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ABSTRACT 

Denise Gaskins 

 

ELUCIDATING MECHANISIMS THAT LEAD TO PERSISTENT ANXIETY-LIKE 
BEHAVIOR IN RATS FOLLOWING REPEATED ACTIVATION OF 
CORTICOTROPIN-RELEASING FACTOR RECEPTORS IN THE 

BASOLATERAL AMYGDALA  
 

Anxiety disorders are estimated to impact 1 in 4 individuals within their 

lifetime. For some individuals, repeated episodes of the stress response leads to 

pathological anxiety and depression. The stress response is linked to increased 

levels of corticotropin-releasing factor (CRF) in the basolateral nucleus of the 

amygdala (BLA), a putative site for regulating anxiety and associative processes 

related to aversive emotional memories, and activation of CRF receptors in the 

BLA of rats produces anxiety-like behavior. Mimicking repeated episodes of the 

stress response, sub-anxiogenic doses of urocortin 1 (Ucn1), a CRF receptor 

agonist, are microinjected into the BLA of rats for five consecutive days, a 

procedure called priming. This results in 1) behavioral sensitization, such that a 

previously non-efficacious dose of Ucn1 will elicit anxiety-like response after the 

3rd injection and 2) the development of a persistent anxiety-like phenotype that 

lasts at least five weeks after the last injection without any further treatment. 

Therefore, the purpose of this thesis was to identify mechanisms involved in the 

Ucn1-priming-induced anxiogenesis. 

The first a set of experiments revealed that the anxiety-like behavior was 

not due to aversive conditioning to the context or partner cues of the testing 

environment. Next, Ucn1-priming-induced gene expression changes in the BLA 
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were identified: mRNA expression for Sst2, Sst4, Chrna4, Chrma4, and Gabrr1 

was significantly reduced in Ucn1-primed compared to Vehicle-primed rats. Of 

these, Sst2 emerged as the primary receptor of interest. Subsequent studies 

found that antagonizing the Sstr2 resulted in anxiety-like behavior and activation 

of Sstr2 blocked acute Ucn1-induced anxiety-like responses. Furthermore, 

pretreatment with a Sstr2 agonist delayed the behavioral sensitization observed 

in Ucn1-induced priming but did not stop the development of persistent anxiety-

like behavior or the Ucn1-priming-induced decrease in the Sstr2 mRNA. These 

results suggest that the decrease in Sstr2 mRNA is associated with the 

expression of persistent anxiety-like behavior but dissociated from the 

mechanisms causing the behavioral sensitization. Pharmacological studies 

confirmed that a reduced Sstr2 mediated effect in the BLA is likely to play a role 

in persistent anxiety and should be investigated further. 

 

Anantha Shekhar, M.D., PhD. 
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INTRODUCTION 

1.1  Stress and Anxiety Overview 

 All living organisms strive toward stability (or homeostasis). When this 

stability is threatened by real or perceived threat (stressors), anxiety, fear and/or 

stress responses are elicited in an attempt to preserve homeostasis and enhance 

survival through coordinated behavioral, autonomic, immune, and endocrine 

responses (Selye, 1976; Chrousos and Gold, 1992; Habib et al., 2001; Carrasco 

and Van de Kar, 2003; McEwen, 2007). Considerable evidence has shown that 

during stress, attention is enhanced and the brain focuses on the perceived 

threat to appraise the potential harm of the stressor (Davis and Whalen, 2001; 

Bishop et al., 2004; Bishop, 2008). Cardiac output and respiration are increased 

(Chrousos and Gold, 1992; Tao and Li, 2005; Abelson et al., 2008), catabolism is 

enhanced and blood flow is redirected to provide energy to the aroused brain, 

heart and muscles (Chrousos and Gold, 1992). The elicited response diminishes 

when the threat is over (Chrousos and Gold, 1992; Habib et al., 2001).  

For some individuals, chronic stress leads to psychopathology such as 

depression and anxiety disorders (Arborelius et al., 1999; Haller, 2001; van 

Praag, 2004; Rosenkranz et al., 2010). Anxiety disorders alone impact almost 

30% of individuals within their lifetime (Kessler et al., 2005) and are associated 

with impaired workplace performance and huge economic costs (Greenberg et 

al., 1999) as well as increased risk of cardiovascular morbidity and mortality 

(Kawachi et al., 1994; Albert et al., 2005; Smoller et al., 2007). Anxiety disorders 

are subdivided into several classifications based on their clinical presentation, 
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course and treatment responses. The classifications include general anxiety 

disorders, panic disorder, obsessive compulsive disorder, phobias, and 

posttraumatic stress disorder (American Psychiatric Association, 1994). Although 

evidence suggests that chronic stress can lead to a persistent anxiety disorder 

(Arborelius et al., 1999; Haller, 2001; van Praag, 2004; Rosenkranz et al., 2010), 

the mechanism(s) involved remain mostly unknown. 

 1.1.1  Neuroanotomy overview of the stress/anxiety response  

 Many brain regions involved in the response to stressors are also 

implicated in anxiety. The stress/anxiety response is regulated by feedback loops 

between the brain regions involved. The orbitofrontal cortex (OFC) is proposed to 

evaluate the situation (Cousens and Otto, 2003; Pickens et al., 2003; 

Schoenbaum et al., 2003; Winstanley et al., 2004; Schoenbaum and Roesch, 

2005) then coordinate with the ventral medial prefrontal cortex (PFC) which, 

through its coordination with the hippocampus (Quirk and Mueller, 2007) and 

input into the baslolateral amygdala (BLA), modulates the organism‟s response 

to the incoming sensory cues (Rosenkranz and Grace, 1999; 2001; Grace and 

Rosenkranz, 2002; Rosenkranz and Grace, 2002; Rosenkranz et al., 2003; 

Rosenkranz et al., 2010). 

 Sensory information converges onto the lateral and basolateral nuclei of 

the amygdala (BLA complex) and the BLA is thought to integrate the sensory and 

memory information to encode the appropriate emotional valence to this 

information (Turner and Herkenham, 1991; Pitkänen, 2000, LeDoux, 2003). The 

BLA then relays this information to efferent connections such as the central 
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nucleus of the amygdala (CE), medial nucleus of the amygdala (ME), the bed 

nucleus of the stria terminalis (BNST), periaqueductal gray (PAG), and higher 

cortical centers such as the PFC, OFC and hippocampus (Krettek and Price, 

1978b; Amaral et al., 1992; Graeff et al., 1993; Goldstein et al., 1996; Herman 

and Cullinan, 1997; LeDoux, 2000; Pitkänen, 2000; Akirav and Richter-Levin, 

2002; Winstanley et al., 2004) to coordinate the appropriate behavioral response 

(Graeff et al., 1993; Goldstein et al., 1996; LeDoux, 2000). The BLA also 

influences other functions such as memory formation (Akirav and Richter-Levin, 

2002; Roozendaal et al., 2002; Maroun and Richter-Levin, 2003; Richter-Levin 

and Maroun, 2010) and stimulus coding (Schoenbaum, 2003; Schoenbaum et 

al., 2005). 

 Perceived threats elicit stress circuits in the brain and a cue is perceived 

as threatening either because of novelty or based on prior experiences. The 

amygdala plays a role in emotional memories (LeDoux, 2000; Ghashghaei and 

Barbas, 2002) and modulates memory formation in the hippocampus (Akirav and 

Richter-Levin, 2002; Benes et al., 2004; Kim et al., 2005) and the PFC (Maroun 

and Richter-Levin, 2003; Richter-Levin and Maroun, 2010). The PFC guides 

behaviors, thoughts, and feelings by virtue of its role in modulating long-term or 

working memory stores (Arnsten and Li, 2005; Sierra-Mercado et al., 2006). The 

hippocampus is involved in spatial, episodic, and contextual memory formation 

(Ergorul and Eichenbaum, 2004; Eichenbaum, 2006). Furthermore, the 

hippocampus inhibits (Herman and Cullinan, 1997) and the amygdala [(Ce, ME), 

Gray et al., 1989; Gray, 1993; Herman and Cullinan, 1997] stimulates the 
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paraventricular nucleus of the hypothalamus (PVN) thereby influencing the 

initiation, propagation and termination of the neuroendocrine aspect of the stress 

response through the hypothalamic-pituitary-adrenocortical (HPA) axis (Gray et 

al., 1989; Chrousos and Gold, 1992; Gray, 1993; Herman and Cullinan, 1997; 

Chrousos, 1998; Carrasco and Van de Kar, 2003). The BNST also directly 

innervates the PVN (Davis, 1998) to activate the stress response. 

 The BNST and CE both send projections to areas involved in the 

behavioral and autonomic aspect of the stress/anxiety response (Davis and 

Whalen, 2001) such as 1) the lateral hypothalamus (LH) whose projections 

activate the sympathetic autonomic nervous system which leads to an increase 

in heart rate, blood pressure and respiration (LeDoux et al., 1988; Davis and 

Whalen, 2001), 2) the dorsomedial hypothalamus [(DMH), Pitkänen, 2000; 

Horiuchi et al., 2006] whose projections also activate the sympathetic autonomic 

nervous system (Shekhar et al., 1993; DiMicco et al., 2002; Horiuchi et al., 2006) 

as well as regulate anxiety-like behavior (Shekhar, 1993) and 3) the parabrachial 

nucleus (PBN) in the brain stem whose activation increases respiration (Krettek 

and Price, 1978a, Amaral et al., 1992). Whereas the CE can respond to 

conditioned stimuli (Campeau and Davis, 1995), the BNST guides responses to 

anxiety producing, unconditioned stimuli (Lee and Davis, 1997; Walker and 

Davis, 1997). The PAG is also a key subcortical region involved in behavioral 

and physiological responses to threatening stimuli (Graeff et al., 1993; Herman 

and Cullinan, 1997) and directs behavioral arousal, such as cessation of 
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movement (Bouton and Bolles, 1980; LeDoux et al., 1988; Graeff et al., 1993; 

Kim et al., 1993a). 

Other areas that have important regulatory roles in the stress/anxiety 

response include the brain stem centers the ventral tegmental area [(VTA), 

Wallace et al., 1992; Goldstein et al., 1996], the raphé nuclei [(RN), Graeff et al., 

1993; Rainnie, 1999; Rainnie et al., 2004; Spiga et al., 2006; Muller et al., 

2007b], basal forebrain [(BF), Semba, 2000; Sarter et al., 2006] and the locus 

coeruleus [(LC), Butler et al., 1990; Koob, 1999; Koob and Heinrichs, 1999]. 

1.1.2  Neurochemical overview of the stress/anxiety response 

 The stress response involves, among others, the activation of the 

hypothalamic-pituitary-adrenocortical (HPA) axis and the parallel activation of the 

LC-norepinephrine response (Conti and Foote, 1995; Valentino and Van 

Bockstaele, 2008). Exposure to stressors leads to the release of corticotropin-

releasing factor (CRF) and vasopressin into the portal circulation from the 

parvicellular neurons (PVN) leading to the release of adrenocorticotropin (ACTH) 

from the pituitaries. Minutes later, glucocorticoid levels increase in the 

bloodstream (see Chrousos, 1998; Habib et al., 2001; Tsigos and Chrousos, 

2002; Carrasco and Van de Kar, 2003). The released glucocorticoids have an 

inhibitory influence on the HPA axis (Dallman et al., 1992; Carrasco and Van de 

Kar, 2003; de Kloet et al., 2005).  

 The release of CRF also leads to the increased release of the 

catecholamines [epinephrine and norepinephrine (NE)] from the adrenal medulla 

and the LC (Valentino et al., 2001; Koob and Heinrichs, 1999). Increased release 
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of CRF and NE also leads to autonomic and behavioral responses to stressors 

(Arborelius et al., 1999; Koob and Heinrichs, 1999; Bale and Vale, 2004; 

Valentino and Van Bockstaele, 2008). Adaptive behavioral changes of the stress 

response influenced by CRF systems (Koob and Heinrichs, 1999; Bittencourt and 

Sawchenko, 2000) involve extra-hypothalamic structures such as the CE (Makino 

et al., 2002), BNST (Lee et al., 2008), and LC (Butler et al., 1990; Koob and 

Heinrichs, 1999; Valentino et al., 2001).  

 Although a central component of the stress response involves the release 

of CRF from the PVN, thereby activating the endocrine aspect of this response 

(Selye, 1976; Chrousos, 1998; Habib et al., 2001; Tsigos and Chrousos, 2002; 

Carrasco and Van de Kar, 2003), the interplay of several neurotransmitter 

systems such as somatostatin [(SST), Tsigos and Carrasco, 2002] and the 

mesocortical (Deutch and Roth, 1990; Goldstein et al., 1996; Chrousos, 1998), 

GABAergic (Chrousos and Gold, 1992; Herman and Cullinan, 1997; Habib et al., 

2001; Makino et al., 2002), serotonergic and sympathetic and non-sympathetic 

cholinergic systems (Aghajanian and VanderMaele, 1982; Chrousos, 1998; 

Semba, 2000; Habib et al., 2001; Carrasco and Van de Kar, 2003) are also 

involved.  

 In addition to their influence on the stress response dopaminergic [(VTA), 

Rosenkranz and Grace, 1999; Grace and Rosenkranz, 2002], serotonergic 

[(dorsal RN), Graeff et al., 1997; Abrams et al., 2005], cholinergic [(BF), 

Helmstetter and Bellgowan, 1994; Roozendaal et al., 1996; Calandreau et al., 

2006] and/or GABAergic (gamma-aminobutyric acid) neurotransmitter [(BLA), 
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Sanders et al., 1995; Sanders and Shekhar, 1995] systems have all been 

associated with the regulation of anxiety states through BLA modulation. 

Furthermore, medications that modulate the neurotransmission of these 

transmitters are widely used to treat pathological anxiety (Bodnoff et al., 1989; 

Andrews and Stephens, 1990; Carrasco et al., 2006). For example, the 

benzodiazepine (BZ) group of anxiolytics modulate the GABAergic system 

activity in the BLA (Niehoff and Kuhar, 1983; Sanders et al., 1995) and are the 

most common treatment for anxiety. 

 The neuropeptides CRF and SST also have roles in regulating states of 

anxiety (Bale and Vale, 2004; Truitt et al., 2007; Viollet et al., 2008). For 

example, somatostatin receptor 2 (Sstr2) knock-out mice demonstrated anxiety-

like behavior in a number of behavioral paradigms (Viollet et al., 2000). 

Moreover, lesioning a specific subset of GABAergic interneurons in the BLA that 

contain SST led to long-term anxiety-like behavior (Truitt et al., 2007). Numerous 

studies have shown that CRF receptor activation leads to anxiety-like behavior 

(Yehuda, 1997; Sajdyk et al., 1999; Steckler and Holsboer, 1999; Sajdyk and 

Gehlert, 2000; Heinrichs and Koob, 2004; Rainnie et al., 2004; Gehlert et al., 

2005).  

1.2  Corticotrophin-Releasing Factor (CRF) 

 The stress response involves the coordination of the endocrine, 

autonomic, behavioral and immune responses (Selye, 1976; Habib et al., 2001; 

Carrasco and Van de Kar, 2003; McEwen, 2007). In addition to its role in 

regulating the release of ACTH from the pituitaries thereby activating the HPA 
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axis (Vale et al., 1981; Rivier and Plotsky, 1986), the 41 amino acid 

neuropeptide, CRF, has a role in coordinating the stress response by acting as a 

neuropeptide in stress responsive nuclei including the amygdala (Makino et al., 

2002), dorsal RN (Uryu et al., 1992; Lowry et al., 2000), hippocampus (Herman 

and Cullinan, 1997) and LC (Butler et al., 1990; Koob and Heinrichs, 1999; 

Valentino et al., 2001). The psychological component of stress stimulates the 

release of CRF into the amygdala (Makino et al., 2002) leading to increased 

defensive responses such as fear and anxiety (Campeau and Davis, 1995; Lee 

and Davis, 1997; Walker and Davis, 1997; Sajdyket al., 1999) and activation of 

the autonomic nervous system (Krettek and Price, 1978a; Davis, 1992; Pitkänen, 

2000) through its efferent projections to areas such as the LH, DMH, RN, and 

PBN. Moreover, amygdala activation can possibly stimulate the HPA axis directly 

(Makino et al., 2002) and indirectly through the BNST (Krettek and Price, 1978a; 

Herman and Davis, 1998) whereas hippocampal activation can lead to 

dampening of the HPA axis of the stress response (Herman and Cullinan, 1997). 

CRF release into the LC promotes arousal and leads to PFC influence on the 

saliency to sensory information coming into the BLA (Valentino and Bockstaele, 

2008). Thus, CRF integrates the stress response across multiple brain areas 

mediating appropriate responses (also see Vale et al., 1981; Dunn and Berridge, 

1990; De Souza, 1995; Carrasco and Van de Kar, 2003; Muller et al., 2003b; 

Heinrichs and Koob, 2004) as well as the consolidation of long-lasting memories 

of emotionally significant experiences influenced by stressful conditions 

(McGaugh, 2002; Roozendaal et al., 2002; Hubbard et al., 2007). 
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 CRF is a member of the peptide family that includes urocortin I [(Ucn1), 

Vaughan et al., 1995], urocortin II [(UcnII), Reyes et al., 2000], and urocortin III 

[(UcnIII), Lewis et al., 2001]. These peptides produce their biological response 

through two known G-protein coupled receptors; corticotropin-releasing factor 1 

(CRF1) and corticotropin-releasing factor 2 (CRF2). While CRF has a higher 

affinity for CRF1 rather than CRF2, Ucn1 has an equally high affinity for both 

receptors. UcnII and UcnIII have greater affinity for CRF2 (Dautzenberg and 

Hauger, 2002; Bale and Vale, 2004; Hauger et al., 2006). Activation of both CRF 

receptors can stimulate adenylate cyclase activity (Chen et al., 1986; Dunn and 

Berridge, 1990; Dautzenberg et al., 2001) and the intracellular accumulation of 

cyclic adenosine monophosphate [(cAMP), Giguere et al., 1982; Dunn and 

Berridge, 1990; Sananbenesi et al., 2003] through coupling to the α subunit of Gs 

protein (Gαs; stimulatory) and the protein kinase A (PKA) pathway. Both CRF 

receptors are also involved in the regulation of the extracellularly regulated 

kinase 1/2 in AtT20 cells [(ERK1/2), Sananbenesi et al., 2003; Brar et al., 2004] 

through the PKA pathway. Independent of cAMP and the PKA pathway, CRF1 

activation can lead to inhibition of Cav3.2 T-type calcium channels through Gαs-

dependant G protein βɣ (Gβɣ) subunits (Tao et al., 2008). CRF1 and CRF2 

receptors can also signal through, a protein kinase C (PKC) mediated 

intracellular calcium mobilization and IP3 formation as observed in human 

embryonic kidney 293 (HEK293) cells, possibly by coupling to Gαq protein. 

However, this last response appears to be cell type specific because intracellular 
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calcium mobilization was not observed in SK-N-MC neuroblastomas 

(Dautzenberg et al., 2004; Wietfeld et al., 2004).  

 Dysfunction of the CRF-mediated circuits has been implicated in the 

pathophysiology of several psychiatric disorders such as anxiety, panic disorder, 

posttraumatic stress disorder and depression (Bremner et al., 1997; Yehuda, 

1997; Arborelius et al., 1999; Steckler and Holsboer, 1999; Yehuda et al., 2001; 

Heinrichs and Koob, 2004). Behaviorally, transgenic mice that overproduce CRF 

exhibit increased stress/anxiety related behaviors that are reversed by central 

administration of CRF antagonist α-helical CRF 9-41 (Stenzel-Poore et al., 1994). 

Central administration of CRF agonists induced anxiety-like responses in several 

animal tests such as open field (Sutton et al., 1982; Liang and Lee, 1988), 

elevated plus maze (Baldwin et al., 1991; Rainnie et al., 2004), conflict test 

(Britton et al., 1985), social interaction (Dunn and File, 1987; Sajdyk et al., 1999; 

Rainnie et al., 2004; Gehlert et al., 2005), acoustic startle (Swerdlow et al., 1986; 

Lee and Davis, 1997), and aversive conditioning (Cole and Koob, 1988; Cador et 

al., 1992; Heinrichs and Joppa, 2001; Hubbard et al., 2007; Sherrin et al., 2008; 

Sherrin et al., 2009). Moreover, CRF receptor antagonist alone attenuates many 

behavioral effects of stress, supporting the role of endogenous CRF in mediating 

many stress-induced behaviors (Heinrichs et al., 1995; Habib et al., 2000).  

 Evidence suggests that the anxiogenic behaviors induced by CRF are 

likely due to activation of CRF1 (Heinrichs et al., 1997; Timpl et al., 1998; Muller 

et al., 2003b; Gehlert et al., 2005). For example, mice lacking a functional CRF1 

had a higher percentage of entries into the lit compartment of a light-dark box 
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when compared to wild-type, indicating reduced anxiety-like behavior (Timpl et 

al., 1998; Habib et al., 2000). Furthermore, an intracranial (i.c.) pretreatment with 

a CRF1 antagonist prior to an anxiogenic-like dose of Ucn1 or restraint stress 

prevented an anxiety-like response in the social interaction test (Gehlert et al., 

2005). Moreover, in a double blind, placebo-controlled study of monkeys 

exposed to intense social stress, the oral administration of the CRF1 antagonist, 

antalarmin, inhibited a repertoire of behaviors associated with anxiety and fear as 

well as diminish the increase of CRF in the cerebrospinal fluid and reduced the 

pituitary-adrenal, sympathetic, and adrenal medullary responses to the stress 

(Habib et al., 2000).  

