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ABSTRACT 

Vijay K Ramanan 

 

PATHWAYS TO DEMENTIA: GENETIC PREDICTORS OF COGNITIVE AND BRAIN IMAGING 

ENDOPHENOTYPES IN ALZHEIMER’S DISEASE 

 

Alzheimer's disease (AD) is a national priority, with nearly six million Americans affected at an 

annual cost of $200 billion and no available cure.  A better understanding of the mechanisms 

underlying AD is crucial to combat its high and rising incidence and burdens.  Most cases of AD 

are thought to have a complex etiology with numerous genetic and environmental factors 

influencing susceptibility.  Recent genome-wide association studies (GWAS) have confirmed 

roles for several hypothesized genes and have discovered novel loci associated with disease risk.  

However, most GWAS-implicated genetic variants have displayed modest individual effects on 

disease risk and together leave substantial heritability and pathophysiology unexplained.  As a 

result, new paradigms focusing on biological pathways have emerged, drawing on the 

hypothesis that complex diseases may be influenced by collective effects of multiple variants – 

of a variety of effect sizes, directions, and frequencies – within key biological pathways.  A 

variety of tools have been developed for pathway-based statistical analysis of GWAS data, but 

consensus approaches have not been systematically determined.  We critically review strategies 

for genetic pathway analysis, synthesizing extant concepts and methodologies to guide 

application and future development.  We then apply pathway-based approaches to complement 

GWAS of key AD-related endophenotypes, focusing on two early, hallmark features of disease, 

episodic memory impairment and brain deposition of amyloid-β.  Using GWAS and pathway 

analysis, we confirmed the association of APOE (apolipoprotein E) and discovered additional 
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genetic modulators of memory functioning and amyloid-β deposition in AD, including pathways 

related to long-term potentiation, cell adhesion, inflammation, and NOTCH signaling.  We also 

identified genetic associations to amyloid-β deposition that have classically been understood to 

mediate learning and memory, including the BCHE gene and signaling through the epidermal 

growth factor receptor.  These findings validate the use of pathway analysis in complex diseases 

and illuminate novel genetic mechanisms of AD, including several pathways at the intersection 

of disease-related pathology and cognitive decline which represent targets for future studies.  

The complexity of the AD genetic architecture also suggests that biomarker and treatment 

strategies may require simultaneous targeting of multiple pathways to effectively combat 

disease onset and progression. 

 

Andrew J. Saykin, PsyD, Chair 
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I. Introduction 

 

A.  Alzheimer’s disease (AD): clinical and pathologic features 

 

Alzheimer's disease (AD) is a progressive and debilitating neurodegenerative disorder that 

causes substantial loss of memory and other cognitive and social functions, eventually leading to 

dementia characterized by severe impairment in activities of daily living [1].  Currently, nearly six 

million Americans are affected with AD at an annual cost of $200 billion [2-4].  Although some 

drug therapies are available on a symptomatic basis, there is currently no cure for the 

underlying disease [5].  With its high and rising incidence and burdens in an increasingly aging 

population, the development of treatments to slow, halt, or reverse AD onset and progression is 

a national priority [4]. 

 

Pathologically, the hallmark abnormalities of AD are the accumulation of abnormal and/or 

misfolded amyloid-β (Aβ) peptides in the extracellular spaces of the brain and the presence of 

intracellular neurofibrillary tangles composed of tau protein and degenerating cellular structures  

[6].  These pathologic features are thought to interfere with synaptic connections between 

neurons as well as disrupt neuronal metabolism and energetics, leading to disease-characteristic 

structural and functional changes in the brain [3]. 

 

The most common early symptom of AD is impairment in episodic memory, involving the 

encoding of new experiences and subsequent conscious recollection of past experiences [7].  

Declines in language, executive function, judgment, orientation, mental status, and emotional 

and social health are also frequent findings with significant implications for patients and their 
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caregivers [7].  These progressive and debilitating symptoms have stimulated investigation into 

strategies for early detection of individuals exhibiting prodromal stages of the disease 

characterized by milder impairment in cognitive performance and self- and informant-reports of 

cognitive decline [8-10].  As a result, numerous disease-related biomarkers have been proposed 

for potential clinical application – including measures of cognitive performance, structural and 

functional brain imaging, and blood and cerebrospinal fluid (CSF) analytes, among others [3] – 

which can also serve as quantitative disease-related endophenotypes that provide enhanced 

power and biological interpretability for studies of the genetic etiology underlying AD [11, 12]. 

 

B.  Genetic architecture of AD 

 

Prior to the advent of genome-wide association studies (GWAS), the discovery of mutations in 

APP (amyloid precursor protein) and PSEN1 and PSEN2 (presenilin 1 and 2) causing rare, early 

onset, familial forms of AD dominated much of the genetic research and biological theory about 

the disease [13].  However, most (> 90%) cases of AD do not appear to be caused by simple 

Mendelian inheritance of causative mutations and tend to have later onset (after 60-65 years of 

age).  Instead, these cases are thought to have a complex etiology with multiple genetic and 

environmental factors contributing to susceptibility. 

 

The strongest known genetic risk factor for AD is the APOE (apoliprotein E) ε4 allele.  Individuals 

with two copies of APOE ε4 have up to 30 times the risk of developing AD compared to 

individuals without this allele [14].  However, APOE ε4 is neither necessary nor sufficient for 

development of AD or its characteristic pathology, suggesting that other genes influencing 

disease status remain to be discovered.  Unbiased GWAS, which test up to several million 
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common genetic variants (population minor allele frequency > 1%) for association to disease or 

disease-related traits, have uncovered additional susceptibility loci which have suggested 

previously unpredicted disease mechanisms.  These have included genes related to 

inflammation and immune activation, protein degradation, lipid metabolism, endocytosis, and 

other candidate disease mechanisms [15-26].  Unfortunately, many AD GWAS-implicated single 

nucleotide polymorphism (SNP) variants have displayed modest individual effect sizes and 

associations for some loci have not been replicated.  In addition, although based on twin studies 

up to 60-80% of AD risk is estimated to derive from genetic factors [27], known genes including 

the uniquely large effect of APOE account for just half of this genetic variance [28]. 

 

These limitations of existing GWAS findings in AD have spurred significant interest in the 

development of alternative perspectives and analytical strategies to better understand the 

genetic architecture underlying the disease [29, 30].  In particular, biological pathways and 

networks have become focal points for harnessing GWAS data in complex diseases [31, 32].  

Numerous studies have demonstrated that genes functioning in the same pathway can 

collectively influence susceptibility to neurodegenerative diseases and traits, even when 

constituent SNPs do not individually exhibit the robust association required for genome-wide 

significance [33-40].  Pathways occupied by top GWAS “hits” can also highlight additional genes 

with more modest effects on disease risk but which may provide better targets for biomarker 

and drug development [41, 42].  Further, GWAS-implicated pathways and networks provide 

mechanistic hypotheses which can guide confirmatory testing in independent human study data 

sets, cell lines, and animal models.  The ability to prioritize pathways of interest may be 

particularly important for approaches with high computational demand.  These include whole 

genome sequencing (WGS) studies, which offer enhanced power to detect rare SNPs and copy 
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number and other structural variants [43], studies of disease endophenotypes such as brain 

imaging [11, 44] or cerebrospinal fluid (CSF) biomarkers [45, 46], and studies of molecular 

interactions and epistasis [47-49], among other approaches.  Despite this potential for pathway-

focused study designs to extend and validate standard GWAS approaches to AD, fundamental 

concepts and factors related to pathway-based study design are still new and have been 

evolving. 

 

C.  Fundamental concepts about biological pathways and networks 

 

While unstated notions predate it, the first explicit description of a pathway as the events by 

which intermediates are processed in a defined sequence was provided in 1973 [50].  Recently, 

broader notions of pathways as collections of biologically-related genes [51] have attempted to 

fit evolving scientific theories and analyses.  A more systematic conceptualization of biological 

pathways (Figure 1A) can be achieved on the premise that pathways are vector-driven toward 

an essential goal (i.e., their constituents as a whole are directed to a common, specific 

endpoint).  Viewed this way, molecular pathways have an essential goal of basic biochemical 

action on molecules or compounds.  Meanwhile, cellular pathways regulate global cellular 

status, and organ/system pathways execute broader physiological functions.  The constituents 

of these pathways are typically connected through known or proposed mechanisms.  Of note, 

the particular constituents of a pathway may be context-dependent – specifically, in relation to 

the biological outcome an investigator wishes to study. 

 

In addition, two other types of pathways are important in the study of genetically-complex 

diseases (Figure 1B).  Disease pathways have an essential goal of the pathogenesis of a disease  
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Figure 1.  A primer on biological pathways and networks.  (A) The major types of biological 

pathways are shown along with a representation of their relationships among each other.  Each 

type of pathway is defined by its essential goal.  (B) Pathways can include directional regulation 

(shown in red and green), branching, and mechanistic connections leading to an essential 

outcome.  Network elements are connected through shared relationships and are not vector-

driven from a starting point to an essential outcome.  Networks can be divided into subnetworks 

(shown in blue) exhibiting all elements connected to a central node (“A” in this example) or into 

modules (shown in purple) that exhibit a high density of connections. 

 

  

(A) 

(B) 
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and its features.  For example, the AD pathway plausibly includes components from the 

organ/system pathway of memory, which itself has cellular and molecular underpinnings.  

Meanwhile, intervention pathways are defined within the setting of a therapy that targets 

disease features or pathogenesis, as in a pathway-based study of cisplatin sensitivity in ovarian 

cancer [52].  Importantly, disease and intervention pathways may include constituents with 

documented associations to a phenotype, but whose precise mechanistic roles are not yet 

known. 

 

Networks can also collect genes and other biological elements for quantitative and visual 

assessment of relationships [53].  Unlike pathways, biological networks are not vector-driven 

toward an essential outcome (Figure 1B).  Instead, networks are characterized by nodes that are 

connected by edges representing defined relationships.  In a particular network, nodes may 

represent nearly any biological element, including genes, gene products, non-gene DNA 

sequences, pathways, diseases, therapies, or combinations thereof.  Common examples of 

network relationships include binding in protein interaction networks and regulation by 

common factors in gene interaction networks.  Finally, statistical networks display relationships, 

such as correlation, that are inferred from computational analyses [54].  A central outstanding 

question involves understanding the degree of connection between statistically-inferred 

networks and biological networks [55].  Software platforms for network analysis include IPA 

(Ingenuity Systems) and Cytoscape [56]; two recent reviews discuss these and other network-

based tools in detail [57, 58]. 

 

Despite their popularity and potential, strategies for pathway-based genetic studies have largely 

progressed in the absence of guidelines.  This has led to ambiguity regarding optimal methods 
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and high variability in results, creating challenges for biological interpretation and barriers to 

further application.  In particular, at the time of commencing this work, only one published 

report described a pathway analysis of GWAS data on AD susceptibility [59], and no genome-

wide pathway analyses had been reported for quantitative AD-related endophenotypes.  These 

findings, together with the encouraging results from pathway analyses in other biological realms 

including breast cancer [60], Crohn’s disease [32], type 2 diabetes [61], and multiple sclerosis 

[38, 39, 62], suggested that pathway analysis might serve as a powerful complementary 

approach for confirming existing hypotheses and discovering novel mechanisms contributing to 

AD and its related endophenotypes. 

 

D.  Statement of purpose 

 

With the rising incidence and burdens of AD, a better understanding of its underlying genetic 

mechanisms is crucial for the development of effective diagnostic and therapeutic strategies.  

Although GWAS of AD and AD-related endophenotypes have been fruitful, the focus to-date on 

individual susceptibility variants has raised several key limitations and has left substantial 

heritability and pathophysiology unexplained by extant findings.  Pathway-based analysis 

represents a promising approach for extending the utility of GWAS in AD to identify novel 

influences on disease, but at the time of commencing this work, the lack of a systematic 

framework for conducting pathway-focused studies had limited the application of these 

analytical techniques. 
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Accordingly, the overall goals of this work were as follows: 

 1. Critically review strategies for genetic pathway analysis, synthesizing extant  

  concepts and methodologies to guide application and future development. 

 2. Perform pathway analysis to complement GWAS of endophenotypes   

  representing the early, hallmark AD features of episodic memory impairment  

  and cerebral Aβ deposition. 

 

We hypothesized that pathway analysis would confirm candidate mechanisms nominated by 

previous GWAS in AD as well as highlight novel biological mechanisms that are otherwise 

concealed from standard GWAS approaches.  This discovery of novel biological pathways 

underlying AD would be crucial for the development of diagnostic and therapeutic approaches 

to slow, halt, and reverse disease onset and progression.  In addition, we expected that this 

work would provide a systematic structure for genetic pathway analysis that would enhance its 

application and help validate its promise for future studies of complex diseases and traits.  
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II.  Pathway analysis of genomic data: concepts, methods, and prospects for future 

development 

 

A. Introduction 

 

Since 2005, over 1000 human GWAS publications have described genetic associations to a wide 

range of diseases and traits [63].  However, extending GWAS findings to mechanistic hypotheses 

about development and disease has been a major ongoing challenge.  In particular, the focus on 

single loci has been confounded by two insights: 1) most GWAS-implicated common alleles and 

differentially-expressed genes on expression arrays have exhibited modest effect sizes; and 2) 

genes function within biological pathways and interact within biological networks [49].  As such, 

genome-wide data sets are increasingly viewed as foundations for discovering pathways and 

networks relevant to phenotypes [41].  This trend is vital, given that pathway mechanisms are 

natural sources for developing strategies to diagnose, treat, and prevent complex diseases.  In 

this context, it is not surprising that pathway-based analyses have exploded in use during the 

last 3-5 years (Figure 2). 

 

In pathway analysis, gene sets corresponding to biological pathways are tested for significant 

omnibus relationships with a phenotype.  Primary data for pathway analysis is commonly 

sourced from genotyping or gene expression arrays, though in theory any data elements that 

could be mapped to genes or gene-related products could be used.  Importantly, analyzing 

genomic data through functionally-derived gene sets can reveal larger effects that are otherwise 

concealed from gene- or SNP-based analysis.  For example, high-profile studies in breast cancer 

[60], Crohn’s disease [32], and type 2 diabetes [61] demonstrate that functionally-related  
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Figure 2.  PubMed citations for “pathway analysis”: 2001-2011.  The use of pathway analysis 

has grown exponentially in the last 3-5 years.  This explosion in use has followed major 

developments (shown in boxes) in characterizing the human genome and in performing 

genome-wide studies of complex diseases and traits.  Data points represent the total number of 

references displayed through a PubMed search for “pathway analysis”, using date limits of 

January 1, 2001 and December 31 of the calendar year denoted on the x-axis. 
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genes can collectively influence disease susceptibility, even if individual loci do not exhibit 

genome-wide significant association in a particular data set.  As such, pathway analysis 

represents a potentially powerful and biologically-oriented bridge between genotypes and 

phenotypes. 

