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ABSTRACT

Peddinti, Seshasai Vamsi Krishna. M.S.E.C.E., Purdue University, May 2018. Smart
Shoe Gait Analysis and Diagnosis: Designing and Prototyping of Hardware and Soft-
ware. Major Professors: Mangilal Agarwal and Maher Rizkalla.

Gait analysis plays a major role in treatment of osteoarthritis, knee or hip replace-

ments, and musculoskeletal diseases. It is extensively used for injury rehabilitation

and physical therapy for issues like Hemiplegia and Diplegia. It also provides us

with the information to detect various improper gaits such as Parkinson’s disease,

Hemiplegic and diplegic gaits. Though there are many wearable and non-wearable

methods to detect the improper gate performance, they are usually not user friendly

and have restrictions. Most existing devices and systems can detect the gait but are

very limited with regards of diagnosing them. The proposed method uses two A201

Force sensing resistors, accelerometer, and gyroscope to detect the gait and send di-

agnosed information of the possibility of the specified improper gaits via Bluetooth

wireless communication system to the user’s hand-held device or the desktop. The

data received from the sensors was analyzed by the custom made micro-controller

and is sent to the desktop or mobile device via Bluetooth module. The peak pressure

values during a gait cycle were recorded and were used to indicate if the walk cycle

of a person is normal or it has any abnormality.

Future work: A magnetometer can be added to get more accurate results. More

improper gaits can be detected by using two PCBs, one under each foot. Data can

be sent to cloud and saved for future comparisons.
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1. INTRODUCTION

1.1 Introduction

Locomotion is a process by which a person moves from position to other. Humans

are able to use only two limbs to facilitate them in walking. This is because of the

evolution dating back to thousands of years. Locomotion associated with only two

limbs is generally called as bipedal. It should be noted that the human infants crawl

on all the four limbs. Slowly and gradually, they learn how to walk on two limbs. Since

walking is learn by practice, it is usually visibly different when compared. However,

the basic locomotion between all remains the same which will be discussed. Walking

is a relative term, that can be done in many ways. The way in which the foot moves

can be described as the gait or walk cycle. Walking is a type of locomotion where the

remaining body of the individual is usually kept erect or straight and facilitates in

forward or backward motion while maintaining the balance of an individual. Here, the

balance is maintained by moving one leg forward while fixing the other leg to ground.

Gait analysis has been the primary research area for many years. Analyzing the gait

and using it to detect and diagnose issues, if any, helps the physicians in understanding

the issue in the test subject with better accuracy. It has been used in the fields of

sports [1], injury rehabilitation [2], detecting of various musculoskeletal diseases, and

knee and hip replacements [3, 4]. The applications can be further extended to the

forensic departments [5] There is a bright future for usage of gait in biometrics [6].

Gait analysis can also be used for detection of issues such as Parkinson’s disease [7],

Hemiplegic gait [8] and Diplegic gait [9]. It can also be used for identity detection [10].

To better understand a human gait, the mechanics associated with the motion of the

upper limb and hips are to be discussed.
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1.2 Biomechanics of lower body

Femur is the longest bone in the human body. The joint that holds the top end of

the Femur is called as the hip joint. This hip joint creates an angle which facilitates

the motion of the body. The ideal angle made by the hip joint with respect to the

Femur is about 120-135◦ for adults. This joint helps in rotation, movement towards

body mid-line and movement away from body mid-line. The bottom end of the Femur

is connected to ankle joint. The angle formed between these two joints is about 7◦

with respect to Femur.

There are two types of forces acting at these joints; externally and internally gen-

erated. Externally generated forces are the forces acting based on gravity pull, while

the internally generated forces are the forces acting based on muscular contraction.

The bottom end of the Femur is connected to another joint called as knee joint, the

largest joints in human body. This is very complicated joint that helps in giving a

proper response based on the internally generated forces. This joint is very important

in maintaining overall balance of our body.

Tibia and Fibula are two bones which connect knee joint to another joint, the

ankle joint. This ankle joint has two other bones connected to its bottom, Talus and

Calcaneus. Talus is the top part of the foot and calcaneus is the bone that supports

the heel of the foot. The ankle joint facilitates dorsiflexion, which is the vertical

upward movement of the foot and Plantar flexion, the vertical downward movement

of the foot. Apart from this, it also helps in continuing the motions introduced by

the other two joints. This joint plays a vital role in motion of the body.

