine BMDCs in both the sodium iodate and SOD2-

KD models of retinal degeneration. Unfortunately, little success was observed with 
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no cells found in the retina or RPE of mice treated with these cells. We hypothesize 

that modifications to the timing of our cell treatment and injection protocol for the 

delivery of these cells will be critical to obtain sufficient cell migration and in the 

RPE. 

 

Results 

 

Exposure of Murine and Human BMDCs to Adenylate Cyclase Activators 

Initiates Expression of Endogenous RPE-Associated Genes 

 

Exposure of murine BMDCs treated once with 10 µmol/l Forskolin and maintained 

in culture for 3 days resulted in a ~5-fold increase (p<0.05) in expression of the 

Rpe65 gene and a ~3.5-fold (p<0.05) increase in expression of Cralbp in 

comparison with the control untreated cells (Figure 5.1A). No significant difference 

in expression of either Rpe65 or Cralbp was observed in cells treated twice with 

10 µmol/l Forskolin and maintained in culture for a total of 6 days. Fold increase in 

expression of Rpe65 and Cralbp in these cells was also ~5-fold and ~3.5-fold 

higher respectively.  

 

In contrast with the result observed with Forskolin, treating murine BMDCs with 

1µmol/l Rolipram twice did increase expression of both Rpe65 and Cralbp in 

comparison with BMDCs treated only once. Murine BMDCs treated twice with 1 

µmol/l Rolipram and cultured for a total of 6 days expressed Rpe65 and Cralbp 
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~4.8 and ~3.8-fold higher than the untreated control respectively (p<0.05), 

whereas BMDCs treated once with 1µmol/l Rolipram and cultured for 3 days 

expressed ~3.8-fold and ~2.5-fold more Rpe65 and Cralbp in comparison with the 

negative control (Figure 5.1B). However, the overall fold change in expression of 

both genes in BMDCs treated with Rolipram, whether the cells received one 

treatment or two, was lower than overall fold change in expression of both genes 

when the cells were exposed to one or two treatments of Forskolin.  

 

When Forskolin (10 µmol/l) and Rolipram (1µmol/l) were combined and added to 

murine BMDCs together, again either as a single treatment for 3 days our as two 

treatments for a total of 6 days, expression of both Rpe65 and Cralbp increased 

~5-fold and ~3.8-fold over the untreated control respectively with no significant 

difference between expression of either gene in the cells treated once compared 

with the cells treated twice (Figure 5.1C).  
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Figure 5.1 
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Figure 5.1. Forskolin and Rolipram Induce Expression of Rpe65 and Cralbp 

mRNA in Murine BMDCs. Murine (lin-/Sca1+) BMDCs were exposed to 10 µmol/l 

Forskolin, 1 µmol/l Rolipram, or a combination of 10 µmol/l Forskolin and 1 µmol/l 

Rolipram. Cells were either treated once, with drug-containing media left on the 

cells for 1 day prior to replacement with complete DMEM, or twice, with media 

replaced with a second treatment after 1 day and replaced with complete DMEM 

on the 3rd day. All cells were cultured for a total of 3 days. (A) Cells treated with 

Forskolin once expressed Rpe65 mRNA ~5-fold over control and Cralbp mRNA 

~3-fold over control (p<0.05) with no increase or decrease in expression when 

treated twice. (B) Cells treated with Rolipram once expressed Rpe65 mRNA ~3.5-

fold over control and Cralbp mRNA ~2.5-fold over control (p<0.05). Cells treated 

twice expressed Rpe65 mRNA ~4.5-fold over control and Cralbp mRNA ~4-fold 

over control (p<0.05). (C) Cells treated with Forskolin and Rolipram once 

expressed Rpe65 mRNA ~5-fold over control and Cralbp mRNA ~3.5-fold over 

control (p<0.05) with no significant increase or decrease in expression when 

treated twice. 
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Experiments carried out in murine BMDCs were repeated with human BMDCs. 

Significant variation in expression of RPE65 was observed in cells treated twice 

with 10 µmol/l Forskolin, and in expression of CRALBP in cells treated once with 

10 µmol/l Forskolin (Figure 5.2A), though expression of RPE65 and CRALBP was 

significantly higher in all cells treated with Forskolin despite individual variation 

within the samples. RPE65 was upregulated ~4-fold in human BMDCs treated 

once with 10 µmol/l Forskolin and ~6-fold in cells treated twice (p<0.05); CRALBP 

expression was increased ~4.5-fold (+/- 3) in cells treated once, and ~3-fold in cells 

treated twice with 10 µmol/l Forskolin (Figure 5.2A). Rolipram significantly 

increased expression of both genes in human BMDCs ~6.8-fold and 3.8-fold in 

cells treated once, and ~7.4 and 3.9-fold in cells treated twice (Figure 5.2B). No 

significant advantage was observed in treating the cells with Rolipram twice 

(Figure 5.2B).  

 

In contrast with data observed in murine BMDCs, human BMDCs express 

significantly more RPE65 when treated with Rolipram than when treated with 

Forskolin (Figure 5.2A and B), though CRALBP expression remains similar. 

Combining Forskolin and Rolipram treatments, either treating once or twice, results 

in RPE65 and CRALBP expression with significantly less variation than when 

Forskolin is used alone (Figure 5.2A and C), with an average fold increase in 

RPE65 of ~5.3-fold and ~5.9-fold in Forskolin/Rolipram treated cells treated once 

or twice respectively, and a correlating increase in CRALBP of ~3-fold and ~4-fold 

(Figure 5.2C). 
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Our findings that expression of the murine Rpe65 gene is upregulated following 

exposure of murine BMDCs to Forskolin and/or Rolipram confirms the role of the 

endogenous Rpe65 gene in the programming of murine BMDCs with the lentiviral 

vector approach. The consistency in expression of both Rpe65 and Cralbp in 

murine BMDCs whether treated with the adenylate cyclase activator Forskolin or 

the cAMP degradation inhibitor Rolipram, either independently or in combination, 

is consistent with our previously published data[216] and our belief that adenylate 

cyclase activation plays a critical role in BMDC differentiation to RPE-like cells. Our 

observations that Forskolin/Rolipram treatment also result in expression of the 

RPE65 and CRALBP genes in human BMDCs further solidify this hypothesis, and 

indicate that the programming process of human BMDCs may be very closely 

related to the programming process of murine BMDCs.  
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Figure 5.2 
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Figure 5.2. Forskolin and Rolipram Induce Expression of RPE65 and 

CRALBP mRNA in Human BMDCs.  

 

Human (CD34+) BMDCs were exposed to 10 µmol/l Forskolin, 1 µmol/l Rolipram, 

or a combination of 10 µmol/l Forskolin and 1 µmol/l Rolipram. Cells were either 

treated once, with drug-containing media left on the cells for 1 day prior to 

replacement with complete DMEM, or twice, with media replaced with a second 

treatment after 1 day and replaced with complete DMEM on the 3rd day. All cells 

were cultured for a total of 3 days. (A) Cells treated with Forskolin once expressed 

RPE65 mRNA ~4-fold over control and CRALBP mRNA ~4.5-fold over control 

(p<0.05). Cells treated twice expressed Rpe65 mRNA ~6-fold over control and 

Cralbp mRNA ~3-fold over control (p<0.05).  (B) Cells treated with Rolipram once 

expressed RPE65 mRNA ~7-fold over control and CRALBP mRNA ~4-fold over 

control (p<0.05). Cells treated twice expressed RPE65 mRNA ~7.5-fold over 

control and CRALBP mRNA ~4-fold over control (p<0.05). (C) Cells treated with 

Forskolin and Rolipram once expressed RPE65 mRNA ~5-fold over control and 

CRALBP mRNA ~3-fold over control (p<0.05). Cells treated twice expressed 

RPE65 mRNA ~6-fold over control and CRALBP mRNA ~4-fold over control 

(p<0.05). 
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Inhibiting the Expression of Adenylate Cyclase Inhibits Murine and Human 

BMDC Differentiation In Vitro 

 

To confirm the role of adenylate cyclase activation in the differentiation of murine 

and human BMDCs in vitro, we inhibited adenylate cyclase immediately prior to 

the treatment of cells with Forskolin, Rolipram, or ILV-RPE65. We first 

demonstrated that the inhibitors used – the transmembrane adenylate cyclase 

inhibitors BPIPP and NKY 80, and the soluble adenylate cyclase inhibitor KH7, did 

not influence expression of the Rpe65 or Cralbp genes in murine BMDCs which 

had not been exposed to either adenylate cyclase activating drug Forskolin, or 

cAMP degradation inhibitor Rolipram (Figure 5.3A). No significant difference in 

expression was observed in murine BMDCs exposed to the vehicle used to deliver 

the drug, DMSO, or in response to any of the inhibitors (Figure 5.3A). 