 

Despite their popularity and potential, strategies for pathway-based studies have progressed in 

the absence of guidelines, leading to ambiguity regarding optimal methods, high variability in 

results, and barriers to further application.  With surging interest in pathway analysis and the 

emergence of next-generation sequencing data which will inevitably broaden its application, this 

is an ideal moment for a critical synthesis of current approaches to guide application and future 

development.  Here, we review extant strategies to detect pathway-phenotype association, 

highlight methodological considerations and challenges, and describe how pathways and 

networks are ideal vehicles for leveraging multi-omics data for discovery. 

 

B.  Selecting an overall study design 

 

Broadly, there are two approaches to pathway-based genomic studies.  Candidate pathway 

analysis is hypothesis-driven: pathways are preselected based on prior knowledge and insight.  

While the number of candidate pathways may vary with study goals (e.g., different effects may 

be seen within a large, complex pathway compared to numerous, smaller pathways), this 

approach is marked by its use of a biologically-targeted subset of genomic data.  In contrast, 

genome-wide pathway analysis interrogates a complete genomic data set through pathways 

representing an extensive range of biology.  Notably, the line between “targeted” and 

“extensive” biological coverage is not precisely drawn.  While methods limited to genome-wide 
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pathway analysis have been used on data sets with only 1000 genes (∼5% of the total number of 

human genes) [64], the optimal point of delineation between these two approaches warrants 

further examination. 

 

There are several advantages to the candidate pathway approach.  Focusing the scope of 

analysis can enable otherwise intensive procedures like genotype imputation and manual 

pathway curation.  By maximizing annotation coverage and quality, these procedures can bridge 

differences in genotyping platforms across cohorts for replication or meta-analysis.  

Unfortunately, targeted biological coverage may fail to detect unexpected relationships, such as 

the association between inflammatory pathways and age-related macular degeneration [65].  

Further, poor annotation of one pathway can be particularly limiting when only a few pathways 

are assessed.  These traits make candidate pathway analysis most appropriate where 

computational resources are a consideration and where specific pathways are of a priori 

interest. 

 

In contrast, genome-wide pathway analysis maximally utilizes the available genomic data.  As a 

result, this approach can more readily detect unexpected relationships, including those across 

diseases operating in different body systems [66].  However, genome-wide pathway analysis is 

computationally intensive, requiring more stringent corrections for multiple comparisons and 

making covariance analyses, imputation, and meta-analyses more challenging.  While strategies 

to reduce the dimensionality of genome-wide data for pathway analysis are in active 

development [67, 68], they will need to be evaluated further ahead of widespread use.  

Genome-wide pathway analyses also benefit from systematic follow-up to deal with the often 
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high overlap of genes across multiple pathways and to evaluate results in view of prior 

knowledge. 

 

C.  Obtaining input genomic and pathway annotation data 

 

Pathway analyses can utilize raw genotype data for individual subjects [61, 69, 70] or a list of p-

values relating genes or SNPs to a phenotype [71-73].  Most pathway-based tools for raw 

genotypes do not effectively include covariates but can naturally correct for linkage 

disequilibrium (LD) through permutation.  In contrast, p-value distributions are readily accessible 

via other researchers and can be generated through covariance analyses, but require 

corrections for LD based on reference population data.  Investigators should consider their 

resources and study goals when selecting the most appropriate genomic data source. 

 

In parallel, a pathway analysis is only as good as the functional information underlying its 

pathway definitions.  Prominent pathway annotation databases exhibit diverse features (Table 

1; also see the online resource Pathguide [74]).  The ideal choice of database depends on several 

variables and their impact on study goals.  For example, publically-available freeware databases 

are commonly used due to their ease of access, transparency of features, and visibility in 

publications.  Commercial access databases may require a significant investment; however, they 

are typically linked to user-friendly statistical analysis software and often include high-quality 

pathway graphics which can be exported to manuscripts.  Investigators should weigh the 

relative importance of these factors during selection. 
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Table 1.  Prominent pathway annotation databases. 

Name Curationa Major Features URL 

Biocarta M Driven by user input; some expert review www.biocart

a.com  

DAVID M/E Augments and integrates annotations from 

other databases 

david.abcc.nc

ifcrf.gov  

Gene Ontology M/E Largest database; hierarchical structure; can 

filter data by evidence codes 

www.geneon

tology.org  

Ingenuity M/E Large collection of canonical pathways; high-

quality pathway maps 

www.ingenui

ty.com  

Kyoto 

Encyclopedia of 

Genes and 

Genomes 

M Reference pathways (mosaics from several 

organisms) and organism-specific 

annotations; pathway maps link to closely-

related genes 

www.genom

e.jp/kegg  

MetaCore M Extensive disease pathways; can edit 

pathway maps for publication 

www.genego

.com  

MetaCyc M Metabolic pathways; can visualize 

connections among pathways 

metacyc.org  

Molecular 

Signatures 

Database 

M/E Can download pathways from several other 

databases as a collection for input to 

analytical software; novel motif gene sets 

www.broadin

stitute.org/gs

ea/msigdb  

PANTHER M Can predict protein functions from sequence 

and evolutionary data 

www.panthe

rdb.org  
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Pathway 

Interaction 

Database 

M/E Broad range of cellular pathways with special 

focus on cancer signaling; can generate 

interaction maps from a list of genes 

pid.nci.nih.go

v  

Reactome M Pathways are extensively cross-referenced to 

PubMed, HapMap, and other resources; can 

overlay expression or other data onto 

pathway maps 

www.reacto

me.org  

ResNet Series M/E Regular updates through web server; 

optional user editing or text scanning of user 

documents; links to reference articles 

www.ariadne

genomics.co

m  

 

 

 

 

 

 

 

 

 

 

 

 

 

aAbbreviations: M = manual, M/E = manual and electronic  
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Pathway curation methods can also impact analyses.  Most databases rely on expert review for 

pathway curation; however, users of these databases should be aware of their update intervals 

and criteria used as evidence for inclusion in pathways.  Alternatively, electronic curation 

employs text-searching algorithms to infer functional relationships.  While these inferred 

annotations can be useful for hypothesis generation, their accuracy is unreliable [75], making 

them unsuited to many pathway analyses.  Finally, targeted manual curation can be particularly 

appropriate when an investigator has expertise in a biological realm that is poorly annotated in 

databases.  While potentially time-consuming, manual curation can synthesize recent results 

with established relationships to produce novel candidate pathways [76, 77] or gene sets 

representing positive controls for pathway analysis [78]. 

 

Lastly, the biological coverage of pathway annotations should be considered.  Across databases, 

similarly-named pathways can exhibit vast differences in constitution while differently-named 

pathways can exhibit significant overlap.  As a result, investigators should attempt to match 

study goals with database coverage.  For example, specialized, high-granularity databases are 

most useful for candidate studies of intricate signaling pathways, while canonical pathway 

collections (representing well-established pathways) provide a broad biological scope well-

suited for screening-oriented studies. 

 

This collective diversity of features is a major factor in explaining why different databases can 

yield divergent results from the same input data [79].  As such, an early discussion of pathway 

analysis recommended the use of multiple databases for each analysis [30].  This approach can 

balance the relative characteristics of each database used and can yield a measure of validation 

when different databases yield similar results.  However, for some genome-wide pathway 
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analyses, the use of a single, comprehensive database may be an optimal fit for a given study 

design and may facilitate straightforward interpretation of findings.  In either case, a systematic 

qualitative review of the results is crucial to identify robust relationships and extract overarching 

biological themes.  In addition, follow-up analyses can reveal broader findings that drive 

association signals across multiple smaller pathways, as with one study that analyzed pathway 

sets obtained through hierarchical clustering and identified an association between the 

canonical RAS/RAF/MAPK signaling pathway and breast cancer [60]. 

 

D.  Preparing data for association testing 

 

Systematic processing of input genomic data and pathway annotation data are vital for pathway 

analyses.  While some relevant methods are actively evolving, optimized approaches to major 

issues can minimize variation in results and interpretation. 

 

Pathway size 

 

Most pathway analyses place constraints on pathway size: small pathways can exhibit false 

positive associations due to large single-gene or single-SNP effects [51], whereas large pathways 

are more likely to show association by chance alone [79].  The most common minimum 

threshold for pathway size appears to be 10 genes [60, 61, 70, 80].  It is important for analysts to 

note that this threshold may exclude highly-specific and potentially-informative functional sets, 

including those involving protein complexes and DNA sequence motifs.  Frequently-used 

maximum thresholds for pathway size include 100 genes [60] and 200 genes [61, 80].  Notably, 

in the latter two studies, upper limits of 300 genes [61] and 400 genes [80] did not alter the 
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results.  However, larger pathways are relatively rare and often derive their size from being 

more general in scope; thus, their exclusion may not significantly affect analyses or downstream 

biological interpretation.  Overall, investigators should consider their study goals when applying 

such thresholds and should evaluate results in that context.  While future efforts might develop 

size-dependent statistical corrections, at present the reporting of pathway size and related 

summary statistics (e.g., [81]) alongside association data can aid interpretation. 

 

Pathway overlap 

 

Genes and their products typically act in multiple pathways [49], and each role is potentially 

important to a disease or treatment mechanism.  As a result, analyses can expect to have some 

degree of pathway overlap.  However, high pathway overlap can obscure the true source of an 

association signal.  While this problem can exist with any pathway analysis, Gene Ontology (GO) 

annotations are particularly susceptible due to the database’s large, hierarchical structure [82].  

Some studies have restricted analysis of GO terms to certain levels in the hierarchy [70, 83], 

while a new Bayesian method incorporates the structure of the hierarchy as prior information 

into its pathway association metric [84].  However, users of these approaches should be aware 

that the information content at particular GO levels is unpredictable [85].  Pathway overlap can 

also be addressed during post-analysis to prioritize related pathways for further exploration.  

Extant strategies include hierarchical clustering in a study of breast cancer [60], overlap-based 

network creation in the visualization tool Enrichment Map [86], and the listing of overlapping 

pathways alongside results in the analytical software PARIS [87]. 
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Assigning data elements to genes 

 

Genomic data has historically been integrated into pathways by mapping assayed elements to 

genes.  For SNP-based genotyping arrays, this is not straightforward because many array SNPs 

are not located in known coding or regulatory regions.  One solution discarded all SNPs that 

were not mapped to a single gene through a reference genome build, but this resulted in a loss 

of more than 25% of assayed SNPs [88].  Alternatively, each unmapped SNP can be assigned to 

its nearest gene [39].  However, evolving theories suggest that sequences may not be associated 

to genes based on closest proximity, and may not even be solely associated to one gene [89, 

90].  Hence, many studies assign unmapped SNPs to all genes within a distance window, ranging 

from 10 kb to 500 kb [70, 80, 81, 91].  Studies taking this approach should beware that some 

SNPs may not be functionally related to their assigned gene(s).  In addition, SNPs that map to 

multiple genes in the same pathway can yield spurious pathway association.  This issue is 

particularly important for genes (such as the MHC/HLA genes) that cluster in the genome and 

belong to the same pathway, because variants in those genomic regions can potentially map to 

all genes in the pathway.  Finally, given the importance of SNP-to-gene mapping for pathway 

analyses, investigators should be aware that imputation can increase genomic coverage by 

probabilistically-predicting SNP genotypes that are not directly available in a particular data set.  

Imputation can be particularly useful for bridging differences in genotyping platforms across 

cohorts for replication and meta-analysis, and can also enable investigation of rare alleles and 

copy number variants (CNVs) that are less-represented on standard platforms [92]. 
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Calculating gene significance and accounting for LD 

 

Most pathway analysis tools utilize one association signal per gene.  While expression arrays 

yield a single p-value for each gene, SNP arrays include multiple signals per gene, some of which 

are correlated.  As such, some studies use the minimum SNP-level p-value within a gene as the 

operative signal [39, 60, 80, 88]; however, this approach will not detect additive effects among 

SNPs with moderate individual association.  For methods that combine SNP-level signals, such as 

those based on the truncated product method [71], LD must be accounted for to prevent highly-

correlated SNPs from biasing gene-level significance.  Strategies to accomplish this include 

discarding SNPs that depart from LD at a preset threshold [80, 81, 93] as well as adapting 

principal component analysis to extract the most independent signals within a gene [67, 68, 81]; 

unfortunately, these methods can eliminate substantial information.  Alternatively, the SNP 

ratio test [37] and the “set-based analysis” in PLINK [94] use phenotype permutation to 

naturally correct for biases introduced by LD and gene size; however, these tools require raw 

genotype data and are computationally demanding, making them better suited for studies of 

candidate pathways with relatively few genes.  Notably, recently-developed methods that 

accept p-values as input and account for LD through simulations [95, 96] or genotype 

permutation [87] are computationally efficient and may represent new paradigms as their 

power is honed and evaluated. 

 

E.  Analytical methods to detect pathway-phenotype relationships 

 

Following data processing, analytical methods can be applied to test for significant pathway-

phenotype relationships.  Prominent examples of pathway-based analytical tools and their 
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salient features are provided in Table 2.  Notably, one class of tools employs text-mining of 

published abstracts to identify potential pathway-phenotype relationships.  These tools query a 

list which may include SNPs meeting a p-value threshold, genes from candidate pathways, or 

pathways themselves, among other possibilities.  Text-mining approaches have efficiently 

identified potential interactions among genes associated with neurodegenerative brain changes 

[77] and have equally been applied to generate a candidate pathway based on regulation or 

interaction with BRCA2 (breast cancer 2, early onset) [97]. 

 

By contrast, pathway enrichment tools assess for a statistically-significant distribution of 

association within a pathway.  Competitive enrichment methods compare the collective 

association within a pathway to the collective signal among genes not in the pathway [98].  As a 

result, competitive methods are not suitable for candidate pathway analyses that do not have 

an appropriate complement of data from outside of the candidate pathways.  Meanwhile, self-

contained enrichment methods test the signal within a pathway against simulated data sets 

which are expected to have no significant phenotype association [98, 99].  Self-contained 

methods can be challenging to use in a screening-oriented genome-wide pathway analysis due 

to the computational demand of generating simulated data sets.  In addition, self-contained 

approaches are particularly susceptible to false positives through genomic inflation (systematic 

increases in GWAS test statistics due to population stratification or other confounding factors 

[100, 101]), as each pathway is evaluated independently from any other data on the source 

assay.  While one study [102] normalized all association statistics to a genomic inflation factor 

(λ) calculated by PLINK, best practices in this area have not yet been settled.  Competitive tests 

are more robust in controlling genomic inflation, but they can also relinquish power in data sets 
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Table 2.  Examples of publically-available pathway-based analytical tools. 