 The role of the CRF2 receptor in the anxiety/stress responses is not well 

understood. CRF2 activation can reduce anxiety-like behavior induced by CRF1 

activation (Reul and Holsboer, 2002; Bale and Vale, 2004) but can also induce 

anxiety-like behavior (Radulovic et al., 1999; Takahashi, 2001). Interestingly, a 

recent study found that the two CRF receptors have opposing influences on 

information-processing mechanisms that regulate responses to stressors 

(Risbrough et al., 2004). It has been suggested that CRF1 may be more involved 

in the cognitive aspects of behavior whereas CRF2 may be more important for 

motivation types of behavior essential for survival (Dautzenberg et al., 2001). 

Although the role of the CRF2 receptor in anxiogenesis can‟t be completely ruled 

out, based on the aforementioned information, it is highly likely that stress leads 

to persistent pathological anxiety through CRF‟s repeated activation of the CRF1 

receptor.  
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1.3  Amygdala and Anxiety 

 The amygdala has a high expression level of both CRF receptors (De 

Souza et al., 1985; Reul and Holsboer, 2002; Bale and Vale, 2004). CRF is 

released into the amygdala during stress (Koob and Heinrichs, 1999; Makino et 

al., 2002; Cook, 2004) and stress-induced behavioral changes have been 

postulated to result from amygdala CRF receptor activation (Dunn and Berridge, 

1990; Lee and Davis, 1997; Sajdyk et al., 1999; Sajdyk and Gehlert, 2000; 

Rainnie et al., 2004). Neurobiological studies of fear and anxiety have identified 

the amygdala as a central component in the processing of threat and in 

mediating an individual‟s emotional response to the perceived threat in both 

people and experimental animals (Adolphs et al., 1994; Adolphs et al., 1995; 

LeDoux, 2000; Adolphs et al., 2002; Rauch et al., 2003; Etkin et al., 2004; Phelps 

and LeDoux, 2005; Shekhar et al., 2005).  

 Located in the temporal lobe of the forebrain, the amygdala‟s key role in 

emotion is due largely to a study by Kluver and Bucy (1937) on the behavioral 

consequences of temporal lobe lesions in primates. It was found that lesioning of 

the temporal lobe altered the animals emotional response. For example, the 

lesioned animals lost their fear for snakes and people. However, it was 

Weiskrantz‟s (1956) primate study that implicated the amygdala as a key 

structure in emotion. Through the use of avoidance conditioning, Weiskrantz 

(1956) found that amygdala lesions produced emotional changes and proposed, 

based on this and other results, that amygdala lesions dissociate the emotional 

properties of the stimuli from their sensory representations. In humans, 
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individuals with bilateral degeneration of the amygdala exhibit disrupted 

emotional responses, especially fear and anxiety (Adolphs et al., 1994; Adolphs 

et al., 1995).  

 Both animal (Hilton and Zbrozyna, 1963; Kapp et al., 1982; Davis, 1992; 

Sanders et al., 1995; Sanders and Shekhar, 1995; Sajdyk and Shekhar, 1997; 

Rainnie et al., 2004) and human studies (Furmark et al., 1997; Adolphs et al., 

2002 , Critchley et al., 2002; Anand and Shekhar, 2003; Zald, 2003) have shown 

that activation of the amygdala results in behavioral and physiological responses 

associated with anxiety. Electrical stimulation of the amygdala in animals can 

alter heart rate and blood pressure (Hilton and Zbrozyna, 1963; Stock et al., 

1981; Kapp et al., 1982), cardiovascular responses consistent with an 

anxiety/fear reaction. Electrical stimulation of the amygdala in humans has been 

shown to induce feelings of anxiety/fear as well as autonomic reactions indicative 

of fear (Chapman et al., 1954; Feindel and Penfield, 1954). Furthermore, 

glucocorticoids are increased in the blood stream following electrical stimulation 

of the amygdala of animals (Matheson et al., 1971; Dunn and Whitener, 1986) 

indicating that the amygdala has an excitatory influence the HPA axis. 

 Amygdala activation can be measured using functional magnetic 

resonance imaging (fMRI) or positron emission tomography [(PET), see Anand 

and Shekhar, 2003; Rauch et al., 2003; Zald, 2003]. PET and fMRI yield maps of 

regional brain activity and amygdala activation was observed following invoked 

anxiety or fear. Amygdala activation can be invoked through multiple sensory 

modalities such as olfaction (Zald and Pardo, 1997; Zald and Pardo, 2000), 
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auditory (Morris et al., 2001; Zald and Pardo, 2002) and vision (Adolphs et al., 

2002; Whalen et al., 2002; van Marle et al., 2009).  

 The amygdala was found to have a role in different components of 

emotion associated with fear and anxiety using neuroimaging. These 

components include the fear response (Adolphs et al., 1995; Whalen, 1998; 

Whalen et al., 2002), vigilance, emotional valence or arousal (Whalen, 1998; 

Yang et al., 2002; Etkin et al., 2004; van Marle et al., 2009), phobia‟s (Larson et 

al., 2006), novelty detection (Blackford et al., 2010) and aversive learning 

(Büchel and Dolan, 2000; Critchley et al., 2002; Bishop et al., 2004; Knight et al., 

2005).  

 Futher evidence supporting amygdala‟s role in emotion is that anxiolytic 

drugs, such as the serotonin reuptake inhibitor (SRI) antidepressants (Abrams et 

al., 2005; Norbury et al., 2009; Sim et al., 2010) and BZ, seem to target the 

amygdala; particularly the BLA (Scheel-Krüger and Petersen, 1982; Petersen et 

al., 1985; Hodges et al., 1987; Sanders and Shekhar, 1995).  

 The combined evidence that 1) the amygdala contains CRF receptors (De 

Souza et al., 1985; Reul and Holsboer, 2002; Bale and Vale, 2004), 2) CRF is 

released into the amygdala during stress (Koob and Heinrichs, 1999; Makino et 

al., 2002; Cook, 2004), 3) the amygdala is the central component in the 

evaluation of threatening stimuli and activates behavioral and physiological 

responses associated with emotion such as anxiety (LeDoux, 2000; Adolphs et 

al., 2002; Rauch et al., 2003; Etkin et al., 2004; Phelps and LeDoux, 2005; 

Shekhar et al., 2005) and 4) activation of the amygdala leads to activation of the 
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HPA axis (Matheson et al., 1971; Dunn and Whitener, 1986) suggests that the 

amygdala is where CRF links stress and anxiety.  

 1.3.1  Subnuclei of the amygdala 

 The amygdala is divided into multiple subnuclei that have different 

functions including the basolateral (anterior (BLA) and posterior (BLP)), lateral 

(LA), medial (ME), and central (CE) amygdala. The LA and basolateral subnuclei 

are the major receiving areas and the ME and CE are major outflow areas 

(Amaral et al., 1992; Killcross et al., 1997; Pitkänen et al., 1997; see Fig. 1). The 

LA and BLA/P funnel and integrate the incoming sensory and cognitive 

information and the CE and ME are involved in modulating the behavioral, 

autonomic, and/or endocrine responses (Silverman et al., 1981; Gray et al., 

1989; Davis et al., 1994; Campeau and Davis, 1995; LeDoux, 2000; Carrasco 

and Van de Kar, 2003).  

 

  

 
Figure 1. Schematic representation of the major intra-amygdala 
connections. Arrows represent projection direction with the thicker arrows being 
heavier projections. Blue arrows represent LA projections, black arrows 
represent BLA projections, and the orange arrow represents a ME projection. 
Abbreviations: LA, lateral; BLA, basolateral; CE, central; ME, medial. (Adapted 
from Sanders, 2001). 
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 The separation of the specific nuclei of the amygdala involved in the 

generation of anxiety/fear responses was facilitated by studying the development 

of conditioned fear responses (Davis, 1992; Davis, 2000; LeDoux, 2000). Fear or 

aversive conditioning involves learning that certain environmental stimuli can 

predict aversive events. Thus, a previously neutral conditioned stimulus (CS) 

such as a light elicits a fear response after being associated with an aversive 

event such as a foot shock [unconditioned stimulus (US)]. After pairing, the CS 

then elicits a constellation of responses typically used to define a state of anxiety 

or fear such as defensive behaviors, autonomic and endocrine response as well 

as alterations in reflex expression like fear-potentiated startle (Davis, 1992; 

Davis, 2000). The aversive association can occur to the contextual stimuli of the 

pairing environment as well as the explicit CS (Selden et al., 1991; Helmstetter 

and Bellgowan, 1994; Muller et al., 1997; Maren, 2003; Huff and Rudy, 2004; 

Yaniv et al., 2004).  

 Using a fear conditioning paradigm, the BLA was found to have a key role 

in the development of associative memories and the subsequent expression of 

defensive behavior (Helmstetter and Bellgowan, 1994; Campeau and Davis, 

1995; Maren et al., 1996; Muller et al., 1997; Cousens and Otto, 2003; Huff and 

Rudy, 2004). For example, Campeau and Davis (1995) paired both auditory and 

visual stimuli (CSs) to a foot shock (US) and used the acoustic startle reflex as 

the behavioral index of conditioning. Pre- and post-training (pairing) electrolytic or 

N-methyl-D-aspartate (NMDA)-induced lesions of the BLA (and part of the LA) 

disrupted fear-potentiated startle to both the auditory and visual CSs (Campeau 



17 
 

and Davis, 1995). Chemical inhibition of the BLA with muscimol pre- or post-

conditioning training or testing also showed an attenuated fear response to the 

CS and training context (Muller, Corodimas et al., 1997).  

 1.3.2  Basolateral amygdala (BLA) and anxiety 

 Many lines of evidence support the BLA as key in the expression of 

stress/anxiety related behaviors (Sanders and Shekhar, 1991; Muller et al., 1997; 

Sajdyk and Shekhar, 1997; Sajdyk et al., 1999; Thielen and Shekhar, 2002; 

Rainnie et al., 2004; Sajdyk et al., 2006) as well as the acquisition of associative 

memories that influence these defensive behaviors (Helmstetter and Bellgowan, 

1994; Campeau and Davis, 1995; Maren, 1996; Muller et al., 1997; Cousens and 

Otto, 2003; Huff and Rudy, 2004). For example, rats that received four daily 

intraBLA microinjections of an anxiogenic-like dose of the CRF receptor agonist, 

urocortin 1 [(Ucn1), 100 fmoles/100 nl/side], paired with a specific type of floor in 

a two floor choice chamber (context), exhibited a dose dependant aversion to the 

floor paired with the Ucn1 injection in subsequent testing (Sajdyk et al., 2006). 

Moreover, repeatedly blocking the inhibitory gamma-aminobutyric acid (GABAA) 

receptor in the BLA of rats once a day for five days with a subthreshold dose of 

the GABAA receptor antagonist bicuculline methiodide (BMI), when paired with a 

distinct environment, results in avoidance of the treatment-paired environment 

(Thielen and Shekhar, 2002). These experiments demonstrate that BLA 

excitation can be involved in the association of an aversive motivational state 

with a distinct environment. 
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 In general, inhibition of the BLA results in the reduction of fear or anxiety-

like responses, while excitation of the BLA leads to the expression of such 

responses. For example, inhibition of glutamatergic transmission in the BLA 

blocks the acquisition and expression of conditioned fear and leads to changes in 

basal levels of anxiety (Campeau et al., 1992; Kim et al., 1993a; Sajdyk and 

Shekhar, 1997). Moreover, non-specific lesioning of the BLA of rats blocks the 

expression of aversive conditioning (Campeau and Davis, 1995) and lesioning a 

specific portion of the BLA interneuronal population results in long-lasting 

anxiety-like behavior (Truitt et al., 2007; Truitt et al., 2009). Conversely, chemical 

activation of the BLA with BMI, presumably via disinhibition of a glutamate 

signaling (Rainnie et al., 1991b, a), results in characteristics of a defense 

reaction such as increased heart rate and blood pressure (al Maskati and 

Zbrozyna, 1989; Sanders and Shekhar, 1991) as well as anxiety-like behavior in 

SI, conflict tests, and conditioned place avoidance (Sanders and Shekhar, 1995; 

Thielen and Shekhar, 2002).  

 Activation of the BLA with a threshold dose of Ucn1 (25 or 100 fmoles) 

results in an anxiety-like response in the social interaction (SI) and elevated plus 

maze (EPM) tests (Sajdyk et al., 1999; Sajdyk and Gehlert, 2000; Rainnie et al., 

2004; Gehlert et al., 2005). Furthermore, repeated microinjections of a 

subthreshold dose of Ucn1 (6 fmoles/100 nl/side) once a day for five consecutive 

days, a procedure called priming, results in long-term anxiety-like behavior 

(Sajdyk et al., 1999; Sajdyk and Gehlert, 2000; Rainnie et al., 2004; Gehlert et 

al., 2005). The fact that direct chemical application into the BLA results in 
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changes in anxiety-type responses suggests that the cell bodies within the area, 

and not the fibers of passage, are involved (Davis, 1992). 

 Experimental evidence suggests that the BLA may be the primary site for 

mediating the anxiolytic effects of benzodiazepines (BZ). Benzodiazepines work 

by enhancing the inhibitory actions of the GABAA receptor. The BLA contains one 

of the highest concentrations of GABA-benzodiazepine receptor sites (Niehoff 

and Kuhar, 1983). Direct intraBLA injections of BZ into rats elicits anticonflict 

effects (Scheel-Krüger and Petersen, 1982; Petersen et al., 1985; Hodges et al., 

1987; Sanders et al., 1995) and anxiolytic-like effects in social interaction 

(Sanders et al., 1995). Microinjection of the GABAA agonist, muscimol, into the 

BLA also has anticonflict effects (Petersen et al., 1985). Moreover, intraBLA 

injections of the BZ antagonist, flumazenil, or the GABAA antagonist, BMI, block 

the anxiolytic-like effects of peripheral administration of the benzodiazepine, 

chlordiazepoxide (Sanders et al., 1995).  

 Taken together, it appears that the BLA has a critical role in modulating 

„anxiety‟ and that repeated activation of the BLA leads to persistent pathological 

anxiety. 

 1.3.3  Anatomical connections of the BLA 

 1.3.3.1  Afferent connections to the BLA  

 The lateral and basolateral nuclei (BLA complex) receive information from 

all sensory and association cortices as well as directly from the sensory thalamus 

(Ottersen and Ben-Ari, 1979; LeDoux et al., 1990a; Amaral et al., 1992; Maren, 

1996). Other afferents to the BLA complex include the PFC (Davis et al., 1994; 
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McDonald, 1998; LeDoux, 2000), hippocampus (Phillips and LeDoux, 1992; 

Ikegaya et al., 1995; Richardson et al., 2004), BNST (Krettek and Price, 1978a; 

Pitkänen, 2000), and brainstem areas such as the parabrachial nuclei, raphé 

nuclei (RN), VTA, and LC (Krettek and Price, 1978a; Amaral et al., 1992; Fallon 

and Ciofi, 1992). 

 1.3.3.2  Efferent connections from the BLA 

 Efferents from the BLA project onto the OFC (McDonald, 1998; Pitkänen, 

2000; Schoenbaum et al., 2003), hippocampus (Ikegaya et al., 1995; Krettek and 

Price, 1978b; Pitkänen, 2000), thalamus (LeDoux et al., 1990b; Turner and 

Herkenham, 1991) and BNST (Krettek and Price, 1978a; Davis and Whalen, 

2001). 

 From the BNST projections innervate the PVN and brain stem area (Davis 

and Whalen, 2001). CE projections terminate onto the PAG (Loughlin and Fallon, 

1983; Graeff et al., 1993), PBN (Krettek and Price, 1978a; Amaral et al., 1992), 

LH (LeDoux et al., 1988), PVN (Gray et al., 1989), thalamus (Pitkänen, 2000), 

VTA, and LC (Krettek and Price, 1978a; Amaral et al., 1992; Fallon and Ciofi, 

1992). The ME projects to the PVN and DMH (Amaral et al., 1992; Pitkänen, 

2000).  

 Thus the BLA is well situated to coordinate the stress/anxiety response to 

incoming threats. The BLA assesses the environmental situation based on the 

sensory and association memories that converge onto it (LeDoux et al., 1990a; 

LeDoux, 2000) then BLA projections to the CE, ME, and the BNST regulate the 

behavioral, autonomic, and endocrine responses influenced by stressors 
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(LeDoux et al., 1988; Davis, 1998; Davis and Whalen, 2001) as described in 

section 1.1.1. 

 1.3.4  Internal circuitry of the BLA 

 The BLA is a cortex-like structure consisting of two major classes of 

neurons, large glutamatergic pyramidal cells (projection neurons) and smaller 

GABAergic nonpyramidal cells (interneurons). The output of the BLA is via 

pyramidal cell axons. In the BLA the nonpyramidal cells impinge on the pyramidal 

cells and modulate the activity of these projection neurons (McDonald, 1982; 

1992). 

 The excitatory amino acid ionotrophic receptors of N-methyl-D-aspartate 

(NMDA) and non-NMDA type are found on pyramidal as well as nonpyramidal 

cells of the BLA (McDonald, 1994). The BLA contains both intrinsic and extrinsic 

excitatory amino acid projections (Krettek and Price, 1978b; Amaral et al., 1992; 

Pitkänen, 2000). Afferent activation of pyramidal cells from connections such as 

the LA and the stria terminalis results in the expression of both a fast-excitatory 

postsynaptic potential (f-EPSP), mediated by a non-NMDA glutamate receptor, 

and a slow-EPSP (s-EPSP) that is NMDA receptor mediated (Rainnie et al., 

1991a). A concurrently activated inhibitory postsynaptic potential (IPSP) 

temporally overlaps the NMDA-mediated s-EPSP and is sensitive to BMI 

(Rainnie et al., 1991b). Local application of BMI elicited bursts of firing from the 

BLA pyramidal cells suggesting that tonic GABAergic inhibition determines the 

activity of BLA neurons (Rainnie et al., 1991b).  
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 The pyramidal cells appear to have both GABAA and GABAB receptors 

that elicit fast- and slow-IPSP‟s (f- and s-IPSP), respectively (Rainnie et al., 

1991b). Most of the nonpyramidal cells in the BLA contain the neurotransmitter 

GABA as well as neuropeptides (McDonald and Pearson, 1989). The basal 

neuronal network responses within the BLA are maintained by a balanced 

interaction between GABAergic inhibition and glutamatergic excitation (Rainnie et 

al., 1991b, a; McDonald et al., 1996). 

 1.3.5  BLA inhibitory interneurons exist as a network 

 Electrophysiological studies have demonstrated that the firing of the 

projection neurons of the BLA is tonically inhibited by GABAergic interneurons of 

the BLA (Rainnie et al., 1991b, a; Gean and Chang, 1992). There are currently at 

least four distinct classes of non-pyramidal GABAergic interneurons recognized 

within the BLA based on calcium binding protein and neuropeptide content; 1) 

parvalbumin/calbindin positive neurons; 2) somatostatin/calbindin positive 

neurons; 3) small, bipolar and bitufted internuerons that are positive for 

vasoactive intestinal peptide, calretinin, and cholecystokinin; and 4) large, 

multipolar cholecystokinin positive neurons that often contain calbindin 

(McDonald and Betette, 2001; McDonald and Mascagni, 2001; McDonald and 

Mascagni, 2002; Mascagni and McDonald, 2003; Muller et al., 2003a; 2007a; 

Muller et al., 2007b).  

 Deficits in distinct classes or sub-classes of these interneurons have been 

demonstrated to have profound effects on behaviors. For example, loss of SST 

interneurons in the BLA increases susceptibility to epileptic seizures (Tuunanen 



23 
 

et al., 1997) and selective ablation of neurokinin (substance P)-1 receptor (NK-

1r) positive cells, which are part of a larger population of SST containing 

interneurons, results in increased anxiety-like behaviors (Truitt et al., 2007). In 

addition to their unique combination of protein and neuropeptide content, these 

interneurons appear to be functionally distinct (McDonald and Mascagni, 2001; 

Mascagni and McDonald, 2003; Muller et al., 2003a; Mascagni and McDonald, 

2007; Truitt et al., 2007; Mascagni and McDonald, 2009). Furthermore, each of 

these interneurons can be differentiated by their efferent and afferent connectivity 

(McDonald, 1992; McDonald and Mascagni, 1996; Muller et al., 2003a; Muller et 

al., 2007b).  

