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ABSTRACT

Jevtic, Stefan G. MSECE., Purdue University, August 2017. Network AIS-based
DDoS Attack Detection in SDN Environments with NS-3. Major Professor: Dongsoo
Kim.

With the ever increasing connectivity of and dependency on modern computing

systems, our civilization is becoming ever more susceptible to cyberattack. To combat

this, identifying and disrupting malicious traffic without human intervention becomes

essential to protecting our most important systems. To accomplish this, three main

tasks for an effective intrusion detection system have been identified: monitor network

traffic, categorize and identify anomalous behavior in near real time, and take appro-

priate action against the identified threat. This system leverages distributed SDN

architecture and the principles of Artificial Immune Systems and Self-Organizing

Maps to build a network-based intrusion detection system capable of detecting and

terminating DDoS attacks in progress.
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1. INTRODUCTION

The size of the internet sphere has seen explosive growth in the last 10 years, and

the rate of growth is expected to accelerate into the near future [1]. This accelerated

growth is attributed to two main factors: the rise of the Internet of Things (IoT) and

the emergence of cloud computing. The Internet of Things is the term attached to

the growing network of small embedded devices that frequently serve the automation

and security needs of homes and businesses. Designed to send and receive data with

remote logging servers, or to be remotely controllable by a user’s smartphone or web

application software, these devices communicate over IP networks with or without

requiring a human to be in the loop. While this offers increased consumer convenience

and control, it also opens the door to new avenues of cyberattack, as the domain of

potential targets grows and there is less human monitorization.

Much of this growth is attributed to consumer “Internet Connected Things” which

include household appliances, security cameras, televisions, digital video recorders,

and smart electric meters [1]. These devices are broadly connected to the internet

through normal IP networks and thus can send/receive traffic to/from any device

reachable from the internet. As of 2017, few of these devices possess adequate security

measures, and thus are subject to infiltration [2]. Infiltrated or compromised devices

can continue to provide expected consumer function and generally do not give any

indication to the consumer that they have been compromised. Since these devices

have the ability to connect to any remote internet endpoint and are very unlikely to

be discovered once they are, internet connected things perfect candidates for inclusion

into networks of malware infected devices (botnets).

At the other end of the spectrum, cloud computing has evolved as a resource

sharing computing model in which large service providers provide infrastructre (In-

frastructure As A Service), platforms, (Platform As A Service), software (Software
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As A Service), and everything in between as leasable services. These services are

profitable for the service providers once a sufficient level of resource utilization is

reached, and this gives rise to multiple customers sharing resource space at the CPU,

storage, and network levels. This is known as multi-tenancy. This availability has

driven a centralization of enterprise class computing into the cloud computing model,

which offers convenience and quality for businesses. However, this also entails new

challenges as cloud providers contend with the technical and security issues of multi-

tenancy, which open up novel cyberattack methods as potential attackers may now

reside within the same server or even the same physical CPU as their intended victims.

A common and problematic cyberattack is the denial-of-service attack. It is char-

acterized by an attempt by a remote device to send more traffic to a target system

than that system is able to handle. Once this threshold capacity is reached, normal/

benign traffic can no longer be serviced, and the target becomes unavailable for use.

The security community has been able to create effective firewall and filtering tech-

niques to mitigate such DoS attacks, a state of affairs which then caused the attacks

to evolve into distributed-denial-of-service (DDoS) attacks. DDoS attacks achieve the

same end as their DoS ancestors, but do so by overwhelming the target with requests

from a myriad of source devices called bots. In this way, the true source of the attack

is very difficult to detect, as each attacking device does not send enough individual

traffic to raise firewall/ filtering alarms. The effect, however, is the same: the sum-

mation of all the botnet traffic is enough to render the target resource unavailable.

Effective protection against DDoS attacks remains an open problem in the security

community.

To contend with the technical challenges of resource sharing, most cloud providers

have developed concepts of software-defined networking (SDN) and network virtual-

ization. In contrast with previous packet or circuit switching networks, software

defined networks allow for software management of network traffic. This is enabled

by centrally gathering network traffic information from a management network of dis-

tributed devices capable of monitoring and reporting traffic, then making intelligent
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decisions that lead to the highest resource utilization in the given situation. Because

these networking models are associated with increased traffic metadata, they are well

suited to tackling the problems of cyberattack [3].

This project proposes a system for recognizing and mitigating DDoS attacks in

progress. The system’s distributed detection and intervention strategies are bio-

inspired and take inspiration from the function of human immune systems in detect-

ing and disrupting unknown pathogens. Like its biological counterpart, this AIS is

designed to be highly adaptive by using the distributed monitoring approach afforded

by SDN systems with the malicious pattern generation techniques of a modified arti-

ficial immune system. The system is shown to be capable of being highly effective in

monitoring, detecting, and mitigating unknown DDoS attacks in progress.

1.1 Challenges and Hypothesis

The primary challenges faced in the design of a system effective in mitigating real

world DDoS attack are:

1. Monitor network traffic to level sufficient for the security needs of the specific

application.

2. Detect attack behavior before or when it occurs.

3. Intervene and take most appropriate action against detected threat.

This work hypothesizes that an SDN environment with OFv1.3 switches is capable

of monitoring a cloud environment’s network to a level sufficient to enable an SOM

based AIS model to detect a DDoS attack in progress. Upon successful detection,

the AIS can define a new network policy capable of mitigating the attack and then

instruct the OpenFlow network controller to enforce the attack mitigation policy.
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1.2 Proposed System

This work proposes a network-based [] SOM-modified-AIS OpenFlow network ap-

plication to meet the primary challenges of effective DDoS detection and mitigation

in cloud computing environments. The system features collaborative profiling to

meet the distributed monitorization needs of such environments, a time-series toxic-

ity “overwhelm-factor” to model the effect a DDoS attack has on network terminal

equipment, a network capable of simulating a DDoS attack in an SDN network en-

vironment, and a SOM-modified AIS network application to handle attack detection

and the immune response. As a proof of concept, this work implements the SDN

DDoS network, collaborative profiling monitorization scheme, and toxicity modeling

AIS application while assuming a functional SOM block.
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2. BACKGROUND

2.1 Denial of Service Attacks

Denial-of-service attacks target an end server by overwhelming its ability to service

application level IP protocol requests. These DDoS attacks can feature a botnet

composed of thousands of bots, each sending just a few HTTP requests per second.

These are not limited to small servers, or a low number of requests, as was the case in

the attack on an Incapsula researcher’s website host in late 2016, which saw a peak of

35,000 requests per second [4]. Given that most midsized websites have a processing

capacity in the 100 requests per second area, even a modestly sized botnet can cause

large problems.

2.1.1 DDoS Attack Types

DDoS attacks take different forms, and the basic types are now introduced. Mod-

ern attacks may not necessarily fall into a single category, but can take elements of

each to develop new types of DDoS attacks.

UDP Flood

User Datagram Protocol (UDP) flooding attacks occur when a botnet overwhelms

the target by sending an IP packets of UDP datagrams at an unserviceable rate [5].

Since UDP transport sockets may be installed on a variety of ports, the target port

is usually random and thus difficult to predict. The behavior of the target is to re-

ceive the UDP datagram, unpack it, and check for an associated application on the

datagram’s destination transport port. After it fails to find such an application, a des-

tination unreachable Internet Control Message Protocol (ICMP) packet is generated
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and sent back to the attacker. This process of reception, check, and response takes

non-trivial time and compute resources, leading to the resource becoming available if

its processing capacity threshold is crossed.

TCP SYN Flood

Transmission Control Protocol (TCP) SYN flooding attacks are the result of a

manipulation and understanding of the TCP three-way-handshake connection initial-

ization process. TCP is a connection-oriented protocol, and features an initial process

to set up the connection. The connection initiator begins by sending a TCP-SYN re-

quest to the connection receiver. Upon reception of the TCP-SYN, the receiver opens

an active port on its system, and usually spawns a new process dedicated to listening

for incoming packets (called the Transmission Control Block (TCB)) [6], and sends a

SYN-ACK back to the initiator, indicating the receiver is ready and listening. Upon

receiving the SYN-ACK, the initiator sends an ACK message and the connection is

established. This is called the three-way-handshake [7].