Name Typea Input Data Analytical Method Corrections 

Included 

Ref 

Chilibot TM Word List Searches PubMed abstracts for 

relationships among word list; can 

distinguish biological concepts 

(e.g., activation, inhibition) 

N/A [103] 

GenGen C Raw 

genotype 

data 

Uses best p-value as gene-wide 

score and calculates rank-based 

Kolmogorov-Smirnov-like pathway 

statistic with permutation 

LD, 

pathway 

size, gene 

size, FDR 

[104] 

GeSBAP C Gene or 

SNP              

p-values 

Uses best p-value as gene-wide 

score and performs rank-based 

Fisher's exact test to detect 

pathway enrichment 

FDR [105] 

GRAIL TM SNPs or 

genomic 

regions 

For multiple disease-associated 

regions, identifies functionally-

related genes that likely highlight 

causal pathways 

Number of 

genes per 

region 

[106] 

GRASS SC Raw 

genotype 

data 

Uses principal component analysis 

to select representative eigenSNPs 

for each gene for pathway-based 

ridge regression 

LD, gene 

size, FDR 

[107] 
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GSA-SNP C SNP p-

values 

Uses -log(kth best p-value) as 

gene-wide score and calculates a 

z-score, iGSEA, or MAXMEAN 

statistic for the pathway 

Pathway 

size, FDR 

[108] 

GSEA-P C Gene p-

values 

Calculates rank-based 

Kolmogorov-Smirnov-like pathway 

statistic with phenotype 

permutation 

LD, 

pathway 

size, FDR 

[109] 

GSEA-SNP SC Raw 

genotype 

data 

Uses all SNPs for a pathway MAX-

test (maximum of Cochran-

Armitage trend tests under 3 

genetic models) with permutation 

LD, 

pathway 

size, gene 

size, FDR 

[110] 

MAGENTA C SNP p-

values 

Modified approach based on 

GSEA-SNP for meta-analytic data 

LD, gene 

size, FDR 

[111] 

PARIS SC SNP p-

values 

Identifies the significant genomic 

features within a pathway and 

performs genomic permutation to 

assess pathway significance 

LD, 

pathway 

size, gene 

size, FDR 

[87] 

PLINK set test SC Raw 

genotype 

data 

For SNPs passing a p-value 

threshold, calculates the average 

test statistic for the independent 

SNPs within a pathway 

 

LD, 

pathway 

size, gene 

size, FDR 

[94] 
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SNP Ratio Test SC Raw 

genotype 

data 

Calculates the ratio of significant 

SNPs to all SNPs in a pathway and 

uses phenotype permutation to 

calculate empirical p-value 

LD, 

pathway 

size, gene 

size, FDR 

[37] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aAbbreviations: TM = text-mining, C = competitive enrichment, SC = self-contained enrichment  
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with diffuse association signal [98].  As such, the optimal method depends on study goals, data 

set properties, and computational resources. 

 

Among extant competitive enrichment methods, three analytical frameworks predominate.  In 

the first of these, threshold-based approaches, hypergeometric, chi-square, or Fisher’s exact 

test statistics are used to identify pathways that are overrepresented among the “significant” 

markers under study.  Notably, the threshold for “significance” is arbitrary and can affect results 

[33]; observed SNP-level thresholds have ranged from p < 0.05 [91] to p < 5 x 10-8 [39].  In 

contrast, rank-based approaches order all of the markers being studied by their significance and 

then test for pathways which have lower rankings than the overall distribution.  While the rank-

based tools GenGen [104] and GSEA-SNP [110] use a Kolmogorov-Smirnov-like running sum that 

gives greater weight to more significant markers, others rely on MAXMEAN-related statistics as 

potentially powerful and efficient alternatives [108, 112, 113].  Compared with threshold-based 

methods, rank-based approaches more naturally account for differences in significance among 

markers [51] but may also be heavily influenced by a few highly-significant markers [114].  

Finally, z-score methods infer enrichment based on deviation from a normal distribution that 

accounts for the size of each pathway [108, 115]; while these methods are sensitive and fast, 

their error rates have not been well-characterized.  Self-contained enrichment methods employ 

even more diverse statistical methods to combine the p-values within a pathway into an 

aggregated measure (Table 2).  However, in the absence of large-scale power comparisons 

among related methods across several well-characterized data sets, the choice of a particular 

enrichment tool may be less important than understanding the relative strengths and limitations 

of these broader categories. 
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An alternative to enrichment methods are network-based approaches, which examine sets 

defined by other biological characteristics for meaningful pathways contained therein.  For 

example, one study used hierarchical clustering to form networks of co-expressed genes across 

multiple inflammatory diseases; subsequent analysis of these networks suggested a role for 

interferon-inducible signaling in tuberculosis [116].  Gene networks can also be defined through 

protein interactions, as in a study that associated genetic variants in glutamate pathways to 

brain glutamate concentration in multiple sclerosis [117].  Importantly, recent studies are 

combining enrichment and network-based methods to point to broader findings.  For example, 

network analysis of enriched pathways revealed major roles for antigen presentation and 

interferon signaling in rheumatoid arthritis [118]. 

 

Finally, developing strategies are targeting specific pathway-based challenges.  For example, 

machine learning approaches [68, 119] attempt to identify the most informative subsets of 

genes within pathways for association.  Networks have been effective in studies of rare variants, 

as with the identification of a synaptogenesis gene network affected by rare CNVs in autism 

[120].  Pathway-based methods for studying rare variants using genomic-region-based mapping 

and self-contained tests are also evolving [121, 122].  Indeed, the appeal of pathways and 

networks will continue to expand as their associated tools progress to analyze a variety of data 

through user-friendly platforms. 

 

F.  Post-analysis considerations 

 

Following pathway analysis, appropriate data reporting and interpretation are imperative.  

Currently, bias introduced by gene size is less commonly addressed than bias from pathway size.  
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In particular, large genes containing many SNPs are more likely to contain significant SNPs by 

chance alone [123]; for analyses, this can favor pathways containing large genes.  Analytical 

tools that employ permutations naturally control for gene size by comparing the actual 

association data to the distribution of association statistics generated from randomly permuted 

data sets expected to reflect chance-based confounding effects.  Other approaches [94, 95] 

allow users to restrict analysis to a subset of the most significant SNPs in each gene: for large 

genes, this may eliminate some spuriously-associated SNPs and thus limit their impact on the 

pathway analysis.  At minimum, studies should discuss potential impacts of gene and pathway 

size on their results.  Other sources of bias that should be addressed include the capacity for 

strongly-associated markers to drive pathway association and the possible effects of SNPs being 

assigned to multiple genes. 

 

Correction for multiple comparisons must also be applied to pathway p-values to control for 

false positives.  As in other areas of statistical genomics, optimizing methods for correction is a 

work in progress.  Bonferroni-related methods seem too conservative for pathway analyses 

because they do not allow for dependence across pathways.  False discovery rate (FDR) 

approaches [124] are frequently-applied in pathway analyses [33, 61, 81], while newer FDR-

based [125] and bootstrapping [93] methods that assess the uncertainty of statistical estimates 

through permutation can better account for pathway overlap but require large computational 

capacity. 

 

Fundamentally, these approaches to bias are best complemented by replication of pathway 

analysis findings in independent data sets.  Strategies for pathway analyses can flexibly adapt to 

differences across data sets, and while these differences might impact SNP- or gene-level 
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statistics [126], legitimately-associated pathways would be expected to exhibit significance or a 

strongly-trending signal across multiple studies.  In this effort, a systematic framework 

illustrating key choices in pathway analyses (Figure 3) will limit major contributors of variance 

across studies and will guide investigators in selecting approaches that fit their study goals. 

 

G.  Future developments in genomic data analysis 

 

Development of methods and tools related to pathway analysis is ongoing and dynamic.  In 

particular, because pathways are of broad interest, targeted adaptations to their associated 

databases would expand their utility for investigators from a variety of backgrounds.  These 

adaptations might include simpler search and download mechanisms, consistency in pathway 

names and classifications, and methods for describing pathway overlap.  In addition, a universal 

format for annotation files might encourage interoperability among analytical tools, allowing 

investigators flexibility to precisely match their databases and statistical methods of choice. 

 

Two recent trends among databases are also promising.  Specialized disease databases, such as 

AlzGene [127], PDGene [128], and the UCSC Cancer Genomics Browser [129], can aggregate 

salient information from diverse studies on a particular disease.  These targeted resources are 

particularly up-to-date and can facilitate collaboration within highly-investigated diseases.  

Functional annotation of genes is also becoming prominent.  These annotations draw on 

experimental data that indicates function, location of action, or physiological region of 

association [130], and can allow investigators to develop candidate pathways related to 

localized anatomical or physiological derangements.  Extensions of this concept across 

disciplines will likely be a prime area of advancement. 
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Figure 3.  A methodological guide to pathway analysis.  Broadly, there are two approaches to 

pathway analysis.  In candidate pathway analysis, prior knowledge is used to select pathways 

hypothesized to have a relationship with a phenotype.  In contrast, genome-wide pathway 

analysis is designed to uncover significant pathway-phenotype relationships within a large data 

set; insight and prior knowledge are then used to interpret the findings.  In both approaches, 

care must be taken in acquiring pathway annotations and in selecting an appropriate analytical 

test for association.  In addition, other methodological issues (red box) guide the choice of 

approach and impact strategies for confounding factors.  Finally, replication of pathway analysis 

findings in independent data sets is imperative in validating results to extend their impact. 
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In future pathway analysis platforms, computational efficiency will be highly-valued due to the 

impressive granularity of next-generation sequencing data.  In addition, investigators may wish 

to use different genomic data sets, pathway annotation databases, and analytical parameters 

depending on study resources and goals; as such, tools that are flexible to various study 

approaches will maximize their impact.  Finally, given that genes constitute only 1-2% of the 

human genome, strategies to leverage both genic and non-genic data for pathway analysis may 

provide increased power to detect meaningful functional sets. 

 

Meanwhile, complementary methods can extend the biological reach of pathway-based results.  

For example, it is not yet understood whether gene interactions are more likely within a given 

pathway or across different pathways in a network.  A comparative study of epistasis in 

pathways and networks, perhaps utilizing novel techniques for its detection within population 

data [47, 54, 131, 132], could inform future strategies in this area.  A related area of 

development involves using known protein interactions to generate subnetworks from enriched 

pathways; these subnetworks can highlight novel candidate genes [133] or regulatory 

relationships [134] from significant pathways. 

 

Nevertheless, the ongoing development of pathway-based tools would benefit from further 

empirical evaluation of current approaches.  For example, a creative meta-analysis might 

examine how various association metrics affect the likelihood of replication of findings.  In 

addition, testing association methods against well-calibrated positive and negative control data 

sets might illuminate their relative capabilities.  Notably, one study employed multiple pathway 

analysis algorithms using an extensively-explored Crohn’s disease data set [135]; however, the 

algorithms chosen were highly-disparate in their null hypotheses and approaches to LD, making 
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it difficult to uniformly compare their results.  Alternatively, multi-site collaborations might 

simultaneously analyze several large data sets using a small number of analytical tools in the 

same conceptual category; comparisons of the results would advance the underlying science 

and critically evaluate tools against closely-related options. 

 

Finally, methods for integrating different types of association signals are developing.  A nascent 

view proposes that combining genome-wide expression and genotyping data into a joint 

quantitative signal can increase power for discovery [61, 91, 136, 137].  One particularly 

attractive feature of this view is that it augments structure (genotype) with function 

(expression).  Indeed, one study demonstrated that SNPs correlated with gene expression 

changes (expression quantitative trait loci; eQTLs) were more likely to show disease association 

than other SNPs from a GWAS array [138].  Relatedly, visualization tools can graphically overlay 

association metrics onto other data in order to prioritize markers.  Visualization has been used 

to integrate SNP association with quantitative imaging phenotypes [139], among other 

examples. 

 

H.  Pathways and networks: bridging multi-omics data 

 

As pathway analysis of genomic data has exploded in use, its methods have matured, its results 

are beginning to meet its potential, and points of consensus are emerging for its continued 

application and future development.  In the coming years, we anticipate that pathways and 

networks will assume a farther-reaching role in view of the need to integrate multi-omics data 

through systems biology approaches [140, 141].  A variety of large-scale strategies are active in 

the study of complex diseases, including genomic, transcriptomic, proteomic, and metabolomic 
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approaches, and data from all of these sources can be analyzed through pathways and networks 

representing coordinated functions and relationships.  Importantly, while gene associations do 

not always indicate therapeutic targets [42], pathways and networks implicated by analyses at 

multiple levels would be prime targets for therapies.  Integrating large-scale data assayed 

through diverse strategies related to structure and function would provide a fertile process for 

exploring connections between replicable, statistical association and meaningful biology.  As 

such, the role of pathways and networks as the hub for this integration will be vital in the years 

to come. 
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III.  Genome-wide pathway analysis of episodic memory performance in the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) cohort 

 

A.  Introduction 

 

Human memory is a complex, dynamic trait with significant roles in development, aging, and 

disease.  Impairment in episodic memory – involving the encoding and conscious recollection of 

experiences – is an early hallmark feature of AD, the most common cause of dementia [7].  

Declines in episodic and other memory domains are also found in normal cognitive aging and 

many age-related disorders, including Parkinson’s disease (PD), diabetes, and cancer [142].  

With the rising incidence and burdens of dementia, a better understanding of its causes is 

crucial for the development of memory-sparing lifestyle and drug therapies [4, 143]. 

 

At present, the molecular mechanisms underlying memory performance in AD and other clinical 

settings are not fully understood.  Epidemiological studies have linked many factors to memory, 

including the presence of vascular and metabolic disease, mental and physical activity, and 

educational and occupational attainment [144-146].  Memory is also estimated to have 

substantial heritability (30-60%) based on twin studies and is thought to be influenced by 

common and rare genetic variation in multiple pathways [145].  Although GWAS and candidate 

gene studies have implicated numerous SNPs in memory performance [15, 145, 147-152], 

significant heritability – and biological understanding – remains unexplained. 

 

An important consideration for addressing this knowledge gap is that genetic studies of 

quantitative endophenotypes [11] such as memory performance are highly dependent on the 
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quality of the phenotypic data.  There are numerous extant metrics for assessing memory in 

amnestic populations, and these metrics can have differential sensitivities to deficits in various 

memory domains and sub-domains [153].  As a result, studies often attempt to leverage the 

relative strengths and weaknesses of these metrics by creating composite scores from multiple 

assessments given to participants [77, 154].  Recent advances in psychometric approaches, 

which attempt to empirically generate and validate composite scores based on item-level 

responses from multiple memory instruments, may yield optimized measures of cognitive 

functioning that provide greater power for genetic studies [155-158]. 

 

The complex etiology of memory performance adds another challenge for genetic studies.  

Human and animal model investigations have demonstrated that the complex processes of 

memory consolidation and recall involve numerous and diverse cellular and molecular pathways 

[142].  While GWAS of complex phenotypes have historically focused on identifying individual 

susceptibility loci, their efficacy has been confounded by several factors.  Most common alleles 

implicated by GWAS have exhibited modest effect sizes [159].  In addition, robust genetic 

associations have not always served as appropriate therapeutic targets [42].  Further, it is well-

understood that genes do not exist in isolation, but instead function as sets within biological 

pathways and networks [31, 32, 49].  As a result, GWAS of complex phenotypes are increasingly 

being analyzed through statistical methods designed to identify biological pathways enriched 

with association to those phenotypes [31, 32, 41]. 