 1.3.6  Summary of BLA role in anxiety 

 Overall, the neuroanatomical and functional data obtained suggest that 

dysfunction of information processing through the BLA could result in 

inappropriate modulation of stress control that leads to persistent pathological 

anxiety; 1) Many lines of evidence support the BLA as key in the expression of 

stress/anxiety related behaviors (Sanders and Shekhar, 1991; Sanders et al., 

1995; Sajdyk and Shekhar, 1997; Sajdyk et al., 1999; Sajdyk and Shekhar, 2000; 

Thielen and Shekhar, 2002; Rainnie et al., 2004; Sajdyk et al., 2006) as well as 

the acquisition of associative memories that influence these defensive behaviors 

(Helmstetter and Bellgowan, 1994; Campeau and Davis, 1995; Maren, 1996; 

Muller et al., 1997; Cousens and Otto, 2003; Huff and Rudy, 2004); 2) Inhibition 

of the BLA results in the reduction of fear or anxiety-like responses (Campeau et 

al., 1992; Kim et al., 1993b; Sajdyk and Shekhar, 1997) while excitation of the 
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BLA leads to the expression of such responses (al Maskati and Zbrozyna, 1989; 

Sanders and Shekhar, 1991; Sanders and Shekhar, 1995; Sajdyk et al., 1999; 

Sajdyk and Shekhar, 2000; Rainnie et al., 2004; Gehlert et al., 2005); 3) Deficits 

in distinct classes or sub-classes of BLA interneurons have been demonstrated 

to have profound effects on behaviors (Tuunanen et al., 1997; Truitt et al., 2007); 

4) The BLA may be the primary site for mediating the anxiolytic effects of 

benzodiazepine group of anxiolytics (Scheel-Krüger and Petersen, 1982; Niehoff 

and Kuhar, 1983; Petersen et al., 1985; Hodges et al., 1987; Sanders and 

Shekhar, 1995); and 5) The BLA is well situated to regulate various components 

of the stress/anxiety response (LeDoux et al., 1990a; LeDoux, 2000; Davis and 

Whalen, 2001; Shekhar et al., 2005). 

1.4  Priming of the BLA with Urocortin 1 (Ucn1) as a Model of Persistent 

Pathological Anxiety  

 As mentioned earlier, chronic stress can lead to pathological anxiety 

(Arborelius et al., 1999; Haller, 2001; van Praag, 2004; Rosenkranz et al., 2010) 

however the central mechanisms involved remain largely unknown. Animal 

models of psycho-pathological conditions may be used as simulations to study 

the mechanisms or possible etiologies of the disorder the animal model mimics 

(Willner, 1990; Willner and Mitchell, 2002). However, for an animal model to be 

useful it must have face, predictive, and construct validity (Willner and Mitchell, 

2002). Predictive validity suggests that the behavior of the animal model mimics 

the clinical behavior, face validity refers to the symptom similarities between the 
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disorder and the model, and construct validity addresses biochemical/ 

neurochemical changes as well as the anatomic area involved.  

 Neuroimaging studies suggest an increase in amygdala activation 

associated with anxiety (Anand and Shekhar, 2003; Rauch et al., 2003). Both the 

BLA and CRF are key components involved in the regulation of the of the 

stress/anxiety response (Goldstein et al., 1996; Bale and Vale, 2004; Yaniv et al., 

2004). Previous studies have shown that an acute bilateral microinjection of a 

threshold dose of the CRF agonist Ucn1 (100 fmole/100 nl/side), into the BLA of 

male Wistar rats results in the expression of anxiety-like behavior as measured in 

the SI test (Sajdyk et al., 1999; Rainnie et al., 2004; Gehlert et al., 2005). 

Furthermore, when a sub-threshold dose of Ucn1 (6 fmole/100 nl/side), a dose 

that does not produce an anxiety-like response when given acutely, is given 

repeatedly into the BLA for five consecutive days (D1-D5) two things occur; 1) 

behavioral sensitization in that there is a significant decrease in social interaction 

on injection D3 as compared to baseline (Sajdyk et al., 1999; Rainnie et al., 

2004) and 2) a persistent anxiety-like phenotype develops that can last at least 

five weeks after the last Ucn1 injection(Sajdyk et al., 1999; Sajdyk and Gehlert, 

2000; Rainnie et al., 2004; Gehlert et al., 2005). Moreover, the persistent 

changes in anxiety-like behavior induced by Ucn1-priming are associated with an 

increase in BLA network excitability (Rainnie et al., 2004). 

 The microinjection of a subthreshold dose of Ucn1 (6 fmoles) into the BLA 

once a day for five consecutive days (D1-D5) is termed Ucn1-priming. Priming 
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the amygdala with Ucn1 produces an animal model that has predictive, face and 

construct validity for pathological anxiety. 

The animal model of pathological anxiety induced by Ucn1 priming has 

face validity in that 1) the Ucn1-primed animals develop a persistent anxiety-like 

behavior and 2) the persistent change in anxiety-like behavior induced by Ucn1-

priming is associated with an increase in BLA network excitability (Rainnie et al., 

2004) indicative of increased amygdala activation.  

The construct validity of the Ucn1-primed animal model of pathological 

anxiety is evident in that both CRF and the BLA are key components involved in 

the regulation of the of the stress/anxiety response (Goldstein et al., 1996; Bale 

and Vale, 2004; Yaniv et al., 2004) and Ucn1, a CRF agonist, was infused into 

the BLA of the rat to induce the development of the persistent anxiety-like 

behavior.  

The animal model mimicks clinical behavior in that repeated 

microinjections of Ucn1 into the BLA, mimicking repeated exposure to stress, 

leads to the development of a persistent anxiety-like phenotype (Sajdyk et al., 

1999; Sajdyk and Gehlert, 2000; Rainnie et al., 2004; Gehlert et al., 2005). 

Moreover, the persistent anxiety-like phenotype that develops responds to the 

anxiolytic drug, alprazolam, a potent benzodiazepine agonist (Shekhar et al., 

2003). Furthermore, the physiological symptoms of anxiety include increased 

heart rate, blood pressure, and respiratory rate (Habib et al., 2001; Carrasco and 

Van de Kar, 2003). Animals primed with Ucn1 also demonstrate increased heart 

rate and respiration following intravenous sodium lactate, a panicogenic agent in 
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susceptible individuals (Sajdyk and Shekhar, 2000). These physiological 

symptoms also increase the face validity of the Ucn1-primed animal of 

pathological anxiety.  

Thus, the rats that develop behavioral sensitization during and a persistent 

anxiety-like phenotype following repeated CRF1 activation in the BLA could be a 

mechanistic model of the neurobiological changes that occur during the 

development of anxiety disorders. 

1.5  Specific Aims, Rationale, and Working Hypotheses 

 For some individuals, repeated episodes of the stress response lead to 

pathological anxiety and depression (Gispen-de Wied and Jansen, 2002; van 

Praag, 2004) however the central mechanisms that lead to anxiety disorders 

remain largely unknown. As described earlier, CRF and the BLA have been 

identified as important mediators of stress and anxiety responses (Vale et al., 

1981; Koob and Heinrichs, 1999; Adolphs et al., 2002; Shekhar et al., 2005) as 

well as for associative memories of aversive events (Goldstein et al., 1996; 

LeDoux, 2000; McGaugh, 2002; Roozendaal et al., 2002; McGaugh, 2004) and 

dysfunction in CRF-mediated circuits has been implicated in the pathophysiology 

of anxiety (Bremner et al., 1997; Yehuda, 1997; Arborelius et al., 1999; Steckler 

and Holsboer, 1999; Heinrichs and Koob, 2004). Mimicking repeated episodes of 

the stress response, a sub-anxiogenic dose of Ucn1 (6 fmoles) is microinjected 

into the BLA of rats once a day for five consecutive days (priming). This results in 

1) behavioral sensitization, such that a previously non-efficacious dose of Ucn1 

will elicit anxiety-like response after the third injection and 2) the development of 
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a persistent anxiety-like phenotype that lasts at least five weeks after the last 

injection without any further treatment. Therefore, the overall objective of this 

thesis is to identify mechanisms involved in the Ucn1-priming-induced 

anxiogenic-like effects. The central hypothesis is that Ucn1-priming involves 

intrinsic changes within BLA neurotransmitter/neuropeptide systems induced by 

repeated stimulation of the BLA CRF receptors that leads to the expression of 

persistent anxiety-like behavior. The central hypothesis will be tested with the 

following specific aims: 

 1.5.1  Specific Aim 1 

 Determine the extent to which the persistent anxiety-like phenotype of rats 

observed following Ucn1-priming is the result of aversive conditioning to the SI 

arena (context) and/or the presence of a novel partner. 

 1.5.1.1  Working Hypothesis 1 

  If the persistent anxiety-like phenotype induced by Ucn1-priming is due to 

intrinsic changes in the BLA from repeated stimulation of the CRF receptors then 

priming without exposure to the SI arena and/or a novel partner will result in a 

persistent anxiety-like phenotype post-priming. 

 1.5.1.2  Rationale 1 

 To date, the development of a persistent anxiety-like state/phenotype 

induced by Ucn1-priming in rats has been investigated using the following 

priming protocol: Male Wistar rats, fitted with chronic bilateral guide cannulae 

targeting the BLA, receive a daily bilateral i.c. microinjection with either vehicle 

[Veh, 1% bovine serum albumin/100 nl/side] or a sub-anxiogenic dose of 
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Urocortin 1 [(Ucn1), 6 fmoles/100 nl/side] for five consecutive days (Sajdyk et al., 

1999; Rainnie et al., 2004). The animals undergo SI testing at baseline (D0) and 

priming days 1 (D1), 3 (D3), and 5 [(D5), see Fig. 2] with post-priming SI tests 

anywhere from one to five weeks later carried out without any further treatment 

(Shekhar et al., 2003; Rainnie et al., 2004; Truitt et al., 2007). By priming D3 

Ucn1-primed animals display a significant decrease in SI compared to baseline 

and veh-primed rats and the anxiety-like behavior continues post-priming. 

 Considering that CRF receptor activation facilitates aversive conditioning 

(Heinrichs and Joppa, 2001; Sherrin et al., 2008; Sherrin et al., 2009), that 

conditioning can occur to a testing apparatus following BLA pharmacological 

manipulation (Helmstetter and Bellgowan, 1994; Thielen and Shekhar, 2002; 

Sajdyk et al., 2006) and confirmation of a persistent anxiety-like phenotype 

occurs under the same conditions as were used during the priming injections, it is 

possible that the persistent anxiety-like phenotype that develops is a result of 

aversive conditioning to the SI testing procedure (introduction of a novel partner) 

or the arena itself. 

 1.5.1.3  Objective 1 

 To investigate the role of the testing environment on the development of 

persistent anxiety-like behavior following Ucn1-priming, adult rats underwent 

repeated pharmacological manipulation of the BLA with Ucn1 then anxiety-like 

behavior was assessed with the social interaction (SI) test. The contextual cues 

tested were 1) the familiar open field SI arena and 2) the presence of a novel 

partner.  
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Figure 2. Timeline for a standard priming experiment. Male Wistar rats fitted 

were with bilateral guide cannulae targeting the BLA then habituated to the SI 
arena after recovering from surgery. Forty-eight hours following a baseline SI 
test, rats were microinjected once a day for 5 consecutive days with either 
vehicle (Veh) or Urocortin 1 (Ucn). Under standard priming conditions rats are 
placed in SI 30 minutes after microinjection on D1, D3, & D5 of priming. 
   
 

 1.5.2  Specific Aim 2 

  Determine the potential intrinsic neurotransmitter/ neuropeptide system(s) 

changes involved in Ucn1-priming that induce a persistent anxiety-like 

phenotype. 

 1.5.2.1  Working Hypothesis 2 

 If Ucn1-priming induces changes in the gene expression of the 

neurotransmitter/neuropeptide receptor(s) within the BLA then changes in the 

transcription of the neurotransmitter/neuropeptide receptors in the BLA likely 

involved in the expression of the persistent anxiety-like phenotype will occur and 

the likely candidates are the neurotransmitter/neuropeptide receptor(s) within the 

BLA previously shown to have a role in anxiety-like behavior. 
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 1.5.2.2  Rationale 2 

 Normal responding of rats in SI appears to be regulated by a balanced 

interaction between GABAergic inhibition and glutamatergic excitation which 

maintains the basal neuronal network response within the BLA (Rainnie et al., 

1991b, a; McDonald and Mascagni, 1996). The persistent anxiety-like behavior 

observed after Ucn1-priming correlates with an increase in network excitability in 

the BLA of Ucn1-primed rats (Rainnie et al., 2004). The activity of the projection 

neurons is modulated by the GABAergic interneurons (McDonald, 1982; 1992) 

therefore this change in the network properties observed following Ucn1-priming 

is likely due to a change in the inhibitory neurotransmission.  

 Currently, there are at least four subclasses of GABAergic interneurons 

recognized within the BLA that are functionally distinct and contain a unique 

distribution of neuropeptides (McDonald, 1982; 1992; Muller et al., 2003a; Truitt 

et al., 2009). Many neurotransmitters and neuropeptides located within the BLA 

have been implicated in anxiety (Washburn and Moises, 1992a; Washburn and 

Moises, 1992b; Washburn and Moises, 1992c; Heilig et al., 1994; Helmstetter 

and Bellgowan, 1994; Sanders et al., 1995; Sanders and Shekhar, 1995; 

Rainnie, 1999; Viollet et al., 2000; Grace and Rosenkranz, 2002; Millan, 2003; 

Sajdyk et al., 2004; Abrams et al., 2005; Viollet et al., 2008; Engin and Treit, 

2009; Rostkowski et al., 2009). A long-term change could be occurring within any 

of the neurotransmitters/ neuropeptides systems within the BLA that leads to 

persistent changes in the neuronal response of the BLA associated with the 

persistent anxiety-like phenotype.  



32 
 

 Regulation of gene expression is one mechanism that can lead to 

relatively stable changes within neurons (Nestler et al., 1993). Therefore changes 

in the gene expression of neurotransmitter/neuropeptide receptors, and 

regulators thereof, within the BLA were further investigated to determine what 

neurotransmitter/neuropeptide systems are likely involved in the persistent 

anxiety-like behavior observed post Ucn1-priming. The mechanisms of the 

suggested network change are likely complex.  

 1.5.2.3  Objective 2 

 To investigate what neurotransmitter/neuropeptide systems within the BLA 

are possibly involved in the development of the persistent anxiety-like phenotype 

observed after Ucn1-priming, adult rats underwent repeated pharmacological 

manipulation of the BLA with Ucn1 for five consecutive days. SI was used to 

verify the development of the persistent anxiety-like phenotype. Changes in 

mRNA between Ucn1- and Veh-primed rats were assessed using a RT-PCR 

array system composed of 84 neuroscience related genes.  

 1.5.3  Specific Aim 3 

 Further test the role of the identified neurotransmitter/neuropeptide 

receptor system(s) identified in Specific Aim 2 in the expression of anxiety-like 

behavior utilizing pharmacological manipulations in the BLA. 
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 1.5.3.1  Working Hypotheses 3a 

 If decreased receptor mRNA expression in the BLA observed following 

Ucn1-priming is causally linked to the expression of persistent anxiety-like 

behavior then reducing the receptor activity with the appropriate antagonist will 

increase anxiety-like behavior and vice versa. 

 1.5.3.2  Working Hypotheses 3b 

 If decreased somatostatin regulated inhibition through the Sstr2 receptors 

in the BLA is causally linked to the expression of persistent anxiety-like behavior 

following Ucn1-priming then increasing the Sstr2 receptor activity in the BLA with 

the appropriate agonist prior to the Ucn1-priming injection will block the 

development of 1) behavioral sensitization and/or 2) the persistent anxiety-like 

phenotype.  

1.5.3.3  Rationale 3 

In this current study, results from the Neurotransmitter Receptors and 

Regulators RT²Profiler™ PCR Array system showed a unique profile of changes 

with a significant decrease in only five mRNAs in the Ucn1-primed group of 

tissue as compared to the veh-primed; they are somatostatin receptors 2 and 4 

(Sstr2 and Sstr4), cholinergic nicotinic receptor alpha4 (Chrna4), cholinergic 

muscarinc receptor 4 (Chrm4) and GABA receptor rho1 (Gabrr1).  

At the time that Experiment 2 was completed the tools available for 

studying these receptors varied by receptor. Antagonists were available for Sstr2 

(Feniuk et al., 2000; Nunn et al., 2003) and Gabrr1 (Chebib, 2004). A specific 

Sstr4 receptor antagonist did not exist and antagonists for muscarinic receptors 
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lacked specificity for individual receptor subtypes (Degroot and Nomikos, 2006). 

Antagonists and agonists for Chrna4 were indirectly available in that nAchR were 

developed for specific combinations of α and β subunits or α7 (Andersen and 

Arneric, 1994; Xiao et al., 1998; Dhar et al., 2000). Specific agonists were 

available for Sstr2 (Halloway et al., 1996; Way et al., 1996; Cescato et al., 2006), 

Sstr4 (Ankersen et al., 1998; Smith et al., 2001), Gabrr1 (Chebib, 2004) and 

Chrma4 (Ishii and Kurachi, 2006). 

Reviewing the literature did not reveal a role for Sstr4 or Gabrr1 containing 

receptors, GABAC, in anxiety but the remaining three genes did. Chrm4 knock-

out mice displayed anxiolytic-like behavior by decreased shock-probe burying in 

the shock-probe burying model of anxiety (Degroot and Nomikos, 2006). Sstr2 

(Viollet et al., 2000) and Chrna4 (Ross et al., 2000) knock-out mice displayed 

anxiety-like behavior in the EPM. Of these genes, Sstr2 and Chrna4 mRNA 

showed the most significant decrease in mRNA for Ucn1-primed compared to 

Veh-primed rats. However, in the amygdala, cholinergic receptors (both nicotinic 

and muscarinic) are involved in memory consolidation of emotional learning tasks 

(Ohno et al., 1993; Introini-Collison et al., 1996; Addy et al., 2003; Boccia et al., 

2009). Sstr2‟s role in anxiety is more specific to the BLA. 

SST increases inward rectifying K+ current of amygdala projection 

neurons in amygdala slice preparations through Sstr2 (Meis et al., 2005) 

suggesting that Sstr2 activation would lead to a decrease in neuronal excitability 

and eventually inhibit spontaneous firing of the projection neurons (Meis et al., 

2005). Furthermore, targeted lesions of neurokinin 1 receptor (NK-1r) positive 



35 
 

cells which contain about half of the SST-GABA interneurons in the BLA resulted 

in persistent anxiety-like behavior (Truitt et al., 2007). 

1.5.3.4  Objective 3 

To determine the role of Chrna4 or Sstr2 in anxiety, adult rats underwent 

pharmacological manipulation of the BLA with the appropriate antagonists  

1) nicotinic acetylcholine (nAch) antagonists; Mecamylamine Hydrochloride or 

Dihydro-beta-erythroidine hydrobromide (DHβE) or 2) the Sstr2 antagonist CYN-

154806.  

To determine the effect of an agonist pretreatment during priming on the 

expression and development of anxiety-like behavior, the Sstr2 agonist BIM-

23027 was co-administered with Ucn1 during priming. SI was used to assess the 

expression of anxiety-like behavior during and post priming. 

1.5.4  Specific Aim 4 

Determine if a reduction in Sstr2 mRNA is associated with the behavioral 

sensitization. 

1.5.4.1  Working Hypotheses 4 

The quantity of Sstr2 mRNA will be reduced in rats expressing anxiety-like 

behavior following three Ucn1-priming injections as compared to those rats that 

do not.  

1.5.4.2  Rationale 4 

Ucn1-priming results in the development of behavioral sensitization and a 

persistent anxiety-like phenotype post priming (Sajdyk et al., 1999; Rainnie et al., 

2004). Findings from experiments within this thesis revealed a significant 
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reduction in the Sstr2 mRNA post Ucn1-priming of the BLA. Pretreatment with a 

Sstr2 agonists during priming delayed the development of behavioral 

sensitization but did not prevent the development of the persistent anxiety-like 

phenotype. 

Sstr2 activation can lead to a decrease in neuronal excitability (Meis et al., 

2005) and Ucn1-priming leads to an increase in neuronal excitability (Rainnie et 

al., 2004). If the decrease in SI is associated with the Sstr2 mRNA content then 

there will be less Sstr2 mRNA for the Ucn1-primed group pretreated with a 

vehicle during priming as compared to the Ucn1-primed rats pretreated with the 

Sstr2 agonist BIM-23027. 

1.5.4.3  Objective 4 

Experiments were designed to investigate the effect pretreatment with the 

Sstr2 agonist BIM-23027 had on the Sstr2 mRNA quantity. Adult rats underwent 

repeated pharmacological manipulation of the BLA with co-administration of BIM-

23027and Ucn1. Changes in mRNA were assessed on priming D3 and post 

priming with qRT-PCR (standard curve). 
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METHODS AND MATERIALS 

The overall objective of this thesis was to elucidate mechanisms involved 

in the persistent anxiety-like behavior/phenotype that develops after urocortin 1 

(Ucn1)-priming. Methods and procedures outlined below are well established. 

The general methods used throughout the thesis will be described first then the 

specific protocols for each experiment will follow. Each protocol contains details 

of the procedures used for that particular experiment and the type of statistics 

used. 

2.1  General Methods 

2.1.1  Animals 

All experiments were conducted with male Wistar rats (275 - 300 g) 

obtained from Harlan Laboratories (Indianapolis, IN). Upon arrival the animals 

are individually housed, given food and water ad libitum, and maintained at 

standard environmental conditions (72 ˚F; 12 - 12 hour light/dark schedule; lights 

on at 7:00 A.M.). Rats were acclimated to the animal care facility for 5 - 10 days 

prior to any surgery/procedure. Animal care procedures were conducted in 

accordance with the National Institute of Health Guidelines for the Care and Use 

of Laboratory Animals and the Indiana University-Purdue University Indianapolis 

Institutional Animal Care and Use Committee. 

