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Abstract 
 
TWO METHODS TO DETECT CLONAL POPULATIONS OF HUMAN CELLS 

IN SITU. Philip Hall, Jonathan Murphy, and Jeffrey Sklar, Department of Pathology, 

Yale University, School of Medicine, New Haven, CT.    

A molecular assay to detect clonal populations of human cells in situ would be 

potentially valuable for both investigational and diagnostic purposes.  Two such 

methods are proposed, both utilizing fluorescence in situ hybridization (FISH).   The 

first relies upon random monoallelic expression of genes (so-called allelic exclusion), 

in which a subset of human genes are normally expressed at a single allele in a fixed 

fraction of cells within a tissue, independent of the parental origin of the allele.  It is 

hypothesized that application of FISH to assess the allelic expression patterns among 

one or more of these genes should be able to distinguish a monoclonal population of 

cells from a polyclonal one.  The second method, specific for T-cells, relies upon 

VDJ segmental recombination at the T-cell receptor beta locus.   With this method, 

our hypothesis is that analysis by FISH of the configuration of rearranged VDJ 

segments should be able to distinguish a monoclonal population of T cells from a 

polyclonal population.  Both proposed assays were tested on benign tonsil and 

thymus tissue as well as on monoclonal cell pellets produced from neoplastic cell 

lines.  In those analyses that could be completed, attempts to assess the expression 

pattern either of genes subject to random allelic exclusion or the determination of 

VDJ segmental recombination failed to distinguish monoclonality from polyclonality.   

Although unsuccessful, the failure of these attempts was due to technical limitations 

and not to fundamental problems with the underlying hypotheses. 
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Introduction 
 

The ability to determine whether a population of human cells is clonal, its 

lineage traceable to the division of a single cell, has been valuable for various types of 

basic biologic studies and for certain diagnostic applications.   An important area for 

which considerations of clonality are relevant is neoplasia and cancer.  Most, if not all 

neoplasms arise from the clonal proliferation of cells derived from a single 

transformed precursor cell (1-6).  Moreover, the identification of multiple different 

types of preneoplastic or premalignant lesions has motivated the investigation of their 

clonality, especially in connection to the risk of potential transformation to true 

neoplasia. Indeed, several molecular methods now in widespread use for the 

diagnosis and detection of some human cancers rely upon the identification of a 

monoclonal population of cells (4, 7-9).  These methods have all involved extraction 

of nucleic acids from cells that have been removed from tissues and are not broadly 

applicable to all cell types.  In this thesis, we propose two methods of expanding the 

applicability of assays for monoclonality, notably using in situ techniques that 

preserve cell and tissue morphology, with a discussion of initial experience with these 

methods.   

The difficulty of creating an assay for clonality derives from the fact that 

neoplastic cells share most of the same genetic makeup as non-neoplastic cells and 

display many of the same proteins.  For those specific differences that occur, 

distinguishing neoplastic from normal, polyclonal cells by their genetic or protein 

composition alone requires prior knowledge of, or an extensive, often expensive 

search for how the two populations differ (1, 6, 10-11).   In this manner, identifying 
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one or more genetic variants--such as a specific point mutation, as occurs frequently 

in neoplasia; a DNA deletion, as is associated with tumor suppressor genes; or a 

chromosomal translocation, as is found in several hematologic malignancies and 

sarcomas--has been beneficial not only for advancing our understanding of 

carcinogenesis but also for improving our ability to diagnose malignancy (6, 11).  

Unfortunately, for most cancers, a defining genetic variation either is not known, is 

present in only a fraction of cases of a given cancer, or is not a convenient marker for 

technical reasons (e.g., mutations that might occur anywhere over large regions of 

DNA within an oncogene).  On these grounds, a generic, broadly applicable test for 

clonality would be of great diagnostic utility.   

In the absence of a broadly applicable, objective test for clonality, current 

methods of diagnosing cancer continue to rely on the evaluation of morphologic and 

histopathologic features, which are subject to interobserver variability (12, 13).  

Nevertheless, because of the many decades of experience with the histopathology of 

tumors, much information has been accumulated about the histopathologic 

characteristics of neoplasms, and morphology-based diagnostic criteria have been 

established.  A reliable and convenient method of detecting clonality would be 

valuable to both researchers and diagnosticians, particularly if clonality could be 

assessed in situ and directly correlated with morphology. 

There have been several proposed assays to determine the clonality of a 

population of human cells, but each has been hampered by limitations related to 

specific tissues or to technical problems that restrict its use.   Very few offer the 

potential for in situ analysis.  The assays that can be applied to detect monoclonality 
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in more than one or a few specific tumor types have relied upon the determination of 

one of a small number of genetic events that are known to occur randomly during the 

differentiation of certain somatic cells.  The guiding principle of such assays is that 

certain genetic or epigenetic events, whether dichotomous, as in the choice of a kappa 

or lambda light chain immunoglobulin gene for expression in B lymphocytes; or 

polychotomous, as in T-cell receptor or immunoglobulin gene rearrangement 

patterns, occur randomly in a polyclonal population of human cells; i.e., each cell in 

the population is (or is descended from) a cell in which the genetic or epigenetic 

event has occurred and has resulted in a fixed change (kappa expression vs. lambda, 

or a particular VDJ rearrangement) (4, 6-7, 9, 14-31).  A monoclonal population, 

however, will display a decidedly, or statistically, non-random pattern, if the genetic 

or epigenetic event occurred prior to the clonal expansion of that particular cell 

population.  As an example, the ratio of B lymphocytes making kappa to B 

lymphocytes making lambda light chains, within a given population of non-neoplastic 

cells, should fall within a statistically predictable range centered around 2:1.  

Deviation from that range is evidence of the presence of a clonal population (6).  

Similarly, the configuration of rearranged V, D, and J segments that have been joined 

together in the immunoglobulin heavy chain loci of genomic DNA (as well as the 

precise sequence of DNA at the junction of these segments and the length of that 

sequence) differs among different mature B lymphocytes.  Gel electrophoresis of the 

products generated from the cellular DNA of a polyclonal population of B 

lymphocytes by the polymerase chain reaction (PCR) using primers that flank the 

VDJ junctions within the immunoglobulin heavy chain locus results in a smear of 



 

 

7 

similarly sized but diverse bands that differ in their precise lengths.  In contrast, the 

finding of a discrete band by gel electrophoresis is indicative of the presence of a 

monoclonal population, i.e., that a significant fraction of the cells have an identical 

VDJ rearrangement, implying that those cells are all derived from a single precursor 

cell in which that particular VDJ rearrangement occurred (4, 8-10, 30, 32).   Both of 

these examples, where specific, non-random events distinguish monoclonal from 

polyclonal cell populations, in which comparable events are random, have been used 

by clinicians to aid in the diagnosis of malignancy, notably lymphocytic cancers (2, 4, 

7-9, 30, 33, 34).  As illustrated by these examples, PCR, along with flow cytometry 

and immunohistochemistry, remain the diagnostic tools of choice for many 

lymphoproliferative disorders (35).  However, these examples are limited to 

lymphocytes, the only cells known to undergo somatic recombination in a specific 

genetic locus during normal maturation and differentiation or to produce kappa or 

lambda light chains.   