 

Next, we compared the efficacy of each inhibitor in downregulating the activation 

of Rpe65 and Cralbp following exposure to Forskolin in murine BMDCs. When 

NKY 80 or BPIPP was added to cells treated with Forskolin individually, expression 

of Rpe65 was ~2.5-fold (p<0.05) over expression in control untreated cells, which 

is significantly lower than the ~6-fold (p<0.05) increase in Rpe65 expression in 

cells treated with Forskolin alone (Figure 5.3B). Combining inhibitors NKY 80 and 

BPIPP together further reduced Rpe65 expression to a level similar to that 

observed in cells which had not been treated with Forskolin. While the KH7 

inhibitor decreased Rpe65 expression to approximately half that observed in cells 
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treated with Forskolin only, the level of inhibition is significantly different, indicating 

a role for non-transmembrane adenylate cyclase in the redifferentiation process 

(Figure 5.3B). Expression of Cralbp was significantly inhibited by treating 

Forskolin-exposed cells with NKY 80 or BPIPP alone (~0.1-fold and ~2.5-fold 

higher than the untreated control respectively, compared with a ~4-fold increase 

with Forskolin alone), and combining NKY 80 with BPIPP again resulted in a 

significantly lower expression of Cralbp than when BPIPP was used alone. Again, 

KH7 unexpectedly reduced Cralbp expression, further implicating soluble 

adenylate cyclase in the programming process (Figure 5.3B).  

 

Inhibition of adenylate cyclase via these inhibitors resulted in a similar pattern of 

inhibition when combined with cellular treatment with Rolipram by itself, or where 

cells were treated with both Forskolin and Rolipram together (Figure 5.3C, D). NKY 

80 and BPIPP consistently and significantly reduce expression of both Rpe65 and 

Cralbp, with the strongest inhibition consistently observed when used in 

combination. KH7 also consistently results in reduced expression of both the 

Rpe65 and Cralbp genes (Figure 5.3 C, D). 

 

Since inhibiting adenylate cyclase significantly reduces expression of Rpe65 and 

Cralbp in murine BMDCs, we next compared expression of RPE65 and CRALBP 

in human donor BMDCs exposed to Forskolin or Rolipram with or without a 

combination of NKY 80 and BPIPP, or KH7. Interestingly, in human BMDCs, KH7 

did not inhibit expression of RPE65 or CRALBP to the same degree as this inhibitor 
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inhibited Rpe65 and Cralbp in murine BMDCs (Figure 5.4). NKY 80 and BPIPP 

did, however, significantly reduce expression of both genes in human  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



192 
 

Figure 5.3 
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Figure 5.3. Adenylate Cyclase Inhibitors Block Expression of Rpe65 and 

Cralbp in Forskolin and Rolipram-Treated Murine BMDCs.  

 

BMDCs were exposed to 10 µmol/l Forskolin, 1 µmol/l Rolipram, or a combination 

of 10 µmol/l Forskolin and 1 µmol/l Rolipram in the presence or absence of 50 

µmol/l BPIPP, NKY 80, or KH7. (A) Cells treated with inhibitor vehicle DMSO, 

BPIPP, NKY 80, KH7, or a combination of BPIPP and NKY 80 did not significantly 

express Rpe65 or Cralbp mRNA (B) Cells treated with Forskolin in the absence of 

any inhibitor expressed Rpe65 mRNA ~6-fold over control and Cralbp mRNA ~4-

fold over control (p<0.05). Rpe65 mRNA expression reduced to ~2-fold over 

control in cells treated with NKY 80 or BPIPP, approximately equal to control in 

cells treated with both NKY 80 and BPIPP, and ~3-fold over control in KH7-treated 

cells (p<0.05). Cralbp mRNA expression was approximately equal to control in 

cells treated with NKY 80, KH7, or NKY 80 with BPIPP, and ~2-fold over control in 

cells treated with BPIPP. (C) Cells treated with Rolipram in the absence of any 

inhibitor expressed Rpe65 mRNA ~6-fold over control and Cralbp mRNA ~4-fold 

over control (p<0.05). Rpe65 mRNA expression reduced to ~2-fold over control in 

NKY 80-treated cells, ~3-fold over control in BPIPP-treated cells, ~1.6-fold over 

control in NKY80 and BPIPP-treated cells, and ~3-fold over control in KH7-treated 

cells. Cralbp expression was reduced to approximately the same level as the 

untreated control in cells treated with all inhibitors. (D) Cells treated with Forskolin 

and Rolipram expressed Rpe65 mRNA ~8-fold and ~4.5-fold over control (p<0.05). 

In the presence of NKY 80 or a combination of BPIPP and NKY 80 reduced 
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expression of Rpe65 to approximately that observed in the untreated control. 

BPIPP reduced Rpe65 mRNA to ~3-fold over control, and KH7 ~2-fold over control 

(p<0.05). Cralbp expression was reduced to approximately that of the untreated 

control in all conditions apart from KH7, in which expression was ~2-fold over the 

control. (*=p<0.05; n(per experiment)=3, n(experiments)=3). 
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Figure 5.4 
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Figure 5.4. Adenylate Cyclase Inhibitors Block Expression of RPE65 and 

CRALBP mRNA in Forskolin and Rolipram-Treated Human BMDCs.  

 

BMDCs were exposed to 10 µmol/l Forskolin, 1 µmol/l Rolipram, or a combination 

of 10 µmol/l Forskolin and 1 µmol/l Rolipram in the presence or absence of 50 

µmol/l NKY 80/BPIPP, or KH7. In the presence of Forskolin, RPE65 mRNA was 

~4.5-fold over control (p<0.05), reduced to approximately that of the control in the 

presence of NKY 80/BPIPP and ~1.5-fold over control in the presence of KH7. 

CRALBP mRNA levels were ~4-fold over control (p<0.05), reduced to 

approximately that of the control in the presence of NKY 80/BPIPP and ~3-fold 

over control in the presence of KH7 (p<0.05). In the presence of Rolipram, RPE65 

mRNA was ~6-fold over control (p<0.05), reduced to approximately that of the 

control in the presence of NKY 80/BPIPP and ~3-fold over control in the presence 

of KH7 (p<0.05). CRALBP mRNA levels were ~4-fold over control (p<0.05), 

reduced to approximately that of the control in the presence of NKY 80/BPIPP and 

~4-fold over control in the presence of KH7 (p<0.05). In the presence of Forskolin 

and Rolipram, RPE65 mRNA was ~4.5-fold over control (p<0.05), reduced to 

approximately that of the control in the presence of NKY 80/BPIPP and ~4-fold 

over control in the presence of KH7. CRALBP mRNA levels were ~5-fold over 

control (p<0.05) reduced to approximately that of the control in the presence of 

NKY 80/BPIPP and ~4-fold over control in the presence of KH7. 

(*=p<0.05; n(per experiment)=3, n(experiments)=3).  
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BMDCs treated with Forskolin, Rolipram, or a combination of Forskolin and 

Rolipram (Figure 5.4).  

 

We next measured the effect of inhibiting adenylate cyclase on expression of 

Rpe65, Cralbp, and CRALBP in murine and human BMDCs infected with ILV3-

RPE65. Exposure to NKY 80 and BPIPP, and to KH7, does not reduce expression 

of the lentiviral transgene RPE65 (Figure 5.5). KH7 also does not inhibit expression 

of Rpe65 or Cralbp in mouse cells treated with ILV-RPE65 to the same level as it 

inhibits these genes in cells treated with Forskolin and Rolipram (Figure 5.5). KH7 

also does not inhibit expression of CRALBP in human BMDCs. Consistent with our 

observations with inhibiting adenylate cyclase in Forskolin/Rolipram-treated cells, 

the combination of NKY 80 and BPIPP consistently reduced the expression of the 

murine Rpe65 and Cralbp genes in murine ILV-RPE65 infected BMDCs, and also 

inhibited expression of the human CRALBP gene in human ILV-RPE65 infected 

cells (Figure 5.5).  

 

These data support our hypothesis that expression of RPE65/Rpe65 and 

CRALBP/Cralbp is almost completely inhibited by the inhibition of adenylate 

cyclase in both Forskolin/Rolipram treated cells and ILV-RPE65-treated cells. This 

suggests that adenylate cyclase activation is one of the earliest stages in the 

differentiation process, and confirms that the activation of adenylate cyclase 

precedes activation of the endogenous Rpe65 gene, as Rpe65 as well as Cralbp 

expression is inhibited by the inhibition of adenylate cyclase. This suggests that it 
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is the expression of the human RPE65 gene in the murine BMDCs which initiates 

expression of adenylate cyclase in these cells, and that adenylate cyclase 

expression in turn results in expression of the endogenous Rpe65 and Cralbp 

genes. If expression of the RPE65 gene alone was sufficient to drive the up-

regulation of Rpe65 expression, we would expect to observe no inhibition of Rpe65 

expression in ILV-RPE65-treated cells exposed to the adenylate cyclase inhibitors.  

