
 
 

 

 

COMPUTATIONAL MODELING FOR IDENTIFICATION OF 

LOW-FREQUENCY SINGLE NUCLEOTIDE VARIANTS 

 

 

 

Yangyang Hao 

 

 

 

 

 

 
 Submitted to the faculty of the University Graduate School  

in partial fulfillment of the requirements  
for the degree  

Doctor of Philosophy  
 in the Department of Medical and Molecular Genetics,   

Indiana University  
 

February 2016 

 



ii 

Accepted by the Graduate Faculty, Indiana University, in partial 

fulfillment of the requirements for the degree of Doctor of Philosophy. 

 

 

 

 

 

 

 

Doctoral Committee 

 

 

November 16, 2015 

 

 

 

 

     

Yunlong Liu, PhD, Chair 

 

     

Howard J. Edenberg, PhD 

 

     

Lang Li, PhD 

 

     

Harikrishna Nakshatri, PhD 

 

 

 



iii 

ACKNOWLEDGEMENTS 

I would first and foremost like to thank my mentor, Dr. Yunlong Liu, for all the 

advice, support, motivation, and encouragement over the last five and a half years. Dr. 

Liu provided endless insight and ideas into helping me complete the thesis project and 

also many valuable training and collaboration opportunities to hone my skills as a young 

bioinformatics scientist throughout my time in his laboratory. He truly cares about the 

well-being of the students under his supervision, not only academically, but also skills 

and qualities that will benefit the students for a lifetime, such as effective communication, 

time management and a strong yet flexible mind facing problems, for which I will always 

be grateful. 

I sincerely thank each of my committee members, Dr. Howard J Edenberg, Dr. 

Lang Li and Dr. Harikrishna Nakshatri, for sharing of their time and knowledge with me. 

Their constructive criticisms, insightful comments, and encouragements helped to shape 

my research for the better and I am truly appreciative. Particularly, I thank Dr. Edenberg 

for his great patience with my very poorly written drafts and his numerous valuable 

advices on the structure, logic flow and presentation of key points that can help deliver 

them better to the audiences. I thank Dr. Li for his insightful suggestions on data 

modeling that help to extend the horizon of my computational knowledge. I thank Dr. 

Nakshatri for offering biological insights that are relevant to my research and helping me 

put the computational problem into an important biomedical research and application 

perspective. 

I thank the sequencing core in Center for Medical Genomics, for generating the 

sequencing data, especially Dr. Xiaoling Xuei, for her help on answering sequencing 

technology related questions. I thank Dr. Hongyu Gao from Center for Computational 

Biology and Bioinformatics for her support on using computational tools to process next-

generation data. 



iv 

I would also like to thank the faculty, staff, and students of the Indiana University 

School of Medicine Department of Medical and Molecular Genetics. I enjoyed every 

interaction with them and am grateful for their help and support. I would like to 

particularly thank Dr. Brittney-Shea Herbert for her super fast, informative replies to each 

of my email inquiry. I truly appreciate her kind reminders as well as support for 

everything needed to be a successful graduate student. 

I owe a huge thank you to my family and friends for their love and support 

throughout this journey. I thank my parents for their never-ending encouragement and 

unwavering confidence in me. I thank my husband for being such a great person, my 

soul mate as well as the best team partner that I can ever imagine. I thank my dear 

friend Xue Wu, for encouraging me during the not-so-easy Ph.D. life, planning all fun 

travelling across the US, as well as her great baking skills that I will always want more. I 

wouldn’t be who I am today and where I am today without the constant support, 

encouragement, and inspiration of those I cherish most, for which I am eternally grateful. 

 
  



v 

Yangyang Hao 

 

COMPUTATIONAL MODELING FOR IDENTIFICATION OF LOW-FREQUENCY 

SINGLE NUCLEOTIDE VARIANTS 

 
 

Reliable detection of low-frequency single nucleotide variants (SNVs) carries 

great significance in many applications. In cancer genetics, the frequencies of somatic 

variants from tumor biopsies tend to be low due to contamination with normal tissue and 

tumor heterogeneity. Circulating tumor DNA monitoring also faces the challenge of 

detecting low-frequency variants due to the small percentage of tumor DNA in blood. 

Moreover, in population genetics, although pooled sequencing is cost-effective 

compared with individual sequencing, pooling dilutes the signals of variants from any 

individual. Detection of low frequency variants is difficult and can be cofounded by 

multiple sources of errors, especially next-generation sequencing artifacts. Existing 

methods are limited in sensitivity and mainly focus on frequencies around 5%; most fail 

to consider differential, context-specific sequencing artifacts. To face this challenge, we 

developed a computational and experimental framework, RareVar, to reliably identify 

low-frequency SNVs from high-throughput sequencing data. For optimized performance, 

RareVar utilized a supervised learning framework to model artifacts originated from 

different components of a specific sequencing pipeline. This is enabled by a customized, 

comprehensive benchmark data enriched with known low-frequency SNVs from the 

sequencing pipeline of interest. Genomic-context-specific sequencing error model was 

trained on the benchmark data to characterize the systematic sequencing artifacts, to 

derive the position-specific detection limit for sensitive low-frequency SNV detection. 

Further, a machine-learning algorithm utilized sequencing quality features to refine SNV 

candidates for higher specificity. RareVar outperformed existing approaches, especially 
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at 0.5% to 5% frequency. We further explored the influence of statistical modeling on 

position specific error modeling and showed zero-inflated negative binomial as the best-

performed statistical distribution. When replicating analyses on an Illumina MiSeq 

benchmark dataset, our method seamlessly adapted to technologies with different 

biochemistries. RareVar enables sensitive detection of low-frequency SNVs across 

different sequencing platforms and will facilitate research and clinical applications such 

as pooled sequencing, cancer early detection, prognostic assessment, metastatic 

monitoring, and relapses or acquired resistance identification. 

 

Yunlong Liu, Ph.D., Chair 
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Chapter 1. Introduction and Literature Review 

1.1 Importance of Low Frequency SNVs in Biomedical Research and Applications 

Single nucleotide variants (SNVs) are the most common type of variation [1, 2], 

and are also currently the major data source to derive drug targets and biomarkers [3].  

Thus identifying SNVs and studying the function of SNVs constitute key aspects in the 

realm of genomics and genetics. Previous studies in cancer as well as population 

genetics have reported great successes in identifying disease susceptibility genes via 

germline SNVs [4-11] and common SNPs [12, 13]. Yet with the accumulation of 

knowledge on the impacts of mutations on disease predisposition, disease etiology[14] 

as well as the development of new clinical applications, there is a clear demand for 

identifying and analyzing low frequency SNVs in basic biological research and clinical 

applications [15-19]. 

 

1.1.1 Low Frequency SNVs in Cancer Research and Clinical Applications 

In cancer research, a widely accepted notion is that cancer is a complex disease 

arising from sequentially accumulation of somatic mutations, which leads to the 

transformation of normal cells to cancer cells [20, 21]. Thus somatic mutations are the 

key for us to understand carcinogenesis and also seek proper treatments. However, 

identifying somatic mutations from tumor samples is more challenging than germline 

mutation detection using purified peripheral blood. The first reason is the lower 

frequencies of these somatic mutations since tumor samples from biopsies are often of 

low purity. The low purity is the result of normal cells contamination [22, 23], as well as 

the highly heterogeneous nature of the tumor cells, which are a mixture of multiple 

genetically different tumor subpopulations [24, 25]. Previous work summarized the 

estimated tumor purity from existing major cancer studies, in which lung cancer has a 

large number of samples with purity between 20% and 40% and the purity for some 
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samples are even less than 20% [22]. Different levels of heterogeneity are observed in 

tumor. The Intratumor and the intercellular genetic heterogeneity are the main sources of 

complication for identification of low frequency mutations. In addition, the tumor samples 

may have lower quality. An increased background mutation rate is expected for cancer 

biopsy specimens that are formalin-fixed and paraffin-embedded (FFPE) due to cross-

linking [26, 27]. Thus, efficiently distinguishing low frequency somatic mutations from 

background errors carries great significance in cancer research. It is also important in 

clinical applications, since it enables the early diagnosis, cancer progression monitoring 

and relapse identification, which are essential components of cancer treatment.  

Besides, low frequency mutation detection is also desirable in newly developed 

applications. The recent discovery of circulating tumor DNA (ctDNA) gained much 

attention from cancer researchers and clinicians since contrast to traditional tumor 

biopsy, which is invasive and can only offer a snapshot of the tumor genetics landscape 

at certain checkpoints, ctDNA based ‘liquid biopsy’ [28] is non-invasive and can be done 

repeatedly for close monitoring of early sign of relapse or metastasis [29-32]. However, 

ctDNA only represents a small percentage of all blood sample DNA [33]. A previous 

research [34] reported for some advanced cancers, ctDNA is about 1~10% of blood 

DNA. 

 

1.1.2 Low Frequency SNVs in Population-Genetics Research 

Single nucleotide polymorphism (SNP) is an SNV occurring within at least 1% a 

population [35]. Information about polymorphic positions in the genome and the analyses 

on frequencies of variant alleles in various populations are the key inquiries of population 

genetics. To increase the power of population genetic studies, estimating allele 

frequencies from a large number of population samples is desirable due to higher 

accuracy. Individually sequencing a large number of samples is usually cost-prohibitive, 
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thus sequencing pooled DNA samples [36-38] as a cost-effective alternative was 

developed and also proved to generate more accurate allele frequency estimations [39-

41] than individual sequencing at similar cost. However, pooling larger number of 

individuals also brings the challenge of distinguishing sequencing errors from low 

frequency alleles. Further, with the paradigm shift in complex diseases studies from 

‘common disease-common variants’ (CDCV) to ‘common disease-rare variants’ (CDRV) 

[42-44], the importance of reliably identifying low frequency (0.5~5% minor allele 

frequency or MAF) to rare (MAF < 0.5%) variants is again pinpointed. 

 

1.2 NGS Protocols, Applications and Limitations 

Determining the sequence composition is a fundamental task in biomedical 

researches. To determine the sequence of base pairs that make up human DNA, the 

Human Genome Project was launched in 1990 and took $3 billion and 13 years to 

complete. The monumental project was accomplished with Sanger sequencing, which is 

considered the first generation sequencing technology. Despite many technical 

improvements made to the technology, after dominating the sequencing industry for 

more than two decades, Sanger sequencing could not keep pace with the great demand 

for cheaper, faster and more accurate sequencing of a large number of human 

genomes. This demand catalyzed the development of next-generation sequencing 

(NGS), which performs massively parallel sequencing and allows the entire human
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 genome to be sequenced within days. The much-improved sequencing technology 

revolutionized genomics and genetics researches and applications. To fully utilize its 

power, a clear understanding of its design and basic principles, as well as its power and 

limitations is indispensible. This is the key for low frequency SNV detection, since the 

task requires sensitively and specifically distinguishing true SNVs with close to 

sequencing error rate frequency from sequencing artifacts. In this section, the NGS DNA 

sequencing protocols are first introduced, then sequencing read alignment methods and 

complications are briefly introduced. The error sources of NGS platforms are 

summarized and the efforts trying to mitigate the problem are also introduced.  

 

1.2.1 NGS DNA Sequencing Experimental Protocols  

Since the release of the first NGS sequencer by 454 Life Science, during the past 

decade, many NGS platforms based on different technical protocols have been 

developed and released. Among those platforms, the leading benchtop sequencers for 

targeted gene panel or small genome sequencing are Illumina MiSeq, Ion PGM and Ion 

Proton. While the leading population- and production-scale sequencers designed for 

large number of whole genome, exome or transcriptome sequencing are Illumina HiSeq 

series.  

Taking Illumina sequencer as an example, a DNA sequencing experiment 

includes the following steps [45]: 

1. Library Preparation – for whole genome sequencing, the genomic 
DNA sample is randomly fragmented by sonication or nebulization, 
followed by 5’ and 3’ adapter ligation. Adapter-ligated fragments are 
PCR amplified and gel purified. For amplicon-based targeted 
sequencing, custom amplicon probes hybridize to flaking regions of 
interest in unfragmented genomic DNA to capture the desired 
sequences. Then PCR adds sequencing adapters to the amplicons 
and the amplicon library is ready for amplification. 

2. Library Amplification – The sequencing library is loaded in to a 
flowcell.  Adapter-ligated DNA fragments are separated into single 
strands. The surface of the flowcell is bounded by millions of oligos 
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complimentary to the library adapters, thus the single stranded library 
fragments are captured. Then each captured fragment is amplified 
into a clonal cluster via bridge amplification. 

3. Sequencing – Illumina uses sequencing-by-synthesis (SBS) 
technology. At each cycle, 4 types of fluorescently labeled nucleotides 
are added, the ones complementary to the template DNA are added 
and the emission from each cluster on the flowcell is recognized and 
recorded by the optical imaging system. The bases incorporated and 
the qualities are determined from the emission wavelength and 
intensity data. 

4. Data Analysis – Sequencing reads are aligned to a reference 
genome. Different variant calling algorithms can be applied on the 
aligned sequencing data. 

For Ion Torrent sequencers, a DNA sequencing experiment shares the above 4 

general steps but the technical details are different [46]. For library amplification, 

emulsion PCR is used. Adapter-ligated DNA fragments are separated into single strands 

and then are captured by beads under conditions favoring one template per bead. The 

DNA-bead complexes are then mixed with oil-aqueous emulsion to create individual 

droplets that encapsulate these DNA-bead complexes. These droplets are also called 

microreactors in which PCR amplification is performed. In the sequencing step, millions 

of beads flow across the Ion semiconductor chip, each depositing into a well. Then the 

chip is flooded with a sequence of the 4 nucleotides. Whenever a nucleotide 

incorporates a single stranded DNA, a hydrogen ion is released and changes the pH of 

the solution in the well. An ion sensitive layer beneath the well detects the change in pH 

and converts that to voltage and thus the base is detected. This technology is called Ion 

semiconductor sequencing.  

 

1.2.2 NGS Read Alignment 

NGS platforms generate large number of short reads. The majority of high-

throughput NGS platforms now can generate single or paired-end reads with 100 to 300 

in length, with Ion PGM system capable of generating millions of 400-base length reads. 

The relatively lower-throughput sequencer from 454 can generate reads up to 1000 
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nucleotides in length. In terms of throughput, Ion Torrent benchtop sequencer Ion PGM 

318 chip can generate 4-5.5 million reads while Ion Proton can generate 60-80 million 

reads. Illumina benchtop sequencer MiSeq can generate 25 million reads per run while 

population- and production-scale sequencer HiSeq series can generate 6 billion reads 

per run. 

Fast and accurately aligning enormous amount of short reads back to the 

reference genome is the key issue for NGS data analysis. To solve this problem, 

different strategies had been tested. From hashing the short reads [47-49], hashing the 

reference genome [50, 51] to Burrows-Wheeler transform (BWT) used by string 

matching theory, the speed, memory usage, error tolerance had been greatly improved. 

For Illumina sequencing data, BWT based Burrows-Wheeler aligner (BWA) [52] is the 

most widely used tool. For Ion Torrent data, TMAP from Torrent Suite Software is used 

since it optimized the modules and parameters to adapt to flexible read length. One 

major difficulty of read alignment is aligned reads from low-complexity reference genome 

regions. In addition, sequencing errors, including mismatches and micro-insertions and 

deletions (INDELs) can also complicate the alignment.  

 

1.2.3 NGS Error Profiles and Error Reduction Methods 

With the ever-increasing importance of NGS in genomics and genetics, the 

significance of accounting for experimental errors is also more prominent, especially in 

the application of identifying low frequency variants where the variant allele frequency 

could be close to or below sequencing error rate (0.1~1% for most platforms [53]). 

Starting from sample preparation, all steps can potentially generate errors [54]. In 

sample preparation step, nucleic acid degradation and FFPE crosslinking induced errors 

[55], as well as alien sequence contamination are the main sources. In library 

amplification step, PCR amplification errors [56] may be recognized as SNVs in the 
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subsequent SNV calling. During the sequencing step, all platforms show error profiles 

related to GC and/or AT content as well as homopolymers [57], and elevated error rates 

in low-complexity regions. In terms of the relationship between GC content and error rate 

of different platforms, Illumina and Complete Genomics platforms are more sensitive to 

GC content differences. For homopolymer length, except for Pacific Biosciences 

considered as ‘third generation sequencing’ technology [58], all the other platforms show 

elevated error rates when homopolymer length is larger than 10. Nevertheless, different 

platforms are more vulnerable to different types of errors due to the differences in the 

underlying technologies. Illumina and Ion Torrent sequencers are based on totally 

different sequencing biochemistries. For Illumina sequencers, substitution error is the 

major error source [59] and Nakamura et al. Identified sequence contexts that tend to 

trigger these errors [60]. Ion Torrent tends to have more indel errors around 

homopolymer sequences [61] and thus tends to generate false SNV calls due to 

erroneous alignment. 

