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Chapter One: Introduction and Background 

 

The etiology of many neurodegenerative diseases is unknown, but a number of 

studies indicate that a combination of both genetic and environmental factors 

contribute to the progression of disease.  Metals are important in numerous biological 

processes in the brain.  Metal homeostasis is regulated through multiple mechanisms of 

transport, storage, and secretion, and breakdown of these processes have been 

implicated in the development of a number of neurodegenerative diseases including the 

loss of dopamine (DA) neurons in Parkinson’s disease (PD) [1,2].  The focus of these 

studies are to determine whether the genetically tractable nematode Caenorhabditis 

elegans (C. elegans) is sensitive to PD-associated metals Mn2+, Fe2+, Cu2+, and Al3+, 

whether these metals can induce dopamine neuron degeneration, and whether the C. 

elegans homologues to the human divalent metal transporter (DMT1) may contribute to 

metal induced neuropathology.  

 

Metals and Neurodegenerative Diseases 

Neurodegenerative diseases such as PD, manganism, Alzheimer’s disease (AD), 

and Wilson’s disease display an age-related loss of specific neurons, increased oxidative 

stress, and metal accumulation in surviving cells.  Exposures to high concentrations of 

metals such as Mn2+, Cu2+, and Al3+ can confer overlapping pathologies and exposures 

have been correlated with an increased propensity to develop these disorders.   

For example, Mn2+ and Cu2+ have been implicated in the development of PD, 

while Al3+ has been implicated in PD as well as AD, ALS, and Friedreich’s ataxia [7 - 9].  It 

has been suggested that the long half-life of Al3+ in numerous brain tissues, along with 

the long life of neurons contribute to its accumulation and elevated levels in 

neurodegenerative diseases [10].  A study of the hippocampus from patients with ALS 

and Parkinsonism-dementia of Guam supports Al3+ as a potential environmental factor 

contributing to increased accumulation of Al3+ in the neurofibrillary tangles [10, 11].   
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Parkinson’s Disease 

PD is the second most prevalent neurodegenerative disease after AD.  Early 

descriptions of PD were detailed by James Parkinson in 1817, which now is estimated to 

affect over 2% of the population over the age of 65 [22, 23].  The most common form of 

PD is called idiopathic or sporadic PD (~95% of the PD population), with the remaining 

portion of patients inheriting the disease directly due to genetic contributions [22, 24 - 

25].  Identification of genes involved in PD has provided insights into the molecular 

mechanisms involved in sporadic PD [25].  PD is generally considered a disease that 

slowly progresses over time, and there is no cure for the disease.  PD is characterized by 

the selective loss of dopamine (DA) neurons in the substantia nigra (SN) and often the 

presence of lewy bodies in surviving cells.  Lewy bodies are cytoplasmic inclusions of 

protein aggregates [26].  Clinical symptoms include resting tremor, bradykinesia, 

stiffness of limbs, and gait or balance problems [24].  Animals studies suggest that 

idiopathic PD results from a complex combination of genetic and environmental 

interactions in combination with the factors involved in aging [22, 23].  Central to PD 

research is the involvement of oxidative stress, and mitochondrial and proteasomal 

dysfunction [24, 25].  Postmortem studies of PD brains show increased oxidative stress, 

lipid peroxidation, as well as decreased mitochondrial complex I activity and glutathione 

levels in the SN [27, 28].   

Epidemiological studies suggest that metal exposure contributes to the 

development of PD.  A study by Zayed J. et al. 1990 suggests that occupational exposure 

to Mn2+, Fe2+, and Al3+ for a time period greater than 30 years increases the risk for PD.  

Postmortem analysis of brain tissues from Parkinsonism patients has shown an increase 

in total Fe2+, Zn2+, and Al3+ in the SN compared to control tissues [29 - 31].  In addition, a 

recent study suggests that Al3+ is one of the metals that significantly increase in early PD 

patient serum and may be a good indicator of disease progression [32].  Epidemiological 

studies have also suggested the potential involvement of occupational exposure to 

copper in the etiology of PD.  A study of Michigan counties by Rybicki B. et al. 1993 

suggests a statistically significant increase in PD death rates in areas with industries 
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using heavy metals.  These industries included paper and chemical production in 

addition to iron and copper mining.  Gorell J. et al. 1999 showed that chronic 

occupational exposure (>20 years) to Cu2+ or to dual combinations of lead, Fe2+, and Cu2+ 

was associated with PD.  

Environmental agents were first recognized as potential risk factors in the 

development of PD with the identification of 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP), in a preparation of an illegally manufactured heroin-like 

drug.  MPTP-exposed individuals exhibited signs and symptoms of PD [39].  High 

exposures to the transition metal Mn2+ can cause a parkinsonism-like syndrome called 

manganism.  Manganism patients present with a similar loss of DA neurons in the SN, 

increased indicators of oxidative stress, motor disturbances, and often psychological 

disturbances [40, 41 - 45].  Mn2+ may also reduce DA release, and inhibit complex-I of 

the mitochondrial electron transport chain and increase the generation of reactive 

oxygen species (ROS) [46 - 50].   

PD does not naturally occur in species other than humans, therefore animal 

models are utilized to recapitulate various aspects of the human disorder [22, 34].  A 

model of PD is to expose DA neurons is 6-hydroxydopamine (6-OHDA), a hydroxylated 

analogue of DA.  This model of PD was first proposed over 40 years ago, and is a well-

studied mammalian toxicant model due to its ability to induce specific DA neuron 

degeneration both in vitro and in vivo [35, 36].  The specificity of 6-OHDA for causing 

degeneration in DA neurons is attributed to its ability to be transported into the cells by 

the DA transporter (DAT).  Studies have shown that DAT antagonists like imipramine or 

nisoxetine or mutations that render DAT non-functional are able to inhibit 6-OHDA 

effects [37, 38]. 

 

Alzheimer’s Disease 

 AD is the most common neurodegenerative disorder, characterized by the 

development of extracellular plaques consisting of aggregated insoluble amyloid-β 

polymer, intracellular neurofibrillary tangles, and a selective loss of neurons in the 
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hippocampal and cerebral cortical regions [7, 51].  The role of Al3+ in AD is still 

controversial and there are many studies supporting as well as refuting the involvement 

of the metal.  In the 1960’s the “aluminum hypothesis” was first proposed based on 

studies that found Al3+ injections induce neurofibrillary tangle-like lesions, increased Al3+ 

levels in AD patients, and increased prevalence of AD in regions with high Al3+ in the 

drinking water [52 - 54].  It has been suggested that many of these initial studies were 

inaccurate due to morphological differences in neurofibrillary changes, potentially 

contaminated brain samples, or inconclusive data sets [55, 56].  Another hypothesis 

suggests metals such as Al3+, Cu2+, and Fe2+ can alter oligomerization and induce 

conformational changes that result in amyloid-β polymer-induced neurotoxicity [7, 51].   

Epidemiological data suggest Al3+ exposure increases memory deficits in AD patients [7].  

Fe2+ and Cu2+ are consistently found at high levels in the brain regions most prone to 

AD-associated neurodegeneration [14, 15].  Some studies suggest that the source of 

oxidative stress in the AD brain may come from the generation of ROS via molecular 

oxygen and Cu2+ [58].  Amyloid precursor protein has also been shown to reduce Cu2+ to 

Cu+ generating hydrogen peroxide that can form hydroxyl radicals via the Fenton 

reaction [16].  In C. elegans, aggregation of amyloid-β protein is accelerated by exposure 

to Cu2+, and the aggregation is inhibited by the Cu2+ chelators, histidine or clioquinol 

[59].  Hyperphosphorylated tau, a significant component of neurofibrillary tangles, has 

been shown to bind Cu2+causing protein aggregation that may increase neuronal 

oxidative stress [60]. 

 

Menkes and Wilson’s Diseases 

Menkes disease and Wilson’s disease are neurodegenerative diseases in which 

mutations in Cu2+ transport can cause altered brain development, defective synthesis of 

collagen, increased ROS and neurological problems [20, 40, 61, 62].  In Wilson’s disease 

a mutation in a Cu2+ transporter results in abnormal Cu2+ accumulation and parkinsonian 

like symptoms [63, 64].  Unbound Cu2+ can catalyze the Fenton and/or Haber-Weiss 

reactions, which can result in the generation of the highly reactive and damaging 
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superoxide and hydroxyl radicals [16, 20].  Cu2+ can also be toxic due to its binding to 

protein sulfhydryl groups, resulting in enzyme inactivation or altered protein folding 

which contributes to inclusion body formation.  Exposure to toxic levels of Zn2+ has been 

shown to alter copper homeostasis by upregulating metallothioneins which can increase 

Cu2+ elimination.  Imaging studies have shown some Wilson’s disease patients to have 

severe loss of striatal DAT and significantly reduced integrity of both pre- and post- 

synaptic DA neuronal regions [66, 67].  In addition, Long-Evans Cinnamon rats, which are 

used as a rodent model of Wilson’s disease, have shown increased indicators of 

oxidative stress in the brain regions that typically accumulate Cu2+ due to the disease 

[67, 69]. 

 

Aluminum 

Aluminum is the most abundant metal in the earth’s crust and the third most 

abundant element in the environment [70, 71].  Humans are primarily exposed to Al3+ 

through food or environmental contamination.  Al3+ also comes in direct contact with 

humans as it is used in pharmacological products like antacids and antiperspirants [74].  

Al3+ is a non-essential metal ion, and exposure to high concentrations of Al3+ has been 

shown to contribute to toxicity across many organisms [31, 70, 75].  The proximal 

intestine appears to be the primary site of Al3+ absorption by calcium channels and 

sodium transporters, while transferrin and urine are potentially the primary routes for 

excretion [71].  Al3+ has a high propensity to form hydroxyl complexes in an acidic 

environment [154].  Al3+ can cross the blood brain barrier, but the mechanism of 

transport has been controversial.  Studies have suggested Al3+ may be transported by 

transferrin receptor-mediated endocytosis or through a glutamate transporter [7, 71].  

Al3+ has also been shown to alter mitochondrial function by interfering with ATP 

production and reducing antioxidant defenses [175, 190].  In addition, Al3+ has been 

suggested to alter DA neurotransmission by altering membrane integrity and dopamine 

receptor density, as well as decreasing DA levels [72, 75, 76]. 