2.1.2  Cannulae placement surgery procedure 

All drugs/compounds used for this thesis were introduced into the 

basolateral amygdala (BLA) by intracranial (i.c.) microinjections. Guide cannulae 

were implanted in the brain to provide specific access to the BLA for the 
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microinjection. Before guide cannulae placement surgery, rats were anesthetized 

in a closed Plexiglas box which was connected to an isoflurane system (MGX 

Research Machine; Vetamic, Rossville, IN, USA). The anesthetized rat was 

placed in a stereotaxic instrument (Kopf Instruments, Tujunga, CA) with the 

incisor bar set at -3.3 mm. Isoflurane was continually administered via a nose 

cone on the incisor bar permitting rats to remain under anesthesia for the 

remainder of the surgery. Two sterilized stainless steel guide cannulae (26 

gauge, 10 mm length; Plastics One, Roanoke, VA) were fixed onto the 

stereotaxic arms used to locate amygdala coordinates (anterior/posterior (AP):  

-2.1 and medial/lateral (ML): +5.0 from bregma) according to the Paxinos and 

Watson (1986) rat brain atlas. Two small holes were bored into the skull so that 

the cannula guide could be lowered into the BLA to the dorsal/ventral (DV) 

coordinate -8.0 from the top of the skull (Paxinos and Watson, 1986). This depth 

placed guide cannulae just above the BLA. The guide cannulae were placed in 

this position so that the microinjectors, which extend 1 mm below the guide 

cannulae, target the proper place of the BLA for the i.c. microinfusion. The guide 

cannulae were secured into place using three 2.4-mm stainless steel screws 

attached to the skull, Loc-tite adhesive, and cranioplastic cement layered on top 

of the dried adhesive to stabilize the adhesive cap. The guide cannulae were 

sealed with removable stylets (Plastics One, Roanoke, VA) that also extended  

1 mm below the guide cannulae to ensure patency. After surgery, rats were 

returned to their home cage and allowed to recover for at least 72 hours before 

behavior testing. 
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2.1.3  Intracranial drug microinjections 

All compounds were dissolved in a 1% Bovine Serum Albumin [(BSA), 

Sigma; St. Louis, MO] vehicle and delivered bilaterally into the BLA through 33 

gauge injection cannulae (Plastics One, Roanoke, VA) each connected to a 10 μl 

Hamilton syringe via polyethylene tubing (PE 50; Fisher Scientific, Pittsburgh, 

PA). Drugs were microinfused at a volume of 100 nl delivered over 30 seconds 

via a syringe pump (Havard Apparatus, Holliston, MA, Model PHD 2000). The 

cannulae were left in place for one minute following the microinjection to 

maximize diffusion away from the tip. To insure drug delivery, smooth flow from 

the cannulae tip was verified before and after each microinjection (Sajdyk et al., 

1999). 

2.1.4  Experimental drugs/compounds 

Intracerebral injections were carried out using the following compounds: 

Urocortin 1 (Ucn1), Mecamylamine Hydrochloride, and Dihydro-beta-erythroidine 

hydrobromide [(DHβE), Sigma; St. Louis, MO], BIM-23027 (American Peptide 

Company, Inc; Sunnyvale, CA); and CYN-154806 [Ac-4NO2-Phe-c(DCys-Tyr-

DTrp-Lys-Thr-Cys)-D/LTyr-NH2; [(Tocris Cookson, Inc; Ellisville, MO), Table 1]. 

The dose given was specific to the designed experiment and outlined within the 

relevant experimental protocol. 
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Table 1. Drugs/Compounds utilized for the experiments for this thesis 

 

Drugs/Compounds Abbreviation Activity 

Bovine Serum Albumin (BSA) Veh vehicle 

Urocortin 1 Ucn1 CRF receptor agonist 

BIM-23027  BIM-23027 Sstr2 agonist 
Ac-4NO2-Phe-c(DCYs-Tyr-DTrp-Lys-Thr-Cys)     

-D/L Tyr-NH2 CYN-154806 Sstr2 antagonist 

Mecamylamine Hydrochloride   α3β4nAch antagonist 

Dihydro-beta-erythroidine hydrobromide  DHβE α4β2nAch antagonist 
 
 

2.1.5  Placement verification  

Rats were anesthetized with isoflurane, then immediately sacrificed. Only 

data from animals with bilateral cannulation of the BLA by comparison with the 

Paxinos and Watson (1986; 2005) atlas were included in the data analysis. To 

verify placement, rats were sacrificed using a guillotine. The brains were quickly 

removed from the skull and “flash” frozen in 4-methylbutane (Fisher Scientific) on 

dry ice (approximately -50 ˚C). The brains were stored at -80 ˚C until they were 

sliced with a cryostat to verify placement of injectors and/or for tissue analysis of 

RNA.  

If the brain tissue was going to be collected for RNA analysis; the brains 

were sectioned with a cryostat into 300 micron thick sections. Cannulae guide 

placement was verified visually, and the microinjector tip location was 

immediately marked on an amygdala template copied from Paxinos and Watson 

(2005) to represent the section of the brain where the tip was located. If the brain 

tissue was not needed for RNA analysis, the brains were sliced into 40 micron 

sections, mounted onto a positive charged microscope slide then stained to 
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facilitate verification of the cannulae guide placement. (The neutral red and cresyl 

violet tissue staining protocols were equally effective.) 

Identifying the amygdala was discerned using Paxinos and Watson (2005) 

as a guide. Markers such as the fiber tracts of the external capsule, stria 

terminalis and the optic tract as well as the size and location of the lateral 

ventricles and the hippocampal formation were used to facilitate amygdala 

identification. A dissecting microscope was used to examine the coronal sections 

mounted on microscope slides.  

2.1.6  Social interaction (SI) test 

The social interaction (SI) test is a fully validated test for anxiety-like 

behavior (File and Hyde, 1978; File, 1980; File and Seth, 2003). A modified 

version of the SI test was used to measure anxiety-like behavior for this thesis 

(Guy and Gardner, 1985; Sanders and Shekhar, 1995; Sajdyk et al., 1999; 

Rainnie et al., 2004). The SI time was defined as the time the experimental 

animal spent engaging in SI in a five minute test. Social interaction is defined as 

the non-aggressive contact of the experimental animal with the partner animal 

such as sniffing, crawling over, following, and tail pulling. A decrease in SI time is 

considered an increase in anxiety-like behavior and vice-versa. Rats have higher 

baseline SI times in low-lighted, familiar areas (File and Hyde, 1978; File, 1980). 

Therefore SI experiments were carried out under low light conditions (40 watt red 

light) and in a familiar SI testing arena to facilitate detection of SI reductions 

influenced by treatment conditions (anxiogenic-like). 
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The SI testing arena was a 36”L x 36”W x 12”H wooden box with an open 

top. On the floor of the SI arena, three rows of three 12” x 12” square cells were 

outlined. The following interactions were also quantified from the SI session to 

measure mobility: (1) vertical exploration or rearing; measured as the number of 

times the rat reared onto hind legs and (2) locomotion; measured as the number 

of times at least the upper half of the body of the treated rat advanced from one 

floor square to the next. All behavior testing was performed between 8:00 a.m. 

and 1:00 p.m. All sessions were recorded via a camera mounted above the 

testing arena and scored later. 

To familiarize the rats with the testing conditions, both the experimental 

and the partner rats were habituated to the behavior room and SI apparatus at 

least 24 hours, but no more than 48 hours, before the SI test. Habituation 

involved placing the animals in the behavior room under low light conditions (40 

watt red light) for at least a half an hour before placing them into the SI arena. 

Only one rat was habituated to the SI apparatus at a time. The rat was released 

into a corner of the SI apparatus and allowed to explore for 5 minutes and 30 

seconds.  

The SI protocol involves simultaneously releasing the treated experimental 

rat and a novel untreated partner into the SI arena from opposing corners. All 

partners were of the same sex and similar weight, had been housed under 

identical conditions, and had no previous contact with the treated animal. The 

experimental rat was placed in the testing room immediately after the i.c. 

microinjection and allowed to acclimate to the testing room for 30 minutes before 
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the SI test. All partner rats were placed in the room at least 30 minutes prior to 

testing. To ensure that a full five minutes of the test were captured on tape, the 

SI test was recorded for five minutes and 30 seconds with only the first five 

minutes of the session scored from the videotape. The SI testing arena was 

thoroughly cleaned after each individual test session. SI tests were separated by 

48 hours. 

2.1.7  Exclusion criteria data analysis 

Animal data were excluded from analysis for a number of reasons. These 

reasons included loss of guide cannulae cap, blockage of a guide cannula 

preventing microinjection, infection, illness, loss of data point due to incomplete 

recording of SI session (tape stopped), expiration, outlier, guide cannulae 

placement outside of amygdala or only unilateral, unable to verify cannulae 

placement, brain deformity or low N. A minimum of N=3 per treatment group was 

required for analysis. 

2.2  Experimental Protocols 

 2.2.1  Experiment 1 Protocol: Determine if the persistent anxiety-like 

phenotype of rats observed following Ucn1-priming is the result of adverse 

conditioning to the SI arena (context) and/or the presence of a novel partner 

2.2.1.1  Hypothesis 1 

If the persistent anxiety-like behavior observed after Ucn1-priming is a 

result of aversive conditioning to the SI arena and/or the novel partner of the SI 

test then priming without exposure to the SI arena and/or a novel partner 
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following the Ucn1 priming injection will not lead to the development of the 

persistent anxiety-like phenotype. 

Under standard Ucn1-priming protocol, the animals underwent SI testing 

at baseline (D0) and priming days 1 (D1), 3 (D3), and 5 [(D5), see Fig. 3a] with 

post-priming SI tests anywhere from one to five weeks later carried out without 

any further treatment (Shekhar et al., 2003; Rainnie et al., 2004; Truitt et al., 

2007). Previous studies show that CRF receptor activation can facilitate aversive 

conditioning (Heinrichs and Joppa, 2001; Sherrin et al., 2008; Sherrin et al., 

2009) and that conditioning can occur to a testing apparatus following BLA 

pharmacological manipulation (Helmstetter and Bellgowan, 1994; Thielen and 

Shekhar, 2002; Sajdyk et al., 2006). Considering that confirmation of a persistent 

anxiety-like phenotype occurs under the same conditions as were used during 

the priming injections, it is possible that the persistent anxiety-like phenotype that 

develops following Ucn1-priming is a result of aversive conditioning to the SI 

testing procedure (introduction of a novel partner) or the arena itself. To 

determine the extent to which conditioning during BLA priming affected the 

development of the persistent anxiety-like behavior observed in Ucn1-primed 

rats, rats were fitted with bilateral cannulae guides targeting the BLA. On D1, D3, 

and D5 of priming, rats were exposed to one of three priming conditions; 1) home 

cage (HC) condition, where the rat was immediately returned to his home cage 

following the priming injection, 2) no partner (NP) condition, where the rat was 

placed alone in the SI testing arena (without a partner) 30 minutes following the 

priming injection and 3) partner (P) condition; where the rat was placed into the 
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SI testing arena with a novel partner 30 minutes after the priming injection. On 

D7 (48 hours after priming was completed) all rats were re-exposed (re-

habituated) for a five minute period to the SI chamber they were habituated to 

then baselined in previously. Seventy two hours after priming was completed 

(D8) all primed rats were placed in the familiar SI test arena with a novel 

untreated partner rat for a five minute SI test to determine if a persistent anxiety-

like phenotype developed (Fig. 3b). In addition to testing the different 

conditioning paradigms, the affects of Ucn1- versus veh-priming was also 

assessed. There was an N=6 per testing group and the six testing groups were; 

1) Veh.HC, veh-primed, home cage condition, 2) Veh.NP, veh-primed, no partner 

condition, 3) Veh.P, veh-primed, partner condition, 4) Ucn.HC, Ucn1-primed, 

home cage condition, 5) Ucn.NP, Ucn1-primed, no partner condition and 6) 

Ucn.P, Ucn1-primed, partner condition. 

Vertical exploration and locomotion were also quantified from the SI 

session to measure mobility. Rats were sacrificed 48 hours after the last SI test 

[(D10); five days after priming ceased] following light anesthesia with isoflurane. 

Cannulae guide placement was verified and brain tissue was micropunched for 

RNA analysis. 
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Figure 3. Timelines for (a) a standard priming experiment versus (b) Experiment 1 design 
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Figure 3. Timelines for (a) a standard priming experiment versus (b) 
Experiment 1 design; an experiment designed to test the influence of the SI 
arena (context) and/or partner on the development of a persistent anxiety-
like phenotype. a. & b. Male Wistar rats were fitted with bilateral guide cannulae 

targeting the BLA then were habituated to the SI arena after recovering from 
surgery. 48 hours following a baseline SI test, rats were microinjected once a day 
for 5 consecutive days with either vehicle (Veh) or Urocortin 1 (Ucn). a. Under 
standard priming conditions rats are placed in SI 30 minutes after microinjection 
on D1, D3, & D5 of priming. b. To test the influence of context (SI arena) or SI 
procedure (partner) during priming on the post-priming SI, rats were prepared for 
priming as described for standard priming, however, on D1, D3, & D5 rats were 
exposed to one of three different priming contexts 30 minutes after a Veh or 
Ucn1 priming injection; 1) home cage (HC) condition, where the rat was 
immediately returned to his home cage following the priming injection, 2) no 
partner (NP) condition, where the rat in placed in the SI testing arena without a 
partner present 30 minutes following the priming injection and 3) partner (P) 
condition (standard priming) where the rat was placed in the SI arena with a 
partner 30 minutes following a priming injection. 
 

 

2.2.1.2  Data analysis  

Only data from rats with bilateral cannulation of the BLA were included in 

the analysis (Paxinos and Watson, 1998; see Fig. 4). Using SPSS analysis 

software, social interaction, locomotion, and vertical exploration were analyzed 

using the two way analysis of variance (ANOVA) with repeated measure where 

context and drug treatment were the independent variables and time [SI (secs)], 

square advances, and rearing frequency were dependant variable(s), and day of 

testing was the repeated measure. Significance was set at p<0.05. When 

appropriate, post hoc tests were performed with a Dunnett‟s used for comparison 

of SI times back to baseline within group and a Fisher‟s Least Square Difference 

(LSD) compared SI times between groups. The Bonferroni pairwise (Graphpad 

PRISM) test was used to compare replicate means back to baseline for the SI 

tests of the different priming conditions.  
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Figure 4. Schematic representation of the bilateral injection sites of rats 
used to determine the effect of the the SI arena and/or the partner rat on 
persistent anxiety-like behavior. Section templates represent amygdala 
sections from the atlas of Paxinos and Watson (1998). Numbers on the lower 
right indicate distance (mm) posterior from bregma. The scale on the right 
represents distance (mm) ventral to bregma. Symbols represent: open square, 
veh-primed home cage condition; open triangle, veh-primed, no partner 
condition; open circle, veh-primed, partner condition; closed square, Ucn1-
primed, home cage condition; Ucn1-primed, no partner condition; Ucn1-primed, 
partner condition. Some sites may be obscured due to overlapping symbols. 
Abbreviations: LAdl - dorsal lateral amygdala; LAv l- ventral lateral amygdala; 
BLp - posterior basolateral amygdala; BLa - anterior basolateral amygdala. 
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2.2.2  Experiment 2 Protocol: Determine if Ucn1-priming induces changes in 

gene expression in neurotransmitter/neuropeptide receptors within the BLA 

2.2.2.1  Hypothesis 2 

If Ucn1-priming induces changes in gene expression in 

neurotransmitter/neuropeptide receptors in the BLA then changes in transcription 

of neurotransmitter/neuropeptide receptors will occur in the BLA of the rats 

primed with Ucn1. 

Regulation of gene expression is one mechanism that can lead to 

relatively stable changes within neurons (Nestler et al., 1993). Therefore changes 

in gene expression for receptors within the BLA previously associated with 

anxiety were further investigated to determine what neurotransmitter/ 

neuropeptide receptor systems are likely involved in the expression of the 

persistent anxiety-like behavior observed post Ucn1-priming. The mRNA 

expression from the BLA of veh- and Ucn1-primed animals was analyzed with 

relative quantitative real-time polymerase chain reaction (qRT-PCR) using a 

predesigned panel of 84 neuroscience genes referred to as “Neurotransmitter 

Receptors and Regulators RT²Profiler™ PCR Array” (Table 2, SABioscience). 

Tissue samples were collected five days after priming ceased (D10) from a 

subset of rats from Experiment 1[vehicle (N=6), Ucn1-primed (N=6), partner rats 

as untreated controls (N=6)]. The rats were sacrificed by decapitation, the brains 

promptly removed, quickly frozen then stored at -80 ˚C until they were sliced with 

a cryostat and micro-punched to obtain tissue samples for qRT-PCR. The total  
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Table 2. Gene panel for the Neurotransmitter Receptors and Regulators 
RT²Profiler™ PCR Array 
 

  Biosynthesis, 
catabolism, anchoring, 

transport genes 
Class Receptor / rec. subunit 

genes 
Inhibitory 
amino acids 

GABA: Gabra1, Gabra2, 
Gabra3, Gabra4, Gabra5, 
Gabra6, Gabrb2, Gabrb3, 
Gabrd, Gabre, Gabrg1, Gabrg2, 
Gabrp, Gabrq, Gabrr1, Gabrr2,  

Gad1, Gad2, Abat 

Glycine: Glra1, Glra2, Glra3, 
Glrb 

Catecholamines Dopamine: Drd1a, Drd2, Drd3, 
Drd4, Drd5 

Comt, Maoa, Th 

Serotonin: Htr3a 

Cholinergic Nicotinic: Chrna1, Chrna2, 
Chrna3, Chrna4, Chrna5, 
Chrna6, Chrnb1, Chrnb2, 
Chrnb3, Chrnb4, Chrnd, Chrne, 
Chrng 

Chat, Prima1, Anxa9  

Musarinic: Chrm1, Chrm2, 
Chrm3, Chrm4, Chrm5 

Neuropeptides CCK: Ccka, Cckb   

Galanin: Galr1, Galr2, Galr3 

neuropeptide FF: Npffr1, 
Npffr2 
NPY: Npy1r, Npy2r, Npy5r, 
Ppyr1, Gpr83, Prokr1, Prokr2 

Somatostatin: Sstr1, Sstr2, 
Sstr3, Sstr4, Sstr5 

Tachykinin: Tacr1, Tacr2, Tacr3 

Other  

(26RFa, Adrenocorticotropin, 
Bombesin, Neuromedin U, 
prolactin releasing hormone): 
Gpr103 (Qrfpr), Mc2r, Brs3, 
Grpr Nmur1, Nmur2 
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RNA was extracted from these tissue samples and converted to cDNA. The  

cDNA conversion was confirmed prior to relative qRT-PCR analysis. 

2.2.2.2  Micropunch to collect BLA tissue for RNA analysis  

To obtain BLA tissue sections for RNA analysis, frozen tissue samples 

were punched from 300 micron sections containing the BLA using a punch 

(Vibratome) with a diameter of 0.96 mm. Two samples per side were collected 

using the coordinates from Paxinos and Watson (1986) -2.0 and -2.4 from 

bregma. All four samples were placed in the same sterilized microtube (one 1.5 

microtube per animal) containing 75 μl RNAlater (a RNA stabilization reagent 

from RNeasy Micro Kits, QIAGEN, Valencia, CA). The microtube was spun 

briefly with a mini centrifuge to ensure the collected tissue went into the 

RNAlater, promptly placed on dry ice, then stored at -80 ˚C till isolation/ 

extraction. 

2.2.2.3  RNA isolation 

Total RNA was isolated from the collected BLA tissue samples with 

RNeasy Micro Kits (QIAGEN, Valencia, CA) according to the manufacturer‟s 

protocol with slight modification to enhance RNA elution. Since the abundance of 

tissue in each sample was relatively low, 20 ng of a carrier RNA was added to 

the lysate before homogenization to increase extraction efficiency. The Buffer 

RPE (washing buffer for membrane bound RNA to remove contaminants) was 

allowed to incubate for at least 2 minutes before centrifugation (modification to 

step 11 of the RNeasy Micro Handbook 04/2003) and, in the final RNA elution 

step, the supplied RNase-free water was warmed to 50 ˚C in a water bath then 
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allowed it to sit on the silica-gel membrane for at least 2 minutes. Total RNA was 

assessed using the ND-1000 Spectrophotometer (NanoDrop, Wilmington, DE) by 

determining the light absorbance at ultraviolet light wavelength 260 nm (indicates 

nucleic acid concentration) and monitoring the 260/280 and 260/230 ratio(s) 

[indicators of sample purity, (NanoDrop Technologies Inc., 2007)].  

2.2.2.4  Reverse transcription (Convert RNA to cDNA)  

To convert RNA to cDNA for mRNA quantification, 100 ng of total RNA 

from each sample in a 20 μl reaction was reverse transcribed using Reaction 

Ready™ First Strand cDNA Synthesis Kit (SuperArray Biosciences, Frederick, 

MD) according to manufacturer‟s protocol. The reverse transcription conditions 

were 37 ˚C for 60 minutes then 95 ˚C for 5 minutes. The cDNA was diluted to a 

final volume of 1 ng/μl with RNase-free water and stored at -20 ˚C. One µl of 

cDNA was removed so that the reverse transcription could be confirmed by 

amplification of the endogenous control gene beta-Actin. 