Human Gait is accompanied by two phases: Stance Phase and Swing Phase.

Stance phase is a cumulative action made by our foot while at least one part of it still

being in contact with the floor. Swing phase is the duration during which the entire

foot is not in contact with the floor anymore. A normal gait cycle consists of 60%

Stance phase and about 40% swing phase at any given cycle. Gait or walk cycle can
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be explained in many ways using different terms, depending upon the application.

The basic gait cycle can be defined by one of the two ways [11]:

1. Using old terminology: The cycle starts when Heel strikes the floor, followed by

foot flat condition, a condition when the toe and the heel are flat on the floor.

The foot stays in this foot flat condition for a period of time. This is called as

mid stance. This ends when the heel of the foot is in the air while the rest of

the foot still in contact with the surface, called heel off. Now, the rest of the

foot, including heel, but except toe are not in contact. This condition is called

toe off. Toe off becomes mid swing when the complete foot is in air. This ends

when the heel of the foot lands on the ground, thus marking the end of one

cycle.

2. Using new terminology: Initial contact to the ground is made by the heel.

Loading response is the duration during which the load slowly starts to shift

from one leg to the other, as seen in Figure 1.1. The mid stance condition is

similar to both cases. Then it enters terminal stance, a stage wherein the other

foot completes its swing phase. The selected foot now enters the swing phase

and gets ready to enter that stage. This condition is called as pre swing which

is then accompanied by initial swing. Initial swing continues till the selected

foot crosses the femur of the other foot. The selected foot then enters mid

swing. The mid swing ends when the foot is about to strike its heel to the floor,

signaling the end or termination of the swing, named aptly as terminal swing.

It can be seen that the old system provides terms closely associated with time

whereas the new system uses terms that are closely associated with force. The se-

lection of the terminology can be application specific as mentioned before. Though

the wordings are different, both systems are standard in analyzing and detecting the

gait. Apart from the discussed terms, there are still many other parameters that can

be used to detect a gait, a few of those have been discussed below:
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Fig. 1.1. Comparison of Gait terminology [12]

1. Velocity with which a person or a test subject walks plays a major role in the

gait analysis. The velocity can help in differentiate and understand whether a

person is running, walking or jumping.

2. Step length also plays a crucial role in analyzing gait better. It is the linear

distance between the selected two linear points on the line of progression from

the floor contact of opposite feet.

3. Stride length is similar to step length with the only difference being that, the

stride length is related to a single foot whereas step length is related to opposite

feet. Stride length is the linear distance between the selected two linear points

on the line of progression from the floor contact of same foot.

4. Stride or step width is the distance between two lines that would cut the distance

in two equal halves.

5. Cadence is the number of steps a person takes per unit time.

6. Stance and swing durations are the time duration when the foot is in contact

and time duration when the foot is completely in the air, respectively.



5

7. Step time is the time taken from one foot to contact the floor to the other foot

to be contacted to the floor. This is generally 0.8 seconds for a normal human

gait.

Although obtaining these values would be helpful for diagnosis purposes, these

were not directly considered to be the means of detecting the gait. The disturbance

in gait may also be caused due to aging. A continuous wear and tear tend to cause

gait issues. According to a research conducted by World Health Organization (WHO)

given in WHO Global Report on Falls Prevention in Older Age report,” 28-35% of

people who are 65 and above fall each year, and this increases to 32-42% for all the

people above 70 years of age. Also, the number of times a person falls increases with

age. Each year, 2.5 million older people are treated in emergency departments for fall

injuries. Falls are the most common cause of traumatic brain injuries (TBI). Adjusted

for inflation, the direct medical costs for fall injuries are $34 billion annually.” [13]

So, the possibility of method to rectify improper gait has been primary concern to

many researchers. There has been many ways in which the gait can be detected

by obtaining the information about one or more of the parameters discussed above.

These methods are broadly distinguished as non-wearable and wearable analysis.