Although we observed significant similarities between the murine and human 

BMDCs in response to pharmacological activation of adenylate cyclase, murine 

and human BMDCs did differ in response to the soluble adenylate cyclase inhibitor, 

KH7. In murine BMDCs, KH7 unexpectedly inhibited expression of Cralbp. KH7 

was expected to have no effect on expression of these genes due to the fact that 

the initial study implicated adenylate cyclases 1, 3, and 5 in the cellular 

programming process, which are all transmembrane adenylate cyclases. While the 

inhibition resulting from KH7 exposure was not as great as that observed when 

cells were treated with transmembrane adenylate cyclase inhibitors NKY 80 and 

BPIPP, the inhibition was significant, indicating that soluble adenylate cyclase may 

also play a role in murine BMDC programming. In contrast, in human BMDCs, 

inhibition of the soluble adenylate cyclase did not inhibit expression of CRALBP, 

indicating that there may be a difference in the number of adenylate cyclases 

involved in murine BMDC differentiation in comparison with human BMDC 

differentiation. 
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Figure 5.5 
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Figure 5.5. Adenylate Cyclase Inhibitors Block Expression of Rpe65 and 

Cralbp mRNA in ILV3-RPE65-Infected Cells. Murine (lin-/Sca1+) or human 

(CD34+) BMDCs were infected with ILV3-RPE65 at an MOI of 50 with or without 

inhibitors BPIPP or KH7. Control cells were not infected with virus. Expression of 

RPE65 from the vector, and mouse Rpe65 and Cralbp mRNA and human CRALBP 

mRNA were measured 4 hours after infection as previously described (Chapter 3). 

All cells infected with ILV3-RPE65 expressed RPE65, with a ~26-fold, ~25 fold, 

and ~27-fold increase in RPE65 mRNA observed in ILV3-RPE65, ILV3-

RPE65+BPIPP, and ILV3-RPE65+KH7-treated cells respectively (p<0.05). In 

mouse BMDCs, cells treated with ILV3-RPE65 alone expressed Rpe65 and Cralbp 

mRNA ~5- and ~4-fold over control respectively (p<0.05). These levels reduced to 

~1 and ~0.8 fold when BPIPP was added (p<0.05), and to ~2 and ~3-fold when 

KH7 was added. In human BMDCs, CRALBP mRNA was expressed ~4-fold over 

control when cells were infected with ILV3-RPE65 alone (p<0.05). This reduced to 

~1-fold when BPIPP was added (p<0.05). In the presence of KH7, ILV3-RPE65-

treated human BMDCs expressed CRALBP ~5-fold over control (p<0.05).  

(*=p<0.05; n(per experiment=3; n(experiments)=3).  
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Murine BMDCs Programmed with Adenylate Cyclase Activators are Not 

Recruited to the RPE in Retinal Degeneration Murine Models 

 

As we confirmed the role of adenylate cyclase in activating endogenous RPE-

associated genes in vitro, and observed similar levels of activation of these genes 

following treatment with Forskolin and Rolipram as observed in murine BMDCs 

programmed with ILV-RPE65 and IDLV-RPE65, it was thought that murine BMDCs 

exposed to Forskolin and Rolipram would also be recruited to and regenerate 

damaged RPE in the sodium iodate and SOD2-KD models of retinal degeneration.  

Due to the critical timing of injection of cells infected with the RPE65 vectors, we 

first attempted to determine the best time of injection for BMDCs exposed to 

Forskolin.  Murine BMDCs exposed to 10 µmol/l Forskolin began expressing both 

the murine Rpe65 and Cralbp genes within one hour post-exposure, with a ~4.2-

fold and ~3.5-fold increase in expression of these genes compared with untreated 

cells (p<0.05) (Figure 5.6A). Similar fold changes were observed consistently from 

1 hour to 3 days in culture with 10 µmol/l Forskolin, with an increase in Rpe65 

expression from ~4-fold to ~6-fold between 2 and 3 days (p<0.05) but no significant 

increase in Cralbp expression (Figure 5.6A). Cells were injected into sodium iodate 

mice 8 hours after IP injection of sodium iodate, after 1 hour, 1 days, or 2 days of 

culture with 10 µmol/l Forskolin. Cells treated with Forskolin alone expressed 

Rpe65 ~4-fold over the control, and Cralbp ~2.4-fold. Cells treated with Rolipram 

demonstrated a ~3-fold increase in expression of Cralbp and a ~4-fold increase in 

expression of Rpe65. Cells treated with both Forskolin and Rolipram demonstrated 
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a ~3-fold increase in Cralbp expression and a ~4.4-fold increase in Rpe65 

expression (Figure 5.6B). 

 

We did not observe GFP+ cells in the RPE layer in mice injected with BMDCs 

exposed to Forskolin at 1 hour, 1 day, or 2 days of culture with Forskolin (Figure 

5.6C). Mice were sacrificed 7 days after injection. No GFP+ cells were observed 

in the RPE layer in mice injected with naïve BMDCs (Figure 5.6C). In contrast, 

several GFP+ cells were found in the RPE layer of mice injected with ILV3-RPE65, 

pictured here as a positive control. While some patches of green can be observed 

in the flat mounted RPEs of mice injected with BMDCs exposed to Forskolin for 1 

hour or 1 day, these areas do not appear to be GFP+ cells. Instead, the green 

patches are likely to be autofluorescent particles occurring as a result of the 

sodium iodate induced RPE damage.  
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Figure 5.6 
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Figure 5.6. Forskolin and Rolipram-Treated Murine BMDCs Do Not Preserve 

Retinal Morphology in Murine Models of Retinal Degeneration.  

 

Murine Lin-/Sca1+ BMDCs were isolated from the whole bone marrow of GFP+ 

C57BL6/J mice and treated with 10 µmol/l Forskolin. Cells were kept in culture for 

1h and 1-3 days after Forskolin treatment, and injected via tail vein 1h, 1d, and 2d 

after Forskolin treatment into wild type C57BL6/J mice, which had received 

100mg/kg sodium iodate 1 day prior to injection with cells (50k cells/mouse). (A) 

Rpe65 and Cralbp mRNA levels were measured in murine BMDCs treated with 

Forskolin at each injection time point (1 hour, and 1-3 days) to confirm gene 

expression in cells injected into Sodium Iodate mice. Prior to treatment with 

Forskolin, cells did not express Rpe65 or Cralbp. At 1 hour post-exposure to 

Forskolin, cells Rpe65 mRNA was increased ~4-fold over control, and Cralbp ~3-

fold (p<0.05). ~3-fold increase in Cralbp mRNA was consistent at each time point, 

and Rpe65 mRNA was expressed ~4-fold over control at all time points apart from 

3 days, at which Rpe65 expression increased to ~6-fold over control (p<0.05). (B) 

Flat mounted RPE/Choroid layers were examined by confocal microscopy for 

expression of GFP+ cells at each time point. In contrast to the large numbers of 

GFP+ cells observed in sodium iodate mice injected with ILV3-RPE65-treated 

cells, no expression of GFP was observed in any of the eyes from mice injected 

with Forskolin-treated BMDCs at any of the time points. Areas of green 

fluorescence were determined to be autofluorescent, not cellular, in nature and are 
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consistent with areas of autofluorescence observed in damaged RPE.  (*=p<0.05. 

n=3) 
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Discussion 

 

Programming BMDCs to RPE-like cells for therapeutic intervention in retinal 

degeneration with drugs instead of a LV vector approach is an attractive possibility 

due to the increased safety of the treatment. While we believe IDLV-based 

approaches are significantly safer than the previously used ILV approach,[13, 216] 

the use of a drug is more so, and may not only be cheaper and easier as a 

mechanism for programming cells, but also more likely to be quickly approved for 

use in human clinical trial. Forskolin is already FDA approved for treatment of 

conditions such as heart disease and glaucoma,[325] and Rolipram, while 

discontinued for its original purpose as an antidepressant, is also FDA approved 

and has been shown to be safe in human clinical trials.[326] Additionally, the 

drug(s) are used only to program the cells and are not injected along with the cells, 

unlike the LV approach, where the viral genome remains in the cells given back to 

the animal/patient. Where patients are not being directly exposed to the agent used 

for programming, the potential for dangerous side effects is significantly reduced. 

For this reason, further developing the BMDC-programming approach with 

Forskolin/Rolipram is advantageous and may allow for treatment of humans earlier 

than cells derived from the ILV/IDLV approach.  