To mitigate the NGS errors, many researchers have reported successes in 

reducing NGS errors by improved experimental protocols, especially the library 

preparation and amplification steps. “Barcoding” strategy has been discussed in several 

papers where a mutation is confirmed only if it appears in multiple read groups 

distinguishable by the barcodes [16, 62]. Circle sequencing improved the idea of 

independent mutation confirmation from multiple read groups by removing the need of 

adding barcodes [63]. Duplex sequencing approached the error reduction by requiring 

strand concordance on the mutations [18, 64]. However, most existing NGS data are 

generated from standard experimental protocols without the specially designed steps 

implemented in barcode, circle and duplex sequencing protocols described above, thus 

how to effectively distinguish sequencing artifacts and errors from low-frequency SNVs 

is an important topic in bioinformatics. In terms of bioinformatics approaches, many 
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researchers use filters, including requirements on sequencing read depth, base quality, 

mapping quality, strand bias, variant quality and mutation density [65]. Also, some 

researchers proposed using replicates [54] to reduce errors. SNVs are called from all 

replicates and then classified. SNVs agree among all the replicates are treated as 

concordant, and discordant if not. Concordant SNVs are more likely to be true SNVs 

rather than sequencing errors. The replicates could be technical, biological and cross-

platform. Taken biological replicates as an example, by plotting fraction of concordant 

and discordant SNVs on different thresholds of different filter metrics, such receiver–

operator characteristic curves can help evaluate the efficiencies of different filters and 

determine the threshold as well. 

  

1.3 NGS Based Low Frequency SNV Detection: Challenges and Existing Efforts 

The main challenges are how to reliably measure low frequency SNVs and how 

to distinguish from sequencing artifacts. Targeted deep sequencing can generate NGS 

data with per base coverage up to thousands or even higher, thus are more likely to 

capture low frequency SNVs. Amplicon based PCR target capture assay is the most 

common choice, and the target region usually ranges from tens (several kilobases) to 

hundreds of genes (up to several million bases). The development of benchtop 

sequencing systems such as Ion Torrent PGM, Ion Proton and Illumina MiSeq and 

NextSeq series, greatly promotes targeted sequencing and the development of target 

panels. However, tumors are genetically heterogeneous and often contain 

normal/stromal cells, which render some low-abundance somatic mutations close to or 

even below NGS detection limit. Targeted sequencing generates deep coverage on 

those loci but the amplification step keeps the original mutant to wildtype ratio in the 

tumor samples, with potential bias toward the wildtype allele. Methods that can 

selectively amplify the mutant allele have the potential to enrich these subtle signals. 
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COLD-PCR (co-amplification at lower denaturation temperature-PCR) [66-69] is a 

modified PCR protocol that identifies and enriches low-level mutant alleles in the 

presence of excess wildtype alleles, thus enabling the downstream analysis to identify 

real low-frequency variants. However, the feasibility to generalize COLD-PCR to a large 

number of sequences and sequences of various nucleotide compositions need to be 

carefully evaluated. Moreover, there is a recent report [70] of a sophisticated 

experimental protocol using target enrichment by sequential rounds of hybridization with 

biotinylated oligonucleotides, together with duplex sequencing described in section 1.2.3 

to increase the accuracy of calling rare variants. However, it is primarily applicable to 

small genomic intervals of the size of a single gene. Thus despite the promising results 

demonstrated from current protocol developments, more efforts in generalizing and 

standardizing these modified protocols are required for broader applications.  

In terms of bioinformatics methodologies, existing tools, such as VarScan2 [71], 

Strelka [72], and mutect [73], are mainly designed to target variants with lowest allele 

frequencies at 5% level for a whole exome or several hundreds of targeted genes 

sequenced with average depth around hundreds. Several studies focus on a small 

number of hotspot cancer genes with ultra-deep sequencing (greater than 10,000x in 

depth) [74, 75] for pushing down the detection limit. However, such methods usually take 

ad hoc filtering approach, and are designed to target variant identification within a small 

genomic region, usually less than 20,000 nt. In addition, existing methods typically use 

base quality to derive the base call error rate for each location assuming equal 

substitution error rates, and/or using an empirical mutational rate to derive the posterior 

probability or likelihood ratio of a location being a somatic mutation rather than a 

germline variant. Since the common parameters used didn’t consider differential error 

profile at different genomic loci across the targeted regions, such method is suboptimal 

in sensitively detecting variant with allele frequency close to intrinsic sequencing error 



10 

rate. Thus, additional ad hoc trimming, filtering and thresholding are often required to 

remove the variants with lower qualities. Such strategy significantly limits the 

generalizability of the analysis methods. Therefore, to our knowledge, no existing 

methods can reliably detect SNVs at close to 1% allele frequency using data from 

standard sequencing protocols targeting hundreds of genes. 

 

1.4 Appropriate Benchmarking for Low Frequency SNV Detection Methods 

Defining a gold standard benchmark for SNV detection is challenging since the 

benchmark needs to be completely characterized to include all real SNVs as well as to 

exclude false positive calls. Such a task is even more challenging for low-frequency 

somatic SNV detection since no tumor genome has been completely characterized and 

the depths of existing data usually are not deep enough to enable identifying low-

frequency SNVs. To address these problems, there are in general 4 types of approaches 

to simulate cancer genomes for benchmarking: (1) de novo simulation reads and 

mutations based on previously learnt sequencing error profiles on the basis a reference 

genome [76-80], (2) admixture of existing sequencing data from multiple samples at 

various percentages [23, 81], (3) bridging (1) and (2) where cancer genome reads are 

derived by modifying pre-existing alignments at desired frequencies and realigning the 

modified reads [82] and (4) mixing DNA samples with known genotypes at designed 

percentages and then sequence the DNA mixture [83]. These methods all have their 

own merits and demerits. Method (1) is cost-efficient since once the error profiles are 

learnt, it can generate new simulated sequencing data without actual sequencing cost. 

And it is flexible since simulated data can be generated for different platforms based on 

different error profiles. However the major problem with this method is that it cannot 

recapitulate biases and error profiles if they had not been well defined and 

characterized. This is a serious problem that limits its application value since different 
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combinations of sample preparation and sequencing technology may demonstrate 

differential biases and error profiles. Method (2) successfully avoids the problem in (1) 

by operating on existing sequencing data, thus the sequencing biases and error profiles 

are well preserved. However, there are concerns about method (2) arguing it is biased 

toward SNVs already detectable [82]. In addition, the allele-frequencies derived from in-

silico mixing step may not be an ideal representation of the actual biological cell 

subpopulations. The reason is the mechanisms causing such variations may be far more 

complicated than the in-silico mixing schemas. Method (3) tried to combine (1) and (2) to 

take advantages of both, however, this method ignores the context specific nature of 

sequencing error profiles [57, 60, 84]. Further, the rationale of retaining the same base 

qualities after changing bases at the same locus is open to doubt. Method (4) preserves 

the original sequencing biases and error profiles, especially the sequence context 

related errors. It can also provide information to evaluate the agreement between the 

observed allele frequencies and the actual abundance of corresponding cell populations, 

which is useful for determining the variability of allele frequencies estimated from 

sequencing data. In addition, compared with in-silico mixing, the DNA-mixing-followed-

by-sequencing approach allows characterization of potential bias toward wildtype allele, 

which may affect allele frequency estimation. For the purpose of benchmarking low-

frequency SNV callers, we choose method (4).  

 

1.5 Objectives 

The main objective of this thesis is to develop a computational framework to 

reliably identify low-frequency SNVs for applications in cancer or population genomics 

and genetics study. To serve the main objective of computational methodology 

development, three sub objectives were derived: design suitable benchmark for model 

training and testing, model sequencing errors to establish the lowest detection boundary 
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and decide the optimal classification boundary between true SNVs and technical 

artifacts to refine SNV calls.  

Chapter 2 describes in detail a novel experimental and computational modeling 

framework, which designed specific modules for each of the aforementioned sub 

objectives. The framework named RareVar aims to push the detection limit to allele 

frequencies as low as 0.5-1% under standard sequencing experiment protocols. This 

would significantly improve the sensitivity with which rare somatic mutations can be 

detected. The experimental part includes a strategy to construct benchmark tumor DNA 

samples containing thousands of SNVs with a wide range of allele frequencies yet 

enriched with low frequency variants (0.5%-3%). The benchmark tumor DNA samples 

are amplified and sequenced using the same protocol as the primary tumor samples, 

and are further used to construct a statistical model for deriving the background 

sequencing error rates that are specific to different genomic loci. This benchmark 

sample is further used for constructing a machine-learning-based model for variant 

recalibration. We evaluated the performance of RareVar together with several existing 

tools on an independent test benchmark. This analysis showed RareVar is more 

sensitive than other tools for variants at 3% or less allele frequencies.  

Chapter 3 described the ongoing project of applying our low-frequency SNV 

calling framework RareVar on studying mutational drift/enrichment of reprogrammed 

breast tumor cells.  

Chapter 4 explored the potential to improve the performances on identifying 

candidate SNVs with close to sequencing error rate frequencies by implementing more 

sophisticated statistical models for sequencing error characterization.  

Chapter 5 evaluated the generalizability and adaptiveness of the position specific 

sequencing error model. Instead of Ion Proton sequencing data used in previous 
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chapters, the model was tested on Illumina MiSeq platform, which utilized completely 

different biochemistries.  
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Chapter 2. RareVar: a Framework for Detecting Low Frequency Single Nucleotide 

Variants 

2.1 Overview of RareVar Framework 

The RareVar protocol includes five major components: benchmark sample 

design, target region amplification and sequencing, position specific sequencing error 

modeling (PSEM), variant identification, and machine-learning-based variant 

recalibration (Figure 1). A training benchmark sample was designed to contain a set of 

mutations at known allele frequencies in the desired capture regions. This benchmark 

sample was sequenced in parallel with the samples of interest using the exact same 

capturing and sequencing protocol and thus serves as a calibration set to evaluate the 

accuracy of the sequencing and analysis pipeline. The non-SNV loci in the benchmark 

sample provide data for PSEM on genomic features that distinguish low frequency SNVs 

from sequencing errors, while the known SNVs allow further adjustment of machine-

learning algorithms to recalibrate the variant calls based on features from the particular 

experimental procedures. 

In this chapter, the usage of RareVar framework is demonstrated under the 

scenario of detecting somatic SNVs from paired normal-tumor samples. Thus, both 

training and testing benchmarks contain 2 samples, one mimicking the normal sample 

and the other one mimicking the tumor sample. In the training benchmark, instead of 

using invariant loci data from tumor sample as the training data for position specific error 

modeling, the invariant loci data from normal sample sequencing data are used. The 

reason is we want to take advantage of the paired normal-tumor design, since the 

normal sample is less likely to contain potentially missed SNVs compared with the tumor 

sample that is generated by mixing DNAs from multiple individuals as described in 

section 2.2.1.  The SNV loci sequencing data in the tumor sample constitute the training 

data for machine-learning-based variant recalibration. 
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Figure 1 RareVar framework overview. During the training phase, genome contexts of 
invariant loci are used to train a position specific error model (PSEM). Then the 
genome contexts of all loci are fed to PSEM and the resultant predictions comprise the 
candidate SNV loci. Sequencing qualities of those candidates are used to further 
calibrate their fidelity. Actual data involved in model training are highlighted in dashed 
lines and boxes. During the testing phase, testing benchmark data go through the 
trained PSEM and recalibration model to generate high confidence SNVs. 
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2.2 Materials and Methods 

2.2.1 Benchmark Design 

A total of 22 DNA samples from the 1000 Genomes Project were selected. The 

genotype information is available for the selected individuals [85]. Two sets of 18 

samples were used, one for the training benchmark set and the other for the testing 

benchmark set (Table 1). For paired normal-tumor design, one sample was chosen as 

the normal sample, and then the 18 samples were pooled together at different 

percentages to mimic the tumor sample. Details are described below.  

The goal for the training benchmark tumor sample mixing design was to 

maximize the number of low frequency (0.5-3%) SNVs in the target regions. To achieve 

this goal, two steps were utilized. First, among one set of 18 DNA samples, we identified 

the one that has the largest number of overlapping SNVs with other samples in the 

target regions, which is NA11993 shown in Table 1. The SNVs from this sample were 

used to represent the germline mutations from normal/stromal cell population for somatic 

mutation identification. These SNVs are referred as “germline” SNVs and the sample is 

referred as “normal” sample in the later description. Second, for the tumor sample, the 

other 17 samples were mixed at varying concentrations (1% to 10%); samples with 

larger number of unique SNVs in the target regions were assigned lower concentrations 

(Table 1). The previously chosen normal sample represents normal cell population in the 

pooled tumor sample. Similarly, the testing benchmark tumor sample was designed by 

mixing another set of 18 DNA samples at concentrations different from the training 

samples. Four of the 18 samples in the testing benchmark were not in the training 

benchmark (Table 1 last 4 rows), and the three samples with higher number of unique 

SNVs were assigned 1% mixing percent while the remaining sample NA12878 was 

assigned the highest mixing percent. The SNVs from the new samples in the testing 

benchmark tumor sample comprised the subset to monitor potential model over-fitting 
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from both the position specific error model and the machine-learning step, where SNVs 

from the samples used in both training and testing comprised the subset to evaluate the 

performances on independent sequencing runs. The DNA mixing strategy for both 

training and test benchmark tumor samples are shown in Table 1. 

 

2.2.2 Sequencing 

The targeted regions for benchmark datasets included all exons of 409 known 

cancer-related genes, totaling about 1.7 million bases.  For library construction, targeted 

sequences were captured by ~ 16,000 amplicon primer pairs from Ion AmpliSeq 

Comprehensive Cancer Panel. The average length of amplicons is 155bp. The library 

was prepared using Ion AmpliSeq Library Kit 2.0. Sequencing was carried out on Ion 

Proton system, and the data was aligned to Human Genome reference hg19 by TMAP in 

Torrent Suite Software version 4.4.2. On target, uniquely mapped and mapping quality 

>= 40 reads were used in the following analyses.  
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Table 1 Design of tumor samples for training and testing benchmarks. Individual 
NA11993, shaded, was used as the normal sample in the training set; while shaded 
individual NA12878 was used as the normal sample in the testing set. ‘NA’ means not 
used.  

 Training Set Tumor Sample Testing Set Tumor Sample 

ID Number of 
Unique SNPs 

Mixing  
Percent 

Number of 
Unique SNPs 

Mixing  
Percent 

NA11993 37 0.47 NA NA 

NA18507 86 0.10 70 0.01 

NA12155 33 0.08 NA NA 

NA18563 37 0.06 NA NA 

NA12144 32 0.03 NA NA 

NA12750 42 0.03 43 0.10 

NA12751 42 0.03 38 0.06 

NA07000 39 0.03 43 0.06 

NA18987 44 0.03 44 0.03 

NA18965 48 0.02 43 0.08 

NA12872 51 0.02 45 0.03 

NA18622 44 0.02 44 0.03 

NA18853 72 0.02 60 0.01 

NA18526 48 0.02 58 0.01 

NA18870 109 0.01 102 0.02 

NA18502 107 0.01 90 0.02 

NA18871 99 0.01 85 0.02 

NA18501 95 0.01 75 0.02 

NA19239 NA NA 86 0.01 

NA12878 NA NA 41 0.46 

NA19238 NA NA 71 0.01 

NA19092 NA NA 65 0.01 
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2.2.3 Position Specific Error Rate Modeling 

In order to evaluate how genome contexts at specific genomic loci affect 

sequencing accuracy, a Poisson distribution generalized linear model (PD-GLM) was 

applied to model the relationship between specific genome contexts and error rates as 

shown in Equation (1),  

 

 log �𝐸𝐸�𝑛𝑛𝑙𝑙,𝑏𝑏,𝑠𝑠�� = log�𝑑𝑑𝑙𝑙,𝑠𝑠� + 𝛼𝛼 + 𝛽𝛽′���⃑ ∗ 𝑋𝑋𝑙𝑙,𝑏𝑏,𝑠𝑠���������⃑  (1) 

 

where 𝑛𝑛𝑙𝑙,𝑏𝑏,𝑠𝑠  is the number of reads in location 𝑙𝑙  within the target regions that 

support non-reference base 𝑏𝑏  on strand 𝑠𝑠  (forward or reverse), 𝑑𝑑𝑙𝑙,𝑠𝑠  is the depth of 

sequencing at location 𝑙𝑙 on strand 𝑠𝑠, and 𝑋𝑋𝑙𝑙,𝑏𝑏,𝑠𝑠���������⃑  is a vector of co-variants that describes 

different aspects of genomic context surrounding the candidate loci. In addition, 𝛼𝛼 and 𝛽𝛽 

are the intercept and coefficients of the regression for the co-variates, which indicate the 

contribution of each factor to the sequencing error rate. The training data for PD-GLM 

contain the loci that have a depth within 25% to 75% quantile and alternative allele 

frequency no more than 1.5%, totaling ~ 5 million records. 