Before the widespread boom of the usage of electronic devices to detect gait, a

physical therapist, unassisted by sensory data collection tools, used to analyze gait

based on what he could see. These tests, still being used, provides a set of rules and

parameters to be considered by the therapist. A few such tests are, a timed 25ft

walk where gait observations are noted [14], a Tinetti Performance-Oriented Mobility

Assessment where observations are collected as the subjects follow a sequence of

actions, such as, walking on the predefined line on the floor, turning, walk back

and sit on a chair [15], or using videotape to capture patients walking patterns and

critique their gait parameters and facets [16]. While qualitative methods can detect

abnormalities and are useful in rehabilitation and training, the role of qualitative

visual observation and its accuracy is sometimes questionable.
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There is a common misconception that gait abnormalities can be easily detected.

More to the point, visual methods typically fail to provide accurate information re-

garding the location of the abnormality and the reasons underlying it. With the

acceptance of using of electronic equipment into medical field, a large variety of de-

vices have been designed to get the output of the gait.

Fig. 1.2. Zeno pathway- an example of pressure pathway

The traditional method for gait analysis is using multiple cameras to capture the

motion of the test subject who walks on a platform which has an ability to measure

Ground Reaction Force (GRF) [17], the amount of force exerted by the ground on

the body that is in contact with it. Here, Patient walks on the platform and the

cameras records his/her motion patterns and the sensors embedded on the platform

helps us to get the data related to the force applied by the patient on to floor in

contact. However, this technique is very costly and needs trained experts to read the

data that is obtained from the platform. It cannot be used to measure more than

a single stride, making it incompetent for multiple strides. This technique cannot

be used outdoors as it requires a large area to implement it. This means that the

patient must go to a professional motion laboratory to get the gait analysis to be

done. This would be difficult for the patient and it takes a lot of time to get the data.

Also, patients feel uncomfortable due the amount of equipment that must be worn

to get the test done. There are many walk aiding robots, such as RT Walker [18],

PAMM [19], etc. However, these tools are very complex to build and are expensive

as well.
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One might ask about the role of visual observation as there is a misconception

that the gait abnormalities can be detected quite easily and since it is a main feature

of a human body, it is easy to detect such variations in gait. However, it always fails

to provide us with accurate information about where the abnormality occurred or the

reason for it. Hence, visual observation is not an ideal tool to measure gaits. Some

tools used to analyze gait often opt different types of image processing techniques.

Laser range scanner is a type of image processing gait analysis technique which uses

laser beams to analyze the gait of the test subject [20]. However, such a scanner

is very costly to build and this requires many such scanners to obtain some accu-

rate results. This furthermore increases the complexity and cost inefficiency for this

technique. Infrared Thermography or infrared thermal imaging is another image pro-

cessing technique which helps us to obtain gait information [21]. This uses infrared

energy and the equipment used to generate it is also quite expensive. To obtain more

accurate information, many such equipment need to be used as an array. Microsoft

Kinect has also been used to recognize the gait [22]. The camera sensor used in the

Microsoft Kinect has been used to detect the gait via Cellular Neural Net-work. A

comparatively cost-efficient method, this has its own limitations. It cannot be used

in real time settings as the device requires relatively dark images for better accuracy.

Though the above mentioned techniques are very accurate, they are very costly, dif-

ficult to implement and most importantly, not portable. These can be categorized as

non-wearable sensing equipment. To overcome the issues posed by these equipment,

research on effective and portable methods to detect gait have been increased. Ultra-

sonic sensors are widely used to obtain the information about various parameters of

gait [23]. Though these sensors provide accurate data, they are very expensive and

heavy (about 80grams). The use of Electromyography for gait detection has been

widely used [24]. This uses EMG signals from the limbs of a person and detects the

gait based on those readings. However, this technique requires a trained expert to

interpret the data.
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The usage of wearable devices to analyze gait is primary concentration for research

regarding this field. The reason to develop such devices is that these sensors occupy

very less space and can be used at home. At the initial stages of development of

such devices, the usage of universal serial bus (USB) cable was inconvenient for the

users [25]. However, the inclusion of wireless transmission to these sensors helped

in better freedom of movement to the individuals. These devices can usually send

information to smartphone devices [26] or a personal computer via Bluetooth, wifi or

zigbee. A number of such devices has been developed [27, 28]. However, it can only

detect a gait but not diagnose it. Though some work has been done to diagnose the

gait as well, a limited number of improper gaits could be detected by one device at a

time [29]. Hence, there is a requirement of designing a wireless device that can detect

more than one type of gait and provide a therapeutic feedback to diagnose the issue.

1.3 Organization of thesis

Chapter 2: Consists of the classification of gaits, identification of improper gaits

based on sensors, and the improper gaits selected for the prototyping.