 



6 
 

Copper 

In biological systems Cu2+ is an essential cofactor for many enzymes and is 

utilized in electron transport [1, 77].  The primary source of Cu2+ exposure is through 

food or environmental contamination [77, 78]. After being absorbed through the GI 

tract, Cu2+ is transported by albumin.  Cu2+ in the liver is bound by metallothionein, and 

secreted into plasma or excreted in the bile [79, 80].  Some of the critical enzymes 

requiring Cu2+ are involved in mitochondrial respiration, peptide hormone production, 

pigmentation, neurotransmitter metabolism, and Fe2+ transport.  These enzymes 

include cytochrome c oxidase, Cu/Zn superoxide dismutase, tyrosinase, dopamine β-

hydroxylase, and metallothionein [20, 79].  Cu2+ is also one of the few metals within the 

cell that causes increased oxidative stress with either excess accumulation or deficiency 

[81].  Some studies have suggested that DMT1 and the high affinity Cu2+ transporter, 

CTR1 , may play a significant role in Cu2+ transport across the plasma membrane [91]. 

 

Oxidative Stress 

The nervous system is particularly sensitive to oxidative damage due to the high 

rate of oxygen consumption, relatively high Fe2+ levels, and concentration of oxidizable 

polyunsaturated fatty acids in neuronal membranes [29].  Understanding how oxidative 

imbalance contributes to DA neuron sensitivity in diseases such as PD could provide 

insight into the etiology of the disease [83, 84].  Studies have shown factors which 

contribute to DA neuron specific increased oxidative stress include large stores of Fe2+, 

α-synuclein accumulation, and easily oxidized DA [85 - 87].  PD patients present with 

increased oxidative stress and lipid peroxidation, decreased levels of glutathione (GSH) 

and mitochondrial complex I activity, and the presence of dopamine quinones [27, 30, 

88]. 

Glutathione synthesis is one of the cell’s most important antioxidant responses 

to scavenge free radicals [46, 92].  Post mortem studies of PD brains have shown a 

decrease in GSH levels in the SN, and a correlation between PD severity and GSH deficit 

[29, 93].  Loss of GSH has also been associated with impaired mitochondrial electron 
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transport chain function [94].  As a major antioxidant in the brain GSH has multiple 

functions including scavenging of superoxide and hydroxyl radicals [95].  GSH serves as 

an electron donor for glutathione peroxidase, and as a cofactor for glutathione s-

transferases (GSTs).  Toxic exposure of Al3+ is suggested to inhibit mitochondrial NADP-

isocitrate dehydrogenase, decrease GSH, and decrease GSH peroxidase and catalase 

activities effecting cellular oxidative stress levels [96 - 98].  Exposure to high Cu2+ levels 

significantly decreases total glutathione levels [1, 101].  In addition, in vitro studies 

suggest that exposure to Cu2+ inhibit GST and alter glutathione peroxidase activity [102]. 

DA can be degraded by monoamine oxidase to generate hydrogen peroxide, or 

can contribute to the formation of superoxide and quinones that can cause 

denaturation of proteins, lipid peroxidation, and DNA damage as depicted in Figure 1 

[83].  A number of studies indicate that DA in the presence of the transition metals Fe2+, 

Cu2+, and Mn2+ can catalyze production of free radicals [20, 40, 92].  While Al3+ is not a 

redox-active metal, it has been shown to facilitate pro-oxidant activities like Fe2+-

induced lipid peroxidation, oxidation of NADH, and formation of hydroxyl radical [99].  

Neuromelanin is a redox-active brain pigment associated with neurodegeneration in the 

DA neurons in the SN of PD patients [73, 103].  In vitro studies have also shown that Al3+ 

can facilitate Fe2+/Cu2+ oxidation of DA to neuromelanin.  Once formed, neuromelanin is 

capable of binding metals such as Al3+ resulting in increased lipid oxidation due to the 

formation of an Al-·O2
- complex with increased oxidant capacity [73, 99].  Studies have 

also shown Al3+ co-exposure with the PD toxicants 6-OHDA or MPTP increases free 

radical generation, DA neuron degeneration, lipid peroxidation, and DA turnover [96, 

104-107]. 

 

Divalent metal transporter 

The divalent metal transporter (DMT1), or natural resistance-associated 

macrophage protein 2 (Nramp2), is a proton-coupled membrane transporter with 12 

transmembrane domains that is expressed in most tissues [108].  The transporter has 

been shown to transport divalent cations such as Fe2+, Mn2+, Cu2+, Zn2+, and lead [14, 
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109, 110].  DMT1 family members share a consensus transport sequence located 

between transmembrane domain 8 and 9 that is involved in metal translocation across 

the membrane [46].  Homologues of human DMT1 have been identified across multiple 

species including plants, yeast, C. elegans, and many vertebrates [46, 111].  In 

mammalian systems, DMT1 has been identified to function primarily in Fe2+ uptake and 

distribution [84].  In yeast and C. elegans, three homologues to DMT1 have been 

identified and are called SMF-1, SMF-2, and SMF-3 [46, 111].  In yeast the cellular 

localization of the three SMF proteins may depend on the extracellular environment 

[111].  For example, Portnoy M.E. et al. 2000 found when Mn2+ was added to growth 

media, both Smf1p and Smf2p were targeted to the vacuole for degradation.  In 

contrast, Mn2+ starvation caused Smf1p expression within the plasma membrane, while 

Smf2p localized to intracellular vesicles.  Salazar J. et al. 2008 showed protein extracts 

from the SN of PD patients had an increase in the Fe-responsive isoform of DMT1 and a 

decrease in non-Fe responsive DMT1 isoform, compared to SN tissues from patients 

without PD.  In addition, a mutation in DMT1 which impairs Fe2+ transport was able to 

protect against both MPTP and 6-OHDA-induced DA neuron degeneration in mice [84].  

PARK2, an E3-ligase contributing to protein proteasomal degradation, has been 

identified as one of the genetic factors resulting in early-onset PD.  Mutation in the 

PARK2 gene results in the selective loss of DA neurons in the SN [5].  There is additional 

evidence which suggests mutation may also alter DA homeostasis and contribute to late 

onset of PD [6, 12].  A recent in vitro study has shown that PARK2 can also selectively 

regulate DMT1 expression [113].  This study suggested that overexpression of PARK2 

not only reduces transport of Mn2+, but also decreases expression of DMT1.  This 

suggests an additional regulatory mechanism for DMT1 and further implicates DMT1’s 

potential role in DA neuron degeneration.   

 

C. elegans as a model system 

The nematode C. elegans is a powerful model system to explore the cellular and 

molecular basis of PD-associated DA neuronal death [46, 116, 117].  C. elegans have 



9 
 

been used as an important model system for biological research in the fields of 

genomics, cell biology, neuroscience and aging [118].  Its small size, rapid development, 

large brood size, and a food source primarily of bacteria lend to the ease and low cost of 

laboratory culture.  The adult hermaphrodite is approximately 1mm in length and can 

progress from embryo to adult within 3 days [118].  Other advantages include its 

transparent body, along with a well-defined cell pattern and nervous system [119].  

There are two sexes of C. elegans, a self-fertilizing hermaphrodite and a male.  Each 

adult hermaphrodite typically produces 300-350 progeny, but this is only limited by the 

number of sperm produced.  Male fertilization can increase the number of oocytes 

fertilized to closer to 1000 [120].  Males naturally arise infrequently (0.1%), but this 

frequency can be increased by environmental stresses or through genetic mutations 

[121]. 

The self-fertilization of the hermaphrodite allows homozygous animals to 

generate genetically identical progeny, and male mating allows for the isolation and 

maintenance of mutant strains along with the addition of new mutations [119].  Another 

advantage of C. elegans as a model system is the relatively short period of time to 

generate mutant strains.  Confirmation of new mutants and genetic crosses can be 

quickly performed through whole animal polymerase chain reaction (PCR), termed 

single worm PCR [122].  An alternative to generating genetic knockout lines is 

incorporating genetic knockdown through RNA-mediated interference (RNAi) [115].  The 

first evidence that double stranded RNA could cause gene silencing came from C. 

elegans studies by Andy Fire’s and Craig Mello’s laboratory [124].  Although neurons are 

largely insensitive to RNAi, a mutation in a RNA polymerase gene, rrf-3, increases the 

efficacy of RNAi-mediated genetic knockdown in most neurons including the DA 

neurons [127, 128]. 

In humans, DA, in addition to being essential for coordinating body movements, 

is involved in addiction, motivation, reward, and reinforcement [129].  Loss of DA 

neurons and depletion of DA in the basal ganglia results in the movement abnormalities 

associated with PD [130].  DA synthesis is dependent on the essential amino acid 
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tyrosine.  Tyrosine is metabolized by tyrosine hydroxylase (TH) to L-3,4-

dihydroxyphenylalanine (L-DOPA), which is then decarboxylated to DA by DOPA 

decarboxylase [130, 132].  Following neurotransmission, DA inactivation involves 

reuptake of DA by the presynaptic DAT where it is then metabolized or repackaged for 

storage.  DA is metabolized by catechol-O-methyl transferase and monoamine oxidase 

[130].  Dopamine synthesis and metabolism are very tightly regulated as DA alone is 

very reactive, and degradation results in the generation of free radicals [92].  C. elegans 

have similar molecular components as mammalian systems that are involved in DA 

synthesis, packaging, signaling, transport, and degradation [(Figure 1), 38, 115].   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Dopamine synthesis, metabolism, and DA free radical production in mammals and C. elegans.  C. 

elegans genes in red.  DA, dopamine; TH, tyrosine hydroxylase; GTPCH, GTP cyclohydrolase; AAAD, 

aromatic L-amino acid decarboxylase; MAO, monoamine oxidase; DOPAC, 3,4-dihydroxyphenylacetic acid; 

COMT, catechol-O-methyl transferase; HVA, homovanillic acid; VMAT, vesicular monoamine transporter; 

DAT, dopamine transporter; GSH-Px, glutathione peroxidase; H2O2, hydrogen peroxide; ·O2
-
, super oxide 

radical; ·OH, hydroxyl radical [38, 92].   
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  While DA is not required for C. elegans viability, DA signaling is involved in the 

mechanosensation of food, egg-laying, defecation, movement, and mating [133 - 136]. 

C. elegans have 302 neurons in the adult hermaphrodite and 383 neurons in the 

adult male [118, 121].  Hermaphrodites have eight DA neurons and the males have 

three additional pairs of DA neurons in the tail.  These neurons can be easily seen in vivo 

under a fluorescent dissecting scope when the green fluorescent protein is expressed 

behind the DAT promoter (Figure 2) [38].  The nematode head contains four cephalic 

cells (CEPs) and two anterior deirids (ADEs) (Figure 2).  The CEP dendrites extend from 

the cell body, which is near the nerve ring, to the tip of the nose [115].  The tail also 

contains two posterior deirids (PDEs) near the vulva (refer to [115] for image). 

