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Pu Ni 

TESTING THE RENAL SIGNALING AXIS FOR FGF23 

 

FGF23 is the central regulator for phosphate homeostasis. Both FGF23 and phosphate 

dysregulation are highly related with the progression of chronic kidney disease (CKD), 

which is a global health problem. In previous studies, FGF23 was found to be produced 

in bone and targeting the kidneys to regulate phosphate reabsorption and excretion. In the 

FGF23 signaling axis, it binds a receptor complex (αKlotho and FGFRs) in the distal 

convoluted tubules (DCT) and causes its biological effects in the proximal tubules (PT). 

The mechanism of how the signals passing on from DCT to PT is not clear. 

 

In my research, experiments were focused on the FGF23 signaling pathway within the 

kidney to study the communication steps between tubular cells. HBEGF treatment was 

given to FGF23 signaling impaired mouse models resulting in significant change of genes 

regulated by FGF23, indicating that HBEGF was important in the FGF23 signaling axis. 

Then high quality rabbit anti-mouse HBEGF antibodies were made to better study 

HBEGF activity in vivo and in vitro. A new cell model was characterized to test FGF23 

effects on HBEGF signaling using Western blots and immunofluorescence. Lastly, the 

location of HBEGF activity was examined in the kidney in vivo. Immunostaining 

suggested that HBEGF activated the mitogen activated protein kinase (MAPK) pathway. 

This mapping may provide important information for the molecular relationships between 

FGF23 and HBEGF. 

Kenneth E. White, Ph.D., Chair 
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Introduction 

 

Phosphate Regulation 

 

General introduction to the control of phosphate 

 

Phosphate accounts for approximately one percent of a human’s body weight. About 

eighty five percent is stored in bones as inorganic phosphate, whereas the rest resides in 

non-osseous tissues and the extracellular fluid. Phosphate is essential for a number of 

processes, including bone mineralization, cellular membrane formation, intracellular 

signaling and energy storage. The normal plasma phosphate range in adults is 2.5-4.5 

mg/dl and in children is 4.0-6.5 mg/dl [1]. Plasma phosphate concentrations are 

determined by a balance of interactions among bone, small intestine and kidney (Figure 

1). The main organ for phosphate storage is bone, in which phosphate gets mineralized 

with calcium as hydroxyapatite. Phosphate is abundant in a normal person’s dietary 

intake so that most individuals get sufficient phosphate through small intestinal 

absorption [2]. After being absorbed into the circulation, proper phosphate levels are 

required for its biological activities. To keep phosphate in the normal physiological range, 

the kidney functions as a secretory organ. After phosphate gets filtered in glomeruli, 

specific renal tubules reabsorb the proper amount of phosphate for maintaining 

homeostasis. This regulation is important for major diseases, such as chronic kidney 

diseases (CKD), where phosphate homeostasis is disturbed (see below). 
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Hormonal regulation in specialized organs 

 

The absorption rate of phosphate in the small intestine is primarily dependent on dietary 

intake, and is also influenced by the hormonal factor 1,25-dihydroxyvitamin D3 (1,25-

(OH)2D3). Vitamin D 1α(OH)ase is a mitochondrial enzyme, which is expressed in the 

renal proximal tubule (PT) and converts inactive vitamin D to its active form 1,25-

(OH)2D3. 1,25-dihydroxyvitamin D3 24 hydroxylase (24(OH)ase) is the enzyme that 

degrades 1,25-(OH)2D3. There are two primary mechanisms in the small intestine for 

phosphate absorption: one method is mediated by an active transporter, the sodium 

dependent co-transporter NPT2b, and the other occurs through paracellular trans-

membrane diffusion, which is sodium independent. Active vitamin D works on the 

sodium dependent active transport mechanism to increase phosphate and calcium 

absorption [3]. Low blood phosphate levels are important factors to initiate active vitamin 

D synthesis, and 1,25-(OH)2D3  negatively regulates its formation through increasing the 

expression of the 24(OH)ase. 

 

The kidneys are the critical organ for maintaining minute to minute serum phosphate 

levels through balancing reabsorption and secretion. The type II sodium phosphate co-

transporters NPT2a and NPT2c, members of the sodium-phosphate co-transporter family, 

primarily control phosphate reabsorption. These transporters are located on the brush-

border membrane (BBM) of proximal tubular cells [4]. Sodium-phosphate co-transporters 

actively transport phosphate from the tubule lumen of proximal tubular cells. Then 

phosphate is passed on to the bloodstream. The expression of the NPTs is regulated by 
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various factors, including dietary phosphate uptake, parathyroid hormone (PTH) [4], and 

FGF23 [5]. In mice, NPT2a influences phosphate transport greater than NPT2c [4], 

whereas NPT2c may play a larger role in humans. These co-transporters get internalized 

and degraded when PTH [6], FGF23 and serum phosphate are high, thus leading to 

reduced phosphate reabsorption. 

  

Parathyroid hormone (PTH) also plays an important role in 1,25-(OH)2D3 regulation and 

phosphate excretion. PTH initiates its activity through binding with PTH receptors in 

specific tissues and activates its G-protein coupled receptor, leading to intracellular 

signaling [7]. The principal function of PTH is to regulate calcium concentrations. When 

serum calcium is low, PTH mobilizes bone turnover to release calcium from bone 

reservoirs and increases 1α(OH)ase expression to produce more active vitamin D, which 

helps to increase calcium absorption in the small intestine and retain calcium from being 

excreted by the kidneys. However, bone turnover can result in a simultaneous increase in 

phosphate, which has negative effects on the regulation of calcium. Thus PTH works on 

kidney tubules to enhance phosphate excretion [8], and in general, PTH regulates 

phosphate as a secondary action compared with calcium regulation. As hormonal factors 

target bone, PTH and 1,25-(OH)2D3 act synergistically to facilitate moving phosphate into 

the blood to keep phosphate levels within the normal range. 
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Figure 1 Phosphate homeostasis  

In normal individuals, phosphate is absorbed from the diet in the small intestine. After 

entering the blood, circulating phosphate is filtered in the kidneys, in which the 

appropriate amount is reabsorbed for phosphate (Pi) balance. Bone is the reservoir for 

long-term phosphate storage. 
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FGF23  

 

FGF23 general characteristics 

 

Fibroblast growth factor 23 (FGF23) is a member of the human-mouse fibroblast growth 

factor gene family. Human FGF19 gene is the ortholog of mouse FGF15, thus the FGF 

family has 22 members in total [9]. FGF23 was first identified in the year 2000 as the 

gene for Autosomal Dominant Hypophosphatemic Rickets (ADHR, see below), a 

Mendelian disorder of disturbed phosphate metabolism. In this study, investigators 

combined gene information from four ADHR pedigrees using linkage analysis to identify 

FGF23 and its missense mutations in ADHR [10].  

 

The FGF23 gene localizes on chromosome 12p13.13 and contains three exons which 

span 11,502 bases of genomic sequence. The gene encodes the 251 amino acids protein, 

whose full length is 32kD, which can be cleaved into fragments of 20kD and 12kD [11]. 

FGF23 is mainly produced in osteocytes and osteoblasts [12] and has low expression in 

the heart, liver and thyroid/parathyroid [10]. The full length FGF23 is the biologically 

active form [11]. Once cut into two fragments, FGF23 becomes inactive. The cleavage 

site is a R176XXR179 motif, and in the study of ADHR, FGF23 missense mutations of 

R176Q, R179Q and R179W were found to be the cause of impaired phosphate regulation 

[10]. Mutated FGF23 is resistant to endopeptidase cutting, which stabilizes active FGF23 

and leads to phosphate wasting [11]. 
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FGF23 biological activities and regulation 

 

Although FGF23 is predominantly produced in bone, it targets the kidney to regulate 

phosphate and vitamin D metabolism. For direct phosphate regulation, FGF23 initiates 

NPT2a and NPT2c protein internalization and subsequent degradation, leading to 

phosphate wasting. In vivo models have supported these events. When wild type mice 

were injected with recombinant FGF23, serum phosphate levels decreased significantly 

compared with vehicle injections within 12 hours and NPT2a was down-regulated [5]. 

Mice with FGF23 delivery also showed a rapid, significantly reduced 1α(OH)ase 

expression and up-regulated 24(OH)ase transcription, resulting in decreasing active 

vitamin D, before serum phosphate changes [13]. In a FGF23-overexpressing transgenic 

mouse model, NPT2a protein levels and mRNA expression were significantly decreased 

compared with wild type mice, and 1,25(OH)2D3 was significantly reduced [14]. A 

mouse model for X-linked hypophosphatemia (XLH), the Hyp mice showed elevated 

serum FGF23 concentrations, leading to reduction of NPT2a in proximal tubules [15]. In 

normal mice, low concentrations of blood phosphate triggers production of active vitamin 

D for phosphate absorption in the small intestine. However, with FGF23 administration, 

although there are low phosphate levels, active vitamin D is not produced. Thus, FGF23 

down-regulates not only phosphate but also vitamin D formation in the kidneys. 

 

As FGF23 has central effects on phosphate and vitamin D serum concentrations, their 

metabolites are also believed to participate in FGF23 regulation. Both in humans and 

animal models, phosphate supplements and depletion cause FGF23 increases and 
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decreases, respectively [16] [17]. In mouse models, 1,25(OH)2D3 injections led to dose-

dependent increases of serum FGF23 levels, which was prior to phosphate concentration 

changes [13], suggesting that active vitamin D may regulate FGF23 directly through its 

promoter (see Figure 2). 

 

 FGF23 receptor complex 

 

FGFRs: There are four FGF receptors (FGFRs) to mediate FGF bioactivity. FGFR1-

FGFR4 are composed of an extracellular region containing a ligand binding domain and a 

heparin binding domain, a transmembrane region and an intracellular tyrosine kinase 

region. The FGFs bind to FGFRs, causing phosphorylation of the receptors and 

transmitting their biological functions [18]. Due to alternative splicing, each FGFR has 

various isoforms that have their own tissue specificities and biological activations. 

