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Janice L. Farlow 

FAMILY STUDIES IN WHOLE EXOME AND GENOME SEQUENCING 

 

Population genetics has been revolutionized by the advent of high-throughput 

sequencing (HTS) methods in the 21st century. Modern day sequencers are now 

capable of sequencing entire exomes and genomes at unprecedented speed and 

accuracy. An explosion of bioinformatics software and data analysis tools now 

makes sequencing accessible for gene discovery in both rare Mendelian and 

complex disease. Family-based sequencing studies in particular have great 

potential for elucidating the genetic basis for many more diseases. 

 

We apply both whole exome and genome sequencing to three different cases of 

familial disease: intracranial aneurysm (IA), Parkinson disease (PD), and X-

linked ataxia dementia (XLAD). IA and PD are both common, complex traits that 

inflict a devastating disease burden worldwide, mostly due to few effective 

therapeutic interventions. Little of the heritability of both IA and PD has been 

explained to date, especially as it relates to the impact of rare variation on 

disease. XLAD is an extremely rare neurological disease described thus far in 

one kindred. Although promising results have been achieved through previous 

genetic study designs, the causative gene has not yet been identified. For all 

three diseases, HTS offers an opportunity to explore the role of rare variation in 

disease pathogenesis. In each study, we explore the opportunities and 

challenges of family-based HTS for different disease models. The work 
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presented herein contributes effective practices for study design, analysis, and 

interpretation in a rapidly growing field still replete with questions about how best 

to implement HTS in studying familial disease. 

 

Tatiana Foroud, Ph.D., Chair 
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INTRODUCTION 

 

A brief history of population genetics 

Since the days of Hippocrates, collecting and analyzing a family’s history of 

disease has been an integral part of the practice of medicine. Physicians knew 

that a family medical history can indicate a higher risk for certain diseases and 

conditions, even if the causative mechanism for the risk was unknown. It was not 

until the 1800’s, when Gregor Mendel completed his meticulous breeding 

experiments with sweet peas, that the laws of hereditary genetics began to be 

defined. When his work was rediscovered a century later, modern genetics was 

born, and scientists quickly began to investigate Mendelism as it applied to 

human families with disease. 

 

In the middle of the 20th century, principles of genetic linkage and recombination 

were explored, leading to the ability to map chromosomes. This enabled 

scientists to conduct linkage studies, in which genetic regions harboring 

causative mutations could be mapped by observing the segregation patterns of 

disease with the inheritance of genetic markers. Linkage analysis was very 

successful in mapping a number of monogenic diseases, including cystic 

fibrosis1-4 and Huntington’s disease.5 This methodology, however, is not 

successful at exploring all disease traits. For instance, large multiplex families 

required for robust linkage signals sometimes do not exist for extremely rare 

diseases that are fatal well before child-bearing years. Additionally, linkage 
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studies conducted for complex traits, such as diabetes and schizophrenia, 

sometimes seemed to conflict with previous findings for the same trait.6-8 The 

heterogeneity of complex traits, which are caused by a combination of multiple 

genetic and/or environmental factors, limits the statistical power of linkage 

analysis in families. Furthermore, for those linkage studies that do reach 

statistical significance, the implicated interval may contain hundreds of genes, 

requiring intensive molecular work to identify the causative gene. 

 

Candidate gene studies constitute another approach for studying human disease. 

After forming a hypothesis that a particular candidate gene is involved in the 

underlying pathophysiology of a disease, researchers can statistically test 

whether a particular allele of the gene is more frequently observed in cases than 

controls. Thus, population-based samples can be used instead of the unique 

families required for robust linkage mapping. Additionally, greater statistical 

power to detect genes of small effect sizes can be obtained through candidate 

gene association tests than through linkage analysis.9 While most candidate 

gene studies have focused on common variation, the most notable consistent 

finding of which has been the APOE association with Alzheimer’s disease,10 

some studies have also been utilized to explore rare variation.11,12 Despite some 

promising findings, candidate gene approaches have faced criticisms for poor 

replication of findings13-15 and for the significant limitation of requiring a priori 

knowledge about disease mechanisms.  
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With the development of genome-wide single nucleotide polymorphism (SNP) 

arrays, unbiased genome-wide association (GWA) studies became possible. 

GWA studies, which became popular starting in 2005, began to elucidate many 

common variants of smaller effect size important in complex diseases.16 While 

many GWA studies have focused on large cohorts of unrelated individuals, some 

have also explored familial diseases.17 Many GWA studies, however, suffer from 

the inability to narrow down an associated genetic region to a causative mutation, 

and the necessity to gather large samples numbering in the tens of thousands 

presents challenges for many disease models. 

 

Findings from candidate gene, linkage, and GWA studies together have identified 

the genetic basis for a small percentage of diseases, and for some traits, they 

have accounted for only a portion of the estimated heritability of the disease. In 

particular, linkage studies have been able to explore rare variants with large 

effect sizes (Figure 1). GWA studies, on the other hand, are better powered to 

find common variation, or variants found in at least 5% of the general population, 

with lower effect sizes. Thus, researchers have suggested that some of the 

remaining heritability lies with rare variation of moderate to high effect sizes.18-22 

Such variation cannot be explored effectively using historical population genetics 

approaches, but this all changed with the genesis of high-throughput sequencing 

(HTS). 
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Figure 1. Genetic variant frequencies and effect sizes. Manolio et al, 2009.23 

 

 

Advent of high-throughput sequencing 

In the 1970’s, researchers ascertained the first DNA sequences, paving the way 

for the sequencing of the first genome in 1977.24 The Sanger sequencing 

method24,25 that made this advance possible remained the primary way to 

sequence DNA until the 21st century. In this method, a labeled primer is annealed 

to a known segment of DNA juxtaposed to the unknown sequence of interest. 

Catalytic polymerization reactions then occur in four different tubes, each 

containing a different nucleotide, until the random addition of a specially-labeled 

chain-terminator nucleotide. The separation of the resultant fragments of DNA on 

a polyacrylamide gel by fragment size then allows the researcher to determine 

the nucleotide sequence. This basic technique with modifications, coupled with 
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the development of the polymerase chain reaction (PCR) in the 1980’s, 

eventually led to the sequencing of the first human genome in 2001.26 

 

In 2004, HTS was introduced as ‘next-generation’ sequencing. HTS, which relies 

on parallel sequencing of millions of small stretches of DNA, exponentially 

increased the number of bases that could be sequenced given a finite cost and 

timeframe. Competition and technological advances drove the rapid evolution of 

commercially available sequencers. At the time of the work presented herein, 

Illumina products dominated much of the HTS market. Like traditional Sanger 

sequencing, this technology (Figure 2) first sonicates genomic DNA into small 

fragments, which are ligated to adapters. After hybridization to a flow cell, the 

fragments are amplified creating clusters of fragments with the same nucleotide 

sequence. The complementary strand of DNA is removed, and the sequencer 

then adds fluorescently-labeled nucleotides sequentially and visually records the 

resulting fluorescence. The produced image is then reverted to a short string of 

nucleotide sequence, referred to as a sequencing read. After the sequencing run 

is complete, these reads and accompanying quality metrics can then be 

processed using a number of bioinformatics methods, which are described later.
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Figure 2. High-throughput DNA sequencing on the Illumina platform. 

Churko et al, 2013.27 
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Combined with the development of bioinformatics methods to leverage the 

reference genome sequence, HTS became feasible for researchers around the 

world. Techniques were developed not only for sequencing and detecting 

variation for whole genomes, but also for targeted parts of the genome and for 

more complex genetic features. Whole exome sequencing (WES), for instance, 

provides sequence data for just the exome, or the coding portion of the genome. 

Although the exome only comprises 1% of the genome, most mutations 

associated with Mendelian disease to date have been found in the coding portion 

of the genome.28-31 Thus, many researchers interested in studying sequence 

variation in disease have opted for the sequencing of more individuals using the 

more cost-effective WES approach instead of WGS.32 The transcriptome, or the 

RNA produced from DNA, can also be sequenced through HTS. Variation in the 

transcriptome can provide clues about alternative splicing, differential expression, 

gene fusion events, and functional non-coding RNAs. A wide variety of 

epigenomic data can also be obtained through HTS, allowing researchers an 

unprecedented genome-wide perspective on effects and mechanisms of 

transcriptional control. A sample of possible applications of HTS is listed in Table 

1. 
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Table 1. Applications of high-throughput sequencing. Adapted from 

Shendure et al, 2012.33 FAIRE = formaldehyde-assisted isolation of regulatory 

elements; MAINE = MNase-assisted isolation of nucleosomes; ChIP = chromatin 

immunoprecipitation; RIP = RNA-binding protein immunoprecipitation; CLIP = 

cross-linking immunoprecipitation; HITS = high-throughput sequencing of RNA 

isolated by CLIP; ChIA-PET = chromatin interaction analysis paired-end tag 

Method Feature Examined 

DNA-Seq Genome 

Targeted DNA-Seq Subset of a genome, e.g. whole exome 

sequencing 

Methyl-Seq Sites of DNA methylation 

DNase-Seq, Sono-Seq, 

FAIRE-Seq 

Active regulatory chromatin 

MAINE-Seq Histone-bound DNA 

ChIP-Seq Protein-DNA interactions 

RIP-Seq, CLIP-Seq, HITS-

CLIP 

Protein-RNA interactions 

RNA-Seq  Transcriptome 

Hi-C Three-dimensional genomic structure 

ChIA-PET Long-range interactions mediated by a 

protein 

Ribo-Seq Ribosome-protected mRNA fragments 

(mRNA under active translation) 
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In 2009, two landmark reports of the use of WES for gene discovery were 

published.34,35 In the first study, WES was applied to 10 unrelated individuals 

affected by Kabuki syndrome, a rare multi-system disorder that has only been 

reported in about 400 cases worldwide.34 A careful review of the variants 

identified and comparison of them to public databases and control exomes 

eventually led to the identification of MLL2 as the causative gene. In the second 

study, the exomes of two siblings and two unrelated individuals affected by Miller 

syndrome were sequenced.35 A similar method of retaining only rare variants, 

coupled with application of different inheritance models eventually singled out 

DHODH as the culpable gene. In both of these cases, Ng and colleagues were 

able to identify not only the genetic region linked with a disease, but the exact 

variation causing the disease as well. This was accomplished using only a few 

individuals, unlike the large multi-generational pedigrees required for linkage 

analysis or the thousands of individuals necessary for statistically robust GWA 

studies. 

 

Within the next few years, the costs for sequencing and the storage of large 

datasets fell rapidly, and large collaborative efforts like the 1000 Genomes 

Project36 produced resources that enabled small and large research efforts alike 

to conduct their own HTS experiments. To date, the genetic basis of over 100 

rare Mendelian30 and complex diseases37 has been discovered using WES and 

whole genome sequencing (WGS).38 
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A general framework for analysis of sequencing studies 

The bioinformatics community has developed thousands of techniques to make 

these discoveries possible. After sample preparation and sequencing (Figure 2) 

the numerous steps of bioinformatics processing can largely be boiled down to 

the general categories of alignment and variant detection, with measures taken 

for assessing quality throughout the process. 

 

Alignment consists of matching each read to the reference genome. A series of 

steps are taken to ensure that excess mismatches at particular bases, within 

reads, and within regions are reviewed; duplicate reads are removed; and 

recalibration is performed for insertion/deletions (indels) and other types of 

structural variation.  Although Burrows-Wheeler Aligner (BWA) is often the 

aligner of choice and is used throughout the present work, dozens of alignment 

programs exist and can be employed for different kinds of scenarios. Additionally, 

some software also permits de novo assembly, where a reference genome is not 

used in aligning the sequence. Such programs thus can be used to identify novel 

sequence or in species where a reference genome does not exist. 

 

A number of programs exist for the next stage in data processing, or variant 

calling. The most frequently used programs currently can robustly detect single 

nucleotide variants (SNVs) and small indels. Some of the newer programs 

designed to identify larger indels and other types of structural variation are still 

being vetted by the bioinformatics community. Variant detection software typically 
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looks at the sequencing reads that span each position (or a stretch of bases for 

structural variation) to identify whether nucleotide calls for some or all of the 

reads differ from the reference genome. Some programs also examine 

haplotypes, or a collection of linked alleles, to increase the quality of variant calls; 

such programs are generally helpful for most sequencing studies but may not be 

the variant caller of choice when looking at extremely rare variants. Many 

programs recalibrate their variant calls based on a number of factors, sometimes 

dictated by the algorithm employed and other times chosen through machine 

learning approaches. 

 

Throughout both the alignment and variant detection steps, various methods of 

quality control exist. General quality metrics such as sequencing depth and 

percentage of bases covered at particular depths can help determine if samples 

need to be re-sequenced. The number of different types of variants per sample, 

as well as statistics such as the transition to transversion ratio and the 

percentage of variants previously identified, can be compared to normally 

expected numbers and ratios. Even with a number of different quality metrics, 

typically the alignment and quality sequencing reads of variants of interest should 

be reviewed using inspection software, and many groups validate the variants 

using genotyping arrays or the traditional Sanger sequencing method. Some 

basic quality control measures are reviewed by Do and colleagues.39 
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After variant detection and quality control measures, a typical WES experiment 

will generate over 20,000 exonic SNVs per individual.30 Of these variants, 

10,000-12,500 will typically be synonymous variants, 9,500-12,000 are expected 

to be missense, and 100-200 will be splice altering or stop variants.39 WGS, on 

the other hand, will typically yield over 3 million SNVs per individual.40 A typical 

healthy person’s genome harbors about 100 genuine loss of function variants, 

most of which represent heterozygous variants in nonessential genes, with only 

about 20 variants inactivating a gene’s function entirely.41 

 

Given the large number of variants identified in WES and WGS, several methods 

can winnow down the number of variants to key candidate variants. Many 

studies, such as the first WES studies34,35 and the work presented herein, use 

filtering strategies based on hypotheses about the characteristics of causative 

variants expected. Larger studies, especially those without familial samples, have 

opted for statistical association tests, either designed for single variants or 

clusters of variants. 

 

As a first step in both filtering strategies and association analysis, sequencing 

studies typically apply annotation and in silico prediction programs. Through 

annotation software, researchers are able to assign putative function (e.g. 

location within or outside of an exon, name of the nearest gene, effect on the 

mRNA or protein sequence if any, variant frequencies, etc.) to variants. In silico 

prediction programs help researchers determine the impact of a particular 
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variant. Some in silico programs measure the level of evolutionary conservation 

at a locus (where a more conserved location might imply that the locus has an 

important biological function, as deleterious mutations undergo purifying 

selection). Others focus on the variant’s effect on the structure, enzymatic 

function, or other important characteristics of the protein. A third class combines 

both conservation and protein effect predictions, and some even compute and 

aggregate predictions from multiple other in silico programs. 

 

Statistical association tests that can be applied to sequencing data are being 

developed at a rapid pace. Most of the available programs allow for testing the 

association of a single variant with the trait of interest, but these tests are 

generally not well powered for rare variants due to their infrequent observation in 

the dataset. In order to increase their power, most rare variant association tests 

combine rare variants in some fashion. The most popular grouping of variants to 

date has been by gene, although one might feasibly also look at variants across 

a group of genes or a pathway. Two major types of these collapsing or 

aggregative association tests exist. One version tabulates the number of rare 

alleles in a gene for each sample and compares the general ‘burden’ of rare 

alleles in cases versus controls. The other type, termed as a variance-component 

test, allows for variants to have either deleterious or protective effects by 

comparing the number of variants with non-zero effect sizes to expected 

scenarios. Although these tests have not been employed in the work presented 

herein, future studies will undoubtedly use later generations of these programs. A 
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recent review by Lee and colleagues lists some of the specific programs and 

considerations for each category of test.42 

 

The bioinformatics programs used in the present work are listed in Table 2. 
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Table 2. Bioinformatics programs utilized. SNV = single nucleotide variant; 

indel = insertion/deletion 

Program 
category 

Program Name Description 

Alignment Burrows Wheeler Aligner 
(BWA)43 

Common aligner used for its 
general speed and accuracy 

Variant 
detection 

Genome Analysis Toolkit 
(GATK)44 

1. Unified Genotyper 
2. Haplotype Caller 

Common variant caller used mostly 
for SNVs and indels; also 
recalibrates alignments 

 SAMTools45 Common variant caller used mostly 
for SNVs and indels 

In silico 
prediction  

Combined Annotation 
Dependent Depletion (CADD)46 

Scores the relative deleteriousness 
of a variant based on a number of 
other in silico prediction programs 

 DDIG-in47 Predicts locus conservation for 
non-frameshifting indels 

 GERP48 Predicts locus conservation 
 MutPred49 Predicts locus conservation and 

variant impact on resultant protein 
 PolyPhen50 Predicts variant impact on resultant 

protein 
 Residual Variation Intolerance 

Score (RVIS)51 
Computes a relative score for how 
well a gene tolerates mutation 

 SIFT52 Predicts locus conservation for 
SNVs 

 SIFT-Indel53 Predicts locus conservation for 
frameshifting indels 

Other Picard 
(http://picard.sourceforge.net/) 

Used in this work for removal of 
duplicate reads 

 ANNOVAR54 Provides comprehensive 
annotation features 

 Integrated Genomics Viewer 
(IGV)55 

Manual inspection of read 
alignments and variant calls 

 Merlin56 Performs rapid linkage analysis 

http://picard.sourceforge.net/
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Sequencing applied to families 

Family-based studies have formed the foundation for WES and WGS 

approaches. Many initial studies focused on rare Mendelian diseases in families 

where initial linkage analysis had yielded a promising genetic interval, but a 

specific gene had not been identified. Instead of using the laborious Sanger 

sequencing method to examine all the large number of genes in these intervals, 

researchers could now utilize WES or WGS to quickly identify the causative 

mutation in the linkage families.57-61 Other studies applied WES or WGS to 

pedigrees that were uninformative for linkage because there were too few 

affected members or meioses, such as the Miller Syndrome case35 and the more 

recent studies of de novo germline mutations using trios.62-64 The typical workflow 

for a family-based sequencing study is depicted in Figure 3. 