A TCP-SYN flood attack occurs when attackers flood the target system with TCP-

SYN requests [8]. The target servers handle them in the normal way, dedicating a

port, internal memory, and usually a CPU process to listening for the SYN-ACK.

However, in a TCP-SYN flood attack, the SYN-ACK is never sent, and the target

server is left hanging, listening for a message that will never come. This hanging

persists until a clock timeout occurs, and the TCB is freed. During this hanging

period, if enough TCP-SYN requests have flooded, the server will be unable to grant

a new TCB to a legitimate request, and the server is seen as unresponsive. Given

the more substantial target resources that respond to a TCP-SYN request, flooding

occurs with fewer attack resources than a comparable UDP or ICMP flood [8].
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ICMP (Ping) Flood

Ping floods are a simple type of DDoS attack which see the target flooded with

an unserviceable rate of ICMP echo request packets. Upon reception of an ICMP

echo request, the server reads the source IP address and sends an ICMP echo reply

message to that address. These are relatively quick and easy for a server to generate

and send, so Ping floods generally target a network’s bandwidth rather than the

server’s processing capacity [9]. As is the case with the other types, once a capacity

threshold is reached, the server becomes unresponsive as it cannot be reached due to

network congestion.

ICMP (Smurf) Flood

Smurf floods are another ICMP based attack type. A smurf flood attack, however,

is an indirect type of attack in which the server systems are flooded with ICMP echo

replies rather than ICMP echo requests [9]. This is done when the attacker spoofs the

IP source address in its initial ICMP echo request to be the IP address of its intended

attack victim. The attacker can then broadcast these spoofed echo request messages

to whole networks/sub-networks of legitimate devices. These legitimate devices then

generate and send ICMP echo reply messages to the spoofed source IP address, which

is the address of the intended victim, and an attack occurs. In this way a DDoS attack

can actually originate from a single root source.

2.1.2 DDoS Detection and Mitigation

General approaches to protecting against and mitigating DDoS attacks are well

established [10] and involve the tasks of prevention, detection and filtering, and source

determination. Traditional destination based firewall and filtering methods exist and

have achieved some success [11]. Destination-based methods involve the planting of a

network monitoring resource at the point at which the network connects the protected
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destination. This method does not protect the network as a whole, and usually feature

little to no learning capability. Further, destination-based methods are ill-suited to

the challenges of DDoS in cloud computing environments, where it is prohibitively

impractical to guard each destination individually. Instead, SDN principles allow

for a central agent to have a global view of the network itself and thus allow for

network-based [12] detection methods.

Network-based detection involves distributing a set of network monitors through-

out the network. Each monitor contains attack signatures which the network monitor

seeks to match against the traffic flowing through it. These network monitors oper-

ate similarly to wiretaps, allowing an agent to view the traffic without disrupting it.

Traditional network-based [12] detection also features little to no learning capability,

instead relying on external analyses to create appropriate attack signatures for the

monitors.

2.2 Software Defined Networking

Traditional packet switched networks feature devices that must be manually con-

figured when network changes occur, and cannot adapt on the fly to changes in

topology, congestion, network attack status, or general network policy. These net-

works function, but are expensive to maintain and are not well-suited to operation in

cloud computing environments. Software Defined Networking is an emerging network-

ing paradigm that seeks to give network administrators remote control over network

operations. Such is accomplished by separating computer networks into three disjoint

planes of operation: data, control, and management.

The data plane is composed of the network data traffic a network is intended to

carry. This data is to be intelligently forwarded according to L2 (data link layer)

and L3 (network layer) routing protocols and does not contain any messages or com-

mands intended for the network devices themselves. The data plane simply contains

the network payload. The control plane is composed of the network traffic protocols



9

that are used to populate the forwarding tables of the data plane devices. These

are the L2 and L3 protocols that make forwarding decisions at each data plane de-

vice. The management plane contains the software tools, including Simple Network

Management Protocol (SNMP) based tools, that are used to monitor and configure

network devices [13].

The data and control planes are unified in traditional networks, where network

forwarding devices such as switches and routers operate independently of each other.

In these networks, it is up to the control configuration on each device to ensure

that data plane traffic can proceed as intended. The result is a highly decentralized

network that must be manually configured at the device level to support a given

network topology, routing protocol, or network policy.

Fig. 2.1. Software-Defined Networks in (a) planes, (b) layers, (c)
system design architecture [13].

By contrast, SDN is characterized by a separation of all three planes into disjoint

elements. The data plane and control plane are divorced, and the decision making

power that signifies the control plane is moved to a higher level. This is the controller

level (network operating system level), and is what allows SDN to have a global view
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of network traffic. Further, this separation allows the management plane to define

network policies and instruct the control plane to enforce them remotely through a

southbound interface. Remote action of this type requires a special control channel

be created between the control plane and the data plane, and this channel is known

as the southbound interface. Given the young stage at which SDN currently is, the

control channel discussion is tightly bound to the control protocol used. This work

is limited to the OpenFlow v1.3 protocol [14], so this channel is generally known as

the OF channel. Once the forwarding devices have received their configurations from

the control plane through the OF channel, they operate as L2/L3 devices, forwarding

traffic according to the instructions received from the controller. This architecture is

shown in Figure 2.1.

Fig. 2.2. OpenFlow-enabled SDN devices [13].

The OpenFlow v1.3 (OFv1.3) SDN protocol is one of the most accepted south-

bound interfaces and features a subnetwork of OFv1.3 switched network devices. The

switches operate on a basic network entity called a flow, to whose belonging a packet

must be determined. Each OFv1.3 switch contains one or more Flow Tables, whose

entries are of the rule, action, statistics tuple seen in Figure 2.2. An incoming packet

may belong to a flow, or it may not. As the incoming packet arrives, it is first applied

to the lowest identity flow table. The match criteria of each flow entry is applied to
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the incoming packet, and if the incoming packet does belong to a flow, the switch

takes the corresponding action(s) to process the packet. If the incoming packet does

not match a flow in the lowest identity flow table, it may be sent to the controller

in a PACKET IN message or it may be dropped, depending on configuration. While

the OFv1.3 switch awaits a response (PACKET OUT), from the controller, it buffers

the packet to minimize traffic disruption [14]. In this way, OFv1.3 switches operate

as both L2 and L3 forwarding devices.

2.3 Cloud Computing

Cloud computing (the cloud) is a network-based [12] computing model that is

characterized by many users sharing resource time on very large compute and net-

work systems [15]. Most cloud users are enterprise class applications whose function

must be wholly independent of the underlying infrastructure, and must further be

logically separated from each other. This model is enabled by the principles of SDN,

machine virtualization, and network virtualization. Virtual machines (VMs) have the

function of physical machines without the limitations of the physical machine’s hard-

ware. There is a performance tradeoff, depending on the mechanism of virtualization

implementation, but broadly the cloud would not be able to function without this

concept. The virtual machines are connected to the virtual machine manager (VMM,

also known as the hypervisor) through a virtual network, composed of virtual network

devices which are kernel services whose software completely mimics the functionality

of physical network devices. In this way, the VMM can create, destroy, maintain, and

migrate virtual machines completely independently of each other through software

means alone [15].
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2.4 Artificial Immune System

An Artificial Immune System (AIS) is a computer system which is inspired by

biological immune systems and features many of their properties [16]. Among these

properties are the abilities to learn, adapt, and tolerate error. The most basic function

an AIS serves is that of classification, as the primary goal of an AIS is to detect

malicious antigens, which include pathogens, toxins, foreign substances, etc. Most

generally, the classification is binary and seeks to classify the unit in question as

“self” or “non-self” and is known as the self-nonself discrimination problem [17].

In biological systems, this classification decision is made by immune cells, and,

once an entity has been classified as an antigen, the immune cells collaborate to

destroy it. In this way, immune cells serve dual purposes: detection and intervention.

Detection is done using a pattern matching process. In this pattern matching process,

detector immune cells classify other cells as antigens if they affirm to match a given

non-self pattern, rather than if they fail to match self patterns. The pattern matching

process involves searching the cell’s surface for a contiguous set of specific chemical

receptors. Because of this, the more non-self space the detector cell’s search pattern

generation method can cover, the more effective the detectors will be at detecting

antigens. The non-self search patterns are generated randomly, and undergo a training

process called negative selection [16] to eliminate those that result in false positives

(classifying self cells as non-self cells). If a detector cell successfully passes the training

process, it is released into the immune system. This results in a system in which cells

are in one of two states: training and released.