FGF23 has weak affinity to the FGFRs, suggesting it might require co-receptors to 

perform its bioactivities [19]. Indeed, investigators found that alpha-Klotho (αKL) 

knockout mice and FGF23 knockout mice shared common phenotypes, such as growth 

retardation, short life span, hyperphosphatemia and ectopic calcification, indicating αKL 

and FGF23 might have common signaling pathways. It was then proven in vitro that αKL 

is the co-receptor for FGF23 by co-expressing these proteins [20]. 
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Figure 2 Hormonal regulation of FGF23 

FGF23 is predominantly expressed in bone and secreted as a humoral factor to act on the 

renal proximal tubules in kidneys. It decreases proximal tubule 1α(OH)ase expression, 

resulting in decreased active vitamin D and internalized NPT2a to reduce phosphate 

levels. 
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Alpha-Klotho: αKL was first hypothesized to be an aging gene, as the αKL deficient 

mouse model manifested early death as well as potential aging phenotypes. In humans, 

the αKL gene locates on chromosome 13q12, spans approximately 50Kbp and contains 5 

exons, whereas in mice it is on chromosome 5. The αKL protein has two different 

isoforms due to protease activity. The first isoform is full length αKL, which is a 

membrane bound form (mKL), 130kD in size, containing a large extracellular domain 

and a very short (11 residues) intracellular region that is not sufficient for cytoplasmic 

signaling [21]. mKL can be cut near the membrane surface to produce a circulating form 

(cKL) that has a molecular mass of about 65kD. This cKL form is believed to work as a 

hormonal factor in multiple organs [22]. 

 

As the co-receptor for FGF23, αKL binding with FGFR leads to a 10-fold higher affinity 

for FGF23 than FGFRs alone [20].  FGF and FGFRs commonly activate the mitogen 

activated protein kinase (MAPK) pathway, and in kind FGF23 initiates the MAPK 

pathway and downstream phosphorylation. In the kidneys, αKL is localized in distal 

convoluted tubules (DCT). In a mouse study with 10-min tail vein injections of FGF23, 

phopho-ERK1/2 (P-Erk1/2) signaling, part of the MAPK pathway, was observed in DCT 

[23]. This suggests that FGF23 acts on the DCT through αKL-FGFR complexes. 

However, FGF23 regulates NPT2 and 1α(OH)ase in the PT, thus the mechanism of how 

FGF23 signals are delivered from DCT to PT is unknown (Figure 3). 
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Figure 3 FGF23 renal signaling pathways and bioactivity mapping 

In mice, (left) co-staining for Npt2a (red) and KL (green) proves separate locations of 

these two proteins in the renal tubule (left panel). After acute FGF23 delivery (right 

panel), the kidney was co-stained with anti-P-Erk1/2 (red) and anti-KL (green), and their 

signals overlapped; thus FGF23 signaling is separate from FGF23 function. 

 

[Figure courtesy: Dr. Emily Farrow and Dr. Kenneth White] 
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FGF23 animal models 

 

As FGF23 plays an essential role in phosphate handling through controlling phosphate 

reabsorption in the kidneys, animal models with FGF23 signaling insufficiency have been 

useful tools for testing the mechanisms underlying its bioactivity. 

 

To better understand the role of FGF23 in phosphate homeostasis, FGF23 knockout (KO) 

mice and transgenic mice overexpressing FGF23 were developed. In one FGF23-KO 

mouse model developed by our laboratory, exon 2 of the FGF23 gene is deleted globally 

using the Cre-Lox recombination method to produce non-functional FGF23. The 

nonfunctional FGF23 was confirmed by an intact FGF23 serum assay that showed 

undetectable serum FGF23 in these mice. FGF23-KO mice present with severe growth 

retardation, short life span, infertility and ectopic calcification [24] due to the fact that 

without FGF23, renal NPT2a cannot be down-regulated in response to increasing serum 

phosphate. Thus, these phenotypes are caused by highly elevated phosphate levels and 

subsequent biochemical dysregulation. FGF23 overexpressing mice manifest 

hypophosphatemia, osteomalacia and disturbed growth plate [14], mimicking ADHR and 

XLH patient phenotypes. This is consistent with the elevated FGF23 in this mouse model. 

αKL-KO mice share the same phenotypes with FGF23-KO mice [25] due to the fact that 

αKL deficiency leads to FGF23 signaling ablation, similar to a patient with αKL loss of 

function mutations. 
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Disorders involving phosphate metabolism 

 

Phosphate is one of the most abundant elements in the human body. Maintaining proper 

concentrations is essential for normal bone mineralization and cellular biological 

functions, such as activity of kinases and the production of ATP and nucleic acids. Any 

alterations that happen during phosphate absorption, reabsorption or secretion may cause 

hypophosphatemia or hyperphosphatemia, and respective clinical features. While the 

mechanism of how phosphate is regulated has not been understood completely, recent 

studies of phosphate disorders have given us clues, especially the inherited disorders. 

Mendelian diseases are a good tool to gain insights into the genes which cause phosphate 

misregulation. The primary heritable phosphate disorders are listed in Table 1, and below 

is an introduction to these diseases. 

 

Autosomal Dominant Hypophosphatemic Rickets (ADHR) 

 

ADHR is a rare hereditary disease. The clinical presentations are low serum phosphate, 

up-regulated FGF23 levels and inappropriate low or normal circulating 1,25(OH)2D3. 

Presentation can be variable; with childhood onset, patients may present with severe 

clinical features, such as rickets and deformation of the lower extremities. Patients who 

present in adulthood may have bone pain and less severe fractures. In addition, ADHR 

can be incompletely penetrant, as unaffected carriers have been observed [26]. 
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The FGF23 gene was first identified in ADHR as the causative gene (see FGF23 section). 

In ADHR, a subtilisin-like proprotein convertase (SPC) protease motif (R176XXR179) is 

mutated, which prevents the cleavage of FGF23 protein [10]. Normally, full length 

FGF23 can be cut into two fragments, a 20kD N-terminal portion and a 12kD C-terminal 

portion. In animal studies, these three different FGF23 forms were given to mice, and 

only the intact form caused phosphate reduction, indicating that full length FGF23 is the 

active form [11]. Also, in ADHR patients with severe features, the intact FGF23 levels 

are markedly elevated [27]. Thus this protease cleavage resistance leads to gain of 

function for the FGF23 protein. 

 

The animal model for ADHR is a mouse model carrying the R176Q mutation in the 

FGF23 gene. To achieve classic ADHR clinical features, R176Q mice were put on an 

iron deficient diet which enhanced the FGF23 concentration changes. As iron depletion 

can cause increasing FGF23 expression in bone [28], R176Q mice on this special diet 

developed osteomalacia with hypophosphatemia and an elevated FGF23 level, due to this 

FGF23 cleavage resistance. 

 

X-Linked Hypophosphatemic Rickets (XLH) 

 

XLH is an X-linked dominant disorder, the most common inherited disease for 

osteomalacia, and has similar phenotypes to ADHR. Manifestations usually present 

during the first few years of life due to rapid growth: lower-extremity bowing, and 

clinical features of rickets and fracture. Lab findings include hypophosphatemia, 
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inappropriate normal 1,25(OH)2D3, with calcium and PTH often in the normal ranges 

[29]. Inactivating mutations in PHEX (Phosphate-regulating gene with homologies to 

endopeptidases on the X chromosome) are the cause of this disease. The PHEX protein 

product is a membrane bound metalloprotease, suggesting it functions to cut small 

peptides [30]. 

 

PHEX is primarily produced in bone cells, whereas its mutations cause phosphate 

wasting resulting from impaired reabsorption in the kidney. This suggests that PHEX 

interacts with hormonal factors outside of bone that act on kidney. In XLH patients, 

increased intact FGF23 has been observed [31]. In addition, the Hyp mice, a mouse 

model of XLH, were tested for its bone FGF23 mRNA expression and serum FGF23 

concentration, which were also elevated [32], indicating that the PHEX mutation and 

FGF23 increases are related. 

 

As mentioned above, the Hyp mouse model mimics the phenotypes of XLH with low 

serum phosphate, elevated FGF23, inappropriate 1,25(OH)2D3, and normal calcium. In 

Hyp mice part of the sequence on the 3’ end of the PHEX gene has been deleted, so that 

no functioning PHEX can be produced in this mouse model [33]. 

 

Autosomal Recessive Hypophophatemic Rickets (ARHR) 

 

ARHR is characterized by phosphate wasting, increased FGF23, along with rickets and 

osteomalacia [3]. There are three types of ARHR. Type 1 is caused by an inactivation of 
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the gene Dentin Matrix Protein-1 (DMP1). Mutations lead to impaired osteocyte 

maturation resulting in FGF23 mRNA and protein level increases, which cause 

pathological changes of bone formation [34]. Ectonucleotide 

pyrophosphatase/phosphodiesterase-1 (ENPP1) recessive mutations are the cause for type 

2 ARHR. Dysfunction of ENPP1 protein results in defective osteoblast differentiation 

and FGF23 expression elevations, leading to the ARHR phenotype [35] [36]. Type 3 

ARHR is caused by Family with sequence similarity 20, member c (FAM20c) gene 

mutations. This mutation occurs in a kinase, and causes stabilization of FGF23 through 

reduced protease cleavage of the intact form. 

 

Hyperphosphatemic Familial Tumoral Calcinosis (hFTC) 

 

hFTC is an inherited autosomal recessive disease of over-phosphate reabsorption. It is 

characterized by ectopic calcium and phosphate deposition, which can be found in soft 

tissues and vessels. Biochemical findings include hyperphosphatemia due to increasing 

phosphate reabsorption, inappropriate normal 1,25(OH)2D3 with serum calcium and PTH 

in the normal ranges [37]. 