 

Figure 3. Schematic workflow of family-based sequencing studies. 

Sequence members of a family 

Alignment, variant calling, variant annotation 

Assess for variant segregation with hypothesized mode of inheritance 

Retain variants of interest (e.g. rare, exonic, functional, predicted damaging) 
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More recently, WES and WGS have been applied to more common and complex 

diseases. Some multi-institutional collaborations have leveraged large cohorts of 

unrelated individuals, leading to discoveries of rare genetic risk factors involved 

in diabetes,65 cardiovascular phenotypes,66 and other traits. Other groups have 

continued using families to explore complex traits, either by including only 

unrelated familial samples or by sequencing multiple members of families per 

study. Some of the techniques developed in family-based sequencing studies, 

such as incorporating identity-by-descent (IBD) into quality control processes,67 

have also aided in the application of HTS to sporadic disease as well. 

 

Challenges in sequencing studies 

Despite the early successes of sequencing applied to familial disease and the 

resulting number of research groups focused in this area, a number of challenges 

remain in the field. Some of the ‘rate limiters,’ as described by Shendure et al, 

include the cost and effort of acquiring and storing samples, constructing 

libraries, sustaining technological infrastructure, and maintaining labor and 

expertise.33 General computational and bioinformatics challenges and potential 

solutions are also discussed by Berger and colleagues.68 

 

The interpretation of results from sequencing studies offers another multifaceted 

challenge. Variants of unknown significance (VUS), or variants whose 

biochemical and/or clinical significance has not been identified or confirmed, 

often are the sole products of sequencing experiments. In silico prediction 
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programs can highlight particular variants of interest or provide ideas on how to 

molecularly characterize the variants identified, but they serve only as the first 

step in understanding the functional impact of a variant on disease. Bell and 

colleagues, for instance, showed that 27% of 406 published sequencing variants 

indicated as severe disease mutations actually were common SNPs or did not 

have enough evidence to confirm pathogenicity.69 Others have urged caution in 

assigning pathogenicity to variants before rigorous follow-up in order to avoid 

adverse consequences for patients and research.70 In addition to the confusion 

and discrepancies in nomenclature for the relatively new field of sequencing, the 

field lacks a gold standard for following-up VUS. Depending on the nature of 

each VUS and the disease of interest, different follow-up studies may include 

additional population genetic study designs, expression studies, molecular 

characterization of a gene or pathway, or more. Such studies can take anywhere 

from a few years to decades. Thus, there is a delicate balance between 

accumulating and publishing results from sequencing and biochemical analyses 

in order to advance research findings and ultimately serve pressing clinical 

needs. 

 

Furthermore, despite the incredible potential of WES and WGS, these 

technologies are still limited. WES only captures about 1% of the genome, and 

captures vary in their target intervals and weaknesses.71 WGS, although it covers 

the entire genome by definition, may not have enough sequencing depth in some 

regions to accurately call variants. Additionally, the relative costs of WES versus 
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WGS may make it more cost effective to choose WES and sequence a larger 

number of individuals. For either technology, certain regions of the genome like 

highly repetitive sequence and CG-rich intervals are still difficult to sequence 

accurately.72 For the variants that can be detected by WES or WGS, different 

analysis methods must be used to look for different types of variants present. 

Different bioinformatics programs, spanning the alignment step to variant calling, 

are more sensitive or specific to different types of variation. While some variant 

calling programs that call SNVs have been extensively tested, programs 

targeting indels, copy number variations (CNV), and other types of variants are 

currently less sophisticated (types of variants that can be identified through 

sequencing are depicted in Figure 4). For variants identified by these 

approaches, more extensive confirmation steps are necessary. Additionally, even 

for SNVs, important discrepancies still exist between variant callers. For 

instance, O’Rawe et al found only a 57.4% concordance across 5 SNV variant 

calling pipelines used on 15 exomes.73 
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Figure 4. Types of variants that can be identified through high-throughput 

sequencing. Each letter (A, B, C, D) corresponds to a distinct gene. Single 

nucleotide variants (SNVs) are <5% minor allele frequency (MAF), whereas 

single nucleotide polymorphisms (SNPs) are >5% MAF. Sequence variation 

refers to SNV/SNPs or small (<1kb) indels. Rahim et al, 2008.74 
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Researchers rely on accurate annotation of variants to narrow down groups of 

variants to study further. While there are some common sources for these 

annotations, there are still discrepancies between even commonly used 

databases.75 Bioinformatics programs that facilitate annotation of sequencing 

data may also resolve discrepancies in slightly different ways,39 adding more 

difficulty in attempts to combine or replicate results. Additionally, the number and 

types of in silico prediction programs have exploded in the past few years. 

Sensitivities and specificities of each program differ from one another,76-79 and 

there is still not a gold standard approach to their application. 

 

As sequencing is applied to more complex diseases, questions about study 

design, including the number and type of samples to include as well as the 

appropriate statistical tests to employ, become more intricate.80 In order to 

expand sample sizes, some research groups have combined sequencing data 

from other groups and/or data repositories. Batch effects, or variation due to 

varying experimental conditions (e.g. temperature, time, personnel), can be 

widespread in such situations.81,82 Furthermore, the possible introduction of false 

signals from minor differences in ancestry is likely to be more misleading in 

analysis of rare sequencing variants as opposed to GWA studies.39 Researchers 

are actively working on identifying and correcting for such quality control errors to 

increase reproducibility. 
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To add another complicating factor, allelic architecture, or the numbers and types 

of risk variants, is known to differ substantially between diseases.23,83 Manolio 

and colleagues, for instance, cite how the majority of heritability for age-related 

macular degeneration can be explained by 5 loci, whereas several dozen loci of 

smaller effect size have been identified for Crohn’s disease.23 Unlike previous 

linkage and GWA studies, sequencing has the potential of identifying variants 

across the spectrum of frequencies and effect sizes, but different types of 

analyses may need to be performed to determine robust associations. 

 

Statement of Purpose 

In the present study, WES and WGS are applied to familial cases of 3 different 

disease models: intracranial aneurysm (IA), Parkinson disease (PD), and X-

linked ataxia dementia (XLAD). Through these examples of familial disease, we 

explore the opportunities and challenges of family-based HTS. The work 

presented herein contributes effective practices for study design, analysis, and 

interpretation in a rapidly growing field still replete with questions about how best 

to implement HTS in studying familial disease. 
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CHAPTER I: FAMILIAL INTRACRANIAL ANEURYSM 

 

Introduction 

Subarachnoid hemorrhage (SAH) is the most devastating subtype of stroke. 

Fatality from SAH between 21 days to one month of the hemorrhage ranges from 

25-35% in high-income countries to almost 50% in low- to middle-income 

countries.84 Up to 80-90% of SAH cases are caused by rupture of IA, which are 

present in approximately 3% of the population.85 Smoking and hypertension are 

important risk factors, increasing the risk of IA rupture by 3.1 and 2.6 times 

respectively.86 The risk of an IA and for IA rupture is also increased among 

individuals having a first-degree relative with a history of an IA 85,87,88. The 

location and number of IAs in a given individual also appears to be influenced by 

a family history.89 Thus, several lines of evidence suggest that IA is due to both 

genetic and environmental risk factors. Unfortunately, until more is understood 

about these risk factors, the severe morbidity and mortality associated with this 

disease will continue to be a large public health burden. 

 

Several approaches have been employed to identify genes contributing to IA. 

Initial studies utilized pedigrees having multiple affected members. Analyses in 

these initial studies detected linkage to several chromosomal regions (1p34.3-

36.1390,91, 4q32.292, 6p2393,7q1190, 7q36.392, 8q12.192, 11q24-2593-95, 

12q21.3392, and 14q23-3195); however, the causative gene was not identified in 

any of these regions. More recently, GWA studies have focused on the role of 
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common variants that might individually have a small effect on disease risk. 

Analyses have consistently detected association to SNPs in CDKN2BAS, also 

known as ANRIL, on chromosome 9p21.396-98, as well as SOX17 on 

chromosome 8q12.196-98. Association has also been reported to EDNRA on 

chromosome 4q3199, CNNM2 on chromosome 10q2497, KL/STARD13 on 

chromosome 13q1397, and RBBP8 on chromosome 18q1197. Together, these 

genes only explain a fraction of the population attributable risk for IA. 

 

Advances in technology, especially in the development of HTS, now make it 

possible to efficiently search for rare variants having a large effect on disease 

risk. These rare variants may point to novel genes and pathways that are critical 

to improve the molecular understanding of IA and methods of predicting those at 

greatest risk. In the present work, WES was applied to a unique set of families 

densely affected with IA to investigate the role of rare genetic variation in disease 

susceptibility and to demonstrate important study design considerations for WES 

studies in complex disease. 

 

Materials and methods 

Families selected for whole exome sequencing 

Individuals were recruited as part of the Familial Intracranial Aneurysm (FIA) 

Study.100 Study approval was granted by the institutional review boards at 

Indiana University, University of Cincinnati, and all participating study sites. 

Written consent was obtained from all study participants. 
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Families were recruited to ensure that DNA could be obtained from at least two 

living affected relatives and that the family would be informative for linkage 

analysis. Exclusion criteria included (i) a fusiform-shaped unruptured IA of a 

major intracranial trunk artery; (ii) an IA that is part of an arteriovenous 

malformation; (iii) a family or personal history of polycystic kidney disease, Ehlers 

Danlos syndrome, Marfan’s syndrome, fibromuscular dysplasia, or Moya-Moya 

disease; or (iv) failure to obtain informed consent from the patient or family 

members. To identify unruptured IA, magnetic resonance angiography (MRA) 

was offered to first degree relatives of affected family members who had a higher 

risk of IA as defined by: 1) 30 years of age or older and 2) either a 10 pack year 

history of smoking or an average blood pressure of ≥140 mmHg systolic or ≥90 

mmHg diastolic. 

 

Only individuals having an IA based on an intra-arterial angiogram, operative 

report, autopsy, or size ≥7 mm on non-invasive imaging (MRA) were considered 

“definite” cases (Table 3). Two neurologists independently reviewed each record 

to determine if a subject met all inclusion and exclusion criteria. In case of 

disagreement, a third neurologist reviewed the data.  
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Table 3. Intracranial aneurysm disease phenotypes. Classification of affected 

status of samples in the Familial Intracranial Aneurysm Study. 

Classification Definition 

Definite Medical records document an intracranial aneurysm (IA) on 

angiogram, operative report, autopsy, or a non-invasive 

imaging report (MRA, CTA) demonstrates an IA measuring 

7mm or greater. 

Probable Death certificate mentions probable IA without supporting 

documentation or autopsy. Death certificate mentions 

subarachnoid hemorrhage (SAH) without mention of IA and a 

phone screen is consistent with ruptured IA (severe headache 

or altered level of consciousness) rapidly leading to death. An 

MRA documents an IA that is less than 7 mm but greater than 

3 mm. 

Possible Non-invasive imaging report documents an aneurysm 

measuring between 2 and 3 mm or SAH was noted on death 

certificate, without any supporting documentation, autopsy or 

recording of headache or altered level of consciousness on 

phone screen. Death certificate lists ‘aneurysm’ without 

specifying cerebral location or accompanying SAH. 

Not a case There is no supporting information for a possible IA. 
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Seven families of European American descent with the highest density of 

affected individuals who also had DNA available were selected for WES101 

(Figure 5). All affected individuals for which sufficient DNA was available were 

selected for sequencing. Unaffected individuals were selected only if there was 

an MRA conducted that confirmed the absence of an IA at 45 years or older and 

if there was sufficient DNA available. One clinically unaffected individual in family 

E was assumed to be an obligate carrier and was sequenced with her offspring 

to allow confirmation of allele transmission. Within the seven families, 45 

individuals were chosen for WES. 

 

Figure 5. Simplified pedigrees for the intracranial aneurysm whole exome 

sequencing families. Only sequenced individuals and those needed to preserve 

generational structure are shown to protect the anonymity of the pedigree. 

IA=intracranial aneurysm. All affected individuals are definite IA unless noted as 

a probable IA, possible IA, or aortic abdominal aneurysm (AAA). Criteria for 

defining definite, probable, and possible IA statuses are outlined in Table 1. All 

unaffected individuals, with the exception of individual E-9, had an MRA 

performed that did not show evidence of an IA. Grey indicates an unknown 

phenotype. An ‘S’ above an individual denotes that the individual was selected 

for sequencing. 
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Whole exome sequencing 

WES was performed at the Center for Inherited Disease Research (CIDR, Johns 

Hopkins University). Exonic sequences were captured using the Agilent 

SureSelect Human All Exon 50Mb kit, and paired-end sequencing was performed 

on the Illumina HiSeq 2000 system, using Flowcell version 3 and TruSeq Cluster 

Kit version 3. All samples were genotyped using the Illumina 

HumanOmniExpress-12v1_C platform for quality assurance. Two HapMap 

samples and two study duplicates were used to ensure library preparation batch 

quality. 

 

Whole exome sequencing bioinformatics 

Primary analysis was done using HiSeq Controls Software and Runtime Analysis 

Software. The CIDRSeqSuite pipeline was used for secondary bioinformatics 

analysis, which consists mainly of alignment using BWA (version 0.5.9)43 to the 

human genome reference sequence (build hg19) and applying GATK (version 

1.0.4705)44 to perform local realignment and base quality score recalibration. 

Duplicate molecules were flagged and mate-pair information synchronized using 

Picard (version 1.52, http://picard.sourceforge.net/). The GATK Unified 

Genotyper (GATK version 1.2-29) was used for multi-sample variant calling. The 

dataset, consisting of called variants, subject phenotypes, and pedigree 

information for the multiplex IA families can be requested directly from the 

National Center for Biotechnology Information (NCBI) Database of Genotypes 

and Phenotypes (dbGaP) (accession phs000636). Mapped reads are available 

http://picard.sourceforge.net/
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on the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) (accession 

SRX329208-SRX329252). 

 

GATK VQSR (GATK version 1.2-38)102 created a high-quality call set for SNVs 

by using an adaptive error model to estimate the likelihood of true genotype calls 

based on aggregating information across multiple quality metrics. As 

recommended by GATK, HapMap 3.3 and the Illumina Omni 2.5M chip sites, 

available from the GATK bundle 1.2, were used as training sets and the 

annotations of Quality by Depth, Haplotype Score, Mapping Quality Rank Sum, 

Read Position Rank Sum, Fisher Strand Bias Test, and Mapping Quality were 

used as quality metrics for the recalibration. SNVs were filtered until 99% of the 

overlapping HapMap 3.3 sites were retained after application of VQSR. 

Insertion/deletions were removed if they had a quality by depth < 2.0, 

ReadPosRankSum < -20.0 (Z-score from Wilcoxon rank sum test of alternative 

versus reference read position bias), Fisher’s Strand Bias > 200.0 (phred-scaled 

p-value using Fisher’s exact test to detect strand bias), and/or a homopolymer 

run > 5. 

 

ANNOVAR54 was used to annotate variants for location, predicted effect on the 

protein across three gene databases (RefSeq, UCSC, and Ensembl), and 

corresponding gene and transcript length. Allele frequencies within European 

American populations in 1000 Genomes (February 2012 release, 

http://www.1000genomes.org)36 and the Exome Sequencing Project (ESP) 

http://www.1000genomes.org/
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(ESP6500 release with insertion/deletions and chromosome X and Y calls, 

http://evs.gs.washington.edu/EVS/)103 were recorded using custom scripts. The 

scripts mapped variants to 1000 Genomes and ESP based on chromosomal 

position and reference and alternate alleles to determine allele frequencies. If a 

variant was not found in 1000 Genomes or ESP, the alternate allele frequency 

was set to 0. If a variant was found in both 1000 Genomes and ESP, the smaller 

alternate allele frequency was taken as the consensus frequency. 

 

Variants were annotated for binned minor allele frequencies from 290 samples 

without a known cardiovascular phenotype that were exome sequenced at CIDR 

using identical capturing  and sequencing technology, although SAMtools45 was 

used for variant calling instead of GATK Unified Genotyper. Variants that were 

monomorphic across all samples were also flagged. 

 

Variants were also annotated using custom scripts for Gene Ontology (GO) 

(http://www.geneontology.org)104 terms that were hypothesized to play a role in 

IA pathophysiology. GO terms used included GO:0001944 (vasculature 

development), GO:0001570 (vasculogenesis), GO:0003018 (vascular process in 

circulatory system), GO:0005581 (collagen), GO:0005604 (basement 

membrane), and GO:0051541 (elastin metabolic process). 

 

Two programs were used to predict the pathogenicity of SNVs: SIFT52 and 

PolyPhen-2105. Scores of damaging for SIFT, or possibly or probably damaging 

http://evs.gs.washington.edu/EVS/
http://www.geneontology.org/
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for PolyPhen-2, were accepted as evidence for pathogenicity. Two additional 

programs were used to analyze the effect of insertions and deletions: SIFT-

INDEL53 for those that cause a frameshift, and DDIG-in for those that do not 

cause a frameshift47. Variants were also annotated for C-scores from the 

Combined Annotation Dependent Depletion (CADD) webserver 

(http://cadd.gs.washington.edu)46. C-scores of 10 or greater, corresponding to 

the 10% most deleterious substitutions in the human genome according to 

CADD, were considered damaging predictions. 

 

Biological filtering retained loci if they: 1) were autosomal variants; 2) were 

predicted to be nonsynonymous SNVs or insertion/deletions in an exonic and/or 

splicing region (within 2 bp of a splicing junction, as annotated by ANNOVAR) 

based on RefSeq, UCSC, and Ensembl annotations; 3) had an allele frequency 

in European American populations <1% (1000 Genomes, ESP); 4) had an allele 

frequency less than 1% in CIDR binned minor allele frequencies and were not 

monomorphic across all samples; 5) were predicted most likely to be damaging 

by CADD and by at least one other protein prediction program; and 6) 

segregated with all individuals with a definite IA and obligate carriers in at least 

one family. All alignments for variants passing these biological filters were 

visually inspected using the Integrated Genomics Viewer (IGV)55 to confirm 

presence of a variant. Visual inspection for each variant included reviewing read 

pair orientations, mappability, and soft-clipping; variants that were called nearby; 

overall depth of sequencing and genomic features that might have inhibited 

http://cadd.gs.washington.edu/


34 
 

coverage at that locus; and repetitive sequence that might have influenced the 

position or variant allele called for the locus.  In addition to the filters described 

above, insertion/deletions were also compared against a different dataset 

consisting of approximately 500 samples without a known cardiovascular 

phenotype. This comparison dataset used GATK Unified Genotyper (version 2.3-

9) for variant calling and the Agilent SureSelect Human All Exon 51Mb capture 

kit. If the allele designations and/or positions did not match between the two 

datasets but were within 10 bp, manual review of both the IA and comparison 

BAM files with IGV was done to reconcile differences in allele designations and 

position assignments between the two datasets. 