An assay for clonality must target a genetic or epigenetic event that occurs in 

the type of cell from which the neoplasm (or clone) arises.  Thus, the most useful 

genetic/epigenetic event would be one that occurs in all somatic cells.  An assay 

widely used in basic biologic studies has focused on X-chromosome inactivation, a 

random dichotomous event that occurs in female somatic cells during early 

embryologic development, whereby in each cell, either the maternally- or paternally-

derived X-chromosome is inactivated, with stable transmission of the inactivated state 

to the same X chromosome in all of that cell’s progeny (1, 6, 36).  Assays that can 

distinguish whether the active X-chromosome in a female somatic cell is paternally- 
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or maternally-derived allow for clonal analysis of a population of human cells.  

Evidence for preponderance of inactivation of one or the other X-chromosome 

homologs is consistent with a monoclonal population of cells.  However, such 

assessments depend in part on the characteristics of the background cell population 

and the ratio between activation of the two X-chromosomes in the particular tissue in 

which a population of cells is being analyzed, since skewing from the theoretical 1:1 

ratio is sometimes observed in normal tissues.   Initial attempts to distinguish the 

active X-chromosome relied on the analysis of gene products in female individuals 

heterozygous for a gene on the X-chromosome, commonly glucose-6-phosphate 

dehydrogenase (1, 3).  While successful, these analyses were limited by the relative 

rarity of individuals heterozygous for those particular polymorphisms (3).  Later 

analyses were based on the fact that DNA of the inactive X-chromosome is 

hypermethylated relative to the active X-chromosome.  To distinguish the active from 

inactive X-chromosome DNA, the DNA extracted from the tissue sample was cleaved 

using methylation-sensitive endonucleases, followed by Southern blot hybridization, 

or, alternatively, DNA of a gene on the X-chromosome, typically the PGK or 

androgen receptor gene, was amplified using PCR, followed by analysis of the 

products by gel electrophoresis.  In either of these strategies, X-chromosome loci 

were selected for analysis based on highly prevalent polymorphisms in DNA 

sequence that could be detected either by restriction fragment length polymorphism 

(RFLP) in Southern blot analysis or differently-sized PCR products (3, 5, 10, 37).  

Such polymorphism analysis enabled distinction of the two X-chromosomes within 

female tissues and permitted analysis of a larger percentage of females than were 
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heterozygous for G6PD.  However, even using these methods, it was still possible to 

accomplish analysis in only a fraction of cases.  For example, in one study, only 

thirteen of the fifteen tissue samples could be analyzed, either due to skewing in the 

normal surrounding tissues or, less frequently, to lack of heterozygosity in the locus 

used for analysis (3).    

In addition to other technical limitations, the above strategies for analysis of 

clonality have been limited either to lymphocytes or to female somatic cells.  Other 

strategies have been employed in particular settings.  For example, variations in the 

stucture of Epstein-Barr virus (EBV) episomal DNA has been used as a clonal 

marker.  Each cell infected with EBV has multiple identical circular episomes of viral 

DNA, formed by covalent ligation of the two ends of the double-stranded, linear 

genome upon cellular infection.  Both ends of the linear genome are composed of the 

same tandem repeat sequences, about 500 basepairs in length, and the episomal form 

of the EBV genome in latently infected cells is generated by homologous 

recombination between the tandem repeats leaving variable numbers of such repeats 

in the episomal circles.  The number of included repeats is stable and is passed on by 

precursor cells to their progeny without variation (6, 38).  Analyzing the length of the 

region containing the repeats by Southern blot has helped identify clonality within 

several tumors, including nasopharyngeal carcinoma and Hodgkin’s disease, but is 

obviously limited to EBV-infected cells (6, 38, 39).  Other techniques have analyzed 

sites of integration into host cell DNA by Hepatitis B viral DNA, as a unique marker 

of an infected cell and its progeny.   As with EBV, this marker is limited to only 

specific situations, such as hepatocellular carcinoma (6, 40). 
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The clonality assays already described have increased our understanding of 

carcinogenesis and enabled clonal analysis of multiple tumor types and preneoplastic 

processes.  However, these assays have generally not been used routinely for 

diagnosis because of the difficulties or complexities of the technique or the lack of 

broad applicability to many tumor types (37, 41, 42).  An ideal assay, then, would 

need to target a genetic event that occurs randomly within a given population of cells, 

one that occurs in multiple or most cell types and populations, one that produces 

some heritable, cellular change that is not affected by growth conditions or by 

neoplastic transformation, and one that can be easily assessed.  Random monoallelic 

gene expression, also referred to as allelic exclusion, may provide exactly such an 

event, especially in light of the multiple recent advances in our understanding both of 

the process itself and of its prevalence within cells. 

Monoallelic expression occurs when one of two alleles for a specific gene is 

activate and the other is inactive, such that only one of the two alleles is transcribed.  

This situation may arise through the random activation of one allele while the other 

allele remains inactive, or, conversely, through the random inactivation of one allele 

of a gene in which both alleles are initially active.  On a chromosome-wide basis, a 

similar process gives rise to random X-chromosome inactivation in female somatic 

cells.   So-called imprinting of autosomal genes also involves inactivation of only one 

allele in somatic cells, but differs fundamentally from random monoallelic expression 

because either the paternally- or maternally-inherited copy of an imprinted gene is 

consistently inactivated (36, 43-45).  Imprinted genes have been implicated in several 

inherited human diseases, the best known being Prader-Willi and Angelman 
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Syndrome, which are both due to deletion of the same chromosomal region (15q11-

13) but differ phenotypically depending upon the parental origin of the chromosome 

that suffers the deletion (43, 44, 46).   

A third type of monoallelic expression involves random transcriptional 

inactivation of a single allele in cells in which both alleles are initially active; in this 

type of monoallelic expression, the choice of which allele is expressed is independent 

of its parental origin (47-52).  In fact, it seems that random monoallelic expression of 

a given gene often occurs in only a minority of the cells within a tissue in which that 

gene is active, but it appears to be a stable percentage (50).  In 1994, Chess et al. 

described random monoallelic expression of olfactory receptor genes in sensory 

neurons, and in 2007, Gimelbrant et al. analyzed 4,000 somatic human genes in 

clonal cell lines and identified 300 as demonstrating random monoallelic expression 

(48, 50).  The expression patterns indicated that monoallelic expression was 

frequently present in a consistent minority of cells regardless of the specific tissue 

from which the cells were derived.  

Compared to the markers for clonality so far described, random monoallelic 

expression has several theoretical advantages.  It occurs in genes on multiple 

autosomal chromosomes, making it usable in both male and female cells.  For several 

genes identified in the Gimelbrant study, evidence was provided that random 

monoallelic expression was present in multiple tissue types in a measurable and 

consistent percentage of cells within each tissue type, but not in all cells.  Finally, 

random monoallelic gene expression is observed in a significant minority of 

expressed genes, each of which could be a promising target for a clonality assay 
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depending upon the particular tissue and the extent to which that gene is expressed in 

a monoallelic fashion within that tissue (i.e., the fraction of cells that exhibit 

monoallelic expression).    