 

There are multiple mutations that cause hFTC. Polypeptide N-acetylgalactosaminyl 

transferase-3 is encoded by the GALNT3 gene and was the first identified hFTC mutation. 

This protein transfers a galactosamine to the hydroxyl group of a serine or threonine 

residue. In hFTC patients with GALNT3 mutations, elevated C-terminal FGF23 and 

reduced intact FGF23 have been observed [38]. This is due to diminished glycosylation 
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in the FGF23 R176XXR179 protease motif, which usually occurs at T178, resulting in 

FGF23 instability and subsequent degradation [39]. FGF23 destabilizing mutations or 

alpha-Klotho (αKL) loss of function mutations can also cause hFTC. The mutations in 

FGF23 lead to protein degradation, which is similar to the GALNT3 mutation effects on 

FGF23 protein. Since αKL is the co-receptor for FGF23 binding, αKL mutations can 

result in loss of FGF23 signaling, leading to severe hFTC phenotypes. 

 

Chronic Kidney Disease (CKD) 

 

CKD is a worldwide health problem due to its high prevalence, affecting 1 in 8 in 

America [40] with lethal complications. In CKD, kidney function loss caused by a wide 

range of renal injuries or genetic factors, including diabetes and high blood pressure. As 

the kidneys are the central organs for phosphate excretion, glomerular filtration rate 

(GFR) decreases paralleled with loss of nephrons results in phosphate retention and 

hyperphosphatemia. Loss of renal function also causes other biochemical abnormalities, 

like elevation of serum FGF23 and PTH, reduction of vitamin D metabolism, and 

decreasing calcium concentration. These pathological changes impact normal mineral 

metabolism, causing bone disease, ectopic calcification and cardiovascular diseases, 

which are lethal complications of CKD [41]. 

 

In CKD patients, nephron loss induces less active vitamin D production and less secretion, 

causing hypocalcemia and high serum phosphate. As a major mediator for PTH, low 

calcium level initiates secondary hyperparathyroidism. High PTH levels elevate 
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phosphate concentrations even further through bone turnover. With disease progression, 

FGF23 and PTH are elevated to act on remaining nephrons to compensate the biological 

function of the damaged kidney. In the advancing CKD stages, FGF23 concentrations are 

correlated with disease severity [42]. In addition, highly elevated serum FGF23 in CKD 

can be associated with cardiac alterations in patients undergoing hemodialysis [43]. 

 

In summary, phosphate balance is essential for normal development, cell function and 

skeletal homeostasis. Phosphate regulation is complex and regulated by various factors: 

chief among these is FGF23. In inherited diseases of phosphate metabolism, although 

these disorders have different causative genes, most of them involve FGF23 over-

production or signaling impairment. Besides rare diseases, FGF23 also plays an 

important role in common diseases, like CKD. Thus it is important to study FGF23 and 

its signaling cascades towards developing new treatments. 
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Table 1 Primary inherited phosphate disorders involving FGF23 

Inherited Disease Biochemical 

abnormalities 

Causative 

Gene (Genes) 

Type of 

mutation 

Autosomal Dominant 

Hypophosphate Rickets 

(ADHR) 

Hypophosphatemia FGF23 Gain of 

function 

X-linked Hypophosphatemic 

Rickets (XLH) 

Hypophosphatemia PHEX Loss of 

function 

Autosomal Recessive 

Hypophosphatemic Rickets 

(ARHR) 

Hypophosphatemia DMP1 

ENPP1 

FAM20c 

Loss of 

function 

Familial Tumoral Calcinosis 

(FTC) 

Hyperphosphatemia GALNT3 

FGF23 

KL 

Loss of 

function 
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Hypothesized molecular pathway for FGF23 activity in kidney 

 

Gene expression changes after FGF23 administration 

 

As described above, the biological outcomes of FGF23 delivery occur in the kidney 

proximal tubules, decreasing phosphate absorption by mediating Npt2a internalization 

and reducing active vitamin D synthesis by down regulating the kidney 1α(OH)ase [5, 

14]. The mechanisms of how the FGF23 signals communicate between the DCT and the 

proximal tubules (PT) is still not clear. 

 

To study gene expression changes in the FGF23 signaling pathway, microarray chip 

technology was performed previously in the laboratory. Wild type (WT) mice were i.p. 

injected with either 10µg recombinant FGF23 or vehicle (saline) and sacrificed after 1 

hour. Kidneys were collected, kidney RNA was isolated and gene (mRNA) expression 

was tested by microarray. The expression of ninety-one genes was increased significantly 

(p<0.001), and the most elevated nine genes are listed in Table 2. 

 

Hypothesis for HBEGF participation in FGF23 signaling 

 

It was previously demonstrated that FGF23 acts on the DCT to activate the MAPK 

pathway, which leads to increased Egr1 expression [44]. As expected, Egr1 gene 

expression showed approximately a 9-fold increase in the kidneys of FGF23 treated mice 

compared with the control groups. The genes highlighted in orange in Table 2 were 
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previously demonstrated being related to FGF23 signals [45] [46]. In the gene array, 

heparin-binding EGF-like growth factor (HBEGF) was the second-most up-regulated 

gene with a 3-fold increased expression, suggesting HBEGF might be a potential 

mediator conducting communication between the DCT and the PT. 

 

In addition, HBEGF has been identified as a paracrine factor located in the kidney DCT 

[47]. Although HBEGF has not been previously associated with phosphate regulation, 

members of EGF family are found to participate in kidney electrolyte handling. In this 

regard, the fine excretion of magnesium takes place in the DCT due to autocrine effects 

of the factor epidermal growth factor (EGF). Pro-EGF protein becomes solubilized after 

proteolysis, which binds to the EGFR located on the same DCT cell, thus stimulating 

downstream signals to regulate magnesium channels. Loss of function mutations in EGF 

causes isolated recessive renal hypomagnesemia (IRH), a disease of magnesium wasting 

[48]. Thus, as a member of EGF family, HBEGF may also play a role in phosphate 

regulation as a paracrine factor to communicate the signals between the DCT and PT. 
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Table 2 Kidney microarray data after acute FGF23 administration 

An hour post injection of FGF23 in mice showed a significant change in kidney mRNA 

expression compared to control injected mice by microarray. The top nine genes are 

listed in the table with Egr1 serving as the positive control for the FGF23 signaling event.  

HBEGF was the second-most highly elevated gene, which might suggest its significance 

in the FGF23 signaling pathway. 

 

[Figure courtesy: Dr. Kenneth White] 
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General properties of HBEGF 

 

Heparin-binding EGF-like growth factor (HBEGF) is a member of the EGF family. First 

identified from human macrophages, it is capable of stimulating differentiation of smooth 

muscle cells and fibroblasts and has heparin affinity [49]. The human HBEGF gene is 

located on chromosome 5 and contains 6 exons, encoding HBEGF protein composed of 

208 amino acids in its full-length form (pre-proHBEGF) [50]. Pre-pro-HBEGF is a single 

transmembrane protein, whose maturation undergoes several proteolytic steps. It is firstly 

cleaved by a furin-like enzyme between amino acids 62 to 63 to produce a pro-HBEGF. 

Then pro-HBEGF is most likely cut by a disintegrin and metalloproteinase (ADAM), 

resulting in a mature soluble HBEGF (sHB) (see Figure 4) [51]. In pro-HBEGF and sHB, 

the EGF-like domain is most likely the key motif for EGFR recognition [52]. The 

cytoplasmic fragment also has a biological function in cellular proliferation in an EGFR-

independent manner [53]. 

 

HBEGF processing and signaling 

 

The ADAMs proteases are induced through G-protein coupled receptor activation, and 

these proteolytic enzymes cut pro-HBEGF close to the cell surface, causing ectocellular 

shedding. Then sHB acts as autocrine, paracrine or juxtacrine factor to bind ErbB1/HER1 

and ErbB4/HER4, two members of the EGF receptor family, to activate the receptors’ 

intracellular tyrosine kinase domains, and elicit signal cascades, such as MAPK and NF-

κB [54] [55]. 
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Within the ADAM family, ADAMs 10 and 17 are thought to be the main enzymes for 

HBEGF shedding. In addition, cells with deficient ADAM17 can be rescued by adding 

ADAM10, while ADAM10 only functions when ADAM17 is absent [56]. In animal 

studies, mice lacking ADAM17 mimic the phenotype of growth factor knockout mice, 

which are lethal before birth [57].  
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Figure 4 Structure and processing of HBEGF 

The pre-pro-HBEGF is the full length HBEGF. After being cut by a furin-like protease, it 

becomes pro-HBEGF. Then ADAMs cleave the pro-HBEGF form into sHB and the 

cytoplasmic form of HBEGF. 

 

[Figure adapted from [51] ] 
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Global Hypothesis 

 

In the present studies, I tested whether HBEGF is involved in electrolyte regulation, 

similar to EGF’s function. Because HBEGF is up regulated following FGF23 delivery, I 

hypothesized that this factor stimulates the renal PT to mediate FGF23-dependent 

phosphate homeostasis (see Figure 5). In this regard, I performed in vivo experiments 

testing HBEGF activity in mice devoid of FGF23 or its signaling components (Klotho), 

developed and characterized an anti-HBEGF antibody, tested an in vitro assay, and 

examined the localization of FGF23 and HBEGF signaling in vivo. 
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Figure 5 FGF23 hypothesized downstream signaling 

This is a diagram for FGF23 signaling and a hypothesized pathway of how FGF23 passes 

its signals from DCT to PT. In this regard, it is hypothesized that FGF23 signals in the 

renal DCT and some unknown downstream signaling (the question mark in the DCT) 

leads to the cleavage of HBEGF. sHB may travel to the PT (the question mark between 

two tubules) and affect the activities in the renal PT on NPT2a and 1,25D synthesis. 
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Materials and Methods 

 

Animal Studies 

 

Animal studies were performed according to the Institutional Animal Care and Use 

Committee for Indiana University, and comply with the NIH guidelines. 