 

Loci were also annotated if they: A) segregated with all aneurysms (including 

probable and possible IA and the one abdominal aortic aneurysm case in family 

G) and B) were not found in any sequenced unaffected individuals, excluding 

assumed obligate carriers. 

 

Linkage 

The 7 families were included as part of a larger linkage study of 2,317 individuals 

from 394 families using the 6K Illumina array.92 Multipoint parametric linkage 

analysis (autosomal dominant inheritance, 1% disease allele frequency was 

performed using Merlin.56 Only genotypic data from family members with definite 

IA and obligate carriers were included in the linkage analysis. WES variants were 

annotated for the highest LOD score obtained by linkage markers within a 10Mb 
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window centered on the sequencing variant. A maximum possible LOD score for 

each family was calculated by simulating a hypothetical fully informative marker 

using the aforementioned model parameters and the pedigrees for each family. 

 

Tissue collection for RNA expression 

Aneurysm biopsies from the aneurysm fundus distal to the clip were collected 

from patients undergoing neurosurgical clipping of an IA at the Department of 

Neurology and Neurosurgery in the University Medical Center Utrecht in the 

Netherlands. These patients were completely independent of the families 

included for WES. Patients undergoing surgery because of intractable epilepsy 

were included as controls, and part of a superficial cortical artery in the resected 

part of the brain was excised as control vessel tissue. Samples were collected 

from 44 aneurysm biopsies (22 ruptured, 21 unruptured, 1 with unknown rupture 

status) and 16 control biopsies. All samples were immediately snap frozen in 

liquid nitrogen less than 1 minute after excision and stored at -80 °C until further 

use. 

 

RNA isolation, sample preparation, and sequencing 

RNA isolation, sample preparation, and sequencing was conducted at the 

University Medical Center Groningen in Groningen, the Netherlands. Each 

sample was homogenized with zirconia/silica beads in the BeadBeater machine 

(BioSpec products, Inc.). After homogenization, total RNA was extracted and 

purified using an RNeasy microkit (Qiagen, Valencia, CA, USA) according to the 
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manufacturer’s instructions. An initial quality check of the samples by capillary 

electrophoresis and RNA quantification for each sample was performed using the 

LabChip GX (PerkinElmer, Waltham, Massachusetts, USA). Samples with a 

minimum amount of 7 ng non-degraded RNA were selected for subsequent 

sequencing analysis. Sequence libraries were generated using the TruSeq RNA 

sample preparation kit from Illumina (San Diego, USA) using the Sciclone NGS 

Liquid Handler (Perkin Elmer). To remove contamination of adapter-duplexes, an 

extra purification of the libraries was performed with the automated agarose gel 

separation system Labchip XT (Perkin Elmer). The obtained cDNA fragment 

libraries were sequenced on an Illumina HiSeq2000 using default parameters 

(single read 1x100bp) in pools of 10 or 11 samples. Processing of the raw data, 

including a demultiplexing step, was performed using Casava software (Illumina) 

with standard settings. 

 

Differential expression analysis 

Sequencing reads with quality score under Phred Score <30 were discarded. The 

quality filtered trimmed fastQ files were then aligned to the human reference 

genome (hg19) using the STAR aligner,106 allowing for 2 mismatches. SAMtools 

version 0.1.1845 was used to sort the aligned reads. Gene level quantification 

was performed by HTSeq-0.5.4107 using parameters --mode=union --

stranded=no and Ensembl version 71 as the gene annotation database. 
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R version 3.1.0 was used for differential expression analysis. The counts per 

gene for each sample obtained after alignment were used as input for the 

analysis. Low count genes (genes with less than 1 read per million in n of the 

samples, where n is the size of the smallest group of replicates, i.e. n=16) were 

filtered out since there is little power to detect significant evidence of differential 

expression in these genes.108 

 

The Bioconductor (version 2.14) packages edgeR (version 3.6.2) and limma 

(version 3.20.2) were used for subsequent steps. To correct for technical 

influences, edgeR adjusts for varying sequencing depths between samples and 

normalizes for the RNA composition of the sample. A generalized linear model 

was used to test for differential expression between aneurysmal and control 

tissue. Other factors included in the model were age and sex of patients, as well 

as rupture status. Common and tagwise dispersion estimates were calculated 

with the Cox-Reid profile adjusted likelihood method to be able to correct for the 

technical and biological variation when fitting the multivariate negative binomial 

model. In estimating the tagwise dispersion, the program default for degrees of 

freedom (df=10) was used. A negative binomial generalized log-linear model, 

using the tagwise dispersion estimates, was fitted to the read counts for each 

gene, and a gene-wise statistical test was performed. Then, a likelihood ratio test 

was performed. Benjamini Hochberg false discovery rates (FDR) for a 

transcriptome-wide experiment were calculated to correct for multiple testing. All 
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genes with an FDR adjusted p-value <0.05 were considered individual genes of 

interest. 

 

Results 

Sequencing data quality 

The average study duplicate reproducibility of SNV and insertion/deletion calls 

were 99.13% and 94.42%, respectively, and genotypes for non-reference calls 

per sample from the WES data achieved an average 99.57% concordance with 

genotype calls from the Illumina® HumanOmniExpress-12v1_C array. The 

average sensitivity to heterozygote calls on the array was 98.13%. After 

application of GATK quality filters, 98,351 SNVs and 5,851 insertion/deletions 

were retained. The transition-transversion ratio for exonic variants and percent of 

SNVs in dbSNP 137, both measures of the quality of the data, were 3.3 and 

94.79% respectively. 

 

Biological Filtering 

The number of variants retained after each biological filter employed in the 

Methods is shown in Tables 4-5 for SNVs and insertion/deletions, respectively. 

The list of SNVs and insertion/deletions satisfying biological filters 1-6 is shown in 

Table 6. The final candidate variants passing biological filters 1-6 and manual 

inspection include 67 SNVs and 1 deletion. The sets of variants that A) segregate 

with all aneurysmal phenotypes and B) are not carried in unaffected individuals 



39 
 

are included in Table 6 as subsets of the 68 final variants. The limitations of only 

considering these sets of variants are described in the Discussion. 

  



 
 

Table 4. Intracranial aneurysm whole exome sequencing single nucleotide variant filtering pipeline. 

Numbers in parentheses refer to filtering steps described in the Methods. IA = intracranial aneurysm 

Family A B C D E F G All 

All variants found in at least one definite IA 46168 41978 44689 44515 49142 39495 37809 98351 

(1) Autosomal variants 45390 41280 43994 43701 48376 38925 37251 96552 

(2) Variants predicted to be functional 12261 11158 11849 11841 13203 10578 10025 29194 

(3) Rare variants 1020 889 953 1298 1356 843 823 7845 

(4) Variants not found or of low frequency 

in the internal allele frequency database 793 725 740 1028 1049 676 658 6428 

(5) Variants predicted damaging 393 345 369 442 470 297 306 3008 

(6) Variants segregating with all definite IA 

in at least one family 13 11 2 10 4 8 24 67 

Variants passing visual inspection 13 11 2 10 4 8 24 67 

A. Variants segregating with all IA 

(definite, probable, possible) or AAA in at 

least one family 13 9 2 8 3 8 7 46 

B. Variants not found in unaffected 

individuals 5 2 1 7 3 1 0 19 
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Table 5. Intracranial aneurysm whole exome sequencing insertion deletion filtering pipeline. Numbers in 

parentheses refer to filtering steps described in the Methods. IA = intracranial aneurysm 

Family A B C D E F G All 

All variants found in at least one definite IA 3316 2736 3226 3166 3396 2987 2966 5851 

(1) Autosomal variants 3264 2705 3178 3102 3345 2940 2921 5737 

(2) Variants predicted to be functional  538 457 560 541 581 511 465 1126 

(3) Rare variants 284 221 299 277 299 266 260 589 

(4) Variants not found or of low frequency 

in the internal allele frequency database 178 159 188 171 192 165 157 453 

(5) Variants predicted damaging 60 59 65 50 59 55 42 194 

(6) Variants segregating with all definite IA 

in at least one family 24 22 23 19 23 24 19 26 

Variants passing visual inspection and 

manual review with internal database calls 0 0 0 0 0 0 1 1 

A. Variants segregating with all IA (definite, 

probable, possible) or AAA in at least one 

family 0 0 0 0 0 0 0 0 

B. Variants not found in unaffected 

individuals 0 0 0 0 0 0 0 0 
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Table 6. Candidate variants identified through whole exome sequencing in the intracranial aneurysm whole 

exome sequencing families. Chr = chromosome, Pos = position, Ref = reference allele, Alt = alternate allele. Alt 

Freq = alternate allele frequency (consensus frequency for the alternate allele from 1000 Genomes and/or Exome 

Sequencing Project, as described in the Methods), LOD = maximum LOD score for linkage markers found within a 

10Mb window of the sequencing variant, Fam = family, Unaff = number of sequenced unaffected individuals who 

carry the variant, logFC = log fold change of expression differential (N/A indicates no expression data is available 

for the gene), FDR = false discovery rate-adjusted p-value. All variants are predicted to be non-synonymous exonic 

variants except the deletion at the end of the Table. A plus sign (+) denotes a damaging prediction. For variants 

segregating in families B, D, or G, a (§) indicates that variant was also shared by an individual in the same family 

with a probable or possible IA or an abdominal aortic aneurysm.  

Chr Pos Ref Alt Gene Full_Name 
Alt 

Freq 

Protein Prediction 
Programs 

Amino Acid 
Change LOD Fam Unaff 

logF
C FDR 

Poly 
Phen SIFT 

CADD 

1 6631
121 

C T TAS1
R1 

taste 
receptor, 
type 1, 
member 1 

0.0001   + 16.77 
NM_17754
0:exon2:c.
C344T:p.T
115M 

1.08 

D§ 0 N/A N/A 

1 1590
5363 

G T AGMA
T 

agmatine 
ureohydrol
ase 

0.0026   + 15.62 
NM_02475
8:exon4:c.
C711A:p.N

0.83 
F 1 -

0.127 
0.952 
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(agmatinas
e) 

237K 

1 2820
6319 

G A C1orf
38 

chromoso
me 1 open 
reading 
frame 38 

0.0001 + + 17.71 
NM_00110
5556:exon
3:c.G400A:
p.A134T 

0.57 

G§ 0 N/A N/A 

1 2847
7192 

T C PTAF
R 

platelet-
activating 
factor 
receptor 

0.0052 + + 20.80 
NM_00116
4721:exon
3:c.A341G:
p.N114S 

0.57 

G§ 0 -
0.506 

0.867 

1 3376
0820 

G A ZNF3
62 

zinc finger 
protein 362 0.0000 +   21.80 

NM_15249
3:exon8:c.
G1060A:p.
A354 

0.85 

B§ 1 0.336 0.784 

1 3663
8206 

G A MAP7
D1 

MAP7 
domain 
containing 
1 

0.0011 + + 34.00 
NM_01806
7:exon4:c.
G602A:p.R
201Q 

0.47 

D§ 0 0.157 0.792 

1 1119
6801

1 

G A OVGP
1 

oviductal 
glycoprotei
n 1, 
120kDa 

0.0000 + + 12.85 
NM_00255
7:exon4:c.
C311T:p.T
104I 

0.57 

G§ 1 -
0.023 

0.988 

1 1778
9968

9 

C A SEC1
6B 

SEC16 
homolog B 
(S. 
cerevisiae) 

0.0010 + + 21.60 
NM_03312
7:exon25:c.
G3102T:p.
Q1034H 

0.87 

C 0 N/A N/A 

1 1970
7243

4 

T A ASPM asp 
(abnormal 
spindle) 
homolog, 
microcepha
ly 

0.0013 +   14.55 

NM_01813
6:exon18:c.
A5947T:p.
M1983L 0.57 

G§ 1 1.195 0.642 
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associated 
(Drosophila
) 

1 2044
1841

1 

C T PIK3C
2B 

phosphoino
sitide-3-
kinase, 
class 2, 
beta 
polypeptide 

0.0007 + + 35.00 

NM_00264
6:exon15:c.
G2248A:p.
G750S 

0.57 

G§ 1 -
0.505 

0.672 

1 2127
9929

0 

C A FAM7
1A 

family with 
sequence 
similarity 
71, 
member A 

0.0000 +   13.78 

NM_15360
6:exon1:c.
C1071A:p.
S357R 

0.57 

G§ 1 N/A N/A 

1 2282
9005

1 

T G C1orf
35 

chromoso
me 1 open 
reading 
frame 35 

0.0093 +   21.10 
NM_02431
9:exon5:c.
A407C:p.E
136A 

-
0.29 

A 0 -
0.079 

0.934 

2 1018
6509 

C T KLF11 Kruppel-
like factor 
11 0.0003 + + 14.69 

NM_00117
7718:exon
2:c.C224T:
p.P75L 

1.41 

A 0 -
0.129 

0.892 

2 5582
5844 

A G SMEK
2 

SMEK 
homolog 2, 
suppressor 
of mek1 
(Dictyosteli
um) 

0.0026 + + 23.90 

NM_00112
2964:exon
4:c.T629C:
p.F210S 1.43 

E 0 -
0.222 

0.631 

2 7371
8061 

A G ALMS
1 

Alstrom 
syndrome 
1 0.0000 + + 12.02 

NM_01512
0:exon10:c.
A8972G:p.
D2991G 

1.13 

D§ 0 -
0.264 

0.749 
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2 7475
7348 

T C HTRA
2 

HtrA serine 
peptidase 2 0.0030 + + 11.98 

NM_01324
7:exon1:c.
T215C:p.L
72P 

1.43 

E 0 0.267 0.595 

2 1610
2915

7 

G C ITGB6 integrin, 
beta 6 0.0001 + + 17.45 

NM_00088
8:exon6:c.
C844G:p.L
282V 

-
0.84 

G 1 N/A N/A 

3 1261
3755

6 

G A CCDC
37 

coiled-coil 
domain 
containing 
37 

0.0052 +   12.36 
NM_18262
8:exon7:c.
G589A:p.A
197T 

-
0.84 

G 2 N/A N/A 

3 1803
3445

8 

C T CCDC
39 

coiled-coil 
domain 
containing 
39 

0.0026 +   20.70 
NM_18142
6:exon18:c.
G2432A:p.
R811H 

0.22 

A 1 0.167 0.882 

3 1865
0802

4 

A C RFC4 replication 
factor C 
(activator 
1) 4, 37kDa 

0.0000   + 12.98 
NM_00291
6:exon10:c.
T903G:p.H
301Q 

0.83 

F 1 0.125 0.906 

4 1061
5813

4 

C T TET2 tet 
oncogene 
family 
member 2 

0.0000 + + 12.41 
NM_01762
8:exon3:c.
C3035T:p.
P1012L 

0.57 

G§ 1 -
0.231 

0.878 

*4 1066
3917

6 

T A GSTC
D 

glutathione 
S-
transferase
, C-terminal 
domain 
containing 

0.0047 +   22.90 

NM_00103
1720:exon
2:c.T406A:
p.C136S 

0.57 

G§ 1 -
0.199 

0.781 

5 1101
8087 

T C CTNN
D2 

catenin 
(cadherin-

0.0000 +   25.80 NM_00133
2:exon18:c.