The difficulty in creating an assay for clonality arises in creating a molecular 

technique to identify the pattern of monoallelic expression within a population of 

cells.  The necessary and important assumption, to be confirmed or rejected in this 

and future studies, is that the pattern of random monoallelic expression is passed from 

progenitor cells to their progeny in a stable fashion.  However, as stated above, X-

chromosome inactivation is the biologic process most analogous to random 

monoallelic gene expression and the stability of inactivation in that process is well 

known. Given the success of assays targeting X-chromosome inactivation, random 

allelic inactivation would seem a promising target for investigation for this 

experiment.   Although it would be possible to use a similar technique to that used in 

X-chromosome inactivation, namely the analysis of polymorphisms within a gene 

subject to random monoallelic expression, the limited association of suitable and 

predictable polymorphisms within appropriate genes greatly complicates this 

approach.  But even more importantly, random allelic inactivation occurs in only a 

percentage of cells, instead of in every cell as with X-chromosome inactivation.  

Upon initial consideration, this observation presents a difficult challenge for 

distinguishing a monoclonal population of cells from a polyclonal population based 

on patterns of allelic expression, at least if an approach similar to that used for 

assessing X-chromosome inactivation were employed.  However, this feature of 

monoallelic gene expression in subtotal fractions of cell populations within tissues 
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actually offers a special opportunity for its use as a marker for in situ detection of 

clonality.    

Despite the advantages of in situ assays for the determination of 

monoclonality in preneoplastic or neoplastic tissues in histologic sections, very few 

such assays currently exist.  The one in situ clonality assay widely used at present in 

clinical settings has employed antibody staining for kappa and lambda 

immunoglobulin light chains (6).   Besides being limited to B cells, this method has 

various disadvantages, principally problems involving its application to formalin-

fixed, paraffin-embedded tissues - the standard material from which histologic 

sections are prepared.  In situ hybridization for kappa and lambda immunoglobulin 

light chain mRNA has also been utilized (53), but this approach is generally 

considered too difficult for routine clinical use.  In 2001, Nuovo et al. described the 

use of reverse transcriptase in situ PCR to detect T-cell-receptor beta rearrangements 

in T cell populations, which enabled them to distinguish clonal T cell populations in 

lymphomas from polyclonal populations in reactive lymph nodes (54).  However, this 

method has significant drawbacks that hinder its clinical adoption, notably its 

requirement for multiple tissue sections and sequential experimental repetitions to 

distinguish among different V segments using the twenty-five forward primers 

necessary to detect the uniquely expressed TCR-beta rearrangements.   Furthermore, 

in situ PCR is a very problematic technique that is not in general use because of 

limited reproducibility.   

On the other hand, in situ genetic examination has been greatly augmented by 

advances in fluorescence in situ hybridization (FISH) (27, 55-57).  FISH has been 
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widely adopted clinically in the diagnosis and characterization of many malignancies, 

largely based upon its ability to detect genetic translocations, deletions, and other 

chromosomal abnormalities (56, 58).  All of these applications involve hybridization 

to DNA targets.   Additionally, a simple modification of DNA FISH--RNA FISH, 

which targets RNA sequences--has enabled the study of gene expression by 

identifying sites of RNA transcription at the cellular level (43, 57, 59-66).  

Importantly, the technology can be used with formalin-fixed, paraffin-embedded 

tissue, rendering it promising for pathologic research and clinical diagnosis (67).    In 

the Gimelbrant study, the use of RNA FISH was coupled with DNA FISH to confirm 

monoallelic or biallelic expression of two sample genes, death-associated protein 

kinase 1 (DAPK1) and early B cell factor (EBF), in peripheral blood monocytes 

(PBMCs) and clonal lymphoblast lines (50).  In this study, 36% and 38% of PBMCs 

showed monoallelic expression for the two genes, respectively, and in the clonal 

lymphoblast lines known to display monoallelic expression of one or both genes, 97% 

and 98% showed monoallelic expression with FISH.  However, only 77% and 78% of 

cells from clonal lymphoblast lines known to have biallelic expression of the two 

genes displayed biallelic expression with FISH.   The reasons for this seem likely to 

be technical.   

Despite the reduced sensitivity of combined RNA and DNA FISH for 

detecting biallelic expression, use of these methods still seems to offer a promising 

method for clonality analysis.  If RNA and DNA FISH were used to assay whether 

one or both alleles for a given gene are expressed in a collection of human cells, the 

ratio of monoallelic to biallelic expression should fall within a statistically predictable 
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ratio, depending upon the gene chosen for analysis, the tissue in question, and the 

sensitivity of the assay.   To increase the sensitivity of the assay, it should also be 

possible to investigate the expression patterns of multiple genes simultaneously with 

probes tagged with multiple fluorophors to distinguish the different genes.  This is the 

strategy we chose for our studies.   

We began by selecting two genes for analysis, based upon their expression 

and prevalence of random monoallelic inactivation in many tissues.  These genes 

were in fact the same two used for FISH analysis in the Gimelbrant study: DAPK1, on 

chromosome 9q34, and early B cell factor (EBF), on chromosome 5q34 (50).  We 

then designed a fluorescent probe for hybridization to intronic sequences of these 

genes. The same probe was selected for both RNA and DNA FISH, with the method 

of hybridization distinguishing between the RNA and DNA targets.  For each gene, 

DNA FISH serves as an internal control, as it should identify two alleles in each cell. 

RNA FISH tests whether transcription is monoallelic or biallelic, based on the 

presence or absence of a nascent, unspliced mRNA (59, 60, 65).  The use of an 

intronic probe assures that only nascent mRNA will be visualized, since mature 

mRNA lacks the introns to which the probe is designed to hybridize.  Because 

splicing of exons occurs soon after transcription, or perhaps even co-transcriptionally, 

nascent, precursor mRNA is localized near or at the site of transcription, close to the 

gene encoding that mRNA.  

While the published data forming the rationale and methodologic bases for 

these studies for in situ assessment of clonality seemed fairly strong, we also decided 

to pursue a parallel, more limited but still potentially useful approach to the in situ 
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assessment of clonality for clinical purposes. This approach also involved FISH and 

was directed at assessment of the clonality of T cells.  As described above, Nuovo et 

al. used RT in situ PCR for their assay because FISH was thought to be too 

insensitive at the time to identify the short regions of DNA involved in TCR beta 

recombination and because of the need to use multiple probes on several tissue 

sections to distinguish among the myriad possible combinations of variable (V), 

diversity (D), or joining (J) segments (54).  However, we decided to attempt an 

approach markedly different from that of Nuovo, et al. by utilizing FISH directed at a 

specific region in the TCR beta gene and a statistical feature of TCR beta gene 

rearrangement that characterizes the TCR beta gene in normal T lymphocytes.    

 In a review of T cell development published in 1992, Malissen et al. 

discussed the frequency of various configurations of TCR beta gene rearrangements 

among T cells.  Within developing T cells, both alleles undergo D-J joining, but 

whether or not only one or both alleles undergo subsequent V-DJ joining depends 

upon the outcome of first V-DJ rearrangement with respect to production of a 

functional protein product.  If rearrangement in that first allele is successful, the 

second allele does not undergo rearrangement (68).   Great diversity in the sequence 

of DNA across the VDJ junction occurs among fully rearranged alleles due to the 

combined effects of exonucleolytic digestion removing varying numbers of basepairs 

at the ends of recombining segments plus the addition of variable numbers of random 

basepairs at the ends of the segments by the enzyme terminal transferase prior to 

ligation of V, D, and J segments.  Non-functional VDJ rearrangements are relatively 

common, since two-thirds of the sequences generated at the VDJ junctions will be out 
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of frame in the J and C (constant region) coding sequences.  Malissen et al. predicted 

accordingly a two-thirds failure rate for the first allelic rearrangement and a two-

thirds failure rate for the second allelic rearrangement.  As a viable T cell needs at 

least one successful V-DJ rearrangement of the TCR beta allele, the ratio of cells with 

one rearranged locus and one non-rearranged locus to those with two rearranged loci 

should be about 3:2, as summarized in Figure 4 of their paper.  In an analysis of ten T 

cell clones, they found a ratio of 5:5, with one clone interestingly possessing two 

successful V-DJ recombinations.   