Chapter 3: Consists of comparison of different sensors which are preexisting, rea-

son for selection of a sensor, comparison between various Micro controllers and the

reason for selecting the one to be used in this thesis. It also discusses about the

importance of BLE module.

Chapter 4: Discusses about the software implementation, Keil interface, analysis

of different drivers used and working of the proposed code with nrf52 base station. It

also discusses about the setup and working of sensors and BLE module.

Chapter 5: Discusses about the hardware prototyping and design. This chapter

explains about the Custom Printed circuit boards designed and the criteria considered

in finalizing the PCB. It also talks about the reason to select EAGLE as the primary

tool to design the PCB. It talks about selection of certain types of integrated circuits

and the reason to place it.
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Chapter 6: Talks about the steps taken to make the custom PCB designed to

work. The issues and the solution steps taken were discussed in it.

Chapter 7: Talks about results. It explains all the results obtained and how it is

useful for this particular thesis. It also discusses about the overall impact the work

done has for the field of Gait.

Chapter 8: Talks about discussions and future work. It further talks about the

future implementation of the work done. It explains about the work that can be done

on this project to make it more developed in the future.

Chapter 9: Talks about conclusions which briefs about the work done in this

thesis.
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2. CLASSIFICATION OF GAITS

There are a number of improper gaits caused due to multiple factors such as

musculoskeletal or neurological issues. In this chapter, various improper gaits are

discussed in detail and the concept used to detect and analyze the selected gaits has

been described.

2.1 Gait associated with Parkinson’s disease

Parkinson’s disease is a type of neurological brain disorder which leads to slow

and jerky motion of the body. According to a report by parkinsons.org, this disease

is generally observed in people above the age of 60 [30]. It is also the 14th leading

cause of death in United States. The jerkiness is caused due to the gradual loss of

motor control. Gait associated with this disease is generally called as Parkinson’s

gait or parkinsonian gait. The Figure 2.1 shows the gait of a person suffering from

Parkinson’s disease.

A person suffering with this gait usually leans the upper body forward and drags

the feet in swift motion. In normal gait, the heel contact occurs which is continued

by toe off. However, in Parkinson’s or Parkinsonian gait, the gait mostly consists of

foot flat condition [31]. Analyzing the flat foot condition will help in detecting this

abnormality of the gait.

2.2 Gait associated with Hemiplegia

Cerebral palsy is a brain disorder that occurs due to a damage in a part of the

brain that controls muscles. Hemiplegia is a type of cerebral palsy that effects one

vertical side of the body. This is not a progressive disease and hence, detection at
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Fig. 2.1. Person suffering from a Parkinson’s Disease [32]

an early age helps in providing a possible cure. A gait associated with this disease is

called hemiplegic gait.

Person suffering from this gait generally tend to move the foot of the effected

side away from the body in a circular motion. Using accelerometer and gyroscope to

detect this deviation away from body helps in this gait diagnosis [8]. The following

image explains the gait cycle of a Hemiplegic gait.

2.3 Gait associated with Diplegia

Diplegia is another type of cerebral palsy which is similar to Hemiplegia. The

only difference between these two brain disorders is that, Hemiplegia effects only one

vertical side of the body whereas Diplegia effects both the vertical sides of the body.

Just like Hemiplegia, this disease can be cured with early detection and physical

therapy. A gait associated with this gait is called as Diplegic gait.
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Person suffering from this gait generally tend to move both feet away from the

body in a circular motion. Just like Hemiplegic gait detection, an accelerometer and

gyroscope on each foot can be used to analyze this gait [33].

2.4 Gait associated with Ataxia

According to National Ataxia Foundation, Ataxia is a regenerative neurological

disease that can affect any age group [34]. This is a degenerative disease that re-

stricts normal bodily movements. About 150,000 people are affected by it every year

in United States. This type of disease cannot be cured with physical therapy and

research for cure is still under progress. Gait associated with this disease is called

Ataxic gait.

Fig. 2.2. Person suffering from Ataxia [35]

Person suffering from this gait generally tend to show wide range of gait abnor-

malities such as inability to balance, and difficulty in walking. This causes difficulty

in detection of it via wearable devices as it needs a definitive boundary condition to

analyze. The Figure 2.2 details about Ataxic gait.