-
0.29 

A 0 -
1.940 

0.401 
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associated 
protein), 
delta 2 
(neural 
plakophilin-
related 
arm-repeat 
protein) 

A3083G:p.
K1028R 

5 1408
0189

7 

C T PCDH
GA11 

protocadhe
rin gamma 
subfamily 
A, 11 

0.0007   + 18.54 
NM_01891
4:exon1:c.
C1103T:p.
A368V 

0.57 

G 1 -
0.587 

0.624 

5 1409
5583

5 

C T DIAP
H1 

diaphanous 
homolog 1 
(Drosophila
) 

0.0007 +   36.00 
NM_00521
9:exon14:c.
G1423A:p.
E475K 

0.57 

G 1 0.344 0.612 

5 1499
0105

5 

G A NDST
1 

N-
deacetylas
e/N-
sulfotransfe
rase 
(heparan 
glucosamin
yl) 1 

0.0036 +   18.54 

NM_00154
3:exon2:c.
G239A:p.R
80H 

1.43 

E 0 -
0.157 

0.806 

5 1570
5361

0 

T C SOX3
0 

SRY (sex 
determinin
g region 
Y)-box 30 

0.0013 +   15.84 
NM_17842
4:exon5:c.
A2000G:p.
N667S 

0.83 

F 0 N/A N/A 

6 1331
6909 

G T TBC1
D7 

TBC1 
domain 
family, 
member 7 

0.0042 + + 23.60 
NM_00114
3965:exon
5:c.C413A:
p.A138D 

0.86 

G§ 1 -
0.372 

0.758 
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6 1498
5680

2 

C T PPIL4 peptidylprol
yl 
isomerase 
(cyclophilin
)-like 4 

0.0000 + + 34.00 

NM_13912
6:exon5:c.
G394A:p.G
132S 

-
0.29 

A 0 0.100 0.900 

6 

1594
2063

0 A T 
RSPH
3 

radial 
spoke 3 
homolog 
(Chlamydo
monas) 

0.0002 + + 15.37 
NM_03192
4:exon1:c.
T379A:p.C
127S 

0.57 

G 1 

-
0.140 

0.858 

6 

1677
0970

5 G A 
UNC9
3A 

unc-93 
homolog A 
(C. 
elegans) 

0.0052 +   24.10 
NM_00114
3947:exon
3:c.G455A:
p.G152D 

0.85 

B 1 

N/A N/A 

6 

1683
1779

4 A C 
MLLT
4 

myeloid/ly
mphoid or 
mixed-
lineage 
leukemia 
(trithorax 
homolog, 
Drosophila)
; 
translocate
d to, 4 

0.0000 + + 26.90 

NM_00120
7008:exon
18:c.A2522
C:p.K841T 

0.57 

G§ 1 

-
0.150 

0.884 

8 
7295
8750 T A 

TRPA
1 

transient 
receptor 
potential 
cation 
channel, 
subfamily 
A, member 

0.0000 +   14.64 NM_00733
2:exon17:c.
A2059T:p.
N687Y 

-
0.96 

G 0 

N/A N/A 

47 



 
 

1 

9 
2116
6077 T C 

IFNA2
1 

interferon, 
alpha 21 

0.0002   + 10.42 
NM_00217
5:exon1:c.
A535G:p.K
179E 

1.12 

D§ 0 

N/A N/A 

9 
3540
4008 G A 

UNC1
3B 

unc-13 
homolog B 
(C. 
elegans) 

0.0006 + + 34.00 
NM_00637
7:exon39:c.
G4754A:p.
R1585H 

0.83 

F 1 

-
0.377 

0.658 

10 
1324
0791 C A 

MCM1
0 

minichromo
some 
maintenanc
e complex 
component 
10 

0.0049 +   17.17 NM_01851
8:exon16:c.
C2222A:p.
T741K 

0.85 

B 1 

1.318 0.563 

10 
4708
7309 G C 

PPYR
1 

pancreatic 
polypeptide 
receptor 1 

0.0000 + + 15.45 
NM_00597
2:exon3:c.
G526C:p.A
176P 

0.57 

G§ 1 

N/A N/A 

10 
8218
7167 G A 

C10or
f58 

chromoso
me 10 
open 
reading 
frame 58 

0.0013 +   36.00 
NM_03233
3:exon5:c.
G491A:p.R
164Q 

0.56 

G 1 

N/A N/A 

10 

1052
1830

1 C G 
CALH
M1 

calcium 
homeostasi
s 
modulator 
1 

0.0001 +   16.88 
NM_00100
1412:exon
1:c.G208C:
p.V70L 

-
0.29 

A 1 

N/A N/A 

10 

1057
2757

2 C G SLK 

FYN 
oncogene 
related to 

0.0000 + + 20.60 
NM_01472
0:exon1:c.
C69G:p.H2

-
0.29 A 1 

0.182 0.774 
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SRC, FGR, 
YES 

3Q 

ǂ1
0 

1057
9739

7 G A 
COL1
7A1 

collagen, 
type XVII, 
alpha 1 

0.0005   + 14.75 
NM_00049
4:exon46:c.
C3205T:p.
R1069W 

0.57 

G 1 

N/A N/A 

10 

1058
9343

6 T G 
WDR9
6 

WD repeat 
domain 96 

0.0005 +   23.90 
NM_02514
5:exon35:c.
A4538C:p.
D1513A 

-
0.29 

A 1 

0.048 0.988 

11 
4001

24 C G PKP3 
plakophilin 
3 

0.0013 + + 12.37 
NM_00718
3:exon6:c.
C1431G:p.
N477K 

-
0.71 

G§ 0 

N/A N/A 

11 
7307
4872 G A 

ARHG
EF17 

Rho 
guanine 
nucleotide 
exchange 
factor 
(GEF) 17 

0.0003 + + 18.47 NM_01478
6:exon16:c.
G5327A:p.
C1776Y 

1.13 

D§ 0 

0.162 0.931 

11 

1082
7786

1 C T 
C11or
f65 

chromoso
me 11 
open 
reading 
frame 65 

0.0064 + + 21.30 
NM_15258
7:exon4:c.
G190A:p.A
64T 

1.13 

C 1 

N/A N/A 

11 

1247
4285

1 G A 
ROBO
3 

roundabout
, axon 
guidance 
receptor, 
homolog 3 
(Drosophila
) 

0.0004 + + 20.20 NM_02237
0:exon9:c.
G1402A:p.
V468M 

1.31 

A 0 

-
0.019 

0.993 
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11 

1261
4703

5 T G 
FOXR
ED1 

FAD-
dependent 
oxidoreduct
ase domain 
containing 
1 

0.0013 + + 18.40 NM_01754
7:exon10:c.
T1171G:p.
L391V 

-
0.58 

F 1 

-
0.152 

0.815 

ǂ1
2 

2968
094 G T 

FOXM
1 

forkhead 
box M1 

0.0000 + + 13.37 
NM_20200
3:exon8:c.
C1957A:p.
P653T 

0.29 

D§ 0 

0.885 0.615 

*12 
1263
0140 T G 

DUSP
16 

dual 
specificity 
phosphatas
e 16 

0.0026 +   16.34 
NM_03064
0:exon7:c.
A1625C:p.
D542A 

-
0.69 

B§ 2 

-
0.324 

0.686 

*12 
4949
8284 T G 

LMBR
1L 

limb region 
1 homolog 
(mouse)-
like 

0.0040 +   16.10 
NM_01811
3:exon5:c.
A382C:p.M
128L 

0.83 

F 2 

0.156 0.824 

12 
5633
5802 T C DGKA 

diacylglyce
rol kinase, 
alpha 
80kDa 

0.0000   + 17.40 
NM_00134
5:exon16:c.
T1271C:p.
V424A 

1.11 

D 0 

0.551 0.544 

*12 
9637
4381 C A HAL 

histidine 
ammonia-
lyase 

0.0006 + + 25.70 
NM_00210
8:exon17:c.
G1472T:p.
G491V 

1.14 

D§ 1 

-
0.479 

0.922 

12 

1261
3906

9 C T 
TMEM
132B 

transmemb
rane 
protein 
132B 

0.0002 + + 10.88 
NM_05290
7:exon9:c.
C3050T:p.
S1017L 

1.14 

D 0 

-
2.626 

0.023 

15 
7501
4793 T A 

CYP1
A1 

cytochrome 
P450, 

0.0003 + + 14.09 NM_00049
9:exon2:c.

0.83 
F 1 

N/A N/A 
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family 1, 
subfamily 
A, 
polypeptide 
1 

A646T:p.S
216C 

16 
4494

49 G A NME4 

non-
metastatic 
cells 4, 
protein 
expressed 
in 

0.0000   + 11.74 NM_00500
9:exon3:c.
G296A:p.R
99H 

0.85 

B§ 1 

-
0.076 

0.943 

*16 
2133
701 G A TSC2 

tuberous 
sclerosis 2 

0.0040 +   12.84 

NM_00111
4382:exon
32:c.G3820
A:p.A1274
T 

0.85 

B§ 1 

-
0.229 

0.658 

16 
1178
5220 G A 

TXND
C11 

thioredoxin 
domain 
containing 
11 

0.0014 +   18.28 
NM_01591
4:exon8:c.
C1826T:p.
A609V 

0.85 

B§ 1 

0.134 0.896 

16 
2079
6338 G A 

ACSM
3 

acyl-CoA 
synthetase 
medium-
chain 
family 
member 3 

0.0013 + + 22.00 NM_00562
2:exon8:c.
G1052A:p.
S351N 

0.57 

G 0 

0.751 0.496 

16 
5332
1892 A G CHD9 

chromodo
main 
helicase 
DNA 
binding 
protein 9 

0.0076   + 18.22 NM_02513
4:exon27:c.
A5213G:p.
K1738R 

0.65 

G 0 

0.095 0.910 

51 



 
 

17 
5425
076 A G 

NLRP
1 

NLR family, 
pyrin 
domain 
containing 
1 

0.0042   + 10.35 
NM_03300
7:exon12:c.
T3461C:p.
M1154T 

-
0.56 

D§ 0 

0.293 0.727 

17 
4876
2223 G A 

ABCC
3 

ATP-
binding 
cassette, 
sub-family 
C 
(CFTR/MR
P), 
member 3 

0.0013 + + 22.70 
NM_00378
6:exon29:c.
G4267A:p.
G1423R 

0.85 

B§ 0 

-
0.043 

0.994 

17 
6143
2613 T A 

TANC
2 

tetratricope
ptide 
repeat, 
ankyrin 
repeat and 
coiled-coil 
containing 
2 

0.0000 + + 25.00 
NM_02518
5:exon12:c.
T2222A:p.
F741Y 

0.85 

B§ 0 

-
0.213 

0.859 

19 
1159
8418 G A 

ZNF6
53 

zinc finger 
protein 653 

0.0000   + 16.16 
NM_13878
3:exon4:c.
C860T:p.A
287V 

1.41 

A 1 

0.168 0.829 

19 
1322
6094 G A 

TRMT
1 

TRM1 
tRNA 
methyltrans
ferase 1 
homolog 
(S. 
cerevisiae) 

0.0002 + + 20.70 NM_01772
2:exon4:c.
C640T:p.R
214W 

1.41 

A 1 

0.222 0.737 
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19 
5717
5814 C G 

ZNF8
35 

zinc finger 
protein 835 

0.0009 +   18.91 
NM_00100
5850:exon
2:c.G753C:
p.E251D 

0.86 

G 1 

-
0.797 

0.556 

19 
5772
3459 C T 

ZNF2
64 

zinc finger 
protein 264 

0.0000 + + 11.70 
NM_00341
7:exon4:c.
C994T:p.R
332W 

0.86 

G 1 

-
0.132 

0.882 

20 
4446
3002 A G 

SNX2
1 

sorting 
nexin 
family 
member 21 

0.0000 +   22.20 
NM_15289
7:exon2:c.
A184G:p.S
62G 

0.85 

B§ 1 

-
0.220 

0.797 

6 1533
1234

3 

TT
TT
A 

T MTRF
1L 

mitochondri
al 
translationa
l release 
factor 1-like 

0.0000 

NA 

+ 
(SIFT

-
INDE

L) 

14.77 

NM_01904
1:exon6:c.9
15_918del:
p.305_306
del 

0.57 G 1 -
0.095 

0.924 
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Of the 68 retained variants, five variants (found in the genes GSTCD, DUSP16, 

LMBR1L, HAL, and TSC2) were found in definite IAs in two families; in all of 

these cases, the variant segregated fully with definite IA in only one family. Two 

other variants (found in the genes COL17A1 and FOXM1) were the only variants 

of the 68 retained variants that were labeled with vascular-related GO 

annotations (i.e. GO:0005604 basement membrane and GO:0005581 collagen; 

and GO:0001570 vasculature development and GO:0001570 vasculogenesis; 

respectively). 

 

Linkage 

The distribution of genome-wide LOD scores for each family is depicted in 

Figures 6-12, with the WES variants satisfying biological filters 1-6 

superimposed. The maximum possible LOD score for each family given the 

model parameters and the specific pedigree structure is also reported in Figures 

6-12. The highest LOD score obtained by linkage markers within a 10Mb window 

centered on each sequencing variant is recorded in Table 6. Of the 68 WES 

variants satisfying biological filters 1-6 and manual inspection, 23 variants had a 

LOD score for a linkage marker within 10Mb of the sequencing variant that fell 

within 0.01 of the highest possible LOD score for that family. 

 



 
 

Figure 6. Summary of genome-wide multipoint linkage analysis for intracranial aneurysm whole exome 

sequencing Family A. Positions of candidate single nucleotide variants and insertion/deletions identified in the 

sequencing data are denoted by diamonds and crosses, respectively. 
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Figure 7. Summary of genome-wide multipoint linkage analysis for intracranial aneurysm whole exome 

sequencing Family B. Positions of candidate single nucleotide variants and insertion/deletions identified in the 

sequencing data are denoted by diamonds and crosses, respectively. 
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Figure 8. Summary of genome-wide multipoint linkage analysis for intracranial aneurysm whole exome 

sequencing Family C. Positions of candidate single nucleotide variants and insertion/deletions identified in the 

sequencing data are denoted by diamonds and crosses, respectively. 
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Figure 9. Summary of genome-wide multipoint linkage analysis for intracranial aneurysm whole exome 

sequencing Family D. Positions of candidate single nucleotide variants and insertion/deletions identified in the 

sequencing data are denoted by diamonds and crosses, respectively. 
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Figure 10. Summary of genome-wide multipoint linkage analysis for intracranial aneurysm whole exome 

sequencing Family E. Positions of candidate single nucleotide variants and insertion/deletions identified in the 

sequencing data are denoted by diamonds and crosses, respectively.  
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Figure 11. Summary of genome-wide multipoint linkage analysis for intracranial aneurysm whole exome 

sequencing Family F. Positions of candidate single nucleotide variants and insertion/deletions identified in the 

sequencing data are denoted by diamonds and crosses, respectively.  
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Figure 12. Summary of genome-wide multipoint linkage analysis for intracranial aneurysm whole exome 

sequencing Family G. Positions of candidate single nucleotide variants and insertion/deletions identified in the 

sequencing data are denoted by diamonds and crosses, respectively. 
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The 23 variants within a possible linkage peak were distributed among all 

families except family F, where the highest LOD score for a linkage marker within 

10Mb of a filtered sequencing variant was 0.83 but the highest possible LOD 

score for the family was 1.12. Family B had the most retained variants within 

possible linkage peaks (n=9); followed by family D (n=4); families A, E, and G 

(n=3); and family C (n=1). Of the 23 variants, only 8 also met the optional 

prioritization criteria of segregating with all aneurysmal phenotypes and not being 

carried by an unaffected individual (KLF11 variant in family A, variants in ABCC3 

and TANC2 in family B, variants in ALMS1 and ARHGEF17 in family D, and 

variants in SMEK2, HTRA2, and NDST1 in family E). 

 

While none of the 68 variants coincided with well-established GWAS association 

signals, 6 of the variants were found within IA linkage peaks identified in 

previously published family studies, independent of the families in this report. 

Four variants (found in the genes C1orf38, PTAFR, ZNF362, and MAP7D1) fell 

within the linkage peak 1p34.3-36.13,90,91 while 2 variants (found in the genes 

ROBO3 and FOXRED1) were located in the linkage peak 11q24-25 93-95. None of 

these 6 genes were suggested as candidate genes by the authors of the 

published linkage studies. The linkage regions each cover hundreds of genes, as 

they span approximately 24 and 14 Mb respectively. 
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RNA expression 

Expression data was obtained in 51 of the 68 candidate genes in an independent 

set of IA cases and controls. Log fold changes and FDR-adjusted p-values for 

each gene is displayed in Table 6. Only 1 gene (TMEM132B) of the 51 genes 

showed differential expression (overexpressed with log fold change=2.63, FDR-

adjusted p-value=0.023). 

 

Discussion 

TMEM132B 

Exome sequencing presents an opportunity to explore the contribution of rare 

variation to complex disorders like IA. We have used this approach to identify 68 

rare variants in 68 genes that segregate within 7 densely affected families. Of the 

51 genes that were expressed in IA tissue, one gene (TMEM132B) was found to 

be significantly overexpressed in IA tissue in comparison to control vascular 

tissue. 

 

TMEM132B, or transmembrane protein 132B, is a relatively uncharacterized 

protein of unknown function. The variant segregating in the family is rare (0.024% 

frequency in European American samples in the Exome Sequencing Project and 

not found in 1000 Genomes) and predicted damaging by SIFT, PolyPhen-2, and 

CADD due to a change from the polar amino acid serine to the nonpolar amino 

acid leucine at a highly conserved position. Each of the individuals with a definite 

IA in family D was heterozygous for the variant. Mutations inherited in a dominant 
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manner often lead to a disease phenotype through a gain of function mechanism, 

which would be supported by the overexpression of TMEM132B in IA tissue as 

compared to control vessels. It is also possible, however, that dominantly-

inherited mutations exert their effect via haploinsufficiency or dominant negative 

mechanisms. Further studies are required to confirm the role of TMEM132B in IA 

and through what mechanism the variant identified in this study may act. 

 

The TMEM132B variant was not inherited by individual 11 in family D. Individual 

11 was diagnosed as a possible IA due to the presence of a small aneurysm 

identified through non-invasive imaging (i.e. 1-2mm, verified by 3 independent 

neurologists). This is in contrast to the definite IAs clearly identified in this 

individual’s sibling and cousins; thus, individual 11 is most likely actually 

unaffected. 

 

Prioritization of variants within families 

Expression information was only available for 51 of the 68 candidate genes; thus, 

RNA expression cannot confirm or rule out the role of the remaining 17 genes in 

IA pathophysiology. Additionally, a subset of the other 50 variants with 

expression data may also contribute to IA in ways not captured by the RNA 

expression experiment and should be explored. In order to further study the 

cause of IA in each of the remaining families, candidate variants in each family 

must be prioritized. 
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In families C and E, segregation analysis reduced the number of prioritized 

variants to only 2 and 4 variants, respectively. For family C, the two variants have 

a CADD score >20. The variant in SEC16B is not found within a potential linkage 

peak; however, in support of its potential significance in disease susceptibility, it 

is not carried by any tested unaffected family member. The variant in C11orf65, 

on the other hand, is found within a potential linkage peak but is also inherited by 

an unaffected family member. For family E, three variants segregate in the family 

(and a fourth variant in GSTCD is found in only one individual in family E but 

segregates fully in family G). The three variants that segregate in the family (in 

genes SMEK2, HTRA2, and NDST1) all are found within potential linkage peaks. 

Data are not available from any unaffected family members. Therefore, further 

prioritization among these three variants could incorporate CADD scores, which 

range from 11.98 for the HTRA2 variant to 23.9 for the SMEK2 variant. 