 

Although genome-wide pathway analysis has been performed for complex neurological 

phenotypes, including brain glutamate levels [117], cerebrospinal fluid (CSF) Aβ levels [160], and 

information processing speed [161], this strategy has not been previously applied to memory 
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performance.  Here, we perform the first genome-wide pathway analysis of memory 

performance, using a psychometrically-derived episodic memory score for participants from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI).  Our analyses identify key pathways 

associated with memory and highlight highly-represented genes in these pathways as key 

targets for future studies.  We also use network analysis and data from a public human brain 

tissue expression database to isolate sets of genes which are co-regulated and/or co-expressed.  

The enriched pathways and gene networks identified in this analysis suggest prime targets for 

further studies of AD, memory impairment, and normal cognitive aging, and further 

demonstrate the efficacy of pathway-based approaches for analyzing GWAS of complex 

phenotypes. 

 

B.  Methods 

 

Study participants 

 

This study utilized data from the initial phase of ADNI [162] (http://adni.loni.ucla.edu/), a multi-

site longitudinal study that was launched in 2004 as a public-private partnership.  The initial 

phase of ADNI enrolled individuals aged 55-90 years who were recruited from over 50 sites 

across the United States and Canada and followed at 6- to 12-month intervals for 2-3 years.  

These individuals included approximately 200 healthy controls (HC), 400 patients with late MCI 

(LMCI), and 200 patients clinically diagnosed with probable AD.  As described elsewhere [162-

164], diagnoses of participants were made on a clinical basis (via neuropsychological assessment 

data and patient and informant reports of cognitive performance and functioning in activities of 

daily living) at consensus conferences involving neurologists, neuropsychologists, and study 

35 

http://adni.loni.ucla.edu/


coordinators.  All participants provided written informed consent and study protocols were 

approved by each site’s institutional review board.  Further information about ADNI, including 

full study protocols, complete inclusion and exclusion criteria, and data collection and 

availability can be found at http://www.adni-info.org/. 

 

Sample characteristics across diagnostic groups were evaluated using IBM SPSS 19.0.  A one-way 

analysis of variance was performed for continuous variables and a Pearson chi-square test was 

performed for categorical variables. 

 

Psychometrically-derived composite episodic memory scores 

 

All participants (original N = 818) were administered an extensive neuropsychological 

assessment, including several measures of memory, at each study visit.  For each subject, a 

composite score for episodic memory at the baseline visit was calculated as described previously 

[155] through analysis of item-level data from the ADNI neuropsychological battery.  Briefly, the 

authors used psychometric theory to select test battery items which could be considered as 

indicators of episodic memory functioning.  An iterative process of confirmatory factor analysis 

was used to construct the final, optimized model for describing episodic memory performance 

at baseline.  In particular, the following item-level tests were applied to the final model: the 

memory sub-scores from the Mini-Mental Status Examination [165, 166]; the immediate and 

delayed recall and recognition scores on a word list learning task from the Alzheimer's Disease 

Assessment Scale-cognitive subscale [167]; all immediate and delayed recall and recognition 

scores from the Rey Auditory Verbal Learning Test [168]; and all immediate and delayed recall 

scores on Logical Memory prose passages from the Wechsler Memory Scale-Revised [169].  The 
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final model exhibited excellent fit based on standard criteria (Confirmatory Fit Index > 0.95, 

Tucker Lewis Index > 0.95, and Root Mean Squared Error of Approximation < 0.05) [158].  A 

composite episodic memory score could not be calculated for eight participants due to 

incomplete item-level data at baseline. 

 

Genotyping and quality control 

 

Details on genotyping for the ADNI sample have been described previously [170].  All 

participants in this study were genotyped according to the manufacturer’s protocol using the 

Human610-Quad BeadChip (Illumina, Inc., San Diego, CA), which included 620,901 SNPs and 

structural variant markers.  In addition, given the strong association of APOE with MCI and AD 

susceptibility [14, 171, 172], the SNPs (rs429358, rs7412) that characterize the APOE ε2, ε3, and 

ε4 alleles were genotyped separately due to not being available on the GWAS array [170, 173]. 

 

Genotype data (original N = 818) was subjected to stringent quality control procedures as 

described previously using PLINK, version 1.07 [94, 174].  SNPs were excluded if they had a call 

rate < 90%, Hardy-Weinberg equilibrium test p < 10-6, or minor allele frequency (MAF) < 5%.  

Samples were excluded if they had a call rate < 90% (1 participant), ambiguous gender 

identification (2 participants), or failed an identity check (3 participants).  To limit the possible 

effects of population substructure, analyses were restricted to participants with non-Hispanic 

Caucasian ancestry determined by multidimensional scaling analysis as described previously 

[175]; this resulted in the exclusion of 62 participants.  Following all quality control procedures, 

750 participants and 531,096 SNPs were designated for subsequent analyses and the genotyping 

rate was > 0.995 among the remaining samples. 
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GWAS of episodic memory performance 

 

Of the 750 participants with quality controlled genotype data, 742 participants were identified 

as having a psychometrically-derived composite episodic memory score at baseline.  A GWAS of 

this composite memory score was performed using linear regression under an additive genetic 

in PLINK.  Demographic factors with known influences on memory or cognition were included as 

covariates, including age at the baseline visit, education, gender, and handedness.  The direct 

and inverse relationships, respectively, of age and education level on memory decline have been 

well-established [176], while putative effects of gender and handedness on cognition are 

subjects of active exploration [177, 178] and were included as part of a conservative approach.  

APOE ε4 allele status (presence vs. absence) was also used as a covariate in the GWAS to 

account for the largest known genetic influence on memory performance in an MCI- and AD-

based clinical population [179] in order to focus on identification of novel biological influences.  

For all SNPs included in the analysis, a p-value was generated to represent the nominal 

association of that SNP to the composite memory score.  Manhattan and Quantile-Quantile (Q-

Q) plots for the GWAS were generated using PLINK and Haploview [180]. 

 

Pathway analysis 

 

All SNPs included in the GWAS were mapped to genes using the NCBI Build 36.1 reference 

sequence [181].  An extended gene mapping window of ±20 kb was used to account for SNPs 

belonging to putative regulatory regions; this resulted in some SNPs being mapped to more than 

one gene.  In total, 277,615 SNPs were assigned to 17,456 genes.  Pathway annotations, 

representing gene sets defined by membership in biological pathways, were downloaded from 
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the Molecular Signatures Database [109], version 3.0.  This annotation data comprised a 

collection of canonical, expertly-curated pathways from three publically-available databases, 

BioCarta (http://www.biocarta.com/), the Kyoto Encyclopedia of Genes and Genomes (KEGG; 

http://www.genome.jp/kegg/), and Reactome (http://www.reactome.org/).  In total, 818 

pathways were downloaded, included 217 pathways from BioCarta, 186 pathways from KEGG, 

and 430 pathways from Reactome. 

 

The GSA-SNP software [108] was used to assess for pathways enriched against the composite 

memory score.  This software uses a competitive enrichment algorithm [98], where the null 

hypothesis holds that a pathway-phenotype association is not significantly different from all 

other pathway-phenotype associations under analysis.  Competitive enrichment strategies are 

robust to the effects of genomic inflation due to population stratification or other confounding 

factors [51, 182].  In GSA-SNP, the significance score for each gene under analysis was calculated 

as the -log of the k-th best SNP-level p-value in the gene.  Corresponding with the authors’ 

recommendation [108], we selected k = 2 to limit the effects of both single, highly-significant 

loci and of spurious SNP-level associations on driving pathway enrichment.  Each pathway was 

then assessed for phenotype enrichment by the Z-statistic method [183], which incorporates the 

gene-wide significance scores and the number of genes within each set. 

 

Since small pathways can exhibit spurious phenotype associations due to large single locus 

effects [51], and since large pathways are more likely to exhibit association by chance alone 

[79], analysis was restricted to the 280 pathways containing 10-200 genes.  To correct for 

multiple hypothesis testing, the False Discovery Rate (FDR) [124] was applied to the p-values 

generated by the enrichment algorithm.  For pathways enriched at an FDR-corrected p-value < 
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0.05, we analyzed their constituent genes to obtain a count of each gene’s occurrences in those 

enriched pathways.  Genes that were highly-represented among the enriched pathways (defined 

as being constituents of > 15% of the enriched pathways) were isolated for follow-up analyses. 

 

Transcription factor network analysis 

 

We further investigated the list of highly-represented genes from our enriched pathways 

through network analysis using MetaCore (GeneGo, Inc.).  In particular, we applied the 

transcription factor network analysis algorithm to identify subsets of those genes with 

coordinate regulation by known transcription factors.  APOE was also included in these analyses, 

given its well-characterized association with MCI and AD and their related memory deficits. 

 

Gene expression analysis using the Allen Human Brain Atlas 

 

We also interrogated the list of highly-represented genes from our enriched pathways for their 

expression profiles in normal brain tissue using the Allen Human Brain Atlas (Allen Institute for 

Brain Science, Seattle, WA; available from http://www.brain-map.org/).  The Allen Human Brain 

Atlas includes genome-wide microarray-based expression profiles in postmortem brain tissue 

from subjects with no known neuropsychiatric or neuropathological history.  These expression 

profiles cover the entire brain through systematic sampling of regional tissue, and are integrated 

with multi-modal brain imaging and other data for visualization and analysis.  Detailed 

information on tis database is available on-line (http://human.brain-map.org/docs.html/).  We 

employed the Allen Human Brain Atlas to examine genes of interest (including highly-

represented genes from our enriched pathways) for patterns in their expression profiles.  In 
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particular, we used the heat map tool (which visually displays normalized expression for a gene 

probe across 25 large neuroanatomic regions) and correlational analysis (which calculates a 

Pearson correlation coefficient between the expression profiles of two gene probes) to identify 

a set of key genes with high (r > 0.7) co-localization and co-expression. 

 

C.  Results 

 

Demographic characteristics and mean composite memory scores for all diagnostic groups (HC, 

LMCI, and AD) are presented in Table 3.  While baseline age and handedness were not 

significantly different across diagnostic groups, gender exhibited a significant difference (p <  

0.05), with males relatively overrepresented among LMCI subjects.  In addition, as expected, 

education level and APOE ε4 allele status exhibited significant differences across groups (p < 

0.001).  Also as expected, composite memory scores differed across all diagnostic groups, 

including all pairwise group comparisons (p < 0.001). 

 

In order to assess SNP associations to the composite memory scores in this sample, we 

performed a GWAS with the addition of five covariates.  The GWAS failed to identify any SNPs 

with significant association to the composite memory score at a Bonferroni-determined 

threshold p-value of 9.42 x 10-8 (i.e., 0.05/531,096).  The peak SNP in the association analysis 

was rs9890008 (Chr 17), which has not been mapped to a known gene and which exhibited an 

unadjusted p-value of 2.21 x 10-6.  Overall, 25,960 SNPs showed nominal p-values < 0.05 

(unadjusted).  Manhattan (Figure 4) and Q-Q (Figure 5) plots are displayed for the GWAS. 
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Table 3.  Selected characteristics for the study sample.  Values represented are mean ± SD 

unless specified otherwise. 

 

 

HC 

(N = 207) 

LMCI 

(N = 362) 

AD 

(N = 173) 

p-valuea 

 

Age at baseline 76.1 ± 5.0 74.9 ± 7.4 75.6 ± 7.5 0.139 

Gender (male/female) 113/94 234/128 92/81 0.012 

Years of education 16.2 ± 2.7 15.7 ± 3.0 14.9 ± 3.0 < 0.001 

Handedness (right/left) 191/16 328/34 161/12 0.586 

APOE ε4 allele (absent/present) 152/55 165/197 61/112 < 0.001 

Composite memory scoreb 1.05 ± 0.59 -0.14 ± 0.64 -1.01 ± 0.63 < 0.001 

 

 

 

 

 

 

 

 

aFor categorical variables, p-values were computed using the Pearson chi-square tests; for 

continuous variables, p-values were computed using a one-way analysis of variance. 

 

bScores for individual participants were represented as z-scores with a defined mean of 0, and 

standard deviation of 1, based on the 810 participants with complete item-level memory data at 

baseline. 
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Figure 4.  Manhattan plot for the GWAS of episodic memory in ADNI.  The x-axis refers to 

positions along the genome (separated by chromosome) for each SNP (represented by a dot) 

included in the analysis.  The y-axis refers to the negative logarithm of the p-value for the test of 

association between each SNP and the quantitative memory phenotype.  No SNPs exhibited 

genome-wide significant association (red line) to the composite episodic memory score, while 

40 SNPs exhibited suggestive association (p < 5 x 10-5, blue line).  The 5 most significant, 

independent (r2 < 0.2) SNPs are labeled along with their corresponding genes (if known). 
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Figure 5.  Q-Q plot for the GWAS of episodic memory in ADNI.  No evidence of spurious 

inflation of association tests statistics was identified. 
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Notably, when APOE ε4 allele status was removed as a covariate, one SNP (rs2075650) residing 

in the TOMM40 (translocase of outer mitochondrial membrane 40) gene exhibited genome-

wide significant association (p = 2.19 x 10-9) to episodic memory.  This result was probable, given 

that the TOMM40 gene is adjacent to and often considered as one locus with APOE on 

chromosome 19.  In addition, TOMM40 variants have been associated with late-onset AD [173, 

184, 185] as well as with structural brain and cognitive function changes suggestive of 

presymptomatic late-onset AD [186]. 

 

Next, the p-value output from the GWA analysis was used as input for pathway enrichment 

analysis.  Using the GSA-SNP software tool, we identified 27 canonical pathways with 

enrichment (FDR-corrected p-value < 0.05) against the composite memory score (Table 4).  

Following these analyses, we examined the enriched pathways in detail in order to better 

characterize their biological import in memory deficits.  First, we used existing knowledge and 

insight to conceptually categorize the 27 enriched pathways into 4 broader realms of biology 

(Figure 6).  In particular, 11 enriched pathways represented classical cellular and molecular 

processes essential in normal memory consolidation signaling [142].  These pathways included 

functions of neurotransmitter receptor activation, downstream calcium-mediated signaling, and 

long-lasting potentiation of synaptic strength, among other processes.  In addition, six pathways 

related to cell adhesion were enriched, including focal adhesion pathways from both the 

Reactome and KEGG databases, and interactions involving neuronal cell adhesion molecule 1 

(NCAM1).  Finally, four enriched pathways were related to neuronal differentiation and guided 

axonal growth, while a further six enriched pathways were involved in inflammation or other 

complex signaling processes.  Notably, while we restricted analysis to pathways containing 10-

200 genes, the enrichment results were nearly identical when upper limits of 300 or 400 genes  
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Table 4.  Pathways showing enrichment of association to episodic memory in ADNI. 