In an AIS, the tasks of detection and intervention are split, and the artificial

immune cell’s primary job is distilled down to the job of detection, while the inter-

vention task is left to another component of the system. As a result, these artificial

cells are known as detector agents. Detector agents closely mimic the behavior of

the biological system. They classify based on pattern matching, are randomly gen-

erated, undergo a process of negative selection training, and are only released into
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the production system once they have passed all test criteria. Originally, the pattern

matching process also closely mimicked the biological system and employed a method

of r-contiguous bit string matching [16], but more effective match processes have since

been developed [18] [19] [20] [21] [22]. Upon successful detection of an antigen, the

AIS can take a specific action. This could involve further classification of non-self

cells beyond the initial binary classification, with specific actions being taken based

on this subtype. The normal action process involves destroying the newly discovered

antigen and disseminating the detector to other parts of the distributed system to

prevent against future or distributed attacks. This process is called immunization

and in this way, as threats develop and evolve, the AIS can continue to learn and

improve its set of available detectors beyond the initial set of detectors.

2.5 Self-Organizing Map

A self-organizing map (SOM) is a type of artificial neural network (ANN) [23].

The central component of an ANN is the ability to learn and adapt based on incoming

data. Among the learning process architecture categories are feedforward, feedback,

and unsupervised. SOMs are of the third type: unsupervised. Here, neighboring cells

compete and adjust based on the activities of their neighboring cells, and develop

specific detector patterns as a result. These detector patterns provide a mapping

from a high dimensionality input learning space to a low dimensionality output space

in a process known as dimensionality reduction. Like the other types of ANNs,

SOMs feature two operation states: training and mapping. These operational states

correspond well with the cell states in the AIS.

2.6 Network Simulator 3

Network Simulator 3 (NS-3) is an open-source software network simulator devel-

oped and maintained by the NS-3 Consortium for the purposes of network research

and education [24]. It provides realistic packet and traffic modeling, and is well suited
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to building, configuring, and testing networks that would otherwise be difficult or ex-

pensive to physically build and test. NS-3 operates as a discrete event simulator

based on an event queue. This means network time (also known here as virtual time)

proceeds forward in discrete steps, and proper maintenance of the event queue is

essential to simulation event progress.

NS-3 takes great care to model physical networks as closely as possible. As a result,

simulated network building follows the same basic steps in physical network building.

Simulated network entities called nodes need network devices akin to physical net-

work boxes requiring network interface cards. These network devices may operate on

separate channels and feature realistic propagation delay and loss models, and mo-

bility modeling, all with the highly capable monitoring mechanism that all software

affords. Further, NS-3’s network modeling is realistic enough to support external

network entity integration. This affords the ability to test physical switches, routers,

and hosts using NS-3’s simulated networks though kernal TAP/TUN interfaces [25]

popular with other virtual networking applications.

2.7 Related Work

This section explores related work in developing SDN network-based [12] or AIS

intrusion detection systems (IDSs).

The work of Jha and Archaya [26] builds an AIS-based IDS featuring network-

based [12] monitorization and unsupervised learning they call I3DS. I3DS is built

around the function of two modeling techniques, one probabilistic-based and one

decision tree-based. The probabilistic technique uses a Hidden Markov Model [27]

structure to adaptively learn and provide a preliminary self vs non-self classification

on novel traffic. The decision tree structure then takes the non-self candidate data

and performs a final self non-self classification. I3DS is then compared against other

learning-based IDS techniques (k-means, SOM, etc.) in testing utilizing the KDD

Cup 99 Training Dataset [28] from [29]. I3DS outperforms all competition. Though



15

I3DS is purely theoretical, and thus does not offer a network monitoring scheme, it

should be the goal of this work’s SOM module to outperform I3DS in the same test

conditions.

Hong [30] develops a network-based [12] malware detection method that detects

anomalies in Domain Name System (DNS) traffic, rather than IP application traffic.

The method (DTA) uses captured DNS traffic to build two graphs: DNS Lookup and

DNS Failure. DNS Lookup is a weighted bipartite graph [31] whose edge set provides

a mapping from a domain name to its corresponding IP address, and logs the query’s

frequency for a given time period. As DNS Lookup can only contain information

on successful queries, DNS Failure is created to provide a mapping between failed

DNS queries and the hosts originating the query, where the edge weight represents

its frequency. Once created, the graphs are monitored for presentation of well-defined

graph artifacts that are known to correspond with malicious network activity. How-

ever, graph presentation of these artifacts alone is insufficient to complete self non-self

classification, so a decision tree module is included. While this method offers promise,

it is a purely theoretical model and does not offer any kind of network monitoring

scheme. DTA should ultimately be outperformed by the work of this project.

[32] builds an OpenFlow-based DDoS detection method utilizing the SOM tech-

nique. Their SOM is trained using a 6-tuple of native OF switch statistics gathered

from the NOX [33] SDN controller. This 6-tuple is composed of the following features,

1. Average Packets per flow. Due to the general DDoS process of generating many

flows from many sources, each individual flow tends to have a low average

number of packets per flow.

2. Average Bytes per flow. As application DDoS attacks intend to overwhelm

destination terminal equipment resources such as sockets, memory, and CPU

time, DDoS attack packets tend to have lower than average packet byte sizes.

3. Average Duration per flow. This feature is used to decrease the rate of false-

positive events.
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4. Percentage of Pair-flows. Pair-flows are flows that compose the one-way traffic

in a two-way conversation. Most benign application traffic takes place as pair-

flows, while most attack traffic is composed of single-flows, i.e.- does not elicit

a target response. A low percentage of pair-flows may indicate a DDoS attack

in progress.

5. Growth of Single-flows. This feature is related to the percentage of pair-flows.

It is a time rate of change feature that tracks the rate of change in the number

of single flows. As DDoS attacks generally flood a destination with single-flows,

a sharp rise in the rate of single-flows may indicate a DDoS attack in progress.

6. Growth of Different Ports. Since many DDoS attack packets are sent to random

destination ports, a sharp rise in the number of destination ports used may

indicate a DDoS attack in progress.

While effective, [32] does not allow for communication between multiple networks

nor statistical methods which analyze OF switch ports to delineate attacking hosts

from benign hosts. Further, this paper does not address the effects that DDoS attacks

have on SDN controllers themselves.

SDN network architectures offer new tools with which to build network monitoring

and anomaly detection mechanisms, but also cause a shift in the focus of DDoS

attacks from the network forwarding devices to the controller. [34] addresses this

issue by developing a quantity, entropy, which represents the number of PACKET IN

events per protected destination per time unit window. The object of a DDoS attack

against an SDN controller is to overwhelm the OF channel bandwidth or controller

processing capacity by generating an unserviceable number of PACKET IN events.

By quantifying the number of PACKET IN events per host per unit time, attacks of

this type can be monitored and detected. This project is effective in detecting attacks

against SDN controllers and individual hosts, but it has limitations. This work cannot
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handle an attack against a whole subnet, has no communication mechanism for SDN

networks with more than one controller, and does not have a mitigation strategy in

the event of detection.

The work of [35] develops a DDoS blocking application that is not based on the de-

tection of statistical anomalies as most traditional IDSs are. They have identified the

difficulty in developing methods to produce accurate and precise statistical anomaly

detection in the sphere of botnet-based attacks as the project’s primary motivation.

Instead, they show that a technique creating an SDN network application utilizing

native SDN methods can block DDoS attacks when no statistical anomalies can be

found. The network application properties follow:

• Generality. The technique uses only standard OF Application Programming

Interfaces (APIs) and thus can be used in general OF-based SDN environments,

independent of SDN controller.

• Semi-autonomous. The developed network application requires minimal des-

tination server support in an effort to maximize server network and compute

resource utilization.

• POX-based. The network application runs on top of the POX [36] SDN con-

troller.

• Mininet tested. The network application has been tested using the Mininet [37]

network emulator.