 

Considerations for pedigree and phenotypic data 

It is possible that genetic heterogeneity, phenocopies, or gene-environment 

interactions could explain one or more IAs in the families chosen for this study. In 

this case, the criterion requiring all affected individuals to share a variant would 

miss important disease-contributing variants. Similar family-based sequencing 

studies in the future could relax this segregation criterion with the recognition that 

a much larger number of variants will be retained. Family-based aggregative 

association tests that incorporate different penetrance models could also be 

employed with a larger number of samples. 
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The availability and quality of clinical data is also critical to consider in complex 

disease WES studies. In this study, several families also had individuals with 

probable and possible IAs (see Table 3 for phenotype definitions), and one family 

also had an occurrence of an abdominal aortic aneurysm (Figure 5). Given the 

high density of definite IAs in these families, it is likely that some or all of the 

probable and possible IAs have disease due to the same disease-contributing 

variant. Additionally, given the possible genetic link between different forms of 

aneurysms,109 the abdominal aortic aneurysm may also share the same genetic 

etiology within that family. We thus flagged variants that segregated fully among 

all individuals with an aneurysm (definite, probable, or possible IA, or an 

abdominal aortic aneurysm) (Tables 4-5). This represents a possible method for 

prioritizing variants for further study, with the caveat that including non-definite 

IAs increases the likelihood of genetic heterogeneity, phenocopies, and gene-

environment interactions. 

 

Another approach to prioritize variants for further study is to utilize genotypic data 

from unaffected individuals. The ability of this approach to rapidly narrow down 

the number of variants under consideration is readily apparent from this study 

(Tables 4-5), but there are major concerns about inflating false negative rates by 

using unaffected individuals. Given the traditionally late age of onset for 

intracranial aneurysms, only individuals who had an MRA confirming the absence 

of IA at age 45 or older were sequenced as unaffected samples. Despite these 

precautions, the unaffected individuals in this study were still relatively close in 
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age to the age at diagnosis of their relatives who had an IA, and it is possible that 

the unaffected individuals will actually develop an IA later in life due to a genetic 

predisposition. 

 

The difficulty in defining an unaffected also surfaces when considering the 

putative obligate carriers in these families. In Family A, individual A-7 also had an 

MRA done at age 64 that excluded the presence of an IA, yet we would posit that 

this individual likely passed a causative genetic variant to her daughter (A-10), 

whose IA is more likely to have a genetic basis due to her young age of onset. 

Without the daughter’s data, individual A-7 would have likely been chosen as an 

unaffected individual for sequencing, especially given that she had major 

environmental risk factors (a history of smoking and hypertension). In Family E, 

the sequenced individual E-9 is also an obligate carrier under our model. Unlike 

individual A-7, an MRA could not be obtained on individual E-9, and she did not 

have a history of smoking or hypertension. Since all affected individuals in family 

E had at least one environmental risk factor and individual E-9 did not, it is 

possible that the causative genetic variant in family E requires an additional 

environmental insult to lead to IA development. The importance of strong 

environmental risk factors such as smoking to the development of aneurysms, 

even in the context of rare causal genetic variants, cannot be underestimated. 

Alternative methods of prioritization of variants that incorporate this possibility 

should be explored. Thus, unaffected status in this study was used as a 

mechanism for possible prioritization but not for automatic exclusion of variants. 
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The ability to use unaffected individuals will vary in studies of different diseases 

and will likely be more fruitful in those diseases that appear to have a smaller 

environmental/lifestyle contribution. 

 

For future family-based sequencing studies in complex disease, it may not be 

feasible to sequence as many individuals per pedigree as was done for this 

study. Thus, it is critical to carefully select samples based on the quality of 

phenotyping and the pedigree structure. Recently developed tools offer statistical 

methods to select related subjects for sequencing based on genetic distance,110 

samples that span multiple generations (Exome Picks, 

http://genome.sph.umich.edu/wiki/ExomePicks), and a combination of both of 

these methods.111 As evident from Tables 4-5, selecting families with more 

closely related individuals, such as families with full siblings as in Families F and 

G, will yield a smaller number of initially called variants across the family. Yet, the 

power to narrow down the number of variants segregating with disease is 

diminished in such families due to the naturally larger percentage of alleles 

shared, as compared to families with individuals in multiple generations such as 

in Family C. Thus, where possible, selection of more distantly related family 

members for sequencing studies will have greater power to generate a narrowed 

list of prioritized variants.  

 

For some families, it may be possible to combine linkage and sequencing data to 

find causative variants. The families sequenced in this study were included as a 

http://genome.sph.umich.edu/wiki/ExomePicks
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part of a larger linkage study reported previously.92 The same model parameters 

used for WES variant filtering was applied for multipoint linkage analysis. Since 

any given marker may have been uninformative for a family, a maximum LOD 

score was reported within a 10Mb window of the sequence variant’s 

chromosomal position. Although only modest evidence of linkage was obtained, 

several sequencing variants lay within the linkage regions in these families 

(Figures 6-12). Many variants, however, did not overlap with any evidence of 

linkage, suggesting that these families were either not fully informative for robust 

linkage analysis near these loci, or the sequencing variants identified are not 

causative genetic variants in these families. 

 

Considerations for exonic variation 

In recent years, WES has emerged as a practical method for systemically 

exploring rare coding variation. Since the majority of known genetic causes of 

Mendelian disorders affect protein coding regions,31 the exome is a logical 

starting place to identify potentially causative variants in diseases that exhibit 

Mendelian inheritance. The densely-affected families sequenced in this study 

appear to display autosomal dominant inheritance; therefore, we hypothesized 

that coding variants may explain most or even all of these cases. 

 

Due to imperfect capture and alignment, WES generates some off-target, non-

exonic variant calls. While it is possible that important variation exists in these 

off-target regions, a higher percentage of calls in these regions are of poorer 
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quality. Thus, only those variants within exonic or splicing regions were retained 

in this experiment. Since different databases contain different numbers of and 

boundaries for genes and exons,112 a consensus prediction of gene and exon 

boundaries was made to determine those variants that fell within exonic or 

splicing regions. In order to minimize the type I error rate by using functional 

predictions of the highest confidence, the intersection of functional predictions 

from three different databases (RefSeq, UCSC, and Ensembl) was used for this 

study. Thus, variants were only retained if they were predicted by all three 

databases to be within exonic or splicing regions. Other WES studies may 

choose to generate a larger set of variants by prioritizing all variants in the union 

rather than the intersection of functional predictions from multiple databases; 

however, appropriate methods for validating variants with functional predictions 

that differ by database should be employed. 

 

It is possible that non-coding variants and/or epistatic interactions are important 

in IA development in these families and in other complex diseases, in which case 

alternate study designs should be utilized. At the time of this study, whole 

genome sequencing could have only been employed at the expense of 

sequencing fewer individuals, and annotations and bioinformatics tools available 

for non-coding sequence were less robust. Given that whole genome sequencing 

generates about 3 million SNVs per genome,113 annotations and bioinformatics 

tools are even more critical for practical prioritization of candidate variants. In the 

future, techniques like whole genome sequencing, as well as targeted 
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resequencing, transcriptome sequencing, and other high throughput study 

designs, can be applied to fully catalogue the role of genetic variation in IA 

development. 

 

Considerations for allele frequency 

The average individual has around 15,000 exonic SNVs differing from the 

reference human genome sequence.103 In order to narrow down the number of 

variants identified by a WES study, initial studies34,35 focused on rare diseases 

and limited analysis to novel variants. This strategy is too restrictive for more 

common diseases such as IA. In the particular subset of families used for this 

study, there is a uniquely high incidence of IA, which enriches for the possibility 

of identifying rare, highly penetrant variants of larger effect sizes. Rare variants 

and less common variants are typically defined as less than 1% and 1-5% minor 

allele frequency, respectively.114,115 Given the rarity of families that are as 

densely affected as the ones in this study, a 1% minor allele frequency threshold 

was set. It is possible, however, that a variant of higher minor allele frequency 

causes IA in one or more of these families. Future studies with a much larger 

sample size could employ aggregative association tests42 with relaxation of the 

allele frequency threshold. 

 

In this study, allele frequencies specifically from European American populations 

were available from public databases. Given that rare variants can be population-

specific,116 the selection of appropriate allele frequency databases is critical. In 
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lieu of publicly available allele frequencies, future studies may consider 

sequencing a large number of internal controls and possibly requesting 

commonly available controls to sequence as well. While not feasible for the 

current study, such a design would help control for platform- and pipeline-specific 

artifacts in sequencing while ensuring phenotyping quality for controls. 

 

While it is standard for WES studies to utilize public databases to filter variants, it 

is also valuable to use internal frequency databases that are specific to the 

sequencing and variant calling pipeline. Because variant calling can be lab-

specific due to the technology used, in this study variants were annotated for 

binned minor allele frequencies from 290 unrelated samples without a known 

cardiovascular phenotype that were exome sequenced at CIDR. Thus variants 

that would have otherwise been considered rare or novel when compared 

against public databases, but that were actually a recurring artifact of the 

sequencing, were captured as having a high CIDR binned minor allele frequency. 

Given that the bioinformatics pipeline used in this study differed slightly from that 

of the internal database, the internal database filter may have missed some 

artifacts specific to the variant calling method. Variants that were monomorphic 

(i.e. all heterozygous or homozygous for the alternate allele) across all samples 

were also removed since it is highly unlikely that the identical rare disease-

causing allele would be shared by both affected and unaffected individuals in 

multiple families. 
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Indel allele frequencies in both internal and external databases are inherently 

less accurate than frequencies for SNVs, due to the increased difficulty and 

variation in calling structural variants. Also, differences in how position 

coordinates are assigned as well as reference and alternate allele designations 

further makes comparison challenging. The 26 indels that passed biological 

filters 1-6 (described in the Methods) in all cases except for one were shared in 

almost all or all of the 7 families sequenced in this study. Just as variants that 

were monomorphic across all datasets were removed as probable sequencing or 

pipeline artifacts, it is very unlikely that any given rare disease-causing 

insertion/deletions would also be shared across all or almost all families in a 

complex disease. It is possible that multiple families may carry different disease-

causing insertion/deletions in the same gene, but this pattern was not seen. 

Thus, a second internal frequency comparison set of 500 samples that had a 

more similar bioinformatics pipeline to the IA samples sequenced in this study 

(i.e. use of GATK Unified Genotyper for variant calling) was used for manual 

review in combination with IGV visual inspection for the 26 indels remaining after 

application of biological filters. Manual review as described in the Methods 

excluded all but one of the 26 indels, demonstrating that manual inspection and 

use of an internal dataset generated by a similar bioinformatics pipeline are 

critical for reviewing insertion/deletions in sequencing experiments. Future 

studies may also consider utilizing newer local re-assembly-based methods for 

variant calling, such as FreeBayes117 or GATK’s HaplotypeCaller, which may 

improve the accuracy of insertion/deletion calls. 
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Considerations for functional predictions of exonic variation 

More severe amino acid substitutions are more likely to present clinically,31 so 

most WES studies to date have focused on non-synonymous SNVs and 

insertion/deletions. In this study, we also opted to focus on these variants, as 

predicted by the intersection of the three gene databases (RefSeq, UCSC, and 

Ensembl). Future studies focused on exonic variation could also study the effect 

of synonymous variation, which has been shown to also play an important role in 

human disease.118 At the time of this study, fewer validated tools existed to 

examine the role of synonymous variation in sequencing data. 

 

In this study, several programs were used to measure the level of conservation of 

a locus and the predicted pathogenicity of a variant. The programs have varying 

degrees of sensitivity and specificity for different kinds of variants, particularly 

due to the use of different but not completely independent data sources when 

generating predictions.79 The bioinformatics community is working to develop 

tools that will be able to better integrate information to provide a more informed 

pathogenicity prediction. One such tool, the CADD program,46 was recently 

introduced but has not been applied to a large number of datasets. Since there 

are few published studies implementing CADD, we have conservatively removed 

only variants with a C-score <10, thus retaining variants that are predicted by 

CADD to be among the 10% most deleterious substitutions in the human 

genome. 
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Considerations for biological processes and pathways 

The filtering schema did not employ any assumptions about biological processes 

or pathways. Variants were annotated for GO terms chosen for possible relation 

to IA formation; however, only two variants in the final candidate variant list 

(variants found in the genes COL17A1 and FOXM1) had one or more of these 

GO annotations. While using GO annotations as a filter is a powerful method for 

narrowing a list of variants, such an approach would depend on the 

comprehensiveness of GO annotations, as well as the reliability of investigator-

chosen GO terms. To avoid subjectivity in selecting biological processes or 

pathways, future studies with larger sample sizes should consider employing 

formal gene set enrichment analysis, which eliminates the need to choose 

pathways a priori. Even for smaller datasets, use of GO annotations may help 

determine which gene variants to pursue first in additional experiments to explore 

possibly causal associations between the variant and disease of interest. 

 

Summary 

This is one of the few studies published to date that apply WES in a cohort of 

well-characterized families densely affected with a common complex disease 

without an a priori focus on a particular pathway or genomic region. We have laid 

out many considerations for future WES studies in complex disease, including 

the use of pedigree and phenotypic data, defining gene and exon boundaries, 

sources for allele frequency estimates, proper interpretation of in silico functional 

predictions, the role of environmental factors in the determination of potentially 
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causal rare variants, and the possible utility of combining pathway information 

with sequencing data. 

 

In this study, 68 rare exonic variants in 68 genes were identified. Of these genes, 

one gene (TMEM132B) was significantly differentially expressed in IA versus 

control tissue. Further studies are needed to confirm and explore the TMEM132B 

variant, as well as the possible contribution of the other 67 variants. Replication 

and/or meta-analysis with similar sequencing studies using larger sample sizes 

could be used to gather further evidence for specific genes on this list. 

Additionally, a subset of these variants, which can be prioritized through any of 

the methods discussed in this study, could be explored through functional studies 

in models where vascular phenotypes can be easily observed, such as zebrafish. 

Targeted gene editing, such as through the CRISPR-Cas system, could help test 

whether a given variant disrupts the normal functioning of the relevant gene and 

whether such a disruption leads to a phenotype of interest. Ultimately, such a 

model should also enable investigation of whether the disrupted phenotype can 

be rescued by reintroduction of the wild type allele or interference with the variant 

allele. For comprehensive exploration of the variants identified in this study, 

multiple methods of experimental validation may be necessary. This study 

represents a necessary first step in the evaluation of role of rare variants in a 

common complex disease. Further evaluation in other familial and sporadic 

samples, as well as multi-ethnic samples, will be essential  



77 
 

CHAPTER II: PARKINSON DISEASE 

 

Introduction 

Parkinson’s disease (PD) is a progressive neurodegenerative disease for which 

susceptibility is linked to genetic and environmental risk factors. Linkage studies 

have previously identified very rare variants in multigenerational families119-123 

that have a large effect on disease risk. Genome-wide association studies have 

recently revealed common loci that have relatively small individual effects on PD 

susceptibility.113,124 Despite these advances, currently only about 6-7% of the 

heritability of PD has been explained.125  

 

One approach to identify other potential genes and variants contributing to 

disease risk is through the analysis of personal genomes using high-throughput 

sequencing to highlight variants that exert a significant effect on disease 

susceptibility. The likelihood of detecting such variants can be enriched through 

the sequencing of PD patients with a family history of PD, who may be more 

likely to have a genetic contribution to disease susceptibility. Whole exome 

sequencing (WES) typically yields over 20,000 exonic single nucleotide variants 

(SNVs) per individual sequenced,30 requiring a strategy to narrow the number of 

variants of interest. Successful approaches have included aggregative 

association tests in large samples of unrelated individuals65,126,127 and filtering 

strategies within large and densely affected pedigrees128,129 or consanguineous 

families.130 Cohort studies of unrelated individuals are potentially limited by the 
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cost of WES in large numbers of subjects. While family-based strategies facilitate 

variant prioritization based on allele sharing and segregation, they are potentially 

insensitive to incompletely penetrant variants, intra-familial heterogeneity, and 

oligogenic inheritance, all of which are considerations in complex genetic 

disorders such as PD.131 

 

WES in PD has been reported in studies involving one or a few families128,129,132-

135 or in candidate gene investigations.136 In this report, we sequenced exomes 

from a discovery cohort of 93 individuals in 32 multiplex PD families. We then 

analyzed the genes with variants of interest in a replication cohort of familial PD 

probands to identify a subset of candidate genes containing rare, potentially 

functional variants that may contribute to disease risk (Figure 13). 
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Figure 13. Parkinson disease whole exome sequencing study design. 

DISCOVERY COHORT 
• Sequence families 
• Retain rare, functional, variants predicted to be 

damaging that segregate with disease 
• Retain genes in functional pathways that are 

expressed in the brain and have variants seen in ≥5 
families 

REPLICATION COHORT 
• Retain rare, functional, variants predicted to be 

damaging 
• Catalogue variation observed in the replication 

cohort in the genes  identified in the discovery 
cohort 

VALIDATE VARIANTS 
• Validate all variants identified in the discovery or 

replication cohorts in the replicated genes 
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Materials and methods 

Discover cohort subjects 

The study protocol was approved by the Indiana University Institutional Review 

Board (IRB) as well as the ethics boards of all study sites. Families with at least 

one pair of living siblings diagnosed with PD were recruited and evaluated 

throughout North America by Parkinson Study Group (PSG) movement disorder 

neurologists. Written informed consent was obtained from all participants. 

Validated diagnostic checklists137,138 implementing UK PD Brain Bank (UKPDBB) 

criteria, modified to allow for familial PD, were completed for all study 

participants. PD patients were classified as having either verified PD (VPD) or 

non-verified PD (NVPD).  NVPD cases displayed clinical symptoms similar to PD 

but either failed to meet all UKPDBB inclusion criteria or met at least one of the 

exclusion criteria. All study subjects were offered the opportunity to participate in 

a brain-only autopsy program. Peripheral blood for DNA extraction was obtained 

from all consented individuals. 

 

Exome sequencing of discovery samples 

WES was performed on 32 families with the largest number of VPD cases, 

without another segregating neurological disorder, and without a known 

causative PD mutation in LRRK2 or parkin. Among the 32 families were 90 

subjects meeting criteria for VPD who were included for sequencing. An 

additional 3 individuals who were initially classified as NVPD were also included. 