2.5 Neuropathic Gait

In this gait, the person has difficulty in dorsiflexing the foot. This means that the

vertical upward movement of the foot cannot be facilitated by the person. Here, the
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foot is raised high before dropping it on the floor in foot flat condition. This is also

called steppage or high stepping gait. This type of disease can be cured with regular

physical therapy.

This gait can be detected by large pressure signals a heel and toes due to quick

foot droppage.

2.6 Myopathic Gait

According to the National Institute of Neurological Disorders and Strokes, My-

opathy is a neuromuscular disorder that leads to muscle cramps and stiffness [36].

Myopathy are usually inherited or acquired. Treat for myopathy is dependent on its

type. Common treatments include surgery or physical therapy. This disease may be

progressive or fatal.

Fig. 2.3. Example of a Neuropathic Gait [37]

Gait associated with myopathy is called Myopathic gait. This occurs due to

inability to stabilize the pelvis when the foot is lifted. Here, the body moves towards

the right side when left foot is put forward to maintain stability. Similarly, the body

moves towards the left side when the right leg is put forward to maintain the stability.

This results in waddling motion.

This can be detected using motion sensors placed on the hips to detect the tilt in

the body.
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2.7 Choreiform Gait

Hyperkinesis is a term used to describe heavy and uncontrollable body movements

associated with jerks and stiffness. This is one of the most common childhood psychi-

atric disorders [38]. It is also associated with Attention deficit hyperactivity disorder,

also known as ADHD.

The gait associated with it is called as Hyperkinetic gait or Choreiform gait or

Chorea. Due to its very irregular, jerky and involuntary movements of the upper and

lower extremities, it is very difficult to detect this gait via wearable devices.

2.8 Gaits associated with Injury

Gait analysis plays a major role in injury rehabilitation, especially in the field of

sports and athletics. Gaits related to different injuries show different results. Injury

to knee or hips usually leads to very slow walking motion. Injury to foot leads to less

air time for the affected foot. Usually, the injured person tends to avoid contacting

the floor with the injured apart of the foot.

Detection can be done based on the part of the foot, heel or toe, that is not in

contact in the entire gait cycle. Depending on the application, sensors are selected

based on the gaits that can be detected properly. Table 2.1 informs about the type of

gait, case proposed to its possible detection and proposed sensors that can be used.

Chapter 3 will deal with the information about different hardware components

used and the reason behind selection of each sensor was discussed in detail.
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Table 2.1.
Comparison between different Gaits

Name of the abnor-

mal gait

Case proposed for possible

detection

Proposed Sensors

used to analyze it

Parkinsons Gait Continuous foot flat condition Pressure sensors used to

analyze it

Hemiplegic Gait Circular motion when in air Accelerometer and gyro-

scope on foot

Diplegic Gait Circular motion when in air Accelerometer and gyro-

scope on both feet

Ataxic Gait Inability to balance, and diffi-

culty in walking

Difficult to detect

Neuropathic Gait High pressure readings during

foot flat condition

Pressure sensors

Myopathic Gait Waddling motion Motion sensors at hips

Choreiform Gait Jerky involuntary movements Difficult to detect

Gaits due to Injury Injured part of the foot not in

contact

Pressure sensors
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3. HARDWARE SELECTION

As discussed in the previous chapters, we require two types of sensors, namely,

pressure sensor and inertial measurement unit sensor, i.e, accelerometer and gyroscope

to get the readings from the gait of the test subject and analyze the output. A pressure

sensor is required to get the readings regarding the pressure applied by foot which in

turn helps in analyzing the human gait. There are a wide range of methods to detect

the information obtained from sensors [39–41].

3.1 Pressure sensors

There are different types of pressure sensors, broadly divided into two types: the

sensors which provide information based on the force applied, and the electronic sen-

sors [42]. Electronic sensors generally use properties of the material that is based on

thermal conductivity or ionization. These sensors are generally heavy when compared

to sensors that work related to force applied. Also, these work for relatively lower

pressures and are quite expensive, hence, force-based sensors are preferred. There

are several such sensors available in the market. The difference in these sensors are

based on the method opted by the sensor to collect the force related values. Though

these have high precision, these sensors have restricted sensing capabilities and bulkier

making it difficult to embed it on the shoe insole.