 

For immunofluorescence studies, recombinant HBEGF (10µg), recombinant FGF23 

(10µg) and vehicle (100µl saline) were delivered to 12-week old WT mice through tail-

vein injections. Mice were euthanized after ten minutes. Kidneys were perfused by saline 

and then fixed by 4% paraformaldehyde (PFA), and then submerged in 4% PFA in 

microcentrifuge tubes (Midwest Scientific, MIDSCI) overnight. 

 

For gene expression studies, 6-8 week old mice (FGF23-KO mice, αKL-KO mice [25] 

and WT mice) were i.p. injected with 10µg HBEGF, 10µg FGF23, 100µl vehicle (saline), 

then sacrificed after one hour. Serum was collected first, and then followed by saline 

perfusion, PFA fixation and tissue harvesting: one kidney for immunofluorescence 

staining, half kidney for RNA extraction, half kidney for protein collection and serum. 

 

The FGF23 KO mouse is a conditional knockout mouse model generated by our 

laboratory. In this model, FGF23 exon 2 was deleted using a ubiquitous EIIa - Cre Lox 

recombination system [24]. 
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Cell Culture 

 

An mKL cell line [23], HEK293 cells stably transfected with mKL, were cultured in 

DMEM/F-12 (Hyclone) supplemented with 10% fetal bovine serum, 1% sodium pyruvate 

(ThermoFisher Scientific), 1% L-Glutamine 100X Solution (Hyclone), 50,000U 

Penicillin-Streptomycin Solution (Hyclone), 450ug/ml Geneticin (G-418, ThermoFisher 

Scientific); cells were incubated at 37°C and 5% CO2. Medium was changed every 2 to 3 

days. 

 

Transient transfection for immunoblotting and qPCR 

 

5 x 105 mKL cells were seeded on a collagen I coated 6-well plate (Thermo Scientific 

Nunc) for each well. After 20 hours incubation, cells were transfected with 3.3 µg of 

plasmid DNA in 153ul DMEM/F-12 with 12ul of FuGENE HD reagent (Promega) per 

well. 

 

Transient transfection for immunofluorescence 

 

1 x 105 mKL cells were seeded on 4-well CultureSlides with a uniform application of rat 

tail collagen type I (Corning BioCoat) and incubated for 20 hours. Then cells were 

transfected with 0.55ug of plasmid DNA in 26ul DMEM/F-12 with 1.7ul FuGENE HD 

reagent following the protocol. 
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Cell treatments 

 

24 hour post-transfection, cells were changed to serum free media, and treated with 

vehicle (saline), 500ng/ml recombinant FGF23 or 2nM TPA for different time points: 1h, 

6h, 24h. 

 

Immunoblotting 

 

Cell lysate preparation 

 

mKL cells were washed twice with PBS, lysed with 200ul 1X cell lysis buffer (Cell 

Signalling) with 0.1% 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF, 

Santa Cruz), collected in 1.7ml microcentrifuge tubes (MIDSCI). Samples were kept at -

20°C for later use. 

 

Gel electrophoresis and transfer 

 

Samples were thawed on ice and centrifuged one minute at maximum speed. Then the 

protein concentration was measured by the Coomassie Plus (Bradford) Assay kit 

(Thermo Scientific). Sample loading volumes were calculated to ensure equal protein 

amounts. An equal volume of freshly made Laemmli Sample Buffer (Bio-Rad) with 5% 

β-mercaptoethanol/2-Mercaptoethanol (β-ME, Fisher-Scientific) was added to the cell 

lysate samples and boiled for five minutes. After cooling down to room temperature, 
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samples were electrophoresed on AnyKD Mini-Protean TGX Gels (Bio-Rad) and 

transferred to a PVDF membrane (Bio-Rad) for 3 minutes using a Trans-Blot Turbo 

transfer system (Bio-Rad). 

 

Western Blotting 

 

Membranes were blocked in 5% dry milk powder (Scientific Inc) in 1XTBS (Tris-

buffered saline, Bio-Rad) for one hour at room temperature, followed by primary 

antibody incubating at 4°C overnight (see Table 3 for concentrations). Membranes were 

rinsed three times, ten minutes each, in 1XTBS with 0.05% Tween 20 (USB Corporation). 

Then the membranes were incubated in secondary goat anti-rabbit IgG-HRP conjugate 

(Bio-Rad) antibody at 1:5000 to 1:10000 dilution for one hour (see Table 4 for 

concentrations). Enhanced chemilumescent (ECL, GE Healthcare) was used to detect 

horseradish peroxidase (HRP) activity and membranes were exposed to X-ray films. 

 

Table 3 Primary antibodies for WB 

Primary Antibody for Western Blotting Vendor Dilution 

EGF Receptor (D38B1) Cell Signaling 1:1000 

Phospho-EGF Receptor (Try1068) Cell Signaling 1:800 

ERK1/2 Promega 1:5000 

Phospho-p44/42 MAPK (Erk1/2) Cell Signaling 1:1000 
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Table 4 Secondary antibodies for WB 

Secondary Antibody for Western Blot Vendor Dilution 

Goat Anti-Rabbit IgG-HRP Conjugate Bio-Rad 1:5000-1:10000 

Donkey Anti-Goat IgG-HRP  Santa Cruz 1:3000 

 

Immunofluorescence 

 

Cell staining 

 

After transfection as described above, cells were treated with recombinant human FGF23 

500 ng/ml or saline as control for 1, 6 or 24 hours. Cells were washed two times with 

PBS (Hyclone), and fixed in 4% paraformaldehyde (PFA) for 15 minutes. Cells were 

then blocked with 10% goat serum with 0.2% Triton X-100 (Sigma) in PBS (blocking 

buffer) for 1 hour at 37°C in a humidity chamber. All the following incubation steps were 

performed in a humidity chamber. Primary antibody (see Table 5 for dilution) was diluted 

in blocking buffer and added to slides for incubation at 4°C overnight. Then slides were 

rinsed three times in PBS with 0.2% Triton X-100. After rinsing, secondary antibody (see 

Table 6 for dilution) was added at 1:250 dilution in blocking buffer to the slides, and 

incubated in the dark at room temperature for 1 hour followed by rinsing three times. 

Slides were mounted with media containing DAPI (Vector Laboratories) to stain nuclei, 

and observed with a Leica DM5000B fluorescent microscope. 

  



 32 

Table 5 Primary antibodies for IF 

Primary Antibody for Immunofluorescence Vendor Dilution 

Klotho KO603 TransGenic Inc 1:20 

Phospho-p44/42 MAPK (Erk1/2) Cell Signaling 1:50 

 

Table 6 Secondary antibodies for IF 

Secondary Antibody for Immunofluorescence Vendor Dilution 

Alexa Fluor 488 Goat anti-Rabbit Thermo Fisher 1:200 

Alexa Fluor 594 Goat anti-Rabbit Thermo Fisher 1:200 

Goat anti-Rat IgG Alexa Fluor 488 Conjugate Thermo Fisher 1:200 

Goat anti-Rat IgG Alexa Fluor 594 Conjugate Thermo Fisher 1:200 

 

Tissue staining 

 

At necropsy, mice were perfused with saline and then 4% PFA through the systemic 

circulation before removal. Kidneys remained in 4% PFA at 4°C for 24 hours, washed in 

PBS and then incubated in 30% sucrose for 48-72 hours at 4°C. Kidneys were embedded 

in O.C.T. (Sakura Finetek) and frozen at -80°C. Tissues were sectioned at 8 µm using 

Leica cryostat at -20℃ and placed on slides. Samples were kept at -80°C for long-term 

storage. 
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Staining protocol 
 

Slides were kept at room temperature for 20 minutes to let the O.C.T. dry. Sections were 

circled using a hydrophobic barrier pen (Fisher Scientific), then antigen retrieval was 

performed using pepsin (Carezyme II: Pepsin, Biocare Medical) for 5 minutes at 37°C. 

Slides were rinsed three times, five minutes each in PBS. Image-iT FX Signal enhancer 

(Thermo Fisher) was added to slides for 30 minutes at room temperature for blocking 

background signals, followed by three rinses in PBS. 1 hour additional blocking was 

performed using10% goat serum in 0.2% Triton X-100 in PBS (blocking buffer) at 37°C. 

After blocking, primary antibody (see Table 4) was added on slides diluted in blocking 

buffer for incubation at 4°C overnight.  Slides were rinsed three times thoroughly in 0.2% 

Triton X-100 in PBS (washing buffer) for ten minutes. After rinsing, appropriate 

fluorescent secondary antibody was added, diluted in blocking buffer, and slides were 

incubated for one hour in the dark at room temperature. Slides were rinsed three times ten 

minutes each, and mounted with DAPI mounting media (Vector Laboratories) or Prolong 

Gold Antifade Mountant (ThermoFisher Scientific). Images were taken with a DM5000B 

fluorescent microscope (Leica Microsystems). All incubations were performed in a 

humid chamber. 

  



 34 

Quantitative PCR 

 

Tissue RNA Preparation 

 

Kidney samples were collected in TRIZOL (Invitrogen) and homogenized using Navy 

Rino Bullet Blender tubes (MIDSCI) in a Bullet Blender (Next Advance). RNA was 

extracted following the TRIZOL Reagent protocol. 