Two of these individuals had subsequent neuropathological findings consistent 
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with PD. The third subject met all PD clinical inclusion criteria (including onset 

after 20 years of age, bradykinesia, persistent asymmetry, diagnosis by a 

movement disorder neurologist) and had significant supporting criteria (including 

rigidity, postural instability, a resting tremor, disease progression, and a positive 

response to levodopa) but met the solitary exclusion criterion of having 

concomitant Alzheimer disease and sensory deficits. For the purposes of 

subsequent analyses, this individual was considered to be affected. Of the 32 

families, 6 families had 2 affected members sequenced, 23 families had 3 

affected members sequenced, and 3 families had 4 affected members 

sequenced. 

 

All samples were sequenced at one of two centers (44 samples representing 15 

families at the Center for Inherited Disease Research [CIDR], and 53 samples 

representing 18 families at the HudsonAlpha Institute for Biotechnology). One 

family with 4 members was sequenced at both centers for quality assurance. The 

Agilent SureSelect 50Mb Human All Exon Kit (CIDR) and Nimblegen 44.1Mb 

SeqCap EZ Exome Capture version 2.0 (HudsonAlpha) were used for capture, 

and the Illumina HiSeq 2000 system was used for 100bp paired-end sequencing. 

 

For the one family sequenced at both centers, summary sequencing statistics 

were compared to assess quality. Because two different captures were used, 

statistics were calculated only for those loci targeted by both capture kits. The 

intersection of variants found at both sequencing centers (32,280) and those sets 
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of SNVs found only at one center (3,061 for CIDR and 640 for HudsonAlpha) 

were examined. For SNVs found at the intersection, the genotype concordance 

rate was 99.0%, transition/transversion ratio was 3.0, and 99.0% were found in 

dbsnp137. Of those SNVs only identified at CIDR, the transition/transversion 

ratio was 2.4, and 98.3% were found in dbSNP137. For those SNVs found only 

at HudsonAlpha, the transition/transversion ratio was 1.8, and 86.1% were 

identified in dbSNP137. 

 

Samples were aligned to the human genome reference sequence (build hg19) 

using Burrows Wheeler Aligner43. The Genome Analysis Toolkit (GATK)44 was 

used for local realignment, base quality score recalibration, and multi-sample 

variant calling (Unified Genotyper) for the samples sequenced at CIDR and 

HudsonAlpha separately. GATK Variant Quality Score Recalibration102 and 

recommended GATK training sets (i.e. HapMap 3.3 and Illumina Omni 2.5M chip 

sites, available from GATK bundle 1.2) were used to create a high-quality set of 

variant calls.  

 

Annotation 

ANNOVAR54 was used to annotate high quality variants for predictions of variant 

location and function (using the RefSeq and UCSC databases). Custom scripts 

annotated variants for their allelic frequency in 1000 Genomes European 

American populations (2012 release, http://www.1000genomes.org)36, Exome 

Sequencing Project (ESP) European American populations (5400 exomes 

http://www.1000genomes.org/
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release, http://evs.gs.washington.edu/EVS/)103, and dbSNP 137 

(http://www.ncbi.nlm.nih.gov/SNP/)139. Allele frequencies were also obtained from 

an internal frequency database of 283 unrelated samples without a known 

neurological phenotype sequenced at CIDR. SIFT52, Polyphen250, MutPred49, 

and Gerp48 were used to predict mutation deleteriousness and degree of locus 

conservation. Custom scripts annotated genes that fell within Gene Ontology 

(GO) (http://www.geneontology.org)104 categories of interest (GO:0042417 

dopamine metabolic process, GO:0050780 dopamine receptor binding, 

GO:0007270 neuron-neuron synaptic transmission, GO:0050804 regulation of 

synaptic transmission, GO:0007212 dopamine receptor signaling pathway, 

GO:0004952 dopamine receptor activity, GO:0006511 ubiquitin-dependent 

protein catabolic process, GO:0006979 response to oxidative stress, 

GO:0016567 protein ubiquitination, GO:0031396 regulation of protein 

ubiquitination). Genes were determined to be expressed in the brain based on 

significant expression above the background, as computed and normalized 

across Allen Brain Institute samples, following the Allen Human Brain Atlas 

protocols (http://www.brain-map.org, downloaded 05/17/2012). 

 

Filtering 

Variants were retained if they were: 1) predicted to be SNVs or 

insertion/deletions (indels) in an exonic and/or splicing region based on one or 

more gene databases; 2) had an allele frequency <3% in European American 

reference populations in 1000 Genomes and ESP, as well as in the internal 

http://evs.gs.washington.edu/EVS/
http://www.ncbi.nlm.nih.gov/SNP/
http://www.geneontology.org/
http://www.brain-map.org/
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frequency database; 3) were predicted damaging by at least one in silico protein 

functional and structural effect prediction program or were located in a highly 

conserved region (Gerp>0.5); and 4) segregated with at least two PD cases in 

the same family. Genes were then retained if they:  A) were in a GO category of 

interest; B) were expressed in the brain; and C) had retained variants that were 

observed in at least 5 of the 32 families sequenced. 

 

Replication and variant confirmation 

The prioritized genes were examined in a replication cohort of 49 unrelated PD 

patients with a family history of PD that had WES performed at the Human 

Genome Sequencing Center (HGSC) at Baylor College of Medicine (BCM) 

through the Baylor-Hopkins Center for Mendelian Genomics initiative. All 

individuals were clinically diagnosed with PD based on examination by 

experienced movement disorders neurologists and reported at least one first-

degree relative diagnosed with PD.  Written informed consent was obtained from 

all participants, and the study was approved by the BCM IRB. Preparation and 

sequencing of genomic DNA was performed as previously described in detail.140  

The BCM HGSC Core-developed library (VCRome 2.1)141 was used for capture 

(covered all genes nominated from the discovery analysis at a depth of 50X or 

greater), and the Illumina HiSeq 2000 system was used for sequencing. With 

sequencing yields averaging 9.9 Gb per sample, samples achieved an average 

of 94% of the targeted exome bases covered to a depth of 20X or greater. 

Sequencing data were processed through the HGSC-developed Mercury pipeline 
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using the Atlas2 variant calling method142,143 and annotated using the Cassandra 

annotation pipeline144 based on ANNOVAR. Compared to the discovery pipeline, 

a more stringent allele frequency filter was employed—all variants considered in 

replication were <1% in European American reference populations (1000 

Genomes and ESP). Potentially deleterious and highly conserved variants were 

identified using SIFT, Polyphen2, MutPred, and Gerp. Variants present in the 8 

genes prioritized from the discovery analysis were extracted. 

 

All variants in replicated genes were reviewed in the Exome Aggregation 

Consortium beta version 0.2 (ExAC, Cambridge, MA 

[http://exac.broadinstitute.org)] [November 17, 2014]) to ensure that allele 

frequencies obtained through the >60,000 exomes in ExAC corresponded to 

those obtained in 1000 Genomes and ESP 5400. Targeted PCR and Sanger 

sequencing were used to confirm all variants for genes with consistent evidence 

supporting links to familial PD in both the discovery and replication cohorts. 

Variants were annotated for C-scores from the Combined Annotation Dependent 

Depletion (CADD) webserver (http://cadd.gs.washington.edu),46 where C-scores 

≥10 correspond to the 10% most deleterious substitutions in the human genome, 

as predicted by CADD. Genes with evidence of replication were also annotated 

for residual variation intolerance score (RVIS) percentiles, in which lower 

percentiles correspond to genes that are most intolerant of functional 

mutations.51 

 

http://exac.broadinstitute.org/
http://cadd.gs.washington.edu/
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Results 

Discovery Cohort 

Clinical characteristics of individuals from the 32 multiplex PD families in the 

discovery cohort are summarized in Table 7. 
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Table 7. Clinical characteristics of the Parkinson disease patients in the 

discovery and replication cohorts. 1 - Data not available for 2 of 93 cases. 

2 - Data not available for 6 of 49 cases. 

Clinical Characteristic Discovery Cohort Replication Cohort 

Number of individuals 

(number of families) 

93 (32) 49 (49) 

% Female, % Male 47.9%, 52.1% 32.6%, 67.3% 

Average age of onset 

(mean ± SD) 

61.8 ± 9.971 50.1 ± 15.72 

Ethnicity 90 self-reported, non-

Hispanic, European 

Americans 

3 self-reported, non-

Hispanic Asians 

37 self-reported, non-

Hispanic European 

8 individuals of Hispanic 

descent 

3 self-reported, non-

Hispanic Asians 

1 individual of Middle 

Eastern descent 
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Each sample sequenced at CIDR achieved a mean coverage of 98X for targeted 

bases, with an average of 93% of targeted bases covered at least 8X. The 

transition/transversion ratio was 3.3, and 94.4% of variants were found in 

dbsnp137. The sequencing data achieved 99.6% concordance with 

OmniExpress GWAS array genotype calls performed on the same individuals. 

Each sample sequenced at HudsonAlpha achieved a mean coverage of 57X for 

targeted bases, with an average of 93% of targeted bases covered at least 8X. 

The average transition/transversion ratio per sample was 3.2, and 91.5% of 

variants were found in dbSNP137. 

 

Application of GATK quality filters resulted in 149,055 SNVs and 9,378 indels 

across all samples (range of 22,188-28,230 total variants per sample) (Figure 

14). Nonsynonymous SNVs or indels within an exon (as annotated by at least 

one of two gene databases, i.e. RefSeq, UCSC) having an allele frequency of 

<3% (1000 Genomes, ESP) were retained. After removing variants that were 

predicted to be benign by all three protein prediction programs and that were not 

in a highly conserved region, approximately 10% of the original variants 

remained. Further filtering was performed based on segregation within families, 

leaving 7,729 SNVs and 305 indels. Prioritization based on brain expression, GO 

annotation, and presence of variants in at least 5 families yielded 21 variants (21 

SNVs, 0 indels) across 8 genes for evaluation in the replication cohort (Table 8).
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Figure 14. Parkinson disease discovery cohort variant filtering. SNV = single 

nucleotide variant; MAF = minor allele frequency; GO = Gene Ontology  

In genes seen across at least 5 families 
21 SNVs 0 indels 

In genes with GO annotation 
228 SNVs 10 indels 

In genes expressed in the brain 
6,384 SNVs 235 indels 

Segregated in 2 or more affecteds in a family 
7,729 SNVs 305 indels 

Predicted damaging 
15,091 SNVs 545 indels 

<3% MAF 
23,660 SNVs 1,342 indels 

Non-synonymous or Splicing 
46,402 SNVs 2,192 indels 

Quality-Filitered Variants 
149,055 SNVs 9,378 indels 



 
 

Table 8. Variants identified in the Parkinson disease discovery cohort. All variants are predicted to be 

nonsynonymous single nucleotide variants (SNV). Chr = chromosome, Ref = reference allele, Alt = alternate allele, 

ExAc Freq = total frequency in Exome Aggregation Consortium. *A single family shared two variants of interest 

(denoted by asterisks) in the same gene. 

Gene 

Symbol 

Chr Position Ref Alt ExAc 

Freq 

Amino Acid Change CADD 

score 

Discovery 

Samples/ 

Families 

Families with 2 or 

more members 

sharing variant 

CBLC 19 45295664 A G 0.0081 NM_001130852:c.A892G:p.M298V 17.0 8/4 2 

 19 45296767 G A 0.0045 NM_001130852:c.G1036A:p.E346K 13.0 3/2 1 

CHAT 10 50824106 C T 0.0095 NM_001142933:c.C8T:p.P3L 4.5 4/2 2 

 10 50863188 G A 0.0075 NM_001142929:c.G1328A:p.R443Q 29.1 4/2 1 

KIF1B 1 10363664 G T 0.018 NM_183416:c.G2421T:p.M807I 4.2 3/2* 1 

 1 10363944 G A 8.17e-06 NM_183416:c.G2701A:p.E901K 14.0 3/1 1 

 1 10364260 A G 0.0061 NM_183416:c.A3017G:p.E1006G 11.3 4/3* 1 

MYLK2 20 30408306 C G 0.013 NM_033118:c.C430G:p.P144A 23.8 7/5 1 

 20 30407387 G A 0.00070 NM_033118:exon2:c.G4A:p.A2T 23.8 2/1 1 

TNK2 3 195594494 C T 0.015 NM_005781:c.G2630A:p.R877H 21.7 11/4 4 

 3 195595212 C T 0.0026 NM_005781:exon12:c.G1912A:p.V6

38M 

29.3 2/1 1 

TNR 1 175355171 T C N/A NM_003285:exon8:c.A1774G:p.T59

2A 

24.2 2/1 1 

90 



 
 

 1 175372714 T G 0.0043 NM_003285:c.A538C:p.N180H 24.5 2/1 1 

 1 175375355 T C 0.0044 NM_003285:c.A496G:p.T166A 13.6 5/3 1 

 1 175375388 A T 7.33e-05 NM_003285:c.T463A:p.C155S 22.0 2/1 2 

TRIM56 7 100731638 C T 0.028 NM_030961:c.C1045T:p.L349F 7.74 6/4 2 

 7 100732376 G A 0.0040 NM_030961:exon3:c.G1783A:p.A59

5T 

10.78 3/1 1 

TOPOR

S 

9 32541880 G C 0.0028 NM_001195622:exon2:c.C2448G:p.

H816Q 

12.1 3/1 1 

 9 32542278 T C 0.017 NM_001195622:c.A2050G:p.N684D 15.0 3/2 2 

 9 32550896 G C 0.0085 NM_005802:exon2:c.C74G:p.S25W 19.6 2/1 1 

 9 32550953 G A 4.50e-05 NM_005802:exon2:c.C17T:p.P6L 22.9 2/1 1 
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Replication cohort 

Clinical characteristics of the 49 familial PD probands in the replication cohort are 

summarized in Table 7. 

 

Rare variants predicted to be damaging in the 8 genes prioritized in the discovery 

analysis were extracted from WES data for the replication cohort. Three genes 

(KIF1B, TNK2, and TNR) that harbored variants of interest (as defined in the 

Methods) in the discovery cohort were also found to have variants of interest in 

the replication cohort (Table 9). One variant in KIF1B (p.E1006G) was observed 

in both discovery and replication samples (3 and 1 samples, respectively). For 

the other 2 replicated genes, distinct variants were identified in the discovery and 

replication cohorts. 



 
 

Table 9. Parkinson disease candidate genes identified through whole exome sequencing. RVIS=Residual 

Variation Intolerance Score (lower percentile corresponds to more mutation intolerant genes). *Asterisks indicate 

variants that were seen in both discovery and replication cohorts. 

 

Gene 
Symbol 

Gene Name Map 
Location 

Gene Ontology Transcript 
Size 
(base 
pairs) 

Genic 
Intolerance 
(RVIS Score 
Percentile) 

No. of 
Variants/ 
Families in 
Discovery 
Cohort 

No. of Variants/ 
Families in 
Replication 
Cohort 

KIF1B kinesin family 
member 1B, 
transcript 
variant 2 

1p36.2 neuron-neuron 
synaptic 
transmission 

7,680 3.93% 3/5 1/1* 

TNK2 tyrosine 
kinase, non-
receptor, 2 

3q29 protein 
ubiquitination 

4,476 14.28% 2/5 2/2 

TNR tenascin R 
(restrictin, 
janusin) 

1q24 neuron-neuron 
synaptic 
transmission; 
regulation of 
synaptic 
transmission 

5,190 20.04% 4/6 1/1 
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In total, the 3 replicated genes were observed to harbor 12 distinct potentially 

functionally relevant variants (Table 10). All 12 variants were confirmed by 

targeted PCR and Sanger sequencing in all relevant samples, and allele 

frequencies obtained from ExAC corresponded to those from 1000 Genomes and 

ESP. Genic intolerance RVIS score percentiles51 and CADD scores46 were 

computed for the retained genes and variants in order to further characterize the 

potential impact of functional mutations at the gene- and variant-level 

respectively. The 3 replicated genes had a mean RVIS score percentile of 12.8% 

(SD=8.2%), and the mean CADD score for the 12 retained variants was 20.4 

(SD=8.7). The calculated RVIS score percentiles fall within ranges that reflect 

purifying selection, or probable greater intolerance for mutations within the gene 

than most genes. Similarly, the computed CADD scores, with the exception of 

one variant (p.M807I in KIF1B), place all of the 12 retained variants at or above 

the 10% most deleterious variants in the human genome, as predicted by a 

comprehensive range of predictions used in the CADD algorithm.



 
 

Table 10. Variants identified in the Parkinson disease candidate genes. Chr = chromosome, Ref = reference allele, 

Alt = alternate allele, ExAc Freq = total frequency in Exome Aggregation Consortium. *Asterisk indicates variant that 

was seen in both discovery and replication cohorts. 

Gene 

Symb

ol 

Chr Position Ref Alt ExAc 

Freq 

Exonic Prediction Amino Acid Change CADD 

score 

Discovery 

Families / 

Replication 

Probands 

KIF1

B 

1 10363664 G T 0.018 nonsynonymous SNV NM_183416:c.G2421T:p.M807I 4.2 2/0 

 1 10363944 G A 8.17e-06 nonsynonymous SNV NM_183416:c.G2701A:p.E901K 14.0 1/0 

 1 10364260 A G 0.0061 nonsynonymous SNV NM_183416:c.A3017G:p.E1006G 11.3 3/1* 

TNK2 3 195594092 G A 5.83e-05 nonsynonymous SNV NM_005781:exon13:c.C2930T:p.A977V 17.8 0/1 

 3 195594494 C T 0.015 nonsynonymous SNV NM_005781:c.G2630A:p.R877H 21.7 4/0 

 3 195595212 C T 0.0026 nonsynonymous SNV NM_005781:exon12:c.G1912A:p.V638

M 

29.3 1/0 

 3 195605390 A G 2.45e-05 nonsynonymous SNV NM_005781:exon8:c.T1088C:p.V363A 25.9 0/1 

TNR 1 175355171 T C N/A nonsynonymous SNV NM_003285:exon8:c.A1774G:p.T592A 24.2 1/0 

 1 175355213 G A N/A stopgain SNV NM_003285:exon8:c.C1732T:p.R578X 36.0 0/1 

 1 175372714 T G 0.0043 nonsynonymous SNV NM_003285:c.A538C:p.N180H 24.5 1/0 

 1 175375355 T C 0.0044 nonsynonymous SNV NM_003285:c.A496G:p.T166A 13.6 3/0 

 1 175375388 A T 7.33e-05 nonsynonymous SNV NM_003285:c.T463A:p.C155S 22 1/0 
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Discussion 

Using WES in a discovery and replication cohort of familial PD patients, we 

detected 12 likely deleterious, rare, exonic variants in 3 genes (KIF1B, TNK2, 

and TNR) that may play a role in susceptibility to PD. All variants were found in 

the heterozygous form, suggesting that they are inherited in a dominant manner, 

as expected from the pedigree structures of the families sequenced, and may 

lead to a disease phenotype either through a gain-of-function, haploinsufficiency, 

or a dominant negative mechanism. 