Pathway (Gene Set) Name Set Sizea p-value FDR p 

bTransmission across chemical synapses 136 (122) 2.14 x 10-7 1.77 x 10-4 

cCalcium signaling pathway 184 (165) 2.82 x 10-7 1.17 x 10-4 

cType I diabetes mellitus 50 (41) 7.90 x 10-6 0.002 

bNeurotransmitter receptor binding and 

     downstream transmission 

90 (78) 2.84 x 10-5 0.006 

cArrhythmogenic right ventricular cardiomyopathy 82 (72) 3.11 x 10-5 0.005 

bSLC-mediated membrane transport 175 (162) 3.87 x 10-5 0.005 

cFocal adhesion 207 (187) 4.68 x 10-5 0.006 

cAxon guidance 135 (123) 4.68 x 10-5 0.005 

cLong-term depression 76 (65) 9.02 x 10-5 0.008 

bAxon guidance 167 (154) 9.58 x 10-5 0.008 

cAdherens junction 81 (71) 1.04 x 10-4 0.008 

bOther semaphorin interactions 22 (15) 1.20 x 10-4 0.008 

bNCAM1 interactions 50 (42) 1.37 x 10-4 0.009 

cLong-term potentiation 76 (65) 3.14 x 10-4 0.019 

bActivation of glutamate NMDA receptor and 

     post-synaptic events 

42 (32) 5.02 x 10-4 0.028 

cCell adhesion molecules (CAMs) 140 (123) 5.60 x 10-4 0.029 

bSEMA3A plexin repulsion signaling by inhibiting 

     integrin adhesion 

20 (13) 6.06 x 10-4 0.030 

cTryptophan metabolism 46 (35) 6.53 x 10-4 0.030 
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bDepolarization of the presynaptic terminal triggers 

     the opening of calcium channels 

18 (12) 6.71 x 10-4 0.029 

bPLCβ-mediated events 44 (35) 6.91 x 10-4 0.029 

cViral myocarditis 79 (67) 9.98 x 10-4 0.039 

cAllograft rejection 44 (34) 0.001 0.039 

bGlucose and other sugar SLC transporters 88 (80) 0.001 0.039 

bIonotropic activity of kainate receptors 18 (11) 0.001 0.042 

cECM receptor interaction 90 (83) 0.001 0.041 

bPLCγ1 signaling 41 (32) 0.001 0.044 

bCRMPs in SEMA3A signaling 22 (15) 0.001 0.045 

 

 

 

 

 

 

 

 

 

aEntries are displayed as: number of genes in the set (number of genes from the GWA data) 

 

bReactome pathway 

 

cKEGG pathway 
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Figure 6.  Conceptual classification of pathways showing enrichment of association to episodic 

memory in ADNI. 
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were used: in those cases, two additional Reactome pathways exhibited enrichment 

(transmembrane transport of small molecules, FDR-corrected p-value = 0.029; adherens 

junction interactions, FDR-corrected p-value = 0.049). 

 

As further follow-up, we identified 44 genes that were highly-represented across the 27 

enriched pathways (Table 5).  Half (22) of these 44 genes were constituents of 6 or more 

enriched pathways, suggesting that variants in those genes can have wide-ranging roles in 

mediating memory impairment due to their diverse functions.  We also assessed for underlying 

transcriptional relationships among these highly-represented genes and APOE, given the latter’s 

singular association with MCI and AD and their related memory deficits.  Using network analysis 

in MetaCore, we discovered that 14 of the 22 most-represented genes from our analyses were 

part of a transcriptional regulation network driven by the specificity protein 1 (SP1) transcription 

factor and involving APOE and the APOE receptor-2 (Figure 7). 

 

Finally, we used data from the Allen Human Brain Atlas to evaluate if the identified genes of 

interest exhibited co-expression in normal brain tissue.  Through heat map visualization and 

correlational analysis, we identified a set of 10 key genes with strong co-expression (Pearson r > 

0.7) across the major neuroanatomic regions of the brain (Figure 8a).  In particular, 6 of these 

genes (CAMK2A, CACNB1, CALM1, CALM3, GRIN2A, and MAPK1) were highly-represented 

among our enriched pathways, while the other 4 genes (CDK5, GSK3B, GRIN2B, and PRNP) were 

constituents of our enriched pathways that were also known AD susceptibility genes found in 

the AlzGene database (http://www.alzgene.org/) [127].  An example of the cortical and 

subcortical expression patterns common to this gene set was also generated for one of these  

  

49 

http://www.alzgene.org/


Table 5.  Highly-represented genes among the pathways showing enrichment of association to 

episodic memory in ADNI. 

 

Occurrences Gene ID Gene Name 

9 MAPK1 mitogen-activated protein kinase 1 

8 CALM1 calmodulin 1 (phosphorylase kinase, delta) 

8 CALM2 calmodulin 2 (phosphorylase kinase, delta) 

8 CALM3 calmodulin 3 (phosphorylase kinase, delta) 

8 HRAS v-Ha-ras Harvey rat sarcoma viral oncogene homolog 

7 ADCY1 adenylate cyclase 1 (brain) 

7 ADCY8 adenylate cyclase 8 (brain) 

7 CAMK4 calcium/calmodulin-dependent protein kinase IV 

7 FYN FYN oncogene related to SRC, FGR, YES 

7 ITGB1 integrin, beta 1 (fibronectin receptor, beta polypeptide, 

antigen CD29) 

7 PRKACB protein kinase A, cAMP-dependent, catalytic, beta 

7 RAF1 v-raf-1 murine leukemia viral oncogene homolog 1 

6 ACTN2 actinin, alpha 2 

6 ADCY3 adenylate cyclase 3 

6 CREB1 cAMP responsive element binding protein 1 

6 MAPK3 mitogen-activated protein kinase 3 

6 PLCB1 phospholipase C, beta 1 (phosphoinositide-specific) 

6 PLCB2 phospholipase C, beta 2 
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6 PLCB3 phospholipase C, beta 3 (phosphatidylinositol-specific) 

6 PRKCA protein kinase C, alpha 

6 PRKCG protein kinase C, gamma 

6 RAC1 ras-related C3 botulinum toxin substrate 1 (rho family, GTP 

binding protein) 

5 CACNA1C calcium channel, voltage-dependent, L type, alpha 1C subunit 

5 CACNB1 calcium channel, voltage-dependent, beta 1 subunit 

5 CACNB2 calcium channel, voltage-dependent, beta 2 subunit 

5 CACNB3 calcium channel, voltage-dependent, beta 3 subunit 

5 CACNB4 calcium channel, voltage-dependent, beta 4 subunit 

5 CAMK2A calcium/calmodulin-dependent protein kinase II alpha 

5 CAMK2B calcium/calmodulin-dependent protein kinase II beta 

5 CAMK2D calcium/calmodulin-dependent protein kinase II delta 

5 CAMK2G calcium/calmodulin-dependent protein kinase II gamma 

5 GRIA1 glutamate receptor, ionotropic, AMPA 1 

5 GRIA2 glutamate receptor, ionotropic, AMPA 2 

5 GRIN1 glutamate receptor, ionotropic, N-methyl D-aspartate 1 

5 GRIN2A glutamate receptor, ionotropic, N-methyl D-aspartate 2A 

5 GRIN2C glutamate receptor, ionotropic, N-methyl D-aspartate 2C 

5 GRIN2D glutamate receptor, ionotropic, N-methyl D-aspartate 2D 

5 ITGA1 integrin, alpha 1 

5 ITPR1 inositol 1,4,5-trisphosphate receptor, type 1 

5 ITPR2 inositol 1,4,5-trisphosphate receptor, type 2 
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5 ITPR3 inositol 1,4,5-trisphosphate receptor, type 3 

5 PLXNA1 plexin A1 

5 PLXNA2 plexin A2 

5 RAC2 ras-related C3 botulinum toxin substrate 2 (rho family, GTP 

binding protein) 
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Figure 7.  Transcriptional regulatory network centered on the SP1 transcription factor involves 

many genes of interest from the pathway analysis of episodic memory in ADNI.  Green arrows 

indicate positive regulatory effects, red arrows indicate negative regulatory effects, and gray 

arrows indicate unspecified regulatory effects.  The primary image was generated through the 

MetaCore software. 
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Figure 8.  Genes of interest for episodic memory performance exhibit co-expression in 

postmortem human brain tissue from healthy subjects in the Allen Human Brain Atlas.  (A)  

Normalized, microarray-based expression profiles across 25 major neuroanatomic regions of the 

brain are provided for 10 key genes of interest.  Moving from left to right on the heat map is 

analogous to moving from anterior to posterior regions first in the cortex, followed by 

subcortical areas and then the cerebellum and brainstem.  The genes represented exhibit strong 

co-expression (Pearson r > 0.7) across the brain in data from two subjects.  (B)  For the co-

expressed gene set, a representative cortical and subcortical expression profile is shown for the 

CAMK2A gene. 
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genes, CAMK2A (Figure 8b).  These findings suggest further underlying functional relationships 

between MCI and AD disease risk and the pathogenesis of memory impairment. 

 

D.  Discussion 

 

In this study, we used a psychometrically-optimized composite measure of episodic memory 

performance as a phenotype for GWAS in a sample of controls plus LMCI and AD patients.  

Through a genome-wide pathway analysis, we identified 27 canonical pathways showing 

enrichment of association to episodic memory performance in this sample.  These enriched 

pathways suggest that the genetic architecture of memory impairment in this clinical sample of 

the AD spectrum spans both processes classically understood to be involved in normal memory 

consolidation as well as mechanisms with broader roles in cognition and aging, such as those 

involving neuronal cell adhesion and inflammation. 

 

It should be emphasized that pathway-based approaches analyze genetic data in the context of 

operative functional groups; as a result, pathway analysis findings are uniquely and naturally 

connected to the functional biology underlying complex phenotypes.  This insight is vital for 

future investigations, given that pathway mechanisms are principal sources for developing 

strategies to diagnose, treat, and prevent complex disorders.  It is also important to note that 

our analysis elucidated pathways with robust enrichment despite using GWAS input data that 

included a relatively modest distribution of SNP-level phenotype associations.  These results 

affirm the potential of pathway-based analytical approaches to detect significant relationships 

that are otherwise concealed within single-SNP or single-gene analysis.  The use of genome-wide 

pathway analysis in this study also facilitated the detection of unexpected relationships with 
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memory performance, including pathways not classically related to memory signaling, and 

subsequently, interesting transcriptional and expression networks.  While targeted “candidate 

pathway” approaches have advantages, these unexpected relationships would not have been 

easily predicted as candidates for analysis based on prior knowledge. 

 

At a functional level, the enriched pathways identified in this study present interesting biological 

implications in relation to memory impairment.  In a sense, it might be expected that cellular 

and molecular processes classically understood as mediating memory consolidation would 

constitute a major part of the genetic architecture of memory impairment.  However, the 

processes underlying memory consolidation are numerous and diverse, and to date it has not 

been clear which specific pathways are essential objects of the impact of genetic variants.  Our 

pathway enrichment study highlights potential major components of this genetic architecture. 

 

In particular, we observed significant enrichment of pathways related to neurotransmitter 

receptor activation and downstream signaling.  These pathways and their resultant calcium-

mediated signaling are vital in converting short-term memories, which exist as axonal firing 

patterns, into long-lasting changes in synaptic strength [187].  As a parallel, it makes sense that a 

composite long-term potentiation pathway (comprising multiple processes leading to long-

lasting increases in synaptic strength) would include genetic determinants related to memory 

performance.  Our results also indicate the need for further exploration of long-term depression 

as a substrate for memory impairment, particularly given its proposed roles in mediating the 

cognitive effects of acute stress and synaptic pruning in neurodegenerative diseases [188]. 
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Other pathways with enrichment of association to memory in this study have previously been 

implicated in neuronal development and cognition.  For example, neuronal cell adhesion 

molecules (NCAMs) appear to play major roles in susceptibility for schizophrenia, bipolar 

disorder, and autism-spectrum disorders [189].  Genetic variants of NCAMs have also been 

associated with CSF biomarkers for AD [160], and cell adhesion molecule pathways have 

exhibited enrichment in a genome-wide pathway analysis of AD case-control status [59].  In 

addition, expression of NCAMs in cholinergic neurons appears to increase susceptibility to AD-

related neurodegeneration [190], and there is emerging evidence of interactions among NCAMs, 

the MAPK pathway, and Aβ precursor protein [191].  More broadly, these findings suggest a 

prominent role for cell adhesion pathways in maintaining the processes of synaptic plasticity 

that are believed to underlie learning and memory [192]. 

 

It is also interesting that pathways on axon guidance, including those involving functions of 

ephrins, semaphorins, and rho GTPases, were enriched in this study.  Axon guidance pathways 

are key in forming guided neuronal network connections, and have been previously implicated 

in early neuronal development and associated genetic conditions [193].  Together with these 

new enrichment results, the proposed interaction between vascular and neuronal factors 

related to axon guidance [194] in relation to memory may be an important direction for further 

studies.  In addition, given the complex interactions among brain cells and immune system 

functions, the immune-related pathways enriched in this study suggest additional candidates for 

modulation of memory and synaptic plasticity [195].  It may be particularly fruitful to examine 

immune mediators of memory dysfunction that exert influences independent from Aβ-related 

activation of microglia in AD [196]. 

 

57 



A related perspective – and additional interesting targets for future investigations – can be 

achieved by examining the set of genes that were highly-represented across the enriched 

pathways in this study.  Prominent groups of gene products represented in this set are 

particularly important in memory consolidation.  For example, integrins, cadherins, and alpha-

actinin are known to regulate neuronal cytoskeletal structure to mediate synaptic plasticity and 

are proposed to signal through MAPK cascades for localized protein synthesis at the specific 

dendrites being activated to precisely potentiate their synaptic connections [142].  Another 

important group of gene products is related to the calcium influx that follows neurotransmitter 

receptor activation at synapses: this calcium influx leads to activation of a signaling axis 

involving calmodulin, protein kinases (PKA, PKC-α, CAMKII subtypes, and CAMKIV), and 

transcription factors (CREB subtypes), among other molecules [142]. 

 

Overall, since the highly-represented genes from our data act in numerous pathways, our results 

reinforce the benefits of studying genetic variation within a pathway-based framework: in this 

context, variants of moderate individual effect sizes can nevertheless be identified as exerting 

strong and wide-ranging effects when juxtaposed with other meaningful variants in shared 

functional processes [31].  Extensions of this pathway-based analytic framework will be 

extremely valuable in identifying localized effects of specific pathways on particular brain 

regions, particularly given that imaging correlates have been identified for loci with known 

effects on memory, such as the impact of WWC1/KIBRA gene variants on hippocampal 

activation [197].  Notably, innovative voxelwise SNP- [198, 199] and gene-based [200] imaging 

genetics approaches have been successfully employed in studies of AD, as has a novel method 

for generating multivariate “genetic components” for imaging analysis [201].  These strategies 
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will serve as rich foundations for future pathway-based imaging genetics analyses to 

complement those focusing on cognitive performance. 