 

Cell RNA Preparation 

 

Cell RNA extraction was performed using the RNeasy Mini kit (Qiagen, Inc.). Cells were 

washed three times with PBS, then 350µl buffer RLT (lysis buffer) with 3.5µl β –ME was 

added to each well. After cells were collected and mixed well in RLT buffer, they were 

transferred to microcentrifuge tubes. RNA was extracted following the RNeasy Mini 

protocol for purification of total RNA from animal cells using microcentrifuge columns 

according to standard Qiagen, Inc. protocols. 

 

Real Time PCR (q-PCR) 

 

Samples were tested using mouse or human primers for 1-αOHase, 24-OHase, Egr1 and 

the control β-actin (see Table 6). After RNA extraction, 10 ng/µl RNA dilution was made 

in RNase free water. For each well, 12.5µl TaqMan RT-PCR Mix (2X), 0.625µl TaqMan 

RT Enzyme Mix (40X), 0.375 µl RNase free water, 0.5µl 10µM forward primer, 0.5µl 
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10µM reverse primer and 0.5µl 5µM probe were added in a MicroAmp Optical 96-well 

reaction plate (Applied Biosystems). The quantitative PCR conditions were: 30 min 

48°C, 10 min 95°C, followed by 40 cycles of 15 sec 95°C and 1 min 60°C. Then data 

was collected using the comparative CT (Δ ΔCT) experiment workflow according to the 

StepOnePlus Real-Time PCR System (Thermo Fisher). Each sample was analyzed in 

duplicate, and the fold change of each gene expression was tested by the 2-∆∆CT method.  

 

Table 7 Real-time PCR Primers 

Gene Forward Primer Reverse Primer Probe Vendor 

Mouse 

Actin 

5’-GGCTCCTAG 

CACCATGAAG-

3’ 

5’-ACCGATCCA 

CACAGAGATCT

-3’ 

5’-FAM-

TCAAGATCA 

TTGCTCCTCCT

GAGCGC-

TAMRA-3’ 

IDT 

Mouse 

EGR1 

5’-AGCCGAGCG 

AACAACCCTAT

-3’ 

5’-CGCCTTCTC 

ATTATTCAGAG

CG-3’ 

5’-FAM-

AGCACCTGA 

CCACAGAGTC

CTTTTCTGACA

-TAMRA-3’ 

IDT 

Mouse 

24OHase 

5’-GGCCTGGGA 

CACCATTTTC-3’ 

5’-GCTGGGAAT 

ATCTCTCTAGG

CG-3’ 

5’-FAM-

AATCAGTCA 

AGCCCTGCAT

CGACCA-

IDT 
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TAMRA-3’ 

Mouse 

1aOHase 

5’-AGGCTGCAT 

GAACTGCAGG-

3’ 

5’-TCCCAAAGC 

TGCCAGACC-3’ 

5’-FAM-

CATGGCGCT-

ZEN-

GCGCGGTACG-

IBFQ-3’ 

IDT 

Human 

Actin 

5’-GGCACCCAG 

CACAATGAAG-

3’ 

5’-GCCGATCCA 

CACGGAGTACT

-3’ 

5’-FAM-

TCAAGATCA 

TTGCTCCTCCT

GAGCGC-

TAMRA-3’ 

IDT 

Human 

EGR1 

5’-GGACACGGG 

CGAGCAG-3’ 

5’-

CGTTGTTCAGA

G 

AGATGTCAGGA

-3’ 

5’-FAM-

CCTACGAGC 

ACCTGACCGC

AGAGTCT-

TAMRA-3’ 

IDT 

 

HBEGF antibody 

 

A rabbit anti-mouse HBEGF antibody was made by GenScrip, USA, Inc. A 26 amino 

acid sequence, CLNLFKVAFSSKPQGLATPSKERNGK, of mouse HBEGF was chosen 

as the peptide for antibody generation in rabbits (see Results). 
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Other materials 

 

Table 8 Recombinant Protein 

Protein Name Vendor 

Human HBEGF R&D Systems 

Human FGF-23 R&D Systems 

Mouse HBEGF Sigma 

 

Table 9 Other Chemicals 

Names Vendor 

Fluorescein labeled Lotus Tetragonolobus Lectin (LTL) Vectashield 

Phorbol 12-myristate 13-acetate (TPA) TOCRIS Bioscience 

Heparin-agarose Sigma Aldrich 

β-mercaptoethanol    Fisher Scientific  

 

Statistical Analysis 

 

Gene expression changes were analyzed by student t-test using raw data collected from 

StepOnePlus Real-Time PCR System. The change was considered significant when 

p<0.05.  
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Results 

 

Initial study of HBEGF activity in vivo 

 

To investigate whether HBEGF plays a role downstream of the FGF23 signaling pathway 

in the kidney, in vivo studies were performed. As described above, FGF23 binds FGFR1 

and co-receptor αKL on the DCT and activates the MAPK pathway. This signaling then 

initiates a reaction in the PT causing decreasing 1α(OH)ase expression and degradation 

of NPT2a [23]. Due to the gene array analysis and properties of corresponding proteins, 

we hypothesized that HBEGF was a potent paracrine factor required for FGF23 

bioactivity. We used two mouse models that contained impaired FGF23 signaling to test 

if HBEGF supplementation could rescue the defects in phosphate homeostasis. 

 

In αKL-KO mice, which lack Klotho gene expression, the FGF23 signaling pathway is 

impaired due to the lack of the obligate FGF23 co-receptor. When FGF23 is unable to 

activate its downstream reactions, 1α(OH)ase expression is aberrantly increased, thus 

1α(OH)ase mRNA levels were used as a marker of FGF23 signaling activity. To identify 

if HBEGF could rescue FGF23 signaling in αKL-KO mice, 10µg recombinant HBEGF or 

vehicle was injected intraperitoneally in αKL-KO mice (eight mice for each group), and 

vehicle was injected in four WT mice (Figure 6). Mice were sacrificed 1 hour later, and 

kidneys were collected for q-PCR analysis of mouse 1α(OH)ase and mouse actin gene 

expressions. 
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Due to the αKL co-receptor deletion, vehicle injected αKL-KO mice showed 18-fold 

higher 1α(OH)ase mRNA levels compared to WT controls; p-value was 0.0039. Whereas 

in HBEGF treated mice, the injection led to a 10-fold reduction of 1α(OH)ase mRNA 

compared with vehicle treated αKL-KO mice with a 0.0273 p-value, even though 

1α(OH)ase expression was still significantly elevated more than in WT controls. This 

significant reduction demonstrated that recombinant HBEGF rescued the FGF23 

defective signaling activity. 

 

In parallel experiments, FGF23-KO mice were used. As exon 2 of FGF23 was deleted in 

these FGF23-KO mice, there was no FGF23 produced, resulting in hyperphosphatemia. 

To determine if HBEGF could rescue this loss of FGF23, FGF23-KO mice were injected 

with vehicle (saline or ‘sal’), 10µg recombinant HBEGF or 10µg recombinant FGF23 

(Figure 7). There were three mice in the KO-sal group (FGF23-KO mice injected with 

vehicle), three mice in KO-FGF23 group (FGF23-KO mice injected with FGF23), six 

mice in KO-HB group (FGF23-KO mice injected with HBEGF) and six mice in WT-sal 

group (wild type mice injected with vehicle). Mice were euthanized one hour post-

injection and kidneys were collected for q-PCR analysis for 1α(OH)ase gene changes. 

 

Compared with WT control, 1α(OH)ase expression in the three FGF23-KO groups were 

significantly elevated due to non-functional FGF23 and the p-values for each comparison 

were 0.0432 (KO-sal v.s. WT-sal), 0.0299 (KO-FGF23 v.s. WT-sal) and 0.0051(KO-HB 

v.s. WT-sal). Within FGF23-KO groups, recombinant FGF23 suppressed 1α(OH)ase to  
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Figure 6 q-PCR analysis of HBEGF administration in αKL-KO mice 

Wild type mice, injected with saline, as well as αKL-KO mice were injected with saline 

or 10µg recombinant HBEGF, then euthanized 1 hour later. Renal 1α(OH)ase gene 

expressions were evaluated by real-time PCR. The reduction in KL-HB group was 

significant compared with KL-sal group, p<0.05 (*). Both KL-HB and KL-sal groups had 

significant elevated 1α(OH)ase gene expressions versus WT group, p<0.05 (#). (n =4-8) 
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40-fold less versus vehicle injected mice (p-value was 0.0921). In addition, the KO-HB 

group showed robust decreased 1α(OH)ase expression with a 0.0767 p-value versus KO-

sal, suggesting canonical FGF23 signaling cascade was partially regained due to sHB 

administration. Even though there was a decreasing trend compared to FGF23-KO saline 

treated mice, the reduction of 1α(OH)ase in FGF23 and HB injected FGF23-KO mice 

was not statistically significant; however, the trends mimicked the results in αKL-KO 

mice. 

 

Therefore, the above in vivo studies strongly suggested that sHB regulated genes were 

associated with phosphate metabolism. HB mimicked FGF23 actions and rescued its 

biological activity in models where the FGF23 signaling pathway was impaired. 

Therefore, these results are in agreement with the hypothesis that HB functions as a 

downstream mediator of the FGF23 pathway in the kidney. Like EGF, HBEGF could be 

potentially cleaved into a soluble form in this pathway and travel from the DCT to the PT 

mediating FGF23 activity. 
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Figure 7 q-PCR analysis of HBEGF administration to FGF23-KO mice 

FGF23-KO mice were injected with saline, 10 µg FGF23 or HBEGF. Wild type mice 

were injected with saline. Mice were euthanized 60 minutes later. Mouse 1α(OH)ase and 

mouse actin gene expression were evaluated by real-time PCR. Expression changes 

between FGF23-KO groups and WT control group were significant, p<0.05 (*). 