PD-GLM integrated 9 genome context features (Table 2) previously reported to be 

related to sequencing errors [57, 61], including alternative base substitution types, the 

nucleotides immediate upstream and downstream of the variant loci, the percentage of 

GC nucleotides in the nearby region by extending 50 bases upstream and 50 bases 

downstream of the target nucleotide. In addition, features related to homopolymer of the 

loci were also considered, including the length of the closest homopolymer, the distance 

from the SNV to the closest homopolymer (defined as the number of bases from the 

target nucleotide to the closest base in the homopolymer, specifically, the homopolymer 

could be upstream/downstream or could contain the locus of interest) and the fraction of 



20 

bases within homopolymers in the nearby region by extending 15 bases upstream and 

15 bases downstream of the target nucleotide. The homopolymer features are designed 

to capture the intuition that other than nucleotide contexts (substitution, upstream, 

downstream bases and GC content), sequencing data for a locus tend to be erroneous if 

it is near the boundary of one or more long homopolymer(s). 
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Table 2 Definition of features in the PSEM step and summary of regression.  

Features Definition Degrees of 
Freedom1 Covariates2 Estimated 

Coefficients 
Standard 

Error3 
P 

Value4 

NA 

Intercept only model, containing the 
baseline for each feature. Specifically: 
substitution is A > C, upstream and 
downstream bases are both A; GC, 
hmer_dist, hmer_len, hden, hrun_op and 
alt_up_down_eq are all 0. 

1 Intercept -11.030 0.0079 < 2e-16 

substitution 

Change from reference base to 
alternative base; there are 12 possible 
values. A > G means reference base A 
to alternative base G. 

11 

A > G 1.621 0.0049 < 2e-16 

A > T 0.123 0.0063 < 2e-16 

C > A 0.046 0.0065 1.8e-12 

C > G -0.184 0.0070 < 2e-16 

C > T 1.399 0.0051 < 2e-16 

G > A 1.326 0.0051 < 2e-16 

G > C -0.071 0.0068 < 2e-16 

G > T -0.022 0.0066 9.1e-04 

T > A 0.190 0.0062 < 2e-16 

T > C 1.633 0.0049 < 2e-16 

T > G 0.134 0.0061 < 2e-16 

upstream 
base 

Immediate upstream base (4 possible 
values: A,C,G,T). 3 

C 0.115 0.0026 < 2e-16 

G 0.247 0.0025 < 2e-16 

T -0.127 0.0027 < 2e-16 
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Features Definition Degrees of 
Freedom1 Covariates2 Estimated 

Coefficients 
Standard 

Error3 
P 

Value4 

downstream 
base 

Immediate downstream base (4 possible 
values: A,C,G,T). 3 

C 0.475 0.0027 < 2e-16 

G 0.308 0.0027 < 2e-16 

T 0.118 0.0028 < 2e-16 

GC content 
Percent of GC bases within a 101 base 
window that extends 50 nucleotides both 
upstream and downstream.  

1 GC 0.005 0.0001 < 2e-16 

distance to 
the closest 

homopolymer
5 base 

Number of nucleotides to the closest 
base of the homopolymer within a 
window that extends 15 bases both 
upstream and downstream (possible 
values 0 to 13, 15 for no homopolymer 
within the window). 

1 hmer_dist -0.009 0.0003 < 2e-16 

length of the 
closest 

homopolymer 

Length of the closest homopolymer 
within a window that extends 15 bases 
both upstream and downstream 
(possible values 0, 3, 4 to 31). 

1 hmer_len 0.081 0.0009 < 2e-16 

homopolymer 
bases 

percentage 

Fraction of bases within a 31 bases 
window that are in homopolymers 
(possible values 0, 3/31, 4/31 to 1). The 
window extends 15 bases both 
upstream and downstream. 

1 hmer_percent 0.193 0.0095 < 2e-16 

overlap with 
homopolymer 

Whether the locus of interest is within a 
homopolymer, 1 means yes, 0 means 
no. 

1 hmer_op 0.375 0.0026 < 2e-16 

upstream or 
downstream 

base shift 

Whether the alternative base is the 
same as the immediate upstream or 
downstream base, 1 means yes, 0 
means no. 

1 alt_up_down 0.690 0.0019 < 2e-16 
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1: Degrees of Freedom: The number of covariates for each feature in the PD-GLM model. For categorical features, this is the number 
of possible levels minus 1 while for numerical features degrees of freedom equal 1. 
2: Covariates: symbols for all features used in PD-GLM. These are the variable names used in the generalized linear model. 
3: Standard Error: the standard error of the estimated PD-GLM coefficients. 
4: P Value: significance of each covariate. 
5: homopolymer: a consecutive sequence of at least 3 identical bases. 
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2.2.4 Variant Identification 

We applied a Bayesian-based approach for identifying variants with low allele 

frequencies, based on the number of reads supporting alternative allele at each specific 

genomic locus, and its estimated position-specific error rate. For each candidate variant 

locus, a Bayes factor was calculated by comparing the likelihood ratio of two competing 

models - ME and MV. ME represents the model that the number of alternative reads 

follows ‘sequencing error distribution’ - PD-GLM estimated position-specific sequencing 

error. Whereas MV represents the model that the number of alternative reads follows the 

‘targeted lowest identifiable frequency distribution’ - a SNV at the frequency of the 

targeted lowest identifiable allele frequency more than PD_GLM predicted error. In this 

study, our targeted lowest frequency is f = 0.5%. In Equation (2) 𝑛𝑛𝑙𝑙,𝑏𝑏,𝑠𝑠 and 𝑑𝑑𝑙𝑙,𝑠𝑠 remain the 

same as in Equation (1). In addition, 𝜆𝜆𝐸𝐸,𝑙𝑙,𝑏𝑏,𝑠𝑠 and 𝜆𝜆𝑉𝑉,𝑙𝑙,𝑏𝑏,𝑠𝑠 represent the expected number of 

alternative reads assuming the candidate locus is not an SNV (𝑛𝑛𝑙𝑙,𝑏𝑏,𝑠𝑠 ~ 𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆𝐸𝐸,𝑙𝑙,𝑏𝑏,𝑠𝑠)), and 

is an SNV with the lowest intended identifiable allele frequency (𝑛𝑛𝑙𝑙,𝑏𝑏,𝑠𝑠 ~ 𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆𝑉𝑉,𝑙𝑙,𝑏𝑏,𝑠𝑠)),), 

respectively. An observed substitution type in a location is considered a SNV candidate 

if Bayes factors 𝐵𝐵𝐵𝐵𝑙𝑙,𝑏𝑏,𝑠𝑠 for both strands are greater than 100. This threshold implies that 

on each strand it is 100 times more likely that a specific position is a variant than that it is 

a sequencing error. We evaluated the precision, recall and F1 scores at different Bayes 

factor thresholds, including any number that is a power of 2 within 2 to 512, together with 

10, 50, 100, 200, 300, 400 and 500. Figure 2 upper panel showed recall dropped with 

increasing thresholds while the precision increased. The lower panel showed harmonic 

mean of precision and recall – F1 score increased with bigger thresholds. However, the 

increase in F1 score began to significantly slow down around 64 to 128, as highlighted 

by the tangential line at 100. Thus the performance gain by setting more stringent 

threshold became smaller. Since the variant identification step aims at identifying SNV 
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candidates, we chose 100 as the threshold to efficiently gain increase in precision and 

left the candidate refinement to the next step. 

 

𝐵𝐵𝐵𝐵𝑙𝑙,𝑏𝑏,𝑠𝑠 =  
𝑃𝑃𝑃𝑃�𝑛𝑛𝑙𝑙,𝑏𝑏,𝑠𝑠�𝑀𝑀𝑉𝑉�
𝑃𝑃𝑃𝑃�𝑛𝑛𝑙𝑙,𝑏𝑏,𝑠𝑠�𝑀𝑀𝐸𝐸�

=  

∑ 𝜆𝜆𝑉𝑉,𝑙𝑙,𝑏𝑏,𝑠𝑠
𝑘𝑘 𝑒𝑒−𝜆𝜆𝑉𝑉,𝑙𝑙,𝑏𝑏,𝑠𝑠𝑛𝑛𝑙𝑙,𝑏𝑏,𝑠𝑠

𝑘𝑘=0
𝑘𝑘!

1−
∑ 𝜆𝜆𝐸𝐸,𝑙𝑙,𝑏𝑏,𝑠𝑠

𝑘𝑘 𝑒𝑒−𝜆𝜆𝐸𝐸,𝑙𝑙,𝑏𝑏,𝑠𝑠
𝑛𝑛𝑙𝑙,𝑏𝑏,𝑠𝑠
𝑘𝑘=0

𝑘𝑘!

, 

 𝜆𝜆𝑉𝑉,𝑙𝑙,𝑏𝑏,𝑠𝑠 =  𝜆𝜆𝐸𝐸,𝑙𝑙,𝑏𝑏,𝑠𝑠 + 𝑑𝑑𝑙𝑙,𝑠𝑠 ∗ 𝑓𝑓 (2) 
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Figure 2 Performance metrics at various thresholds of Bayes factor.Upper panel 
shows the precision (bottom line) and recall (top line) at various thresholds. Lower 
panel shows the F1 score at various thresholds. The green line in the lower panel is 
the tangent line of the curve at threshold 100. 
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2.2.5 Machine-Learning Based SNV Calibration 

SNV candidates at the lower frequencies from the variant identification step still 

contain a large number of false positives. It has been observed previously that 

sequencing-related measurements, such as sequencing and alignment quality, have a 

strong influence on the accuracy of variant identity [65]. Instead of setting up a series of 

hard filtering criteria for different measurements, a strategy utilized by many earlier 

methods, we adopted a machine learning-based approach to derive an optimal 

classification boundary between false positives and true ones by simultaneously 

modeling multiple measurements. This strategy takes the advantage of the benchmark 

dataset we constructed, since true and false positives of the identified candidate variants 

in these samples are known. Since the PSEM model focused on the genomic features 

surrounding the variant loci, in this second step, we further explored the measurements 

related to the experimental and analytical steps. Many of these features have been 

reported useful in ruling out false positives in previous studies [65, 71, 72, 86] (Table 3). 

The features included in the machine-learning model can be grouped into the following 

generic types: sequencing, alignment, amplicon structure and genome context related 

features from PSEM. Information gain (IG) [87] was used to rank the classification power 

of all features and is defined in Equation (3), where 𝐶𝐶 is the two classes: true SNVs or 

noise; 𝐻𝐻(𝐶𝐶) is the information entropy for all classes, 𝐻𝐻(𝐶𝐶|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) is the conditional 

information entropy for all classes given a feature; 𝑥𝑥  is a categorical feature with 𝑘𝑘 

levels, where numerical features are discretized with Fayyad & Irani's MDL method [88]. 
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Table 3 RareVar: features considered in variants recalibration step. Features are ranked based on column 'Information Gain'. 
Genome context features are from the PSEM step.  

Feature Explanation Category Information 
Gain Source 

Allele_Freq Allele frequency Sequencing. 0.363 RareVar 

MisMatch_Percent 
For reads containing alternative base, the 
percent of reads also containing other 
mismatches within a 11 base window. 

Alignment. 0.300 RareVar 

MAPQ_Alt_RefDiff 
Difference of average mapping quality 
between reads containing alternative and 
reference. 

Alignment. 0.220 RareVar 

MAPQ_Avg_Alt Average mapping quality for reads 
containing alternative base. Alignment. 0.197 RareVar 

BaseQ_Avg_Alt Average base quality for alternative 
bases. Sequencing. 0.190 RareVar 

MAPQ_RankSum Rank sum test of mapping quality. Alignment. 0.177 GATK 
BaseQ_RankSum Rank sum test of base quality. Sequencing. 0.130 GATK 

BaseQ_Alt_RefDiff Difference of average base qualities 
between alternative and reference bases Sequencing. 0.117 RareVar 

Fisher_SB Fisher exact test of strand bias. Sequencing. 0.106 GATK 

AbsDiff_StrandAF_Percent Absolute value of the difference in allele 
frequencies between two strands Sequencing. 0.102 RareVar 

Substitution Change from reference base to 
alternative base. Genome context. 0.073 RareVar 

Strand_OR Odds ratio of reads supporting alternative 
and reference alleles in two strands. Sequencing. 0.068 RareVar 

Hmer_dist Distance to the closest homopolymer 
base. Genome context. 0.064 GATK 

Alt_up_down Upstream or downstream base shift Genome context. 0.053 RareVar 
BaseQ_Avg_Ref Average reference base quality. Sequencing. 0.049 RareVar 

Hmer_op Overlap with homopolymer. Genome context. 0.047 RareVar 
Feature Explanation Category Information Source 
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Gain 
Hmer_len Length of the closest homopolymer. Genome context. 0.046 RareVar 

Fwd_WDis Forward strand weighted distance to 
amplicon ends. Amplicon. 0.035 RareVar 

Fwd_Read_Percent Percent of forward strand reads 
supporting alternative allele. Sequencing. 0.034 RareVar 

Rev_WDis Reverse strand weighted distance to 
amplicon ends. Amplicon. 0.032 RareVar 

ReadPos_RankSum Rank sum test of alternative allele 
position in reads. Sequencing. 0.032 GATK 

Up_base Immediate upstream base. Genome context. 0.030 RareVar 
Down_base Immediate downstream base. Genome context. 0.029 RareVar 

HDen 
Homopolymer density, the percent of 
homopolymer bases within a 31 bp 
window. 

Genome context. 0.025 RareVar 

MAPQ_Avg_Ref Average mapping quality for reads 
containing reference allele.  Alignment. 0.016 RareVar 

Quality_Depth SNP confidence normalized by unfiltered 
depth of snp samples. Sequencing. 0.015 GATK 

Avg_NMM_perRead 
Average number of other mismatches in 
reads containing alternative allele within 
a 11 bases window. 

Alignment. 0.014 RareVar 

RMS_MAPQ Root Mean Square of the mapping 
quality of reads. Alignment. 0.01 GATK 

GC Content 
Percent of GC bases within a 101 base 
window that extends 50 nucleotides both 
upstream and downstream.  

Genome context. 0.000 GATK 
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𝐼𝐼𝐼𝐼 = 𝐻𝐻(𝐶𝐶) −𝐻𝐻(𝐶𝐶|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 

 
     = −�𝑃𝑃�𝑐𝑐𝑗𝑗�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑐𝑐𝑗𝑗�

2

𝑗𝑗=1

+ �𝑃𝑃(𝑥𝑥𝑖𝑖)�𝑃𝑃�𝑐𝑐𝑗𝑗|𝑥𝑥𝑖𝑖�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑐𝑐𝑗𝑗|𝑥𝑥𝑖𝑖�
2

𝑗𝑗=1

𝑘𝑘

𝑖𝑖=1

 (3) 

 

Machine-learning algorithm ‘random forest’ [89] from the software Weka [90] was 

employed to incorporate all features to train the classifier that best distinguishes false 

positive SNVs from true positive ones. The Random forest algorithm is employed with 

100 trees, maximum 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) + 1 features (𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the total number of features) 

to consider in each tree and no limitation on depth of the trees. The output of the 

classifier is a probability that a candidate SNV being a true SNV. The threshold is 0.5, 

thus if classification probability is greater than 0.5 then the candidate SNV is considered 

to be a true SNV. 

 

2.2.6 Performance Evaluation 

The AmpliSeq Comprehensive Cancer Panel targets exonic regions of known 

cancer related genes. Exonic loci with at least 5 reads supporting an alternative allele 

are included in the evaluation (Table 4). Precision and recall are defined in Equations (4) 

and (5). The allele frequency ranges were determined by the observed values for 

precision and expected values from test benchmark for recall. 

 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 (4) 

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 (5) 
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2.2.7 Parameter Customization for Existing Tools 

Existing tools to be compared with include TVC from Torrent Suite software, 

designed for Ion Proton sequencing data, Strelka and VarScan2. 

TVC version 4.4-8 from Torrent Suite version 4.4.2: customized parameter 

setting was used since the default setting from TVC (Table 5) excludes SNV candidates 

with less than 3.5% (parameter gen-min-alt-allele-freq [91]) allele frequency. The 

minimal mapping quality for a read to be considered parameter ‘MAPQ’ was set to be 

the same as RareVar. There is no option for turning off ‘downsample’, thus the maximum 

depth (34,223) in test benchmark data was used. 

Strelka [72] version v1.0.14: parameter file for bwa aligner was used. Depth filter 

on high-depth loci (isSkipDepthFilters [92]) was turned off. Also, since low recall was 

observed for <= 3% SNVs, combinations of ‘ssnvPrior’ and ‘ssnvNoise’ were tested. 