Force sensitive resistors are a type of sensors whose force can be recorded by

varying its resistance. This can also be called as pressure sensitive resistors as, the

data obtained from this sensor is taken from the its active sensing surface on which

the force is applied. These slim and flexible sensors generally consist of four different

layers, an electrically insulating plastic, an active area, plastic spacer and flexible

substrate. These are not as accurate as other force-based sensors, but its slim size
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and flexibility overcomes the drawback [43, 44]. Hence, Force sensitive resistors, also

called as FSRs, are used as the pressure sensors for the project. For this thesis,

Flexiforce A201 sensors have been selected as the sensors to detect pressure [45]. It

is a FSR that can detect up to 450N of force.

Fig. 3.1. Placement of FSRS(Blue) and Motion sensor(Red) on the foot

The placement of these sensors plays a major role in getting the desired output.

The bottom part of the foot is divided into three different sections as shown in the

figure, forefoot, midfoot and hindfoot. Forefoot consists of the toe bones and metatar-

sus, a group of bones between ankle and toes. Midfoot consists of bones supporting

the arch on the foot. The hind foot consists of heel bone and direct contact with
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ankle joint. Figure 3.1 shows two FSRs placed at 1st metatarsal region and at the

heel bone along with the motion sensor placed closed to heel.

3.2 Inertial motion sensor

The angle at which the foot lands gives more information about gait and hands

in the ability to analyze the data much better [46, 47]. The data from accelerometer

and gyroscope gives us roll and pitch. The data from magnetometer gives us values

of yaw and provides us with accurate roll and pitch values. Hence, the usage of all

three components is suggested. However, for the present application, roll and pitch

values are enough to determine the required results.

The most commonly used and cost efficient IMUs currently available are IvenSense’s

60x0 series [48]. This 60x0 series consists of two different types, namely, 6000

and 6050. These are also called motion processing units, in short, MPU. It con-

sists of accelerometer and gyroscope. The major difference between these sensors is

that MPU6000 works well for higher speed updates whereas MPU6050 is relatively

slower [49]. There is another MPU in this series, MPU6500. This transmits data at

very high frequency when compared with MPU6500, meaning that, its sensitivity is

very high. It should be noted that all these MPU are of 6 degrees of freedom, 3 for

accelerometer and 3 for gyroscope.

There is also MPU9x50 series, which has an added magnetometer in addition to

accelerometer and gyroscope. MPU9150 has MPU 6050 with AK8975 compass [50].

This is a 9 degrees of freedom Motion processing unit, with 6 for MPU6050 and

3 for AK8975 compass [51]. MPU9250 is another MPU which uses MPU6050 with

AK8963 [52,53]. This gives better resolution and better accuracy when compared with

other MPUs. MPU9250 has been selected as the Motion sensor for this application.

It can be placed anywhere on midfoot or hindfoot.

Using FSRs and Motion sensors, the human gait can be detected in various meth-

ods [54–57].
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3.3 Mode of Communication

The data obtained from the above specified sensors needs to be scrutinized and

processed. This processed data needs to be sent to the mobile device or desktop

via BLE or Zigbee or Wifi. So, it is necessary to compare these three methods of

communication and get the desired output. Table 3.1 compares the various popular

modes data transmission [58,59].

Table 3.1.
Comparison between modes of communication

Bluetooth

Low Energy

Near field

communica-

tion(NFC)

ZigBee Low Power

WiFi

Frequency About 2.5GHz 13.56MHz About 8MHz

or 2.5GHz

About 2.5GHz

Max po-

tential data

rate

1Mbps 425Kbps 250Kbps 54Mbps

Range 10m 10cm >100m 30m

Complexity Complex Simple Simple Complex

Power pro-

file

Days Months to

years

Months to

years

Hours

Modulation GFSK ASK BPSK and

QPSK

64QAM

BLE or Bluetooth low energy works at a very high frequency compared to other

methods. It also has a decent data rate but has lower range when compared with

ZigBee or WiFi.
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Also, the power profile is very low for BLE. NFC, as the name suggests works well

only when it the device is within 10 cm. This is a simple system and lasts relatively

very long but has lower data rate and limited range also poses a challenge.

ZigBee has a very flexible frequency range when compared to other means of

communication. This lasts for a very long time, probably for years. This is very

simple system with a range greater than 100 meters. However, it has the lowest data

rate when compared to others at a mere 250Kbps.

Low power WiFi has the maximum data rate of all the four suggested methods.