 

KIF1B, or kinesin family member 1B, is a gene on 1p36.2 that encodes a motor 

protein that transports synaptic vesicle precursors and mitochondria.145-148 

Mutations in KIF1B were linked with Charcot-Marie-Tooth disease type 2A 

(CMT2A);145 however, a recent study more conclusively implicates the nearby 

MFN2 gene in CMT2A.149 Three rare, nonsynonymous variants in KIF1B were 

found in this study, including one variant (p.E1006G) that was present in both the 

discovery and replication cohorts. The variants do not overlap known KIF1B 

protein domains in Ensembl, although they do all cluster on the most 3 prime 

coding exon of the gene. Further work is needed to confirm the effects of these 

variants on protein structure and/or function. 

 

TNK2 encodes for a non-receptor tyrosine kinase (activated CDC42 kinase 1) 

that is important for cell growth, survival, and migration. Studies suggest that 

TNK2 is involved in synaptic function and plasticity,150-152 and a recent report 
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suggests that mutations in the gene may cause autosomal recessive infantile 

onset epilepsy.153 Other studies exploring the role of TNK2 in cancer have 

established links between the TNK2 protein and the epidermal growth factor 

receptor (EGFR).154,155 In the discovery and replication cohorts, 4 unique rare 

nonsynonymous TNK2 variants were identified. One variant (p.V363A) is found in 

the EGFR inhibitor Mig-6 domain (IPR021619, PF11555). Binding of Mig-6 to the 

kinase domain of EGFR inactivates the receptor, which suggests that this domain 

in the TNK2 protein may also be important for appropriate regulation of its 

function. 

 

TNR, or tenascin R, encodes an extracellular matrix glycoprotein only found in 

the central nervous system.156 Tenascin R is thought to be involved in neurite 

growth, neural cell adhesion, and sodium channel functioning.157,158 Of the 6 

unique variants prioritized in TNR, 5 were found only in the discovery cohort as 

rare nonsynonymous variants. One variant (p.R578X) was found only in the 

replication cohort and results in the addition of a stop site at position 578 of a 

1358 amino acid protein. This variant, along with one other variant (p.T592A), are 

found in the fibronectin-3 domain (IPR003961) of the protein, which is important 

for cell surface binding. 

 

Variants from the discovery analysis present in the 5 genes lacking evidence of 

replication (CHAT, CBLC, MYLK2, TRIM56, and TOPORS) are listed in Table 8. 

While some or all of these genes may represent false positives, differences 
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between the discovery and replication analysis (captures, sequencing 

chemistries, bioinformatics pipelines, allele frequency threshold, etc.) may have 

prevented replication. Additionally, some genes may not have been prioritized to 

look for evidence of replication due to differences between the two captures and 

other possible batch effects in the discovery phase limiting the effectiveness of 

the across families filter. 

 

Unlike previous studies focused on a single large pedigree or extensive datasets 

of unrelated individuals, our blended approach leveraged a well-characterized set 

of moderately-sized families and an additional set of unrelated familial probands. 

A major advantage of this study is that both the discovery and replication cohorts 

only included familial PD cases, unlike many other studies where discovery 

samples are in families and replication cohorts include sporadic cases. Families 

with multiple affected members are more likely to be enriched for causative, 

moderately rare variants having a modest or large effect size.  By requiring 

variant segregation within a family, we limited the number of false positives in the 

discovery phase. Furthermore, our two-phase study design decreases the 

chance of false positives and thus increases the likelihood that the 3 candidate 

genes identified in this study are truly involved in PD etiology, though further 

replication in other datasets is warranted.  

 

Another strength of the study is that locus heterogeneity could be explored both 

within and between families. In the discovery analysis, we required variants to 
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segregate with at least two PD cases in a family, thereby allowing any remaining 

cases in the family to potentially have a distinct genetic or environmental cause. 

Our experimental design contrasts with recent efforts that employ sequencing 

approaches in large family pedigrees to identify variants with fully penetrant 

effects and therefore responsible for strictly Mendelian PD; this category of 

variants appears to account for rare causes of PD.128,129,133 While our study 

design allows for detection of such mutations, the employed strategy also permits 

the discovery of rare variants with intermediate penetrance, such as LRRK2 

G2019S159 and mutations in GBA.160 Since 10-20% of PD patients report having 

at least one first-degree relative affected by PD,161-163 it is possible that variants 

of this class remain a major contributor to PD heritability. Complex genetic 

etiology has been previously observed in PD; for example, reports have shown 

that in some families segregating Mendelian forms of PD (SNCA or LRRK2 

positive families), not all affected family members carry a mutation.121,164,165 Our 

study is also robust to detect interfamilial allelic heterogeneity, or unique variants 

in the same gene segregating in different families.   

 

One limitation of our approach was that larger genes might be prioritized by 

chance because of their size rather than due to the enrichment of rare functional 

variants associated with PD. Exome sequencing by design also misses possibly 

important variation in intronic and regulatory regions, as well as forms of 

structural variation. Use of the GO filter to focus on pathways of interest might 

have excluded important genes that were either poorly annotated or in pathways 
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thus far not associated with PD. The GO filter used, as seen in Figure 14, 

narrowed the number of variants under consideration from 6,635 to 228 SNVs, 

ultimately prioritizing 21 variants across 8 genes for further study. Had the GO 

filter not been applied, the 6,635 SNVs would have only been narrowed to 300 

SNVs (87 genes) using the across families filter. Future studies with larger 

sample sizes could employ formal gene set enrichment analysis to bypass the 

potential limitation of relying on pre-specified pathways for variant filtering. 

 

Summary 

In summary, we employed a two-stage strategy to identify and replicate genes 

that may harbor rare variants contributing to PD susceptibility. Both the discovery 

and replication samples were comprised of familial PD patients, who may be 

more likely to segregate relatively rare variants of larger effect on disease risk. 

The 3 genes nominated in this study warrant further evaluation for their potential 

role in PD pathophysiology.  
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CHAPTER III: X-LINKED ATAXIA DEMENTIA 

 

Introduction 

X-linked ataxia dementia (XLAD), also known as X-linked spinocerebellar ataxia 

type 4, is an extremely rare neurodegenerative disorder. During their childhood, 

affected individuals develop ataxia, or uncoordinated movement. Dementia 

occurs later in life, along with variable onset of upper motor neuron disease.  

Increasing motor, emotional, and mental instability occurs throughout the second 

through fifth decades of life, with death typically in the sixth decade. Moderate 

phenotypic variability is observed in affected males, and carrier females 

sometimes show a milder phenotype including cognitive and motor abnormalities. 

The disease appears to segregate in an X-linked pattern in the one kindred ever 

described with this syndrome (Figure 15). Clinical and laboratory investigations in 

this family indicate cerebellar and pyramidal system involvement with severe 

cerebral cortex deficiencies.166 

 

 



 
 

Figure 15. Simplified pedigree for the X-linked ataxia dementia family. Whole genome sequencing was performed 

on individuals in red. WES = whole exome sequencing; GWAS = Omni1-Quad Genome Wide Association Study Array; 

? = male at risk for XLAD but of unknown disease status due to young age at time of assessment 
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Other ataxia-dementia syndromes such as olivopontocerebellar atrophy, 

Gerstmann-Straussler-Sheinker disease, and adrenoleukodystrophy were all 

considered but ruled out in this family. Two other reports exist of ataxia and 

dementia both segregating in a X-linked manner, but affected members of those 

families have compounding extrapyramidal symptoms. There are also X-linked 

syndromes displaying either ataxia or dementia but not both reported in the 

literature.167,168  

 

Previous linkage studies using microsatellite markers on the X chromosome were 

conducted (unpublished data). In the most recent study, microsatellite markers at 

approximately 5 cM intervals were used, all females were classified as 

unaffected, and penetrance was set at 95%. After genotyping of a second set of 

microsatellite markers to narrow the interval, a LOD score of 5.29 was obtained 

in the region Xq21.33-q23. To rule out fragile X-associated ataxia, individuals III-

12, IV-8, and IV-11 were also tested for fragile X using PCR; all 3 samples were 

normal. (Figure 16) 



 
 

Figure 16. X-linked ataxia 

dementia family structure and 

haplotype analysis. Analysis and 

figure generation by Jill Rosenfeld 

(unpublished data). Parentheses 

indicate inferred genotypes. The 

regions of a narrowed bar for 

individuals II-6, III-10, and III-14 

indicate unknown phase, while all 

other narrowed bars indicate 

regions of recombination. 
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Further genotyping of two distantly related affected males (Figure 15, III:15, 

IV:11) and two unaffected males (IV:10, IV:12) on an Illumina Omni1-Quad array 

narrowed the region of interest to 19Mb and ruled out a large CNV. Over 100 

genes are contained in this interval. 

 

WES was conducted for 3 individuals (III:15, IV:11, IV:12) in a previous study 

(Agilent SureSelect Human X Chromosome Demo Kit, 75bp paired-end 

sequencing, Illumina GAIIx, BWA, SAMtools). Five SNVs were identified that 

were present on the disease haplotype but not present in dbSNP. Three of these 

variants were identified either in the pilot 1 dataset for the 1000 Genomes Project 

or in the genotyping results from 2000 female controls; due to the rarity of the 

disease, it was hypothesized that any causative variant would be completely 

novel, and thus the 3 variants were excluded from further study. The remaining 

two SNVs did not have an obvious mechanism of disease causation. Four short 

indels also were identified on the disease haplotype, but all were present in the 

1000 Genome Project. (Table 11)
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Table 11. X-linked ataxia dementia whole exome sequencing variants on 

the disease haplotype and not present in dbSNP. 

Chr Position Ref Fam Gene FunctionGVS 
1000 

Genomes 

# 
control 

chrs 

X 99992932 G A NOX1 
coding-

synonymous 0/182 2/4000 
X 102833316 G A none intergenic 2/182 - 

X 105083643 A T NRK 
intron (39 bp 
from exon) 0/182 0/4000 

X 102932576 G A PLP1 utr-3 1/182 17/4000 

X 107221681 C G ATG4A 

utr-5 (31 bp 
from start 

codon) 0/182 0/4000 
 

In the present study, 2 individuals (III:10, IV:11) were chosen for WGS in order to 

expand the search space for rare variants that may be involved in causing the 

disease. 

 

Materials and methods 

Subjects 

The simplified pedigree for the XLAD family is depicted in Figure 15. All subjects 

submitted written consent, and the study was approved by the Indiana University 

IRB. 

 

The Agilent SureSelectXT2 Library Prep Kit and Illumina HiSeq2000 (Flowcell v3, 

TruSeq Cluster Kit v3, TruSeq SBS v3) were used to generate 100 bp paired end 

sequencing data. Paired end alignment was performed to the GRCh37 reference 

genome with BWA v.0.5.10, and duplicates were marked using Picard v.1.74. 
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GATK v.2.3-4 was used for indel realignment, base call quality score 

recalibration, multi-sample variant calling (Unified Genotyper), and VQSR. 

Bedtools v.2.19.1 was used for coverage analysis of coding exons (defined by 

UCSC coordinates) within the region of interest.  Variants were annotated by 

ANNOVAR and the recently-developed CADD program. 

 

High-quality variants located in the region of interest that were novel (not present 

in 1000 Genomes, the Exome Sequencing Project, and dbSNP137) and located 

in the region of interest were retained. All variants identified in an exonic, 

splicing, UTR, or regulatory region were retained. Variants of interest were 

visually inspected using IGV v.2.3.34. The entire region was also visually 

inspected using IGV for alignment issues (regions of soft-clipping, unmapped 

pairs, abnormal pair orientations) that may point to a small to medium-sized 

structural variant. 

 

Results 

The average transition/transversion ratio for exonic variants and all variants was 

3.10 and 2.12 respectively, and the percentage of variants found in dbSNP137 

was 98.98%. Mean autosomal coverage was 27X, and 97.5% of autosomal 

regions were covered >8X. 

 

Coverage analysis revealed that very few small intervals of coding exons within 

the region of interest were not covered at all or had low coverage (Table 12). 
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Table 12. X-linked ataxia dementia whole genome sequencing coverage 

analysis. DP = sequencing depth; bp = base pairs 

Sample No Coverage Total 

[Average Interval] 

Low Coverage (DP<5) Total 

[Average Interval] 

III:10 15bp [5bp] 12bp [6bp] 

IV:11 48bp [24bp] 261bp [15bp] 

 

There were 7,901 variants identified in the region of interest. Of these, 5,798 

were heterozygous in the mother and hemizygous in the son, and 505 of these 

were not observed in 1000 Genomes, the Exome Sequencing Project, and 

dbSNP137. Variants were retained if they were found in an exonic, splicing, UTR, 

or regulatory region. Using these criteria, 22 variants (3 SNVs and 19 indels) 

were retained, all of which were located in UTR (Table 13) or regulatory regions. 
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Table 13. X-linked ataxia dementia whole genome sequencing variants 

identified in untranslated regions (UTR). Variants listed by decreasing CADD 

c-score value. *All variants are in the 3’-UTR except MORF4L2 (in 5’-UTR). Chr = 

chromosome, Pos = position (build hg19), Ref = reference allele, Alt = alternate 

allele, SNV = single nucleotide variant, DEL = deletion, INS = insertion 

Chr Pos Ref Alt Type Gene C-Score 

X 103045920 G A SNV PLP1 10.63 

X 102930671 TA T DEL MORF4L2 9.853 

X 100350299 TGC T DEL TMEM35 4.265 

X 106313096 TA T DEL RBM41 3.451 

X 101913597 TA T DEL GPRASP1 0.534 

X 105881497 C CT INS CXorf57 0.325 

X 102941052 TC T DEL MORF4L2* 0 

 

The PLP1 (associated with Pelizaeus-Merzbacher disease, which includes 

childhood ataxia and cognitive impairment) variant was previously identified in 

the WES experiment but was ruled out when genotyped in control chromosomes. 

Further examination at CIDR identified the same variant in two males affected 

with a common disease sequenced with the same capture as the XLAD subjects. 

All other variants have not to date been identified in other datasets. 

 

Upon visual inspection with IGV, no regions were found with an obvious 

structural variant shared in the mother and son. 
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Discussion 

The magnitude of the linkage signal at Xq21.33-q23 strongly suggests that the 

variant that causes XLAD exists in this interval. Both WES and WGS, however, 

have not identified an exonic, and putatively functional variant within this region 

that segregates in a X-linked recessive manner. Together, the WES and WGS 

experiments suggest that adequate coverage has been achieved over the entire 

region of interest (Table 12). There may be variation within the interval however 

that is difficult to assess with sequencing methods (e.g. areas of repetitive 

sequence). Study designs not reliant on the current methods of sequencing 

would be required to detect these variants. 

 

A number of novel variants in predicted non-coding regions of the X chromosome 

agree with the hypothesized segregation pattern (Table 13). Although the 

severity of phenotype suggests that the causative variant is within a coding 

region, a non-coding variant may also lead to the disease. For instance, changes 

in promoter regions or enhancers can affect gene transcription, while UTR 

sequence alterations can influence the regulation of translation. Possible links 

between both 5’ and 3’-UTRs and diseases including X-linked Charcot-Marie-

tooth disease, Fragile X syndrome, epidermolysis bullosa simplex, and a number 

of other diseases have been suggested.169 Targeted mutagenesis and 

subsequent examination of translation efficiency could be utilized to study the 

variants in Table 13. As noted by Ward and colleague however,170 landmark 

studies linking non-coding variants to some diseases required extensive 
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experimental follow-up, and rigorous study will be required to confirm the 

association of any variants identified in this study with XLAD pathogenesis.  

 

Another possible reason for a lack of a positive exonic finding thus far may be 

due to limitations in current methods and data sources for annotation. Thus, a 

variant nominated in the WGS data actually may be a coding variant that has not 

been assigned to a gene yet. As annotation sources improve over time, periodic 

re-examination of the WGS data using the existing pipeline is warranted. A 

review of annotations for non-coding variants could be relevant as well, 

especially as systematic efforts such as the ENCODE Project171 and the 

Roadmap Epigenomics Mapping Consortium172 continue to release data. 

 

This work also has not conclusively ruled out a structural variant as a cause for 

the disease. At the time of the study, algorithms to effectively detect and 

conclusively call medium-sized structural variants were still in development. 

Because automated methods for detecting structural variation are not yet 

optimized, we manually reviewed the entire 19 Mb region of interest for evidence 

that a structural variant might be present (as described in the Methods), but 

found no signs at this time that there is a structural variant shared in the mother 

and son. Future studies in XLAD could focus on structural variants, since variants 

such as simple repeat expansions have been clearly linked with several 

neurological diseases, including Fragile X173-175 and Friedreich’s ataxia.176 

Emerging bioinformatics tools for application to HTS could be used, although 
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methods other than sequencing might be warranted due to the difficulty of 

designing sequencing baits and accurately calling sequencing variants in highly 

repetitive regions. Another option for future study is to investigate whether the 

insertion of novel sequence could lead to the disease. This type of variation 

would require a very different analysis pipeline, most likely including 

computationally-intensive de novo assembly or even different sequencing options 

(e.g. selecting a technology that will produce longer read lengths).177 Additional 

members of the family could be screened for identified candidate structural 

variants, and molecular studies to characterize the potential role of segregating 

variants should be conducted.  