2.2.2.5  Confirmation of cDNA  

cDNA conversion was confirmed with the GeneAmp RNA PCR Core Kit 

(Applied Biosystems, Foster City, CA). Beta-Actin (an endogenous control gene) 

was amplified in each test sample using the beta-Actin forward and reverse 

primer shown in Table 3. The 25 μl PCR reaction contained 1.5 mM MgCl2, 0.3 

μM of each primer, and 0.2 mM of each of the four deoxynucleotide 

triphosphates. PCR cycling conditions were 95 ˚C for 10 minutes then 40 cycles 

of 95 ˚C for 30 seconds, 64 ˚C for 30 seconds, and 72 ˚C for 1 minute, followed 

by 72 ˚C for 5 minute using a GeneAmp® PCR System 2700 (Applied 
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Biosystems). The PCR product was run out on a 2% agarose gel in a 1XTAE 

buffer. A DNA fragment a little over 200 base pairs (bp) was expected.  

 

Table 3. Oligonucleotide primers used for cDNA confirmation  

 

 

 

 
 

2.2.2.6  Relative quantitative real-time polymerase chain reaction (qRT-

PCR) 

A master mix containing RT2 Real-TimeTM SYBR Green/ROX PCR Master 

Mix (SuperArray Bioscience,now SABioscience, Frederick, MD), and the 

equivalent of 1 ng/μl of mRNA per well was prepared for each 96-well plate of the 

Neurotransmitter Receptors and Regulators RT²Profiler™ PCR Array 

(SuperArray Bioscience,now SABioscience, Frederick, MD). An aliquot of 25 μl of 

this master mix was added to each well. The cycling conditions were 50 ˚C for 2 

minutes, 95 ˚C for 10 minutes then 40 cycles of 95 ˚C for 15 seconds, 65 ˚C for 

15 seconds, and 72 ˚C for 1 minute in an Eppendorf Mastercycler® ep realplex 

instrument (Eppendorf; Westbury, NY). 

2.2.2.7  Data normalization and analysis for relative qRT-PCR  

SuperArray Bioscience, now SABioscience, provided pre-programmed 

EXCEL spreadsheets to analyze the data for this experiment. The analysis 

program utilized the relative quantification based on the comparative Ct 

(threshold cycle) method as described by Livak et al. (2001). The fold change in 

Name Primer Sequence 
Product 
length 

Beta-Actin Forward 5’-GAAGATCAAGATCATTGCTCCTCC-3’ approx. 200 bp 

  Reverse 
5’-TTTTCTGCGCAAGTTAGGTTTTGTC-
3’   
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gene expression is defined by 2-ΔΔCt and the method for getting the 2-ΔΔCt is 

described below. 

Five “house-keeping” or reference genes [ribosomal protein, large, P1 

(Rplp1), ribosomal protein L13A (Rpl13a), beta-Actin (Actb), hypoxanthine 

guanine phosphoribosyl transferase (Hprt), and lactate dehydrogenase A (Ldha)] 

were included as control genes on the assay plate to use for normalization. To 

normalize the data, the average threshold cycle (Ct) of the reference genes that 

were unchanged by the treatments used in the experiment was subtracted from 

the average Ct for each sample on that plate to obtain the ΔCt for each gene. All 

sample groups; the Ucn1-primed, vehicle-primed, and untreated controls, were 

normalized to their respective reference controls. ΔΔCt was defined as, ΔΔCT = 

ΔCt (treated) - ΔCt (control). Quantification of the PCR Array was based on the Ct 

number. Any Ct>35 was considered background and automatically changed to 

null for the analysis. 

A list of differentially expressed genes was identified using a 2-tailed t-test 

with the criteria of a p value less than 0.05. A mean difference equal to or greater 

than an absolute 1.5 fold change from the control group was a priori threshold to 

classify a gene as a gene of interest. The statistical calculation was based on 

ΔCt. The fold change of mRNA expression for those genes with significant 

reduction comparing Ucn1- to veh-primed were converted to log10 for graphical 

presentation.  
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2.2.2.8  Selecting gene candidates for further study 

Selection of gene candidates for further study was based on a review of 

the literature, the availability of tools necessary for further study, the number of 

genes affected per system and the confidence intervals (highest to lowest for 

likely candidates per literature review and available tools). To begin, the role of 

individual genes candidates in the expression of anxiety-like behavior was 

explored with a receptor specific antagonist based on the hypothesis that if 

decreased mRNA expression of the receptor following Ucn1 priming is causally 

linked to the expression of persistent anxiety-like behavior then blocking the 

receptor function should acutely increase anxiety-like behavior. 

In this study, results from the Neurotransmitter Receptors and Regulators 

RT²Profiler™ PCR Array system showed a unique profile of changes with only 

five mRNAs; somatostatin receptor subtype 2 (Sstr2), somatostatin receptor 

subtype 4 (Sstr4), cholinergic nicotinic receptor alpha4 (Chrna4), cholinergic 

muscarinic receptor 4 (Chrm4), and GABA receptor rho1 (Gabrr1). Of the five, 

Sstr2 and Chrna4 mRNA showed the most significant decrease and were the 

best-fit targets based on the a priori criteria. 

2.2.3  Experiment 3a Protocol: Determine the extent Sstr2 receptors 

regulate anxiety-like behavior 

2.2.3.1  Hypothesis 3 

If decreased Sstr2 mRNA expression in the BLA observed with Ucn1-

priming is causally linked to the expression of persistent anxiety-like behavior, 

then antagonizing this receptor should increase anxiety-like behavior.  
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Sstr2 has previously been linked to anxiety-like behavior as Sstr2 knock-

out mice display anxiety-like behavior in the elevated plus-maze [(EPM), Viollet 

et al., 2000]. To determine if blocking the Sstr2 function in the BLA increases 

anxiety-like behavior, 28 male Wistar rats underwent chronic bilateral cannulae 

guide placement surgery targeting the BLA. After recovery from surgery, the rats 

were habituated to the social interaction arena. SI time was accessed following 

intraBLA injections of one of six doses of the selective Sstr2 antagonist, CYN-

154806 [(Feniuk et al., 2000), 0.1, 1, 10, 30, 90 and 180 pmoles]. Each rat 

received up to 3 doses and testing sessions. To avoid any type of priming effect, 

rats were tested in SI following BLA injections of vehicle and only 1 or 2 doses of 

CYN-154806 into the BLA (see Table 4). Rats were tested in SI 30 minutes after 

microinjection of the compound and received only one microinjection per testing 

day. SI testing sessions were conducted 48 hours apart. Upon completion of the 

experiment, rats were sacrificed by decapitation. The brains were quickly 

removed, quick frozen then stored at -80 ˚C until cannulae guide placements 

were verified.  
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Table 4. Microinjection sequence for Sstr2 antagonist CYN-254806 

1st dose 2nd dose 3rd dose 

CYN 10 pmole Veh  Veh 

CYN 10 pmole Veh  CYN 1 pmole 

CYN 30 pmole Veh  CYN 1 pmole 

CYN 30 pmole Veh  CYN 180 pmole 

CYN 90 pmole Veh  Veh 

CYN 90 pmole Veh  CYN 1 pmole 

Veh  CYN 10 pmole CYN 180 pmole 

Veh  CYN 10 pmole Veh 

Veh  CYN 30 pmole Veh 

Veh  CYN 30 pmole CYN 180 pmole 

Veh  CYN 90 pmole CYN 180 pmole 

Veh  CYN 90 pmole CYN 1 pmole 

Veh CYN 100 fmole N/A 

Veh CYN 100 fmole N/A 

Veh CYN 100 fmole N/A 

CYN 100 fmole Veh N/A 

CYN 100 fmole Veh N/A 

CYN 100 fmole Veh N/A 

Veh CYN 1 pmole CYN 180 pmole 

Veh CYN 1 pmole CYN 180 pmole 

CYN 1 pmole Veh CYN 180 pmole 

CYN 1 pmole Veh CYN 180 pmole 

 
 

2.2.3.2  Data analysis 

In order to compare all rats back to their relevant vehicle injection, SI data 

were converted to percent of vehicle SI time. One way ANOVA was used to 

analyze the data and a p<0.05 was considered significant. When appropriate, 

post-hoc tests were performed with a Dunnett‟s for comparison of converted SI 

times back to baseline within groups and a Tukey‟s test for comparison of 

converted SI times between groups.  

  



 

58 

 

2.2.4  Experiment 3b Protocol: Determine the role of the BLA cholinergic 

nicotinic receptor α4 subunit (Chrna4) function in the expression of anxiety-like 

behaviors 

2.2.4.1  Hypothesis 4 

If decreased Chrna4 receptor subunit mRNA expression in the BLA 

observed with Ucn1-priming is causally linked to the expression of persistent 

anxiety-like behavior, then antagonizing this receptor should acutely increase 

anxiety-like behavior.  

Ross and colleagues (2000) found that mice with the Chrna4 subunit 

knocked-out displayed anxiety-like behavior in the EPM. To determine the extent 

Chrna4 in the BLA regulate anxiety, a total of six rats underwent chronic bilateral 

guide cannulation of the BLA for this experiment. Following recovery from 

surgery the rats were habituated to the SI apparatus and baseline SI scores were 

obtained 24 hours later.  

The nicotinic acetylcholine receptor (nAchR) antagonists‟ doses were 

selected after a review of the literature (Dhar et al., 2000; Addy et al., 2003; 

Jonkman and Markou, 2006). Nicotinic receptors are composed of a combination 

of two or more α and β subunits. The available selective nicotinic antagonists 

block either specific combinations of α and β subunits or α7. The α4β2 receptor 

subtype is the most predominant nicotinic acetylcholine receptor (nAchR) in the 

brain (Whiting et al., 1991; Flores et al., 1992). Dihydro-β-erythrodinie (DHβE), 

the cholinergic nicotinic receptor α4β2 subunit antagonist, was used to determine 

the extent to which anxiety-like behaviors could be induced by antagonizing the 
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α4β2nAchR receptor in the BLA. However, DHβE has some affinity for the α3β4 

subunit as well (Xiao et al., 1998). To discern specificity of action at α4β2 

compared to the α3β4 subunit, the anxiety-like effects of BLA injections of 

mecamylamine, the predominant cholinergic nicotinic receptor α3β4 subunit 

antagonist (Xiao et al., 1998; Dhar et al., 2000), was also included.  

DHβE (3 or 15 μg/100 nl/side), mecamylamine (1mM/100 nl/side) or 

vehicle (100 nl/side) was microinjected 15 minutes prior to SI testing. SI testing 

was repeated a minimum of 48 hours later with the injection of a different 

drug/compound in a counterbalanced design to prevent a day effect. After the 

initial counterbalanced microinjections of vehicle, DHβE (3 μg), and 

mecamylamine a second vehicle injection was randomized with DHβE (15 μg) to 

verify that the prior treatments were not effecting a change in the neuronal 

activity (see Table 5). Upon completion of the experiment, rats were sacrificed by 

decapitation. The brains were quickly removed, quick frozen then stored at  

-80 ˚C until cannulae guide placements were verified.  

2.2.4.2  Data analysis  

Only bilateral BLA cannulated rats were included in the data analysis. 

Data were analyzed with a one way ANOVA. SI data are reported as mean + 

SEM. A p<0.05 was considered significant. When appropriate, post hoc tests 

were performed. 
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Table 5. Nicotinic acetylcholine receptor antagonists microinjection 
sequence  
 

Animal ID Txt1 Txt2 Txt3 Txt4 Final Txt 

ACH01 Veh DHbE 3 Mecamyl Veh DHbE15 

ACH02 Veh Mecamyl DHbE 3 DHbE15 Veh 

ACH03 DHbE 3 Veh Mecamyl Veh DHbE15 

ACH04 DHbE 3 Mecamyl Veh DHbE15 Veh 

ACH05 Mecamyl Veh DHbE 3 Veh DHbE15 

ACH06 Mecamyl DHbE 3 Veh DHbE15 Veh 

 
A within subject counterbalanced design was used for the first 3 injections. 
Injections were given every 2-3 days. Abbreviations: vehicle (Veh), dihydro-β-
erythrodinie (DHbE; 3 or 15 μg), mecamylamine (Mecamyl). 
 
 

2.2.5  Experiment 4a Protocol: Determine the effect Sstr2 activation in the 

BLA has on basal SI time 

2.2.5.1  Hypothesis 5 

If antagonizing Sstr2 in the BLA induces anxiety-like behavior then 

activating BLA-Sstr2 will induce anxiolytic-like behavior. 

To determine the effect Sstr2 activation in the BLA had on basal SI time, 

29 male Wistar rats underwent chronic bilateral cannulae placement surgery 

targeting the BLA. Fourty-eight hours after baseline SI time was accessed, one of 

six doses of the Sstr2 agonist, BIM-23027; was microinjected into the BLA 

bilaterally followed by the SI test 30 minutes later. The doses of BIM-23027 

tested were 1 or 100 fmole, 1, 10, 30, or 90 pmoles/100 nl/side. Upon completion 

of the experiment, all rats were sacrificed by decapitation the brains quickly 

removed, quick frozen then stored at -80 ˚C until cannulae guide placements 

were verified. 
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2.2.5.2  Data Analysis 

In order to compare all rats back to their relevant baseline, SI data were 

converted to percent of baseline SI time. Data were analyzed using one way 

ANOVA. Significance was set at p<0.05. Only animals with bilateral cannulation 

were included in the data analysis. The Grubb‟s test was utilized to identify 

outliers. 

2.2.6  Experiment 4b Protocol: Determine if the microinfusion of a Sstr2 

agonist (BIM-23027) can override an anxiogenic-like dose of Ucn1 

2.2.6.1  Hypothesis 6 

If Sstr2 receptors in the BLA have a role in counteracting anxiogenic 

stimuli then microinfusing a Sstr2 receptor agonist into the BLA prior to infusion 

of a threshold (anxiogenic-like) dose of Ucn1 into the BLA will block the 

expression of the Ucn1-induced anxiety-like behavior.  

It is possible that the role of BLA Sstr2 is to counteract anxiogenic stimuli 

in the BLA. Previous studies have shown that a threshold dose of Ucn1, 100 

fmoles (in 100nl/ side) microinjected bilaterally into the BLA will induce an 

anxiety-like response in the SI test (Sajdyk et al., 1999; Spiga et al., 2006). To 

determine the anti-anxiety-like effect of Sstr2 activation, 10 male Wistar rats 

underwent bilateral cannulation of the BLA. Forty-eight hours following a baseline 

SI, either vehicle or one of two different doses of BIM-23027 (30 or 90 

pmoles/100 nl/side; BIM30preUcn and BIM90preUcn respectively), was 

microinjected into the BLA 30 minutes prior to a threshold dose of Ucn1. The 

control was Ucn1 (100 fmoles) pretreated with vehicle 30 minutes prior to the 
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Ucn1 injections (Veh.Ucn). SI was accessed 30 minutes following the 2nd 

injection. Upon completion of the experiment, rats were sacrificed by 

decapitation. The brains were quickly removed, quick frozen then stored at  

-80 ˚C until cannulae guide placements were verified. 

2.2.6.2  Data analysis 

The SI data were analyzed with a one-way ANOVA. When appropriate, a 

Dunnett‟s post-hoc test was used for comparisons of test day SI times back to 

baseline within group. Significance was established at p<0.05.  

2.2.7  Experiment 5a Protocol: Determine if microinfusion of Sstr2 agonist, 

BIM-23027, into the BLA 30 minutes prior to a Ucn1 priming injection can prevent 

the development of a persistent anxiety-like phenotype 

2.2.7.1  Hypothesis 7 

If Sstr2 receptor activation in the BLA can prevent an Ucn1-induced 

anxiety-like response acutely then pretreatment with a Sstr2 agonist (BIM-23027) 

into the BLA during Ucn1-priming can prevent the development of a persistent 

anxiety-like phenotype. 

To determine if activating Sstr2 receptors in the BLA 30 minutes prior to 

Ucn1 priming injections could prevent the development of the persistent anxiety-

like phenotype, 20 male Wistar rats underwent chronic bilateral cannulae guide 

placement surgery targeting the BLA. BIM-23027 (90 pmoles; BIM.Ucn; N=10) or 

Veh (Veh.Ucn; N=10) was microinjected into the BLA 30 minutes prior to the sub-

threshold dose of Ucn1 (6 fmole) on D1 through D5 of priming. SI was assessed 

at baseline (D0), D1, D3, and D5 30 minutes after the 2nd injection, and 72 hours 
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after priming ceased [(D8), see Fig. 5]. Veh.Ucn was the control for the BIM.Ucn 

data set. Rats were sacrificed five days after priming ceased (D10) by 

decapitation following light anesthesia with isoflurane. The brains were quickly 

removed, flash frozen, then kept at -80 ˚C until sliced with a cryostat to verify 

placement and to collect tissue samples from the BLA for RNA analysis.  

2.2.7.2  Data analysis 

The post-priming SI was compared to baseline with a repeated measures 

ANOVA followed by a Dunnett‟s test post-hoc for within group comparisons of SI 

times back to baseline, when appropriate. Data representing the effect of BIM-

23027 pretreatment during priming on D1, D3, and D5 were analyzed with a two 

way repeated measures ANOVA. The independent variable was the unique drug 

pretreatment and treatment combinations, the dependant variable was the SI 

time, and the SI testing day was the repeated measures. The Fisher‟s Least 

Significant Difference (LSD) comparing SI times between groups was used post-

hoc when appropriate. Significance was set at p<0.05. Only data from bilateral 

cannulation was included in the analysis. 
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2.2.8  Experiment 5b Protocol: Determine the effect of repeated Sstr2 

activation with the Sstr2 agonist, BIM-23027, on basal levels of social interaction 

2.2.8.1  Hypothesis 8 

If the role of Sstr2 receptors in anxiety is to counteract anxiogenic stimuli 

then repeated activation of the Sstr2 receptor under basal conditions will not alter 

basal SI time. 

To determine if repeated microinjections with BIM-23027 would induce a 

change in basal SI scores, 19 male Wistar rats underwent chronic bilateral 

cannulae guide placement surgery targeting the BLA. BIM-23027 (90 pmoles) or 

veh was microinjected into the BLA 30 minutes prior to a 2nd injection of veh 

[BIM.Veh (N=10) and Veh.Veh (N=9), respectively] on D1 through D5. SI was 

assessed at baseline (D0), D1, D3, and D5 30 minutes after the 2nd injection 

(veh), and three days after priming ceased [(D8), see Fig. 5]. Rats were 

sacrificed five days after priming ceased (D10) by decapitation following light 

anesthesia with isoflurane. The brains were quickly removed, flash frozen, then 

kept at -80 ˚C until sliced with a cryostat to verify placement and to collect tissue 

samples from the BLA for RNA analysis. 

2.2.8.2  Data analysis 

Two way repeated measures ANOVA was used to compare SI data 

between rats with repeated Sstr2 activation (BIM.Veh) and the vehicle control 

(Veh.Veh). Only data from rats with bilateral cannulation of the BLA were 

included in the analysis. Post hoc tests were run when appropriate.  
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Figure 5. Timeline for investigation of Sstr2 agonist, BIM-23027 pretreatment effect on Ucn1 priming. 
Experiment 5 timeline. To test if the Sstr2 agonist BIM-23027 will block Ucn1 priming, male Wistar rats were fitted 
with bilateral cannulae targeting the BLA. Rats were habituated to the SI apparatus after recovering from surgery. 
Fourty-eight hours following a baseline SI test, rats were microinjected once a day for 5 consecutive days (D1 - D5) 
with either Veh or BIM (90pmole/100 nl/side) 30 minutes before either Veh (1%BSA) or Ucn (6 fmoles/100 nl/side). 
On injection days D1, D3, and D5 rats were placed in SI 30 minutes after the second microinjection. Rats were 
tested in SI again 72 hrs after priming ended (D8). Abbreviations: vehicle (Veh), urocortin1 (Ucn), BIM-23027 
(BIM), treatment group injections (Txt), social interaction (SI). 
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2.2.9  Experiment 6a Protocol: Determine the effect BIM-23207 

pretreatment in the BLA 30 minutes before the Ucn1-priming injection has on the 

Sstr2 mRNA expression on D3 of priming as compared to Ucn1-priming without 

BIM-23027 pretreatment 

2.2.9.1  Hypothesis 9 

If the expression of behavioral sensitization is associated with the level of 

Sstr2 mRNA in the BLA then the level of Sstr2 mRNA will be higher in the BLA 

on priming D3 in rats pretreated with the Sstr2 agonist, BIM-23027, in the BLA 

prior to each Ucn1-priming injection as compared to Ucn1-primed rats pretreated 

with vehicle. 