With a decent range of 30 meters, this complex system has its fare share of drawbacks

as well. This has the highest power consumption when compared to others.

BLE is selected as the preferred means of communication. Though its range is

not as good as ZigBee or WiFi, 10 meters will be sufficient for the project. Also, its

power profile completely beats out WiFi. However, ZigBee lasts almost a year to the

BLE that lasts for a few days. However, ZigBee has a very low data rate. With about

four times better data rate than ZigBee, it stands out as the winner between these

three. On the other hand, NFC has very good power profile, on par with ZigBee.

Data rate is about 425Kbps, relatively bad but better when compared with ZigBee.

However, the major drawback of this mode is its range. For our defined application,

10 cm cannot be an ideal range. Hence, BLE is our clear winner here.

3.4 Microcontroller

The mode of communication or data transfer is selected as BLE. Now, a micro-

controller that has BLE embed in it is to be used. Nordic semiconductors and Texas

instruments provide a wide range of such required microcontrollers. nRF series by

Nordic semiconductors and CC series of Texas instruments are widely used as BLE

microcontrollers for several applications. In Nordic semiconductors, nRF series is

broadly distinguished as nRF51 and nRF52 series [60, 61]. The difference between

the two systems was detailed in Table 3.2.
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Table 3.2.
Comparison between nRF51 and nRF52

nRF51 nRF52

CPU ARM Cortex -M0 ARM Cortex-M4F

Flash memory 256KB 512KB

RAM 32KB 64KB

Clocks Internal RC Oscillators PLL

Serial interface 2x I2C master 2x I2C master/slave

2x SPI master/1x slave 3x SPI master/slave

1x UART CTS/ RTS 1x UART CTS/ RTS

No I2S 1x I2S

No PDM 1x PDM

1x QDEC 1x QDEC

3x (8/16/32) bits TIMER 5x 32 bits TIMER

Supply voltage 1.8-3.6V 1.8-3.6V

Gpio 31 32

Current 0.6uA when system off

2.6uA when system on

0.4 uA when system off

1.6uA when system on

With a powerful CPU of ARM Cortex M4F, better flash memory storage and

RAM, nRF52 beats nRF51 in every field discussed above. Table 3.3 compares this

with the most famous of Texas Instruments CC series, CC2640 [62].

With better core CPU, flash memory, RAM and lower power consumption, nRF52,

is clearly better than CC2640. Though the sensitivity of CC2640 is overcoming its

minor drawback, and therefore, the high sensitivity of nRF52 features the work.

nRF52832 is the microprocessor used within the the nRF52 micro-controller sys-

tem. It has the same configuration as discussed throughout in addition to its ability
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Table 3.3.
Comparison between CC2640 and nRF52

CC2640 nRF52

Company Texas Instruments Nordic Semiconductors

CPU ARM Cortex -M3 ARM Cortex-M4F

Flash memory 128KB 512KB

RAM 20KB 64KB

Current RX/TX 5.9mA/6.1mA 5mA/4.6mA

TX power +5dBm +4dBm

Receiver Sensitiv-

ity

-97dNm -96dBm

to access near field communication along with BLE, and this makes it more attractive

to use.
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4. SOFWARE IMPLEMENTATION

4.1 Introduction

In this chapter, the software implementation of the design will be discussed in

detail. nRF52 has been selected as the MCU to get the desired output. nRF52

development kit is taken as the base station for this research work. This has both

NFC and BLE.

The programming of nRF52 can be done on three major platforms, mbed os,

Eclipse and Keil MicroVision. Though the code can be executed on mbed os, it is

still in development for nRF52. Due to the extensive available library components

that enable the user for proper design with flexibility, Keil µvision it was selected as

run time environment [63]. Before discussing the code, it is important to understand

about a few concepts exclusive to nRF52. Most of the coding is done using C language.