 

 

Figure 2:  Dopamine neurons in the head region of an adult hermaphrodite C. elegans.  Confocal images of 

BY250 strain which expresses GFP behind the dat-1 promoter showing the 6 DA neurons in the head 

region, four CEPs and two ADEs.  The thick arrow points to cell bodies, while the thin arrow points at the 

appropriate dendritic processes CEP and ADE from left to right.  Photos taken 72 hours after L1 stage and 

were captured using confocal microscopy (Zeiss LSM 510 microscope).  Scale bar indicates 20 μm. 

  

A 
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Chapter Two: Experimental Data 

 

The molecular mechanisms involved in PD and manganism is largely unknown, 

but numerous studies indicate increased DA neuron cell death is a common factor [22, 

24].  As previously introduced excess exposure to environmental metals such as Mn2+, 

Fe2+, Al3+, or Cu2+ have been shown to induce cell-death and increase oxidative stress 

which has been implicated in PD.  In addition, vertebrate evidence suggests DMT1 

transports ions such as Mn2+, Fe2+, or Cu2+ into DA neurons [84, 112].  Therefore I 

propose that exposure to Mn2+, Fe2+, Al3+, or Cu2+ can induce DA neurodegeneration and 

DMT1 contributes to increased DA neuron sensitivity.  To explore this hypothesis, I use 

the powerful animal model C. elegans to evaluate animal vulnerability, changes in 

oxidative stress, DA neuron degeneration, and contribution of DMT1 homologues SMF-

1, SMF-2, and SMF-3 after metal toxicant exposure. 

 

Materials and Methods 

C. elegans strains and maintenance - Nematode Growth Medium (NGM) or 8P plates 

containing bacterial lawns of either OP-50 or NA-22, respectively, were used to grow C. 

elegans strains at 20˚C consistent with standard methods [137, 140].  OP-50 is a uracil 

auxotroph E. coli whose growth is limited on NGM plates to enable easier observation 

[141], while NA-22 E. coli grow in very thick layers and are an optimal food source for 

large quantities of worms when fed on 8P plates [13].  The C. elegans strains used in 

these experiments are listed in Table 1.  Homozygotes from genetic crosses were 

verified using single worm PCR [122].  Frozen stocks (-80˚C freezer) were generated by 

mixing a largely L1 population of worms as previously described [141].  
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Table 1: C. elegans experimental strains used 

Strain name Genotype Strain name Genotype 

N2 Wild type Bristol RJ907 Pdat-1::GFP;smf-1(eh5)X 

IG6 smf-1(eh5) X RJ905 Pdat-1::GFP;smf-2(gk133)X 

VC171 smf-2(gk133) X RJ906 Pdat-1::GFP;smf-3(ok1035)IV 

RB1074  smf-3(ok1035) IV RJ928 Pdat-1::GFP;rrf-3(pk1426) II 

BY250 Pdat-1::GFP BY200 Pdat-1::GFP; rol-6 

  BY215 Pdat-1::GFP;rol-6;dat-1(ok157)III 

 

Whole-animal vulnerability assay - Gravid adults were collected and rinsed 3 times with 

dH2O, and eggs were harvested after hypochlorite treatment following standard 

protocols [38, 117].  Eggs were then incubated in M9 buffer, a standard C. elegans 

laboratory solution containing essential salts necessary for eggs to continue 

development to the L1 stage, on a rocker for 18 hours at room temperature.  After 

which the synchronized population of L1 animals were rinsed again 3 times with dH2O 

and counted to determine the approximate number of worms per μl using a Zeiss 

dissecting microscope.  L1 animals (30 - 50) were placed on NGM plates with OP50 

bacteria +/- various concentrations of metal solutions.  These solutions included MnCl2 

[10 - 30 mM] (Fisher Scientific, Fair Lawn, NJ), CuCl2 [50 - 500 μM] (Alfa Aesar, MA), AlCl3 

[.1 - 1 mM] (Fisher Scientific, UK), and FeCl2 [100 - 500 μM] (Sigma Aldrich, St. Louis, 

MO), and were added to autoclaved NGM agar prior to pouring the 60 mm plates.  L1 

animals were grown for 72h at 20°C and assayed for viability.  Animals were considered 

to be alive when moving or when responding to a gentle touch with a metal pick on the 

nose [142].  All experiments were performed at least in triplicate, the results were 

reported as mean +/- S.E.M., and statistical analysis was performed using GraphPad 

Prism5.   

RNA extraction and cDNA synthesis - After treatment with AlCl3 for 30 min and 

recovery on NGM plates for 48 hrs., the worms were washed from the plates and rinsed 

with dH2O at least 3 times or until the dH2O appeared clear.  Worm pellets were then 
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resuspended in Trizol (1 ml worms/100 μl Trizol).  Total RNA was extracted as previously 

described, but with minor modifications [143].  Chloroform was used to denature and 

separate proteins and lipids from the sample, and isopropyl alcohol was added to 

remove the DNA and allow RNA precipitation.  The RNA pellet was washed with 75% 

ethanol, allowed to dry, and then resuspended in RNase-free water.  A small volume 

from each sample was then diluted to measure the RNA concentration, while the 

remaining portion of the sample was stored at -80°C.  RNA concentrations were 

determined using a ND-1000 spectrophotometer (Nanodrop Technology, Wilmington, 

DE).  cDNA synthesis was followed according to manufacturer’s instructions (Bio Rad, 

CA).  The cDNA was purified using dH2O and Microcon YM30 filters (Millipore corp., 

Bedford, MA), and the concentration determined using the ND-1000 

spectrophotometer.  cDNA sample were stored at -20°C. 

Real-time PCR measurements - Primers were designed with Primer3 software.  All qRT-

PCR measurements were determined relative to glyceraldehyde-3-dehydrogenase 

(GAPDH) as its expression does not change as a result of exposures (unpublished lab 

results). The primers in Table 2 were used to determine changes in gene expression of 

the following genes: 

Table 2: Primers used to determine changes in gene expression   

Gene Forward primer 5’ - 3’ Reverse primer 5’ - 3’ 

Gapdh GAAACTGCTTCAACGCATCA CCTTGGCGACAAGAAGGTAG 

smf-1 GTGGGTTTTGCTCTCAGCTC TGGCAATTGCTGTTCCAATA 

smf-2 GCACTGGTTGGCTGATTTTT GGAGCATCCAGTTCCAGTGT 

smf-3 GGAGTGCGAAAGTTTGAAGC TTGACAAGTGCCGAGTGAAG 

 

The real-time reaction was performed using a 2X SYBR Green PCR master mix which 

included SYBR Green, cDNA at 25 ng/μl, and dH2O.  The PCR master mix with the cDNA 

of interest and primers were added to the appropriate wells within a 96-well plate.  

Negative controls were added to wells that contained the entire PCR master mix minus 

the cDNA.  The ABI Prism 7500 sequence detection system (Applied Biosystems, 
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Warrington, UK) was used to detect the quantity of PCR product.  A CT value indicates 

the cycle number that the fluorescence passes the threshold determined for SYBR Green 

fluorescence.  Studies were performed in triplicate and the ΔCT was calculated for each 

exposure condition based on the difference in CT value for control and GAPDH.  The 

ΔΔCT was calculated by subtracting the control ΔCT from the AlCl3 ΔCT.  Fold change was 

then calculated based on 100% efficiency (2^( ΔΔCT)). 

Toxicant exposures - My initial studies determined DA neurons were more sensitive to 

30 min exposure to MnCl2 when exposed in the first larval stage (L1) as compared to 

animals exposed at the fourth larval (L4) stage or adult stage.  The life cycle of C. elegans 

begins with the embryonic stage, progresses through four larval stages, and then 

reaches adulthood [118].  To eliminate additional potential variability in results due to 

the developmental stage of animal exposed, I began each of my experiments with a 

population of animals all at the L1 stage by using a common C. elegans laboratory 

procedure called synchronization [117].  To determine the appropriate recovery time to 

evaluate DA neuron degeneration after MnCl2 exposure, I evaluated the number of 

animals that displayed DA neuron cell death at multiple time points.  I found that after 

30 minute exposure to 50 mM MnCl2, the number of animals that displayed DA neuron 

degeneration was greater 72 hours post exposure compared to 48 hours (Figure 3).  I 

therefore decided to use the 72 hour time point to examine DA neurons in all future 

experiments. 
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Figure 3:  C. elegans DA neuron degeneration increases 72 hours post-MnCl2 exposure.  A synchronized 

population of L1 BY250 animals was exposed for 30 min to dH2O + 50 mMnCl2, and then recovered on 

NGM plates for 48 or 72 hours prior to evaluation of DA neuron degeneration. *p > .05 as determined by 

two-tailed t-test comparing MnCl2 exposure groups at each time point.   

 

Samples of gravid adults were collected from plates by washing with dH2O, 

spinning at 2500 rpm for 2 min, and removing the supernatant and repeating the 

washes until all bacteria was removed from the sample using standard protocols [38, 

116].  Then animals were synchronized using hypochlorite treatment and incubated on a 

rotating plate at room temperature for 18 hours in M9.  L1 stage worms were then 

washed at least 3 times with dH2O and counted using a dissecting microscope.   

Acute exposures of L1 animals were set up with 10 worms/μl and incubated with 

varying concentrations of MnCl2, CuCl2, AlCl3, or FeCl2, added to dH2O in 1.5 ml 

centrifuge tubes [116].  Samples were incubated for 30 min at room temperature with 

gentle mixing every 10 min throughout exposure.  After exposure, each sample was 

spun down at 2500 rpm for 2 min, supernatant removed, and the rinse repeated 3x with 

dH2O.  Animals were then placed onto NGM plates seeded with OP50 bacteria and 

allowed to recover for 72 hours at 20°C.  Between 50 - 60 worms were then picked onto 

microscope slides containing 2% agarose pads and immobilized using 2% sodium azide.  

Animals were scored for DA neuron degeneration under the fluorescent microscope 
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(Leica MZ 16FA, Switzerland).  DA neuron degeneration was considered positive if there 

was not a continuous GFP signal along the CEP dendrite [38].  Figure 4 A & C shows an 

example of animals without and with degeneration respectively.  For exposures with 

more than one toxicant, the first 30 min exposure remained the same as described 

above, animals were then washed at least 3x in dH20 using standard protocols and 

resuspended in the second solution +/- toxicant at 10 worms/μl and exposed for 30 

minutes.  Animals were allowed to recover, prepared for imaging, and then scored as 

described above.  