1α(OH)ase levels decreased between KO-FGF23 versus KO-sal and KO-HB versus KO-

sal (were 0.092 and 0.077, respectively). 
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Preparation of an HBEGF antibody 

 

To better understand how HBEGF functions in the kidney, it is important to obtain a 

high-quality mouse HBEGF antibody, which can be used for Western blots and 

immunofluorescence. Therefore polyclonal rabbit anti-mouse HBEGF antibodies were 

produced. Two New England rabbits (number 16435 and 16436 from GenScrip USA Inc) 

were immunized three times with recombinant HBEGF peptides 

(CLNLFKVAFSSKPQGLATPSKERNGK), a sequence from mouse HBEGF protein 

(Figure 8). The rabbits’ sera were collected and probed against mouse recombinant 

HBEGF protein (Sigma) by Western blots (Figure 9a) to test if the immune injections 

were successful. The mouse recombinant HBEGF protein was a polypeptide chosen from 

the soluble HB (sHB) amino acid sequence. For conciseness, numbers “1” and “2” were 

used to replace the rabbits’ company-provided numbers. 

 

To test the antibody, immunoblots were first performed. The molecular mass of sHB is 

about 15 kD, whereas the membrane bound form is 22 kD. In Figure 9a, there was no 

band for sHB in pre-immune probing as expected. In immune serum probed membranes, 

sHB bands were clear in the 25 ng loading lane for both rabbits’ sera, and some non-

specific bands in number 2 rabbit’s serum were apparent. After proving the antibodies’ 

existence, serum was collected and purified. Purified antibodies were then tested on 

recombinant mouse sHB at different concentrations (Figure 9b), 0.5 µg/ml and 1 µg/ml. 

Both conditions presented clear bands at 15 kD, the common mass for sHB. These results 

showed that the HBEGF antibody recognized HBEGF protein. 
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Figure 8 HBEGF structure and immune polypeptide 

“M” refers to trans-membrane domain, “EGF” refers to EGF like fragment, “HB” refers 

to heparin binding fragment. The peptide chosen for immune is in the soluble HBEGF 

portion, but also contained in the membrane form. 
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Figure 9 HBEGF antibody characterization  

(a) Unpurified antibody tests: 1ng, 10ng and 25ng recombinant mouse HBEGF protein 

were added to each lane, and membranes were probed with two different pre-immune 

rabbit sera and unpurified immune sera. (b) Purified antibody tests: 1ng, 10ng and 25ng 

recombinant mouse HBEGF protein were added to each lane, and membranes were 

probed with two purified antibodies with different concentrations. (c) Anti-HBEGF 

antibody recognized recombinant HBEGF after purification with heparin-agarose. 
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Heparin-agarose purification of sHB was planned to be used as a future in vivo tissue 

collecting step. Thus, it would be important to assure the HBEGF antibody could 

recognize post-purification HBEGF protein. Recombinant mouse HBEGF protein was 

incubated with heparin-agarose overnight at 4°C. The protein was collected, then 

underwent immunoblot and was transferred to a membrane to be probed with the HBEGF 

antibody to ensure heparin-agarose purification would not disturb antigen-antibody 

binding. As shown in Figure 9c, the anti-HBEGF antibody recognized the heparin-

purified recombinant HBEGF protein. 

 

The next step was to use a cell model for testing the HBEGF antibody. The human 

embryonic kidney 293 (HEK293) cell line was used. These cells are relatively easy to 

grow and transfect with plasmids. HBEGF (HB DNA) and empty (pcDNA) plasmids 

were prepared previously in the laboratory (vehicle plasmid at 1499.3ng/µl, HB plasmid 

at 952.3ng/µl). Cells were seeded on plates or slides for 20 hours, then plasmids were 

transfected into the cells with FuGENE HD reagent. For Western blots, cell lysates and 

cell media were collected. To condense the media, heparin-agarose purification was used 

before immunoblots. As shown in Figure 10a, only the HB-transfected lysate lane had 

reacting bands, recognized by both HBEGF antibodies, within 15kD to 37kD range as 

this was likely the membrane bound form. sHB levels in the cell media were undetectable. 

The first lane was loaded with recombinant mouse sHB as a positive control. In Figure 

10b, transfected cells were stained with the HB antibody to test the antibody’s usefulness 

for immunofluorescence. Staining was observed in HBEGF transfected cells (green), but 

not in empty-plasmid transfected cells. 
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After these analyses, it was demonstrated that the HBEGF antibody recognized different 

forms of HB protein, both the soluble form on immunoblot and the membrane-bound 

form on cells. Thus this tool could be applied as a useful reagent to study HBEGF 

expression and bioactivity. 
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Figure 10 In vitro HBEGF antibody testing  

(a) Western blots testing two HBEGF antibodies, the concentration was 1µg/ml for both. 

The first lane was loaded with mouse recombinant HBEGF protein and reacted at 

approximately 15 kD. The second and third lanes were empty plasmid (pcDNA) 

transfected cell media and cell lysates, and the fourth and fifth lanes were HBEGF 

transfected cell media and cell lysates. (b) Immunofluorescence for empty plasmid 

(pcDNA) transfected and HB transfected HEK293 cells, showing positive HB staining 

(green) as well as blue for nuclei. 
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In vitro model for HBEGF characterization 

 

In order to understand the mechanisms of how HBEGF works in FGF23 signaling 

pathways, an in vitro model was tested. The HEK293 cell line was chosen due to its high 

transfection rate. As this cell line did not express αKL or HBEGF, which were essential 

for FGF23 signaling, cells were transfected with mKL and/or HBEGF plasmids. Co-

transfection of mKL and HBEGF was tested first, but due to its low transfection 

efficiency rate (figure not shown), we switched to an mKL cell line, which were HEK293 

cells stably expressing mKL. This cell line was developed previously in the laboratory 

[23]. mKL cells were transfected with the HBEGF plasmid, and after 24 hours 

transfection cells were transferred to serum free media and adapted for 6 hours to ensure 

no interference by serum, then treatments were performed. 

 

Figure 11 was the hypothesized signaling process for this cell model. After FGF23 

administration, it would bind the receptor complex and activate downstream signals 

which including the MAPK pathway. An unknown mechanism might trigger HBEGF 

shedding through ADAM protease, allowing sHB to act like an autocrine or paracrine 

factor to bind its receptor, EGFR or ErbB4, and cause signaling actions. Potentially, 

MAPK pathways could also be activated downstream of HBEGF signals, as this factor is 

known to signal through the MAPK pathway. 
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Figure 11 Hypothesized HBEGF signaling in vitro 

In the mKL cell model, FGF23 activated its receptor and led to gene changes, including 

increased EGR1. It was hypothesized HBEGF could be proteolyzed after FGF23 signaled 

in the DCT cells through Klotho and FGFR1. (1) FGF23 binds its receptor complex 

(FGFR and αKL) and stimulates the MAPK/P-Erk pathway, which mimics FGF23 

activity in DCT. (2) Proteolytic cleavage of membrane bound HBEGF is activated, then 

produces sHB which binds to EGFR/ErbB4 to stimulate the MAPK pathway. This is the 

hypothesized sHB function in the PT. 
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To verify whether this cell line was a proper model to test this hypothesized pathway, 

Western blots, immunofluorescence and q-PCR were used. Transfected mKL cells, either 

with empty vector DNA (PC-DNA) or HBEGF DNA, were treated with saline, FGF23 or 

Phorbol 12-myristate 13-acetate (TPA) for 15 minutes (Figure 12 a-c). This short time 

treatment was implemented because of the MAPK pathway’s rapid signaling. TPA was 

added as a positive control for HBEGF cutting, which should increase cutting [58].  

 

In q-PCR analysis (Figure 12a), vehicle transfected cells with FGF23 treatment showed a 

robust Egr1 mRNA induction compared to saline. This FGF23 activation marker proved 

that FGFR-αKL co-receptor worked for FGF23 binding as FGF23 treated empty plasmid 

transfected cells had increasing P-Erk expression (Figure 12b). For HBEGF transfected 

cells, Egr1 mRNA levels increased with ectopic FGF23 treatment. Whereas this increase 

was also observed in saline treated HBEGF transfected cells, which may be due to both 

uncut HBEGF and soluble HBEGF activating the MAPK pathway. Thus, unfortunately it 

could not be used as the evidence for supporting sHB, which might be formed through 

FGF23 triggered cutting through binding its receptor to activate the MAPK pathway. I 

next probed for EGFR signaling using Western blot. The P-EGFR band in PC-trans 

HBEGF treated cells confirmed that this cell model contained the correct receptor for 

HBEGF to elicit its downstream signals. The reason for a lack of signaling in HBEGF-

trans cells lanes might be that after long-term exposure, 24 hours, HBEGF signaling was 

down regulated. Transfected cells were also stained by immunofluorescence with the 

laboratory made HBEGF antibody (Figure 12d). It was hypothesized that FGF23 and 

TPA treated HBEGF-transfected cells should have less staining compared with saline 
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treated cells due to the shedding of HBEGF. Unexpectedly, there was no noticeable 

difference between each group, even with different time point treatments (30-min, 6-hour, 

24-hour, figures not shown). 

  



 53 

 

Figure 12 Potential cell model characterization 

mKL cells (HEK293 cells) were transfected with either empty plasmid (PC DNA) or 

human HBEGF plasmid. (a) q-PCR analysis of cell RNA after treatment with saline or 

recombinant FGF23. (b), (c) Western blots of cell protein after treated with saline, FGF23, 

HBEGF or TPA, which were probed with anti-Erk, anti-P-Erk1/2, anti-EGFR, or anti-P-

EGFR. (d) Immunostaining for differently treated cells (60 minutes treatment) with 

HBEGF antibody.  
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HBEGF signal mapping in vivo 

 

In parallel experiments, mice were used to explore the localization of kidney HBEGF 

signaling1 in vivo. Four 12 week old WT mice were injected with vehicle (saline), 10 µg 

FGF23 or 10 µg HBEGF i.v., euthanized 10 minutes later, and tissues were collected. 8 

µm kidney sections were produced for immunofluorescence. Following laboratory 

staining protocols (see Material and Methods), each section was probed with anti-P-

Erk1/2, anti-Klotho (KO603) or Fluorescein labeled Lotus Tetragonolobus Lectin (LTL), 

or co-probed with a combination of two reagents. LTL is a reliable PT marker that stains 

the brush border membrane, and mKL was used as a renal DCT marker. 