 

As Forskolin/Rolipram-treated cells express the same markers of programming as 

ILV3/IDLV3-RPE65-treated cells, Rpe65/RPE65 and Cralbp/CRALBP, and as 

inhibition of expression of these mRNAs is inhibited on exposure to cAMP 
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inhibitors whether cells were treated with virus or drug(s), we are confident that the 

mechanism by which the cells express these mRNAs is the same. Expression of 

Rpe65/RPE65 in particular indicates that the Forskolin/Rolipram-treated cells are 

at least beginning to differentiate into an RPE-like cell as this gene is specific to 

RPE cells and would not be expected to be expressed in the absence of 

programming to this cell type. The lack of Forskolin/Rolipram-treated BMDC 

migration to and regeneration of damaged RPE in both the sodium iodate and 

SOD2-KD retinal degeneration models, in our opinion, suggests that the ideal time 

point for treatment and subsequent injection of BMDCs may differ significantly from 

that used for ILV3/IDLV3-RPE65-treated cells. As shown in Chapter IV, cells 

cultured for 16 hours after ILV3-RPE65 infection are also not recruited to and do 

not regenerate RPE in these models; however, this did not mean that ILV3-RPE65-

treated cells were incapable of doing so. The problem was not with the cells, but 

the timing of the injection, as the cells are recruited and do regenerate RPE when 

injected immediately after infection. This highlighted the critical importance of 

selecting the optimum time point after treatment for injection. We therefore do not 

believe that the lack of migration and regeneration with Forskolin/Rolipram-treated 

cells at this stage in the study indicates that this treatment is not appropriate for 

generating therapeutic BMDCs. Instead, we think that identifying the best time at 

which to inject the cells following exposure to the drug(s) will result in BMDC repair 

of the RPE comparable to that achieved with ILV3-RPE65.  
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The one critical difference between cells programmed with ILV3/IDLV3-RPE65 

and cells programmed with Forskolin is the timeline of endogenous Rpe65 and 

Cralbp mRNA expression. While these genes are found to be activated within 4 

hours of infecting cells with ILV3/IDLV3-RPE65, their expression is detected within 

just one hour of exposure to Forskolin. In fact, when used in Förster resonance 

energy transfer (FRET) applications for in vitro imaging of biosensor activity, 

Forskolin activates cAMP pathways within 30 seconds of being added to the cells, 

with emission reaching its highest at just 2 minutes after Forskolin is added.[327] 

Comparatively, this activation is considerably faster than activation observed with 

the vector-transduced cells. As observed with the vector-transduced cells, there is 

a critical time window for injection which is most likely related to the time point at 

which endogenous genes become activated and, as treating the cells with 

Forskolin/Rolipram results in the expression of these genes at different times in 

comparison with the vector-transduced cells, it is likely that this time point will be 

different from the time point used with the vector-transduced cells.  

 

When vector-transduced cells are injected into mice, they are effective only when 

they are injected at the time point where adenylate cyclase pathways are thought 

to have been activated or are in the process of being activated, but robust 

expression of Rpe65 and Cralbp mRNA has yet to occur – vector-infected cells, 

when lysed immediately after infection, do not exhibit expression of these mRNAs, 

which occurs at the 2-3 hour time point after injection. In contrast, cells 

programmed with Forskolin/Rolipram already express Rpe65 and Cralbp, even 
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when injected just one hour after treatment. We believe this difference in timing of 

expression is the key to understanding how to make functional BMDCs using 

Forskolin/Rolipram. Essentially, we hypothesize that pharmacologically-activated 

BMDCs may be too differentiated by the time they are injected into the mice, 

limiting their ‘homing’ capacity.  

 

As expression of Rpe65 and Cralbp increases over time, expression of the BMDC 

markers Sca-1 decreases. Appendix 2). The most obvious explanation for cells not 

being recruited to the RPE after systemic injection would be that they have become 

too differentiated along a non-hematopoietic lineage and have lost expression of 

the markers that BMDCs require to be able to circulate in the blood and not be 

filtered out of the system. The cells may also begin to lose expression of markers 

involved in recruitment to the RPE after they become differentiated. While we have 

not measured CXCR4 expression, it is possible that the cells also lose expression 

of CXCR4 as they differentiate, which would significantly impair their ability to be 

recruited to and be retained in the retina following injection.[217] Future studies will 

focus on identifying the BMDC marker expression profile in comparison with the 

Forskolin/Rolipram activation timeline, in order to identify a time point at which the 

cells express the right markers for both differentiating into RPE-like cells, and 

migrating to the RPE from the bloodstream. It may be necessary to add the drug(s) 

directly to the cells immediately before injection into mice, which would make the 

treatment slightly riskier as the drugs would be injected along with the cells, but as 
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both have been shown to be safe in small doses, we do not expect that the amount 

of drug required to differentiated the cells would have an effect in vivo.  

 

Overcoming this limitation would allow for rapid treatment of retinal degeneration, 

minimizing the amount of time the cells are required to be maintained ex vivo. This 

is beneficial, as it has been shown that maintaining cells ex vivo in ambient oxygen 

alters their phenotype and reduces the number of cells capable of engrafting.[328] 

In summary, pharmacological activation of adenylate cyclase and subsequent 

inhibition of this activation in both Forskolin/Rolipram-treated cells and ILV-RPE56 

treated cells confirms the role of adenylate cyclase in the programming of BMDCs 

to RPE-like cells, via activation of the endogenous RPE65/Rpe65 and 

CRALBP/Cralbp mRNA expression. Modifications to the treatment and injection 

process may allow the use of pharmacologically differentiated cells in vivo. 
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CHAPTER VI: DISCUSSION AND FUTURE DIRECTIONS 

 

The lack of therapeutically viable options for intervention in dry AMD is a significant 

concern, [12] as the prevalence of the disorder is increasing and expected to 

continue to increase, as life expectancy and human exposure to environmental 

factors which contribute to the development of the disorder increases. [1-4, 9, 329] 

There is a critical need for a therapy which can be given early in the progression 

of the disease to prevent, or at least delay, the development of geographical 

atrophy and loss of neural retinal integrity in dry AMD patients. [13, 216] No matter 

how effective an RPE replacement strategy is, there will be no preservation of 

central vision if the treatment is applied so late in the progression of the disorder 

that the neural retina, in particular the photoreceptors, along with the choroid, are 

already damaged.  

 

Some of the main disadvantages in stem cell-based therapies which have been 

trialed in dry AMD – late-stage treatment, invasive cell delivery, and a lack of 

adequate ‘spreading’ of cells from the site of injection – can be overcome by 

delivering the cells systemically, avoiding the invasive protocols which limit cellular 

delivery to late-stage disease in adult RPE, iPSC and ESC-derived transplant 

strategies. [13, 216]  Other disadvantages, such as the potential or iPSC and ESC-

derived cells to become tumorigenic or form teratomas, [211] can be addressed by 

using an adult stem cell as the cell of origin, as adult stem cells lack the potential 

to become any cell type. BMSCs combine these two solutions in providing a cell 
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type that can be injected directly into the bloodstream, and which is also very 

unlikely to be tumorigenic in itself.  

 

BMDCs can be differentiated into RPE-like cells which regenerate RPE and 

preserve vision in retinal degeneration mice. [13, 216]  Here, we have expanded 

this approach to eliminate the need for an integrating lentiviral vector (ILV) in the 

production of RPE-like cells from BMDCs, avoiding any potential concerns 

associated with the integration of lentiviral vector particles into coding or regulatory 

regions of the genome. [330] We have generated an integrase-defective lentiviral 

vector (IDLV)-based system for programming BDMCs to RPE-like cells, including 

the development a method for optimizing the infection of BMDCs with this vector. 

Not only are IDLVs capable of programming murine BMDCs to RPE-like cells, 

infection with this vector also initiates programming of human BMDCs to RPE-like 

cells as evidenced by the cells’ expression of CRALBP shortly after infection. 

Critically, RPE-like cells derived from BMDCs using the IDLV vector are as capable 

of regenerating the RPE and preserving visual function as cells programmed using 

the ILV, confirming that integration and permanent expression of the human 

RPE65 gene from the infecting vector is not required for the programming of 

BMDCs to RPE-like cells. Finally, we have confirmed the role of adenylate cyclase 

in the process of BMDC programming to RPE-like cells, showing that adenylate 

cyclase activation is both necessary and sufficient for generating RPE-like cells 

from BMDCs.  



213 
 

Together, our studies provide invaluable insight into methods by which RPE-like 

cells can be derived from BMDCs without taking unnecessary risks in the use of 

ILVs, improving safety for human clinical trial. We have further confirmed that our 

previously published protocols [13, 216]  for regenerating RPE function in vivo. To 

the best of our knowledge, this study is not only the first example of the use of a 

single IDLV being used to program an adult stem cell in vitro, but also the first to 

produce a new cell type from a lineage not usually generated by the cell of origin 

that acts as an effective tissue regeneration therapy when delivered in vivo. It is 

also the first evidence that human BMDCs can be programmed to become RPE-

like cells, which is vital for the use of BMDC-derived RPE in human clinical trials.  

Several experiments are required to further assess the mechanisms by which 

differentiated BMDCs are recruited to and integrate into the RPE layer. Previously, 

we have conducted an experiment in which RPE65 vector-transduced GFP+ 

BMDCs were injected into wild-type C57BL6/J mice, followed by harvest of the 

eye, lung, liver, spleen, and bone marrow 1 day, 7 days, and 28 days after injection. 