Although their experiment was done in murine T cells and we could find no 

analogous analysis of human T cells, we thought that while the ratio might be 

somewhat different in human T cells, the principle should still allow us to distinguish 

a polyclonal population with a mix of biallelic and monoallelic recombination 

patterns from a monoclonal population with a predominance of one or the other 

pattern.   

To distinguish the recombination patterns in situ, we developed FISH probes 

targeting the 64kb region of DNA between V29-1, the second-most 3’ variable region 

of the TCR beta locus on chromosome 7, and D1, the most 5’ diversity region (69).  

An additional, rarely used variable region, V30, is located 3’ of the C region (69).  

Control probes were developed targeting the DNA regions immediately 5’ and 3’ of 

the TCR beta locus, so as not to be involved in genetic recombination.  As successful 

V-DJ recombination involving any of the variable regions other than V30 causes the 

excision and rapid destruction of the 64kb region of the TCR beta locus, DNA FISH 

performed with probes for this test region should be able to distinguish a monoclonal 
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population of T cells from a polyclonal population (70).   Specifically, in a polyclonal 

population, every cell should display the control probe signal on both alleles, but 

there should be a mix of cells with one allele having only D-J recombination, and 

therefore one test probe signal, and cells with both alleles having V-DJ 

recombination, and no test probe signals.  A monoclonal population should have one 

type of cells or the other.  In an actual tissue sample containing a monoclonal sample, 

there are still always polyclonal T cells and non-lymphoid cells intermixed with 

monoclonal T cells, and in this situation, there should be a preponderance of cells 

with either one test probe signal or no test probe signal.   

In situ clonality assays, for which random monoallelic gene expression and 

genetic recombination within TCR genes represent two distinct and promising 

approaches, have the potential to add to our understanding of carcinogenesis and 

facilitate clinical diagnosis of malignancy.  Random monoallelic gene expression, if it 

turns out to be a successful target, could be used in a variety of tissue and tumor 

types.   Further research will continue to characterize the large variety of human 

genes known to be subject to random monoallelic expression and the extent to which 

this occurs in various tissue types.   Genetic recombination within the T cell receptor 

beta locus may be a technically easier assay, requiring DNA FISH alone without the 

need for RNA FISH, but as described in this thesis, it is limited to the study of T cell 

proliferations.  Nevertheless, if the principle works for T cells, it should be possible to 

develop an analogous test for B cells through analysis of recombination within the 

immunoglobulin heavy chain locus.     
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Statement of Purpose 

The aim of this thesis is to describe and develop two methods of in situ analysis of the 

clonality of populations of human cells, both of which rely upon fluorescence in situ 

hybridization (FISH).   In the first method, a combination of DNA FISH and RNA 

FISH will be used to characterize the expression patterns in lymphoid tissues of two 

genes which are known to be subject to random monoallelic gene expression.   In the 

second method, DNA FISH will be used to characterize the genetic recombination 

patterns of the T cell receptor beta locus in T cells.  Our hypothesis is that both of 

these methods should be able to distinguish statistically a monoclonal population of 

cells from a polyclonal population within tissue sections on a microscope slide.   
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Methods 

Probe Generation: 

DAPK1 and EBF probes: DNA and RNA FISH probes were generated using an 

adaptation of the method used by Gimelbrant et al., chosen because of their 

successful use for both DNA and RNA FISH in that paper (50).  BAC clones were 

obtained from the BACPAC Resource Center, available at bacpac.chori.org, 

containing between 200-400 kb of the two genes in question.  The great majority of 

DNA within these BACs consists of introns but some exon sequence is included.  For 

DAPK1, the clone RP11-107G16 was obtained, and for EBF, RP11-155P16.  These 

were the same BAC clones used by Gimelbrant et al.  To amplify BAC DNA, the 

clones in E. coli were incubated in LB media containing 12.5 (m)g/ml 

chloramphenicol.  DNA was isolated from 5ml bacterial cultures using the Qiagen 

QiaPrep Spin Miniprep kit, eluated from the spin column with 50 (m)l of Qiagen 

elution buffer (EB) in the final step.   

For verification that the BAC DNA contained the appropriate genetic 

sequences of DAPK1 or EBF, PCR was performed using primers chosen from the 

NCBI sequences for both genes (www.ncbi.nlm.nih.gov/gene) using MacVector 

software.  For DAPK1, the primers chosen were TCTGTGTCCATCCCCCCGAT, 

forward, and CCATCTATTCCCTTTCCTTTCCGT, reverse, both presented in 5’ to 

3’ direction.  These primers are complementary to DNA sequences approximately 3.5 

kb apart, within an intron of DAPK1 according to the NCBI database, and were 

chosen to be that far apart in case they might be used for generation of FISH probe 

instead of BAC clone verification.  For EBF, the primers chosen were 
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TTCTCTCTCTTGGCTAAGCGG, forward, and CAATGAGCGGAAAAGCGAGG, 

reverse, also presented 5’ to 3’.  These primers are complementary to DNA sequences 

approximately 3.3 kb apart within an intron of EBF, according to the NCBI database.   

Verification PCR was performed as follows: 17.3 µl H2O, 1 µl forward primer, 1 µl 

reverse primer, 2 µl clone DNA or H20 for control, 0.5 µl Mg2+ 50x buffer, 0.5 µl 

50x dNTP mix, 0.2 µl Taq polymerase, were mixed and subjected to 35 cycles of 

PCR at a 64˚C annealing temperature.  The PCR products were separated by 1% 

agarose gel electrophoresis at 120 mV for 30 minutes, with the results shown in 

Figure 1. 

 

TCR beta probes:  In a similar manner, BAC clones were selected containing regions 

of the TCR beta (TCRB) locus.  According to the NCBI sequence, there is a 64 kb 

region between V29-1 and D1, as referred to above.  Comparing the NCBI Clone 

Registry and Map Viewer (available at 

www.ncbi.nlm.nih.gov/projects/genome/clone/) with the sequence map of TCRB, the 

BAC CTD-3217E23 was found to contain a 16kb region within the target 64 kb.  This 

BAC was acquired from Invitrogen (clones.invitrogen.com), and is abbreviated VDR, 

for V-D region.  The BAC RP11-368I15 was obtained from the BACPAC Resource 

Center containing a 250 kb region 3’ to the TCRB locus for use as a control, here 

abbreviated 3CR, for 3’ control region.  This clone had been used by Soulier et al. in 

an experiment using DNA FISH to identify the TCRB locus (71).  An additional 

BAC, RP11-10L5 acquired from the BACPAC Resource Center contains 

approximately 250kb of DNA 5’ to the TCRB locus as an additional control, and is 
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abbreviated 5CR, for 5’ control region.  Each of these BAC clones in E. coli were 

cultured in LB media containing 12.5 µg/ml chloramphenicol, and the DNA was 

extracted from the bacteria using the Qiagen QiaPrep Spin Miniprep kit as above.  