For chronic exposures, synchronized populations of L1 animals were plated on 

NGM containing varying concentrations of MnCl2, FeCl2, AlCl3, or CuCl2.  The toxicants 

were added to the NGM agar prior to pouring the plates per standard protocols [116].  

OP-50 bacteria was spread on each of the metal toxicant plates and allowed to grow as 

previously described [116].  After 72 hours of toxicant exposure, DA neuron integrity 

was evaluated as described above.  Each of the experiments was performed at least in 

triplicate, the results are reported as means + S.E.M., and statistical analysis was 

performed using GraphPad Prism5.  
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Figure 4.  PD-associated toxicants MnCl2 or 6-OHDA induces DA neuron degeneration in C. elegans.  L1 

BY250 animals were exposed dH2O +/- 50 mM MnCl2 or 1% dimethyl sulfoxide (DMSO) +/- 5 mM 6-OHDA 

for 30 min and then images were taken 72 hrs. after exposure. Images are displayed as fluorescent and 

corresponding DIC image of animals exposed to A & B) dH20 C & D) 50 mM MnCl2 E &F) 1% DMSO in dH2O 

G & H) 5 mM 6-OHDA.  Long arrows point to representative CEP process damage, short arrow points to 

representative CEP cell body damage.  Images are representative of toxicant-induced DA neuron 

degeneration and were captured using confocal microscopy (Zeiss LSM 510 microscope).  Scale bar 

indicates 20 μm.   
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Mitochondrial Membrane Potential Analysis - Tetramethylrhodamine ethyl ester 

perchlorate (TMRE, Sigma Aldrich, St. Louis, MO) is a voltage-sensitive fluorescent 

indicator that accumulates in active mitochondria and was used to determine changes in 

mitochondrial membrane potential [144].  Acute exposure of L1 stage worms for 30 min 

to 100 μM AlCl3 was carried out similar to described above, then animals were placed on 

NGM plates containing 0.1 μM TMRE and incubated in the dark [144, 145].  After 48 

hours, 20 - 30 animals were picked onto slides with 2% agarose pads and immobilized 

with 2% levamisole.  Levamisole has been identified to cause muscle paralysis in C. 

elegans due to the prolonged activation of nicotinic acetylcholine receptors in the body 

wall muscles [18].  Pictures of the head region of each animal were captured using a 

Leica MZ 16FA fluorescent microscope with a Texas Red filter.  The change in membrane 

potential was calculated based on changes in average pixel intensity using Image Pro 

Plus v6.2 software (Media Cybernetics, MA).  Each exposure condition was evaluated in 

triplicate. 

ROS Analysis - ROS was determined using 2,7-dichlorodihydrofluorescein diacetate (H2-

DCF-DA)-associated fluorescence [46, 146, 147].  A synchronized population of worms 

was exposed to 1 μM CuCl2 for 30 min and rinsed 3x with dH2O, followed by 

resuspension in M9 at a concentration of 50,000 worms/ml.  A 96-well plate was used to 

set up four replicates in different wells of each control and experimental condition.  

Experimental conditions included 50 μl of resuspended worms from either the dH2O or 

1 μM CuCl2 groups in addition to 50 μl of 100 μM H2-DCF-DA.  Control wells were set up 

on each plate in triplicate and included 50 μl of resuspended worms from each 

experimental condition with 50 μl of M9 instead of H2-DCF-DA, and 50 μl of H2-DCF-DA 

with 50 μl of M9 instead of resuspended worms.  Total ROS was determined based on 

emitted light at 520 nm on a Tecan Spectrafluor Plus spectrophotometer [46, 147, 148].  

The 96-well plate was covered and placed on a shaker for 60 min and then read again.  

The final values were normalized with the appropriate control wells and compared 

between experimental conditions.  This assay was performed in triplicate.  
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RNA Interference - RNAi-sensitive NL2099 rrf-3(pk1426) nematode strain was crossed 

with BY250, and homozygosity was determined by single worm PCR [46, 127].  The new 

strain was named RJ928.  RNAi experiments were carried out on NGM plates seeded 

with HT115 (DE3), an RNase III-deficient Escherichia coli strain carrying L4440 vector 

with the gene fragment (aco-1, gst-1, ftn-1, or ftn-2) (GeneService, Source BioScience, 

PLC, Nottingham, UK) or empty vector (Addgene, Cambridge, MA) with the addition of 1 

mM isopropyl 1-thio-β-D-galactopyranoside [127].  RJ928 L1 stage worms from a 

synchronized population were transferred onto the RNAi plates and allowed to grow 

until gravid.  Eggs were harvested and synchronized as above and the second generation 

L1s were then placed back onto the RNAi plates.  After approximately 46 hours, 

between 50 - 100 gravid adults were transferred to fresh RNAi plates and allowed to lay 

eggs for 5 hrs.  Adults were then removed from the plate and approximately 9 hours 

later, the recently hatched L1s were exposed to 100 μM AlCl3 for 30 min.  After the 

exposure, L1 animals were washed and allowed to recover on the appropriate RNAi 

plates for 72 h and then evaluated for DA neuron degeneration as previously described 

[46]. 
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Results 

Chronic metal exposure 

Prior vertebrate studies have shown that exposure to concentrations, as high as 

2.5 mM and 6 mg/kg/day, of Mn2+ result in metal accumulation in the striatum in 

addition to animal and cell death [19, 57].  C. elegans relatively impermeable cuticle 

may block entry of compounds, thereby requiring higher exposure concentrations.  Our 

lab previously showed 30 min exposure to 50 mM MnCl2 results in C. elegans 

accumulated Mn2+ tissue concentrations similar to vertebrate systems [46].  In order to 

determine if Mn2+ exposure affects the viability of animals after long term exposure, I 

exposed worms to varying concentrations of Mn2+.  Synchronized BY250 L1 animals 

were added to NGM plates with varying levels of MnCl2.  Animal viability was 

determined after 72 hrs.  As can be seen in Figure 5, Mn2+ exposure concentration 

affects animal viability in a concentration-dependent manner, with the IC50 = 12.97 mM 

MnCl2.  IC50 was calculated using ReaderFit software (Hitachi Solutions America) using a 

4 parameter logistic nonlinear regression model.  

 

Figure 5:  72 hour exposure to Mn
2+ 

exhibit increased animal death. Graph shows animal viability after 72 
hour exposure to mM +/- MnCl2.  Data was analyzed using one-way ANOVA followed by Dunnett’s 
multiple comparison test (** > p .01, *** > p .001). 
 

Epidemiological studies have suggested occupational exposure of greater than 

20 years to metals can increase the onset of PD [10, 29], and a pathological hallmark of 

both PD and manganism is the loss of DA neurons in the SN.  To test the hypothesis that 
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chronic exposure to metals associated with PD may contribute to DA neuron 

degeneration, synchronized BY250 L1 animals were placed on NGM plates with varying 

concentrations of MnCl2, FeCl2, AlCl3, or CuCl2 and DA neuron degeneration was 

evaluated after 72 hr.  Figure 6 shows that chronic exposure to MnCl2, FeCl2, AlCl3, or 

CuCl2 confers DA neuron degeneration.  Animals exposed to FeCl2, AlCl3, or CuCl2 did not 

exhibit any changes in animal viability at the concentrations tested. 

 

Figure 6:  MnCl2, FeCl2, AlCl3, and CuCl2 induce significant DA neuron degeneration after 72 hour exposure.  

Shown are mM exposures in mean values + S.E.M. of at least three individual replicates.  p values (*** p < 

.001 and ** p < .01) were calculated using t-test analysis for panels A,B, D and using an one-way ANOVA 

followed by Dunnett’s multiple comparison test for panel C. 
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DMT1 transports Fe2+ into vertebrate DA neurons and confers Fe2+-induced cell 

death, and our studies have recently shown that the DMT1 homologue, SMF-1, localizes 

to C. elegans DA neurons [14, 46, 109, 110].  I utilized strains created by our lab for 

previous work with Mn2+ [46] which were verified to express GFP fusion behind the DAT-

1 promoter and have a mutation in one of the SMFs.  The strain RJ907 (listed as Δ smf-1 

in figures) contains a 2063-bp deletion in smf-1 which results in a truncated protein 

containing only the first 6 transmembrane domains.  This mutation is predicted to be a 

non-functional protein, based on the consensus transport sequence being deleted [46, 

65].  The strain RJ905 (listed as Δ smf-2 in figures) contains a 448-bp deletion in smf-2 

which spans the start codon and the first 3 transmembrane domains, and likely results 

in a non-functional protein [46, 65].  The strain RJ906 (listed as Δ smf-3 in figures) 

contains an 1800-bp deletion spanning transmembrane domains 1-8.  This mutation 

likely results in a non-functional protein due to lack of transmbrane domain 8, in 

addition loss of transmembrane domain 6, which has been shown to impair symporter 

activity [65].  In order to determine if Fe2+-induced DA neuron degeneration is 

dependent on any of the SMFs, I evaluated DA neuron integrity following acute and 

chronic exposures to Fe2+ in animals with mutations in the transporters.  Figure 7 shows 

that after both 72 hour and 30 min exposures to 500 μM FeCl2, SMF-1 significantly 

contributes to Fe2+-induced DA neuron degeneration in C. elegans.  All strains exposed 

to dH2O (wild type (WT), Δ smf-1, Δ smf-2, and Δ smf-3) did not exhibit DA neuron 

degeneration and therefore were not included in Figure 7. 
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Figure 7:  SMF-1 significantly contributes to FeCl2-induced DA neuron degeneration after both 72 hour and 

30 min exposure.  L1 animals were exposed to 500 μM FeCl2 and then evaluated at the end of the 72 hrs. 

for degeneration.  WT (BY250) and Δ smf-1 (RJ907) exposed for 72 hr. (panel A) or WT, Δ smf-1 , Δ smf-2 

(RJ905), and Δ smf-3 (RJ906), were exposed for 30 min (panel B).  Data was analyzed using t-test 

compared to WT (*** p < .001) in panel A and using one-way ANOVA followed by Dunnett’s multiple 

comparison test (*p < .05) in panel B. 