While lightweight and effective in their testing environment, this technique is in-

herently limited and not suitable for cloud environments. The main limitation is

in requiring the network application to create a secure channel with the destination

server to be protected. Not only does this violate SDN dataflow principles, it is

neither practical nor desirable in cloud computing environments as the number of

channels scales linearly with the number of destination servers, resulting in unaccept-

able overhead.
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Saurabh and Verma [22] developed a proactive AIS-based anomaly detection and

prevention system. A significant contribution of this system is its development of

evolving, self-tuning detectors and the concept of detector power. The work further

contributes a mechanism that allows detection agents to collaborate to detect and take

action against statistical anomalies. Though they improve upon previous negative-

selection algorithms [16] [19] [20] [21], the learning algorithm on which the AIS is based

in this work is still a supervised learning algorithm. As such, its performance will

always be based on the strength of the training set data it was initially taught with,

and will adapt to new attacks more slowly than unsupervised learning techniques

such as SOM.
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3. CHALLENGES AND HYPOTHESIS

This chapter articulates the general challenges associated with designing a system

capable of detecting DDoS attacks in cloud computing environments, and the spe-

cific challenges in developing and implementing the primary work of the design. It

concludes with a statement of the hypothesis the project intends to affirm.

3.1 Primary Challenges

The primary challenges are those identified as the basic and essential tasks a

general system must perform in order to protect a cloud network from a DDoS attack.

3.1.1 Monitorization

Sufficiently monitoring network behavior is the first challenge to be met. The

network monitoring scheme is the ultimate source of all information from which AIS

decisions are made, so no data down the data pipeline may be of a finer resolution than

the monitoring scheme itself supports. Further, the more network traffic monitoring

data that can be generated, the more applicable the resulting model represents the

network. As cloud virtual networks become more complex and more distributed, no

single network device has a global network view, and destination-based monitoring

becomes infeasible. Instead, network-based [12] monitoring methods composed of

multiple distributed monitoring agents must be implemented.
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3.1.2 Detection

To effectively secure a system from attack, the security system must be able to

accurately and precisely predict when an attack is going to take place, or detect an

attack in progress before damage is done. Due to the imperfect nature of prediction

and detection, an amount of error will invariably exist. There are four types of

detection events [26] [30]:

1. True Positive (TP)– the system detected an event that occurred

2. False Positive (FP)– the system detected an event that did not occur

3. True Negative (TN)– the system did not detect an event that did not occur

4. False Negative (FN)– the system did not detect an event that occurred

The error types are related in a trade-off scheme. To achieve a higher TP rate,

a system would likely experience an increase in FP rate as well. The situation is

the same for FP and FN rates. Based on the type of network traffic, some detection

applications will be more tolerant of certain error types than others. For example, a

government agency internal network may have access to sensitive data. Such an envi-

ronment would have a very low tolerance for FN type errors, with the understanding

that an increase in FP type error tolerance would be necessary. Conversely, a public

media server would seek to minimize FP errors, and would likely have a higher toler-

ance for FN errors. Due to this reality, the detection module should be configurable

such that it can be tuned to the performance requirements of the specific application

implementation environment.

3.1.3 Intervention

An effective system must be able to take action against an identified threat. The

action taken must be able to stop or mitigate the harmful effects of the attack and

should provide some sort of attack memory should a similar attack occur in the
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future. Given a distributed environment, the action taken should include a broadcast

of the attack signature to potentially affected network devices such that other network

devcies may stop or mitigate the attack. The attack mitigation technique should

maximize effect on the targeted threat while minimizing the disruption to normal

(benign) traffic.

3.2 Hypothesis

We aim to meet all core challenges by developing an SOM modified AIS Open-

Flow network application with a monitorization module utilizing native SDN features

in OpenFlow v1.3 to both monitor and intervene. This work hypothesizes that an

SDN environment with OFv1.3 compliant switches is capable of monitoring a cloud

environment’s network to a level sufficient to enable an SOM based AIS network ap-

plication to detect a DDoS attack in progress. The AIS module resides on top of the

OF network controller as a network application. Upon successful detection, the AIS

network application defines a new network policy capable of mitigating the attack

and then instructs the OF controller to enforce the attack mitigation policy. Native

OFv1.3 switches are sufficient to execute the monitorization scheme and mitigation

policy without custom development.
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4. PROPOSAL

This work seeks to support its hypothesis by building a proof-of-concept system.

This system is intended to demonstrate the effectiveness of an OpenFlow v1.3 based

network application in monitoring network traffic and detecting DDoS attacks in

progress, assuming a suitably accurate detection signature is provided by the SOM

module.

4.1 Collaborative Profiling

This project seeks to build its proof-of-concept system using a network-based [12]

detection scheme within an OpenFlow v1.3 switched network. In contrast to tra-

ditional ingress switch or destination-based methods, network-based [12] methods

compile traffic data from many distributed traffic monitors. To take advantage of

OpenFlow’s strength in centrally handling distributed network architectures, it pro-

poses the monitorization scheme be based on OpenFlow flow statistics collection

native to the protocol.

The proposed framework develops a collaborative traffic monitoring model for

attack detection, shown in figure 4.1. In it, each OF switch features a profile extractor

that collects flow statistics for a subset of the network traffic flowing through the

switch. The profile extractor is implemented as a low table ID, high priority flow table

entry, and does not perturb any network traffic flowing through the switch. The OF

switch collects the desired traffic data according to native OpenFlow matching rules

on fields given in Table 4.3 on page 32. Periodically, a profile aggregation network

application instructs the SDN controller to collect the captured data from each switch,
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then aggregates the data to obtain a global network view of network traffic. In this

way, network-based [12] monitorization is achieved and the monitorization primary

challenge is met.

Fig. 4.1. Collaborative traffic analysis model.

4.2 Toxicity

The nature of DDoS attacks is to overwhelm a computing resource. If a sufficient

amount of traffic arrives at the attack target within a defined period of time, the

destination becomes overwhelmed and inaccessible. This concept of time is very

important, as 10Mb of network traffic in ten seconds is a very different task to handle

than 10Mb in one millisecond. Native OpenFlow flow statistics are able to give precise

packet counts, byte counts, and even average bitrates. While these figures may be

able to give a good instantaneous snapshot of network traffic, they alone are not

enough to track the overwhelming effects of time sustained abuse. To track a flow’s

capacity to overwhelm, we define a function of time: toxicity.
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Fig. 4.2. Example of the toxicity level’s linear increasing and expo-
nential decreasing behavior.

A single packet traveling through a network requires a non-zero amount of re-

sources in order to be processed by network devices including switches, wires, routers,

and destination servers. This amount varies based on packet size, L2, L3, and L4 pro-

tocols, etc, and may be quite small per packet, but can accumulate to an overwhelming

amount very quickly. It becomes very useful to think of a packet as containing a fun-

damental amount of inherent toxicity. As more packets travel through a network en

route to a final destination server, the general toxicity of the network increases. As

more requests arrive at a server than it can handle per unit time, the toxicity level

accumulates at a rate proportional to the number and type of packets it is receiving.
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If traffic increases enough, the destination server becomes overwhelmed and becomes

unusable, an event analogous to poisoning. As network traffic subsides, the toxic

effects subside as a function of time as the server is able to clear its queue. Even TCP

SYN flooding fits the model by simply assigning a higher fundamental toxicity value

to the TCP SYN request than a normal TCP, UDP, or ICMP packet. In seeking

to protect a resource from attack, it becomes useful to think about the problem as

trying to keep the resource’s toxicity level from reaching a poisonous threshold. As

general existing IP and SDN monitoring mechanisms are effective in keeping network

infrastructure from being overwhelmed, our focus is on protecting the destination

servers themselves.