 

In addition, the network analyses in this study reinforce the notion that key genes related to 

memory impairment function in coordination.  We found that a preponderance of the most 

highly-represented genes in our enriched pathways were constituents of a transcriptional 

regulation network driven by the SP1 transcription factor (Figure 4).  The SP1 transcription 

factor has known binding regions in the promoters of genes related to Aβ precursor protein 

[202, 203], tau protein [204], and APOE.  In particular, SP1 has been proposed as a regulator of 

APOE promoter activity in relation to two promoter polymorphisms with significant association 

to AD [205].  Given that networks of common regulation represent prime targets for identifying 

common functions, further investigation of the transcriptional network that we have identified 

may elucidate the as-yet-unknown mechanistic connections among APOE and other 

susceptibility loci, AD pathogenesis, and MCI- and AD-related memory impairment. 

 

Finally, expression analysis using the Allen Human Brain Atlas revealed additional functional 

relationships among key genes.  Since strong co-expression of a set of 10 key genes in the brain 

may indicate common modes of function, further study of this and other similar sets may be of 

great value.  In addition, the co-expression of highly-represented genes from the enriched 

pathways in this study with known AD susceptibility genes suggests the possibility of significant 

crosstalk between AD pathogenesis and basic memory processes.  While the data in the Allen 

Human Brain Atlas has several limitations, including a small number of subjects and the inclusion 

of only postmortem brain tissue from neuropsychologically- and neuropathologically-normal 

subjects, at present it is the only available resource which integrates multi-modal brain imaging 
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data with whole- and regional-brain genome-wide expression data.  As such, this and other 

functional annotation resources will be vital for identifying mechanistic connections between AD 

pathogenesis and memory impairment, including future efforts to quantitatively assess the 

significance of overlap between memory pathways and AD pathways. 

 

There are some notable limitations to the current study.  First, a pathway analysis is only as 

good as the functional information underlying its pathway definitions.  Importantly, some 

intragenic SNPs may not affect the function or expression of their assigned gene, while other 

SNPs may functionally impact distant genes or even multiple genes [89, 90].  As functional 

annotation of the genome becomes more extensive, the power of pathway analyses will 

heighten.  For this study, we used a collection of canonical pathways curated through expert 

review.  While these pathway annotations are expected to have high accuracy, differences 

across pathway databases can lead to divergent enrichment analysis results [79].  For example, 

similarly-named pathways can have vastly different gene constituents, while distinctly-named 

pathways can nevertheless include significant gene overlap.  As a result, an early discussion of 

pathway analysis methods recommended the use of multiple databases for each analysis [30].  

While we have followed this recommendation for this analysis, future studies may benefit from 

formally assessing the relationships in biological coverage among the diverse pathways tested. 

 

In addition, at this time there is no gold standard for pathway-based study design.  Indeed, 

different enrichment algorithms and different parameters, such as those guiding SNP-to-gene 

mapping, can impact analytical results [135].  As such, pathway enrichment results benefit from 

further study using independent replication data sets and using alternative enrichment 

strategies.  While differences across annotation resources, data sets, and analytical strategies 
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may impact SNP- or gene-level statistics [126], legitimately-associated pathways will likely 

exhibit significant enrichment or strongly-trending signal across a healthy percentage of studies.  

Finally, while it is beyond the scope of this study, future efforts will benefit from examining key 

memory-implicated genes and gene sets for epistatic (gene-gene) interactions with each other 

and with APOE. 

 

There are also several caveats about the clinical setting for this study.  First, the ADNI cohort 

represents a sample typical of a clinical trial for AD and MCI and is not a sample of the general 

population.  As a result, the extent to which the present findings can be extended to account for 

episodic memory impairment in the general population remains to be determined.  In addition, 

it is probable that the memory deficits in this study’s MCI and AD participants are at least 

partially driven by AD-related pathology.  While using APOE ε4 allele status as a covariate in 

these analyses likely attenuated this effect, a better understanding of the pathways underlying 

normal memory and other pathologies than AD may be achieved through studies of normal 

cohorts and other memory-impaired populations without AD-related pathology.  In particular, 

further exploration of the relationships among APOE genotype status, Aβ load and pathology, 

and cognition in normal adults [206, 207] may be especially fruitful.  Additionally, meta-analytic 

approaches to achieve larger study sample sizes may reveal greater SNP-level phenotype 

associations which could impact the pathway enrichment results.  Finally, while this study used a 

composite episodic memory score optimized on the basis of modern psychometric theory, 

similar pathway-based studies using other quantitative memory phenotypes may provide 

different sensitivity and specificity to fine-grained memory deficits and would potentially serve 

as a validation for the discoveries of pathways enriched against the phenotype used in this 

study. 
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Nevertheless, the present results provide several new insights into key functional pathways 

associated with memory deficits in older adults with MCI or AD and controls.  Importantly, these 

results highlight numerous candidates for further explorations of the SNPs, genes, and gene sets 

underlying normal memory processes and memory impairment.  Overall, these findings 

encourage further use of pathway-based genetic analyses of quantitative memory phenotypes 

as statistically-powerful vehicles for discovery and as bridges to underlying biological 

mechanisms. 
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IV. Genetic modulators of cerebral amyloid deposition: a florbetapir PET GWAS and pathway 

analysis 

 

A. Introduction 

 

Cortical deposition of Aβ peptide is thought to be a crucial early step in the cascade of events 

leading to AD [208].  The presence of cortical neuritic plaques, consisting of Aβ fibrils 

surrounded by degenerating neuronal processes, is a hallmark feature for pathologic diagnosis 

of AD [209].  Aβ plaques have also been identified in individuals meeting clinical criteria for MCI 

[10] and have exhibited subtle relationships with cognition among older individuals without 

dementia or MCI symptoms [210].  In addition, pathogenic mutations in genes related to Aβ 

processing, including the amyloid precursor protein (APP) and presenilin-1 and -2 (PSEN1, 

PSEN2) genes, have been discovered in patients with the rare, autosomal dominant form of AD 

[13].  As a result, Aβ accumulation is increasingly proposed as a major antecedent ultimately 

leading to incident AD [2]. 

 

The fundamental biological influences on brain Aβ levels are not yet fully understood. The 

strongest known genetic risk factor for AD is presence of the APOE ε4 allele [14], and in vitro and 

murine studies have proposed plausible links between APOE ε4 and aberrant Aβ mechanisms 

[211].  However, APOE ε4 is neither necessary nor sufficient for development of AD pathology, 

suggesting that the biology underlying Aβ accumulation involves contributions from other genes 

and pathways, as well as the environment. 
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The ongoing search for genetic modulators of brain Aβ deposition in humans has been bolstered 

by advances in imaging methods for noninvasive detection of fibrillar Aβ in vivo.  While existing 

genetic studies of brain Aβ have focused on candidate genes due to moderate sample sizes, the 

enhanced stability of recently-developed 18F-labeled positron emission tomography (PET) 

imaging Aβ tracers such as florbetapir (also known as AV-45 or Amyvid) allows for more 

widespread evaluation to facilitate the acquisition of larger cohorts for analysis [212].  

Importantly, florbetapir PET data has demonstrated strong relationships with pathologically-

verified assessments of fibrillar Aβ burden [213, 214] and thus represents a novel and robust 

quantitative phenotype that can be assessed in samples with heightened power for discovery of 

genes influencing Aβ neuropathology. 

 

We used quantitative florbetapir PET data from 555 participants enrolled in the ADNI cohort to 

perform the first GWAS of cortical Aβ burden in humans.  We hypothesized that combining 

GWAS and genome-wide pathway analysis would confirm the association of APOE as well as 

identify other genetic modulators of brain Aβ deposition. 

 

B. Methods 

 

Study participants 

 

This report utilized data from ADNI [162] (http://adni.loni.ucla.edu/), a multi-site longitudinal 

study that was launched in 2004 as a public-private partnership.  The initial phase (ADNI-1) 

enrolled individuals aged 55-90 years who were recruited from over 50 sites across the United 

States and Canada and followed at 6- to 12-month intervals for 2-3 years.  These individuals 

64 

http://adni.loni.ucla.edu/


included approximately 200 healthy controls (HC), 400 patients with late MCI (LMCI), and 200 

patients clinically diagnosed with probable AD.  Subsequent phases (ADNI-GO and ADNI-2) have 

extended follow-up for existing participants and have enrolled additional individuals, including 

those meeting criteria for early MCI (EMCI).  All participants provided written informed consent 

and study protocols were approved by each site’s institutional review board.  Further 

information about ADNI, including full study protocols, complete inclusion and exclusion criteria, 

and data collection and availability can be found at http://www.adni-info.org/. 

 

Florbetapir PET scans 

 

PET imaging using the 18F-labeled Aβ tracer florbetapir was performed for participants enrolled 

in ADNI-GO or ADNI-2.  Participants were administered a bolus injection of approximately 370 

MBq florbetapir intravenously.  Fifty minutes later, a 20-minute continuous cranial PET scan was 

initiated. Images were reconstructed immediately following the scan using iterative algorithms, 

and repeat scans were acquired if motion artifact was detected. Preprocessing of the scans was 

performed as previously described [215].  Briefly, image frames were averaged, aligned to a 

standard space (AC-PC), resampled to a standard image and voxel size, smoothed to a uniform 

resolution, and normalized to an atlas-based bilateral and symmetric cerebellar reference 

region.  This cerebellar reference region consisted largely but not exclusively of grey matter and 

was expected to exhibit nonspecific binding, ultimately resulting in standardized uptake value 

ratio (SUVR) images.  These preprocessed scans were downloaded from the ADNI database 

(http://adni.loni.ucla.edu/) for 621 participants.  For each scan, mean regional SUVR values were 

extracted for the frontal, parietal, temporal, limbic, and occipital lobes using the MarsBaR 

toolbox implemented in the Statistical Parametric Mapping 8 (SPM8) software 
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(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).  The average SUVR for these 5 regions was 

then calculated to represent a global cortical measure of Aβ deposition to be used as a 

quantitative phenotype for GWAS.  Overall, 19 participants (11 HC, 6 MCI, 2 AD) were excluded 

due to missing scan data or failed processing, leaving data for 602 individuals available for 

further analysis. 

 

Genotyping and imputation 

 

A blood draw for genomic DNA extraction was obtained at the screening or baseline visit for all 

study participants [170].  Genotyping on these samples was performed according to 

manufacturer’s protocol (Illumina, Inc., San Diego, CA) using the Human610-Quad BeadChip (for 

subjects initially enrolled during ADNI-1) or the Human OmniExpress BeadChip (for subjects 

initially enrolled in ADNI-GO or ADNI-2).  In addition, the two SNPs characterizing APOE ε2/ε3/ε4 

status (rs429358 and rs7412) were genotyped separately as previously described [170] and 

merged with the array data sets.  All genotype data underwent stringent quality control 

procedures using PLINK [94].  These steps included sample exclusion for call rate < 95% or failed 

identity or gender check, and SNP exclusion for call rate < 95%, Hardy-Weinberg equilibrium test 

p < 1 x 10-6, or MAF < 1% [170].  In addition, to limit possible effects of population stratification, 

multidimensional clustering analysis was used to select only participants with non-Hispanic 

Caucasian (CEU or TSI) ancestry based on HapMap3 reference populations.  Overall, one 

individual was excluded due to a failed gender check and 42 individuals were excluded based on 

ancestry. 
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Next, haplotype patterns from the 1000 Genomes Project reference panel were used to impute 

genotypes for markers not directly assayed.  Prior to imputation, the orientation of all 

genotyped markers in relation to the plus strand alignment of the reference panel genome 

(NCBI build 37 coordinates) was verified and monomorphic variants from the reference panel 

were excluded.  Minimac [216] was used to impute samples within groups based on the 

genotyping platform employed (Illumina 610-Quad or OmniExpress).  Following imputation, 

SNPs with r2 < 0.5 between imputed and assayed genotypes were removed [217].  The 

remaining array SNPs demonstrated > 99.9% concordance between imputed and assayed 

genotypes. 

 

The independently-imputed data sets were then merged to generate a common set of more 

than 10 million SNPs for the full ADNI sample.  Following quality control (SNP call rate < 95%, 

Hardy-Weinberg p < 1 x 10-6) and frequency filtering (MAF < 5%), 6,108,668 SNPs were included 

in the GWAS. Of the 602 participants with Aβ PET data, 559 individuals were included in the 

resulting genetic data set.  Among these individuals, four pairs exhibited significant relatedness 

(PLINK identity by descent PI_HAT > 0.5) and therefore one individual from each pair was 

randomly selected for exclusion (2 HC, 1 EMCI, 1 LMCI), leaving 555 participants for the final 

GWAS sample. 

 

Statistical analysis 

 

For the GWAS, linear regression was performed using PLINK to determine the association of 

each SNP to global cortical Aβ levels. An additive genetic model was specified and age, gender, 

and diagnosis (through a set of binary dummy variables indicating HC, EMCI, LMCI, or AD) were 
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applied as covariates.  To account for multiple comparisons, we employed a conservative 

threshold for genome-wide significant association (p < 5 x 10-8) based on a Bonferroni correction 

of one million independent tests [218].  Haploview [180] was used to generate Manhattan and 

Q-Q plots and SNAP [219] and LocusZoom [220] were used to obtain regional association plots 

for selected loci.  Post-hoc analyses, including hierarchical linear regression, effect size 

calculations, and exploratory correlation and interaction studies using Bonferroni corrections for 

multiple comparisons, were performed using IBM SPSS 20.0. 

 

To extend the GWAS findings, we performed biological pathway enrichment analysis.  We used 

GATES [221] to calculate a p-value for each gene accounting for its size, LD structure, and 

constituent SNP associations.  MetaCore (GeneGo, Inc.) was used to identify pathways enriched 

with genes showing trend of association (GATES p < 0.1), applying a conservative threshold for 

pathway-level significance (FDR-corrected p < 0.01). 

 

C.  Results 

 

This study analyzed data from 555 ADNI participants with non-Hispanic Caucasian ancestry.  

Participants were diagnosed at the time of the PET scan as HC, EMCI, LMCI, or AD. EMCI subjects 

met clinical criteria for amnestic MCI [9] but exhibited milder (between 1.0 and 1.5 standard 

deviations below age-associated norms) memory impairment (Table 6).  In this sample, the EMCI 

group was younger than the other groups (p < 0.001).  All groups displayed comparable levels of 

education but the LMCI group included fewer female participants compared to the HC group 

(Chi-square p = 0.029). 
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Table 6.  Selected characteristics of ADNI participants at the time of PET scan.  Data are 

number (%) or mean (SD).  Abbreviations: CDR-SOB = Clinical Dementia Rating-Sum of Boxes; 

WMS-R = Wechsler Memory Scale-Revised. 