 

Aluminum 

It has not been established that Al3+ is an essential metal ion, but exposure to 

high concentrations has been shown to contribute to toxicity and cell death in many 

species [154 - 156].  In vitro studies have shown that even though it is not a redox-active 
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metal, Al3+ can facilitate increased reactive oxygen species by interacting with other 

metals to increase oxidation of DA or lipids [73, 99].  Therefore to test the hypothesis 

that AlCl3 exposure increases oxidative stress in C. elegans, a synchronized population of 

L1 animals was exposed for 30 min to 100 μM AlCl3, similar to previous studies [46].  

Worms exposed to dH2O + 100 μM AlCl3 did not result in any changes in animal 

vulnerability (data not shown).  Animals were placed on TMRE plates for 48 hr. and 

mitochondrial membrane potential in the head region was evaluated.  A brief exposure 

to a low Al3+ concentration significantly reduces mitochondrial membrane potential in 

the head relative to control animals.  This supports previous vertebrate data and 

suggests Al3+ may impair mitochondria function in C. elegans (Figure 8). 

 

Figure 8:  Acute Al
3+

 exposure significantly decreases mitochondrial membrane potential in the head 

region of worms. Animals were allowed to recover on TMRE plates for 48 hours after 30 min exposure + 

100 μM AlCl3. * p < .05 as determined by t-test of toxicant exposure to control. 

 

Environmental exposure to low levels of metals including Fe2+, Mn2+, Cu2+, and 

Al3+ have been shown to induce oxidative stress, which is a contributing factor of 

neurodegenerative diseases.  In order to determine whether a brief acute exposure to 

Al3+ causes DA neurodegeneration, I evaluated DA neuron integrity following a 30 min 

exposure to low concentrations of Al3+.  As seen in Figure 9, acute sub lethal exposure to 

Al3+ induces significant DA neuronal death.  
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Figure 9:  DA neuron degeneration significantly increases in WT animals with exposure to > 25 μM AlCl3.  

BY250 L1 worms were exposed for 30 min dH2O +/- μM AlCl3 and evaluated for DA neuron degeneration 

after 72 hr.  Shown are mean values + S.E.M.  Data was analyzed using one-way ANOVA followed by 

Dunnett’s multiple comparison test ***p < .001. 

 

In the mammalian brain the molecular basis of Al3+ transport is still unknown.  

Previous studies have suggested that Al3+ can interfere with iron homeostasis, and 

DMT1 has been shown to transport Fe2+into cells [99, 158, 159].  Therefore I 

hypothesized that one of the C. elegans homologues SMF-1, SMF-2, or SMF-3 may play a 

role in regulating Al3+ transport, and exposure may cause a significant change in gene or 

protein expression.  To determine whether Al3+ may affect smf-1, smf-2, or smf-3 gene 

expression, I exposed worms to 100 μM AlCl3 for 30 min and allowed them to recover 

on NGM plates for 48 hr.  A reduction of mRNA levels after exposure suggests that C. 

elegans DMT homologues, specifically SMF-2 and SMF-3 are highly sensitive to excess 

AlCl3 exposure and may be part of cellular response to limit Al3+ accumulation (Figure 

10). 
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Figure 10:  Transcript levels of smf-2 and smf-3 decrease following acute Al
3+

 exposure.  L1 animals were 

exposed to 100 μM AlCl3 for 30 min and then allowed to recover for 48h on NGM plates  then mRNA was 

extracted, reverse-transcribed to cDNA, and relative gene expression changes of smf-1, smf-2, smf-3 were 

quantitated using qPCR. Fold change was calculated relative to GAPDH following the ΔΔCT method.  

Shown are mean values for fold change ± S.E.M. of three individual replicates.  * p < 0.05 between control 

and Al
3+

 treated group ΔCT values. 

 

Since SMF-1, SMF-2 [46] and SMF-3 are expressed in DA neurons (lab results, 

unpublished), acute exposure to Al3+ induces DA neuron degeneration, and Al3+ 

exposure elicits gene DMT1 homologue response, I tested the hypothesis that C. elegans 

SMF’s contribute to Al3+-induced DA neuron degeneration.  As mentioned before an 

assumed non-functional mutation in smf-3 significantly protects against Al3+-induced DA 

neuron cell death (Figure 11).  Since there was no change in  DA neuron degeneration  

after Al3+ exposure in strains containing mutations in either smf-1 or smf-2, the data 

suggests that these genes do not play a role in Al3+-induced DA neurodegeneration 

(Figure 11 A).  Similar results were seen with both WT and SMF-3 mutant animals 

exposed to 500 μM AlCl3 for 72 hrs. (data not shown).  All strains exposed to dH2O (WT, 

Δ smf-1, Δ smf-2, and Δ smf-3) did not exhibit DA CEP dendrite degeneration and 

therefore were not included in Figure 11 A. 
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Figure 11:  SMF-3 contributes to AlCl3-induced DA neuron degeneration in C. elegans.  L1 animals were 

exposed to dH2O + AlCl3 for 30 min and placed on NGM for evaluation after 72hr A) WT (BY250), Δ smf-1 

(RJ907), Δ smf-2 (RJ905), and Δ smf-3 (RJ906) respectively exposed to 100 μM AlCl3 for 30 min,  B) WT 

(BY250) and Δ smf-3 (RJ906) exposed dH2O + AlCl3 for 30 min. Data was analyzed using one-way ANOVA 

with a Dunnet post-test  (***p < .001) compared to WT at 100 μM AlCl3 (panel A) or using two-way 

ANOVA with Bonferroni post-test (**p < .01 or ***p < .001) compared to WT for each concentration 

tested (panel B). 

 

Al3+ exposure has been suggested to increase Fe2+ accumulation, as well as Fe2+-

induced oxidative injury [7, 159 - 161].  Iron-sulfur clusters are cofactors for aconitase 
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enzymes which are important for the isomerization of citrate to isocitrate in the Krebs 

cycle.  C. elegans has two aconitase genes, aco-1 which is cytosolic and a homolog to 

human iron regulatory protein-1.  While the cytosolic aconitase function is not known in 

C. elegans, aco-1 has been suggested to exhibit aconitase activity and be post-

translationally regulated by Fe2+ [162].  To determine if an aconitase linked Fe2+-

responsive pathway contributed to Al3+ neurotoxicity, I asked if aco-1 altered Al3+-

induced DA neuron degeneration.  A synchronized population of RNAi sensitive L1 

animals were exposed for 30 min dH2O +/- 100 μM AlCl3 and then allowed to recover on 

RNAi plates with bacteria expressing either empty vector or aco-1 dsRNA.  After a 72 

hour recovery, animals were evaluated for DA neuron degeneration.  Figure 12 suggests 

knock down of aco-1 increases Al3+-induced DA neuron degeneration, but verification of 

aco-1 knock down needs to be completed to confirm initial findings.   

  

Figure 12:  Knockdown of cellular aconitase aco-1 increases DA neuron degeneration after Al
3+

 exposure.  

RJ928 L1 animals were exposed for 30 min + 100 μM AlCl3 then allowed to recover on RNAi plates 

expressing HT115 or aco-1 dsRNA bacteria respectively for 72 hrs. and then degeneration determined.  

**p < .01 determined by t-test comparing the two Al
3+

 exposed groups.   

 

Brain glutathione has multiple functions including scavenging of highly reactive 

superoxide and hydroxyl radicals, and serving as a cofactor for a number of radical 
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scavenging enzymes such as glutathione peroxidase and glutathione s-transferases 

(GSTs) [95].  GSTs are part of a family of phase II detoxifying enzymes responsible for 

catalyzing the conjugation of the thiol group of reduced glutathione to electrophilic 

centers on a wide variety of substrates [163, 164].  An increase in ROS levels can induce 

GST expression that is involved in detoxification of exogenously and endogenously 

derived toxic compounds [142, 143].  In mammals, three of the seven classes of GSTs 

have been identified in the central nervous system and only GST pi class, specifically 

GSTP1, has been identified in dopaminergic neurons of the SN [88].  Prior studies have 

suggested toxic Al3+ exposure effects GSH enzyme activity [96, 97].  Since brief Al3+ 

exposure increases ROS through mitochondrial inhibition similar to results seen with 

Mn2+ exposure [46], I tested the hypothesis that gst-1 is also important in cellular 

response to Al3+ neurotoxicity.  To test this, RNAi sensitive animals were grown on either 

empty vector or gst-1 dsRNA bacteria.  A synchronized population of L1 animals were 

exposed to 100μM AlCl3 and then placed on the appropriate RNAi plates for 72hr to 

recover.  While knock down of gst-1 increased Al3+ included DA neuron degeneration, it 

was not significant compared to control (Figure 13).  gst-1 knock down was not verified, 

so one potential explanation for the results not producing further increased DA neuron 

sensitivity to Al3+ exposure as originally expected could be a result of in complete 

penetrance of RNAi knock down.  Assuming verification of knock down of gst-1 

produced statistically significant increased DA neuron degeneration, further 

experiments to determine gst-1 mRNA and/or protein response after AlCl3 exposure 

would help to determine if DA neuron degeneration correlates with gst-1 involvement 

in cellular response to AlCl3 induced DA neuron degeneration. 

 Overall these studies suggest that Al3+ toxicity in C. elegans increases oxidative 

stress through mitochondrial inhibition, and Al3+ exposure confers DA neuron 

degeneration.  These studies also show that Al3+-induced DA neurodegeneration is 

dependent on SMF-3 and suggests C. elegans aconitase aco-1 may contribute to the 

neuropathology. 
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Figure 13:  RNAi knockdown of gst-1 does not significantly increase DA neuron degeneration after Al
3+

 

exposure.  RJ928 L1 animals were exposed for 30 min dH2O + 100 μM AlCl3 then recovered on RNAi plates 

expressing HT115 or gst-1 dsRNA bacteria respectively for 72 hours prior to determination of 

degeneration. p=.18 as determined by t-test comparing the two Al
3+

 exposed groups. 

 

Copper 

While the molecular mechanisms for copper toxicity are largely unknown, free 

Cu2+ may be able to react with ROS and catalyze the production of highly toxic hydroxyl 

radical via Fenton reactions [20, 122].  Utilizing previous techniques [46], an hour after 1 

μM CuCl2 exposure whole animal ROS increased ~1.9 fold (Figure 14). 

Considering that an acute Cu2+ exposure increases whole animal ROS, I 

hypothesized that a brief Cu2+ exposure may also induce DA neuron degeneration.  As 

can be seen in Figure 15, a 30 min exposure in liquid culture to 1 - 50 μM CuCl2 

significantly increased the number of animals counted with DA neuron degeneration. 
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Figure 14:  30 min CuCl2 exposure significantly increases ROS levels in whole animals.  Whole animal ROS 

levels were measured following dH2O +/- 1 μM CuCl2 treatment for 30 min and incubation with DCF-DA 

for 60 min. ** p< .01 as determined by t-test compared to control. 