The clones were verified by PCR to contain the appropriate region of DNA, using the 

same PCR parameters as for DAPK1 and EBF above.  Primers were chosen using the 

MacVector program from the NCBI genetic sequence of TCRB and the surrounding 

DNA regions to be 150-350 bp apart, as follows, all listed 5’ to 3’: 

 
VDR: CCACTAAATGATGTTGTC, forward;  
           TGTGCTCGTTAAGGATTTC, reverse. 
3CR:  TTTGGGGAGCACCCTTTG, forward;  
           CAGGAAGGACAGCTCCT, reverse 
5CR:  GTTAAAACTTACCTCATTAG, forward;  
           GTGTGGCAAACAGACAG, reverse 
 
Gel electrophoresis separation of the PCR products for the TCRB probes with water 

controls (PCR amplification performed without template added) is presented in 

Figure 2.  

 

In subsequent experiments conducted by Jonathan Murphy, an attempt was made to 

increase the amount of signal obtained from the VDR region of the TCRB loci by 

generating twenty-two non-overlapping probes from the VDR using PCR of VDR 

DNA from whole cell DNA.  These probes ranged in size from 2.8 kb to 3.5 kb in 

length, and cumulatively covered approximately 55 kb of the 64 kb region between 

V29-1 and D1.  Together, these probes covered about 39 kb of DNA beyond that 

within the CTD-3217E23 BAC.  (BACs covering the entire 64 kb region are 

available, but all of these contain considerable amounts of DNA outside the 64 kb 
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region, rendering those BACs unsuitable for our purposes; i.e., all DNA 

complementary to the probe is deleted as a result of V-DJ joining within the TCRB 

locus.   

Additionally, twenty-three probes, ranging in size from 3.0 kb to 3.6 kb in 

length, were generated from the 3’ control region.  The PCR to generate the probes 

was performed as follows: 18 µl H2O, 0.25 µl forward primer, 0.25 µl reverse primer, 

1.5 µl clone DNA, 2.0 µl Mg2+, 2.5 µl 10x buffer, 0.5 µl 50x dNTP mix, 0.2 µl Taq 

polymerase, were mixed and subjected to 37 cycles of PCR at a 47.5˚C annealing 

temperature.  The PCR products were separated by 0.7% agarose gel electrophoresis 

and purified from the gel using the Qiagen Gel Purification kit, eluting with 30 ul EB 

buffer (Qiagen). 

 

Probe Labeling: 

Probes were labeled using the Vysis Nick Translation Labeling Kit (Vysis No. 

32-801300, now Abbott 07J00-001) as follows: 17.5 µl Miniprep clone DNA were 

mixed with 5 µl 0.1mM dTTP, 10 µl 0.1 mM dNTP, 5 µl 10x nick translation buffer, 

10 µl nick translation enzyme, and 2.5 µl of dUTP tagged with either 0.2 mM 

Spectrum Red (now Abbott No. 02N34-050) or 0.2 mM Spectrum Green (now Abbott 

No. 02N32-050).  The resulting mixture was vortexed, briefly centrifuged, and 

incubated for fourteen hours at 15˚C, before the nick translation reaction was stopped 

by heating the samples to 70˚C for ten minutes.  At this point, 10 µl of Cot-1 DNA 

(Abbott No. 06J31-001) and 150 µl 100% ethanol were added, the mixture was again 

vortexed and briefly centrifuged before being placed at -80˚C for 30 minutes.  The 
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resulting sample was centrifuged at 4˚C at 12,000 rpm for 30 minutes, the supernatant 

was discarded, and the pellet was resuspended in 20 µl hybridization buffer (500 µl 

formamide, 100 µl 20xSSC, 200 µl dextran sulfate, 200 µl dH2O).  The labeled 

probes were stored at -20˚C until use.  

 

Tissue Preparation: 

Both polyclonal tissue and monoclonal cell lines were used as material for 

FISH analysis with both sets of probes.  Benign human tonsil and thymus tissue, fixed 

in formalin and embedded in paraffin, were obtained from the Molecular Diagnostics 

Service of the Yale Department of Pathology, where these tissues and cells are 

frequently used as controls in their clinical assays.  10 µm-thick sections were cut 

from the paraffin blocks and transferred to slides by the Yale Pathology Tissue 

Services, Research Histology Service.   

The clonal epithelial cell lines HESC (a human endometrial line) and HCT116 

(a human colon cancer line) were obtained and cultured in DMEM and McCoy’s 5A 

Modified Media, respectively, with 10% FBS, 1% penicillin/streptomycin, and 1% 

glutarate added.  These cell lines were grown directly on eight chambered slides, 

which were then washed with PBS, fixed with a 1:1 methanol:acetone mixture for 

five minutes, air-dried, and washed again in 2xSSC for sixty minutes before being 

stored at 4˚C. 

The T cell lines Jurkat, HSB, HSC, SKW3, SUPT1, HUT78, and HPB-ALL 

were obtained by generous donation from the laboratory of Peter Cresswell. Ph.D., 

Yale University, Department of Immunobiology.  The B cell line Raji was acquired 
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from the laboratory of George Miller, M.D., Yale University, Department of 

Pediatrics.  These clonal lymphocyte lines were cultured in RPMI media with 10% 

FBS, 1% pen/strep, 1% glutarate.  Cell pellets for each cell line were created by 

spinning 32 ml of each culture at 1500 rpm for three minutes, removing the 

supernatant, resuspending in 10 ml PBS, vortexing, centrifuging again at 1500 rpm 

for three minutes, removing the supernatant and resuspending in 10 ml of 10% 

buffered formalin.  After fixing for one hour in formalin, the cultures were 

centrifuged again at 1500 rpm for three minutes, dehydrated with successive 

resuspensions in 10 ml 70%, 95%, and 100% ethanol before finally being 

resuspended in 40 µl Histogel (available at www.labstore.com, No. HG-4000).  These 

cell pellets were cut into 10 µm sections with a microtome and placed on slides by 

Research Histology.   

In the subsequent experiments conducted by Jonathan Murphy, the clonal B 

cell line Namalwa and the clonal T cell line Jurkat were cultured in the same fashion 

as the T cell lines above.  1 ml of the cell lines in RPMI media was centrifuged at 300 

G for five minutes and the pellet was resuspended in 300 µl PBS.  200 µl of this 

suspension was added to a single well of an eight-well poly-D-lysine coated slide.  

The slide was centrifuged for five minutes at 200 G.  The polystyrene vessel was 

removed from the slide, and the slide was submerged in 0.075 M KCl hypotonic 

solution for twelve minutes at 37˚C, followed by submersion in a 70% ethanol 

solution for five minutes.  The slide was allowed to air dry, and was stored at 4 ˚C 

prior to use. 
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Sequential RNA and DNA FISH: 

Only DAPK1 and EBF probes were used for sequential RNA and DNA FISH, which 

was carried out on tonsil, thymus, the Jurkat and HUT78 cell pellets, and the HESC 

and HCT116 glass slides.  All but the HESC and HCT116 glass slides required 

deparaffinization prior to hybridization. 

 

Deparaffinization:  Slides requiring deparaffinization were heated at 56˚C for 2-3 

hours, before being immersed in xylene three times for ten minutes each at room 

temperature.  Two final washes in 100% ethanol for five minutes at a time followed, 

before the slides were allowed to air dry. 