To investigate, 12 male Wistar rats underwent chronic bilateral guide 

cannulation of the BLA. Following recovery from surgery rats received either the 

Sstr2 agonist, BIM-23027 (90 pmole) or a vehicle microinjection into the BLA 30 

minutes prior to a Ucn1 (6 fmole) priming injection (BIM.Ucn and Veh.Ucn, 

respectively). SI time was ascertained at baseline, D1, and D3. The rats were 

sacrificed immediately after the SI test on D3, the brains quickly removed, flash 

frozen, then kept at -80 ˚C until they were processed for RT-PCR as described in 

Experiment 2, with a few exceptions. Total RNA was isolated from the tissue as 

described in Experiment 2 however a different cDNA synthesis kit was used to 

convert RNA to cDNA. Products from the same company were used to generate 

the cDNA as well as analyze the mRNA expression difference between the 

treatment groups for Experiment 2.  
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2.2.9.2  Reverse transcription of RNA for animals sacrificed on day three 

of priming (D3) 

For this experiment, the GeneAmp RNA PCR Core Kit (Applied 

Biosystems, Foster City, CA) was used to convert RNA to cDNA. For mRNA 

quantification 40 ng of total RNA from each sample was reverse transcribed in a 

40 μl reaction The reaction components included 2.5 mM MgCl2 , 0.25 mM of the 

deoxynucleotide, 1.25 μM of oligodeoxythymidylic acid primer, 0.5 U/μl of RNase 

inhibitor, and 0.45 U/μl MultiScribe reverse transcriptase. The reaction conditions 

were 24 ˚C for 10 minutes, 42 ˚C for 60 minutes, 68 ˚C for 10 minutes, and 95 ˚C 

for 5 minutes. The cDNA was diluted to a final volume of 1 ng/5 μl with Nuclease-

free water and stored at -20 ˚C. cDNA conversion was verified as described in 

Experiment 2. 

2.2.9.3  Generating a standard curve 

The copy number of Sstr2 present in the BLA tissue was determined by a 

standard curve generated using clones made in the laboratory. The endogenous 

control gene beta-Actin was used to normalize the data. The primers designed 

for Sstr2 and beta-Actin are listed in Table 6. PCR product was generated using 

the designed primers for Sstr2 or beta-Actin then cloned into a pCR®4-TOPO 

vector. qRT-PCR was used to quantify Sstr2 in the BLA based on the standard 

curve generated from the clones.  
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Table 6. Designed real-time primers used for cloning Somatostatin 2 
receptor (Sstr2) or beta-Actin 
 

Name Primer Sequence Product length 

beta Actin Forward 5’-GAAGATCAAGATCATTGCTCCTCC-3’ approx. 200 bp 

  Reverse 5’-TTTTCTGCGCAAGTTAGGTTTTGTC-3’   

        

Somatostatin 2 receptor Forward 5'-TATCCTCACCTACGCCAACAGCT-3’ approx. 180 bp 

 Reverse 5'-CTCTGGGTCTCCGTGGTCTCATT-3’   
 
 

2.2.9.4  PCR: Amplify desired gene fragment 

To amplify the desired gene fragment for cloning the reaction components 

in a 50 μl reaction contained 0.8 mM deoxynucleotide triphosphates, 0.04 ng of 

rat brain BD ™ Marathon-Ready cDNA (BD biosciences), 0.6 μM of each primer, 

and 0.1U/μl of Cloned Pfu DNA polymerase. Cycling conditions were 95 ˚C for 4 

minute and 35 cycles of 95 ˚C for 30 seconds, 65 ˚C for 30 seconds, and 72 ˚C 

for 1 minute on a GeneAmp® PCR System 2700 (Applied Biosystems). Ten μl of 

the PCR product was run out on a 2% agarose gel in 1xTAE buffer for product 

confirmation.   

2.2.9.5  Cloning with TOPO plasmid kit for the standard curve 

The PCR product was cloned into a pCR®4-TOPO vector according to the 

handbook using a TOPO® TA Cloning™ Kit for sequencing (Invitrogen). Briefly 

plasmids were chemically transformed into competent Mach1-T1 cells. Colonies 

were grown overnight on agar plates then a colony was picked to grow in 4 

milliliters (mls) of LB (containing 25 mg/ml of Kanamyacin) overnight at 37 ˚C. 

The following morning, DNA was isolated for further screening from 3 of the 4 

mls using the Quantum Prep® Plasmid Miniprep Kit (Bio-RAD). The plasmid 
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insert was further analyzed by restriction analysis using EcoRI. After 

confirmation, a sample was sequenced using T3 and T7 primers to make sure 

the sequence was accurate. After sequence confirmation, the remaining 

refrigerated culture (1 ml) was used to inoculate 100 mls of LB, containing 25 

mg/ml of Kanamyacin, overnight. The QIAGEN Plasmid Maxi Kit (QIAGEN) was 

used to purify the plasmid according to the handbook.  

After purification, the plasmid DNA concentration was measured using a 

ND-1000 Spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE). 

The mass of a single plasmid molecule was determined by multiplying the 

plasmid concentration by the total number of base pairs contained in the plasmid. 

The mass of plasmid DNA needed for the specific PCR product was calculated 

(300,000 copies for Sstr2, 3,000,000 for beta-Actin) and serial dilutions for the 

standard curve were prepared accordingly. 

2.2.9.6  Absolute quatitative real-time PCR (qRT-PCR) 

To quantify Sstr2 (or beta-Actin) the PCR reaction components were 3 

mM MgCl2, 1 mM of the deoxynucleotide from a SYBR Green Kit (Applied 

Biosystems) plus 0.4 μM of each primer. The cDNA equivalent to 1 ng of RNA 

was added for priming D3 samples. The cycling conditions were 50 ˚C for 2 

minutes, 95 ˚C for 10 minute then 40 cycles of 95 ˚C for 15 seconds, 65 ˚C for 15 

seconds, and 72 ˚C for 1 minute in an Eppendorf Mastercycler® ep realplex 

instrument (Eppendorf, Westbury, NY). The melting curve function was utilized to 

check for nonspecific amplification. The copy number present in the tissue was 

determined by a standard curve that was generated using clones made in the 
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laboratory. Briefly, the Ct value of the samples was used to calculate the log input 

amount based on the slope and y-intercept of the standard curve line. The copy 

number for each sample was ascertained by taking 10 to the calculated log input 

amount (=10[log input amount]). 

2.2.9.7  Data normalization and analysis  

All cDNA samples were analyzed in triplicate for samples from priming D3 

(3 samples per animal). The Ct number was used to calculate the copy number 

based on a standard curve (Applied Biosystems, 2001). Beta-Actin was used as 

the endogenous control gene to normalize the data. To determine relative values 

for the Sstr2, the copy numbers for Sstr2 and beta-Actin were first averaged for 

each animal. Next, these averaged copy numbers for Sstr2 and beta-Actin were 

averaged per treatment group then normalized by dividing the treatment group 

average for Sstr2 by the treatment group average for beta-Actin. The normalized 

Sstr2 was analyzed with a 2-tailed t-test and a confidence interval of p<0.05. 

Only rats with bilateral cannulae guide placement were considered for analysis.  
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2.2.10  Experiment 6b Protocol: Determine the effect of BIM-23207 

pretreatment in the BLA during Ucn1-priming has on the Sstr2 mRNA expression 

level post-priming 

2.2.10.1  Hypothesis 10 

If the reduction of Sstr2 mRNA is associated with the persistent anxiety-

like phenotype then BIM-23027 pretreatment during priming will not stop the 

Ucn1 priming-induced reduction of Sstr2 mRNA observed post-priming. 

To determine the effect of BIM-23207 pretreatment during Ucn1-priming 

on the Sstr2 mRNA expression, the BLAs from a subset of animals used in 

Experiment 5 were collected five days after priming ceased (D10) and processed 

for qRT-PCR. These samples included rats from each of the four treatment 

groups: Ucn1-primed with and without BIM-23027 (90 pmole) microinjections into 

the BLA 30 minutes prior to each Ucn1 (6 fmole) priming injection [BIM.Ucn 

(N=5) and Veh.Ucn (N=4) respectively] as well as a vehicle control where the 

vehicle was microinjected into the BLA 30 minutes prior to 2nd vehicle injection 

[Veh.Veh, (N=3)] and [BIM.Veh (N=4)] where BIM-23027 (90 pmole) was 

microinjected 30 minutes prior to the vehicle injection. Five days following the last 

injection rats were sacrificed by decapitation, and BLA tissue was processed for 

RT-PCR as described in Experiment 2. However the RNA was converted to 

cDNA as described next (in section 2.2.10.2). 
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2.2.10.2  Reverse transcription of RNA (to cDNA) for samples collected 

post-priming 

To convert the RNA to cDNA for RNA analysis, 80 ng of total RNA from 

each sample in a 20 μl reaction was reverse transcribed using Reaction Ready™ 

First Strand cDNA Synthesis Kit (SuperArray Biosciences; Frederick, MD) 

according to manufacturer‟s protocol. The cycling conditions were 42 ˚C for 15 

minutes then 95 ˚C for 5 minutes. The cDNA was diluted to a final volume of 2 

ng/5 μl with Nuclease-free water and stored at -20 ˚C. The conversion to cDNA 

was verified as described in Experiment 2.  

2.2.10.3  Absolute quatitative real-time PCR (qRT-PCR) for samples 

collected post-priming 

Sstr2 and beta-Actin were quantified as described in Experiment 6a 

however cDNA equivalent to 2 ng of RNA was added to each 25 μl reaction for 

D10 samples instead of the 1 ng of RNA used for D3 samples.  

2.2.10.4  Data normalization and analysis 

All cDNA samples were analyzed as described in Experiment 6a. There 

were replicates of four per animal for the experimental D10 samples. The 

Grubb‟s test was used to identify outliers. If the standard deviation of the Ct 

between each replicate per animal was greater than 0.4 then the reading was 

considered invalid and the animal‟s data were excluded from analysis. A 

normalized Sstr2 value per animal was analyzed with a one way ANOVA to 

determine if the gene was differentially expressed between pretreatment 

conditions. When appropriate, a Tukey‟s post-hoc test separated the effects of 
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the pretreatment conditions on mRNA expression. Significance was set at 

p<0.05.  
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RESULTS 

3.1  Experiment 1: Priming without exposure to the SI arena and/or a novel 

partner did not stop the development of a persistent anxiety-like phenotype  

Three different contextual conditions were utilized during priming, 1) Home 

cage (HC) condition; rats were immediately placed back in their home cage 

following priming injections so there was no exposure to the SI arena or partner 

rat, 2) no partner (NP) condition; rats were placed in the SI arena without a 

partner rat following priming injections on days 1, 3 and 5 and 3) partner (P) 

condition; rats were placed in the SI arena with a novel partner rat following 

priming injections on days 1, 3 and 5. In addition to testing the different 

conditioning paradigms, the affects of Ucn1- versus veh-priming was also 

assessed.  

The conditioning paradigm did not make a significant contribution to the 

development of a persistent anxiety-like phenotype as all Ucn1-primed rats, 

regardless of the priming condition, had a significant decrease in SI as compared 

to their baseline three days (D8) after priming ceased. A significant main drug 

effect was observed, with lower SI times in Ucn1-primed rats compared to veh-

primed rats [F1,30=17.59; p<0.0001] but there was not a main context-condition 

effect [F(2,30)=2.817; p=0.076] or drug x context-condition interaction 

[F(2,30)=0.494; p=0.615; Fig. 6]. Post-hoc comparisons of the SI changes within 

priming condition (D0 vs D8) with the Bonferroni pairwise test revealed a 

significant decrease in SI for each of the Ucn1 primed groups but not for the veh-

primed groups.[Ucn HC (t5=3.35; p<0.05; Fig. 6A), Ucn NP (t5=4.087; p<0.01; 
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Fig. 6B), and Ucn P (t5=5.873; p<0.001; Fig. 6C); Veh HC (t5=0.98; p>0.05; Fig. 

6A), Veh NP (t5=0.25; p>0.05; Fig. 6B), and Veh P (t5=2.301; p>0.05; Fig. 6C)]. 

To assure that the decrease in SI observed in Ucn1-primed rats was not the 

result of motor impairment, locomotion (square advances) and rearing were also 

measured during the SI test. Ucn1-priming did not cause a significant change in 

locomotion (F1,30=0.330; p=0.570; Fig. 6D, E, & F) or in the number of rearing 

episodes (F1,30=0.218; p=0.644; data not shown). Collectively, these data 

suggest that the development of a persistent anxiety-like phenotype induced by 

Ucn1-priming is an effect of Ucn1 microinjections into the BLA and not a result of 

aversive conditioning to the partner rat or the SI arena. 
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Figure 6. A persistent anxiety-like phenotype develops without exposure to 
the SI arena and/or a novel partner following the Ucn1 priming injection. 

Graphs reflect effects of priming [vehicle (Veh) or urocortin 1 (Ucn)] and 
contextual conditions during priming (HC, NP, P) on social interaction (A, B, C) 
and mobility (locomotion; D, E, F) three days after the last priming injection. 
Significant difference: *(p<0.05), **(p<0.01), ***(p<0.001) by Bonferroni pairwise 
analysis. Abbreviations: (HC) no exposure to SI arena or partner during priming, 
(NP) SI arena without partner rat during priming, or (P) standard priming 
condition where rat is place in the SI arena with a novel partner rat during 
priming. Data are presented as mean + SEM.  
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3.2  Experiment 2: Ucn1-priming produces a persistent anxiety-like phenotype 

and lasting reductions in neurotransmitter receptor gene expression in the BLA 

Regulation of gene expression is one mechanism that can lead to 

relatively stable changes within neurons (Nestler et al., 1993). The mRNA 

expression from the BLA of veh- and Ucn1-primed animals was analyzed with 

qRT-PCR using a predesigned panel of 84 neuroscience genes. Tissue samples 

were collected five days after the last priming injection (D10) from a subset of 

animals from Experiment 1. Since the priming context did not cause a significant 

difference in SI behavior, tissues were grouped by treatment regardless of 

priming context (Veh N=6; Ucn1-primed N=6; untreated control N=6). Some of 

the collected samples could not be used because the extracted total RNA was 

not enough to convert to cDNA. The final sample size for this experiment was 

Ucn1-primed (N=5), veh-primed (N=4), untreated control (N=4). Anxiety-like 

behavior was assessed with the SI test prior to (baseline) and 72 hours after 

cessation of priming injections. SI time of rats primed with Ucn1, but not vehicle, 

was significantly reduced 72hr post-priming (repeated measures ANOVA test 

time by treatment interaction F1,7=23.71; p=0.001; Fig. 7A).  

Expression of each gene was normalized to the average of four 

endogenous control genes (Actb, Ldha, Rpbp1 and Rpl13a). The reference gene 

Hprt was excluded as a reference because there was a significant decrease in 

the mRNA for this gene between the vehicle and the untreated control samples. 

The data from the four untreated control animals were not considered for any 

further analysis for the thesis. The veh-primed cohort groups were the controls to 
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the Ucn1-primed group. A main effect of drug on overall gene expression was 

observed (F1,83=4.42, p=0.036). Of the 84 target genes screened, difference in 

mRNA levels for Ucn1-compared to veh-primed rats reached significance for five 

genes (p<0.05, Fig. 7B). The five genes were somatostatin receptors 2 and 4 

(Sstr2 and Sstr4; t7,2=4.485; p=0.0028 and t7,2=2.93; p=0.022, respectively), 

cholinergic nicotinic receptor alpha4 (Chrna4; t7,2=3.536; p=0.0095), cholinergic 

muscarinic receptor 4 (Chrm4; t7,2=2.439; p=0.0448) and GABA receptor rho1 

(Gabrr1; t7,2=2.940; p=0.0217). All of these genes had a minimum of 1.5 fold 

reduction in mRNA levels of Ucn1-induced primed compared to veh-primed. 

Relative quantization (RQ) of gene expression was determined using delta delta 

Ct method. For linear comparisons RQ values were converted to Log base 10, 

such that values of ± 0.3, 0.7 or 1 represents a ± 2, 5 or 10 fold change (Fig. 7C).  
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Figure 7. Ucn1-priming induces persistent anxiety-like behavior and 
selective reduction of gene expression in the BLA. Graphs represent A. 

Changes in SI following Ucn1- verses veh-priming compared to their respective 
baselines (mean + SEM). B. Volcano plot of gene expression from the 

Neurotransmitter Receptors and Regulators RT²Profiler™ PCR Array. Data 
presented are mean BLA mRNA levels, for each of the 84 target genes, of Ucn1-
primed rats relative to veh-primed rats expressed as ± fold changes (log2) plotted 
against level of significance (p-values). Horizontal dotted line represents the 
assigned cut-off for significance (p value of 0.05), thus values above the dotted 
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line are significantly different from vehicle values. The dashed vertical lines 
represent a 1.5 fold change in expression, thus values laterally to the left dashed 
line represent a greater than 1.5 fold reduction in gene expression while values 
lateral to the right dashed line represent values with a greater than 1.5 fold 
increase in relative expression. Closed circles are genes that reached 
significance and open circles are genes that were not found to have significantly 
different expression compared to veh-primed rats. Data presented in C. are 
mean ± SEM, for Ucn1- and veh-primed rats, relative expression of the genes 
found to be significantly different in B. Here data are plotted as log10(RQ) where 
RQ is the fold change in gene expression relative to vehicle primed rats 
determined by the delta delta Ct method; Ucn1-primed (N=5), Veh-primed (N=4). 
Abreviations: Sstr2, somatostatin receptor 2; Chrna4, nicotinic receptor alpha4; 
Gabrr1, GABA r receptor rho1; Sstr4, somatostatin receptor 4; Chrm4, muscarinc 
receptor 4; Ucn, urocortin 1; Veh, vehicle. Significance, * indicates significantly 
different from baseline p<0.05; † indicates significantly different from vehicle 
p<0.05 and ‡ indicates significantly different from vehicle p<0.01. 
 
 

3.3  Experiment 3a: Blocking Sstr2 function in the BLA leads to the expression of 

anxiety-like behavior 

To determine if blocking the Sstr2 receptors in the BLA increases anxiety-

like behavior, the effects on SI behavior following intraBLA injections of six doses 

of the selective Sstr2 antagonist, CYN-154806 were investigated. Data from 

seven rats were excluded and one data point in the 90 pmole group was 

considered an outlier as determined by Grubbs‟ test (alpha=0.05). Therefore, two 

doses (30 and 90 pmole) were excluded from analysis due to resulting low N‟s. 

The SI time was analyzed for the remaining four CYN-154806 doses [0.1 (N=3), 

1 (N=5), 10 (N=3), 180 (N=7) pmoles]. In order to compare all rats back to their 

relevant vehicle injection, SI data are converted to percent of vehicle SI time. A 

biphasic dose response was observed with the lowest and highest dose of CYN-

154806 (0.1 and 180 pmol) producing no-change in SI behavior. The two 

intermediate doses of CYN-154806 (1 and 10 pmol) significantly reduced SI 
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times compared to vehicle injections and the lowest dose of CYN-154806 [0.1 

pmol), F4,27 =6.660; p=0.001, Dunnett‟s p<0.05; Tukey‟s p<0.01; Fig. 8]. These 

data suggest that acute antagonism of Sstr2 in the BLA induces anxiety-like 

behavior. This is consistent with the hypothesis that reduced Sstr2 mRNA 

expression in the BLA following Ucn1-induced priming is at least in part involved 

with the development of the persistent anxiety-like behavior. 
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Figure 8. Blocking Sstr2 function in the BLA leads to the expression of 
anxiety-like behavior. Graph represents a dose response curve for 
somatostatin receptor 2 (Sstr2) antagonist, CYN-154806. Social interaction data 
are presented as percent of vehicle SI time and measured in seconds (mean + 
SEM). Significance: * indicates significantly different from vehicle (p<0.05) by 
Dunnett‟s; ^ indicates significantly different from CYN-154806 dose 0.1 pmol 
(p<0.01) by Tukey‟s. 
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3.4  Experiment 3b: Role of the BLA cholinergic nicotinic receptor α4 subunit 

(Chrna4) function in the expression of anxiety-like behaviors 

If decreased Chrna4 expression in the BLA observed with Ucn1-priming is 

causally linked to the expression of persistent anxiety-like behavior, then 

antagonizing this receptor should acutely increase anxiety-like behavior. Six rats 

were tested in this paradigm however, cannula placement was outside of the 

BLA for two rats leaving an N=4 for analysis. Compared to vehicle, SI times were 

not significantly reduced following microinjections of DHβE (either 3 or 15 μg), 

mecamylamine or the second vehicle injection (repeated measures ANOVA: 

F4,12=1.294; p=0.3267; N=4, Fig. 9). These results suggest that antagonism of 

cholinergic nicotinic receptor containing the α4 or α3 subunit in the BLA did not 

result in increased anxiety-like behaviors (antagonists DHβE and mecamylamine, 

respectively). The expression of persistent anxiety-like behavior following Ucn1-

priming is unlikely to be simply a consequence of reduced Chrna4 expression 

alone. If the reduction in Chrna4 is related to the expression of the behavior it is 

likely to be one part of a complex of events. 