 

 

Figure 15:  Sub-lethal CuCl2 exposure significantly increases DA neuron degeneration.  BY250 L1 animals 

were exposed for 30 min to dH2O + 1 - 50 μM CuCl2 then examined 72 hr. later.  Concentrations 1-50 μM 

CuCl2 were determined significant (*** p< .001) by a Dunnett test following a one-way ANOVA . 
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Since Cu2+ transport is mediated by DMT1 or SMFs in mammals or yeast 

respectively, I asked if any of  the SMF’s are able to mediate Cu2+-induced DA neuron 

degeneration.  A synchronized population of L1s for WT along with each of the non-

functional SMF mutant strains was exposed for 30 min to 1 μM CuCl2 and degeneration 

determined 72 hrs. later.  I found that C. elegans smf-2, but not smf-1 or smf-3 is 

involved in Cu2+-induced DA neuron degeneration (Figure 16).  All strains exposed to 

dH2O (WT, Δ smf-1, Δ smf-2, and Δ smf-3) did not exhibit DA CEP dendrite degeneration 

and therefore were not included in Figure 16 A. 

Nass et al. 2002 previously established 6-OHDA as a PD model for inducing DA 

neuron degeneration in C. elegans and showed that mutations in dat-1 was able to 

protect against 6-OHDA induced DA neuron degeneration.  Additional studies have 

shown that Cu2+ can accelerate autoxidation of DA in addition to increasing 6-OHDA 

induced oxidative stress such as DNA damage and mitochondrial dysfunction [105 - 107, 

167].  Also, in vitro studies have suggested that copper and dopamine can form a 

complex which is specifically transported by DAT [167 - 169].  To test the hypothesis that 

Cu2+-induced DA neuron degeneration may be dependent on DAT, I utilized the BY215 

strain (referred to as Δdat-1 in the figure) that has a functional knockout of DAT and 

expresses GFP in the DA neurons Pdat-1::GFP;rol-6;dat-1(ok157)III [38].  BY215 was 

generated from the background strain BY200, Pdat-1::GFP; rol-6,  and therefore BY215 

was used as the control strain.  A synchronized population of L1 animals were exposed 

for 30min to dH2O + 1 or 100 μM CuCl2 and placed on plates to recover for 72hrs.  As 

can be seen in Figure 17, Cu2+-induced DA neuron cell death appears to be dependent 

on DAT. 
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Figure 16:  SMF-2 significantly contributes to CuCl2-induced DA neuron degeneration in C. elegans.  L1 

animals were exposed to dH2O + CuCl2 for 30 min and placed on NGM for evaluation after 72hr A) WT 

(BY250), Δ smf-1 (RJ907), Δ smf-2 (RJ905), and Δ smf-3 (RJ906) respectively exposed to 1 μM CuCl2,  B) WT 

(BY250) and Δ smf-2 (RJ905) exposed dH2O + CuCl2.  Data was analyzed using one-way ANOVA with 

Dunnett post-test (*p < .05) compared to WT (panel A) or two-way ANOVA with Bonferroni post-test 

(***p < .001) compared to WT for each concentration tested (panel B). 
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Figure 17:  DAT-1 contributes to Cu
2+

-induced DA neuron degeneration.  Strains BY200 (WT) and BY215 

(Δdat-1) respectively were exposed for 30min and degeneration evaluated after 72h.  Data was analyzed 

using two-way ANOVA with Bonferroni post-test (***p < .001) compared to WT at each concentration.  

 

In summary low level CuCl2 exposure increases both whole animal ROS and DA 

neuron cell death.  My data also indicates that Cu2+-induced DA neuron degeneration is 

dependent both on DAT-1 and SMF-2. 
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Discussion and Future Direction: 

While the etiologies of many neurodegenerative diseases are still unknown, 

epidemiological data has suggested that most of the pathologies develop from a 

combination of both genetic and environmental risk factors.  A number of studies have 

shown environmental metal exposure increases cell death that is characteristic of 

neurodegenerative disorders such as AD, PD, Wilson’s disease and Menkes disease.  

Mounting evidence collected from post mortem patients suggests metal exposure can 

decrease neurodegenerative disease age of onset [29, 30, 33, 148, 149].  High oxygen 

consumption rate, membranes enriched in oxidizable polyunsaturated fatty acids, lower 

antioxidant enzyme activity, DA catabolism, and large stores of Fe2+ have been 

suggested as factors contributing to DA neuron-associated disorders [29, 85 - 87].  For 

example, loss of dopamine neurons in the substantia nigra is a hallmark of PD and Mn2+-

induced neurotoxicity, and mitochondrial dysfunction has been implicated in disease 

progression.  In these studies, I utilized C. elegans translational GFP fusions to view DA 

neurons in vivo and identify metals that contribute to DA neuron cell death and 

oxidative stress.  These studies suggest that C. elegans DA neurons are sensitive to Mn2+, 

Fe2+, Al3+, and Cu2+.  The loss of CEP dendritic GFP seen in my experiments is similar to 

prior studies from our lab after exposure to Mn2+ or 6-OHDA, which correlated loss of 

GFP in toxicant exposed animals with a loss of total animal DA concentration and loss of 

neuronal integrity by electron microscopy [38, 46].  High performance liquid 

chromatography coupled to an electrochemical detection system determined 

approximately 60% loss of DA in animals exposed to Mn2+ as compared with control 

animals, which is consistent with DA neuronal loss [46].  Also my experiments show that 

the C. elegans transporters SMF-1 SMF-2, and SMF-3 contribute significantly to Fe2+, 

Cu2+, and Al3+-induced DA neuron degeneration respectively.  Furthermore, I show that 

DAT plays a role in Cu2+-induced DA neuronal death. These studies provide insight into 

potential molecular pathways involved in neurodegenerative disease progression. 
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Aluminum 

Exposure to high concentrations of Al3+ confers cell death in many organisms 

[155, 156].  Al3+ is not a redox-active metal, yet has been shown to facilitate Fe2+-

induced oxidative stress and inhibit multiple antioxidant enzymes [73, 96 - 100, 174].  

Our laboratory previously determined Mn2+ exposed animals exhibit an approximate 

15% reduction in TMRE intensity in the head region of the animals and also showed a 

greater than 2 fold reduction of cellular oxygen consumption, which has been correlated 

with dysfunctional mitochondria in both vertebrates and C. elegans [46].  I found that a 

30 min exposure of C. elegans to sub-lethal concentrations of AlCl3 significantly 

decreased TMRE intensity in the head region of animals (Figure 8), consistent with prior 

studies, and suggests Al3+ impairs mitochondria function [76, 175].  Elevated cellular 

levels of Al3+ have been reported in multiple neurodegenerative diseases including AD, 

parkinsonism-dementia of Guam, and ALS [7 - 10, 31, 146].  Al3+ has also been shown to 

alter neurotransmission by binding negatively charged lipids to alter membrane 

integrity, alter dopamine receptor density, and decrease dopamine levels [73, 75, 76].  

In addition, Al3+ has been shown to exacerbate both MPTP and 6-OHDA induced DA 

neuron degeneration in animal models of PD [96, 104, 176].  My studies show that 

animals subjected to either chronic (72 hr.) or brief (30 min) exposure of sub-lethal 

levels of AlCl3 exhibit significantly increased DA neuron degeneration (Figures 6 C & 9 

respectively).  Additional studies from our lab have verified that this Al3+-induced 

neuron degeneration is specific to DA neurons (manuscript in progress).  Taken 

together, this data recapitulates vertebrate studies suggesting Al3+ exposure increases 

oxidative stress and DA neuron vulnerability in C. elegans.  

Al3+ has a small ionic radius and high charge and has been shown to have similar 

inorganic chemistry to Fe3+ [177].  The molecular basis for Al3+ transport across cell 

membranes in mammals is unknown, but it has been suggested that transferrin receptor 

mediated endocytosis or glutamate transporter uptake of an Al3+-citrate complex may 

play a role [7].  A few studies have suggested Al3+ can interfere with iron homeostasis 

[99, 158, 159].  The vertebrate Fe2+ transporter DMT1 has been shown to play a role in 
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iron uptake system [84, 161].  To determine whether C. elegans DMT1 homologues may 

contribute to AlCl3 toxicity, I determined changes in gene expression following a 30 min 

exposure to sub-lethal AlCl3.  I found that smf-2 and smf-3 are significantly down 

regulated following the exposure (Figure 10), suggesting they may be down-regulated in 

order to limit cellular Al3+ accumulation.  While there are limited studies available, SMF 

expression patterns in C. elegans suggest that SMF-1 is localized to DA neurons [46] and 

is primarily expressed in the intestine and associated gland cells with faint expression 

observed in a subset of anterior sensory neurons, ring neurons, and posterior-head 

neurons [150,151].  Expression of SMF-2 has been identified in DA neurons [46], 

epithelial cells of pharynx, and pharyngeal-intestinal valve cells [150].  Expression of 

SMF-3 has been identified in DA neurons (our lab unpublished data), along the intestine, 

and a weak expression in head and tail neurons [150, 151].  I then evaluated strains with 

mutations in SMF, as they have been shown to be localized to DA neurons, to determine 

whether they played a role in Al3+-induced DA neuron degeneration.  I found that SMF-3 

contributes to Al3+-induced DA neuron degeneration (Figure 11).  Since my original 

experiments, other experiments from our lab using RNAi to knock down gene 

expression of both smf-1 and smf-2 simultaneously, also confirmed that expression of 

smf-3 contributes to Al3+-induced DA neuronal death.  SMF-3 expression seems to be 

important specifically in Al3+-induced DA neuron degeneration, as there was no 

significant change in the number of animals observed with DA neuron degeneration in 

smf-3 mutant animals after exposure to MnCl2, FeCl2, and CuCl2 ([46] and Figures 7B & 

16A).  To the best of my knowledge there was not any priore data suggesting that a 

trivalent ion such as Al3+ can be transported by DMT 1.  It had been proposed that Al3+ 

might interact with an unknown protein to alter DMT 1 functionality as an explaination 

for the altered Fe2+ accumulation [161].  A recent study by Xia J. et al. 2010 identified an 

Al3+ specific rice plasma membrane transporter, Nrat1, which is highly homologous to 

DMT1.  To determine if Nrat1 is homologous to SMF-3, a BLAST search with the SMF-3 

and rice transporter and a sequence alignment of the results using ClustalW2 indicates 

that SMF-3 has approximately a 36% amino acid identity and a 55% similarity to the rice 
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transporter (Figure 18).  Nrat1 shows similar sequence characteristics with the identified 

DMT-1 consensus transport sequence and the 12 transmembrane spanning domains.  