 

Probe Hybridization:  Following deparaffinization, if necessary, slides were 

pretreated in 2xSSC at 37˚C for one hour before immersion in 1:25 dilution of the 

protease Digestall3 (Zymed, now Invitrogen) for five minutes at room temperature.  

After protease digestion, slides were washed in PBS-T for two minutes, then fixed in 

10% buffered formalin for one minute before a second wash in PBS-T for two 

minutes, all at room temperature.  Following this washing, slides underwent 

sequential dehydration in 70%, 95%, and 100% ethanol for two minutes each at room 

temperature, and were allowed to air dry.  At this point, 10 µl of either DAPK1 or 

EBF probe solution, having been denatured previously at 73˚C for five minutes, were 

applied.  A coverslip was sealed on with rubber cement, and the slides were placed on 

a plate heater at 37˚C, where they incubated for fourteen hours to allow RNA 

hybridization to occur.  Following hybridization, the coverslips were removed, and 
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the slides underwent stringency washing in 0.5xSSC at 72˚C two times for five 

minutes each, followed by immersion in PBS-T for two minutes at room temperature.  

They were again fixed in 10% buffered formalin for one minute before a wash in 

PBS-T and sequential dehydration in 70%, 95%, and 100% ethanol for two minutes 

each at room temperature.  Following air-drying, another 10 µl of the same probe 

solution, either EBF or DAPK1, was applied, this time labeled with the opposite 

color, either Spectrum Red or Spectrum Green.  A coverslip was sealed on with 

rubber cement, and this time, the slides were incubated at the denaturation 

temperature of 73˚C on a plate heater for five minutes before incubation for fourteen 

hours at 37˚C to allow DNA hybridization to occur.  A second stringency wash 

followed, with 0.5xSSC at 72˚C two times for five minutes each, followed by 

immersion in PBS-T for two minutes at room temperature.  15 µl of DAPI was added 

to stain the nuclei, a coverslip was applied, and the slides were stored at 4˚C.  

Microscopic examination was performed with an Olympus fluorescence microscope 

having polarized filters able to detect Spectrum Red and Spectrum Green.   

 

DNA FISH Alone: 

For experiments requiring DNA FISH alone, we used the VP 2000 (Abbott 

Molecular No. 02J11-060) slide processor utilized by the Molecular Diagnostics 

Service for clinical FISH assays.  This instrument is calibrated to process formalin-

fixed, paraffin-embedded tissue, so we were able to use slides prepared from tonsil, 

thymus, and the T-cell and B-cell pellets.   Both DAPK1 and EBF (as a control) and 

the TCR beta probes were used.   On the VP 2000 Processor, slides were incubated 
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for sixty minutes at 55˚C, before immersion in xylene three times for ten minutes 

each at room temperature, and in 100% ethanol two times for five minutes each, also 

at room temperature.  Slides then dried for five minutes at 55˚C, and were placed in a 

0.2N HCl bath for fifteen minutes at room temperature.  Next they were washed in a 

water bath for three minutes at room temperature, before immersion in pretreatment 

solution (VP 2000 reagent, Abbott Molecular 30-801250) for thirty minutes at 80˚C.  

Following pretreatment, slides were immersed in protease solution (Abbott Molecular 

30-801255, 0.1 N HCl) for thirty minutes at 37˚C.  They were then washed in 2xSSC 

for five minutes, and finally 70%, 85%, and 100% ethanol for one minute each, all at 

room temperature.  After drying for five minutes at 55˚C, 10 µl of either EBF or 

DAPK1 probes, or a mixture of 7µl VDR probes with 7 µl of either 3CR or 5CR were 

applied to a slide.  A coverslip was placed on the slides, sealed with rubber cement, 

and slides were placed on a plate heater at 73˚C for five minutes before incubating at 

39˚C for sixteen hours.  Following hybridization, the coverslips were removed and 

the slides were placed in posthybridization buffer (67 ml 20xSSC, 547 ml ddH2O, 2 

ml Igepal CA 630) for 120 minutes at 74˚C.  At this point, 10 µl DAPI was added, a 

coverslip was placed on the slides, and the slides were stored at 4˚C until microscopic 

examination. 

In the subsequent experiments conducted by Jonathan Murphy, the probes 

generated by PCR were added to the 8-well slide containing clonal Namalwa or 

Jurkat cells, following the VP2000 protocol as described above.  Following 

hybridization, the coverslips were removed and slides were placed in 0.4XSSC/0.3% 

NP-40 for two minutes at 73˚C, followed by 2XSSC/0.1% NP-40 at room 
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temperature for one minute.  Slides were allowed to air dry for ten minutes at room 

temperature, at which point 10 µl DAPI was added, a coverslip was applied, and the 

slides were stored at 4˚C until microscopic examination. 
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Results 

We tested both methods designed to detect cell clonality in situ, the first to 

assess allelic expression patterns of DAPK1 and EBF, both of which are known to be 

subject to random monallelic gene expression, and the second to assess the status of 

allelic recombination in the T cell receptor beta locus.   

To test the first method, probes corresponding to introns of the DAPK1 and 

EBF genes were hybridized to benign tonsil and thymus tissue as well as to clonal T 

cell pellets and clonal epithelial cells.  These experiments either involved sequential 

RNA and DNA FISH with distinct probes labeled with different fluorophors to 

distinguish DNA from RNA, or involved DNA FISH alone with a single fluorophor.  

The DNA FISH served to identify the two alleles in each cell and provided a control 

for accessibility of each allele for hybridization.  RNA FISH allowed the 

determination of whether a cell expressed DAPK1 or EBF at one or both alleles.  

Only cells containing two distinct DNA FISH hybridization loci and at least one RNA 

FISH hybridization locus could be used for clonal assessment.  Cells not meeting 

these criteria were disregarded.  

Under the experimental conditions used, initial attempts at sequential RNA 

and DNA FISH resulted in no cells that could be counted for clonal assessment.  A 

representative image is shown in Figure 3, which demonstrates DAPI signal 

identifying lymphocyte nuclei, and no appreciable green signal identifying the 

DAPK1-encoding DNA alleles or red signal identifying nascent RNA being 

transcribed at one or both alleles.    
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In view of these results, RNA FISH was set aside, and DNA FISH was 

performed alone on tonsil tissue using the VP 2000 Processor, with green-labeled 

probes to identify the DAPK1 or EBF alleles in separate hybridizations.  These 

hybridizations were more successful.  Representative images are shown in Figures 4 

and 5, which illustrate DNA FISH on tonsil tissue using DAPK1 and EBF probes, 

respectively.  

To test the second method, which involved analysis of recombination in the 

TCR beta gene and required only DNA FISH without RNA FISH, probes 

corresponding to the VDR region between V29-1 and D1 of the TCR beta locus along 

with probes for control regions both 5’ and 3’ of the TCRB locus were hybridized to 

tonsil, thymus, and monoclonal T-cell pellets using the VP 2000 Processor.   The 

VDR probes were labeled with either red or green fluorophor, using a different color 

from the control region probes to distinguish the test signals from the control signals.  

Only cells containing two control region signals identifying the TCR beta locus could 

be used for clonal assessment.  Successful analyses should reveal a VDR signal 

present next to one or neither of the control region signals, depending on whether one 

or both alleles had undergone complete V-DJ rearrangement and lost the region of 

DNA to which the VDR probe should hybridize.   