 

Summary 

A series of genetic study designs have been applied in a single kindred 

segregating a rare neurodegenerative disease. Initial linkage studies pointed to a 

strongly significant interval on the X chromosome, but genome-wide genotyping 

and WES failed to identify a promising candidate gene. Further WGS has not 

identified a clearly causative variant for this region. A few variants in UTR and 

regulatory regions are possible candidates for further validation and exploration 

of involvement in disease causation. Although preliminary visual inspection was 

conducted of the region of interest, further work remains to identify structural 

variants. Additional alignment and calling algorithms can be used to circumvent 

potential biases in the current bioinformatics pipeline used. 
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CONCLUSION 

 

Within the field of family-based sequencing, there are many study designs that 

can help elucidate the genetic basis of both rare and complex diseases. In the 

present study, WES was applied to both familial IA and PD, and both WES and 

WGS were employed to study a family with XLAD. For IA, we used WES of a 

small set of densely affected families to describe considerations for other WES 

studies in complex disease, including use of family and clinical data, sources and 

definitions for gene and variant annotations, interpretation of in silico predictions, 

and more. Our PD WES study was a two-stage design, blending the use of 

moderately-sized families and an independent set of familial probands that 

allowed for the exploration of locus heterogeneity within and between families. 

The XLAD study presented an opportunity to compare and combine WES and 

WGS results, and although a definitely causative gene was not identified, 

important groundwork has been laid for future studies. As HTS technology and 

analysis methods improve and decrease in cost and labor intensiveness, WGS 

will likely supplant WES due to lower bias and broader coverage.30 Thus, 

experience with applying this technology to families will become increasingly 

important. 

 

Advantages of family-based sequencing studies 

There are several advantages for using familial data for sequencing studies. 

First, such studies are enriched for samples that are actually linked by a genetic 
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cause of disease178,179 and can control for type 1 error rates due to population 

stratification.180 Given the difficulty of narrowing down the enormous number of 

variants identified in WES and WGS, sequencing multiple individuals per family 

can dramatically aid the filtering process as demonstrated in the current work. 

Furthermore, family-based sequencing can somewhat offset the expense of 

following-up a large number of candidate variants, since putative causative or 

protective alleles can first be genotyped in other family members to confirm or 

refute segregation. Such segregation studies will be an obvious next step in the 

follow-up of the variants identified in our IA, PD, and XLAD families. Unexpected 

patterns of segregation can be checked against possible locus or allelic 

heterogeneity, or even environmental causes for the disease. Furthermore, 

although not explored in the present work, homozygosity mapping of familial 

sequencing data can also be an effective method for determining the genetic 

basis of an autosomal recessive disease.30 

 

Stringent quality control measures for HTS are critical, and family-based 

sequencing studies have the benefit of additional sources for quality metrics.67,178 

Careful examination of expected and computed pedigree structure can verify that 

samples are labeled correctly and can identify cryptic relatedness. It is not 

uncommon to find individuals related to one another in the same study, even for 

the larger studies being conducted with ‘unrelated’ cases; such relatedness can 

easily confound the results of even a well-designed study. Additionally, data from 

multiple family members can improve variant calling, especially for structural 
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variation. In fact, some variant detection algorithms like PennCNV,181 FamSeq,182 

PolyMutt183 already make use of familial information. Since many types of 

structural variants have not been ruled out for all our IA, PD, and XLAD families, 

future studies should utilize these tools and emerging ones. As was mentioned 

for XLAD, certain types of structural variation have not been completely ruled out 

as the causative mutation in the family. 

 

Caveats for family-based sequencing studies 

While there are many advantages to using familial sequencing data, there are 

some important caveats as well. If using statistical association tests, particular 

care must be taken to account for relatedness, or special algorithms designed to 

incorporate pedigree information should be used.184,185 Since increased 

computational resources are required for incorporating pedigree information, 

these programs have been slower to develop. For these tests or for manual 

filtering, as was used in the studies presented in this work, researchers must be 

aware that assumed inheritance models may not actually reflect genuine allelic 

inheritance. Studies may be broadly designed to examine multiple inheritance 

models, as was done for the FIA and PD studies presented. 

 

Great attention must be paid toward careful phenotyping before assigning strict 

inheritance hypotheses, especially for complex diseases. As demonstrated in the 

FIA study, these considerations are important for designating affected and 

unaffected status, as well as assessing for reduced penetrance and 
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heterogeneity. For instance, careful examination of smoking and hypertension 

data for individuals is critical when studying IA genetics, given the important 

contribution of both environmental risk factors to the disease.86 Similarly, 

information about carriers of known mutations like LRRK2 G2019S or individuals 

whose clinical history points to exposure to certain chemical agents or a history 

of head injury should be factored into variant segregation analysis in PD. 

 

Additionally, not all disease models are best studied through use of family data. 

For diseases with a low sibling recurrence risk ratio like autism, it may be more 

advantageous to study unrelated affected individuals rather than familial 

samples,179 unless large pedigrees with high familial aggregation are used.178 

Finally, for studies assessing de novo mutations that lead to drastically reduced 

fitness, the benefit of additional segregation analyses may not be present. 

 

Future genetic studies in IA, PD, and XLAD 

Our studies in IA, PD, and XLAD illustrate both the opportunities and challenges 

of family-based HTS. Candidate variants and genes have been identified in all 

three studies, although much work remains to fully characterize these variants 

and confirm their role in disease pathogenesis. Evidence from aneurysmal 

expressions studies in IA and a replication WES cohort in PD serve as 

preliminary steps in this effort, and further population genetic study designs for IA 

and PD are underway. Collaborative efforts to combine sequencing data with 
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other groups may yield further evidence toward the genes nominated in this 

work. 

 

Although current efforts in our group are limited to genomic sequencing, we 

expect to utilize other high-throughput designs (Table 1 and Figure 17) in the 

future. A future challenge will be to integrate various ‘omic’ approaches with more 

targeted molecular studies to get a more complete picture of disease 

pathogenesis in individuals and populations. Even more questions exist about 

appropriate study designs for data integration, but the need to draw conclusions 

across many types of high-throughput data is well recognized.186 

 



 
 

Figure 17. Data integration of high-throughput ‘omics.’ SNP = single nucleotide polymorphism, CNV = copy 

number variant, LOH = loss of heterozygosity, TF = transcription factor, bs = binding site, Me = methylation, 

CSF = cerebrospinal fluid. Ritchie et al, 2015.186 
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Molecular characterization of any candidate gene or variant is crucial. While the 

specific experiments utilized will largely depend on the gene of interest, there are 

general approaches and tools that could be applied broadly. Specifically, genome 

engineering experiments187 can make targeted alterations to the genome that 

reflect the variants identified, allowing the researcher to then observe 

transcriptional and translational efficiency; stability, localization, binding, and 

functions of resultant proteins; and other potential effects of the sequence 

perturbations in cellular and animal models. 

 

When designing such studies, characteristics of the disease being studied are 

important to consider. For instance, the phenotype of IA development and 

rupture may only be replicated in tissue models with careful hemodynamic 

control. Examination of the effects of a sequence alteration on a protein in 

endothelial cells may not be enough to model the complementary effects of 

vascular smooth muscle cells and fibroblasts, as well as how the overall vascular 

structure responds to hemodynamic stress or toxins introduced systemically from 

smoking. Additionally, while a possible genetic link has been established 

between IA and extracranial aneurysms,109 the particular properties of 

intracranial arteries as opposed to their extracranial counterparts should be 

considered when constructing a model. Established differences include the 

distribution of elastic components, the thickness of layers of the arterial wall, and 

the perivascular support of cerebrospinal fluid for cerebral arteries.188 
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In PD, studying both neuronal and glial cells may be important to recapitulate the 

phenotype. Multiple model systems may need to be employed, as current models 

do not individually reproduce all aspects of PD. In fact, a current obstacle in PD 

animal model research is that even the observation of an aggregation of alpha-

synuclein, a hallmark histopathological marker of PD, does not always 

correspond to a quantifiable motor phenotype in animal models. Additionally, 

motor symptoms in animal models do not completely translate to motor 

manifestations in humans affected with PD. Models also frequently do not 

recapitulate the common non-motor symptoms of PD, including sleep 

disturbances, dysfunction of the gastrointestinal system, and depression.189 

 

Since specific brain regions have not been implicated in XLAD other than through 

typical clinical symptom manifestations and their localizations, future studies in 

XLAD may need global studies of transcription and translation in the brain before 

diving into targeted study of a particular cell type or mechanism. Finally, IA, PD, 

and XLAD are all complicated by the fact that they are intracranial, which limits 

the accessibility to both affected and unaffected human tissue. 

 

Potential clinical applications of sequencing findings in IA, PD, and XLAD 

Family-based sequencing studies hold great promise for gene discovery in these 

three diseases, but the ultimate goal for this research is to advance the biological 

understanding of the disease that is necessary for benefiting patient care and 
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outcomes. As demonstrated in Figure 18, translation of sequencing findings to 

the clinic can take many forms.  

 

Figure 18. Translation of sequencing findings to clinic. Adapted from 

McCarthy et al, 2008.190 
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When the role of a particular gene in IA or PD has been confirmed, functional 

assays may be designed to review other variants identified in the gene by other 

research groups or in the clinic more efficiently. As noted by those studying 

BRCA1 and BRCA2, two genes known to be involved in multiple cancers, 

functional assays have been valuable in systematically determining whether a 

rare VUS is functional.191,192 They do note that the multifaceted function of each 

gene and still imperfect knowledge of the pathophysiology behind each cancer 

means that multiple functional assays may be necessary to characterize a 

variant, and that positive or negative tests do not always translate directly to 

developing or not developing the cancer. Nevertheless, a growing database of 

genetic variation and potential mechanisms for disease in IA and/or PD would be 

valuable for translating sequencing findings to clinical practice. 

 

For IA, we believe our studies will ultimately help us to better ascertain the risk of 

developing or rupturing an IA in a family. Given that fatality from IA rupture and 

resultant SAH is estimated between 25-35% in high-income countries and almost 

50% in other countries,84 better risk prediction models based on identifying high-

risk patients clinically (e.g. family history of IA or SAH, smoking and/or 

hypertension, etc.) and combining the clinical information with a genetic profile 

are warranted. Understanding the biological basis behind aneurysm formation 

and rupture may also lead to therapeutic interventions that could help predict IA 

formation or rupture, and possibly halt or reverse the progression of the disease 

process. Such therapeutics could ultimately replace deficient protein or 
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chemicals, inactivate mutant substrates, increase or decrease gene expression, 

or possibly even introduce corrected sequence. Targeted drug delivery may 

serve as the major obstacle for a therapeutic agent taken systemically, although 

localized application may be possible during clinically-advisable neurosurgical 

clipping of IAs. If intracranial vasculature can still be accessed by a systemic 

therapy that has little harm on extracranial tissues, and the effects on extracranial 

vasculature in particular can be characterized, then systemic therapeutics may 

be feasible. Given the significant morbidity and mortality of this disease, the risk-

to-benefit ratios of increased screening, monitoring, and/or intervention may be 

more palatable to high-risk patients and their clinicians. 

 

In PD, no therapeutic intervention thus far is effective at neuroprotection at an 

early stage in the disease, and many current treatments also have severe side 

effects.193 For instance, the gold standard of levodopa therapy is only efficacious 

without major side effects for 4-6 years.193 Basic gene discovery projects like 

ours are necessary in order to provide novel therapeutic targets, but also to be 

able to offer early detection and monitoring of the disease progression. They may 

also provide new insights into other neurodegenerative diseases. Still, if findings 

from sequencing studies like ours only contribute to better risk prediction, 

diagnosis, and prognosis, they will serve less to improve clinical management of 

this incurable disease and more to fuel better designed studies to discover 

effective therapeutic interventions. Such PD therapies may assist in restoring 

neurochemical balance, supporting fragile dopaminergic neurons, removing 
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buildup of toxic substances, and addressing other changes that have been noted 

in PD pathophysiology. 

 

Finally, confirming the genetic cause of XLAD could potentially offer more options 

for management for this currently incurable disease. With the appropriate cultural 

and ethical caveats, such as those suggested for genetic screening in individuals 

of Ashkenazi Jewish descent,194 reproductive counseling and general carrier 

screening could be employed in this family. Future studies centered on the 

implicated gene, pathway, or other biological mechanism may offer targets for 

halting or even reversing the neurodegenerative process for future descendants 

in the family. Although this disease has only been reported in one family thus far, 

identification of a causative genetic mechanism in this family could also enhance 

our knowledge of the intersection of ataxia and dementia, both devastating 

symptoms of many other neurological disease processes. 

 

Challenges of moving toward everyday genomic medicine 

While not directly addressed in our research findings, our work and others195-197 

have raised some important considerations for the adoption of HTS into clinical 

settings. Much enthusiasm toward clinical HTS applications has been generated 

from some successful applications of WGS and WES in the clinic, especially in 

relation to rare diseases.198,199 At the time of this work, the President of the 

United States unveiled a precision medicine initiative designed to funnel $215 
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million into researching and applying genomics in clinical care. Despite this 

recognition of the potential of clinical genomics, concerns include how clinically 

actionable variants are, the infrastructure and logistics required, and provider and 

patient expectations and readiness for genomic medicine. Such questions are 

relevant to downstream findings from our studies, as well as the numerous other 

HTS studies being conducted on a host of rare and complex diseases. 

 

Clinical utility of variants associated with disease 

Our gene discovery projects are currently focused on identifying any variant 

associated with disease. In clinical applications, however, genomic variants must 

be stratified to facilitate their incorporation into practice (Figure 19). For instance, 

it is recognized that certain genetic variants have well-described effects on a 

patient’s response to certain medications; knowledge of a patient’s 

pharmacogenomic profile is thus clinically actionable.200 Variants that may alter 

management of disease are also prevalent in cancer, where precision genomics 

is being employed to subtype cancers, determine prognoses, select drug 

regimens, and more.201 

 

In some cases, knowledge that a patient carries a variant does little more than 

confirm the diagnosis of a disease and does not alter management at all. One 

such notable case is with sickle cell disease, for which the molecular basis of the 

disease has been known since the 1950’s. Vernon Ingram himself, who 

demonstrated the amino acid substitution critical for sickle cell disease, declared 
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that “the discovery of the molecular basis of the disease…was of limited benefit 

to the patient population.”202 Similarly, the genetic etiology of Huntington’s 

disease was established in the early 1990’s,203 but no curative treatment 

currently exists. Still, some research suggests that predictive testing for 

Huntington’s disease, regardless of the risk profile obtained for an individual, may 

improve the person’s psychological well-being.204 

 

In other fields, there are proven risk variants, but the small or unknown risk to an 

individual patient may mean that no clinical action is warranted. For instance, the 

APOE ε4 allele is the most prevalent risk factor for sporadic Alzheimer’s disease, 

yet not all individuals carrying the allele develop the disease while some without 

the allele do, and no therapeutic interventions to date have been successfully 

created based on knowledge of this risk variant.205  Finally, the largest category 

of genomic variants includes all those that have been identified through human or 

animal studies, but the effect of the variants have not been confirmed or 

characterized. Such variants, such as those identified in our studies in IA and 

PD, are deposited in public databases and the literature in order to advance 

scientific research, but these information sources are also queried by geneticists, 

commercial developers of genetic products, and increasingly engaged patients. 

As previously mentioned, VUS are abundant in genomic research currently, and 

it is unclear how patient expectations and clinical practice may change in 

response to returned reports of these types of variants.  
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Figure 19. Stratification of genomic disease variants. 
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clinics, and other access points for patients and healthcare providers. Given the 

highly identifying nature of genomic data, great care must be taken to ensure the 

security of any data storage and transfer. Infrastructure needs also include 

modifications to the Clinical Laboratory Improvement Amendments (CLIA) 

environment, establishing practical reimbursement schemes, and other legal, 

political, and regulatory necessities.207 

 

Considerations for providers and patients 

Beyond technological infrastructure, much debate exists about whether 

healthcare providers and patients are ready for genomic medicine. Many believe 

that there is currently inadequate genomics education in the health 

professions,195,208-210 leading to a prohibitive level of physician discomfort in 

interpreting and applying genomic information in everyday practice.211,212 The 

genetics community is working to suggest what type of results to return and 

when,213-215 but there is currently no gold standard across medical specialties. 

The number of potential incidental findings, findings whose implications may 

change quickly over time as research advances, is unprecedented in genomic 

data. 

 

Many advocate for patient choice in the return of genomic data, and recently 

developed direct-to-consumer options encourage active patient engagement but 

raise concerns in the clinical and research communities.216-219 Studies have 

shown that most patients would prefer to have all or most information returned, 
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even if such data is not deemed actionable by the clinical genetics 

community.220,221 This poses the question of whether the return of some 

information, such as VUS, may actually cause more harm than good. Such harm 

could be psychological or, in the case of unnecessary testing and treatment, 

physical. Additionally, there will likely be increased strain on healthcare 

resources, as time, labor, and money are redirected toward pre- and post-test 

counseling and following up potential findings. The released genetic information 

may also have implications for family members of the patient, which raises issues 

about informed consent and counseling of entire families, especially in regard to 

pediatric patients. While efforts to provide genomics education to the public are 

beneficial,222 it is unlikely that these initiatives will be enough to ensure that 

genomic data are appropriately received, internalized, and utilized. As a result of 

questions about value, potential harm, cost, and feasibility, some advocate for 

the limited return of select incidental findings to particular patient populations 

based on disease state223 or the stage of lifespan and purpose of the test.224 

 

Genomics holds incredible potential to revolutionize our knowledge of disease, 

as well as the practice of medicine in general. Our understanding of the genetic 

basis behind diseases like IA, PD, and XLAD will undoubtedly advance through 

different high-throughput technologies. The many advantages of family-based 

sequencing studies in both rare and complex disease position them to become 

strategies of choice for gene discovery projects, with important caveats to ensure 

appropriate study design and molecular characterization of implicated genes. 
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Ultimately, such research should be directed toward improved and novel clinical 

applications. Much work remains, however, to ensure that unintended 

implications of the widespread adoption of genomic medicine are premeditated 

and thoughtfully handled.  
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