 

q-PCR was run first to make sure the HBEGF injections were successful (Figure 13a). 

Each column represented each mouse’s EGR1 gene change. Approximately 8-fold 

increases were seen in FGF23-injected mice and a more than 15-fold rise in the two 

HBEGF injected mice compared with vehicle treated mice (Figure 13a). After proving 

the treatments were delivered successfully into mice, immunostaining was performed to 

map HBEGF signaling.  

 

Consistent with EGR1 expressional changes, HBEGF and FGF23 injected mice had more 

P-Erk1/2 staining than vehicle treated (Figure 13b). It was previously shown that FGF23 

initiated Erk phosphorylation within ten minutes in the DCT [23]. As shown in Figure 

14a, P-Erk1/2 and mKL were merged in yellow, indicating co-localization, and in Figure 

14b, P-Erk1/2 did not overlap with LTL staining of the PT.  
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Figure 13 P-Erk staining mapping in vivo (1) 

Mice received tail vein injections of vehicle, FGF23 or HBEGF (2 mice) and were 

sacrificed 10 min later. (a) Kidneys were collected and RNAs were extracted for EGR1 

expression. (b) Kidneys were then collected for immunofluorescence. The first row was 

vehicle treated kidneys, second row was FGF23 treated and the third row was HBEGF 

treated. The first column was stained with P-ERK (red), the second column was co-

stained for LTL (green) and P-ERK (red), and the third one was for LTL (green) and 

Klotho (red). 
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In the co-staining of P-Erk1/2 and LTL for HBEGF treated mice, the P-Erk staining 

seemed to be separated from LTL, which suggested the activation of MAPK pathway by 

HBEGF may occurr in the renal DCT, similar to FGF23. If soluble HBEGF was the 

mediator to communicate between renal proximal tubule and DCT, then shortly after 

acute HB administration, P-Erk1/2 staining should have been evident in the PT. 

Unexpectedly, no overlapping of P-Erk1/2 and LTL was found in HBEGF injected mice, 

and partial mKL staining overlapped with P-Erk1/2 fluorescence. 

 

Therefore, these studies suggest that HBEGF may signal in the renal DCT, not the renal 

PT. Taken together with the fact that HBEGF controls genes in the FGF23 pathway 

(shown above by qPCR in Figures 6 and 7), these results could indicate that HBEGF is 

downstream of FGF23 and elicits an important signal for FGF23 bioactivity in vivo in the 

DCT. However another factor may be downstream of HBEGF to act as a DCT-PT 

communicator (see revised model in Discussion). 

 

In summary, studies showed that kidney HBEGF was induced by FGF23, and my work 

demonstrated that HBEGF has FGF23-like activity on key genes that control phosphate 

homeostasis in vivo. In addition, a specific HBEGF antibody was developed and 

characterized, and shown to recognize HBEGF protein by immunoblot and in cells. This 

novel tool will be useful for future experiments assessing HBEGF expression levels and 

activity. Finally, HBEGF signaling has never been mapped in the kidney in vivo. I have 

shown that HBEGF-mediated MAPK signaling localizes to the DCT more than the PT. 

Collectively, these studies support that HBEGF expression and activity is downstream of 
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FGF23. This thesis has now uncovered possible new roles for HBEGF in mediating 

DCT-specific FGF23 activity. 
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Figure 14 P-Erk staining mapping in vivo (2) 

The first columb (a and c) was co-stained for P-Erk1/2 (red) and mKL (green). The 

second column (b and d) was co-stained for P-Erk1/2 (red) and LTL (green). In FGF23 

injected mice, P-Erk and mKL had some overlapping signals (a), whereas P-Erk did not 

stain the same region as LTL in PT (b). In HBEGF treated mice, P-Erk also partially 

overlapped with mKL staining (c), and P-Erk was separate from PT LTL fluorescence (d).  
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Discussion 

 

Thesis summary 

 

The signaling events underlying FGF23 bioactivity in the kidney are a major 

consideration for rare and common disorders that have disturbances in phosphate 

homeostasis. In CKD patients, the inability to remove excess phosphate drives FGF23 

production, a known contributor to severe cardiovascular events and mortality [42]. 

Additionally, therapeutics such as FGF23 neutralization in these patients is not feasible 

since FGF23 still maintains some phosphaturic function. In agreement with this, previous 

rat CKD studies have found increased mortality when using an antibody against FGF23 

[59]. Therefore, it is crucial to understand the signaling events that occur by FGF23 in the 

kidney to decrease both phosphate reabsorption and active vitamin D synthesis. 

Complicating the course of these studies is the fact that the co-receptor αKL resides on 

the renal DCT, whereas the downstream effects occur in the renal PT. This suggests a 

necessary communication between these two cell types to elicit NPT2a internalization 

and decreased 1α(OH)ase expression. 

 

The mechanisms of how FGF23 signals trigger the spatially separate effects in kidney are 

currently unknown. Thus, microarray analysis was applied and was expected to 

illuminate additional downstream responses to FGF23 signaling. In the array analysis, 

HBEGF was found as the second-most increased mRNA, suggesting a correlation with 

FGF23 bioactivity in the kidney. In consideration of the molecular properties of HBEGF, 
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we hypothesized that cleaved and sHB may act as a paracrine factor traveling from the 

DCT to the PT, causing NPT2a protein down regulation and reducing the vitamin D 

1α(OH)ase. To test this hypothesis, both in vivo and in vitro experiments were performed. 

 

This Discussion will describe other approaches to my studies that could be taken, as well 

as a possible alternative hypothesis due to my study outcomes. 

 

In vivo study analysis 

 

Identifying involved gene changes in FGF23 signaling 

 

At the outset of these studies, microarray analyses were utilized approximately eight 

years ago to test gene changes in the kidneys of mice administered FGF23. This approach 

produced the first indication for the role of HBEGF in the FGF23 signaling cascades. As 

new technologies have been more recently developed, RNA-seq has become a more 

powerful and comprehensive tool to study gene expression levels under various 

conditions. Compared to microarrays, next generation sequencing (NGS) has three main 

advantages: 1) No limitations to testing the existing genomic sequences (microarray can 

only quantify custom designed genes); 2) Larger dynamic range and lower background 

signals than microarray; 3) Higher accuracy and reproducibility [60]. Thus, with the 

decreasing cost of NGS, it would be feasible to repeat this mouse experiment using RNA-

seq, which can provide us with potentially more information on expression level changes 
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with FGF23 treatment. It is possible that with this newer and more reliable technology, 

other genes could be identified to be more tightly involved in FGF23 signaling. 

 

Gene expression changes in FGF23-related knockout mouse models 

 

There exist two mouse models in which the FGF23 signaling is disrupted due to either 

the lack of hormone (FGF23-KO mice) or lack of the required FGF23 co-receptor (αKL-

KO mice). Both models exhibit dramatic hyperphosphatemia and elevated 1α(OH)ase 

levels. To test the hypothesis of whether HBEGF signaling on the PT lies downstream of 

FGF23 signaling within the DCT, both mouse models were treated with sHB. As shown 

in Figure 6 and Figure 7, renal 1α(OH)ase expression levels decreased in both KL-KO 

and FGF23-KO mice with sHB administration compared to saline treated controls.  These 

data supported our hypothesis that HBEGF is downstream of FGF23 activity, leading to 

the studies described below. 

 

In the FGF23-KO mice injected with HBEGF and FGF23, there was a trend for 

decreasing 1α(OH)ase compared with vehicle treated FGF23-KO mice. However, these 

reductions were not statistically significant (p>0.05). To improve this data, more FGF23-

KO mice could be used in future studies. As the severity of the phenotype can be wide in 

these KO mouse models, increasing numbers of injected mice may be helpful to provide 

less variation for the analysis of gene expression. 
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In addition to optimizing our protocols further, novel mouse models could be generated 

to improve our studies and provide new ways to address our central hypothesis. For 

example, HB-KO mice and HB overexpressed transgenic mice, could potentially provide 

more straightforward information for HBEGF function in the kidney. In previous studies, 

HBEGF global KO mice were generated. Due to HBEGF’s wide tissue distribution and 

central role in multiple biological activities, the global HB-KO mice have very short life 

span and severe systemic defects [57]. In order to better study HBEGF function in the 

kidney, conditional HBEGF KO mice could be generated using the Cre-Lox 

recombination system. The IU transgenic Core could produce floxed HBEGF mice, 

which have lox-p sites flanking critical exons in the HBEGF gene. These Flox HBEGF 

mice would then be cross bred with Ksp-Cre transgenic mice to derive conditional 

HBEGF KO mice with no HBEGF expression in renal tubular cells. The Ksp-Cre 

recombinase is driven by the 1.3kb promoter of mouse Ksp-cadherin which is expressed 

exclusively in renal tubular epithelial cells [61]. We expect the Ksp-driven HBEGF 

conditional KO mice would present with hyperphosphatemia and increased 1α(OH)ase 

levels, mimicking FGF23-KO and KL-KO mouse models. Additionally, conditional 

HBEGF knock-in transgenic mice can also be generated, with HBEGF overexpression in 

the kidney using Ksp-Cre. If HBEGF functions as hypothesized above, this knock-in 

mouse model would likely show hypophosphatemia, decreased 1α(OH)ase expression 

and related symptoms, which are opposite to the HBEGF KO mouse model. Conditional 

HBEGF knock-in mice would have a long-term HBEGF expression instead of short-term 

injections as performed in my studies, potentially providing new insight into HBEGF 

renal actions. 
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HBEGF pathway immunofluorescence in kidney sections 

 

It has been shown in previous studies that membrane bound HBEGF is primarily 

produced in the kidney DCT [47]. We hypothesized HBEGF would be cleaved in the 

renal DCT upon FGF23 signaling and travel to the renal PT to initiate downstream 

signals, functioning through the MAPK pathway. Previous studies have found the major 

transcription factor to regulate the gene expression changes upon FGF23 stimulation is 

Egr1, which is activated through the MAPK signaling [62]. Importantly, with sHB 

injection I found a significant increase in renal Egr1 expression, demonstrating upstream 

activation of the MAPK pathway. 