Under the experimental conditions used, no cells demonstrated VDR signal 

next to a control region signal in a cell containing two control region signals.  Very 

few cells contained two control region signals, and the presence of nonspecific 

background signal rendered most experiment iterations unusable despite stringency 

washings.  A representative image is shown in Figure 6, which is a composite of 
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green, red, and blue filtered images of benign thymus tissue, to which red-labeled 

VDR and green-labeled 3CR probes have been hybridized.  While there are multiple 

red signals, their size and distribution indicates that they most likely represent 

nonspecific background signal instead of true VDR hybridization.  As a comparison, 

Figure 7 is a green-filtered image of thymus tissue to which green-labeled 3CR 

probes have been hybridized.  While there are certainly some larger signals that may 

be non-specific, the presence of several smaller signals, often in pairs, suggests that at 

least some of the green signals reflect true hybridization.  To be sure of this, it would 

be helpful to see at least some cells with red VDR signals, but under these 

experimental conditions none were identified.  

In a subsequent experiment, conducted by Jonathan Murphy, the second 

method was again tested, this time using PCR-generated probes from the 64 kb test 

region between V29-1 and D1 at the TCRB locus and from the 3CR control region.  

The test region probes were labeled green, and the control region probes were labeled 

red.  These probes were hybridized to clonal Namalwa B cells and to clonal Jurkat T 

cells.  Figures 8 and 9 show Namalwa B cells photographed in the fluorescence 

microscope using a red filter and a green filter, respectively.  The red-filtered image 

demonstrated two red signals in most of the Namalwa cells, most likely identifying 

the control regions located just 3’ to the two alleles of the T-cell receptor beta locus.  

The green-filtered image demonstrated two green signals in identical locations, with 

occasional extraneous signals that most likely represent artifact.  The green signals 

that overlap with the red signals identified on the red filter most likely represent true 

hybridization to the T cell receptor beta locus.  The test region is intact at both alleles 



 

 

33 

in these B cells, which have not undergone recombination within the TCRB loci.  By 

comparison, Figures 10 and 11 show Jurkat T cells photographed using a red filter 

and a green filter, respectively.  The red-filtered image again demonstrated two red 

signals in most cells, likely identifying the control region 3’ to the TCRB locus, but 

the green-filtered image demonstrates only one green signal that overlaps with the red 

signals in each cell, along with occasional artifactual signals that do not overlap with 

red signals.  The presence of only one overlapping signal in these T-cells is consistent 

with the fact that one of the TCRB alleles has successfully undergone VDJ 

recombination, and the second allele has not undergone V-DJ joining.  While these 

images represent analyses of only two clonal cell lines, they suggest that the use of 

DNA FISH to determine the status of T cell receptor beta recombination may, with 

additional refinements, be used to assess clonality of T cells in situ. 
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Discussion 

In this thesis, two promising methods of detecting a monoclonal population of 

human cells have been described, although their feasibility and usefulness cannot yet 

be determined as the molecular techniques are still being refined.  The promise of 

both methods relies upon several necessary assumptions, which could not be affirmed 

or rejected in this study.  Unless these assumptions are rejected by subsequent work, 

the clonality assays proposed here have the potential to become valuable clinical tools 

to aid in the diagnosis of malignancy, or at the very least useful methods for studying 

malignant transformation and preneoplastic lesions.    

Potential pitfalls to the use of random monoallelic gene expression as an assay 

for monoclonality would include the finding that this phenomenon occurs in too few 

cells within a tissue, that the phenomenon is limited to only a small set of tissues, that 

the progeny of a dividing cell do not retain the same pattern of allelic inactivation, or 

that even a single cell can change its pattern of allelic inactivation during its lifetime.  

While any of these pitfalls could turn out to be real, the experiments described in this 

thesis did not fail because of any of them. 

Similarly, using FISH to analyze T cell receptor gene rearrangement as an 

assay for clonality of T cell populations would be problematic if the ratio of human T 

cells with rearrangements of one TCR beta allele to those with rearrangements of 

both is either too small or too large to allow statistically significant analysis of 

variations within cell populations, or that a cell with only one allelic rearrangement 

early in its development can frequently undergo a second rearrangement during its 

later life.   The experiments described in this thesis found no evidence to suggest that 
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these problems applied, but neither did they rule out the possibility of these problems 

potentially complicating the assay. 

The inability of this experiment to support or reject the necessary assumptions 

underlying both proposed methods relies solely on the failure of our experimental 

technique.  In further experiments, we will attempt to increase the sensitivity and 

specificity of the hybridization assays by pursuing one or several of the following 

methods.  First, the use of BAC clones as sources of probe, while successful in the 

Gimelbrant et al. study, may result in the labeling of too much bacterial DNA and not 

enough target human DNA to cause enough specific hybridization versus nonspecific 

binding of probe.  Instead, we can either purify the BAC DNA away from bacterial 

genomic DNA, subclone it, or use pooled, labeled PCR products as probes that 

specifically target the test regions.  The resulting reduction of background signal may 

allow more successful visualization of true hybridization.  As described in the Results 

section, our initial experiments with pooled, labeled PCR products have already been 

very promising.  Additionally, the fluorophors we used may not be bright enough to 

be visible when hybridized to such short DNA regions as the VDR probe, which is 

only 16 kb long.  Using so-called indirectly-labeled probes rather than probes directly 

labeled with fluorescent tags would allow the use of signal amplification steps to 

increase the signal of the shorter regions and allow better visualization under the 

microscope.   For example, biotin-conjugated nucleotides incorporated into the probes 

can be detected by incubating the hybridized probe with FITC-avidin, followed by 

biotinylated anti-avidin, and a final round of FITC-avidin (65).  One or several of 
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these methods may improve the assays so that we can assess clonality on a routine 

basis. 

One of the more immediate areas where either method of in situ clonality 

analysis would be useful is for very small biopsy specimens in which there are few 

cells available for analysis.  As the use of minimally invasive biopsy techniques 

become more prevalent and biopsy samples become smaller, the challenge of 

diagnosis on low numbers of cells has grown.  Additionally, some neoplastic 

disorders contain very few neoplastic cells, the bulk of the mass in these tumors being 

made up of tissue reacting to the presence of the neoplastic cells.  Hodgkin’s disease 

is an example of such a disorder, in that the neoplastic Reed-Sternberg cell usually 

makes up less than one percent of the cells in the mass.  Finally, certain cancers are 

being identified at earlier and earlier stages, when the total number of malignant cells 

may be quite low. 

A disease that illustrates all of the above diagnostic problems and for which in 

situ analysis of clonality would be very useful is the assessment and diagnosis of 

cutaneous T-cell lymphoma (CTCL).   CTCL is a relatively rare malignancy, with an 

estimated annual incidence of 1:100,000; treatment options are limited and prognosis 

is often poor, depending upon the particular type (72).   The diagnosis is often 

difficult, relying primarily on histologic and immunophenotypic features that can be 

difficult to distinguish from reactive lymphocytic responses, such as chronic 

dermatoses, which are quite common (12, 13).  Because of the difficulty in making 

the distinction between CTCL and chronic dermatoses, the actual number of skin 

biopsy specimens for which CTCL enters the differential diagnoses is very high.  As 
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the amount of tissue available for examination is often very small, an in situ assay 

that could distinguish a reactive process from a monoclonal proliferation would be 

valuable to clinicians and researchers.  To this end, in 2003 Magro et al. published 

their work using in situ RT-PCR to examine the TCR beta rearrangement patterns, 

with primers distinguishing the 25 possible V region recombinations (26).  They 

examined the tissue of 28 patients with cutaneous T-cell infiltrates including benign 

lesions as well as CTCL, diagnosed by clinical, histologic, and immunophenotypic 

analysis.   Of the eight cases of primary CTCL lymphoma, seven were identified as 

monoclonal by in situ RT-PCR, while the other case was found to be “biclonal.”   