Toxicity is modeled by considering how destination servers receive and process

service requests. The amount of fundamental toxicity a flow accumulates with each

packet reception is related to the server’s maximum queue size, the packet size, and

the L4 protocol, but not to the current size of its buffer or queue. Therefore, toxicity

increases with each event. Further, toxicity levels are kept for both packet statistics

and byte statistics, and thus we define two values, τP and tauB for packet toxicity

and byte toxicity, respectively, as,

τP (t) = τP (t− ∆t) + bP (t) (4.1)

τB(t) = τB(t− ∆t) + bB(t) (4.2)

where τP (t) is the packet toxicity level at time t, ∆t is the elapsed time since the last

toxicity update, and bP (t) is the fundamental packet toxicity deposit amount for this

flow. The byte toxicity calculation follows the same logic as the packet toxicity, and

the deposit equations are given below.

bP (t) = α
Packetst − Packetst−∆t

∆t
(4.3)

bB(t) = β
Bytest −Bytest−∆t

∆t
(4.4)

where α and β are configurable constants.
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Toxicity dissipates at a rate relative to the number of packets in the queue left

to be processed and the time to service one request. Since the rate is relative to its

current value, this process is modeled by the differential equation,

dτ

dt
= −λτ (4.5)

with solution,

τ(t) = τ0e
−λt (4.6)

where λ is the exponential decay constant. Combining increasing and decreasing

factors gives the composite function for a flow’s toxicity as a function of time,

τP (t) = τP (t0)e−λ(t−t0) + bP (t) (4.7)

τB(t) = τB(t0)e−λ(t−t0) + bB(t) (4.8)

where t0 is the time of the most recent update. In this way, an accurate, configurable

model capable of capturing the ability of a flow to overwhelm a destination server is

developed. An example of the toxicity level’s time series behavior is given in figure

4.2.

4.3 System Architecture

The proposed system architecture is composed of an OF v1.3 SDN NS-3 network,

a Floodlight SDN controller, and an AIS network application module. The OF v1.3

network simulates the behavior of a UDP flood DDoS attack on a single target, and

includes normal background UDP traffic. The NS-3 network features ofswitch13 [38]

OF v1.3 switches that are externally controlled by the Floodlight SDN controller [39]

running in the same Linux user space as the NS-3 simulation. The NS-3 Floodlight

interface is made through a Linux TAP interface [25], whose L2 and L3 addresses NS-

3 associates with the controller through its native ns3::TapBridge module. The AIS

network application module interfaces with the Floodlight controller via HyperText
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Transfer Protocol (HTTP) REpresentation State Transfer (REST) API to monitor

the network and detect DDoS attacks in progress. Figure 4.3 shows the system block

diagram.

Fig. 4.3. System Architecture

The Ais process is given in figure 4.4. The process is split into two logical entities,

the central coordinator is composed of the network controller and network application

(including SOM module), while the distributed detectors are the OF v1.3 switches.

Potential detectors are initially generated by analysis of an initial dataset, and contin-

ually generated by analysis of network traffic. These potential detectors compose the

Self Set. The Self Set undergoes the negative selection training process to become

the Antibody Set, which is then distributed to the appropriate distributed detec-

tor(s). The detectors then collect flow statistics on incoming traffic, and match flow

patterns against their antibody subsets. Flows that do not match antibody patterns

are processed normally according to OpenFlow v1.3 processes, and flow statistics

are periodically gathered and sent to the central coordinator for continued adaptive
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learning. Upon discovering a flow that does match an antibody, the detector alerts

the central coordinator and the expressed antibody is added to the pathogen library.

Fig. 4.4. Ais process.

4.3.1 Network Architecture

The NS-3 network built for this project simulates the behavior of a UDP flood

type DDoS attack converging on a single target. The network features ofswitch13 [38]

switches externally controlled by the Floodlight SDN controller. In keeping with gen-

eral SDN practices, the data and control planes are logically separated into indepen-

dent networks. This type of network in which control signaling is carried in a different

network than user data is called an out-of-band network [40]. Out-of-band networks,

while good general SDN practice, afford the additional benefit of control plane in-

sulation against application-level DDoS attacks. An entire in-band control network

could easily be taken down by an application-level DDoS attack, as the OF control

messages would be dropped due to attack congestion. The control network, also

called the OpenFlow channel, is configured as a single Carrier Sense Multiple Access
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(CSMA) ethernet [41] channel. The OF switch L2 and L3 addresses are configured

within the NS-3 simulation, while the controller L2 and l3 addresses are configured

by the Linux TAP interface, external to the NS-3 environment. Any changes to the

OpenFlow channel topology must be reflected in both the TAP interface and the NS-3

environment. The control plane network topology is given in Figure 4.5.

Fig. 4.5. Network Control Plane Topology

The data plane network topology is contained entirely within the NS-3 environ-

ment. In it, each host is connected to a single switch by a dedicated CSMA ethernet

channel. The dedicated channel allows for high traffic monitor resolution, suitable for

this proof of concept system. The host switches are connected to the target switch

in a star topology, again with dedicated ethernet channels. The target switch then

uses singly dedicated ethernet channels to connect with the destination servers. The

network data plane topology is given in Figure 4.6.

4.3.2 AIS Network Application Data Structure

The AIS Network Application is intended to enable decisions to be made on large

networks which generate encumberingly large volumes of network statistics (meta-

data). As the entirety of this metadata must travel over the limited OpenFlow chan-

nel, care must be taken to minimize the channel bandwidth utilization by the module,

or risk interfering with normal network operations. Further, as network, memory, and

CPU resources are marketable commodities in cloud computing environments, the ap-

plication’s data and processing considerations must also be taken into account. For
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Fig. 4.6. Network Data Plane Topology

the end system, every effort should be made to reduce resource consumption wher-

ever possible. As a result, the proof-of-concept AisTable and associated entries are

developed with this in mind. The structure of the an entry into the AisTable is given

in Table 4.1.

Table 4.1.
AisTableEntry fields

Signature [SwitchCountsEntry] Packet Toxicity Byte Toxicity
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The AisTable is a hash table [31], keyed on a hashing of the AisTableEntry::Signature.

Each network profile (see section 4.1) of interest generates a unique Signature and

thus a unique AisTableEntry in the AisTable. Table 4.2 gives the possible fields a

Signature might contain. These fields are developed from the OXM match fields

required by OpenFlow v1.3 specification [14], and represent the maximum view res-

olution the AIS system has into the network. A Signature instance may contain as

many Signature fields as desired, but must contain at least one.

Table 4.2.
Signature fields (required OXM match fields).

Field Description

OXM OF IN PORT Ingress port. Physical or switch-defined logical port.

OXM OF ETH DST Ethernet destination address.

OXM OF ETH SRC Ethernet source address.

OXM OF ETH TYPE Ethernet type of the OpenFlow packet payload.

OXM OF IP PROTO IPv4 or IPv6 protocol number

OXM OF IPV4 SRC IPv4 source address.

OXM OF IPV4 DST IPv4 destination address.

OXM OF IPV6 SRC IPv6 source address.

OXM OF IPV6 DST IPv6 destination address.

OXM OF TCP SRC TCP source port.

OXM OF TCP DST TCP destination port.

OXM OF UDP SRC UDP source port.

OXM OF UDP DST UDP destination port.

Due to the collaborative nature of the network-based [12] monitorization scheme, a

single Signature may receive traffic data contributions from separate switches through-

out the network. To allow for this, the AisTableEntry includes an array of Switch-

CountsEntries, with a unique SwitchCountsEntry belonging to a single switch for the
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given profile. The SwitchCountsEntry keeps track of packet and byte counts for the

individual flow, and the timestamp when these network statistics were last collected.

These data are necessary and sufficient to calculate the toxicity contributions per

time aggregation event as part of the calculation of equation 4.7. The structure of

the SwitchCountsEntry is given in Table 4.3.

Table 4.3.
SwitchCountsEntry fields

SwitchID Timestamp Packet Count Byte Count

4.3.3 AIS Network Application Architecture

The AIS network application is built as a Python [42] module on top of the

Floodlight SDN controller. The controller - AIS module communication is done via

HTTP REST API calls over a Linux TAP interface. The software architecture is

written to be modular, easy to read, and easy to maintain and extend. The module

is written according to good model-view-controller (MVC) [43] software architectural

pattern practices to ensure the user cannot manipulate AIS data directly, but can

only check status information and trigger module communication events. The AIS

network application architecture is given in Figure 4.7.