 

Immunofluorescence is a powerful tool to determine locations of proteins. In this regard, 

treated kidneys were sectioned and stained for P-Erk to determine the spatial location of 

its activation. These studies, in concordance with previous data, showed P-Erk staining 

increased with FGF23 treatment and overlapped with αKL staining in the renal DCT 

(Figure 14a). However, in HBEGF injected mice, P-Erk and αKL signals partially 

overlapped in the renal DCT and the P-Erk and LTL staining was separated, indicating 

that HBEGF administration seemed to function on the renal DCT, in contrast to our 

original hypothesis that HBEGF worked directly on the renal PT.  

 

In these immunofluorescence experiments, further analyses could be undertaken. These 

include using additional antibodies recognizing specific signaling molecules to test 

HBEGF bioactivity in the kidney. For example, antibodies recognizing 
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EGFR/ErbB1/HER1 and ErbB4/HER4, receptors for HBEGF could be tested. In these 

experiments, WT mice could be given i.v. injections with FGF23, HBEGF or TPA, and 

sacrificed 10-min, 30-min or 60-min afterwards. Since the specific time courses for 

HBEGF signaling is not clear, different time points should be tested. Then anti-phospho-

EGFR and anti-phospho-HER4 antibodies could be applied by staining to provide us with 

additional localization of HBEGF receptor localization.  

 

In vitro study analysis 

 

A cell model being tested 

 

Due to the small size of sHB, an in vitro model was developed to study the FGF23 

initiated cleavage of membrane bound HBEGF. In this regard, HEK293 cells already 

stably transfected with membrane bound KL (αKL) were utilized as they had been 

previously shown to elicit the MAPK signaling with FGF23 stimulation [23]. To test our 

hypothesis, a plasmid expressing mouse membrane bound HBEGF was transfected into 

the cells to ensure that the cells containing essential molecules for FGF23 signaling 

studies.  

 

Interestingly, the results showed an increase in Egr1 expression, a known target of P-

Erk1/2, in HBEGF transfected mKL cells without FGF23 treatment. This increase lasted 

for more than 48 hours. Unfortunately, we found no further Egr1 induction when the 

transfected cells were treated with FGF23. With this continual stimulation, this action 
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may deplete cellular signals and cause resistance to FGF23 function. Due to the fact that 

both FGF23 and HBEGF stimulated the MAPK pathway, unfortunately we could not 

delineate the activation of the individual proteins in these cells. Additionally, HBEGF 

immunofluorescence of saline, FGF23 or TPA treated cells showed no HBEGF protein 

differences on the cell membrane (Figure 12d), suggesting: 1) HBEGF was not being 

cleaved by signaling events initiated from exogenous proteins in this cell model, 

therefore an alternative cell model may be required to study these signaling events; and, 2) 

HBEGF production from the plasmid was so highly elevated that cutting did not lead to 

detectable changes when treated with FGF23 or TPA. 

 

In vitro study optimization 

 

There are several approaches that could be taken to optimize these studies. In this regard, 

a Tet-on inducible system could be used to control HBEGF expression in cells. The mKL 

cell line would be transfected with two major components for Tet-on system, the 

regulator plasmid and the response plasmid. The regulator plasmid produces rtTA 

(reverse tetracycline-controlled transactivator), while the response plasmid contains a 

TRE sequence upstream of the HBEGF gene in our study. Once the rtTA binds to TRE 

(tetracycline-response element) in the presence of Dox (doxycycline), HBEGF would be 

expressed [63]. More importantly, the induction can be tested within an optimized time 

frame and with different Dox exposure concentrations to adjust HBEGF protein levels 

carefully. After determining the optimal induction time, treatments could be applied. This 
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tightly regulated new cell line could be helpful to study FGF23-HBEGF signaling events 

without continuously and highly expressed HBEGF. 

 

Further, to get an explicit understanding of FGF23 signaling effects on HBEGF, an 

EGFR “knock-out” cell model (perhaps in HEK293 cells) could also be generated using 

CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-

associate endonuclease) 9 system. A guide RNA could be designed first to bind with 

Cas9 and lead the endonuclease to cleave the cell’s EGFR gene at the specific site within 

the coding region. The resulting double strand breaks would be repaired by an error-

prone non-homologous end joining (NHEJ) pathway, resulting in small insertions or 

deletions at the break site and disrupting EGFR expression[64]. Cell clones with 

successful deletion would be chosen and cultured. With EGFR deletion, transfected 

HBEGF protein cannot elicit the MAPK pathway signaling, so that Egr1 could 

potentially be used as a marker for FGF23 signaling in this cell model. Additionally, cell 

media could be collected for sHB protein testing in response to FGF23 administration 

downstream of KL signaling. 

 

Finally, different cell models can be tested as well. For example, monkey kidney Vero 

cells overexpressing HBEGF (Vero-H) were previously used to study the relationship 

between reactive oxygen species (ROS) and HBEGF shedding [58]. In this study, 

HBEGF shedding in Vero-H cells was observed using immunoblots, which detected the 

full-length form and the cytoplasmic fragment. Vero-H cells do not express αKL, thus, to 

utilize this cell line, stable transfection of αKL would need to be performed first. After 
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isolating this cell line, the cells could be treated with FGF23 and collected, then the anti-

HBEGF antibody I characterized could be used to test whether the cleavage is FGF23-

dependent.  

 

Alternative hypothesis to FGF23 signaling  

 
With regard to another possible DCT-PT factor, previous studies have suggested that 

αKL might be the mediator of DCT and PT communication. On the one hand, KL has 

been weakly detected in the renal PT using immunofluorescence and Western blots [65], 

consistent with direct signaling of KL in the PT to mediate FGF23 activity. On the other 

hand, another possibility is that αKL is also cleaved to a soluble form, acting as a 

paracrine factor from DCT to PT. In support of this model, others have described a serum 

phosphate reduction due to decreased NPT2a reabsorption in transgenic mice 

overexpressing KL [65]. However, in our study, strong αKL signals were exclusively 

observed in the renal DCT without any αKL staining in the PT (see Figure 15). As the 

marker LTL specifically stained renal PT, and αKL signals were clearly separated from 

LTL, this strongly suggested αKL expressed in the renal DCT but not the proximal 

tubules. Due to the fact that upon FGF23 injection, P-Erk1/2 staining only appears to co-

localize with αKL staining and is exclusive to DCT, we do not believe there is any αKL 

in the PT to contribute to FGF23 signaling events. 
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Figure 15 αKL mapping in the kidneys 

In initial studies, WT mice were i.v. injected with either saline or FGF23 or HBEGF. 

Kidney sections were co-stained with anti-αKL antibody (red) and LTL (green). a2, b2 

and c2 were enlarged images of a1, b1 and c1’s chosen areas in frames. No overlapping 

staining was observed. 

  

WT#Sal#injec,on#

a1#

a�# b�# c�#

b1# c1#

WT#FGF23#injec,on# WT#HB#injec,on##



 69 

In my initial studies undertaken by q-PCR analysis, FGF23-KO and KL-KO mice were 

observed as having highly increased 1α(OH)ase levels due to the lack of FGF23 

bioactivity. Delivery of HBEGF largely corrected this increases, demonstrating its 

importance in controlling phosphate handling genes. In my subsequent studies, HBEGF 

cleavage in vitro did not appear to be FGF23-dependent. Additionally, HBEGF activation 

of the MAPK pathway occurred in the DCT and did not appear to affect NPT2 protein in 

vivo. Thus, HBEGF may be only a portion of the downstream signaling for the FGF23 

pathway. Further, HBEGF may therefore be required to elicit another mediator to 

communicate between the renal DCT and PT. Therefore, an alternative hypothesized 

pathway can be proposed (see Figure 16) where FGF23 activated KL in the renal DCT, 

which then signals through HBEGF, also on the DCT, eliciting a factor that is responsible 

for PT-localized FGF23 bioactivity. 

 

Conclusion 

 

In conclusion, we have found a novel role for HBEGF as a downstream mediator of the 

FGF23 signaling pathways in the kidney. This opens up new avenues to better understand 

renal phosphate handling, in addition to possible development of novel therapeutics. 

While injection of sHB demonstrated similar activities to FGF23 with decreased 

1α(OH)ase expression, it remains unclear whether the initiation of membrane bound 

HBEGF cleavage is FGF23 dependent. Additionally, immunofluorescent staining has yet 

to illustrate P-Erk1/2 signaling within the proximal tubule cells upon either FGF23 or 

HBEGF injections. Therefore, further studies in the optimized cell culture and 
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conditional mouse models as proposed above will aid in understanding the steps of the 

FGF23 signaling cascade for phosphate homeostasis. 
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Figure 16 Alternative hypothesized pathway for renal FGF23 signaling 

Within the DCT, FGF23 could bind to the KL/FGFR complex to activate downstream 

signals. Activation of the MAPK pathway increase HBEGF expression levels as well as 

an unknown DCT-PT mediator. This unknown mediator transmits FGF23 signals from 

the renal DCT to the PT, leading to phosphate regulation downstream of FGF23 and 

HBEGF. 
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