‘ssnvPrior’ specifies the prior probability of a locus containing somatic SNVs while 

‘ssnvNoise’ specifies the prior probability of a locus containing sequencing noise. The 

conclusion from this combinatory exploration suggested elevated ‘ssnvNoise’ decreases 

precision and recall while elevated ‘ssnvPrior’ increases recall with a slight drop in 

precision. The 1000x bigger ‘ssnvPrior’ results in ~ 3% increase in recall and ~ 1% drop 

in precision and since the extent of change is small, no further increase was attempted.  

VarScan [71] version v2.3.7: the parameter for minimal SNV allele frequency 

(‘min-var-freq’ [93]) was set to 0.5% and minimal number of reads supporting alternative 

allele (‘min-reads2’) was set to 5 to be consistent with RareVar. Since the percentage of 

DNA from test benchmark ‘normal’ sample individual was 0.46, thus the parameter 

specifying the percent of tumor cell population (‘tumor-purity’) was set to 0.54. The 

complete list of parameters is in Table 5. 
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Table 4 RareVar benchmark results: number of somatic SNVs by frequencies.  
 Training Benchmark Testing Benchmark 

AF SNVs Training UR1 Rate SNVs Testing UR Rate 
0.5% 394 304 22.84% 388 270 30.41% 
1% 319 271 15.05% 389 309 20.57% 

1.5 to 3% 414 360 13.04% 569 493 13.36% 
3.5 to 5% 185 162 12.43% 189 164 13.23% 

5.5 to 10% 227 213 6.17% 161 151 6.21% 
10.5 to 53% 170 151 11.18% 186 170 8.60% 

All 1709 1461 14.51% 1882 1557 17.27% 
1: UR stands for under-represented. A benchmark SNV is considered under-represented 
if fewer than 5 reads supporting the alternative allele.
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Table 5 Adjusted parameters for tools compared with RareVar.  

Parameter Definition1 Default Value Customized 
Value Tool Name 

snp-min-allele-freq 
Minimum observed allele frequency 
required for a non-reference variant 

call. 
0.02 0.005 TVC 

gen-min-alt-allele-freq Filter out variant candidates that do not 
have at least this frequency. 0.035 0.0025 TVC 

MAPQ Minimum mapping quality. 4 40 TVC 

downsample Reduce coverage in high-depth 
locations to this value. 2,000 34,223 TVC 

isSkipDepthFilters Binary tag to filter loci with high depth. 
1 means no filtering. 0 1 Strelka 

ssnvPrior Prior probability of a locus contains 
somatic SNV. 1.00E-06 1.00E-03 Strelka 

ssnvNoise Prior probability of a locus contains 
sequencing noise. 5.00E-07 5.00E-07 Strelka 

min-var-freq Minimal SNV allele frequency. 0.2 0.005 VarScan 

tumor-purity Percent of tumor cell population. 1 0.54 VarScan 

min-reads2 Minimal number of reads supporting the 
alternative allele. 2 5 VarScan 

1: Definitions were adapted from documents for each tool. 
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2.3 Results 

2.3.1 Benchmark Data Evaluation 

After filtering reads with mapping quality less than 40, about 79 and 68 million 

reads were used for training benchmark normal and mixed tumor samples, respectively, 

and about 59 and 64 million reads were used for testing benchmark normal and tumor 

samples, respectively. The design of benchmark sets generates 1,709 and 1,882 

somatic SNVs in the training and testing benchmarks, respectively. The design also 

ensures evaluation of SNVs with a broad range of allele frequencies, with special 

attention to the low frequency (0.5-3%) SNVs.  As shown in Table 4, the percent of 

somatic SNVs with allele frequency no more than 3% is 65.9% in training benchmark 

and 71.5% in testing benchmark. Somatic SNVs with fewer than 5 reads supporting 

alternative allele were considered under-represented, and were excluded from training 

and testing dataset. 

We checked the allele frequency agreement between sequenced benchmark 

tumor samples and the design. Potential SNV allele frequency bias introduced by 

pipetting variation in the pooling step was evaluated by the correlation of the detected 

median allele frequencies of SNVs unique to each individual with their designed 

frequencies (Table 1). The log scale linear regression analysis showed the individuals 

with smaller assigned percentages tend to have a slightly lower than the design 

percentages, with R2 > 0.98 for both training and testing benchmarks (Figure 3). Thus 

the observed allele frequencies highly correlated with the design, we used the 

benchmark datasets for further modeling building and performance evaluation. 
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Figure 3 Evaluation of pipetting variance in construction of the training and testing 
benchmarks. Numbers next to the dots represent the mixing frequencies of DNA 
samples; the line at 45 degrees represents perfect pipetting (observed frequency 
exactly equals the expected). The R2 for both training and testing benchmarks are from 
the linear regression results of using observed frequency in log10 scale as response 
variable – denoted by y and mixing frequency in log10 scale as explanatory variable – 
denoted by x. The coefficients for the explanatory variable are 1.025 (y = 1.025x) and 
1.030 (y = 1.030x) for training and testing benchmarks, respectively.  
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2.3.2 Position Specific Error Model and Variant Identification 

For each nucleotide different from the reference in each locus, a Poisson 

distribution generalized linear model (PD-GLM) was used to model the strand-specific 

sequencing error rate based on the associated genomic features (Table 2). Regression 

results showed all 9 features tested were statistically significant (p values < 0.001) in 

contributing to sequencing errors. Overall, the fitted model showed significant 

improvement compared to an intercept-only model (with no features considered), with 

Cragg & Uhler’s [94]  R2 = 0.246, indicating an excellent fit for R2 between 0.2 ~ 0.4 [95, 

96]. The signs and relative magnitudes of coefficients agreed with prior knowledge and 

the intuition derived from visualization. Take the feature substitution as an example, 

clear transitional bias, or purine/pyrimidine conservation was supported by the PD-GLM 

since four substitution types (A > G, C > T, G > A, T > C) have the largest positive 

coefficients (Table 2). As for the neighbor nucleotide composition complexity effect, 

slightly increasing error rates were observed for higher GC content values (Figure 4 top 

left) and this observation is also reflected in the small positive coefficient value (𝛽𝛽𝐺𝐺𝐺𝐺= 

0.005).  Also, if the alternative base is the same as the immediate upstream or 

downstream (for example a trinucleotide pattern CTG, the center base T changes to 

either upstream letter C or downstream letter G), these alternative bases observed are 

more likely to be context-induced errors (𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎_𝑢𝑢𝑢𝑢_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.690). For homopolymer related 

features, a locus is more erroneous if it is within 2 nucleotides of more long 

homopolymer(s) (𝛽𝛽ℎ𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  = -0.009, 𝛽𝛽ℎ𝑚𝑚𝑚𝑚𝑚𝑚_𝑙𝑙𝑙𝑙𝑙𝑙  = 0.081, 𝛽𝛽ℎ𝑚𝑚𝑚𝑚𝑚𝑚_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  = 0.193), and 

within a homopolymer (hmer_op = 0.375) (Figure 4 top right and bottom subplots). The 

magnitudes of the above-mentioned covariates indicate (1) if a candidate SNV locus is 1 

nucleotide further from a neighbor homopolymer then the error rate in natural log scale 

drops by 0.009, (2) if the neighbor homopolymer length increases by 1 nucleotide then 
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the error rate in natural log scale increases by 0.081, (3) if the percent of homopolymer 

bases increases by 0.1 (range 0 to 1) then the error rate in natural log scale increases 

by 0.193*0.1 = 0.0193 and (4) if the locus is within a homopolymer then the error rate in 

natural log scale increases by 0.375. 

After fitting the PSEM using PD-GLM, a Bayes factor was calculated for each 

base in each locus to determine its likelihood ratio of being a somatic SNV (from model 

MV) rather than a sequencing error (from model ME). To evaluate the efficacy of the 

PSEM in identifying SNV candidates, we mainly compared the performance of PSEM 

with Fisher’s Exact Test based VarScan2 [71]. VarScan2 was picked for comparison 

here because different from other tools (Strelka and TVC) that utilized sequencing 

quality features to boost precision at the cost of reduced recall, VarScan2 only considers 

the depth and number of reads supporting the alternative allele at the same genomic 

position of the two samples being compared. Thus the underlying features utilized by 

VarScan2 are genomic sequence contexts determined at each locus, which are the 

features that PSEM utilized explicitly. Therefore, both VarScan2 and PSEM should be 

able to recover the most number of true SNVs, which will be reflected in higher recall, 

especially in lower frequency ranges. In Table 6A comparing recall of different tools, we 

did observe PSEM and VarScan2 standing out as top 2 tools in overall recall and also 

showing large advantages over Strelka and TVC in 0.5% to 3% allele frequency ranges. 

Further, compared with VarScan2, PSEM showed higher overall recall (95.8% versus 

83.0%), with the advantages more evident at 0.5% (22.6% increase) and 1% (15.2% 

increase) ranges. However, comparing precision in Table 6B PSEM and VarScan2 

showed lowest precision, especially at in 0.5% to 3% allele frequency ranges. Thus, 

despite the high efficiency of PSEM in recovering candidate SNVs, sequencing related 

features needed to be incorporated into the SNV caller for candidate recalibration. 
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Figure 4 Relationship between genomic context features and error rate. The error rate is 
the mean of error rates from all data with a certain feature value, for example 
homopolymer length 7. For feature values with less than 1000 points, the points are 
combined to derive the mean error rate. The line is the smoothed trend line. The details 
of the features are described in Table 2. 
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Table 6 RareVar: Comparison of recall and precision for different allele frequencies.  
A: Recall comparison        VarScan22 PSEM3 
Expected 

Frequency
1 

Expected 
Number 
of SNVs 

Recovered 
Number of 

SNVs 
Recall 

Expected 
Number 
of SNVs 

Recovered 
Number of 

SNVs 
Recall 

0.5% 270 169 62.6% 270 230 85.2% 
1% 309 249 80.6% 309 296 95.8% 

1.5 to 3% 493 438 88.8% 493 483 98.0% 
3.5 to 5% 164 148 90.2% 164 162 98.8% 
5.5 to 10% 151 137 90.7% 151 150 99.3% 

10.5 to 54% 170 152 89.4% 170 170 100.0% 
All 1557 1293 83.0% 1557 1491 95.8% 
  Strelka2 RareVar4 

Expected 
Frequency

1 

Expected 
Number 
of SNVs 

Recovered 
Number of 

SNVs 
Recall 

Expected 
Number 
of SNVs 

Recovered 
Number of 

SNVs 
Recall 

0.5% 270 0 0.0% 270 96 35.6% 
1% 309 0 0.0% 309 251 81.2% 

1.5 to 3% 493 121 24.5% 493 458 92.9% 
3.5 to 5% 164 138 84.1% 164 156 95.1% 
5.5 to 10% 151 141 93.4% 151 149 98.7% 

10.5 to 54% 170 160 94.1% 170 165 97.1% 
All 1557 560 36.0% 1557 1275 81.9% 
  TVC2 

Expected 
Frequency

1 

Expected 
Number 
of SNVs 

Recovered 
Number of 

SNVs 
Recall 

0.5% 270 7 2.6% 
1% 309 88 28.5% 

1.5 to 3% 493 429 87.0% 
3.5 to 5% 164 158 96.3% 
5.5 to 10% 151 146 96.7% 

10.5 to 54% 170 166 97.6% 
All 1557 994 63.8% 

1: SNV frequencies are based upon the mixing scheme in Table 1. 
2: The customized parameters applied are listed in Table 5. 
3: PSEM represents the intermediate results of RareVar framework candidate SNV 
calling step using Bayes factor. 
4: RareVar contains both PSEM and machine-learning base recalibration steps. 
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B: Precision comparison       VarScan22 PSEM3 

Expected 
Frequency

1 

Predicte
d 

Number 
of SNVs 

Recovered 
Number of 

SNVs 
Precision 

Predicte
d 

Number 
of SNVs 

Recovered 
Number of 

SNVs 
Precis

ion 

0.25 to 
0.75% 1105 223 20.2% 1369 286 20.9% 

0.75 to 
1.25% 389 256 65.8% 479 298 62.2% 

1.25 to 3% 449 368 82.0% 571 422 73.9% 
3 to 5% 175 158 90.3% 217 168 77.4% 
5 to 10% 158 144 91.1% 207 159 76.8% 

10 to 54% 149 144 96.6% 190 158 83.2% 
All 2425 1293 53.3% 3033 1491 49.2% 

  Strelka2 RareVar4 

Expected 
Frequency

1 

Predicte
d 

Number 
of SNVs 

Recovered 
Number of 

SNVs 
Precision 

Predicte
d 

Number 
of SNVs 

Recovered 
Number of 

SNVs 
Precis

ion 

0.25 to 
0.75% 0 0 NA 140 127 90.7% 

0.75 to 
1.25% 0 0 NA 271 264 97.4% 

1.25 to 3% 89 84 94.4% 417 403 96.6% 
3 to 5% 190 167 87.9% 172 165 95.9% 
5 to 10% 182 157 86.3% 169 159 94.1% 

10 to 54% 162 152 93.8% 166 157 94.6% 
All 623 560 89.9% 1335 1275 95.5% 

  TVC2 

Expected 
Frequency

1 

Predicte
d 

Number 
of SNVs 

Recovered 
Number of 

SNVs 
Precision 

0.25 to 
0.75% 1 0 0.0% 

0.75 to 
1.25% 104 97 93.3% 

1.25 to 3% 454 420 92.5% 
3 to 5% 194 183 94.3% 
5 to 10% 189 176 93.1% 

10 to 54% 170 163 95.9% 
All 1112 1039 93.4% 

1: SNV frequencies are based upon the percent of reads supporting alternative allele 
from sequencing. 
2: The customized parameters applied are listed in Table 5. 
3: PSEM represents the intermediate results of RareVar framework candidate SNV 
calling step using Bayes factor. 
4: RareVar contains both PSEM and machine-learning base recalibration steps. 
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2.3.3 Machine Learning Based SNVs Calibration 

In order to further reduce the number of false positive SNVs identified using the 

PSEM, we utilized a machine-learning model – Random Forest [89] to better distinguish 

true positive and false positive SNVs. We used information gain to rank the classification 

power of 29 measurements related to sequencing technology and downstream analysis 

methods together with all features from PSEM. Sequencing-related features and 

alignment quality features ranked the highest, while GC content was removed due to 0 

information gain (Table 3).  

The machine-learning-based variant recalibration effectively reduced false 

positive SNVs identified by the PSEM alone. In the testing benchmark dataset, the 

overall precision increased from 49.2% (after the PSEM model) to 95.5% (after machine-

learning refinement, represented as RareVar in Table 6), with the overall recall rate 

dropped from 95.8% to 81.9%.  

 

2.3.3.1 Performance by allele frequencies 

A closer examination of the RareVar performance by allele frequencies showed 

the precision increased for all allele frequencies by at least 10% after machine-learning-

based variant recalibration (represented as RareVar in Table 6) compared with PSEM 

alone, with greater than 90% precision achieved for SNVs in all allele frequency ranges 

(Table 6B). As expected, lower frequencies showed higher increase, in which 0.70 and 

0.35 increases in precision were achieved for 0.5% and 1%, resulting in 90.7% and 

97.4% precision respectively. The decrease in recall was mainly attributed to 0.5% and 

1%, yet > 80% recall was maintained for allele frequencies ≥ 1%. The ROC curve on 

SNVs of different allele frequency ranges (Figure 5a) showed the model reaches 

relatively stable performance for SNVs with greater than 1% frequency. 
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Figure 5 RareVar: Performance evaluations and comparisons. a. The precision and 
recall are evaluated at classification probabilities from 0 to 0.95, in steps of 0.05. Points 
with 0.50 probability are highlighted. The classification probability is outputted by the 
machine-learning algorithm, which evaluates the probability of a candidate SNV being a 
true SNV. 0.50 is the threshold. b. The depth is sampled from 10% to 100% of the 
original, in steps of 5%. c. Benchmark performance optimized parameters 
(Supplementary table 6) were applied for VarScan2, Strelka and TVC to compare with 
PSEM and with RareVar. 
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Figure 6 RareVar: comparison of precision at various frequencies. 
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2.3.3.2 Effects of Sequencing Depth on the Model Performances 

Another factor affecting variant identification is the sequencing depth. The 

average sequencing depth for the testing set tumor sample (Table 1) was 3,973. In order 

to evaluate the influence of sequencing depth on the precision and recall for the SNVs at 

various allele frequencies, we gradually down-sampled the testing benchmark tumor 

sample sequencing data by randomly selecting a fixed percentage of reads from the 

original sequencing data. The precision is not affected (Figure 6), but the recall steadily 

decreases with reducing average depths for SNVs at all ranges of frequencies (Figure 

5b). It is also obvious that the trend for the decreasing is more severe when the 

sequencing depth is less than 1000x. This result suggests that sequencing depth should 

be pre-determined for detecting SNVs at a specific frequency range. In addition, for the 

variants whose allele frequency is greater than 0.5%, the recall curve reaches a plateau 

when average sequencing depth is greater than 2000x. This suggests that further 

increasing the sequencing depth won’t improve the sensitivity of the detection. 