At regular intervals, the AIS module’s FlowEntryReceiver polls the controller for

network flow statistics. Upon receiving the request for flow statistics, the controller

sends an OF read-state TCP message to each of its NS-3 OF v1.3 switches through

the dedicated OpenFlow channel. The switches reply with the accumulated statistics

kept for each entry in their flow tables, which the controller then forwards back to

the FlowEntryReceiver as HTTP GET JavaScript Object Notation (JSON) [44] data.

These JSON switch flow statistics are then passed to the Ais module through the

Ais::Communicator::FlowEntryReceiver. The JSON data is then parsed and filtered
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Fig. 4.7. Application Architecture

according to profile signature data stored within the Ais module. This allows only

the profile statistics to be sent to the AisTable for toxicity updates. As part of the

toxicity update process, the toxicity values are checked against the profile’s toxicity

thresholds. If toxicity thresholds have been surmounted, the AisTableEntry generates

an appropriate hazard message. In accordance with project goals, the module takes

no further action, though it does have the ability to define a new network policy

which drops packets associated with the attack-classified profile. Implementation
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of the SOM detector generator module is not within the purview of this project,

though a skeleton Python class is created and wired to the Ais module to ease future

development.
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5. EXPERIMENT

This chapter describes the experimentation designed to support the project’s hy-

pothesis. Included are descriptions of the experiment’s topology, and specific limiting

implementation challenges. Further, experiment results and analysis are presented

that demonstrate support of the hypothesis.

5.1 Description

The project experimentation is designed to demonstrate the AIS application’s

nature as a network-based [12] AIS and its capabilities of meeting the monitorization

and detection primary tasks. To accomplish these, experimentation is built on the

integration of several software modules within a single Linux userspace, as described

in chapter 4. The experimentation consists of a series of separate 900 second network

traffic simulations in which network configuration and traffic patterns are generated

by the NS-3 network as input, and the AIS module toxicity and hazard message

responses are recorded as output. The project hypothesis is supported if:

1. Monitorization: the AIS is able to aggregate the distributed profile information

into a network-based [12] global view of traffic.

2. Detection: the AIS is able to outperform destination-based detection methods

for a sufficiently realistic simulated DDoS attack in the measured performance

indicator metrics.
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The NS-3 component gives the ability to simulate representatively realistic net-

work traffic in order to test network configurations, external SDN controllers, and

SDN network applications. To test the monitorization and detection capabilities of

the AIS network application, the network of figures 4.5 and 4.6 is created. Two

experimental traffic scenarios are then run.

5.1.1 Baseline Gathering Experiment Description

The first experiment develops a baseline for DDoS detection, and delineates the

differences between network-based [12] and destination-based detection method per-

formance. In this scenario, even numbered IP addressed hosts send a normal amount

of UDP application traffic to the attack target and are to be classified as benign.

Odd numbered IP addressed hosts begin by also sending a normal amount of UDP

application traffic, but ramp up the amount of individual traffic as the simulation

progresses. The input traffic patterns can be seen in figure 5.5. The simulation is

run four times, with different attack types at the network level and different net-

work monitoring techniques at the network application level. Scenarios tested are

DoS attack with destination-based monitoring, DDoS attack with destination-based

monitoring, DoS attack with network-based [12] monitoring and DDoS attack with

destination-based monitoring. Results are given in section 5.3.1.

5.1.2 Profile Gathering Experiment Description

The second experiment feeds a more realistic traffic pattern to the system. In this

experiment, a second destination is created, and is not the subject of an attack. Nor-

mal application UDP traffic flows from even numbered IP hosts to both the benign

destination server and to the attack target. This traffic serves as background noise for

the DDoS detection module, and should be neither detected as attack traffic nor dis-

rupted as part of any attack mitigation efforts. This normal application traffic starts

shortly after the simulation begins, and steadily continues through the simulation.
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Attack application UDP flood traffic flows from odd numbered IP hosts to the attack

target. As all host clients generate the same amount of individual network traffic, no

single IP source address can be categorized as malicious. These flows come online in

regular intervals, and reach warning and alert level thresholds at well defined times.

It is the end goal of the project to be able to classify subflows within the detected

flows, and filter out specific IP sources as a result. It is this ability that the SOM

module is intended to provide, and thus is not required here.

However, a demonstration of the subflow classification behavior is possible before

the SOM module is developed. This behavior is available through the concept of bit-

mapping. OpenFlow v1.3 flow tables support arbitrarily bit-masked IP address match

fields [14]. This allows flow table entries to match IP source addresses to specific bit

patterns, rather than specific or wildcarded full addresses. These bit patterns can

be generated randomly, and can go through a negative-selection training process in

a “pseudo-SOM” module, with the bitmasks taking the role of detector. In following

along the SOM AIS process, the selected bitmasks can be given to the AIS module.

Once there, the AIS module can instruct the SDN controller to monitor IP addresses

matching the bit pattern, rather than monitoring specific IP addresses or subnetworks.

In this experiment, the pseudo-SOM module has generated such a bitmask, and the

results of its use are given in section 5.3.2.

5.2 Implementation Challenges

In designing the experiments to support the project hypothesis, NS-3’s inherent

limitations as a discrete time event driven simulator place restrictions on real-world

modeling. These limitations include the service request processing problem, discussed

in 5.2.1, and the discrete time leap problem, discussed in section 5.2.2. Since all

network events are software processed, large, highly parallelized networks cannot be

simulated in real time, thus limiting network size. Further, the ofswitch13 module
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is young and not well matured. This module has placed additional constraints on

network experimentation, most importantly the L3 subnetwork problem, discussed in

section 5.2.3.

5.2.1 NS-3 Request Processing Problem

Fig. 5.1. Queueing model for a single server and its network packet buffer.

The service request processing problem concerns the ability of NS-3 to model the

effects of a DDoS attack on network destination servers, which requires a discussion of

queue modeling [45]. In physical destination servers, service requests arrive into the

system as a random process A(t), with interarrival times τ1, τ2, ..., τn. It is sufficient for

this experiment to assume the interarrival times are deterministic. These interarrival

times give a system arrival rate of,

λ =
1

E[τ ]
requests/second (5.1)

Once in the queue, the requests can then be processed by the server. The time it

takes to process a single request (in our case, a single UDP datagram) is the service

time, and is given by X. The rate at which the server can process service requests is

finite and is defined as the processing capacity µ, where,

µ =
1

E[X]
requests/second (5.2)

Here, again, it is sufficient for this experiment to assume a deterministic processing

capacity. The difference between the arrival rate and the processing capacity is the

rate at which the queue’s k-maximum capacity is filled. Once the queue’s length
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reaches its maximum capacity, k, the system can no longer handle incoming service

requests. Subsequent requests are then dropped according to the blocking ratio,

B =
λ

µ
(5.3)

It is this blocking ratio that fundamentally enables a DDoS attack. The target

system is bombarded with requests until the arrival rate λ >> µ, and the queue

quickly reaches its capacity. At that point, the probability that any given request is

blocked and therefore dropped is near 1, and the system is seen as unreachable.

In order to effectively model a DDoS attack, reception queue modeling must be

implemented. A simple system, as in figure 5.1 is sufficient, though appropriate

values of λ, µ and k must be determined. Further, the simulation environment must

contain a mechanism of implementation. Natively, ns3::CsmaNetDevices undertake

no such reception queue rate modeling, and do not contain a reception queue of any

type [46]. As a result, incoming requests are serviced by the simulated application

server as quickly as the simulator’s hardware allows, independent of network virtual

time. This leads to a restrictively high µ value. Thus, in order to simulate a DDoS

attack, packets must arrive into the simulated target system at a greater rate than

the simulation hardware’s CPU can processs the packets. Recall that NS-3 is an event

driven system, and that each event must be processed in series. Thus, in order for a

DDoS attack to be modeled, the simulator must generate, send, receive, and process

network traffic faster than its own hardware. It is therefore impossible for the effects

of a DDoS attack on a server to be simulated without further NS-3 development to

support the concept of reception queueing.

Development of appropriate reception queue modeling involves the addition of

a reception queue to the ns3::CsmaNetDevice class. This reception queue contains

configurable parameters for service processing capacity µ and buffer length k. As

a result, this project experimentation defines an appropriate µ such that attack-

level traffic causes the malicious effects of a DDoS attack on the target server, while

allowing the target server to process network traffic under this level. Thus, in order
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to support the project’s hypothesis, the AIS module must be able to detect when

this level of network traffic is reached, preferably before the target server is actually

rendered unreachable.