[13] Organs were then homogenized and qRT-PCR was used to determine the 

level of expression of GFP in each organ. While GFP expression was observed in 

all tissues 1 day after injection, by 7 days, GFP was detectable only in the spleen. 

By 28 days, expression was found only in the eye. This raises questions as to the 

mechanism behind which cells are recruited to the eye, as RPE65-transduced GFP 

cells are present in the eye of wild-type mice, whereas in our retinal degeneration 

studies involving the SOD2-KD model, the GFP+ cells are recruited predominantly 

to the injured eye and not to the eye which has not received SOD2-KD injury. This 
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suggests that the programmed cells are recruited to the eye in the absence of 

injury, but that the localization of the cells is specifically and significantly enhanced 

by the presence of injury at the RPE. One possible mechanism for this would be 

the relative expression levels of CXCR4 in the BMDCs and SDF-1 in the RPE cells, 

since it is known that BMDCs express CXCR4 and that the recruitment of cells to 

specific areas will be enhanced by the expression in those tissues of SDF-1. A 

comparison of SDF-1 expression in the presence and absence of injury to the 

retina would allow for determination of whether or not an upregulation of SDF-1 in 

the presence of injury could enhance the recruitment of the cells to the injured eye, 

and this may be confirmed by inhibiting SDF-1 in the and determining the effect on 

the recruitment of BMDCs. Additionally, measuring the expression level of CXCR4 

in null vs. RPE65-programmed BMDCs may provide insight into how the CXCR4 

pathway enhances the natural ability of the cells to be recruited to the eye in injury. 

If CXCR4 is upregulated in RPE65-programmed BMDCs in comparison with the 

null cells, this may account for the enhanced ability of the cells to be recruited to 

the RPE layer.  

 

Further experiments to compare the role of injury with the role of the cells ability to 

be recruited to the eye specifically could compare the presence of RPE65-

programmed BMDCs in, for example, the lung, liver, or spleen at the time points 

previously analyzed when those organs are injured as opposed to the injury being 

located in the eye. A lack of recruitment of these cells to other organs in the 

presence of injury would provide evidence to confirm that the recruitment to the 
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eye in our models, and, consequently, the reparative capabilities of the cells, is 

specific to the RPE. This may be important in the application of these cells in 

human clinical trials, as if the recruitment is not eye-specific, it would be important 

to determine that any off-target migration to other organs would not be detrimental 

to the patient. Long-term mouse studies evaluating RPE65-programmed cells in 

tissues other than the retina would be required to rule this out should these cells 

be recruited to other injured organs, including the isolation and characterization of 

cells localizing to other organs and histopathological analysis for the presence of 

changes in the organs.  

 

It is worth noting that studies involving adult stem cells have, in the past, been 

associated with cell fusion to existing cells as opposed to the cells themselves 

providing a therapeutic effect, [331] and that we have previously determined that 

our BMDC-derived RPE-like cells do not fuse to existing RPE by using XY-FISH. 

[216] Lack of cell fusion indicates that the cells themselves are functioning as RPE 

cells in vivo. It does not, however, rule out the possibility that the cells are 

supporting and protecting existing RPE after they have integrated. It is entirely 

possible that the cells not only help preserve the retina by performing RPE cell 

functions, but also act to protect the existing RPE cells from further degeneration. 

This would be advantageous, as it is not clear that the BMDC-derived RPE-like 

cells are any more capable of cell division than native, terminally differentiated 

RPE in the RPE layer – an ability to protect and support existing RPE would result 

in longer-term preservation of vision or delay in the progression of dry AMD.  
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Our primary goal is to establish the outlined therapy for use in human clinical trials. 

Preliminary data showing preservation of vision in mice treated with human BMDC-

derived RPE-like cells generated with ILV3-RPE65 (Godoy et al., personal 

communication) is encouraging; however, several issues need to be addressed 

prior to moving toward human clinical trials. Firstly, evaluation of human BMDC-

derived RPE-like cells in a larger animal is necessary for a number of reasons, 

including determination of the number of cells required for RPE regeneration and 

preservation of vision in a larger animal.  

 

The mouse retinal area is approximately 15.6mm2, [332] whereas a human eye is 

~1025mm2. [333] Based on the cell number used in this study, we inject 

approximately 3300 BMDC-derived RPE-like cells per mm2 of retinal area in the 

mouse. To get the equivalent cell number in humans, 3.3 million cells would 

therefore be required. This is an extremely high cell number considering that only 

~150k CD34+ cells could be obtained from patient peripheral blood. Bringing more 

invasive techniques, such as bone marrow harvest, into the equation is not optimal, 

and it would be better for patients if such invasive methods could be avoided. 

Mobilization of CD34+ cells into the bloodstream using G-CSF and subsequent 

collection by apheresis is less invasive than bone marrow harvest, but has been 

found in rare cases to result in pulmonary complications. [334] Evaluating the 

therapy in a larger animal prior to use in humans may allow for this complication 

to be minimized, through injections of smaller numbers of cells to identify the 

lowest number necessary for visual recovery. It is possible that a number 
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significantly lower than 3.3 million will be required, based on the recovery of vision 

we have observed in mice treated with 5k cells. [216] Potentially, 300k or fewer 

cells may be sufficient. This would allow for the recovery of cells from peripheral 

blood of patients, keeping the invasiveness of the procedure at a minimum. In the 

event that a smaller cell number fails to adequately regenerate the RPE and 

preserve vision, other options for obtaining large numbers of cells are available. 

For example, it has been shown that CD34+ hematopoietic progenitor cells can be 

obtained from iPSCs, [335] which would be a viable alternative, as long as a 

screening mechanism was used to ensure the iPSC generation process had not 

generated cells with the potential to become tumorigenic. [212]   

 

Studies on non-human primates are critical for another reason – the presence of 

a macula. [336] Murine models are appropriate for evaluating the ability of cells to 

regenerate RPE, but as mice do not have a macula, these models do not 

accurately represent human AMD, where the primary site of degeneration is 

around the macular region. Especially in the sodium iodate model, RPE damage 

is widespread across the entire RPE area, and in both this model and the SOD2-

KD model, it is difficult to pinpoint any specific areas of RPE injury that the cells 

are recruited to. We can say that the injury promotes recruitment of the cells to the 

RPE layer as we find significant cell numbers in the injured eye in mice injected 

with the cells in comparison with the non-injured eye in the same mouse. We do 

not, however, know if focal areas of injury in the SOD2-KD model specifically 

recruit cells to that area or if the cells will spread across the RPE regardless of 
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where the RPE is most damaged. In human dry AMD, in order for the therapy to 

have the maximum effect on preservation of vision, we hypothesize that the 

majority of the recruited cells would need to localize around the macular region in 

order to protect that area of the retina from degeneration. Even if the cells also 

protect existing RPE, localization in this area is likely to be critical for sustained 

maintenance of central vision in dry AMD patients. Developing a model of retinal 

degeneration in a non-human primate would allow for testing the therapy in an 

animal that has a macula, if a model could be generated that affects that macular 

region in a similar way to human dry AMD, would determine whether or not the 

cells are likely to be recruited to the area of the RPE that requires the most 

regeneration and protection in dry AMD.   

 

In addition to optimizing the therapy for a larger animal, there is also the potential 

for enhancing the therapeutic value of adult BMDCs in dry AMD by generating 

photoreceptor cells in addition to RPE-like cells for systemic injection. The 

photoreceptors are the most affected by dry AMD after the RPE cells, as the loss 

of function of RPE cells during the development of the disorder has a significant 

effect on the function of the photoreceptors. Replacing damaged RPE is only going 

to be effective if the overlying photoreceptors are still functional. While we are 

focusing on developing a therapy which can be delivered early in the progression 

of dry AMD, patients may not be diagnosed until some photoreceptor damage has 

already occurred, and in these cases, it would be advantageous to be able to 

regenerate photoreceptors at the same time as regenerating the RPE. 
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Theoretically, if BMDCs can be programmed to one non-hematopoietic retinal cell 

type, generating a second cell type should also be possible. In practice, it may be 

considerably more difficult to generate photoreceptors from BMDCs than it is to 

generate RPE-like cells. The reason for this is that, when programming BDMCs to 

RPE-like cells, we are not necessarily giving the cells a new function, but exploiting 

a capability they already have. Indeed, the naïve BMDCs’ ability to be recruited to 

and regenerate RPE without any manipulation, albeit at a low level, is likely to be 

the reason why it is possible to generate our cells from BMDCs in the first place. 

[216] Other stem cell types, such as iPSC and ESC, have been differentiated into 

RPE cells with relative ease, indicating that non-retinal stem cells may be innately 

predisposed to being able to differentiate into RPE. That being said, however, with 

the right genes, it is not beyond possibility that photoreceptor cells could be 

generated from BMDC, and the significant advantage to the overall therapy that 

delivering both RPE and photoreceptor cells would provide makes it worthwhile to 

try to generate these cells in addition to RPE. 