These results suggest that SMF-3 may facilitate Al3+ transport across the plasma 

membrane and confer both animal and DA vulnerability to the metal.  

 

DMT-1_H.sapiens      ------------------------------------------------------------ 

SMF1_C.elegans       ------------------------------------------------------------ 

SMF2_C.elegans       ------------------------------------------------------------ 

SMF-3_C.elegans      MPRVHRQSRWNSVSFSGFFLQISGIKPRFTSEKGSFLKKKLILKIRFFFKIFFADKTMNF 60 

Nrat1_O.sativa       ------------------------------------------------------------ 

                                                                                  
 

DMT-1_H.sapiens      -----------MVLGPEQKMSDDSVSG---------DHGESASLGNINPAYSNPSLSQSP 40 

SMF1_C.elegans       ---------------MASSNNDGPIEP--------EAEPWR---ITQNDHLEQDLLEEDA 34 

SMF2_C.elegans       ------------MSPTVTCICCCPLSS--------ENAWFSKRHISSSPGSRKNVHDCSK 40 

SMF-3_C.elegans      LIFIFDALTFFISKNTVDTVNFAIFVPNFLIVFFSKFKNFSDNILTMEGEMKCPIEEIRE 120 

Nrat1_O.sativa       ----------MEGTGEMREVGRETLHG------------GVVQSVSETDEYKEKTIDSEK 38 

                                             .                    .          .    
 

DMT-1_H.sapiens      GDSEEYFATYFNEKISIPEEEYS-CFSFRKLWAFTGPGFLMSIAYLDPGNIESDLQSGAV 99 

SMF1_C.elegans       ESQ---------ERVDIPVDDVEKAFSFKKLWAFTGPGFLMSIAYLDPGNIESDLQSGAQ 85 

SMF2_C.elegans       NSRRKGIILNQAKQISVCINAQNTWFSWRKLWAFTGPGFLMSIAYLDPGNIESDLQAGAQ 100 

SMF-3_C.elegans      KPEMRKAQQTYEVQVEV-EDTPDTTFSWRKLWAFTGPGFLMSIAYLDPGNIESDLQAGAI 179 

Nrat1_O.sativa       DGQ------------------FRVQPRWRKFLAHVGPGALVAIGFLDPSNLETDMQAGAD 80 

                                                ::*: *..*** *::*.:***.*:*:*:*:**  
 

DMT-1_H.sapiens      AGFKLLWILLLATLVGLLLQRLAARLGVVTGLHLAEVCHRQYPKVPRVILWLMVELAIIG 159 

SMF1_C.elegans       AAYKLLWVLLSAHIIGMLLQRMSARLGVVSGKHMAEVAYQFYPRLPRIILWLMIEIAIVC 145 

SMF2_C.elegans       AEYKLLWVLLVSHIVGMLLQRMSARLGVVSGKHMAEIAYDYYPLVPRIILWLMIEIAIVC 160 

SMF-3_C.elegans      SYFKLIWVLLVAHIMGLLLQRLAARLGVVSGKHMAEIAFSYYPKIPRLVLWMLVESAIVG 239 

Nrat1_O.sativa       FKYELLWVILVGMVFALLIQTLAANLGVKTGRHLAELCREEYPHYVNIFLWIIAELAVIS 140 

                       ::*:*::* . :..:*:* ::*.*** :* *:**:.   **   .:.**:: * *::  
 

DMT-1_H.sapiens      SDMQEVIGSAIAINLLSVGRIPLWGGVLITIADTFVFLFLDKYGLRKLEAFFGFLITIMA 219 

SMF1_C.elegans       SDMQEVIGTAIAIFLLSKGFVPLYVGVFITILDTFTFLLIDRYGIRKLELIFGFLILTMT 205 

SMF2_C.elegans       SDMQEVIGTAIAIYLLSSGKIPLLVGVLITILDTFTFLFIDRYGIRKLEFIFVALISTMA 220 

SMF-3_C.elegans      SDMQEVIGTAISFYLLSNGVIPLWAGVLITICDTFTFLFLEKYGVRKFEAFFCFLITCMA 299 

Nrat1_O.sativa       DDIPEVLGTAFAFNILLK--IPVWAGVILTVFSTLLLLGVQRFGARKLEFIIAAFMFTMA 198 

                     .*: **:*:*::: :*    :*:  **::*: .*: :* ::::* **:* ::  ::  *: 
 

DMT-1_H.sapiens      LTFGYEYVTVKPSQSQVLKGMFVPSCSGCRTPQIEQAVGIVGAVIMPHNMYLHSALVKSR 279 

SMF1_C.elegans       VSFGYEFVVVKPPIGEVISGMVVPWCAGCGKGEFMQAISVVGAVIMPHNLYLHSALVKSR 265 

SMF2_C.elegans       ISFGYEFVVMKPVLTKVLTGTVVPWCSGCGKEEIITAISIFGAVIMPHNFYLHSALVKSR 280 

SMF-3_C.elegans      ITFGYEFGVSAPDAGKMFSGMFVPWCNGCDNNMVMQGVAIIGAVIMPHNFYLHSALVKSR 359 

Nrat1_O.sativa       ACFFGELSYLRPSAGEVVKGMFVPSLQ--GKGAAANAIALFGAIITPYNLFLHSALVLSR 256 

                       *  *     *   ::..* .**      .     .:.:.**:* *:*::****** ** 
 

DMT-1_H.sapiens      QVNRNNKQEVREANKYFFIESCIALFVSFIINVFVVSVFAEAFFGKTNEQVVEVCTNTSS 339 

SMF1_C.elegans       RVDRKDRRRVAEANKYFTLESAIALFLSFFINLFVVAVFAHGLYQKTNADVREMCIARHD 325 

SMF2_C.elegans       KVDRSSKTRIAEANKYFSIESAFALSVSFFINLFVLSVFARGLYQKTNGDV--------- 331 

SMF-3_C.elegans      RVDRRRAEKVTEANKYFFIESAFALFVSFIINTLVISVFAQGMYGKTNQDIRDTCYNNTH 419 

Nrat1_O.sativa       KTPRSDKS-IRAACRYFLIECSLAFIVAFLINVSVVVVAGSICNANNLSPADANTCG--- 312 

                     :. *     :  * :** :*..:*: ::*:**  *: * .     :.              
 

DMT-1_H.sapiens      P-----HAGLFPKDNSTLAVDIYKGGVVLGCYFGPAALYIWAVGILAAGQSSTMTGTYSG 394 

SMF1_C.elegans       I----PDADIFPNNTEPVEVDIYKGGIYLGCQFGAIAMFIWGIGIFAAGQSSTMTGTYTG 381 

SMF2_C.elegans       ------------------------GGIYLGCQFGLFAMIIWAIGIFAAGQSSTMTGTYTG 367 

SMF-3_C.elegans      NGMPDFYKVEFPANNDAAQSDIYHAGIFLGCTFGIFALYVWAVGILAAGQSSTMTGTYAG 479 

Nrat1_O.sativa       ------------------DLTLQSTPLLLRNVLGRSSSVVYAVALLASGQSTTISCTFAG 354 

                                               : *   :*  :  ::.:.::*:***:*:: *::* 
 

DMT-1_H.sapiens      QFVMEGFLNLKWSRFARVVLTRSIAIIPTLLVAVFQD-VEHLTGMNDFLNVLQSLQLPFA 453 

SMF1_C.elegans       QFVMEGFVKIEWPKWKRVLITRAIAITPTLVLTFYSQGVQNLTGMNDFLNCVQMIQLPFA 441 

SMF2_C.elegans       QFVMEGFVRISWPKWKRVLITRAVAITPTLILCIKAHGIKNLTGMNDFLNCVQMVQLPFA 427 

SMF-3_C.elegans      QFAMEGFIQIKLPQWKRILITRSLAILPTLAVVIFSGGIDNISSLNDFLNCLQLIQLPFA 539 

Nrat1_O.sativa       QVIMQGFLDMKMKNWVRNLITRVIAIAPSLIVSIVSG-PSGAGKLIILSSMILSFELPFA 413 

                     *. *:**: :.  .: * ::** :** *:* : .     .    :  : . :  .:**** 
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DMT-1_H.sapiens      LIPILTFTSLRPVMSDFANGLGWRIAGGILVLIICSINMYFVVVYVRD-LG--------H 504 

SMF1_C.elegans       LIPIITFTSSRKIMHDFRSSKVFQIFALITSALILSINVYFISDYVFSRLGS-------E 494 

SMF2_C.elegans       LIPMITFTSSKRIMHNFRTSKPLQYFSIICGIITIGINVYFIFQYVTENFGT-------G 480 

SMF-3_C.elegans      LIPVLTFVSDRNIMHEYKLASVSKVVSIVISLIILFINFYFLYSWIGSTFGY-------N 592 

Nrat1_O.sativa       LIPLLKFCNSSKKVGPLKESIYTVVIAWILSFALIVVNTYFLVWTYVDWLVHNNLPKYAN 473 

                     ***::.* .    :     .      . :       :* **:     . :           
 

DMT-1_H.sapiens      VALYVVAAVVSVAYLGFVFYLGWQCLIA--------LGMSFLDCGHTVSISKGLLTEEAT 556 

SMF1_C.elegans       WYIIMVLAPITFAYVLFVLYLALYCLVSCEIIPD-TVSIRGFSFNKSYENDAPWLAVDSS 553 

SMF2_C.elegans       WLIFVIIGPFTLLYIAFILYLAIYCLVACELMND-TVNLPGFDFHRTLELDAPWITET-- 537 

SMF-3_C.elegans      AVSIPITIFCAIFYIIFIAYLTYYCLVAMEFIS--PIQTKWLAEPIYHDFDAPWLEDSEN 650 

Nrat1_O.sativa       GLISVVVFALMAAYLVAVVYLTFRKDTVATYVPVPERAQAQVEAGGTPVVDASAADEDQP 533 

                          :       *:  : **                    .        .          
 