5.2.2 NS-3 Wall Clock Implementation

NS-3 is a discrete event simulator processing events in order from an event queue.

Its virtual clock (simulated network time) progresses as a series of discrete steps,

taking the value of the next event in the queue. Care has been taken to intelligently

add events to the event queue such that network time is never allowed to advance

backward, as in the physical world. However, due to its discrete nature, time leaps are

possible in the simulator which much be avoided. For example, if the network clock

is at time 10.0, and the next event is scheduled for time 18.4, the network clock will

simply be advanced to 18.4 once the event at time 10.0 is finished processing. This is

done without waiting the 8.4 second difference. This behavior must be avoided if the

NS-3 simulation is to interact with an external entity like the Floodlight controller.

NS-3 does support a realtime operating mode in which these discrete time steps do

not occur. This realtime module, however, contains inherent weaknesses that must be

overcome in order for the project to progress. First, the network clock always begins

at time 0. While this is sufficient to keep time, model events, and even handle some

external communication, it is not suited to situations in which a timestamp must be

passed in any sort of message. As this work may require current network time to

be included in controller and/or AIS messages, and the module is not being actively

developed, the work of this project must address this issue.

Time systems based on the UNIX Epoch [47] feature a counter-based clock concept

which counts the number of seconds (or nanoseconds) elapsed since January 1, 1970.

Linux systems concept of time revolves around the UNIX Epoch, and it is this clock

that represents the real-world or realtime clock in this system. The NS-3 virtual

(network) clock features a similar counter-based concept. It is an unsigned 64 bit
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Fig. 5.2. NS-3 Wall Clock Problem seeks to shift the virtual clock up
to a level such that the virtual and real clocks are equal.

integer representing the number of nanoseconds elapsed since the simulation began.

This sets a network time resolution down to the nanosecond level, which is sufficient

for this project. However, due to Epoch concept, it also entails that any external entity

receiving timestamps from the simulation will think the timestamp came from 1970.

Further, the native realtime module is catastrophically inaccurate. In testing with

the SDN DDoS network built for this project, the realtime module lost approximately

9 seconds in one hour. This accuracy is insufficient for a network simulation that is

intended to run multiple days or weeks.
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The NS-3 realtime synchronization module was written inherently expecting the

virtual clock to begin at 0. As a result, a significant portion of the production

module had to be rewritten, and considerable research and developmental effort went

into successfully solving the wall clock problem. Now complete, the new module is

accurate to within 200 milliseconds per hour: a vast improvement and an accuracy

that is within acceptable tolerance for this project. A visualization of the concept is

given in figure 5.2.

5.2.3 NS-3 OpenFlow v1.3 Support (L3 Subnet Problem)

NS-3 has support for two OpenFlow switch specifications, a native OFv1.1 im-

plementation [24], and an external module, ofswitch13 [38] which supports OFv1.3.

Project study reveals that the native implementation is not well developed, and that

the ofswitch13 module is superior. Though stronger than the native implementation,

the ofswitch13 module is immature, and is under continued development.

The limiting ofswitch13 factor concerns the implementation of the ns3::CsmaNetDevice

object. The CsmaNetDevice is the NS-3 equivalent of a physical ethernet Network

Interface Card (NIC). In physical networks, ethernet NICs allow network elements to

communicate via IEEE 802.3 [41]. Inherent in this communication is the ability to

listen for channel activity and send, receive, and propagate L2 traffic. Further, these

abilities are independent of inclusion in OpenFlow networks. A terminal network host

is oblivious to the question of whether or not it resides within an OpenFlow network.

However, ofswitch13 implementation details do not partition the ns3::CsmaNetDevices

in this way. Instead, host CsmaNetDevices, which should be oblivious to the Open-

Flow details, are affected by the installation of the ofswitch13 module. This affect

is not intended by the ofswitch13 developers, and results in a loss of the ability to

send, receive, and propagate L2 traffic in the normal way. The effect is felt in net-

work activity as an inability for host terminal equipment to send IP packets to a

destination not within the sender’s subnetwork. Upon investigation, it is determined
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that the problematic behavior is due to the module’s poor design and speedy devel-

opment cycle. Specifically, the ofswitch13’s CsmaNetDevice redirects all packets to

be processed by the OpenFlow logic, overwriting the necessary callbacks that allow

the packet to be processed by the IP stack. As a result, the experimental network for

this project cannot contain multiple IP subnetworks.

5.3 Results

Results are now given which lend support to the hypothesis that a network-

based [12] AIS is capable of detecting and mitigating DDoS attacks in cloud com-

puting environments. These results center around the detection performance indica-

tors detection rate (DR) [26] [30], accuracy (A), precision (P) [26] [30], and F-score

(F) [26] [30]. Where,

DR =
TP

TP + FN
(5.4)

Precision =
TP

TP + FP
(5.5)

Accuracy =
TP + TN

TP + TN + FP + FN
(5.6)

F − score = 2 ∗ DR ∗ P
DR + P

=
2 ∗ TP

2 ∗ TP + FP + FN
(5.7)

DR represents the proportion of malicious packets the system is able to detect

to all of the malicious packets in the system. Precision captures the likelihood that

a packet detected as malicious truly is malicious. Accuracy represents the ability of

the system to properly classify a packet as benign or malicious, and the F-score is

a composite score that is used as a single “goodness metric”. These performance

metrics are composed of the four detection event types. Recall,

1. True Positive (TP)– the system detected an event that occurred

2. False Positive (FP)– the system detected an event that did not occur

3. True Negative (TN)– the system did not detect an event that did not occur
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4. False Negative (FN)– the system did not detect an event that occurred

Central to the functioning of the AIS system is the correct implementation of

the toxicity concept of section 4.2. Figure 5.3 gives the detailed behavior of the im-

plemented toxicity level’s behavior in unit testing. The figure displays the project’s

Ais::Toxicity class’s behavior when the deposit amounts b(t) are independent uniform

random variables (top) and deterministic (bottom). Both tests feature a deposit inter-

arrival time that is deterministic, i.e.- independent random variables with a constant

distribution.

Fig. 5.3. Results of unit testing of the Ais::Toxicity Python class.
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5.3.1 Baseline Gathering Experiment

The baseline gathering experiment feeds normal, attack pattern 1 (pattern 1),

and attack pattern 2 (pattern 2) input traffic to the dual monitorization techniques

of destination-based and network-based [12] monitoring. The AIS network application

is fully configurable and provides both methods for testing purposes. Input traffic

patterns can be seen in figure 5.4.

Fig. 5.4. Baseline gathering experiment destination channel traffic patterns.

In the pattern 1 simulation, a combination of normal and pattern 1 traffic patterns

are given, as described in section 5.1.1. As can be seen in figure 5.5, the pattern 1

toxicity values follow pattern 1 input traffic in both pattern and magnitude, though a

detection time gap of 6.2 seconds does occur. Similarly, the pattern 2 traffic detection

patterns closely follow the pattern 2 input traffic pattern. Notice the pattern 2 toxicity

values are lower than the pattern 1 traffic values for the same period. This is expected

as the destination-based method does not aggregate the traffic, but only examines a

single flow.

Similarly, the pattern 1 traffic detection matches the output of the destinatin-

based method. These results are expected, as destination-based monoitoring methods

are perfectly capable of detecting single source anomalous traffic. The difference is in
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Fig. 5.5. Toxicity level results of baseline experiment.

the DDoS traffic detection. Though the overall network-based [12] and destination-

based patterns match closely with each other, notice the large difference in magnitude.

Since the network-based [12] method is able to aggregate a global view of network

traffic, it is able to detect that the attack target is receiving a very high amount of

network traffic, even while each individual flow may be below the single flow alert

threshold.

Pattern 1 performance indicators for this experiment are given in table 5.1, which

compares the two monitorization methods directly. Here, it should be noticed that

overall performance is approximately identical for the two monitoring methods. The

336 packet difference in TP events is well within the 1389 event margin of error, which
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Table 5.1.
Pattern 1 Performance

Base TP TN FP FN DR P A F

Destination 16698 17230 0 363 97.897 100.0 98.948 98.925

Network 17034 16951 0 458 97.382 100.0 98.670 98.673

is obtained by considering a 5.0 second AIS poll time and 3.6 millisecond interarrival

time. Similarly, the TN and FN are within this margin of error. As a result, network-

based [12] monitoring methods cannot be said to offer superior performance for this

type of attack.