 

Another potential future direction is the use of BMDC-derived RPE-like cells as a 

preventive measure in patients identified as being at high risk for developing dry 

AMD. While not particularly viable with the current knowledge on the genetic basis 

for dry AMD development, as our understanding of the genetic components of the 

disorder increase, it may be possible in future to identify people at risk of 

developing the disorder before they develop it, and, in such cases, it may be 

beneficial to give the cells before any loss of vision occurs. We have demonstrated 
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that the cells are capable of migrating to the eye in a wild-type mouse, and that 

while they are present in all of the organs immediately after delivery, they 

preferentially localize to the eye and the spleen in the first 28 days post-injection. 

If cells that localize to the spleen can be retained there and then, at the onset of 

retinal injury, become recruited to the retina, injecting cells before significant retinal 

injury may provide a ‘pool’ of cells capable of regenerating that damage. This 

would be a relatively easy theory to test, as the cells could be given 1 week to 28 

days prior to SOD2-KD injury to determine whether or not having the cells present 

prior to injury would be sufficient to promote their migration and repair of the 

damage.  

 

Finally, early application of BMDC-derived RPE-like cells may also be applicable 

in inherited retinal disorders, for example, retinitis pigmentosa (RP) or leber 

congenital amaurosis – especially where the underlying cause of these disorders 

in a patient is mutations in the RPE65 gene, which occurs in approximately 2% 

and 16% of cases. [337] Early identification through prenatal screening for these 

disorders would allow for rapid intervention at birth, utilizing autologous CD34+ 

cord blood cells as a cell source. Injecting RPE-like cells derived from these cord 

blood cells within the first few weeks of life may be sufficient to preserve vision 

before it is lost, particularly if BMDC-derived photoreceptor cells can be given at 

the same time. An IDLV-based approach would be unlikely to function for this 

application, however. Due to mutations in the existing RPE65 gene, an ILV would 

be advantageous over an IDLV for these diseases as it would be performing a 
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second role in addition to programming the cells – replacing, and hopefully 

compensating for, a mutated gene. With the endogenous Rpe65 activation in 

murine BMDCs following infection with RPE65-vectors occurring after adenylate 

cyclase activation, endogenous RPE65 or at least sustained RPE65 expression 

from the ILV is likely to be required for the cells to be reparative and maintained in 

RP or LCA.  

 

Conclusion 

 

In conclusion, we have (Figure 1): 

(a) Generated an IDLV-based approach for reprogramming BDMCs to 

RPE-like cells which are recruited to and preserve vision in mouse 

models of retinal degeneration. 

(b) Improved the infection efficiency of IDLVs for short-term transgene 

expression in applications which only require transient expression. 

(c) Demonstrated that human BDMCs can be programmed to an RPE-like 

cell. 

(d) Confirmed the role of adenylate cyclase activation in BMDC 

programming to RPE-like cells. 
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Figure 6.1 
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Figure 6.1. A Summary of the Current Study.  
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APPENDICES 

 

Appendix 1:  Plasmid Sequences 

GeneArt RPE65  

TCTAGAGCTAGCACCGGTAtgtctatccaggttgagcatcctgctggtggttacaagaaactgtttgaaactgtggagga 
Actgtcctcgccgctcacagctcatgtaacaggcaggatacccctctggctcaccggcagtctccttcgatgtgggccag 
Gactctttgaagttggatctgagccattttaccacctgtttgatgggcaagccctcctgcacaagtttgactttaaagaa 
Ggacatgtcacataccacagaaggttcatccgcactgatgcttacgtacgggcaatgactgagaaaaggatcgtcataac 
Agaatttggcacctgtgctttcccagatccctgcaagaatatattttccaggtttttttcttactttcgaggagtagagg 
Ttactgacaatgcccttgttaatgtctacccagtgggggaagattactacgcttgcacagagaccaactttattacaaag 
Attaatccagagaccttggagacaattaagcaggttgatctttgcaactatgtctctgtcaatggggccactgctcaccc 
Ccacattgaaaatgatggaaccgtttacaatattggtaattgctttggaaaaaatttttcaattgcctacaacattgtaa 
Agatcccaccactgcaagcagacaaggaagatccaataagcaagtcagagatcgttgtccaattcccctgcagtgaccga 
ttcaagccatcttacgttcatagttttggtctgactcccaactatatcgtttttgtggagacaccagtcaaaattaacct 
gttcaagttcctttcttcatggagtctttggggagccaactacatggattgttttgagtccaatgaaaccatgggggttt 
ggcttcatattgctgacaaaaaaaggaaaaagtacctcaataataaatacagaacttctcctttcaacctcttccatcac 
atcaacacctatgaagacaatgggtttctgattgtggatctctgctgctggaaaggatttgagtttgtttataattactt 
atatttagccaatttacgtgagaactgggaagaggtgaaaaaaaatgccagaaaggctccccaacctgaagttaggagat 
atgtacttcctttgaatattgacaaggctgacacaggcaagaatttagtcacgctccccaatacaactgccactgcaatt 
ctgtgcagtgacgagactatctggctggagcctgaagttctcttttcagggcctcgtcaagcatttgagtttcctcaaat 
caattaccagaagtattgtgggaaaccttacacatatgcgtatggacttggcttgaatcactttgttccagataggctct 
gtaagctgaatgtcaaaactaaagaaacttgggtttggcaagagcctgattcatacccatcagaacccatctttgtttct 
cacccagatgccttggaagaagatgatggtgtagttctgagtgtggtggtgagcccaggagcaggacaaaagcctgctta 
tctcctgattctgaatgccaaggacttaagtgaagttgcccgggctgaagtggagattaacatccctgtcacctttcatg 
gactgttcaaaaaatcttgatcaTGTACAGGATCCGCGGCCGCgcagaggaagtcttctaacatgcggtgacgtggagga 
gaatcccggcccttccgCTCGAGGAATTCAAGCTTGTCGAC 
Multiple Cloning Site 

TTTCTGTTCTGCGCCGTTACAGATCCAAGCTGTGACCGGCGCCTACTCTAGAACCGGTGCCACCGAATT
CTGTACAATTT 
AAATGCGGCCGCGAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTG
GATCCCTTCCGGA 
ATGGAGAGCGACGAGAGCGGCCTGCCCGCCATGGAGATCGAGTGCCGCATCACCG 
pCDH-RPE65 (For ILV3-RPE65 and IDLV3-RPE65) 

acgcgtgtagtcttatgcaatactcttgtagtcttgcaacatggtaacgatgagttagcaacatgccttacaaggagaga 
aaaagcaccgtgcatgccgattggtggaagtaaggtggtacgatcgtgccttattaggaaggcaacagacgggtctgaca 
tggattggacgaaccactgaattgccgcattgcagagatattgtatttaagtgcctagctcgatacaataaacgggtctc 
tctggttagaccagatctgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgcct 
tgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctcagacccttttagtcagtgtg 
gaaaatctctagcagtggcgcccgaacagggacctgaaagcgaaagggaaaccagagctctctcgacgcaggactcggct 
tgctgaagcgcgcacggcaagaggcgaggggcggcgactggtgagtacgccaaaaattttgactagcggaggctagaagg 
agagagatgggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggttaaggccaggg 
ggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagctagaacgattcgcagttaatcctggcctgtt 
agaaacatcagaaggctgtagacaaatactgggacagctacaaccatcccttcagacaggatcagaagaacttagatcat 
tatataatacagtagcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaagata 
gaggaagagcaaaacaaaagtaagaccaccgcacagcaagcggccactgatcttcagacctggaggaggagatatgaggg 
acaattggagaagtgaattatataaatataaagtagtaaaaattgaaccattaggagtagcacccaccaaggcaaagaga 
agagtggtgcagagagaaaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcactat 
gggcgcagcGtcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcagcagcagaacaatttgctga 
gggctattgaggcgcaacagcatctgttgcaactcacagtctggggcatcaagcagctccaggcaagaatcctggctgtg 
gaaagatacctaaaggatcaacagctcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttg 
gaatgctagttggagtaataaatctctggaacagattTggaatcacacgacctggatggagtgggacagagaaattaaca 
attacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaaagaatgaacaagaattattggaatta 



225 
 
gataaatgggcaagtttgtggaattggtttaacataacaaattggctgtggtatataaaattattcataatgatagtagg 
aggcttggtaggtttaagaatagtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgt 
ttcagacccacctcccaaccccgaggggacccgacaggcccgaaggaatagaagaagaaggtggagagagagacagagac 
agatccattcgattagtgaacggatctcgacggtATCGGTtaacttttaaaagaaaaggggggattggggggtacagtgc 
aggggaaagaatagtagacataatagcaacagacatacaaactaaagaattacaaaaacaaattacaaaattcaaaattt 
tatcgatactagtggatctgcgatcgctccggtgcccgtcagtgggcagagcgcacatcgcccacagtccccgagaagtt 
ggggggaggggtcggcaattgaacgggtgcctagagaaggtggcgcggggtaaactgggaaagtgatgtcgtgtactggc 
tccgcctttttcccgagggtgggggagaaccgtatataagtgcagtagtcgccgtgaacgttctttttcgcaacgggttt 
gccgccagaacacagctgaagcttcgaggggctcgcatctctccttcacgcgcccgccgccctacctgaggccgccatcc 
acgccggttgagtcgcgttctgccgcctcccgcctgtggtgcctcctgaactgcgtccgccgtctaggtaagtttaaagc 
tcaggtcgagaccgggcctttgtccggcgctcccttggagcctacctagactcagccggctctccacgctttgcctgacc 
ctgcttgctcaactctacgtctttgtttcgttttctgttctgcgccgttacagatccaagctgtgaccggcgcctacTct 
agAGCTAGCACCGGTAtgtctatccaggttgagcatcctgctggtggttacaagaaactgtttgaaactgtggaggaAct 
gtcctcgccgctcacagctcatgtaacaggcaggatacccctctggctcaccggcagtctccttcgatgtgggccagGac 
tctttgaagttggatctgagccattttaccacctgtttgatgggcaagccctcctgcacaagtttgactttaaagaaGga 
catgtcacataccacagaaggttcatccgcactgatgcttacgtacgggcaatgactgagaaaaggatcgtcataacAga 
atttggcacctgtgctttcccagatccctgcaagaatatattttccaggtttttttcttactttcgaggagtagaggTta 
ctgacaatgcccttgttaatgtctacccagtgggggaagattactacgcttgcacagagaccaactttattacaaagAtt 
aatccagagaccttggagacaattaagcaggttgatctttgcaactatgtctctgtcaatggggccactgctcacccCca 
cattgaaaatgatggaaccgtttacaatattggtaattgctttggaaaaaatttttcaattgcctacaacattgtaaAga 
tcccaccactgcaagcagacaaggaagatccaataagcaagtcagagatcgttgtccaattcccctgcagtgaccgattc 
aagccatcttacgttcatagttttggtctgactcccaactatatcgtttttgtggagacaccagtcaaaattaacctgtt 
caagttcctttcttcatggagtctttggggagccaactacatggattgttttgagtccaatgaaaccatgggggtttggc 
ttcatattgctgacaaaaaaaggaaaaagtacctcaataataaatacagaacttctcctttcaacctcttccatcacatc 
aacacctatgaagacaatgggtttctgattgtggatctctgctgctggaaaggatttgagtttgtttataattacttata 
tttagccaatttacgtgagaactgggaagaggtgaaaaaaaatgccagaaaggctccccaacctgaagttaggagatatg 
tacttcctttgaatattgacaaggctgacacaggcaagaatttagtcacgctccccaatacaactgccactgcaattctg 
tgcagtgacgagactatctggctggagcctgaagttctcttttcagggcctcgtcaagcatttgagtttcctcaaatcaa 
ttaccagaagtattgtgggaaaccttacacatatgcgtatggacttggcttgaatcactttgttccagataggctctgta 
agctgaatgtcaaaactaaagaaacttgggtttggcaagagcctgattcatacccatcagaacccatctttgtttctcac 
ccagatgccttggaagaagatgatggtgtagttctgagtgtggtggtgagcccaggagcaggacaaaagcctgcttatct 
cctgattctgaatgccaaggacttaagtgaagttgcccgggctgaagtggagattaacatccctgtcacctttcatggac 
tgttcaaaaaatcttgatcaTGTACAGGATCCGCGGCCGCgcagaggaagtcttctaacatgcggtgacgtggaggagaa 
tcccggcccttccgCTCGAGGAATTCAAGCTTGtcgacaatcaacctctggattacaaaatttgtgaaagattgactggt 
attcttaactatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtat 
ggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtg 
gcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagctcctttccgggact 
ttcgctttccccctccctattgccacggcggaactcatcgccgcctgccttgcccgctgctggacaggggctcggctgtt 
gggcactgacaattccgtggtgttgtcggggaaatcatcgtcctttccttggctgctcgcctgtgttgccacctggattc 
tgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggaccttccttcccgcggcctgctgccggctctg 
cggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctccccgcctggtacctttaa 
gaccaatgacttacaaggcagctgtagatcttagccactttttaaaagaaaaggggggactggaagggctaattcactcc 
caacgaaaataagatctgctttttgcttgtactgggtctctctggttagaccagatctgagcctgggagctctctggcta 
actagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtgact 
ctggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtagtagttcatgtcatcttattatt 
cagtatttataacttgcaaagaaatgaatatcagagagtgagaggaacttgtttattgcagcttataatggttacaaata 
aagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactcatcaatg 
tatcttatcatgtctggctctagctatcccgcccctaactccgcccagttccgcccattctccgccccatggctgactaa 
ttttttttatttatgcagaggccgaggccgcctcggcctctgagctattccagaagtagtgaggaggcttttttggaggc 
ctagacttttgcagagacggcccaaattcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaat 
tccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgt 
tgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggc 
ggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatc 
agctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagc 
aaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaat 
cgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcg 
ctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagct 
cacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgac 
cgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactgg 
taacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaa 
ggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaa 
accaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatccttt 
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gatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaagga 
tcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagt 
taccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgt 
gtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctc 
cagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccag 
tctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacagg 
catcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatccc 
ccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactc 
atggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaac 
caagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacata 
gcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatcc 
agttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaac 
aggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatatt 
attgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggtt 
ccgcgcacatttccccgaaaagtgccacctgacgtctaagaaaccattattatcatgacattaacctataaaaataggcg 
tatcacgaggccctttcgtctcgcgcgtttcggtgatgacggtgaaaacctctgacacatgcagctcccggagacggtca 
cagcttgtctgtaagcggatgccgggagcagacaagcccgtcagggcgcgtcagcgggtgttggcgggtgtcggggctgg 
cttaactatgcggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaataccgcacagatgcgtaaggag 
aaaataccgcatcaggcgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctat 
tacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgttgt 
aaaacgacggccagtgccaagctg 
 
pCDH-RPE65-MITF (For ILV3-RPE65-MITF and IDLV3-RPE65-MITF) 