 



 

84 

 

 

 

Figure 9. Blocking BLA nicotinic acetylcholinergic receptors containing 
Chrna4 or the α3β4 subunit does not lead to the expression of anxiety-like 
behavior. Graph represents the effect of nicotinic receptor antagonists on social 
interaction. DHβE is the antagonist for the nAchR containing the α4β2 subunit, 
however, DHβE has some affinity for the α3β4 subunit as well (Xiao et al., 1998). 
To discern specificity of action at α4β2 compared to the α3β4 subunit, the 
anxiety-like effects of BLA injections of mecamylamine, the predominant 
α3β4nAchR antagonist (Xiao et al., 1998; Dhar et al., 2000), was also included. 
Abbreviations: DHbE3, Dihydro-beta-erythroidine hydrobromide 3 μg dose; 
Mecamyl, Mecamylamine Hydrochloride; DHbE15, Dihydro-beta-erythroidine 
hydrobromide 15 μg dose; Veh2, second Vehicle test. Data are represented as 
mean + SEM and N=4. 
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3.5  Experiment 4: Microinjection of Sstr2 agonist by itself does not increase SI 

time but it prevents the expression of an anxiety-like response in SI if 

microinjected into the BLA of rats 30 minutes before microinjection of a threshold 

dose of Ucn1 

3.5.1  Experiment 4a 

Thus far Sstr2 mRNA expression in the BLA has been shown to be 

reduced in rats that display persistent anxiety-like behavior and antagonizing 

Sstr2 in the BLA produces acute increases in anxiety-like behavior. The effect of 

BLA Sstr2 activation on anxiety-measures was investigated by injecting the Sstr2 

agonist, BIM-23027 [1 and 100 fmole, 1, 10, 30, and 90 pmole (in 100 nl/side)], 

bilaterally into the BLA and assessing SI times. Data from 10 animals were 

excluded from analysis. The final number per dose were N=3 per group except 

for the 1 pmole dose where the N was 4. The 100 fmole dose was excluded from 

analysis because one data point was considered an outlier as determined by 

Grubbs‟ test (alpha=0.05). It was found that activation of the Sstr2 with BIM-

23027 does not increase SI time compared to baseline (one-way ANOVA, 

F5,14=0.1502, p=0.9766; Fig. 10). 

 



 

86 

 

 

 

Figure 10. BLA Sstr2 activation does not change SI from baseline SI times. 
Graph represents the dose response for the effect of Sstr2 agonist, BIM-23027, 
on baseline SI time. SI is presented as percent of baseline (mean + SEM). N=3 
per group except the 1 pmole dose had N=4. 
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3.5.2  Experiment 4b 

A threshold dose of Ucn1, 100 fmoles (in 100nl/side) microinjected 

bilaterally into the BLA will induce an anxiety-like response in the SI test (Sajdyk 

et al., 1999; Spiga et al., 2006). The anti-anxiety-like effects of BLA-Sstr2 

activation were investigated by microinjecting BIM-23027 (30 or 90 pmoles/100 

nl; BIM30preUcn and BIM90preUcn, respectively) into the BLA of rats 30 minutes 

prior to a threshold dose of Ucn1 (100 fmoles). Three data points were lost from 

the Veh.Ucn group however, the SI data for the “BIM-23027 30 minutes prior to 

Ucn1” test from these three rats were still included in the data analysis because it 

has been established repeatedly in other experiments that an acute dose of 100 

fmoles of Ucn1 will cause a significant decrease in SI (Sajdyk et al., 1999; Spiga 

et al., 2006; and unpublished observations). 

Ucn1 pretreated with vehicle (VehpreUcn) significantly reduced SI time 

and pretreatment with BIM-23027 (90 pmol) blocked this effect [one-way 

ANOVA, F2,23=4.746; p=0.0102; Dunnett‟s, (VehpreUcn), p<0.01; 

(BIM30preUcn), p<0.05; (BIM90preUcn), p>0.05; Fig. 11]. Data from 

Experiments 4a and 4b suggest that the role of Sstr2 may be to counteract 

anxiogenic stimuli in the BLA. 
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Figure 11. Sstr2 activation in the BLA prior to a threshold dose of Ucn1 
blocks the expression of anxiety-like behavior. Graph represents the effect 

BIM-23027 injected prior to a threshold dose of Ucn1 has on social interaction 
(mean + SEM). Significance: Following a one-way ANOVA, ** indicates 
significantly different from baseline (p<0.01) by Dunnett‟s and * indicates 
significantly different from baseline (p<0.05) by Dunnett‟s. Abbreviations: 
BIM30preUcn, 30 pmole BIM-23027 microinjection prior to Ucn1; BIM90preUcn, 
90 pmole BIM-23027 microinjection prior toUcn1; VehpreUcn, vehicle 
microinjection prior to Ucn1. The numbers per group were baseline (N=10), 
VehpreUcn (N=7), BIM30preUcn (N=5) and BIM90preUcn (N=5).  
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3.6  Experiment 5: Activating Sstr2 receptors in the BLA of rats 30 minutes prior 

to an Ucn1 priming injection delays behavioral sensitization but does not stop the 

development of the persistent anxiety-like phenotype 

 3.6.1  Experiment 5a 

Four data points were lost from both the Veh.Ucn and BIM.Ucn treatment 

groups. Data analyzed included Veh.Ucn (N=6) and BIM.Ucn (N=6). As 

expected, Ucn1-priming, when preceded by vehicle, showed significant reduction 

in SI time during priming D1, D3, and D5 as well as persistent anxiety-like 

behavior post-priming (D8) [repeated measures ANOVA (Veh.Ucn), F2,2=6.524; 

p=0.0016; Dunnett‟s (D3, D5, & D8), p<0.01; N=6; Fig. 12A]. However, when 

Ucn1-priming microinjections are preceded by BIM-23027 the behavioral 

sensitization is delayed compared to the Ucn1-primed rats pretreated with 

vehicle (Veh.Ucn; D1, D3, & D5). Furthermore, BIM-23027 pretreated rats had 

significantly higher SI times on D3 and D5 when compared to rats pretreated with 

vehicle during priming [(BIM.Ucn vs Veh.Ucn), two-way repeated measure 

ANOVA, drug x time, F2,20=3.574; p=0.0471; Fisher‟s LSD, (D3 & D5) p=0.026; 

N=6; Fig. 12A]. Although the behavioral sensitization is delayed the persistent 

anxiety-like phenotype still develops [repeated measures ANOVA (BIM.Ucn), 

F4,20=4.140, p=0.0133; Dunnett‟s, (D5) p<0.05 and (D8) p<0.01; N=6; Fig. 12A].  
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A.  

 

 

B.   

 

 
Figure 12. Pretreatment with BIM-23027 during priming does not prevent 
the development of a persistent anxiety-like phenotype, however, it does 
attenuate behavioral sensitization without effecting a change in SI alone. 
Data reflect social interaction times (mean + SEM). The arrows indicate the days 
of injection (daily on D1 through D5). The graph area between the vertical dash 
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lines represents the SI following the priming injections. Laterally to the left of the 
dashed line is the baseline SI and laterally to the right of the dashed line is the 
post-priming SI. A. The blue line with closed squares represent Ucn1-priming 
with BIM-23027 pretreatment (N=6). The red line with triangles represents Ucn1-
priming with Veh pretreatment (N=6). Graph reflects effect of BIM-23027 
pretreatment during priming on social interaction. In graph B. the blue line with 

open squares represent BIM-23027 injection before Veh (N=6) and the black 
lines with the open circle represent the vehicle control (N=8). Graph reflects the 
effect of BIM-23027 alone on SI. Significance: ^ indicates significantly different 
from Veh.Ucn during priming (p=0.026) by Fisher‟s LSD; * indicates significantly 
different from baseline (p<0.05) by Dunnett‟s; ** indicates significantly different 
from baseline (p<0.01) by Dunnett‟s. Abbreviations: BIM.Ucn, BIM-23027 
microinjected prior to Ucn1 priming injecition; Veh.Ucn, Vehicle microinjected 
prior to Ucn1 priming injection; Veh.Veh, vehicle microinjection before 2nd 
injection of vehicle; BIM.Veh, BIM-23027 microinjection before 2nd vehicle 
injection. 
 
 

3.6.2  Experiment 5b 

Four data points were excluded from the BIM.Ucn treatment group and the 

Veh.Veh group lost one. It was found that repeated injections with BIM-23027 did 

not significantly change SI time [two-way repeated ANOVA BIM.Veh (N=6) vs 

Veh.Veh (N=8), F 1,48 =0.05074, p=0.8256; repeated measures ANOVA 

(BIM.VEH), F4,20=0.9167; p=0.4735; N=6; Fig. 12B]. As expected, repeated 

vehicle injections did not significantly change SI behavior either [(Veh.Veh), 

repeated measures ANOVA, F4,20=1.47; p=0.2487; N=6; Fig. 12B].  

Combined, these data suggest that Sstr2 activation does not prevent the 

development of persistent anxiety-like behavior/phenotype. Furthermore, 

pretreatment with BIM-23027 delays behavioral sensitization induced by Ucn1-

priming but does not change baseline SI behavior when microinjected into the 

BLA alone thereby offering support to an earlier conclusion from Experiment 4 

suggesting that the role of Sstr2 is to counteract anxiogenic stimuli in the BLA. 
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3.7  Experiment 6: Pretreatment with BIM-23027, 30 minutes prior to a BLA Ucn1 

priming injection does not attenuate the reduction of Sstr2 mRNA expression in 

the BLA 

3.7.1  Experiment 6a 

Up to this point it has been shown that Sstr2 mRNA is reduced five days 

after cession of Ucn1-priming (D10, Experiment 2) and that activating Sstr2 

during priming delayed the development of the behavioral sensitization 

(Experiment 5). To investigate if there is a difference in mRNA on D3 with or 

without prior Sstr2 activation during priming, rats received either BIM-23027 [90 

pmole, (BIM.Ucn)] or a vehicle (Veh.Ucn) microinjections into the BLA 30 

minutes prior to a Ucn1 (6 fmole) priming injection. To verify behavioral 

sensitization, rats were placed in SI at baseline (D0), D1, and D3, and sacrificed 

immediately after the SI test on D3 of priming. The BLAs were processed for 

qRT-PCR and the Sstr2 gene was normalized to the average of the endogenous 

control gene beta-Actin. As expected, behavioral sensitization occurred by D3 

during Ucn1-priming but not if Sst2 receptors were activated during priming 

[repeated measure ANOVA (Veh.Ucn), F2,6=6.847; p=0.0283; Dunnett‟s (p<0.05); 

N=4; and repeated measure-ANOVA (BIM.Ucn), F2,8=1.209; p=0.3477; N=5; Fig. 

13A]. However, Sstr2 mRNA expression was virtually equal on D3 following 

Ucn1-priming with or without prior Sstr2 activation [(BIM.Ucn and Veh.Ucn, 

respectively), t-test, t(8)=0.1379; p=0.8937, N=5; Fig. 13B].  
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B.  

 

 
Figure 13. Sstr2 agonist, BIM-23027, masks Ucn1-priming induced 
behavioral sensitization. Sstr2 mRNA expression is virtually the same with 
or without Sstr2 activation during priming. A. Graph represents effect of Sstr2 

activation on the expression of behavioral sensitization during priming. The three 
arrows below the graph represent the days of injection (D1, D2, & D3). The SI 
data lateral to the dash vertical line represent the baseline SI and the SI scores 
to the right of the vertical dashed line represent the SI 30 minutes post the Ucn1-
priming injection (pretreatment was with BIM or Veh). The blue line with closed 
square reflects directional changes in BIM.Ucn SI (N=5) and the red line with the 
closed triangle reflects directional changes in Veh.Ucn SI (N=5). B. Graph 
represents normalized Sstr2 mRNA expression on priming D3. Significance: 
*Significantly different from baseline (p<0.5) by Dunnett‟s. Abbreviations: 
BIM.Ucn, BIM-23207 microinjected prior to Ucn1-priming injection; Veh.Ucn, 
vehicle microinjected prior to Ucn1 priming injection. 
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3.7.2  Experiment 6b 

Sstr2 mRNA was found to be reduced five days after cessation of Ucn1 

priming microinjections (D10, Experiment 2). Furthermore, activating Sstr2 during 

Ucn1-priming delayed the development of the behavioral sensitization of priming 

but did not stop the development of the persistent anxiety-like phenotype after 

Ucn1-priming (Experiment 5a). BLA tissue from a subset of animals used in 

Experiment 5 were collected five days after priming ceased (D10) and processed 

for qRT-PCR. Two of the collected samples from the BIM.Veh group could not be 

used because the extracted total RNA was not enough to convert to cDNA. This 

left an N=2 in the group therefore excluding it from further analysis. One sample 

was excluded from the Veh.Ucn group because the replicate StDev was>4 

leaving (N=3). Two data points in the BIM.Ucn treatment group were identified as 

outliers as determined by the Grubbs‟ test (alpha=0.05) so they were excluded 

from analysis leaving BIM.Ucn with an N=3. The Veh.Veh cohort had an N=3.  

The data show that both Ucn1 treated groups, but not vehicle, had a 

significant reduction in Sstr2 mRNA following Ucn1-priming regardless of Sstr2 

activation during priming [one-way ANOVA, F2,6=7.205; p=0.0254;Tukey‟s, 

(Veh.Veh vs BIM.Ucn) and (Veh.Veh vs Veh.Ucn), p<0.05; N=3; Fig.14]. These 

data confirm the previous finding from Experiment 2 that Sstr2 mRNA expression 

in the BLA is reduced following Ucn1-priming and further suggest that Sstr2 

activation during Ucn1-priming does not prevent the Sstr2 mRNA expression 

decrease.  
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Figure 14. Sstr2 activation does not prevent the reduction of Sstr2 mRNA 
expression observed following Ucn1-priming. Graph represents changes in 
Sstr2 mRNA post-priming with and with Sstr2 activation during Ucn1 priming. 
Data are normalized to the mRNA of beta actin and presented as mean + SEM; 
N=3 per group. Significance: * indicates significantly different from Veh.Veh 
(p<0.05) by Tukey‟s. Abbreviations: Veh.Veh, vehicle microinjected prior to 2nd 
vehicle injection; BIM.Ucn, BIM-23027 microinjected prior to Ucn1priming 
injection; Veh.Ucn, vehicle microinjected prior to Ucn1priming injection; Sstr2, 
somatostatin receptor 2. 
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The Sstr2 mRNA expression on D3 is not different between BLAs of rats 

primed with or without Sstr2 activation during Ucn1-induced priming. Data from 

6a and 6b combined suggests that although BIM-23027 pretreatment during 

Ucn1-priming overrides the anxiogenic effect of Ucn1 during priming on priming 

D3 it does not attenuate the reduction of Sstr2 mRNA. 
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DISCUSSION 

The goal of this research was to further elucidate mechanism(s) involved 

in the persistent anxiety-like phenotype that develops following Ucn1-priming of 

the BLA. It was predicted that repeated stimulation of the CRF receptors in the 

BLA by Ucn1-priming, leads to the development of the persistent anxiety-like 

phenotype because of intrinsic changes within of the BLA neural network. 

Because of the BLA‟s potential to influence behavior in response to a context 

(Helmstetter and Bellgowan, 1994; Campeau and Davis, 1995; Maren et al., 

1996; Muller et al., 1997; Cousens and Otto, 1998; Huff and Rudy, 2004), 

Experiment 1 was run to determine the extent conditioning to the SI testing arena 

or partner rat during BLA priming affected the expression of the persistent 

anxiety-like behavior observed in rats post-priming.  

Although other studies demonstrate that BLA excitation can lead to the 

association of an aversive motivational state with a distinct environment such as 

a testing context (Thielen and Shekhar, 2002; Sajdyk et al., 2006), the results 

from Experiment 1 demonstrate that the persistent anxiety-like phenotype 

following Ucn1-priming develops regardless of exposure to the SI arena and/or a 

novel partner rat during priming. Therefore, the expression of persistent anxiety-

like behavior following Ucn1-priming does not appear to be due to aversive 

conditioning to the testing arena or the novel partner rat. Thus suggesting that 

repeated stimulation of CRF receptors in the BLA are causing intrinsic changes 

within the neuronal circuitry of the BLA that lead to the development of a 

persistent anxiety-like phenotype.  
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Consistent with this conclusion, using the same BLA-Ucn1 priming 

strategy as used in the current study, whole-cell patch-clamp recordings suggest 

that Ucn1-priming results in a reduction of inhibitory control in the BLA local 

network leading to hyperexcitability in the BLA output neurons (Rainnie et al., 

2004). These recordings were taken weeks after the last Ucn1-priming injection. 

Furthermore, a subset of Ucn1-primed animals were re-tested in SI once a week 

for five consecutive weeks without any further Ucn1 injections and continued to 

display anxiety-like behavior without any evidence of extinction as would be 

expected if the effect were a result of aversive conditioning (Rainnie et al., 2004). 

Another interesting finding from this study was that both GABAA mediated 

spontaneous and stimulation-evoked IPSPs from the projection neurons in the 

Ucn1-primed, compared to veh-primed tissue slices were reduced (Rainnie et al., 

2004). Although the GABAA receptor-mediated inhibitory response was deficient, 

the GABAA receptor functioning appeared to be unaltered (Rainnie et al., 2004), 

suggesting that perhaps CRF1 receptor activation is activating some mechanism 

that regulates GABA release or possibly a change has occurred in the regulation 

of GABAA receptor function. 

Consistent with intact GABAA receptor functioning, data from the current 

work revealed that the mRNA for the GABAA receptor subunits from the BLA of 

Unc1-primed tissue was unchanged compared to veh-primed BLA tissue. 

However, lasting reductions in the expression of five other neurotransmitter 

receptor within the BLA were significantly decreased compared to veh-primed 

controls; Chrna4, Chrm4, Gabrr1, Sstr2, and Sstr4. Knock-out mice studies 
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indicated that Chrna4, Chrm4, and Sstr2 play a role in anxiety (Ross et al., 2000; 

Degroot and Nomikos, 2006; Viollet et al., 2000, respectively) but Sstr2‟s role in 

anxiety is more specific to the BLA (Meis et al., 2005; Truitt et al., 2007). 

Somatostatin is known to potentiate GABAA receptor responses (Gardette 

et al., 1995; Moneta et al., 2002; Cammalleri et al., 2006; Momiyama and 

Zaborszky, 2006) and the mRNA of two SST receptors, were significantly 

reduced in the Ucn1-primed compared to veh-primed rats. Subsequent 

experiments support the role of Sstr2 in the regulation of anxiety and suggest 

that the state of Sstr2 is may be involved in the expression of persistent anxiety-

like behavior induced by Ucn1-priming.  

Terminals of SST containing interneurons are found in close proximity to 

the dendrites of BLA projection neurons as well as a few interneurons showing 

that they are in a position to regulate both the GABA activity of select populations 

of BLA interneurons as well as neuronal excitability of BLA projection neurons 

(Muller et al., 2003a; 2007a; Muller et al., 2007b). The SST-GABA interneurons 

in the BLA, form synapses with GABAA receptors on distal dendrites of the BLA 

projection neurons and are juxtaposed to excitatory glutamatergic inputs (Muller 

et al., 2003a). These inhibitory inputs are capable of regulating excitatory inputs 

onto the dendritic pyramidal cells by blocking the generation of calcium 

dependent postsynaptic potentials in the dendrites and ultimately shunt activation 

of the pyramidal cells (Muller et al., 2003a). Whole cell patch-clamp recordings 

show that a dampening of cell excitability could result from an inwardly rectifying 

K+ current in amygdala neurons induced by SST (Meis et al., 2005). Loss of 
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neuronal regulation by SST has the potential to lead to increased network 

excitability resulting in the expression of anxiety-like behavior as observed 

following Ucn1-priming (Rainnie et al., 2004).  

Sstr2 mRNA was reduced in the BLA following Ucn1-priming. To 

determine if reduced Sstr2 mRNA expression in the BLA may explain the 

development of persistent anxiety-like behavior following Ucn1-priming, the acute 

effect of blocking Sstr2 receptor function on anxiety-like behaviors was 

investigated. Data from this study showed that antagonizing Sstr2 receptor 

functioning in the BLA was sufficient to increase anxiety-like behavior. Consistent 

with this finding, loss of Sstr2 receptors has been associated with anxiety-like 

behavior in a study characterizing Sstr2 knock-out mice (Viollet et al., 2000). 

Moreover, lesioning approximately half of the SST-GABA interneurons by 

targeting neurokinin 1 receptor (NK-1r) containing cells in the BLA, led to 

persistent anxiety-like behavior in a SI paradigm (Truitt et al., 2007). 

 While the persistent anxiety-like phenotype induced by Ucn1-priming is 

marked by a reduction in Sstr2 mRNA and, acute blockade of Sstr2 receptors 

induced anxiety-like behavior, it is still unclear if Sstr2 receptor activation is 

sufficient to reduce anxiety-like behaviors. To determine the effect of Sstr2 

activation on basal anxiety as measured by the SI test, rats were tested with a 

range of doses of a Sstr2 agonist. The basal levels of SI were not modified by 

any of the doses of the Sstr2 receptor agonist tested in the BLA. These results 

are in contrast to other studies where rats that received intracerebroventricular 

(i.c.v.) microinfusion of SST displayed anxiolytic-like effects in the EPM test of 
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anxiety (Engin et al., 2008) through the Sstr2 receptor activation (Engin and Treit, 

2009). However, since these studies were carried out through i.c.v. 

microinfusions the location of the Sstr2 receptors mediating the anxiolytic-like 

effect is unknown.  