Table 5.2.
Pattern 2 Performance

Base TP TN FP FN DR P A F

Destination 0 130850 0 54712 0 0 70.516 0

Network 53648 109557 22689 270 99.500 70.278 87.670 82.374

Pattern 2 performance indicators, by contrast, do illustrate the performance gains

offered by network-based [12] methods, and are given in table 5.2. Here it is seen that

the destination-based method is unable to detect any malicious activity, thus both

TP and FP event counters are zero. This gives a DR of 0 for this method, which is

insufficient for the needs of cloud computing environments. Its accuracy of over 70%

is deceptively high, as the majority of packets sent in this experiment are benign and

thus should be counted in the “negative” event category. In examining the network-

based [12] results, it should be noticed that the DR is above 99% and the accuracy

above 87%. Though these figures are encouraging, it must be remembered that the

AIS is configured for a low FN tolerance. This configuration results in the significant

number of FP events seen, and the resulting precision is an ineffective 70%. Future
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development of the SOM module should reduce these FN events, and raise both the

accuracy and precision of the system. Nevertheless, the network-based [12] method

thoroughrly outperforms the destination-based method, and the hypothesis is sup-

ported by this experiment. Moving forward, destination-based monitoring methods

are not considered.

5.3.2 Profile Gathering Experiment

The profile gathering experiment features the same network-based [12] AIS, and

largely the same network configurations as the baseline gathering experiment. How-

ever, it differs in that it includes a benign destination server. This new server receives

a steady amount of benign UDP application traffic throughout the simulation from

each of its hosts. The benign destination has the IP address 10.1.1.11, while the at-

tack target has the IP address 10.1.1.10. This experiment examines the performance

of two detection profiles on this new traffic scenario.

The first, WILDCARD, offers the simple network-based [12] detection featured

in the previous experiment. Its IP source address field is wildcarded, resulting in

this profile being unable to classify subflows or monitor specific IP source addresses.

The second, BITMASK, offers the pseudo-SOM bitmask concept discussed in section

5.1.2, and is expected to outperform WILDCARD. The AIS is seeded with these

detection profiles in turn and identical network simulations are run on each.

Figure 5.6 gives the details of the WILDCARD profile experiment. Total network

traffic is shown, as is a breakdown of traffic by destination, at the furthest resolution

offered by the profile. Each plot in the figure features ALERT and down lines, which

illustrate the time at which the AIS detected an incipient attack and the time at which

the target server was taken down by the attack. The accumulated total number of

positive detection events is also shown. Packet and toxicity curves are given next,

with the general patterns closely following the input traffic patterns.
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Fig. 5.6. WILDCARD Single profile with no profile bitmasking.

The results of the BITMASK profile are given in figures 5.7 and 5.8. It runs an

identical NS-3 network configuration, so the network input traffic is the same. In

the same method as the previous, this traffic is broken down by destination at the

furthest resolution offered by the profile. It should be noticed that BITMASK is able

to distinguish subflows within the 10.1.1.10 flow: 10.1.1.10 A (attack) and 10.1.1.10 B

(benign). The accumulated packet detections are given as well, and when compared

against WILDCARD’s result, show a more shallow linear slope as a result of its fewer

detection events.
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Fig. 5.7. BITMASK Profile gathering experiment results with pseudo-
SOM supplied profile bitmask.

The toxicity figures illustrate the real benefit of this model. The benign subflow

on the attack target does not surpass the alert threshold, and thus is not detected as

malicious. The attack subflow, however, does, as is detected as malicious a result.

Table 5.3.
Profile gathering performance indicators

TP TN FP FN DR P A F

WILDCARD 28864 118669 23092 1100 96.329 55.555 85.902 70.469

BITMASK 28870 141587 0 1062 96.452 100.0 99.381 98.194
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Fig. 5.8. BITMASK Profile gathering experiment results with pseudo-
SOM supplied profile bitmask, detail.

This experiment’s performance indicator results are given in table 5.3. As can

be seen, the number of TP events is the same (the 6 packet difference is negligible)

for the two detection profiles. The FN events with both profiles are associated with

the 10 second detection time lag as a result of the AIS’s polling period and toxicity

deposit amount configuration. The great benefit of the BITMASK profile lies in the

number of FP events. WILDCARD’s wildcarded IP source field results in over 23000

FP events, giving a precision of only 56%. This inadequate performance is expected

here, as it cannot distinguish subflows with such a wildcard when traffic levels per

host are identical. Thus, WILDCARD cannot distinguish an attacking host from a
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benign host within a flow. BITMASK, however, can, thanks to its inclusion of the

bitmasking pseudo-SOM. As a result, it creates 0 FP events and properly classifies

WILDCARD’s 23000 FPs as TN. This proper classification gives BITMASK perfect

precision and an accuracy limited only by the polling period, greatly supporting the

project’s hypothesis.

Other works by Hong [30] and Jha and Archaya [26] have measured the same

metrics for similar work, which is compared in table 5.4. The highest obtained F-

scores are included here for comparison. It should be noted that the experiments vary

here, and therefore the results of comparison should be taken lightly.

Table 5.4.
Related Work Performance Comparison

IDS F-Score

Ais::BITMASK 98.2

DTA [30] 90.3

I3DS [26] 97.1
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6. CONCLUSIONS AND FUTURE WORK

This work is intended to function as the laying of a foundational proof of concept for

the proposed AIS network application system described in section 4. As demonstrated

in section 5.3.2, when given a perfect profile, the AIS system can express perfect

behavior, and thus is limited only by the strength of its detector generation method.

Therefore, the hypothesis of this experimental proof of concept is well supported and

should be extended.

The primary area of focus for future work should be on the development of the

SOM module for the AIS network application. The development of this module would

allow many of this project’s assumptions to be removed and would allow the AIS to

fully function as it was intended. The AIS network application is fully ready to accept

network profiles from such an SOM module, so this development can focus on the

SOM itself. The implementation details of the SOM module are not constrained by

the AIS network application, and thus the SOM module can be implemented using

any tool most suited to the task. The SOM generated profiles can be passed to the

AIS network application through any usual application communication means, such

as interprocess communication (IPC) [48]. If the developers of the SOM module

choose to implement it in Python, minimal integration effort will be required, and

the SOM can simply function as a separate thread/ process within the application.

Though the development of the SOM module will contribute mightily to the overall

goals of the project, challenges remain that will limit its efficacy and accuracy. These

challenges should be co-developed with the SOM module, as they are not logically

connected and can be developed in parallel. These challenges include coordinating

with the developers of the ofswitch13 module [38] to refine ns3::CsmaNetDevice mod-

eling to solve the L3 Subnet Problem of section 5.2.3. Rectifying this problem will

allow for a much more complex and realistic SDN network to be developed in NS-3.



54

Not only will this result in more applicable real-world simulations, but it will also

provide for a better training environment for the SOM module. Development of this

ofswitch13 module requires detailed knowledge of OpenFlow v1.3, general network-

ing concepts, and strong C++ development skill. It is possible the developers of the

module will solve this problem themselves, but it is not guaranteed.

The final workstream to be extended in the future is the development of realis-

tic and complete NS-3 service request modeling, as discussed in section 5.2.1. The

development of realistic µ values for destination terminal equipment packet service

modeling would allow for the desired real-world effects of DDoS attacks on application

servers to be modeled in NS-3 and a high analyzation resolution would result. This

modeling must be able to account for load on the server, packet protocol, available

server memory, etc. This sort of analyzation will be necessary before any potential

AIS system is fully tested, so future developers will need this capability in testing.

Development of this modeling feature requires detailed knowledge of NS-3, principles

of queue modeling and random variables, and strong C++ development skill.

Future parallel development of these three workstreams is recommended, as the

results of this paper demonstrate that a network-based AIS SDN network application

is capable of detecting and mitigating DDoS attacks in progress in cloud computing

environments.
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