 

 HC (n=179) EMCI (n=190) LMCI (n=115) AD (n=71) 

Age (years) 76.68 (6.25) 71.04 (7.41) 75.61 (8.14) 75.87 (8.15) 

Women 87 (49%) 83 (44%) 41 (36%) 27 (38%) 

Education (years) 16.27 (2.72) 15.89 (2.65) 16.11 (2.90) 16.04 (2.87) 

APOE ε4 allele present 41 (23%) 77 (41%) 49 (43%) 45 (64%) 

CDR-SOB 0.07 (0.29) 1.22 (0.73) 1.73 (1.18) 5.63 (2.70) 

Mini Mental Status 

Examination 

29.07 (1.25) 28.39 (1.52) 27.74 (1.84) 21.68 (4.24) 

Logical memory immediate 

recall (WMS-R) 

14.94 (3.36) 10.93 (2.81) 8.74 (4.35) 4.20 (3.10) 

Logical memory delayed 

recall (WMS-R) 

14.08 (3.64) 8.87 (1.73) 6.13 (4.38) 1.67 (2.50) 
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The GWAS results did not indicate evidence of spurious inflation of association test statistics (λ = 

1.00) due to population stratification or other confounding factors (Figure 9).  Loci on two 

chromosomes exhibited genome-wide significant association (p < 5 x 10-8) to cortical Aβ levels 

(Figure 10).  As expected, the peak association originated on chromosome 19 from rs429358 (p 

= 5.45 x 10-14), which is one of the two SNPs coding for the APOE ε4 allele [14].  While other 

SNPs within APOE and in the region of its adjacent genes APOC1, TOMM40, and PVRL2 also 

displayed significant association to cortical Aβ levels in the primary GWAS model (Figure 10 and 

Figure 11A), their association signals disappeared (p > 0.05) when APOE ε4 status (absence = 0, 

presence = 1) was included as a covariate. 

 

Multiple SNPs on chromosome 3 near BCHE (butyrylcholinesterase) also displayed genome-wide 

significant association to cortical Aβ load (Figure 10).  The peak association signal at this locus 

originated from rs509208 (p = 2.69 x 10-8), which is approximately 450 kb upstream (5’) of BCHE 

(Figure 11B).  This association remained strong with the inclusion of APOE ε4 status as a 

covariate (p = 1.94 x 10-7). 

 

Several additional loci exhibited suggestive association (p < 5 x 10-6) to cortical Aβ levels (Figure 

10 and Table 7).  These loci included SNPs within or near the cell adhesion genes of ITGA6 

(integrin, alpha 6; chromosome 2) and ITGA1 (integrin, alpha 1; chromosome 5) as well as SNPs 

near the insulin signaling pathway gene PIK3R1 (phosphoinositide-3-kinase, regulatory subunit 

1; chromosome 5), among others.  The association signals at these loci were not reduced after 

the inclusion of APOE ε4 allele status as a covariate (data not shown). 
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Figure 9.  Q-Q plot of observed -log10 p-values from the GWAS of cortical Aβ load versus those 

expected under the null hypothesis.  The Q-Q plot exhibits no evidence of genomic inflation 

(PLINK-calculated λ = 1.00) or population stratification in the GWAS.  An additive genetic model 

was used and age, gender, and diagnosis were applied as covariates.  Analyses were restricted 

to subjects with non-Hispanic Caucasian (CEU or TSI) ancestry as determined by genetic 

clustering.  Observed -log10 p-values > 8 are represented along the top of the plot as red 

triangles, while all other values are represented as red dots. 
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Figure 10.  Manhattan plot of observed -log10 p-values from the GWAS of cortical Aβ load.  

More than six million SNPs were tested for association to global cortical Aβ burden under an 

additive genetic model and applying age, gender, and diagnosis as covariates.  Genome-wide 

significant associations (exceeding the threshold represented by the red line) were identified on 

chromosome 19 within APOE and its neighboring genes and on chromosome 3 at the BCHE 

locus.  Suggestive associations (exceeding the threshold represented by the blue line) were 

identified on five additional chromosomes.  Annotations are provided for genome-wide 

significant associations and for the top three suggestive associations. 
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Figure 11.  Regional association plots for the loci exhibiting genome-wide significant 

association to cortical Aβ burden.  Magnified association plots are displayed for the regions 

around A) rs429358 within APOE and B) rs509208 at the BCHE locus.  SNPs are plotted based on 

their GWAS -log10 p-values (left vertical axis) and their genomic position (NCBI build 36).  Genes 

in these regions are labeled with arrows denoting their 5’-to-3’ orientation, and the red color 

scale of r2 values is used to label SNPs based on their degree of LD with the annotated peak SNP. 
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Table 7.  Peak association signals (p < 5 x 10-6) from unique genes or intergenic loci in the 

GWAS of global cortical Aβ load. 

 

Chr SNP Identifier Gene Minor Allele (MAF) P-value 

19 rs429358 APOE C (0.28) 5.45 x 10-14 

19 rs56131196 APOC1 A (0.29) 4.06 x 10-12 

19 rs6857 PVRL2 T (0.28) 1.06 x 10-10 

19 rs59007384 TOMM40 T (0.32) 6.70 x 10-9 

3 rs509208 5’ of BCHE G (0.16) 2.69 x 10-8 

2 Position 173336636 

  (no dbSNP ID) 

ITGA6 A (0.43) 5.51 x 10-7 

5 rs1422438 5’ of EFNA5 G (0.30) 6.30 x 10-7 

5 rs113524839 5’ of EDIL3 T (0.11) 8.10 x 10-7 

5 rs7702276 5’ of ITGA1 T (0.36) 1.47 x 10-6 

5 rs24449894 5’ of PIK3R1 A (0.17) 1.62 x 10-6 

9 rs7039300 3’ of NFIB G (0.23) 2.37 x 10-6 

6 rs9384488 5’ of ARID1B A (0.35) 3.39 x 10-6 

12 rs10219670 Between NUAK1 and 

  C12orf75 

C (0.42) 3.89 x 10-6 
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Following the GWAS, we performed post-hoc analyses to further assess the impact of the APOE 

and BCHE loci on Aβ burden.  While both the APOE ε4 allele and the minor allele (G) of rs509208 

conferred increases in cortical Aβ levels (Figure 12A and 12B), there was no evidence of epistasis 

modeled as an interaction between these factors (p = 0.871).  Instead, these factors appeared to 

exert independent and additive effects on Aβ burden (Figure 12C), with comparable effect size 

associated with presence of at least one copy of the minor allele at rs509208 whether APOE ε4 

allele status was included as a covariate (Cohen’s d = 0.50) or not (Cohen’s d = 0.52).  

Exploratory analyses did not reveal significant interactions (p > 0.05) of the APOE or BCHE risk 

loci with age, diagnosis, education, or gender. 

 

We next performed hierarchical linear regression to assess the variance in Aβ levels uniquely 

explained by these genetic factors (∆R2).  Age, gender, and diagnosis were entered as the first 

block in the model, and collectively accounted for 2.7% of the variance in cortical Aβ levels in 

this sample.  APOE ε4 allele status (+/-) and BCHE rs509208 allele status (+/-) were included in 

the second block for stepwise entry into the model.  APOE ε4 was found to explain an additional 

10.7% of the variance, while BCHE rs509208 accounted for 4.3% of variance over and above that 

explained by the previously entered variables. 

 

Several biological pathways exhibited enrichment of association to Aβ deposition (Table 8).  

Among these included several pathways related to signaling through NOTCH, opioid receptors, 

and the epidermal growth factor receptor (EGFR).  Pathways related to mitogen-activated 

protein kinase signaling (MAPK; also known as ERK), cell adhesion, and activation of estrogen 

receptors also displayed enrichment of association. 
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Figure 12.  APOE ε4 and rs509208 (BCHE) appear to exhibit independent, additive effects on 

cortical Aβ levels.  Mean cortical Aβ levels (adjusted for age, gender, and diagnosis) ± standard 

errors are displayed based on A) the number of APOE ε4 allele copies and B) rs509208 genotype.  

Presence of at least one copy of the ε4 allele was significantly associated with increased Aβ 

burden (Cohen’s d = 0.71), as was presence of at least one copy of the minor allele (G) of 

rs509208 (Cohen’s d = 0.52).  These loci appeared to exert additive effects on Aβ levels (panel 

C): subjects having both risk factors exhibited significantly greater Aβ burden than subjects 

having either factor in isolation, and no significant epistasis modeled as an interaction was 

identified. 
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Table 8.  Pathways showing enrichment of association (FDR p < 0.01) to cortical Aβ load. 

Pathway Genes in 

pathway 

Nominal p 

Development: Delta- and kappa-type opioid receptors 

signaling via beta-arrestin 

23 1.91 x 10-5 

Development: Dopamine D2 receptor transactivation of EGFR 24 2.60 x 10-5 

Development: Notch Signaling Pathway 43 3.41 x 10-5 

Development: NOTCH1-mediated pathway for NF-KB activity 

modulation 

34 3.81 x 10-5 

Apoptosis and survival: Role of CDK5 in neuronal death and 

survival 

34 3.81 x 10-5 

G-protein signaling: G-Protein alpha-q signaling cascades 34 3.81 x 10-5 

Development: Ligand-independent activation of ESR1 and 

ESR2 

45 4.99 x 10-5 

Development: NOTCH-induced EMT 19 6.11 x 10-5 

Development: Mu-type opioid receptor regulation of 

proliferation 

28 7.77 x 10-5 

Development: Gastrin in differentiation of the gastric mucosa 38 8.96 x 10-5 

Development: ERBB-family signaling 39 1.09 x 10-4 

Development: EGFR signaling pathway 63 1.50 x 10-4 

Cell adhesion: ECM remodeling 52 1.63 x 10-4 

Development: ACM2 and ACM4 activation of ERK 43 2.24 x 10-4 

Development: EGFR signaling via small GTPases 33 2.37 x 10-4 
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D.  Discussion 

 

Using florbetapir PET and GWAS, this study confirmed the association of APOE and identified a 

novel and independent association of BCHE to cerebral Aβ deposition.  Together, the risk 

variants at these loci explained 15% of the variation in cortical Aβ levels, a substantial effect for 

two genes in a study of this size of complex disease.  Additional loci, including both new genes 

and others previously studied in relation to AD, displayed suggestive association to Aβ burden 

and provide further targets for follow-up.  Finally, numerous biological pathways exhibited 

enrichment of association to cortical Aβ load, including several targets under active investigation 

for drug development. 

 

Florbetapir PET allows for noninvasive detection of brain Aβ plaques, a hallmark pathologic 

feature of AD [213, 214].  It also serves as a quantitative endophenotype that can provide 

increased statistical power for discovery using GWAS compared to case-control designs [12].  

Although the heritability of Aβ deposition, a dynamic process captured by PET at one time point, 

is unknown and not a direct proxy for AD heritability, implicated markers using this approach 

may be more closely related to underlying processes impacting disease risk and progression 

compared to markers discovered using case-control designs [11]. 

 

For late-onset AD, the largest known genetic risk factor is the APOE ε4 allele.  Extensive prior 

studies have suggested a number of mechanistic roles for APOE ε4 on Aβ burden, including 

hindering clearance of soluble Aβ from the brain [222], favoring Aβ aggregation into fibrils [223], 

and promoting neurodegeneration by directing toxic Aβ oligomers to synapses [224].  Among 

the genes neighboring APOE, we found no significant associations with Aβ burden after 
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including APOE ε4 status as a covariate.  While this suggests that these genes did not exhibit 

independent effects on Aβ deposition, the extensive LD structure around APOE makes this 

difficult to definitively determine. 

 

BCHE has previously been proposed as an AD risk gene [225].  Butyrylcholinesterase is known to 

be enriched within Aβ plaques in post-mortem human AD brains [226], and its increased 

presence has been suggested as a critical factor in the formation of the neuritic plaques of 

dementia [227].  The most commonly studied BCHE SNP is the K-variant (rs1803274), which is 

approximately 500 kb downstream of and not in LD with rs509208.  The BCHE K-variant has 

demonstrated synergistic effects with APOE ε4 on incidence of pathologically-confirmed late-

onset AD [225] and on risk of progression from MCI to AD [228].  Nevertheless, the present 

study is the first to implicate genetic variation at the BCHE locus in brain Aβ burden in humans 

and represents the largest reported effect for this gene on an AD-related phenotype. 

 

There are several mechanisms which might explain the effect of BCHE on Aβ plaque burden.  

Genetic variation at BCHE has been associated with increased cortical butyrylcholinesterase 

activity in autopsy tissue from elderly individuals with dementia [229].  Increased enzyme 

activity, leading to decreased acetylcholine levels, may disrupt synaptic functioning, glial cell 

activation, and myelin maintenance to favor Aβ plaque formation and neurodegeneration [230].  

Indeed, cholinesterase inhibitors are presently first-line symptomatic therapies for AD [5], and 

drugs such as rivastigmine which inhibit butyrylcholinesterase are suggested to have potential 

disease-modifying effects in certain individuals compared to exclusive acetylcholinesterase 

inhibitors [231].  Alternatively, through non-enzymatic functions butyrylcholinesterase may 

promote Aβ fibrillogenesis from soluble precursors [232] or may interact with Aβ and APOE to 
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alter the cerebrospinal fluid environment [233, 234] and to render developing plaques more 

resistant to clearance [235].  Interestingly, butyrylcholinesterase activity has been associated 

with insulin resistance [236], and rs509208 in particular has been associated in a separate GWAS 

with diabetes-related traits [237], suggesting a broader role of the BCHE locus in disorders 

characterized by amyloidogenic protein accumulation. 

 

Although rs509208 is approximately 450 kb upstream (5’) of BCHE and not within conventional 

gene boundaries, the next closest genes (ZBBX, SERPINI2) are nearly 1 Mb in the opposite 

direction (Figure 13).  Of note, SNPs as far as 800 kb upstream of BCHE have previously 

demonstrated genome-wide significant association with serum butyrylcholinesterase activity in 

a population sample of nearly 9000 individuals from several Australian twin and family studies 

[238].  These SNPs included a peak signal 250 kb from the gene (rs2034445) and other non-

independent signals from SNPs in high LD with rs509208 (e.g., rs6443374 and rs13314077), 

suggesting that variants upstream of the gene may exert regulatory effects on BCHE expression 

with consequences to the activity of its encoded enzyme.  Converging evidence in genomics 

indicates that this kind of regulation is quite common and may involve mechanisms influencing 

chromatin structure, transcription factor binding, and splicing component recognition 

sequences, among others [89].  Molecular characterization in brain tissue and cell cultures will 

be important to determine the complex functional architecture of the BCHE locus and the genes 

and other DNA elements surrounding it. 

 

Biological pathways provide additional vehicles for characterizing complex genetic architectures, 

since variants of modest individual effect can collectively influence susceptibility through action 

within shared mechanisms [31].  We observed enrichment of association to Aβ deposition 
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Figure 13.  Regional association plot (wide view) around rs509208 at the BCHE locus.  SNPs 

within BCHE and the region spanning approximately 1.5 Mb upstream of BCHE are plotted based 

on their GWAS -log10 p-values (left vertical axis), NCBI build 36 genomic position (horizontal 

axis), and recombination rates calculated from 1000 Genomes Project reference data (right 

vertical axis).  Genes are labeled with arrows denoting their 5’-to-3’ orientation.  The color scale 

of r2 values is used to label SNPs based on their degree of linkage disequilibrium with rs509208.  