 

2.3.4 Performance Comparison with Existing Methods 

We compared RareVar with established variant detection tools including 

VarScan2, TVC from Torrent Suite software, and Strelka. Since the default settings for 

these tools aim at SNVs with higher allele frequency, customized parameters were 

selected by optimizing for rare variants (details in Method and Table 5). RareVar was the 

best method in overall performance (Figure 5c and Table 6), with the advantage over the 

second best method, TVC, most evident for 1% and 0.5% frequencies. At 1% allele 

frequency, the precision is similar for both methods, while RareVar achieved 81.2% 

recall, compared with 28.5% for TVC. Even at 0.5% allele frequency, RareVar 

maintained 90.7% precision and 35.6% recall. It is expected that TVC also demonstrates  
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Figure 7 RareVar: comparison of precision and recall for common SNVs. 
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good performance for > 1% since it is specifically designed for Ion Proton technology, by 

using post-alignment correction for homopolymers. Although Strelka achieved 

comparable performance for more frequent SNVs (≥10%) (Figure 7), it showed 

unsatisfactory results for SNVs with allele frequency < 3%. Overall, RareVar shows the 

best performance among all the tools tested, in particular for the SNVs with low allele 

frequencies (0.5%-3%). 

 

2.4 Discussion 

The framework of RareVar provides guidance for low frequent SNV identification 

from both experimental and algorithmic aspects. Many components in the next 

generation sequencing pipeline, including library preparation, target enrichment assay 

and sequencing technology, affect the sensitivity and fidelity of SNV detection. The 

comparison of RareVar with other algorithms underscores the necessity of modeling 

frequency detection limits and the significance of a model tailored for each technology. It 

is impractical to have a universal parameter or threshold setting scheme that fits all 

sequencing platforms and experimental protocols. To solve this problem, we construct a 

benchmark sample containing variants with desired allele frequencies. The distribution of 

the nucleotide mismatch patterns around the positive and negative variant loci in the 

benchmark sample provides a valuable guideline for optimizing the parameter and 

threshold settings during the variant identification process. In addition, the independent 

testing benchmark samples also enables fair evaluation on the performance of the 

detection. 

The two stages in the computational modeling, position-specific error model 

(PSEM) and machine-learning-based recalibration, were designed to take the 

advantages of sequencing signals on the invariant loci, and designed variant loci, 

respectively. The PSEM step intends to model how genomic sequence contexts impact 
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the sequencing error profiles that are associated with the experimental protocol.  The 

derived model serves as an important base for accurately estimating background error 

signal that are specific to any particular nucleotide position. This step is critical in 

improving the detection accuracy of the SNVs with extreme low frequency, as opposed 

to using a universal background error rate for all the genomic loci. 

A machine-learning-based algorithm is applied in the variant recalibration stage, 

in which experiment-related features, such as strand bias and mapping quality, are 

considered. This design effectively avoids using a series of filters that often involves 

multiple ad hoc thresholds. Conceptually, this is similar to the variant recalibration 

strategy used in GATK with two major differences. First, GATK assumes that identified 

variant loci documented in the dbSNP database are likely to be true positive variants. 

This assumption is not valid for cancer somatic mutations, in which most mutation loci 

are random and the allele frequencies in the sample vary. Second, GATK constructed a 

Bayes Gaussian mixture model only based on true positive variant loci while false 

positive loci are difficult to determine without a gold standard dataset. With our strategy, 

however, both true positive and true negative variants are available for the benchmark 

sample. This enables using more sophisticated machine learning algorithm, such as 

random forest model. We demonstrated that variant recalibration step significantly 

increase the specificity of the variant identification, and further improved the overall 

accuracy. 
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Chapter 3. Analyzing Mutational Drift and/or Enrichment in Reprogrammed 

Primary Breast Tumor Cells 

3.1 Introduction 

Reliably detecting low frequency SNVs from NGS sequencing data provides 

great promises for cancer research and clinical applications. Deep sequencing targeted 

regions to measure the low frequency SNVs is a commonly used approach [15, 97, 98]. 

However, NGS sequencing platform artifact level (0.1~1%) puts a barrier in terms of how 

low frequency can be detected. In addition, intratumor heterogeneity is prevalent in 

tumors [99, 100]. Thus directly sequencing bulk tumors might not allow us to detect low-

prevalent subpopulations with actionable mutations. Multiregion sequencing was 

employed to uncover the intratumor heterogeneity by sequencing multiple spatially 

different biopsies and checking the geographically distinct patterns of somatic mutations 

[101]. Yates et al [102] sequenced breast tumor biopsies from multiregion and confirmed 

the importance of considering subclonal structure in breast cancer research and clinical 

trials. Another way of considering subclonal structure is to provide suitable conditions 

and allow the subclones to grow, and thus the minor subpopulations with growth 

advantage may grow and be detectable. Comparing the mutational profiles of cultivated 

tumor cells with that from the original tumor tissue, the mutational drift and/or enrichment 

in cultivated tumor cells could be revealed. These events provide insights about the 

tumor subpopulation evolution as well as clues for cancer treatment. 

To cultivate tumor cells, cell reprogramming was used to induce the tumor tissue 

cells to grow indefinitely in vitro [103]. The reprogramming step cultivates primary tissue 

cells using irradiated mouse embryonic fibroblasts as feeders and media containing 

ROCK inhibitor [104, 105]. To detect somatic mutations from unprocessed primary tumor 

cells and potential mutational drift and/or enrichment from reprogrammed tumor, we 

sequenced DNA samples from the following cell types: patient peripheral blood, 
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unprocessed tumor tissue and tumor adjacent normal tissue, reprogrammed tumor cells 

and tumor adjacent normal cells.  The mutations from peripheral blood represent the 

germline mutational landscape and thus can be used to determine somatic mutations in 

tumor samples. In the absence of blood samples, unprocessed tumor adjacent normal 

tissue cells are used to derive germline mutations. The unprocessed tumor tissue cells 

contain the somatic mutations from multiple tumor cell subpopulations, in which some 

populations may harbor malignant mutations that bear growth advantage over others. 

However, if sequencing the bulk tumor, some of the minor tumor subpopulations with 

unique mutations may not be detectable. We hypothesized that the reprogrammed cells 

allow the expansion of the minor population of tumor cells with growth advantage. Thus, 

by comparing primary tumor cell mutational profile with that from its reprogrammed 

counterpart, we can identify mutational drift and/or enrichment. The reprogrammed cells 

may contain mouse cells, which could be mistaken as human somatic mutations if not 

carefully characterized. We applied bioinformatics approaches to filter sequencing reads 

likely from mouse cells. 

 

3.2 Materials and Methods 

3.2.1 Materials and Sequencing 

Blood, fresh adjacent normal and tumor tissues from 5 patients were obtained 

from Indiana University Simon Cancer Center (IUSCC) Tissue Bank. Table 7 

summarized the number of samples sequenced from each type, the patients are 

grouped as ‘A’ and ‘B’ depending on the available sample types. Among these patients 

1402-17 is unique in that she had different types of breast tumors.  

The collaborators prepared the reprogrammed tumor cells. Briefly, the tissue 

samples from IUSCC were split into two. One part was frozen and the other part was 

used to cultivate primary cells using irradiated mouse embryonic fibroblasts as feeders 
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and media containing ROCK inhibitor [105]. Jam-A/EpCAM were used to remove mouse 

fibroblasts. Jam-A+/EpCAM+ cells were sorted by flow cytometry and thus mouse 

fibroblasts were removed since they did not stain for these markers. 

All samples were sequenced with Ion Proton. The sequencing library preparation 

and sequencing data alignment as well as post-alignment filtering were the same as 

described in Chapter 2 section 2.2.2. 
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Table 7 Summary of breast tumor samples and types sequenced.  
  Unprocessed Reprogrammed  

Patient 
ID Group Blood / Normal Tumor Normal Cell Tumor Cell 

1406-26 B Adjacent Normal Yes Yes Yes 
1411-04 B Adjacent Normal Yes Yes Yes 
1310-33 A Blood Yes  Yes 

DCIS A Blood Yes  Yes 
LCIS A Yes  Yes 
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3.2.2 In-silico Characterizing and Filtering Sequencing Reads Originating from 

Mouse 

To characterize the degree of contamination from mouse cells, we first applied in 

silico PCR to tabulate the percentage of amplicon primer pairs that can also specifically 

pull down sequences from mouse genome. The in silico PCR tool from UCSC genome 

browser [106] is used to search over ~16,000 amplicon primer pairs from the Ion 

AmpliSeq Comprehensive Cancer panel. The default parameters for in silico PCR tool in 

UCSC genome browser were used, which required 15bp perfect match for both 5’ and 3’ 

primers and also maximum 4000bp amplified region.  We found that 235 primer pairs 

can also pull down mouse genome sequences, which is 1.47% of all amplicons.  

Despite the low percentage of amplicon primer pairs that may introduce mouse 

DNA contamination, it is still necessary to consider the possibility that the primer pairs 

may have some level of random pairing which may potentially pull down mouse genome 

sequences. However, the combinatory search space is huge (16,000 * 16,000), thus we 

explored several methods of finding mouse genome reads based on comparative 

alignment between the mouse and human genome. 

The sequencing reads derived for cultured reprogrammed cells were mapped 

both to the human genome (genome build hg19) and the mouse genome (genome build 

mm10) [107] using TMAP from Torrent Suite software. To distinguish reads from mouse 

rather than human, we explored 3 strategies to filter the sequencing data, (1) ‘no mouse’ 

which removes reads that can be aligned to the mouse genome with mapping quality 

greater than 20, (2) ‘MAPQ’ which removes reads that have a larger mapping qualities 

when mapped to the mouse genome than the human genome, (3) ‘longer match’ which 

removes reads that have a larger total number of aligned bases to the mouse genome 

than the human genome.  
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To compare the performances of the filtering methods, different strategies were 

designed for the two patient groups due to the different availability of sample types in the 

two groups. For group A, to evaluate the consequences of false positive filtering, we 

checked the agreement of SNVs between unprocessed tumor and after applying mouse 

read filtering. Since there should be no mouse cell contamination in unprocessed 

tumors, any reads removed are false positive mouse reads. For group B, to evaluate the 

efficiency of different methods in removing reads from mouse cells, we checked the 

agreement of SNVs between unprocessed normal tissues and reprogrammed normal 

cells. Since there should be no new mutations or small number of mutations potentially 

induced by reprogramming process in normal cells, any new SNVs from normal cells 

compared with unprocessed normal tissues were considered as false positive SNVs due 

to contamination from mouse cells. We calculated recall, precision, and F1 score as 

described in section 3.2.3.  

 

3.2.3 Detecting Somatic SNVs with RareVar 

SNV detection was done with RareVar described in chapter 2, to effectively deal 

with diluted SNV signals from low-prevalence tumor subpopulations. For each patient, all 

types of samples independently went through the Bayes factor based candidate SNV 

identification and machine-learning based recalibration in RareVar framework to derive 

SNVs, then we applied a series of filters and statistical tests to determine somatic SNVs. 

Step 1: filtered candidate somatic SNVs by only including SNVs (1) not in potentially 

mouse contaminated amplicons, (2) RareVar detected those SNVs in either tumor tissue 

or tumor cells and the allele frequencies are larger than those in the germline sample, 

(3) depths on SNV loci in tumor tissue and tumor cells are greater than 100 and (4) 

maximum of allele frequencies from tumor tissue and tumor cells are at least 2-fold of 

the allele frequencies from germline sample. Step 2: for SNVs detected in both tumor 
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tissue and tumor cells, a binomial test (p value threshold 0.01, single sided test) was first 

used to check if the allele frequencies are significantly larger than those in germline 

sample. Then only the ones showing larger frequencies were kept and went through a 

second binomial test to see if the allele frequencies in tumor tissue are different from 

those in tumor cells. If allele frequencies are significantly (p value threshold 0.01, single 

sided test) greater in tumor cells, then those SNVs potentially are from enriched tumor 

subpopulations in tumor cells. If the allele frequencies in tumor cells are smaller or 

similar, then the prevalence of these host tumor subpopulations possibly did not change. 

Step 3: for SNVs only detected in tumor tissue by RareVar, we first used binomial test to 

make sure the allele frequencies were greater than those in the germline sample, then 

checked whether there are also reads supporting those SNVs in tumor cells. If there are, 

it is an indicator of the host subpopulation shrinkage (the percentage in tumor cells is 

smaller than in tumor tissue) and also increases our confidence that those are true 

somatic SNVs rather than sequencing artifacts. Step 4:  for SNVs only detected in tumor 

cells by RareVar, we first used binomial test to make sure the allele frequencies were 

greater than those in the germline sample, then checked whether there are also reads 

supporting those SNVs in tumor tissue. If there are, it is an indicator of the host 

subpopulation enrichment and also increased our confidence that those are true new 

somatic SNVs rather than sequencing artifacts. 

 

3.3 Results 

3.3.1 Removing Contaminating Reads from Residual Mouse Cells 

We first explored the percentage of reads removed by all methods described in 

section 4.3.1. Taking 1406-26 tumor cell sample as an example, ~32% reads were 

removed by ‘no mouse’ method while only 1~2% reads were removed by ‘MAPQ’ or 

‘longer match’ method. This result agrees with the speculation that ‘no mouse’ method 
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tends to remove many reads from human and mouse homologous regions, since the 

protein-coding regions of human and mouse genomes are on average 85 percent 

identical [109]. Thus, we further explored the effectiveness of the other two methods by 

comparing the consistency of detected SNVs from tumor/normal cell with unprocessed 

tumor/normal tissue samples. 

We checked the effect of falsely removing reads from human on SNV calling in 

group A. The key values are the number of SNVs after read filtering that overlapped with 

unfiltered samples, referred as ‘Overlapped with UP Tumor’ in Table 8A. For all three 

samples, ‘longer match’ and ‘MAPQ’ performed similarly. ‘MAPQ’ correctly recovered 1 

more SNV from 1310-33 while ‘longer match’ correctly recovered 4 more SNVs from 

DCIS (Table 8A). When visually comparing the performances of the two methods using 

the recall, precision and F1 score measures, no visible differences could be observed 

except for the recall for DCIS (Figure 8).   

We checked the effect of failing to remove reads from mouse cells on SNV 

calling in group B. The key values are the number of SNVs after read filtering that 

overlapped with unprocessed normal tissue samples, referred as ‘Overlapped with UP 

Normal’ in Table 8B. The numbers of overlapped SNVs were slightly higher in ‘longer 

match’ for both samples. Besides, ‘MAPQ’ filtered data had more SNVs identified, 57 

more in 1406-26 and 804 more in 1411-04. We hypothesized there should be no or only 

small number of new SNVs in reprogrammed normal cells, thus the ‘MAPQ’ method is 

considered to be less efficient in removing reads from mouse cells. When visually 

comparing the performances of the two methods using the recall, precision and F1 score 

measures, visible differences could be observed for the recall and F1 score for both 

samples in group B (Figure 8).  Thus, ‘longer match’ was used as the read filtering 

method. 
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Table 8 Comparing methods for removing reads from mouse cells. Samples with blood, unprocessed tumor tissue and 
reprogrammed tumor cells are grouped in A. Samples with unprocessed normal and tumor tissues, as well as reprogrammed normal 
and tumor cells are grouped in B. UP Tumor: unprocessed tumor. UP Normal: unprocessed adjacent normal tissue. Normal Cell: 
reprogrammed normal cells. For cells with a single number, that number is the number of SNVs detected. For cells with 2 numbers, 
the configuration is explained in the third point by the end of table B.  
A 

        MAPQ Filter1 Longer Match Filter2 

Sample UP Tumor Filtered UP Tumor / Overlapped 
with UP Tumor 

Filtered UP Tumor / 
Overlapped with UP Tumor 

1310-33 1143 1143 / 11423 1141 / 1141 
DCIS 1150 1145 / 1145 1150 / 1149 
LCIS 1139 1141 / 1138 1141 / 1138 

       
       B 

  MAPQ Filter1 Longer Match Filter2 

Sample UP Normal Filtered Normal Cell / 
Overlapped with UP Normal 

Filtered Normal Cell / 
Overlapped with UP Normal 

1406-26 1117 1192 / 1076 1135 / 1080 
1411-04 1123 1977 / 1076 1173 / 1077 

1: MAPQ Filter - remove reads that have a larger mapping quality when mapped to mouse genome. 
2: Longer Match Filter - remove reads that have a larger total number of mapped bases when mapped to mouse genome. 
3: In this example, 1143 is the number of SNVs detected in filtered UP tumor sample, while 1142 is the number of SNVs from filtered 
UP tumor sample that overlapped with UP tumor sample. The other cells with the format ‘number 1’ / ‘number 2’ could also be 
explained by checking their column names. 
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Figure 8 Comparing methods for removing reads from mouse cells. 
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3.3.2 Summary of Identified SNVs and Their Functional Implications 

We derived the somatic SNVs based on the 4 steps applied to RareVar results 

described in section 3.2.3. A summary of the SNVs of different potential functional 

groups was list in Table 9. For all somatic candidate SNVs, they are mostly identified in 

either tumor tissue or tumor cells but not both. Number of SNVs possibly going through 

somatic enrichment is more than those of somatic shrinkage.  