CATGCTGGAAATGCTAGAATATAATCACTATCAGGTGCAGACCCACCTCGAAAACCCCACCAAGTACCA
CATACAGCAAG 
CCCAACGGCAGCAGGTAAAGCAGTACCTTTCTACCACTTTAGCAAATAAACATGCCAACCAAGTCCTGA
GCTTGCCATGT 
CCAAACCAGCCTGGCGATCATGTCATGCCACCGGTGCCGGGGAGCAGCGCACCCAACAGCCCCATGG
CTATGCTTACGCT 
TAACTCCAACTGTGAAAAAGAGGGATTTTATAAGTTTGAAGAGCAAAACAGGGCAGAGAGCGAGTGCC
CAGGCATGAACA 
CACATTCACGAGCGTCCTGTATGCAGATGGATGATGTAATCGATGACATCATTAGCCTAGAATCAAGTT
ATAATGAGGAA 
ATCTTGGGCTTGATGGATCCTGCTTTGCAAATGGCAAATACGTTGCCTGTCTCGGGAAACTTGATTGAT
CTTTATGGAAA 
CCAAGGTCTGCCCCCACCAGGCCTCACCATCAGCAACTCCTGTCCAGCCAACCTTCCCAACATAAAAA
GGGAGCTCACAG 
AGTCTGAAGCAAGAGCACTGGCCAAAGAGAGGCAGAAAAAGGACAATCACAACCTGATTGAACGAAGA
AGAAGATTTAAC 
ATAAATGACCGCATTAAAGAACTAGGTACTTTGATTCCCAAGTCAAATGATCCAGACATGCGCTGGAAC
AAGGGAACCAT 
CTTAAAAGCATCCGTGGACTATATCCGAAAGTTGCAACGAGAACAGCAACGCGCAAAAGAACTTGAAAA
CCGACAGAAGA 
AACTGGAGCACGCCAACCGGCATTTGTTGCTCAGAATACAGGAACTTGAAATGCAGGCTCGAGCTCAT
GGACTTTCCCTT 
ATTCCATCCACGGGTCTCTGCTCTCCAGATTTGGTGAATCGGATCATCAAGCAAGAACCCGTTCTTGAG
AACTGCAGCCA 
AGACCTCCTTCAGCATCATGCAGACCTAACCTGTACAACAACTCTCGATCTCACGGATGGCACCATCAC
CTTCAACAACA 
ACCTCGGAACTGGGACTGAGGCCAACCAAGCCTATAGTGTCCCCACAAAAATGGGATCCAAACTGGAA
GACATCCTGATG 
GACGACACCCTTTCTCCCGTCGGTGTCACTGATCCACTCCTTTCCTCAGTGTCCCCCGGAGCTTCCAAA
ACAAGCAGCCG 
GAGGAGCAGTATGAGCATGGAAGAGACGGAGCACACTTGTAagctTGtcgacaatcaacctctggattacaaaatttgtg 
aaagattgactggtattcttaactatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgct 
attgcttcccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgt 
tgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagc 
tcctttccgggactttcgctttccccctccctattgccacggcggaactcatcgccgcctgccttgcccgctgctggaca 
ggggctcggctgttgggcactgacaattccgtggtgttgtcggggaaatcatcgtcctttccttggctgctcgcctgtgt 
tgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggaccttccttcccgcggcc 
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tgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctccccg 
cctggtacctttaagaccaatgacttacaaggcagctgtagatcttagccactttttaaaagaaaaggggggactggaag 
ggctaattcactcccaacgaaaataagatctgctttttgcttgtactgggtctctctggttagaccagatctgagcctgg 
gagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccg 
tctgttgtgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtagtagttcat 
gtcatcttattattcagtatttataacttgcaaagaaatgaatatcagagagtgagaggaacttgtttattgcagcttat 
aatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtc 
caaactcatcaatgtatcttatcatgtctggctctagctatcccgcccctaactccgcccagttccgcccattctccgcc 
ccatggctgactaattttttttatttatgcagaggccgaggccgcctcggcctctgagctattccagaagtagtgaggag 
gcttttttggaggcctagacttttgcagagacggcccaaattcgtaatcatggtcatagctgtttcctgtgtgaaattgt 
tatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaact 
cacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaac 
gcgcggggagaggcggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctg 
cggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtg 
agcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacg 
agcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctgga 
agctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggc 
gctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaacccc 
ccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactg 
gcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaacta 
cggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctctt 
gatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatct 
caagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgag 
attatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaa 
cttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcc 
tgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagaccc 
acgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttat 
ccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgtt 
gccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcg 
agttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccg 
cagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgact 
ggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataa 
taccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttac 
cgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttct 
gggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactctt 
cctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaata 
aacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgtctaagaaaccattattatcatgacattaacc 
tataaaaataggcgtatcacgaggccctttcgtctcgcgcgtttcggtgatgacggtgaaaacctctgacacatgcagct 
cccggagacggtcacagcttgtctgtaagcggatgccgggagcagacaagcccgtcagggcgcgtcagcgggtgttggcg 
ggtgtcggggctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaataccgcac 
agatgcgtaaggagaaaataccgcatcaggcgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcg 
ggcctcttcgctattacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggttttccc 
agtcacgacgttgtaaaacgacggccagtgccaagctgacgcgtgtagtcttatgcaatactcttgtagtcttgcaacat 
ggtaacgatgagttagcaacatgccttacaaggagagaaaaagcaccgtgcatgccgattggtggaagtaaggtggtacg 
atcgtgccttattaggaaggcaacagacgggtctgacatggattggacgaaccactgaattgccgcattgcagagatatt 
gtatttaagtgcctagctcgatacaataaacgggtctctctggttagaccagatctgagcctgggagctctctggctaac 
tagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactct 
ggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtggcgcccgaacagggacctgaaagcg 
aaagggaaaccagagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcgaggggcggcgactggt 
gagtacgccaaaaattttgactagcggaggctagaaggagagagatgggtgcgagagcgtcagtattaagcgggggagaa 
ttagatcgcgatgggaaaaaattcggttaaggccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagc 
agggagctagaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagacaaatactgggacagctaca 
accatcccttcagacaggatcagaagaacttagatcattatataatacagtagcaaccctctattgtgtgcatcaaagga 
tagagataaaagacaccaaggaagctttagacaagatagaggaagagcaaaacaaaagtaagaccaccgcacagcaagcg 
gccactgatcttcagacctggaggaggagatatgagggacaattggagaagtgaattatataaatataaagtagtaaaaa 
ttgaaccattaggagtagcacccaccaaggcaaagagaagagtggtgcagagagaaaaaagagcagtgggaataggagct 
ttgttccttgggttcttgggagcagcaggaagcactatgggcgcagcGtcaatgacgctgacggtacaggccagacaatt 
attgtctggtatagtgcagcagcagaacaatttgctgagggctattgaggcgcaacagcatctgttgcaactcacagtct 
ggggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagctcctggggatttggggt 
tgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaataaatctctggaacagattTggaa 
tcacacgacctggatggagtgggacagagaaattaacaattacacaagcttaatacactccttaattgaagaatcgcaaa 
accagcaagaaaagaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataacaaat 
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tggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaatagtttttgctgtactttctat 
agtgaatagagttaggcagggatattcaccattatcgtttcagacccacctcccaaccccgaggggacccgacaggcccg 
aaggaatagaagaagaaggtggagagagagacagagacagatccattcgattagtgaacggatctcgacggtATCGGTta 
acttttaaaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagacataatagcaacagacatacaaac 
taaagaattacaaaaacaaattacaaaattcaaaattttatcgatactagtggatctgcgatcgctccggtgcccgtcag 
tgggcagagcgcacatcgcccacagtccccgagaagttggggggaggggtcggcaattgaacgggtgcctagagaaggtg 
gcgcggggtaaactgggaaagtgatgtcgtgtactggctccgcctttttcccgagggtgggggagaaccgtatataagtg 
cagtagtcgccgtgaacgttctttttcgcaacgggtttgccgccagaacacagctgaagcttcgaggggctcgcatctct 
ccttcacgcgcccgccgccctacctgaggccgccatccacgccggttgagtcgcgttctgccgcctcccgcctgtggtgc 
ctcctgaactgcgtccgccgtctaggtaagtttaaagctcaggtcgagaccgggcctttgtccggcgctcccttggagcc 
tacctagactcagccggctctccacgctttgcctgaccctgcttgctcaactctacgtctttgtttcgttttctgttctg 
cgccgttacagatccaagctgtgaccggcgcctacTCTAGAGctagCACCGGTAtgtctatccaggttgagcatcctgct 
ggtggttacaagaaactgtttgaaactgtggaggaActgtcctcgccgctcacagctcatgtaacaggcaggatacccct 
ctggctcaccggcagtctccttcgatgtgggccagGactctttgaagttggatctgagccattttaccacctgtttgatg 
ggcaagccctcctgcacaagtttgactttaaagaaGgacatgtcacataccacagaaggttcatccgcactgatgcttac 
gtacgggcaatgactgagaaaaggatcgtcataacAgaatttggcacctgtgctttcccagatccctgcaagaatatatt 
ttccaggtttttttcttactttcgaggagtagaggTtactgacaatgcccttgttaatgtctacccagtgggggaagatt 
actacgcttgcacagagaccaactttattacaaagAttaatccagagaccttggagacaattaagcaggttgatctttgc 
aactatgtctctgtcaatggggccactgctcacccCcacattgaaaatgatggaaccgtttacaatattggtaattgctt 
tggaaaaaatttttcaattgcctacaacattgtaaAgatcccaccactgcaagcagacaaggaagatccaataagcaagt 
cagagatcgttgtccaattcccctgcagtgaccgattcaagccatcttacgttcatagttttggtctgactcccaactat 
atcgtttttgtggagacaccagtcaaaattaacctgttcaagttcctttcttcatggagtctttggggagccaactacat 
ggattgttttgagtccaatgaaaccatgggggtttggcttcatattgctgacaaaaaaaggaaaaagtacctcaataata 
aatacagaacttctcctttcaacctcttccatcacatcaacacctatgaagacaatgggtttctgattgtggatctctgc 
tgctggaaaggatttgagtttgtttataattacttatatttagccaatttacgtgagaactgggaagaggtgaaaaaaaa 
tgccagaaaggctccccaacctgaagttaggagatatgtacttcctttgaatattgacaaggctgacacaggcaagaatt 
tagtcacgctccccaatacaactgccactgcaattctgtgcagtgacgagactatctggctggagcctgaagttctcttt 
tcagggcctcgtcaagcatttgagtttcctcaaatcaattaccagaagtattgtgggaaaccttacacatatgcgtatgg 
acttggcttgaatcactttgttccagataggctctgtaagctgaatgtcaaaactaaagaaacttgggtttggcaagagc 
ctgattcatacccatcagaacccatctttgtttctcacccagatgccttggaagaagatgatggtgtagttctgagtgtg 
gtggtgagcccaggagcaggacaaaagcctgcttatctcctgattctgaatgccaaggacttaagtgaagttgcccgggc 
tgaagtggagattaacatccctgtcacctttcatggactgttcaaaaaatcttgatcaTGTACAGGATCCGCGGCCGCgc 
agaggaagtcttctaacatgcggtgacgtggaggagaatcccggcccttccgCTCGAGGaatt 
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Appendix 2: Gene Expression Over Time 
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Appendix 2: Expression of cKit and Sca1 in FACS sorted Lin-Sca1+ cells decreases after RPE65, 
Rpe65 and Cralbp expression is initiated, approximately 2 hours after treatment with ILV3-RPE65 
or IDLV3-RPE65. 
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