As displayed, rs509208 is 450 kb upstream of BCHE (blue arrows) and is approximately 1 Mb 

away from the next closest genes (orange arrows). 
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within multiple pathways related to EGFR signaling, which has been proposed as a target for  

treating amyloid-β-induced memory loss [239], as well as NOTCH signaling, which contributes to 

neuronal plasticity and interacts with several Aβ-generating mechanisms [240, 241].  

Dysfunction within opioid receptor signaling may also promote the generation of Aβ through up-

regulating enzymes that favor Aβ formation [242] and through indirect effects on cyclic AMP 

response-element binding protein (CREB), which is a key molecular switch mediating long-term 

memory formation [143].  Genetic variation in cell adhesion genes has also been previously 

implicated in AD risk, AD-related memory impairment, and Aβ generation in animal models [35, 

59, 189, 243], but have not been previously linked to Aβ load in humans.  Together, these results 

provide additional mechanistic insights into Aβ deposition and further validate the use of 

pathway-based approaches to detect robust effects in GWAS data that are otherwise concealed 

beneath the stringent thresholds for genome-wide SNP-level significance. 

 

The current study has several limitations.  Although this represents the largest genetic study of 

Aβ PET, the sample size has limited power for a GWAS.  With a larger sample, the suggestive loci 

we highlighted might have achieved genome-wide significance.  Among these included ITGA6 

which encodes a component of a receptor complex proposed to mediate the pro-inflammatory 

interaction of microglia with Aβ fibrils [244], PIK3R1 which may contribute to disruptions in 

insulin signaling in the AD brain, [245] and other genes with potential relationships to AD 

pathogenesis.  Similarly, given the novelty of the present Aβ PET GWAS data 

set, a comparable replication sample is not yet available. 

 

In addition, the ADNI cohort represents a sample typical of a clinical trial for MCI/AD and the 

analyses here were restricted to non-Hispanic Caucasians.  The extent to which the present 
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findings can be generalized to other populations and to the community setting of MCI/AD 

individuals remains to be determined.  Future multi-center and international collaborations are 

expected to yield larger samples with greater power for analyses of potential interactions of 

genetic risk factors with each other and with clinical variables such as gender, ethnicity, family 

history, age of onset, and rate of disease progression, which could not be appropriately 

addressed with presently available data.  Florbetapir also does not bind soluble forms of Aβ 

[246] which may exhibit dynamic relationships with deposited, fibrillar Aβ to drive 

neurodegeneration in AD [208].  Finally, while this study employed imputed (probabilistically-

predicted) genotype data to provide deep coverage of the genome, higher-density genotyping 

arrays and sequencing will eventually provide direct assays for a similar number of variants. 

 

Despite these limitations, the present findings point to several intriguing extensions for follow-

up.  First, GWAS of longitudinal change in florbetapir PET Aβ burden is likely to elucidate 

additional genes modulating the rate of progression of AD neuropathology.  Complementary 

analytical strategies, including network- and epistasis-based approaches, may also reveal 

functional influences on Aβ deposition that are not easily observed through GWAS and pathway 

analysis.  In addition, whole genome sequencing will dramatically enhance the granularity of 

coverage for GWAS-implicated loci and could be particularly valuable for discovering additional 

novel loci, rare variants, copy number variants, and DNA regulatory elements.  Finally, the 

approval for widespread use of both florbetapir PET imaging and butyrylcholinesterase 

inhibitors creates a unique opportunity to prospectively assess the effects of these drugs on Aβ 

deposition over time, particularly among individuals at early stages in the AD spectrum where 

clinical efficacy would likely be most valuable. 
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This study highlights the power of pairing targeted molecular imaging with genome-wide 

analytical strategies to elucidate mechanisms underlying AD pathophysiology.  The associations 

of the BCHE locus and the NOTCH and EGFR pathways to Aβ deposition merit further 

investigation and may have significant implications for risk stratification, biomarker 

interpretation, and therapeutic development. 
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V.  Conclusions and future directions 

 

In this work, we critically reviewed and synthesized strategies for pathway analysis of genomic 

data and applied pathway analysis as a complementary approach to GWAS of episodic memory 

performance and cerebral Aβ deposition in AD.  Through this framework, we confirmed the 

association of APOE (apolipoprotein E) to these key AD endophenotypes and discovered 

additional genes and pathways modulating memory functioning and Aβ pathology in AD.  Our 

findings further validate the promise of pathway-based analyses for disorders with complex 

genetic architectures and nominate or highlight several intriguing biological mechanisms for 

further study in AD. 

 

Interestingly, we observed several genes and pathways which appear to bridge the mechanisms 

underlying memory and cognitive functioning on one hand and Aβ burden and other measures 

of neuropathology on the other.  For example, BCHE has long been known to impact learning 

and memory through regulating levels of the neurotransmitter acetylcholine [226], and through 

GWAS in this work, has now been demonstrated to impact Aβ burden as well.  Pathways related 

to cell adhesion, inflammation, and signaling through NOTCH, EGFR, and MAPK also showed 

association to both memory performance and Aβ deposition in our analyses.  That these 

pathways displayed relationships to such distinct AD endophenotypes emphasizes that they are 

likely to play major roles in disease pathogenesis and as such, warrant further study in 

independent data sets and using alternative analytical strategies. 

 

It is also noteworthy that the GWAS results from our analyses displayed quite different 

association profiles.  For example, the GWAS of memory performance identified significant SNP-
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level signal only in the APOE region, while the GWAS of Aβ deposition, despite including a 

smaller sample size, detected a novel genome-wide significant association of BCHE [247].  

Nevertheless, pathway analysis successfully revealed additional associations in both cases (i.e., 

whether there was robust SNP-level signal and where there was not).  These findings provide an 

empirical demonstration of the power of pathway analysis to complement GWAS by identifying 

broader functional trends that may not be obvious from top-line results alone. 

 

Our results also suggest that future studies, as well as diagnosis and treatment strategies, may 

need to evolve to reflect a complex AD genetic architecture involving multiple pathways.  One 

possibility is that integration of multiple clinical biomarkers – such as genotype, blood and CSF 

analyte, brain imaging, cognitive assessment, and medical history data – might be appropriate 

to detect replicable effects of key pathways.  In addition, from a clinical standpoint, the 

functions of many disease pathways may be dynamic to disease stage.  For example, high blood 

levels of a particular cytokine might have different implications for risk stratification depending 

on the genetic profiles of key pathways within the context of brain structure and other clinical 

measures.  Similarly, therapeutic and preventative strategies for neurodegenerative disease may 

benefit from drug combinations based on the cocktail approaches used for HIV infection and 

some cancers.  It is possible that efficacy, and therefore the choice of particular drugs to include 

in the cocktail, may depend on an individual’s profile of biomarkers and key genetic variants – 

some of which may be protective and others deleterious – in targeted pathways.  The 

development of advanced statistical models for analysis of large, multimodal data 

sets will help to explore these potentially new paradigms. 
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Notably, extensions of this work using next-generation sequencing may be uniquely powered to 

discover other associations to memory and Aβ pathology, including novel SNPs, rare, structural, 

and epigenetic variants, and dynamic molecular changes in the transcriptome [43].  Similar 

genetic studies of memory functioning and Aβ deposition in population-based samples may 

provide further insight into the delineations between normal cognitive aging and pathological 

declines in the AD spectrum.  In addition, measures of longitudinal change in these 

endophenotypes may provide enhanced power for analysis and may also elucidate unique 

mechanistic influences.  Further, although it was beyond the scope of this study, 

characterization of gene-environment interactions is an important under-investigated avenue 

that will likely guide the optimized application of drug and lifestyle modifiers to combat AD 

onset and progression. 

 

Pathway- and network-based approaches also have the potential to reveal shared mechanisms 

among AD and other neurodegenerative disorders.  As an initial demonstration of this potential, 

we performed a preliminary network analysis to identify additional functional relationships 

between top AD- and PD-associated genes.  Due to the numerous pathways implicated in AD 

and PD and the pleiotropic effects of many key disease-associated genes [248, 249], we 

hypothesized that regulatory relationships among these genes might impact multiple pathways 

and explored this hypothesis through transcription factor network analysis using the MetaCore 

software (GeneGo, Inc.).  This approach incorporates knowledge from published literature to 

relate an input list of genes to known transcription factors and proximal targets such as ligand-

receptor interactions.  As input, we used the top 10 genes from the AlzGene (APOE, BIN1, CLU, 

ABCA7, CR1, PICALM, MS4A6A, CD33, MS4A4E, CD2AP) [127] and PDGene (MAPT, SNCA, GBA, 

LRRK2, PM20D1, GAK, MCCC1, STK39, BST1, GPNMB) [128] databases in addition to a small 
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number of genes (APP, PSEN1, PSEN2, DJ1, HIP1R, PARK2, SYT11, UCHL) implicated in both 

Mendelian and sporadic forms of AD or PD. 

 

A network was identified which displays relationships among 31 factors, including 19 of the 28 

input genes (Figure 14).  The probability of the software algorithm generating a network with 

this level of interconnectedness by random selection of input genes was exceedingly small (p = 

1.14 x 10-54).  Strikingly, numerous genes in the network exhibit co-regulation by the SP1 

(specificity protein 1) and AP-1 (activating protein 1) transcription factors.  SP1 has been 

previously noted to regulate the expression of multiple AD-related genes, including a collection 

of memory-related genes in our earlier analyses [35, 205].  Elevated levels of SP1 have been 

identified in AD human brains and mouse models [250, 251] and may be induced by 

inflammation and oxidative stress [204, 250].  The AP-1 transcription factor is composed of 

heterodimers of several proteins, including those encoded by the FOS and JUN proto-oncogenes 

[252].  AP-1 is an important regulator of dopaminergic signaling pathways [253, 254] as well as 

numerous genes related to autophagy and lysosomal function [255].  Interestingly, animal 

models indicate that inhibition of SP1 may be neuroprotective in AD [251] and inhibition of AP-1 

may be neuroprotective in PD [256].  The connections among SP1, AP-1, and AD- and PD-

associated genes suggest that coordinated modulation of these transcription factors may be a 

viable strategy for combating neurodegeneration and merits further study. 

 

This transcriptional network also includes several additional genes of interest which were not in 

the initial input list.  For example, EGR1 (early growth response 1) encodes a zinc-finger 

transcription factor that is important for synaptic plasticity [257] and cognitive performance 

[258] and whose up-regulation in AD brains may promote phosphorylation of tau [259].  The  
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Figure 14.  Regulatory network centered on the SP1 and AP-1 transcription factors is enriched 

with top AD and PD genes.  Meta-analytic genetic association data from public databases and 

supplementary manual curation was used to generate a list of 13 AD genes and 15 PD genes.  

Network analysis was performed using the MetaCore software to relate these input genes to 

known transcription factors and proximal targets based on published findings.  A highly 

interconnected network including 9 AD genes (labeled in blue), 10 PD genes (labeled in red), and 

13 additional genes (labeled in black) was identified.  Many of the input AD and PD genes exhibit 

co-regulation by the SP1 and AP-1 transcription factors.  Other genes of interest were also 

related to input AD and PD genes and represent a variety of candidate pathways in 

neurodegeneration. 
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transcription factor encoded by HMGB1 (high-mobility group protein 1) can also directly bind 

aggregates of the PD protein α-synuclein [260], regulate phagocytosis of Aβ [261, 262], and 

promote inflammation when secreted by activated microglia or necrotic neurons [263, 264].  

Interactions between HIV-1 TAT (transactivator of transcription) and genes involved in AD and 

PD may be involved in HIV-associated cognitive impairment and Aβ pathology [265, 266].  Other 

genes of interest in this regulatory network include MMP9 (matrix metalloproteinase 9) which is 

involved in synaptic plasticity and Aβ degradation [267], IRF3 and IRF7 (interferon regulatory 

factors 3 and 7) which regulate interferon-mediated inflammation and immune responses [268-

271], and LRP1 (low density lipoprotein receptor-related protein 1) which may affect several 

neurodegeneration pathways including lipid metabolism, Aβ endocytosis, and inflammation 

[272-275]. 

 

It should be noted that this type of analysis is preliminary and is not comprehensive or unbiased.  

Complementary strategies, including the use of alternative criteria for selection or statistical 

weighting of input genes as well as other schema for defining network connections, might 

highlight different relationships.  Nevertheless, this regulatory network generates hypotheses 

for further investigation and reflects, at the transcriptional level, many of the same pathways 

implicated by genetic studies of AD and PD.  More broadly, these findings argue for a better 

understanding of altered transcriptional regulation patterns through whole genome expression 

arrays and whole transcriptome sequencing (RNA-seq).  These data modalities, particularly if 

viewed through a pathway- and network-based lens, would likely augment GWAS findings in AD, 

PD, and other neurodegenerative diseases by providing functional information to connect 

genetic variation with biochemical outcomes. 
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As an extension of this concept and the insights from the work described here, we propose that 

pathways and networks can serve as vehicles for integrating findings from diverse study 

modalities in AD and other complex disorders.  There are many active strategies for large scale 

omics analysis (Figure 15), and findings that converge across these multiple study designs can 

provide confirmatory evidence that is crucial for efficient clinical translation.  Isolated genes and 

molecules can be challenging to evaluate for convergence since they may not be represented in 

all data modalities or experimental model systems.  In contrast, pathways and networks can 

incorporate data from multiple biological levels (e.g., genes, transcripts, proteins, and 

metabolites, among others) and may be more likely to be evolutionarily conserved [276].  For 

example, recent pathway-based studies integrating GWAS and gene expression data have 

demonstrated enhanced power, reproducibility, and connections of top findings to 

hypothesized disease processes [61, 91, 277]. 

 

The utility of pathway-based studies for AD and other complex disorders will continue to 

increase as present limitations in extant statistical approaches are addressed, including how to 

incorporate associations from intergenic regions and from genes without known functions.  

Nevertheless, it is clear that a pathway-based framework has significant strengths for AD genetic 

studies, including enhanced statistical power and the underlying emphasis that discoveries of 

strongly-associated genes represent a foundation to study their larger functional environment, 

since other components in that environment may yield superior targets for biomarker and drug 

development [41, 42, 141].  These advantages will be vital in harnessing the wealth of existing 

data on AD to develop an integrated understanding of its mechanisms and formulate optimal 

strategies for clinical translation. 
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Figure 15.  Biological pathways and networks: a hub for convergent omics.  Numerous large 

scale omics approaches are being used to study complex neurodegenerative diseases and 

endophenotypes in human tissue and animal and other model systems.  Unlike individual genes 

and other isolated molecules, which may not be present in all model systems and may have 

differential sensitivity for detection with various study designs, pathways and networks are well-

conserved and can be evaluated for convergence across diverse methodological approaches.  

Integration of findings to identify pathways and networks with consistent relationships to 

disease is likely to enhance the development of diagnostic biomarkers and treatment and 

prevention strategies. 
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