For every patient, we selected candidate SNVs for further examination. 

Reprogrammed tumor cells from patient 1310-33 showed splice site mutation of ETV1 

oncogene [110-114], and both tumor tissue and cells showed a stop-gain mutation from 

tumor metastasis-associated gene MYH9 [115, 116]. In tumor cells from a patient (1402-

17) with lobular carcinoma in situ (LCIS) in her left breast, we detected PI3KCA H1047R 

mutation, a common mutation found in many cancers [117-122]. In this tumor, we also 

detected R554C mutation of FOXO1, a context-dependent tumor suppressor or 

oncogene [123-128]. This is a novel mutation yet to be reported in any cancer. This 

patient had invasive carcinoma with ductal carcinoma in situ (DCIS) in her right breast. 

This tumor had multiple mutations in PIK3R1 gene (L7R, L100R, L70R, and L370R). 

Although PI3KR1 mutations are very common in cancer [129-132], these specific 

mutations have not been reported (as per cBioportal [133, 134]). Tumor cells from 

patient 1406-26 were detected to have a novel nonsynonymous SNV in FZR1 gene 

(N315S, N404S), which is a candidate CDK4/6-cyclin D substrate [135]. Tumor from 

patient 1411-04) showed mutation in the epigenetic regulator DAXX [136-139]. R371W 

mutation of DAXX has previously been reported in two cases of AML [140].  
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Table 9 Summary of detected somatic SNVs in breast tumor samples. 
RareVar SNV Prediction Alternative AF3 

Comparison 
Possible 
Event4 

Number of Somatic SNVs 
UP Tumor1 Tumor Cell2 1310-33 DCIS LCIS 1406-26 1411-04 

Yes Yes Higher in Tumor 
Cells 

Somatic SNV 
Enrichment 5 0 0 0 0 

Yes Yes Lower in Tumor 
Cells Somatic SNV  0 1 0 0 0 

Yes Yes Similar Somatic SNV  3 0 0 0 0 

Yes No Low in Tumor 
Cells 

Somatic 
Shrinkage 3 10 2 4 2 

Yes No 0 in Tumor Cell Somatic in 
Tissue 3 4 3 5 3 

No Yes Low in UP 
Tumor 

Somatic SNV 
Enrichment 9 7 102 4 5 

No Yes 0 in UP Tumor New Somatic 
SNV in Cells 9 6 21 7 3 

1: UP Tumor means unprocessed tumor. 
2: Tumor cell means reprogrammed tumor cells. 
3: AF: allele frequency. Comparing the allele frequencies in tumor tissue and tumor cells. 
4: Biological events that possibly result in the observed allele frequency change. 
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3.4 Discussion 

From experiment design side, the technique adapted in this study of sequencing 

unprocessed tumor and cultured cells from tumors will help to detect novel actionable 

mutations, which are otherwise missed by sequencing only bulk tumors. Variant caller 

designed specifically for sensitive low frequency mutation calling greatly facilitated the 

exploration of previously unknown genetic territories. Despite the novel findings, 

subsequent validation and functional characterization are indispensible to link SNVs to 

the functional disruption and thus uncover new drug targets. 
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Chapter 4. Statistical Modeling for Ion Proton Sequencing Platform Genomic 

Sequence Context Dependent Error 

4.1 Introduction 

In chapter 2, the RareVar framework for low-frequency single nucleotide variant 

detection was introduced. In RareVar, position specific error model (PSEM) using 

genome sequence context features is a key step. It is indispensable for determining 

lowest frequency detection limit as well as identifying candidate SNVs for downstream 

sequencing quality based candidate recalibration. Poisson distribution, a popular choice 

of distribution in modeling count date, was implemented under generalized linear model 

framework. However, the potential to improve PSEM performances on SNVs with close 

to sequencing error rates by implementing more sophisticated statistical distributions 

remains to be explored. In this chapter, we explored what distributions fit the DNA-Seq 

erroneous read count modeling as well as the possibility of improved position specific 

error rate prediction for higher precision and recall on SNVs down to 0.5% frequency. 

We reused the training and testing benchmark data sets sequenced with Ion Proton 

platform from chapter 2. 

 

4.2 Materials and Methods 

 The focus of this chapter is to explore which statistical distribution fits the next 

generation sequencing error count data better. The general workflow for position specific 

error modeling using different distributions is described in Figure 9. In the training phase, 

starting from training benchmark normal sample invariant loci, the genome context 

features are extracted and fed to generalized linear models based on 4 candidate 

distributions. The genome context extraction and the fitted generalized linear models 

constitute the position specific error model. In the testing phase, all loci in the testing 

benchmark paired normal and tumor samples go through the position specific error 
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model and the candidate SNVs significantly different from fitted sequencing errors are 

generated. The following sections described in details the benchmarks and the 

configurations for generalized linear models based on different statistical distributions. 
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Figure 9 Diagram of the position specific error model using different statistical 
distributions. The dashed boxes highlighted the training data and the trained model. 
GLM: generalized linear model. NB: negative binomial. ZIP: zero-inflated Poisson. ZINB: 
zero-inflated negative binomial. 
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4.2.1 Benchmark Datasets 

The Ion Proton training and testing benchmark datasets were generated as 

described in chapter 2 section 2.2.1.  

 

4.2.2 Identifying Distribution Form for Sequencing Error Modeling 

To model error rate based on count data, the 3 most common distribution 

choices are binomial, Poisson and negative binomial distributions. We applied a 

graphical exploratory plot – distplot [141-143] on the model response – number of reads 

containing non-reference bases – to get visual intuition about the overall fit of response 

data on different distributions. Intuitively, if an assumed distribution fits the data well, the 

data points should follow a straight line determined by the distribution metameters [141-

143, 145]. The metameter of a discrete distribute equals a linear function of the count 

data (k), with the slope and intercept being the functions of distribution parameters. 

Under the context of sequencing error modeling, the count data k is observed number of 

reads supporting an alternative allele at a specific genomic locus.  

Poisson distribution is taken as an example here to illustrate the form of the 

metameters. Assume a Poisson distribution with some fixed parameter mean λ, the 

observed frequency 𝑛𝑛𝑘𝑘 for a value k equals the expected frequency 𝑁𝑁 ∗ 𝑝𝑝𝑘𝑘, where 𝑁𝑁 is 

the total number of data points and 𝑝𝑝𝑘𝑘 is the probability of observing k. Thus, setting 

𝑛𝑛𝑘𝑘 = 𝑁𝑁𝑝𝑝𝑘𝑘 = 𝑁𝑁𝑒𝑒−𝜆𝜆𝜆𝜆𝑘𝑘/𝑘𝑘!, and taking logs of both sides gives 

 

 log(𝑛𝑛𝑘𝑘) = log(𝑁𝑁) − 𝜆𝜆 + 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙! (6) 

 

This can be rearranged to a linear equation in k,  

 ∅(𝑛𝑛𝑘𝑘) = 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑘𝑘!𝑛𝑛𝑘𝑘
𝑁𝑁

� = −𝜆𝜆 + (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)𝑘𝑘 (7) 
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The left side of equation is called the count metameter, and denoted ∅(𝑛𝑛𝑘𝑘). Hence, 

plotting ∅(𝑛𝑛𝑘𝑘) against k should give a straight line of the form ∅(𝑛𝑛𝑘𝑘) = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 with slope 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and intercept −𝜆𝜆, when the observed frequencies follow a Poisson distribution. The 

metameters slopes and intercepts for binomial and negative binomial distributions are 

summarized in Table 10.  
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Table 10 Distplot parameters for three discrete distributions. In each case the count 
metameter is plotted against k, yielding a straight line when the data follow the given 
distribution. k is the count data to be checked for appropriate distributions.  

Distribution Binomial Poisson Negative Binomial 
Probability 

Function, p(k) �
𝑛𝑛
𝑘𝑘
�𝑝𝑝𝑘𝑘(1 − 𝑝𝑝)𝑛𝑛−𝑘𝑘 𝑒𝑒−𝜆𝜆𝜆𝜆𝑘𝑘/𝑘𝑘! �

𝑛𝑛 + 𝑘𝑘 − 1
𝑘𝑘

�𝑝𝑝𝑛𝑛(1 − 𝑝𝑝)𝑘𝑘 
Count 

Metameter, 
∅(nk) 

𝑙𝑙𝑙𝑙𝑙𝑙 �𝑛𝑛𝑘𝑘/𝑁𝑁�
𝑛𝑛
𝑘𝑘
�� log (𝑘𝑘!𝑛𝑛𝑘𝑘/𝑁𝑁) 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑛𝑛𝑘𝑘/𝑁𝑁�

𝑛𝑛 + 𝑘𝑘 − 1
𝑘𝑘

�� 

Theoretical 
Slope log �𝑝𝑝 1 − 𝑝𝑝� � log (𝜆𝜆) log (1 − 𝑝𝑝) 

Theoretical 
Intercept 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(1 − 𝑝𝑝) −𝜆𝜆 nlog (𝑝𝑝) 

Table adapted from Hoaglin and Tukey (1985) [145], Table 9-15. 
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4.2.3 Generalized Linear Models 

The details of the 9 genomic sequence contexts considered in generalized linear 

models were summarized in Table 2. These 9 features are the covariates included in the 

GLMs.  

The Poisson distribution GLM specification remains the same as described in 

chapter 2 section 2.2.2. For the purpose of comparing with other distributions, the 

equation and variable descriptions are included below. The Poisson GLM for erroneous 

sequencing read counts with log link function is expressed in equation (8), where 𝑁𝑁𝑠𝑠,𝑏𝑏,𝑙𝑙 is 

the observed number of erroneous reads for strand s (forward or reverse) with 

alternative base b (three possible values other than the reference) at location l, 𝜆𝜆𝑠𝑠,𝑏𝑏,𝑙𝑙 

represents the expected mean for 𝑁𝑁𝑠𝑠,𝑏𝑏,𝑙𝑙, 𝒄𝒄𝑠𝑠,𝑏𝑏,𝑙𝑙 is the vector of genomic sequence context 

covariates, and 𝜷𝜷 is the vector of fitted coefficients. The sequencing depth for strand s at 

location l is treated as the offset. 

 

 log�𝜆𝜆𝑠𝑠,𝑏𝑏,𝑙𝑙� = log �𝐸𝐸�𝑁𝑁𝑠𝑠,𝑏𝑏,𝑙𝑙�𝒄𝒄𝑠𝑠,𝑏𝑏,𝑙𝑙�� = log�𝑑𝑑𝑠𝑠,𝑙𝑙� + 𝜷𝜷′𝒄𝒄𝑠𝑠,𝑏𝑏,𝑙𝑙 (8) 

 

The negative binomial distribution GLM with log link function can be expressed in 

equation (9), where 𝜇𝜇𝑠𝑠,𝑏𝑏,𝑙𝑙 represents the expected mean for 𝑁𝑁𝑠𝑠,𝑏𝑏,𝑙𝑙 and 𝜃𝜃 is the dispersion 

parameter (the shape parameter of the gamma mixing distribution). The mean 

𝐸𝐸�𝑁𝑁𝑠𝑠,𝑏𝑏,𝑙𝑙� = 𝜇𝜇𝑠𝑠,𝑏𝑏,𝑙𝑙 and variance 𝑉𝑉𝑉𝑉𝑉𝑉�𝑁𝑁𝑠𝑠,𝑏𝑏,𝑙𝑙� = 𝜇𝜇𝑠𝑠,𝑏𝑏,𝑙𝑙 + 𝜃𝜃𝜃𝜃𝑠𝑠,𝑏𝑏,𝑙𝑙  2  can be estimated from GLM 

shown below. 

 

 log�𝜇𝜇𝑠𝑠,𝑏𝑏,𝑙𝑙� = log �𝐸𝐸�𝑁𝑁𝑠𝑠,𝑏𝑏,𝑙𝑙�𝒄𝒄𝑠𝑠,𝑏𝑏,𝑙𝑙�� = log�𝑑𝑑𝑠𝑠,𝑙𝑙� + 𝜷𝜷′𝒄𝒄𝑠𝑠,𝑏𝑏,𝑙𝑙 (9) 

 

The zero-inflated Poisson distribution can be written as: 
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 𝑃𝑃�𝑁𝑁𝑠𝑠,𝑏𝑏,𝑙𝑙 = 𝑛𝑛𝑠𝑠,𝑏𝑏,𝑙𝑙|𝜋𝜋𝑠𝑠,𝑏𝑏,𝑙𝑙 ,𝜆𝜆𝑠𝑠,𝑏𝑏,𝑙𝑙 ,𝜃𝜃�

= {
𝜋𝜋𝑠𝑠,𝑏𝑏,𝑙𝑙 + �1 − 𝜋𝜋𝑠𝑠,𝑏𝑏,𝑙𝑙�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝜆𝜆𝑠𝑠,𝑏𝑏,𝑙𝑙; 0�              𝑖𝑖𝑖𝑖  𝑛𝑛𝑠𝑠,𝑏𝑏,𝑙𝑙 = 0
�1 − 𝜋𝜋𝑠𝑠,𝑏𝑏,𝑙𝑙�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝜆𝜆𝑠𝑠,𝑏𝑏,𝑙𝑙;𝑛𝑛𝑠𝑠,𝑏𝑏,𝑙𝑙�                      𝑖𝑖𝑖𝑖  𝑛𝑛𝑠𝑠,𝑏𝑏,𝑙𝑙 > 0

 
(10) 

 

Parameters of the zero-inflated Poisson distribution in equation (10) can be 

estimated by generalized linear model as shown in equation (11), where 𝒛𝒛𝑠𝑠,𝑏𝑏,𝑙𝑙  is the 

vector of genomic sequence context covariates for the zero part, and 𝜸𝜸 is the vector of 

fitted coefficients. 
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 (12) 

 

Parameters of the zero-inflated negative binomial distribution in equation (12) 

can be estimated by generalized linear model as shown in equation (13). 
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4.2.4 Variant Identification 

In chapter 2, the variant identification is done using Bayes factor by calculating 

the likelihood ratio of two models: ME, the ‘sequencing error distribution’ model and MV, 

the ‘targeted lowest identifiable frequency distribution’ model. Thus a predefined 

‘targeted lowest frequency’ is needed. Here we used a hypothesis testing approach, to 

call candidate SNVs if the data are not from the sequencing error distribution. 

Specifically, a location with a certain alternative base is called as a candidate SNV if the 

numbers of reads from both strands are significantly greater than the predicted error 

rates. The p values were corrected using Benjamini–Hochberg procedure [146]. The 

corrected p value cut-off is 0.01. 

 

4.2.5 Performance Evaluation Measurements 

Precision and recall are defined as equations (4) and (5) in chapter 2. F1 score is 

defined below.  

 

 
𝐹𝐹1 = 2 ∗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 
(14)

 

 

For Ion Proton dataset, same as chapter 2, only loci with at least 5 reads supporting 

alternative base are included in the evaluation. 

 

4.3 Results 

In the Result section, we first show the intuitions derived from visualization 

inspection for diagnosing the distribution form of sequencing error modeling. Then 

utilizing statistical testing of goodness-of-fit on different distributions, we selected the 

candidate distributions more appropriate for fitting the sequencing error count data. Then 
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we showed the performance of position specific error model using different distributions 

on identifying candidate SNVs, highlighted the merits of choosing appropriate 

distributions. 

 

4.3.1 Candidate Statistical Distributions Selection 

If the count data follow a given discrete distribution, then the visualization from 

distplot [141-143] shows the metameter is a linear function of all observed values. We 

plotted the number of reads containing non-reference alleles from all targeted region loci 

against binomial, Poisson and negative binomial distributions. As shown in Figure 10, 

the obvious curve for binomial distribution plot indicates the data do not follow binomial 

distribution. The plots for Poisson and negative binomial distributions show better 

agreement with the straight line although both curves deviate more from the straight line 

when the x-axis approaches 0. Further, if for each locus, the observed number of reads 

supporting each possible substitution type is called ‘error instance’. Then tabulating the 

percentages of zeros in all the error instances within the target regions, we got 85% from 

Ion Proton training dataset. Thus zero-inflated models should be considered. In the 

modeling step, we included Poisson, negative binomial and their zero-inflated 

counterparts (zero-inflated Poisson [147] and zero-inflated negative binomial [148]) as 

the candidate distributions under generalized linear model framework. 
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Figure 10 Distplot on binomial, Poisson and negative binomial distributions. The y-axis 
is the distribution metameter calculated by the method distplot used. The open points 
show the observed count metameters; the filled points show the confidence interval 
centers and the dashed lines show the confidence intervals for each point. 95% 
confidence interval is used. 
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4.3.2 Comparing the Goodness-of-Fit of Different Distributions 

9 genomic sequence context covariates, totaling 24 degrees of freedom, were 

included in the generalized linear models (section 3.2.2 and Table 2). Since zero-inflated 

Poisson and zero-inflated negative binomial generalized linear models require covariates 

for both the ‘zero’ and ‘count’ parts, the same covariates were provided for both, 

resulting in doubled degrees of freedom of those included in Poisson and negative 

binomial generalized linear models. 