DMT-1_H.sapiens      RGYVK----------- 561 

SMF1_C.elegans       AVHDNAGYQ------- 562 

SMF2_C.elegans       FVVNDVYF-------- 545 

SMF-3_C.elegans      PSTKNTISDDELSMRY 666 

Nrat1_O.sativa       APYRKDLADASM---- 545 
 

Figure 18:  Sequence alignment of rice Nrat1 Al
3+

 specific transporter with C. elegans and human DMTs.  

The sequences of human DMT-1 (GenBank accession number NP_000608), C. elegans SMF-1 (GenBank 

accession number AAC465690, C. elegans SMF-2 (GenBank accession number AAC46568), C. elegans SMF-

3 (GenBank accession number AAL27264), and O. sativa Nrat1 (GenBank accession number 

NP_001045794) were aligned using the ClustalW2 program following an NCBI Blast search.  The 

characteristic 12 transmembrane domains of DMT-1 are highlighted in black, and the consensus transport 

sequence is located between transmembrane domains 8 and 9 is highlighted in yellow.  The red font in the 

sequence represents hydrophobic amino acids, whereas blue represents acidic, magenta represents basic, 

and green represents hydroxyl.  The asterisk indicates amino acids in that column are identical, colons 

represent conserved substitutions (same color group), and periods represent semi-conserved 

substitutions (similar shapes).   

 

Iron-sulfur clusters are cofactors for aconitase enzymes that are important for 

the isomerization of citrate to isocitrate in the Krebs Cycle.  Aconitases are found in the 

cytosol, mitochondria, and glyoxysomes and have been shown to alter activity based on 

changes in iron availability [162].  I found that C. elegans homologue to cytosolic 

aconitase/iron regulatory protein-1, aco-1, plays a role in Al3+ induced DA neuron 

degeneration.  RNAi knock down of aco-1, increases DA neuron degeneration after a 30 

min exposure to AlCl3 (Figure 12).  These results are consistent with prior studies 

suggesting that Al3+ exposure may increase free Fe2+ due to the lack of cytosolic 

aconitase and may be a contributing factor to DA neuron cell death.  As only two 

experiments were performed, it would be important to determine degeneration from at 

least one more group to ensure statistical significance.  It would also be important to 
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determine if the mitochondrial aconitase, identified in C. elegans as aco-2, is also 

playing a role in the neuropathology particularly since Al3+has been shown to be a 

potent mitochondrial toxicant.  Ferritin’s main function is to provide bioavailable, but 

non-toxic storage of iron [178].  A few studies have suggested that after Al3+ exposure 

Fe2+ incorporation into ferritin changes, potentially suggesting ferritin may act as an 

aluminum detoxicant [161, 179].  My preliminary studies using RNAi to knock down 

either ferritin gene ftn-1 or ftn-2 do not show significant changes in DA neuron 

degeneration after exposure to 100 μM AlCl3, but RNAi knock down was not confirmed, 

these studies were only performed in duplicate, and both ferritin genes were not 

knocked down in combination.  Knock down of both genes simultaneously would 

eliminate potential protective compensatory effects.   

Overall my results are consistent with prior studies suggesting that Al3+ increases 

oxidative stress in vivo.  My studies also show that SMF-3 contributes to Al3+-induced DA 

neuron degeneration, and knock down of C. elegans aconitase aco-1 increases DA 

neuron sensitivity to Al3+.  Further experiments to measure SMF transport of Al3+ and 

dissection of the Fe2+ regulatory pathways may lead to an understanding of how SMF-3, 

whether direct or indirect, plays a role in Al3+ induced DA neuron degeneration. 

 

Copper 

Cu2+ is an essential metal ion and its dysregulation has been implicated in the 

promotion of oxidative stress and the development of neurodegenerative diseases.  

Cu2+’s ability to donate or accept electrons facilitates the Fenton or Haber-Weiss 

reaction and produces highly reactive superoxide and hydroxyl radicals that may play a 

role in Cu2+-induced DA neuron degeneration [16, 20, 106, 166].  Consistent with 

vertebrate studies, I found that exposure of C. elegans to sub-lethal CuCl2 

concentrations increases whole animal ROS (Figure 13).  I also found that both chronic 

(72 hr.) and short term (30 min) exposure to CuCl2 increases DA neuron degeneration 

(Figure 6 D & 15 respectively).  Similarly after 30 min exposure in liquid, concentrations 

above 50 μM Cu2+ resulted in large numbers of animal death in addition to delayed 
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development.  One potential hypothesis for this narrow range of toxicant concentration 

could be explained by the fact that excess copper is toxic, and while DA neurons are 

clearly sensitive to copper exposure, the exposure of the whole worm overrides other 

essential copper regulatory mechanisms at concentrations higher than 50 μM in my 

experimental paradigm.  In a preliminary experiment I looked at GABAergic neurons 

after brief 1 μM CuCl2 and did not find any significant change in GFP expression as I 

expected, but to verify Cu2+-induced degeneration was DA neuron specific further 

experiments would need to be conducted. 

DMT1 is known to transport Cu2+ in vertebrates, and may play a role in increased 

cellular free Cu2+.  I found that C. elegans DMT1 homologue SMF-2 plays a role in CuCl2-

induced DA neurodegeneration (Figure 16).  SMF-2 localization to DA neurons in C. 

elegans [46] suggests that SMF-2 may transport Cu2+ into the DA neurons or into a Cu2+ 

sensitive intracellular compartment. 

The neurotoxicant 6-OHDA has been shown to confer DA neuron degeneration, 

and rapidly oxidize to produce hydrogen peroxide, hydroxyl radicals and quinones [185, 

186].  Vertebrate studies incorporating 6-OHDA have shown increased Cu2+ 

accumulation in dopaminergic pathways, and co-exposure with Cu2+ accelerates 

autoxidation of DA and production of its metabolites [105 - 107].  Prior studies have 

found DMT1 isoforms upregulated in the SN of PD patients, and DMT1 has been 

implicated in transport of the excess Fe2+ capable of catalyzing deleterious Fenton 

reactions after 6-OHDA or MPTP exposure [84, 112, 114].  Previous studies have also 

implicated DAT in Cu2+-induced cell death [167].  Here I show that DAT also contributes 

to DA neuron vulnerability in C. elegans as a functional knockout of DAT protects the DA 

neurons from Cu2+-induced pathology (Figure 17).  Previous studies by Nass et al. 2002 

show that a DAT deletion or inhibition with imipramine inhibits 6-OHDA-induced DA 

neurodegeneration.  Taken as a whole my studies suggest that 6-OHDA and Cu2+ may 

share a common pathway to increased DA neuron pathology.   

In vitro studies have suggested that Cu2+ and DA are able to form a complex that 

is transported by DAT [167 - 169].  Considering that both 6-OHDA and DA are easily 
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oxidized in the presence of Cu2+, it may be possible that SMF-1 or SMF-2 may indirectly 

influence DA-associated proteins or DA metabolism to alter DA neuron degeneration.  6-

OHDA treated cells have shown increased levels of DMT-1 along with increased iron 

influx.  Also changes in free intracellular Fe2+ have been shown to affect DAT expression 

levels [84, 187].  Furthermore a reduction of DAT expression or function in the SMF 

mutant animals could result in lower accumulation of neurotoxicants attributing to 

neuron resistance [46].  Therefore it would be important to determine whether 

functional knockdown of any of the SMFs may modulate DAT-1 expression or function.   

A Cu+-GSH2 complex has been previously reported to accumulate in the cell after 

copper exposure [102].  This complex has been shown to reduce cellular Fe3+ levels as 

well as releasing it from ferritin [102, 188].  This reaction would cause an increase in the 

intracellular free Fe2+ pool that in turn may increase the cell’s ROS levels through Fenton 

chemistry or modulate SMF or DAT expression (Figure 19).  If Fe2+ is playing a role in 

regulation of DAT-1, SMF-1, SMF-2, or both, it would be important to determine 

changes in ferritin (FTN-1/FTN-2) expression and Fe2+ concentrations after Cu2+ 

exposure. 

In summary, excess Cu2+ may indirectly regulate DAT through a SMF pathway 

responsible for maintaining divalent metal ion homeostasis or directly based on changes 

in oxidative stress.  Further studies examining DAT expression changes in association 

with SMF, Fe2+, and oxidative stress pathways will assist in elucidating the mechanisms 

involved in Cu2+-induced DA neuron degeneration. 
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Figure 19:  Potential mechanism of Cu
2+

-induced DA neuron degeneration.  SMF-2 plays a role in Cu
2+

 and 

6-OHDA induced DA neuron cell death, SMF-1 plays a role in 6-OHDA induced DA neuron cell death, and 

DAT-1 inhibits Cu
2+

induced cell death.  Therefore potential mechanisms are: 1) Cu-DA complex 

transported by DAT-1 introduces neurotoxic quione radicals which facilitate increased ROS and 

degradation of SMF-1 and SMF-2 to prevent further accumulation of Cu
2+

 or other divalent metal ions 2) 

SMF-2 plays a role in regulation of DAT-1 expression or function due to changes in free Fe
2+

, similar to in 

vitro data showing decreased intracellular free Fe
2+

 decreases DAT-1 expression, thereby limiting Cu
2+

 

induced DA neuron cell death.  GSH, glutathione; ROS, reactive oxygen species; FTN, ferritin; DA, 

dopamine; CUC-1, copper chaperone; CUA-1, copper ATPase; DAT-1, dopamine transporter. 

 

Conclusion 

DMT1 and its homologues have been shown to transport divalent cations in a 

number of eukaryotes [14, 109, 110].  DMT-1 has also been implicated in the 

development of PD, and it has been suggested that its regulation may contribute to 

dysfunctional metal homeostasis leading to increased neuronal stress and cell death.  

Our lab previously identified three putative C. elegans homologues to human DMT1, 

SMF-1, SMF-2, and SMF-3 and determined that they are expressed in C. elegans DA 
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neurons [46, unpublished data].  Here I demonstrate that SMF-1, SMF-2, and SMF-3 play 

specific roles in divalent metal ion-induced DA neurodegeneration.  I show that SMF-1 

contributes to Fe2+-induced DA neuron death, and SMF-2 and DAT-1 contribute to Cu2+-

induced DA neuron vulnerability.  In addition my studies show that SMF-3 contributes to 

trivalent Al3+-induced cell death. 

These studies suggest that inhibition of Mn2+, Fe2+, Al3+ or Cu2+ dysregulation 

may limit oxidative stress and decrease DA neuron degeneration.  C. elegans provides a 

unique and powerful model to evaluate and characterize molecules and pathways 

involved in metal toxicity, and may identify novel therapeutic targets that are involved 

in metal-induced DA neuron degeneration and PD. 
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