As discussed earlier, there are several limitations to the potential for clinical 

adoption of in situ RT-PCR as currently performed-–limitations that a DNA FISH-

based assay would overcome.  The amount of tissue required for DNA FISH is much 

less, and DNA FISH does not require sequential iterations to distinguish the 25 

possible V-DJ rearrangements.  However, the DNA FISH-based assay as we have 

described it could not identify the particular VDJ rearrangement of a monoclonal 

population, as the RT in situ PCR-based assay can.  Nevertheless, this property is 

probably not necessary for a useful assay of clonality in T cell disorders.  This 

opinion is based on the diagnostic utility of immunohistochemical detection of 

restricted kappa versus lambda light chain immunoglobulin associated with 

monoclonal B cell processes.  Therefore, if our proposed assay for clonal TCR beta 

gene rearrangements can be performed successfully, it could facilitate clinical 

examination of cutaneous T cell proliferations with the possibility of emerging as an 

important diagnostic assay.  In the long run, if the in situ assay using random 
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monoallelic gene expression can be perfected, this too would be applicable to 

cutaneous T cell disorders.   

We conclude that although limits of time prevented the full development of 

the in situ assays to identify clonality proposed here, both have the potential to 

become valuable tools in research and clinical practice.  They certainly merit further 

investigation.  
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Figures: 
 
Figure 1.  
 

 
 
BAC Clone Verification: 2% agarose gel electrophoresis with PCR products of BAC 
clone DNA using probes complementary to DAPK1 and EBF sequences.  Lane 1, 1 
kb ladder of size markers.  Lanes 2-6, PCR products of DNA extracted from BAC 
clone RP11-107G16 with primers targeting DAPK1 reveals ~3.5kb product, with a 
water control in Lane 6. Lane 7, blank. Lanes 8-11, PCR products of DNA extracted 
from BAC clone RP11-155P16 with primers targeting EBF reveals ~3.3kb product, 
with a water control in Lane 11.  
 
Figure 2.  
 

 
 
BAC Clone Verification, cont’d: Composite 2% agarose gel electrophoresis of PCR 
products of BAC clone DNA using probes complementary to VDR, 3CR, and 5CR 
sequences.  Lane 1, 100 bp ladder.  Lane 2, blank. Lanes 3-6, PCR products of DNA 
extracted from BAC clone CTD-3217E23 with primers targeting VDR reveals ~300 
bp product, with a water control in Lane 3.  Lanes 7-10, PCR products of DNA 
extracted from BAC clone RP11-368I15 with primers targeting 3CR reveals ~250 bp 
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product, with a water control in Lane 7.  Lanes 11-14, PCR products of DNA 
extracted from BAC clone RP11-10L5 with primers targeting 5CR reveals ~250 bp 
product, with a water control in Lane 11.  
 
Figure 3.  
 

 
 
DAPK1 Sequential RNA and DNA FISH: Representative composite image of blue-, 
red-, and green-filtered microscopy of a section from a monoclonal HSB T cell pellet 
hybridized first to red-labeled DAPK1 probe in RNA FISH, followed by green-
labeled DAPK1 probe in DNA FISH.  Nuclei have been stained blue with DAPI, 
which binds to DNA and therefore marks the entire nucleus of interphase cells.  
Neither red nor green signals are visible, suggesting that little, if any hybridization 
had occurred.  A significant amount of nonspecific and non-nuclear red and green 
signal was present, not visible in this image.   The only signals suggestive of true 
hybridization occurred with DNA FISH using the VP 2000 processor, and not with 
sequential RNA and DNA FISH (see below). (x600 magnification) 
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Figure 4.  
 

 
 
DAPK1 DNA FISH Control: Green-filter microscopy of benign tonsil tissue 
hybridized to DAPK1 probes in DNA FISH using the VP 2000 processor.  Multiple 
cells display two green signals suggestive of bone fide hybridization, although 
simultaneous RNA FISH would help to confirm this.  The extent of hybridization is 
better determined by direct inspection under the microscope, rather than in 
photographs, because of the hybridization signals lying in several focal plains. (x600 
magnification) 
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Figure 5.  
 

 
 
EBF DNA FISH Control: Green-filter microscopy of benign tonsil tissue hybridized 
to EBF probes in DNA FISH using the VP 2000 processor.  Again, multiple cells 
display two green signals suggesting bona fide hybridization. (x600 magnification) 
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Figure 6.  
 

 
 
TCR Beta DNA FISH: Composite image of blue-, green-, and red-filtered microscopy 
of benign thymus tissue hybridized to red-labeled VDR probes and green-labeled 
3CR probes by DNA FISH on the VP 2000 processor.   Multiple red signals are 
present, but the lack of cells with two green (control) signals and the large size of 
several of the red signals indicate that these signals are unlikely to represent true 
hybridization.     
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Figure 7.  
 

 
 
3CR DNA FISH Control: By comparison, green-filtered microscopy of benign 
thymus tissue hybridized to green-labeled 3CR probe in DNA FISH on the VP 2000 
processor indicates smaller signals, often with two signals in a cell, more suggestive 
of true hybridization than the red signals in Figure 6.  However, most cells contain no 
green signals or obviously nonspecific signal (large, bright spots).   
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Figure 8.  
 

 
 
 
B Cell TCR beta DNA FISH Control: Red-filter microscopy of clonal Namalwa B 
cells hybridized to pooled PCR-generated probes targeting the 3CR region, in DNA 
FISH performed with the VP 2000 processor.  Multiple cells display two red signals 
suggestive of bona fide hybridization.  This experiment was conducted by Jonathan 
Murphy. 
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Figure 9. 
 

 
 
B Cell TCR beta DNA FISH: Green-filtered photograph of the same microscopic 
view as Figure 8.  Green-labeled PCR-generated probes specific to the 64 kb VDR 
test region deleted in successful V-DJ recombination have been hybridized to clonal 
Namalwa B-cells in DNA FISH.  Again, multiple cells display two green signals 
suggestive of bona fide hybridization to the TCRB test region, with occasional 
artifactual signals. 
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Figure 10. 
 

 
 
T Cell TCR beta DNA FISH Control: Red-filter microscopy of clonal Jurkat T cells 
hybridized to pooled PCR-generated probes specific for the 3CR region, in DNA 
FISH performed with the VP 2000 processor.  Multiple cells display two red signals 
likely indicating the control region adjacent to the TCRB locus.  This experiment was 
conducted by Jonathan Murphy. 
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Figure 11. 
 

 
 
 
T Cell TCR beta DNA FISH: Green-filtered photograph of same microscopic view as 
in Figure 10.  Green-labeled pooled PCR probes targeting the test region between 
V29-1 and D1 have been hybridized to clonal Jurkat T-cells in DNA FISH performed 
with the VP2000 processor.  Most cells have a single green signal overlapping one of 
the two red signals in Figure 10, suggestive of a single non-rearranged TCRB allele.  
The other green signals most likely represent artifact.  
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