To compare the goodness-of-fit of models based on different distributions, we 

used Vuong’s non-nested hypothesis test [149]. BIC-corrected Vuong z-statistic [150] 

was used to impose stronger penalty on additional parameters. The pairwise comparison 

results are summarized in Table 11. Poisson distribution GLM is treated as the reference 

distribution to compare to, given its simple configuration. As expected, negative binomial 

GLM is superior to Poisson GLM, since negative binomial distribution models dispersion 

of the data, and this is also supported by dispersion test [151] (z = 68.5881, p value < 

2.2e-16). The necessity of modeling zero-inflation is supported by the Vuong’s test 

comparing zero-inflated Poisson with Poisson GLM. When comparing zero-inflated 

Poisson with negative binomial, negative binomial distribution fits the data better. 

However, it is worth noting the evidence of superiority – the absolute value of BIC-

corrected Vuong z-statistic – is much smaller than the other tests. The merit of 

considering both dispersion and zero-inflation is further emphasized by the comparisons 

of zero-inflated Poisson with zero-inflated negative binomial and negative binomial with 

zero-inflated negative binomial. In conclusion, based on Vuong’s test, for Ion Proton 

sequencing dataset, the most appropriate distribution for modeling DNA sequencing 

error read counts is zero-inflated negative binomial distribution.  
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Table 11 Vuong’s non-nested tests for Ion Proton training data. NB: negative 
binomial. ZIP: zero-inflated Poisson. ZINB: zero-inflated negative binomial. ‘>’ 
means a better fit of the left model.  

 
Model 1 

 
Model 2 

Vuong z-statistic 

BIC-corrected 

 
Hypothesis 

 
P value 

  Poisson NB           -122.67    model2 > model1 < 2.22e-16 
Poisson ZIP -143.73 model2 > model1 < 2.22e-16 

NB ZIP 36.81 model1 > model2 < 2.22e-16 
ZIP ZINB -92.16 model2 > model1 < 2.22e-16 
NB ZINB -119.51 model2 > model1 < 2.22e-16 
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4.3.3 Performance Evaluation on Ion Proton Testing Benchmark 

In the previous section, we used Vuong’s test to establish that in modeling DNA 

sequencing error count data, the advantage of zero-inflated negative binomial 

distribution in fitting the data is statistically significant. In this section, we explored 

whether such statistical advantage could also be reflected in the ability to identify low-

frequency SNVs. We first evaluated the overall precision and recall values of all 

distributions on the test benchmark. From Table 12, it is observed the Poisson GLM 

achieves the highest recall while zero-inflated negative binomial GLM has the highest 

precision. F1 score, the harmonic mean of precision and recall, is used to evaluate the 

overall performance. The conclusion from F1 score is consistent with that of Vuong’s 

test, with zero-inflated negative binomial performs the best and is followed by negative 

binomial, zero-inflated Poisson and Poisson GLM. However, the precision values listed 

in Table 12 are lower than the ones reported previously [15, 72, 73]. There are 2 major 

reasons: 1. the Ion Proton test benchmark dataset is designed to enrich with low-

frequency SNVs, with 68.9% of all SNVs of allele frequency <= 3%, in which 17.3% at 

0.5% frequency and 19.8% at 1% frequency. Whereas the majority of previous studies 

focused on SNVs of >= 5% allele frequency; 2. one popular paradigm of SNV calling is a 

two-step procedure, first generating SNV candidates and then applying different 

methods to recalibrate the SNV call, for example filters and machine-learning based 

recalibration. The PSEM aims to efficiently recover high quality SNV candidates to 

facilitate the downstream candidate recalibration step, thus it is only fair to compare the 

performance of PSEM with other candidate generating methods.  

Then we evaluated the effect of different variant identification methods. We 

compared the hypothesis-testing based variant identification with the Bayes factor 

approach used in chapter 2 (Poi_BF in Table 12). The overall F1 score for Bayes factor 

approach Poi_BF is between Poisson distribution and zero-inflated Poisson distribution, 



75 

and is notably inferior to negative binomial distribution and zero-inflated negative 

binomial distribution. In addition, hypothesis-testing approach does not require an 

additional parameter specifying the targeted lowest frequency required by Bayes factor 

approach. Thus with more appropriate distribution, not only higher performances but 

also a method with less additional constrains can be achieved. The result from 

VarScan2 before applying sequencing quality filters was included in Table 12. It is 

evident that except for Poisson GLM with hypothesis testing and Poisson GLM with 

Bayes factor, the other methods outperformed VarScan2 in both recall and precision. 

Therefore, choosing appropriate statistical modeling method enables us to recover more 

true SNVs without any loss of precision in candidate generating step.   

Next, for all distributions, we explored the performance profiles on different allele 

frequencies. As shown in Figure 11, the clearly layered F1 score levels clearly show that 

SNVs of lower allele frequencies are more difficult to identify, no matter what 

distributions were used. In addition, the significant separation of 0.5% from the other 

allele frequencies indicate the detection limit is around 0.5% under current sequencing 

platform and depth. Meanwhile, the power of appropriate modeling is evident when 

comparing the performances of all distributions on SNVs of 0.5% allele frequency. 

Relative to Poisson GLM, considering either zero-inflation or dispersion boosted the F1 

score by about 0.2 at 0.5%, while considering both by zero-inflated negative binomial 

further increased F1 score by about 0.1. Interestingly, compared with the second best 

model – negative binomial GLM, both precision and recall increased in zero-inflated 

negative binomial GLM, which pinpoints the necessity of modeling zero-inflation to 

derive more accurate error rates estimation. Furthermore, for SNVs with allele frequency 

greater than 1%, the average recall is 97.5% with 82.3% average precision for zero-

inflated negative binomial GLM. Comparing the effect of different variant identification 

approaches, we can see although Poisson GLM performed better with Bayes factor than 
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with hypothesis testing, the differences in performances on less than 3% allele 

frequencies are evident compared with the most appropriate distribution zero-inflated 

negative binomial. To summarize, the performance evaluation results on low-frequency 

SNV identification also support the conclusion from Vuong’s non-nested test, with zero-

inflated negative binomial being the most appropriate model. Further, the necessity of 

modeling both dispersion and zero-inflation is exemplified by the much-elevated 

performance at close to sequencing error rate allele frequency, which is important for 

pushing down the detection limit of low-frequency SNV callers. 
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Table 12 Overall performance comparisons on Ion Proton testing benchmark. NB: 
negative binomial. ZIP: zero-inflated Poisson. ZINB: zero-inflated negative binomial. 
Poi_BF: GLM using Poisson distribution, Bayes factor approach used in chapter 2.  

 Poisson NB ZIP ZINB Poi_BF VarScan2 

Recall 0.98 0.89 0.95 0.90 0.96 0.83 

Precision 0.25 0.62 0.54 0.71 0.49 0.53 

F1 Score 0.40 0.73 0.69 0.79 0.65 0.65 
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Figure 11 Performance by allele frequency Ion Proton testing benchmark. NB: negative 
binomial. ZIP: zero-inflated Poisson. ZINB: zero-inflated negative binomial. Poi_BF: 
position specific error model using Poisson distribution, with variant identification method 
being the Bayes factor approach used in chapter 2. 
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4.4 Discussion 

The PSEM model aims to predict the position specific error rates associated with 

various genomic sequence contexts, under which the specific sequencing technology is 

prone to error. Based on publications evaluating features associated with sequencing 

errors and experiences from our previous effort, 9 types of significant features are 

considered. With the features fixed, using GLM, we evaluated the appropriateness of 

distributions with different mean – variance relationships and the ability to consider zero-

inflation. Consistent with the computational tool EdgeR [152] for RNA-Seq data, we 

found the ability to model over-dispersion by negative binomial distribution necessary for 

DNA-Seq data as well. Additionally, for DNA-Seq error read counts modeling, zero-

inflation is also a key factor for accurate prediction and inference. The much-elevated F1 

score for 0.5% allele frequency SNVs as well as the highest overall performance by 

ZINB GLM highlighted the importance of choosing suitable statistical models. In addition, 

comparing different variant identification methods, we can see with the appropriate 

distribution, we can use a simple hypothesis-testing approach without requiring 

additional parameters required by Bayes factor, yet still can achieve a higher 

performance. Moreover, comparing with VarScan2, which conducts the Fisher’s exact 

test for each targeted location on paired normal-tumor sequencing data, the significance 

of applying the correct reference error model is exemplified by higher recalls as well as 

precisions for 0.5% and 1% frequency SNVs. In theory, for low frequency SNV loci, 

VarScan2 treated the sequencing reads with non-reference bases from normal as the 

background error, which is essentially point estimation based on one location. Whereas 

PSEM collectively considers all loci with similar context features and thus is able to 

generate more accurate error estimation. 

The current GLM-based PSEM framework only considers 9 types of genome 

sequence context features. To further improve the performances, more informative 
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features associated with sequencing errors should be included and tested. In addition, 

from the modeling aspect, exploration of the potential to further increase the 

performances by applying more sophisticated computational models are desired. When 

applying the position specific error model on sequencing platforms different from Ion 

Proton, new features related to the underlying biochemistry might be added. Thus, to 

better understand its generalizability and adaptiveness in the features used, tests on 

other sequencing technologies, such as Illumina, SOLiD and Complete Genomics, are 

necessary. Except for the sequencing platform effect, the effects of other steps in the 

sequencing library preparation should also be considered, for example the target capture 

assay. Since the capture assay for the Ion Proton benchmarks is amplicon-based, thus 

the reads from the same amplicon are supposed to have the same start and end 

locations. However, hybridization-based approach tends to generate reads with different 

start and end location, therefore, it should be tested to compare the performance profiles 

with amplicon-based approached to see if such a difference may impact the position 

specific error modeling.  

Differentiating low frequency SNVs from sequencing artifacts is the key for 

identifying SNVs at frequencies close to sequencing error rates. Our PSEM approach 

tried to push the limit toward the sequencing error rates. Based on the analyses on 

benchmarks from standard sequencing protocols and the given sequencing depth, we 

speculate the detection limit is around 0.5% on the regions covering all exons of hundred 

of genes, with a total size up to millions of bases. However, with high accuracy 

sequencing protocols, such as duplex sequencing [64] and ultra-deep target enrichment 

assay [97], the researchers reported identification of SNVs around 0.1% on a single 

gene scale. For the future direction, it is worthwhile to test whether we can push the 

detection limit below 0.5% or even 0.1% by coupling the improved experimental 

protocols with our position specific error modeling. 
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Chapter 5. Statistical Modeling for Illumina MiSeq Platform Genomic Sequence 

Context Dependent Error 

5.1 Introduction 

In chapter 4, we explored the possibility of improving the performances of 

position specific error modeling with different statistical distributions. However, same as 

chapter 2, all tests were done on Ion Proton sequencing platform. To understand how 

position specific error modeling behaves on different sequencing platforms, we 

replicated the analysis conducted in chapter 4 on a publically available Illumina MiSeq 

benchmark dataset, published with the low-frequency SNV detection method UDT-Seq 

[15]. The Illumina MiSeq benchmark dataset was chosen for several considerations. 

First, different from the semiconductor based sequencing utilized by Ion Proton 

sequencers; Illumina sequencing platforms used optical system based sequencing by 

synthesis (SBS). This difference enables us to check whether generalized linear model 

based position specific error model can adapt to sequencing platforms based on 

completely different biochemistries. Second, similar to the Ion Proton benchmarks, the 

amplicon based target capture assay was also used by the Illumina MiSeq benchmark 

dataset. Thus we have one less major complication in interpreting the differences. Third, 

the lowest targeted frequency for Illumina MiSeq benchmark is 1%, thus allowing us to 

characterize the effect of different distributions on low-frequency range. 

With the Illumina MiSeq benchmark data set, we wanted to examine whether the 

generalized linear model can be utilized and if so, whether there are any differences in 

terms of the contribution of different sequence context features. For this purpose, we 

controlled the sequence context features to be the same as the ones used in Ion Proton 

benchmarks. In addition, whether the most appropriate statistical distribution remains to 

be zero-inflated negative binomial distribution. 
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5.2 Materials and Methods 

5.2.1 Illumina MiSeq Benchmark Dataset Overview 

The design details can be found in the UDT-Seq paper [15]. Briefly, the length of 

targeted regions for Illumina MiSeq datasets is 23.2 kb, covered by 158 amplicons with 

about 200-nucleotide long. The amplification was done with microdroplet PCR [153]. 

This Illumina MiSeq benchmark data were generated by mixing 4 individuals at 4 

different percentages and then permuted the mixing percentage assignment 4 times to 

generate 4 calibration datasets – CAL_A, CAL_B, CAL_C and CAL_D, details shown in 

Table 13. Sequencing was done with Illumina MiSeq platform, and the read is 151-

nucleotide long. The raw reads were downloaded from NCBI Short Read Archive [154, 

155] (SRP009487.1) and processed as the paper described. Reads with mapping quality 

less than 30 were filtered out. 

For the choice of Illumina MiSeq training and testing benchmarks, since the 4 

calibration data sets were generated with the same procedures, without loss of 

generality, we used CAL_A as training benchmark and treated the others as testing 

benchmark. Also, different from Ion Proton benchmarks, these benchmarks are similar to 

the tumor only or pooled sequencing samples. Thus the all identified candidate SNVs 

were used in the performance evaluation. 

 

5.2.2 Generalized Linear Models and Variant Identification 

To test how different sequencing platforms impact the generalized linear model 

fitting, the same sequence context features used in chapter 4 were also used on Illumina 

MiSeq data. The details of the 9 genomic sequence contexts considered in generalized 

linear models were summarized in Table 2. The same 4 statistical distributions were 

fitted: Poisson, zero-inflated Poisson, negative binomial, and zero-inflated negative 

binomial. In addition, the same hypothesis testing based variant identification testing in 
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chapter 4 was also used here, requiring Benjamini–Hochberg procedure corrected p 

values from both strands to be less than 0.01.  
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Table 13 Illumina MiSeq benchmark design.  
ID CAL_A CAL_B CAL_C CAL_D 

NA12156 1% 5% 20% 74% 
NA12878 5% 20% 74% 1% 
NA18507 20% 74% 1% 5% 
NA19240 74% 1% 5% 20% 
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5.2.3 Performance Evaluation Measurements 

Precision, recall and F1 score were used for performance evaluation. For 

Illumina MiSeq dataset, filter 2 used by UDT-Seq [15] was applied which requires >= 

0.2% frequency for alternative bases. However, the other filters were not used, including 

filter 1 removing positions within primers, filter 3 position in the read, filter 4 depth strand 

bias, filter 5 depth discrepancies between training and testing samples, filter 6 binomial 

test p values on the significance of different from sequencing error rates and filter 7 local 

sequencing context based filters. We relied on the PSEM framework to properly address 

sequence contexts and depth related problems. 

 

5.3 Results 

In the result section, we first show the comparison of the appropriateness of the 4 

candidate distributions. Then we compared the coefficients in generalized linear models 

on Illumina MiSeq with those from Ion Proton to look for the impact of different 

sequencing benchmarks. Next, to set the stage for understanding the performance 

differences, we first compared the differences in designed allele frequency composition 

as well as sequencing depth between the Illumina MiSeq and Ion Proton testing 

benchmarks. We concluded by evaluating the candidate variant identification 

performances and the comparison between position specific error model and UDT-Seq. 

 

5.3.1 Comparing the Goodness-of-Fit of Different Distributions 

To evaluate the generalizability and adaptiveness of the generalized linear model 

based position specific error modeling, the same modeling strategies were applied to the 

Illumina MiSeq sequencing data sets. Similar to the analysis on Ion Proton data set, 

paired Vuong’s non-nested hypothesis tests were conducted on the 4 candidate 

distributions, with details summarized in Table 14. The tests show the most appropriate 
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distribution is still zero-inflated negative binomial. However, for the negative binomial 

(NB) (model 1) and zero-inflated Poisson (ZIP) (model 2) comparison, the BIC-corrected 

Vuong z-statistic is -0.47 resulting in p value = 0.318. Therefore the goodness-of-fit for 

these two distributions on MiSeq dataset are not significantly different.  