In previous studies within the BLA, the GABAA receptor antagonist BMI led 

to the expression of anxiety-like behavior and the GABAA agonist muscimol did 

not change the basal SI behavior from baseline (Sanders and Shekhar, 1995), 

even though muscimol has been shown to alleviate anxiety (Muller et al., 1997), 

thus suggesting that the inhibitory tone of BLA is at maximal (Sanders and 

Shekhar, 1995). Therefore, discovering that a Sstr2 receptor agonist does not 

modify basal SI behavior is not unexpected.  

Despite the observation that activation of the Sstr2 receptors in the BLA 

was not anxiolytic, it is still possible that the role of Sstr2 receptors in the BLA 

may be to block stress-induced anxiogenesis. To determine if Sstr2 activation in 

the BLA can override induction of anxiety-like behavior, rats were microinfused 

with a Sstr2 agonist into the BLA 30 minutes before a microinfusion of an 

anxiogenic-like dose of Ucn1 into the BLA. Activating Sstr2 receptors in the BLA 

with an agonist prior to an anxiogenic-like dose of Ucn1 prevented the 

expression of an anxiety-like response thus suggesting that the role of Sstr2 may 

be to counteract anxiogenic stimuli in the BLA. Consistent with this conclusion, 

rats exposed to predator stress displayed an increase in Sstr2 mRNA expression 

three hours after exposure to a ferret, a natural predator of the rat (Nanda et al., 
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2008). Moreover, an analog of SST has been successfully used to treat panic-

like attacks (Abelson et al., 1990). 

Since Sstr2 receptor activation in the BLA can override an anxiogenic-like 

dose of Ucn1, it is possible that activation of Sstr2 receptors in the BLA during 

Ucn1-priming could prevent the development of the persistent anxiety-like 

phenotype. To determine if Sstr2‟s ability to counteract the acute anxiogenic-like 

effect of Ucn1 will carry over into blocking the Ucn1 priming-induced expression 

of behavior sensitization and/or persistent anxiety-like behavior, rats underwent 

pretreatment with a Sstr2 agonist into the BLA 30 minutes prior to each Ucn1-

priming injection. With Sstr2 agonist pretreatment during Ucn1-priming, the 

anxiety-like behavior usually observed on D3 in the Ucn1-primed group, as 

compared to veh-primed or the within-group baseline, is not evident until priming 

D5. Pre-activation of Sstr2 receptors in the BLA during Ucn1-priming appears to 

delay the expression of the behavioral sensitization but does not prevent the 

development of the persistent anxiety-like phenotype. Consistent with the lack of 

blocking the expression of persistent anxiety-like behavior, Sstr2 agonist 

pretreatment also did not block the Ucn1-priming induced reduction in Sstr2 

mRNA. Although pretreatment with a Sstr2 agonist during priming did not prevent 

the Ucn1 priming-induced reduction of Sstr2 mRNA observed post-priming, it is 

possible that Sstr2‟s ability to delay the expression of behavioral sensitization on 

D3 of priming was due to attenuation in the reduction of Sstr2 mRNA in the 

Ucn1-primed cohort pretreated with a Sstr2 agonist prior to the Ucn1-priming 

injection compared to the Ucn1-primed cohort pretreated with vehicle. To 
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determine if there is a difference in the level of Sstr2 mRNA on D3 of priming 

between the Ucn1-primed rats pretreated with or without a Sstr2 agonist during 

priming the rats were divided into two groups. One group of rats received a 

microinfusion of a Sstr2 agonist into the BLA 30 minutes prior to each Ucn1-

priming injection; the other group were pretreated with vehicle. Brains were 

collected on priming D3 immediately following the SI test. Although the Ucn1-

primed rats pretreated with a Sstr2 agonist during priming did not display anxiety-

like behavior as compared to the rats who went through Ucn1-priming without 

prior Sstr2 receptor activation, the Sstr2 mRNA expression in the BLA was 

virtually equal between the two Ucn1-primed cohorts on priming D3. Sstr2‟s 

ability to delay the expression of behavioral sensitization does not translate into a 

delayed reduction of Sstr2 mRNA as compared to Ucn1-primed rats primed 

without a Sstr2 agonist pretreatment. Therefore, the reduced state of Sstr2 

mRNA on post-priming D8 may be one factor behind the expression of a 

persistent anxiety-like behavior but not the development of the persistent anxiety-

like phenotype.  

Sstr2‟s ability to mask the behavioral sensitization but not stop the 

development of the persistent anxiety-like phenotype induced by Ucn1-priming 

suggests that different mechanisms are involved in these two effects. Although 

behavioral sensitization is expressed by D3 of Ucn1-priming, if the priming 

injections are stopped after D3, rats return to pre-priming levels of anxiety 

(baseline levels). However, if the same rats are challenged with another 

subthreshold dose of Ucn1 up to six weeks later, the anxiety-like behavior is 
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reinstated on priming D1, unlike Ucn1 naïve rats, suggesting some type of 

plasticity is occurring during Ucn1-priming (Sajdyk et al., 2004).  

Both NMDA and calcium calmodulin-dependent kinase II (CaMKII) are 

strongly implicated in the mediation of synaptic plasticity (Bliss and Collingridge, 

1993; Colbran and Brown, 2004). Previous studies have shown that the 

persistent anxiety-like behavior induced by Ucn1-priming injections can be 

blocked by either co-administration of the active form of the NMDA receptor 

antagonist DL-AP-5 with Ucn1 (Rainnie et al., 2004) or by pretreatment with the 

CaMKII inhibitor, KN-62, prior to each consecutive Ucn1 microinjection (Shekhar 

et al., 2003; Rainnie et al., 2004). The persistent anxiety-like phenotype following 

Ucn1-priming appears to be dependent upon activation of a NMDA receptor-

mediated CaMKII-dependent second messenger cascade (Shekhar et al., 2003; 

Rainnie et al., 2004).  

NMDA receptor potentiation can be mediated by direct phosphorylation of 

serine/threonine kinases PKA and PKC (Leonard and Hell, 1997; Dautzenberg et 

al., 2004). Microinjections of Ucn1 into the BLA appear to induce anxiogenic-like 

behaviors via activation of CRF1 G-protein coupled receptors (Sajdyk and 

Gehlert, 2000; Gehlert et al., 2005). Both PKA and PKC pathways are linked to 

CRF1 receptor activation (Fig. 15; Dautzenberg and Hauger, 2002; Hauger et al., 

2006). Further study is needed to determine if Ucn1-priming induces long-term 

synaptic facilitation through either the PKA or PKC pathway or a combination of 

both. 
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Data from the experiments outlined in this thesis, support the role of Sstr2 

in the regulation of anxiety and suggest that the state of Sstr2 is may be involved 

in the expression of persistent anxiety-like behavior induced by Ucn1-priming in 

that pretreatment with a Sstr2 agonist during Ucn1-priming delays the expression 

of behavioral sensitization but did not stop the development of the persistent 

anxiety-like phenotype. Furthermore, pretreatment with a Sstr2 agonist can 

override an anxiogenic-like dose of Ucn1. One signal transduction pathway 

initiated through ligand activation of the CRF1 receptor is the adenylyl cyclase-

cAMP-PKA pathway via Gs protein (Giguere et al., 1982; Chen et al., 1986; De 

Souza, 1995; Spiess et al., 1998; Perrin and Vale, 1999; Dautzenberg and 

Hauger, 2002). It is highly possible that the induction of acute anxiety by Ucn1 is 

through this signaling pathway. 

Stimulation of adenylate cyclase (Chen et al., 1986; Dunn and Berridge, 

1990; Dautzenberg et al., 2001) leads to the intracellular accumulation of cAMP 

(Giguere et al., 1982; Dunn and Berridge, 1990; Sananbenesi et al., 2003) then 

couples to the PKA pathway. PKA could then potentiate NMDA receptor activity. 

Sstr2 receptors may be counteracting the acute Ucn1-induced anxiety-like 

behavior through its inhibition of the adenylyl cyclase- cAMP-PKA pathway via Gi 

protein (Gi, inhibitory; Fig. 15) which is recognized as Sstr2‟s predominant mode 

of action (see Csaba and Dournaud, 2001). 

Another mechanisms potentially involved in Sstr2‟s ability to override the 

acute anxiety-like behavior induced by Ucn1, may be through its regulation of 

calcium (Ca2+) signaling pathways. Activation of K+ channels leads to the  
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Figure 15. Possible pathways involved in the expression of anxiety-like 
behavior and/or the development of the persistent anxiety-like phenotype 
induced by Ucn1-priming. Ucn1 binding to CRF1 receptors activate G-proteins 
that in turn activate enzymes leading to the activation of kinases that regulate 
different cellular events through different pathways. For example kinases PKA 
and PKC can both potentiate the function of the NMDA receptor through one 
pathway and initiate gene transcription through a different pathway. NMDA 
activity can lead to BLA excitability. Moreover, activation of the NMDA receptor 
leads to the increase of calcium within the cell that activate the CaMKII enzyme 
eventually leading to LTP. This pathway is implicated in the development of the 
persistent anxiety-like phenotype induced by Ucn1-priming. Sstr2 binding to its 
receptor can possibly over-ride the effect of Ucn1 activation of the CRF1 receptor 
in that Ucn1 leads to the activation of AC and Sstr2 inhibits AC. Abbreviations: 
Ucn1, urocortin 1; Sstr2, somatostatin 2 receptor; AC, adenylyl cyclase; NMDA, 
N-methyl D-aspartate; Ca2+, calcium; LTP, long-term potentiation; CREB, cAMP 
response element-binding; PKA, protein kinase A; PKC, protein kinase C; 
CaMKII, calcium-calmodulin dependant protein kinase II; Gi, inhibitory G-protein 
subunit; Gs, stimulation G-protein; Gq, other G-protein subunit; PLC, 
phospholipase C; PIP2, phosphatidylinositol 4,5-bisphosphate; IP3, inositol 1,4,5-
triphosphate; DAG, diacyl glycerol; β, beta subunit of G-protein complex; ɣ, 
gamma subunit of G-protein complex; P, phosphorylates.  
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reduction of intracellular Ca2+ concentrations indirectly through inhibition of 

voltage-dependant Ca2+ channels (Csaba and Dournaud, 2001; Yang et al., 

2007).  

Five genes were significantly down regulated in the BLA tissue of the 

Ucn1-primed, compared to veh-primed rats. Changes in gene expression can 

occur through CRF1 activation of serine/threonin kinases PKC (Dautzenberg and 

Hauger, 2002; Gutknecht et al., 2010), MAPK (Dautzenberg and Hauger; 2002; 

Sananbenesi et al., 2003; Brar et al., 2004; Hauger et al., 2006), and PKA (Chen 

et al., 1986; De Souza, 1995; Spiess et al., 1998; Perrin and Vale, 1999; 

Dautzenberg and Hauger, 2002). These kinases can work individually or together 

on the same effector to organize cellular machinery leading to changes in gene 

expression (Calkhoven and Ab, 1996; Pearson et al., 2001). Gene expression 

regulation can occur through transcription activation leading to mRNA production 

(Hansen et al., 1999; Kovalovsky et al., 2002; Parham et al., 2004), repression of 

transcription (Servillo et al., 2002), and/or translation that leads to new protein 

(Servillo et al., 2002). PKC, MAPK, and PKA kinases are also involved in 

modifying proteins directly or indirectly through transcription activation. 

Production of new protein or phosphorylation of existing effectors can lead to 

protein degradation through ubiquitin pathways (Upadhya et al., 2004), receptor 

internalization (Chapell et al., 1998; Elberg et al., 2002), modulation of receptor 

activity (Kawaguchi and Hirano, 2002; Sananbenesi et al., 2003; Gerdin et al., 

2004; Bayer et al., 2006), and modulation of ion channels (Tao and Li, 2005; Tao 

et al., 2008). These are a few of the cellular events that can lead to changes 
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associated with learning (Huang et al., 2000; Sánchez-Muñoz et al., 2010) and/or 

behavioral responses (Selcher et al., 2002; Sananbenesi et al., 2003; Sherrin et 

al., 2009). The interaction of these signaling pathways could play a role in Ucn1‟s 

priming-induced development of a persistent anxiety-like phenotype.Specific 

enzyme inhibitors could be used as the next step to further explore potential 

mechanism(s) involved in the changes of gene expression induced by Ucn1-

priming. 

The complex mechanisms involved in the development of the persistent 

anxiety-like phenotype may also involve the cellular signaling machinery 

activated through Sstr4, Chrna4, Chrm4, and Gabbr1. These genes were also 

down regulated in the Ucn1-primed, compared to the veh-primed, tissue. As part 

of this research the role of Chrna4 mRNA in anxiety was also investigated.  

Post-priming reduction of the BLA Chrna4 mRNA from Ucn1-primed rats 

raises the possibility that a decrease in Chrna4 containing receptors played a 

role in the persistent anxiety-like behavior observed in Ucn1-primed rats. Support 

for this premise comes from a study that found Chrna4 knock-out mice displayed 

an anxiety-like profile in the elevated plus maze (Ross et al., 2000). To determine 

if the reduction in Chrna4 in the BLA could explain increases in anxiety-like 

behavior, the acute affects of blocking Chrna4 activity was investigated. Since 

nicotinic receptors are composed of a combination of two or more α and β 

subunits the role Chrna4 played in basal levels of anxiety was sought by blocking 

the function of the predominant nAchR receptor subtype in the brain, α4β2. 
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Antagonizing α4β2 in the BLA did not lead to anxiety-like behavior in the 

SI test suggesting that Chrna4 does not play a role in the expression of 

persistent anxiety-like behavior. However, based on limitations of the antagonist 

used, the influence of BLA Chrna4 type receptors on anxiety-like behavior can‟t 

be completely ruled out. First, the specific BLA Chrna4 receptor subtype 

potentially involved in the persistent anxiety-like phenotype is unknown therefore 

the α4β2 subtype may not be the Chrna4 receptor subtype involved. 

Furthermore, the doses for the nicotinic antagonists used for this study were 

based on reports by Bancroft and Levin (2000), Jonkman and Markou (2006) and 

Addy and associates (2003). None of these studies involved an anxiety type 

response but a couple of the studies were carried out in the amygdala (Addy et 

al., 2003; Jonkman and Markou, 2006). Each of these investigators used a 

different range of doses for their respective studies but there was some 

crossover of doses between studies. The doses of DHβE for their studies ranged 

from (0.2 μg - 20 μg) and the efficacy of similar doses of DHβE varied depending 

on the experimental paradigm and target area (Bancroft and Levin, 2000; Addy et 

al., 2003; Jonkman and Markou, 2006). To test the role of the α4β2 nicotinic 

receptor on the expression of anxiety-like behavior in the BLA, one low and one 

high dose of DHβE (3 and 15 μg) was selected from the doses previously found 

to be effective (Bancroft and Levin, 2000; Addy et al., 2003; Jonkman and 

Markou, 2006). More testing is needed to determine the role of Chrna4 in the 

BLA in the expression of persistent anxiety-like behavior. 
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CONCLUSION 

5.1  Summary 

Although the mechanisms involved in BLA Ucn1-priming are complex, one 

result is a change in the GABAA receptor-mediated inhibitory transmission. This 

deficit then contributes to BLA hyperexcitability that leads to the development of 

a persistent anxiety-like phenotype (Rainnie et al., 2004). Data from the current 

study demonstrate that the persistent anxiety-like phenotype was not the result of 

aversive conditioning to the SI testing arena or procedure but was marked by 

another change; reduction of mRNA expression of Sstr2, Sstr4, Chrna4, Chrm4, 

and Gabrr1 mRNA. Further investigation into Sstr2 receptor‟s role in anxiety-like 

behavior suggests that the role of Sstr2 receptors in the BLA may be to 

counteract anxiogenic stimuli or stave off inappropriate anxiety responses since 

blocking Sstr2 receptor function leads to the expression of anxiety-like behavior, 

Sstr2 activation can override an acute anxiogenic stimulus, and basal levels of SI 

do not change with Sstr2 receptor activation.  

Furthermore, Sstr2 activation delays the expression of behavioral 

sensitization induced by Ucn1-priming but does not stop the development of a 

persistent anxiety-like phenotype. It appears that a reduction in Sstr2 receptor 

function may be one factor behind the expression of a persistent anxiety-like 

phenotype but not the development of the persistent anxiety-like phenotype. 

The expression of persistent anxiety-like behavior may be the result of 

inefficient regulation of incoming sensory information. The SST-GABA 

interneurons are part of the local interneuronal circuitry of the BLA complex. The 
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BLA complex is a cortex-like structure with glutamatergic projection neurons that 

are regulated by local networks of GABAergic interneurons (McDonald, 2003) 

which are unique in cellular phenotype, function, (McDonald and Mascagni, 

2001; Muller et al., 2003a; 2007a; Muller et al., 2007b; Truitt et al., 2009) and 

connection profile (McDonald, 1992; McDonald et al., 1996; Muller et al., 2003a; 

2007a; Muller et al., 2007b). Glutamatergic afferents of the cortical sensory 

association area are capable of blunting EPSPs in BLA complex pyramidal cells 

by activating interneurons in the BLA complex (Rosenkranz and Grace, 1999; 

Grace and Rosenkranz, 2002; Rosenkranz and Grace, 2002; Rosenkranz et al., 

2003; Rosenkranz et al., 2010). However, the exact phenotype of these 

interneurons remains unknown. 

SST-GABA interneurons contain about half of the NK-1r interneurons and 

recent anatomical data suggests that NK-1r-IR cells may be one of the targets of 

the PFC inputs (Truitt et al., 2007). The SST-GABA interneurons in the BLA are 

capable of regulating excitatory inputs to the pyramidal cells thereby shunting 

activation of pyramidal cells (Muller et al., 2003a; 2007a) and SST-GABA 

interneuronal regulation of pyramidal cells occurs through synapses on distal 

dendrites of pyramidal neurons (Muller et al., 2003a; 2007a). The Sstr2 receptors 

are predominantly on the distal dendritic terminals (Way et al., 1996). Therefore, 

Sstr2 receptors have the potential to play a role in assigning emotional 

significance to incoming sensory information. Loss of cellular mechanisms 

involved in assigning saliency to incoming sensory information initiated by Sstr2 
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receptor function could result in increased anxiety-like responses to non-

anxiogenic cues.  

The results from this study provide potential targets for studying the 

mechanisms behind aberrant plasticity that leads to psychopathology. This may 

have broader implications beyond the development of anxiety in that the 

basolateral amygdala plays a role in other stress related disorders such as 

depression (Arborelius et al., 1999; Steckler and Holsboer, 1999; Heinrichs and 

Koob, 2004). Investigations from the current study suggest that signaling 

pathways regulating Sstr2 receptor expression are involved. Moreover, the 

mRNA of Sstr4, Chrna4, Chrm4, and Gabbr1 was also down regulated in the 

Ucn1-primed, compared to the veh-primed, tissue. The role of these genes in 

anxiety-like behavior warrants further investigation. 

Second, Sstr2 receptors signaling pathways in the BLA provide a specific 

target for the development of specific pharmacotherapy. Somatostatin has a wide 

range of effects in both the CNS and the periphery, some of which may not be 

desirable. These effects, combined with its relatively short plasma half-life and 

lack of receptor selectivity, make it an undesirable candidate for clinical use 

(Pintér et al., 2006). The more stable somatostatin analogs such as octreotide 

and lanreotide have been used in clinical settings for conditions such as 

pancreatitis, growth, and tumor formation (Hofland et al., 1992; Uhl et al., 1999; 

Pintér et al., 2006; de Jong et al., 2009). These analogs do bind with high affinity 

to Sstr2 receptors (Pintér et al., 2006) but do not show high receptor selectivity 

(Pawlikowski and Melen-Mucha, 2003). Preclinical exploration for therapeutic 
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targets has expanded into targeting components of signaling transduction 

pathways (see Mathew et al., 2008). Investigation into the effectiveness of 

treating targets in the signaling pathway of Sstr2 receptors has potential to yield 

safe and effective therapeutics for the treatment of pharmacotherapy for treating 

stress related disorders such as anxiety and depression (Engin and Treit, 2009).  

Lastly, Sstr2 receptors provide targets for investigation into the unique 

phenotype of the local interneuronal circuitry involved in assigning saliency to 

incoming sensory information (Muller et al., 2003a; 2007a; Truitt et al., 2009). 

Sstr2 receptors are in position to modulate excitability of BLA pyramidal 

projection neurons (Way et al., 1996). This not only has implications for anxiety 

or aversive pathways, but also for associative processes involved in reward 

(Moller et al., 1997; Schoenbaum et al., 2003; Schoenbaum and Roesch, 2005; 

Tye and Janak, 2007; Morrison and Salzman, 2010).  

5.2  Conclusion 

In conclusion, repeated stimulation of CRF receptors in the BLA are 

causing intrinsic changes within the neuronal circuitry of the BLA that lead to the 

development of a persistent anxiety-like phenotype. The gene expression for five 

receptors was reduced in animals expressing persistent anxiety-like behavior 

revealing Sstr2, Sstr4, Chrna4, Chrm4, and Gabrr1 as potential candidates 

involved in the development and/or expression of this phenotype during Ucn1-

priming. The Sstr2 receptors appear to regulate anxiety in the BLA and the state 

of Sstr2 mRNA may be one of the factors behind the expression of the persistent 
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anxiety-like behavior but not the development of the persistent anxiety-like 

phenotype.  
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