 

5.3.2 Comparing Generalized Linear Models on Different Sequencing Platforms 

Despite similar statistical modeling schema can be readily generalized to Illumina 

MiSeq data set, Illumina MiSeq and Ion Proton sequencers differ significantly in terms of 

sequencing chemistry. The former is based on sequencing-by-synthesis (SBS) that 

relies on high-resolution optic systems, whereas the latter is based on Ion 

semiconductor sequencing where no modified nucleotides or optics are required. The 

differences in sequencing mechanisms make Ion Proton sequencers run faster but are 

prone to homopolymer related errors. Comparing the negative binomial generalized 

linear model regression coefficients on both datasets (Table 15), homopolymer related 

features significant in Ion Proton data set regression are either insignificant (hmer_len, 

hmer_dist) or show opposite effect (hmer_op, hmer_den) on the error rate.  

 

5.3.3 Benchmarks Comparison 

Comparing the Illumina MiSeq testing benchmark with the Ion Proton testing 

benchmark, Ion Proton dataset contains a total of 1557 somatic SNVs while Illumina 

MiSeq dataset contains 514 SNVs, in which 175 SNVs are unique. More importantly, Ion 

Proton benchmark was designed to comprehensively characterize the SNV caller 

performance on close to sequencing error allele frequencies, thus it is enriched with 

SNVs of <= 3% allele frequencies, with 0.5% as the lowest targeted frequency. Plotting 

the cumulative percentages of SNV numbers at different allele frequencies (Figure 12) 

from the two test benchmarks, it is clear the major components of Ion Proton test 
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benchmark SNV allele frequencies are at 0.5%, 1%, 2% to 5%, followed by continuous 

frequencies until 46%, the maximum somatic SNV frequency designed in the dataset. 

Whereas Illumina MiSeq testing benchmark set is enriched with SNVs at the 4 discrete 

allele frequency levels same as the design. 
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Table 14 Vuong’s non-nested test on 4 distributions applied to Illumina MiSeq 
training data.  

 
Model 1 

 
Model 2 

Vuong z-statistic 

BIC-corrected 
 

Hypothesis 
 

P value 

Poisson NB -23.38 model2 > model1 < 2.22e-16 

Poisson ZIP -21.30 model2 > model1 < 2.22e-16 

NB ZIP -0.47 model2 < model1 0.31796 

ZIP ZINB -20.22 model2 > model1 < 2.22e-16 

NB ZINB -17.44 model2 > model1 < 2.22e-16 
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Table 15 Negative binomial GLM coefficients for Ion Proton and Illumina MiSeq 
training datasets.  

Ion Proton Illumina MiSeq 
 

Parameter 
 

Estimate 
Standard 

Error 
 

P value 
 

Estimate 
Standard 

Error 
 

P value 
(Intercept) -10.9331 0.0105 < 2e-16 -1.0700 0.0290 < 2e-16 

A → C -0.1516 0.0072 < 2e-16 0.6922 0.0220 < 2e-16 
A → G 1.5093 0.0060 < 2e-16 2.6550 0.0190 < 2e-16 
A → T -0.0352 0.0072 < 2e-16 -0.2219 0.0270 4.26e-16 
C → A -0.1073 0.0075 < 2e-16 -0.3068 0.0290 < 2e-16 
C → G -0.3362 0.0080 < 2e-16 -0.9909 0.0360 < 2e-16 
C → T 1.3287 0.0062 < 2e-16 1.8840 0.0200 < 2e-16 
G → A 1.2600 0.0062 < 2e-16 1.7870 0.0200 < 2e-16 
G → C -0.2030 0.0077 < 2e-16 -0.7178 0.0330 < 2e-16 
G → T -0.1705 0.0075 < 2e-16 -0.7540 0.0360 < 2e-16 
T → A 0.0445 0.0071 < 2e-16 -0.2594 0.0270 < 2e-16 
T → C 1.5362 0.0059 < 2e-16 2.7120 0.0190 < 2e-16 

up base A 0.1046 0.0037 < 2e-16 0.1640 0.0100 < 2e-16 
up base C 0.2316 0.0038 < 2e-16 0.4087 0.0100 < 2e-16 
up base G 0.3288 0.0037 < 2e-16 0.5110 0.0100 < 2e-16 

down base A -0.0908 0.0037 < 2e-16 -0.2120 0.0100 < 2e-16 
down base C 0.3356 0.0036 < 2e-16 0.3462 0.0090 < 2e-16 
down base G 0.1748 0.0037 < 2e-16 0.2600 0.0090 < 2e-16 

GC 0.0058 0.0001 < 2e-16 0.0099 0.0003 < 2e-16 
hmer_den 0.2994 0.0136 < 2e-16 -0.0798 0.0360 0.028 
hmer_op 0.3313 0.0037 < 2e-16 -0.1430 0.0100 < 2e-16 
hmer_dist -0.0137 0.0004 < 2e-16 -0.0009 0.0010 0.4 
hmer_len 0.0790 0.0012 < 2e-16 0.0018 0.0030   0.569 
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Figure 12 Allele frequency composition of Ion Proton and Illumina MiSeq testing 
benchmark SNVs. 
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Except for allele frequency composition, sequencing depth is also a crucial factor 

affecting the performances of the SNV callers, especially at the low-frequency range. 

The average depth for Ion Proton sequencing testing benchmark is about 4000x and 

about 1500x for MiSeq. In addition, despite the amplicon-based capture assay was 

applied on benchmark datasets from both technologies, the evenness of the depth 

across the targeted regions is different. When comparing the depth on known testing 

benchmark SNV loci of two technologies (Figure 13), the depth distribution for Ion Proton 

is skewed while the distribution profile for Illumina MiSeq data displays a bell shape. For 

Ion Proton testing benchmark SNV loci, 85.4% of all loci have a depth no less than 

1000x, while 98.1% for Illumina MiSeq. Further, the average depth at SNV loci from both 

benchmarks are around 3000x, despite the much higher overall depth in Ion Proton 

benchmark. Thus, we speculate lowered recall for some Ion Proton benchmark SNVs, 

particularly for the ≤ 1% ones, the identifiable power of which are more sensitive to the 

depth and read count number sampling variances. 

 

5.3.4 Performance Evaluation on Illumina MiSeq Testing Benchmark 

To evaluate whether the differences in generalized linear model coefficients 

affect the performance profiles on various allele frequencies, we applied the 4 

generalized linear models trained on CAL_A to the testing benchmark dataset combining 

CAL_B, CAL_C and CAL_D. And then we conducted the recall, precision and F1 score 

analyses by allele frequency on the combined dataset. As shown in Figure 14, similar to 

the Ion Proton data set, SNVs of lower allele frequencies are more difficult to identify. 

However, when comparing the performances of zero-inflated Poisson with negative 

binomial GLM on 0.5% ~ 1% allele frequency, different from Ion Proton dataset, negative 

binomial demonstrated a much higher F1 score compared with zero-inflated Poisson. A 

closer look at the performance profiles shows the noticeable drop in recall comparing 
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negative binomial with zero-inflated Poisson in Ion Proton is absent in MiSeq data. 

Examination on the benchmark SNVs missed by negative binomial but recovered by 

zero-inflated Poisson showed lower depth for the missed ones. Therefore the absent of 

recall drop in MiSeq is due to its relatively even depth contrast to the Ion Proton dataset 

(Figure 13). For SNVs with > 1% allele frequency, the F1 scores are all greater than 0.9 

and clustered together for all distributions. 

Comparing with the results from UDT-Seq [15], which reported approximately 

90% recall and >95% precision (no specific number was given, the precision was 

inferred by the precision for the other data UDT-Seq tested - Illumina GAII benchmark 

data at 1500x depth), zero-inflated negative binomial generalized linear model 

demonstrates higher overall recall (95.1%) and high precision (93.4%). 

  

  



93 

  

Figure 13 SNV loci depth distribution by allele frequency for Ion Proton and Illumina 
MiSeq. The dashed lines show the 3000x depth. 
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Figure 14 Performance by allele frequency summary on Illumina MiSeq testing 
benchmark. 
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5.4 Discussion 

The evaluation of position specific error modeling on Illumina MiSeq dataset 

showed the generalizability of the position specific error modeling framework as well as 

its adaptiveness to different technologies. The position specific error modeling 

framework adapts to training data from different technologies by adjusting the 

coefficients in fitted generalized linear models. Moreover, except for the established 

importance of choosing appropriate statistical model, the sequencing depth evenness is 

also an important factor affecting low-frequency SNVs calling performances.  
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Chapter 6. Conclusions and Future Directions 

The overall focus of this dissertation project is to develop a computational 

framework to sensitively and specifically detect low frequency SNVs from NGS based 

DNA sequencing data. The major difficulty of this task is to characterize artifacts in 

sequencing data and distinguish them from the low-frequency SNVs, which may present 

at a similar level as the artifacts. We sought to tackle this problem by modeling the end 

result of all sources of errors originated from various steps of the NGS experiment 

workflow, to effectively distinguish errors from low-frequency SNVs computationally. 

Particularly, the position specific error model characterizes the genomic sequence 

contexts-dependent error tendencies of the sequencers and thus determines the 

detection limits for sensitive low-frequency SNV identification. Machine-learning-based 

recalibration further considers sequencing quality features unique to each candidate 

SNV locus and boosts the specificity. Training data containing comprehensive low-

frequency SNVs are needed for the computational framework to build a representative 

and robust model. Since different sequencing pipelines (generally including library 

preparation, amplification and sequencing instrument) have differential error profiles 

[156], it is a challenging task to develop a model that adapts to different sequencing 

pipelines. The configuration of RareVar computational framework enables it to adjust to 

different pipelines when fed with data from the target pipeline. This benchmark 

generation step is an integral part of RareVar framework when applied to data from a 

previously uncharacterized sequencing pipeline. By performance comparison with 

existing methods, we confirmed the effectiveness of RareVar in sensitively and reliably 

detecting low-frequency SNVs, with the advantage most evident in 0.5% ~ 3% allele 

frequencies. 
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 Generating a benchmark dataset suitable for comprehensive low-frequency 

SNVs detection evaluation is a nontrivial task [82]. By sequencing the DNA sample 

mixture of multiple individuals previously genotyped by 1000 Genomes Project, the 

benchmark data not only contain a large number of known SNVs, but also preserve the 

bona fide sequencer error profiles likely lost by simulation-based approaches [76-80, 

82]. Also, contrast to other deep sequencing efforts for low-frequency SNV detection, 

which targeted less than 50kb regions, Ion AmpliSeq Comprehensive cancer panel 

targets about 1.7 million bases, encompassing half of the known oncogenes and tumor 

suppressor genes. The invariant loci of the targeted regions provide comprehensive 

training data for the position specific error model, which facilitate the building of unbiased 

error profile models. On the other hand, the large number of variant loci, which were 

enriched with low-frequency SNVs by our design, allows the machine-learning-based 

recalibration to delineate the sophisticated boundaries between true low-frequency 

SNVs and sequencing artifacts. 

 The ability to capture the differential context-dependent error rates is the key for 

sensitive detection of close to error rate SNVs. We applied Poisson-distributed 

generalized linear model to integrate 9 sequence context features for position specific 

error rates modeling. Comparing with existing error rate modeling approaches, our 

generalized linear model framework modeled the combinatorial effects of more features 

than tabulation-based method [15], likelihood ratio based method [23, 72] and recursive 

sequencing error probability modeling [75], in which the latter two methods mainly rely 

on base quality feature. The position specific error model allows finer differentiation of 

biased sequencing error rates. Besides, the scalability of the generalized linear model 

removes the need to make unrealistic assumptions, such as the equal substitution error 

rates at each locus assumed by the likelihood ratio method. In the precision and recall 

comparisons with other tools, the position specific error model recovered the most 
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known SNVs, with the advantage more evident at lower allele frequency ranges. In 

addition, its precision is comparable with VarScan2, thus selecting a high quality 

candidate SNV set for further refinement. 

 The machine-learning-based candidate recalibration step in RareVar considers 

sequencing quality features to refine the candidates. This strategy was also used in 

GATK [65]. However, the recalibration in our framework is tailored to low-frequency SNV 

detection. First, comparing to the dbSNP germline SNVs used as positive set in GATK, 

the true SNVs in our designed benchmark covered a wide range of continuous 

frequencies and more importantly, enriched at low frequency ranges. Thus it is a suitable 

training data set for modeling features of cancer somatic mutations and pooled 

sequencing variants, especially at the lower frequencies. Second, instead of trying to 

only capture the characteristics of true SNVs in GATK, we had both true SNVs defined 

by the benchmark data as well as the false positive SNVs generated by position specific 

error model step, allowing us to distinguish the two types. Moreover, the candidate SNVs 

derived after position specific error modeling are enriched with true SNVs, thus they 

constitute an ideal training set to optimize the classification boundaries for higher 

sensitivity and specificities. We showed the effectiveness of the machine-learning-based 

recalibration in boosting the precision as well as preserving high recall by comparing it 

with the position specific error model as well as other existing tools. The aforementioned 

advantages in framework design were highlighted by the highest precision increase at 

0.5% and 1% frequency ranges. 

 From benchmark design, position specific error model to machine-learning-based 

candidate recalibration, these major components of RareVar framework operate 

synergistically to optimize the performance on low-frequency SNV detection. Enriched 

low-frequency SNV benchmark enables supervised learning for the downstream 

components to effectively distinguish low-frequency SNVs from sequencing artifacts. 
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The strategy of using benchmark data also enables adapting to different sequencing 

platforms by feeding downstream components with training data from the platform of 

interest. The value of tailoring the model toward the platform used is pinpointed when 

RareVar and TVC, the two methods more tailored to Ion Torrent sequencing technology, 

significantly outperformed popular methods previously tailored for Illumina sequencing 

technology.  Computational components position specific error model and machine-

learning-based candidate recalibration characterize the context-dependent systematic 

sequencer error tendency and locus-specific sequencing qualities, respectively. 

Moreover, both the generalized linear model and machine learning algorithm random 

forest are capable of incorporating more features, thus guarantees extensibility of 

RareVar. 

 Next-generation sequencing error data are in essence count data. In chapter 3, 

we showed that the effectiveness of different statistical distributions on position specific 

error modeling was different. By keeping the sequence context features the same, 

observed differences in performance were due to differential goodness-of-fit for the 

tested distributions. Similar to RNA sequencing differential expression analysis, negative 

binomial distribution showed statistically significant better goodness-of-fit than Poisson 

distribution, due to its extra parameter in dealing with overdispersion of next-generation 

sequencing count data [152, 157]. Unique to sequencing error count data is the large 

percentage of zeros, or zero-inflation, since the average error rate is only 0.1% to 1% for 

most platforms. The zero-inflated counterparts of both Poisson and negative binomial 

distributions fit statistically better, as shown by Vuong’s test. Zero-inflated negative 

binomial distribution statistically fit the sequencing error data the best. Such an 

advantage was also reflected in higher overall performance in detecting SNVs, 

especially at 0.5% and 1% frequencies, demonstrating the practical value of applying 

statistically fitter distributions. Furthermore, both Ion Proton and Illumina MiSeq data 
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supported this conclusion. Zero-inflated negative binomial distribution captures generic 

features of the next-generation sequencing error count data. 

 The adaptiveness of generalized linear model for position specific error modeling 

was demonstrated in chapter3. When fed with sequencing data from different platforms, 

the model adjusted to different platforms by learning different coefficients. Comparing 

the fitted coefficients for Ion Proton and Illumina MiSeq data, most homopolymer related 

features that explain Ion Proton sequencing errors were no longer significant in Illumina 

MiSeq model. Given the successful application of machine-learning-based recalibration 

in GATK, which is broadly applied on Illumina sequencing data, as well as its 

effectiveness in Ion Proton dataset demonstrated in chapter 2, both computational 

components in RareVar are proved to be adaptive to different sequencing platforms. 

 Low-frequency SNVs detection is the key component in identifying mutational 

drift and/or enrichment in breast tumors. By comparing the SNVs in primary tumor tissue 

with the ones identified in cultured reprogrammed tumor cells, low-prevalent and 

potentially actionable SNVs missed by sequencing bulk tumor could be recovered. 

Applying RareVar on these data, we identified both known and novel somatic mutations 

enriched in reprogrammed tumor cells. Further experimental validation and functional 

study is on going. 

 The future directions for RareVar framework refinement are improving the 

position specific error model and the machine-learning-based recalibration. For the 

position specific error model, identifying and incorporating more features informative of 

sequencer error tendencies are desired. Also, the benefit of considering interactions 

between features in addition to combinatorial effects is worth exploring. Similarly, 

designing more sequencing quality features as well as selecting the most informative 

subset of features for distinguishing true SNVs from sequencing artifacts are the major 

concerns for the machine-learning-based recalibration.  
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 In summary, we developed an adaptive and flexible framework for high 

performance low-frequency SNV detection. Such a method extends the application 

territory of sequencing based strategies, and also have the potential to greatly facilitate 

cancer and population genetics researches as well as clinical applications such as 

cancer early diagnosis, metastasis monitoring and relapse identification.   
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