According to Nordicsemis infocenter [64], A SoftDevice is a wireless protocol stack

library for building System on Chip (SoC) solutions. These precompiled binary files

work based on the wireless protocol specifications, so that what it needs is creating

the application. This further helps in providing run-time memory protection, a way

to provide access right to the system to modify or control the flow of it. This helps

the run time environment, Keil, to use the memory allocated to the specific function

without accessing the memory not allocated to it. SoftDevices also provides safety to

the smallest programming instructions, called threads. In short, the SoftDevices act

as the platform that helps the system to understand the usage of a program and its

applications. The application of a SoftDevice is declared by the user via the header

files. This declaration helps the computer to understand the specific application of

nRF52 that is used in this study. Figure 4.1 shows the nRF52 development kit that

was used.
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Fig. 4.1. nRF52 Development Kit

There are a wide range of such SoftDevices available in Nordisemi directories.

nRF52 pca10040 development kit is being used as the base station. So, S132 SoftDe-

vice, a BLE specific stack solution is used. This SoftDevice has a complete BLE5.0

compatible stack, Master Boot Record for over-the-air device firmware update, sup-

port for external power and low noise amplifiers as its key features. The use of Master

boot record is that the SoftDevice, application and bootloaders can be updated sep-

arately with ease.

For this, a software development kit, also called as SDK, was downloaded onto

the computer. nRF SDK v11.0.0 was used for this application. This SDK supports

S132 v2.0.0 SoftDevice. To start the device, ”J-Link OB-SAM3U128-V2-NordicSemi

170724.bin” is dragged and dropped after bootloading the device. The device is then

shut down and turned on. Now, the following dialog box shown in Figure 4.2 pops

up, indicating a successful bootloading. Now, a command line tools executable needs

to be installed from nordicsemiconductors page. This command line tool is called as

nrfjprog, a tool used to program via Command Prompt [65]. To verify if it is working

properly, path at user defined variables needs to be set at as shown in the Figure 4.3

and Figure 4.4 as per [66].
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Fig. 4.2. nRF 52 in JLINK mode

Fig. 4.3. Loading nRF52 with SoftDevice via nrfjprog

It is located under environment variables, available under control Panel->System

Properties->Advanced->environment variables. Using the two codes as specified in
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Figure 4.3, the SoftDevice hex file is loaded into the development kit.

–family informs about the board family. This is defined by the user as nrf52.

–program command requires the location of the hex file on the system. This has to

be defined correctly, else an error pops up.

Fig. 4.4. Path at user defined variables

SDK already has all the applications related to the board used. When a keil

project is opened for a specific application, A pop up asks for installation of all the

different software required. This provides the Keil with all the required header files

located at a single place. Figure 4.5 shows the working project when opened.

It has many folders in it. Importance of each such folder is discussed below.

1. Application: This folder has the main code in it. Any additional required codes

that might be useful can be added here.

2. nRF Drivers: This folder has the codes related to various drivers that would be

declared in the project.
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3. nRF Libraries: This has all the common libraries that used to call up drivers.

4. nRF BLE: This consists of the codes that assist in working for a specific appli-

cation, like Bluetooth Low Energy.

5. Board Support: This has the codes that inform the system about pin allocation

and declaration.

6. nRF SoftDevice: This has the code that handles SoftDevice. This is a manda-

tory folder for any project.

7. Seggerfiles: This consists of SeggerRTT, Segger real time transfer. This can be

used to check the output via Real Time Data Transfer.

8. CMSIS: Cortex Micro controller Software Interface Standard is a vendor inde-

pendent hardware abstraction layer for ARM cortex processors. Declaring it

helps the system to realize that the board has a cortex micro controller and

needs to be communicated in a way it understands.

9. Device: This specifies about the type of the device used. For the selected board,

it should be nrf52.

4.2 Analog connections to motion sensor and FSRs

nRF52832 has 8 analog pins as show in the Figure 4.6 [67]. For normal Micro-

controllers, I2C communication protocol is most commonly used for data transfer

between one or more masters and multiple slaves. It is used to communicate data be-

tween short distances within the same device. This requires only two signals to send

or receive information. This is comparatively better than Serial Peripheral Interface,

also known as SPI, which uses more number of pins leading to wastage of space and

complex circuitry.

SPI and I2C exist in nRF52 board. Though SPI remains the same, I2C is generally

called as TWI. TWI is the abbreviation for Two Wire Interface. This is to avoid the



28

Fig. 4.5. Keil working interface

issues of copyright as the I2C is affiliated with NXP, Texas Instruments and Intel.

TWI is defined for Atmel processors. The working is almost similar between these

two protocols, with the basic function being the communication of data between

master/masters and slaves. The basic working of a TWI setup is explained in figure

4.7.

For capturing the information of the motion sensor, MPU9250, TWI is used. As

specified in the figure above, pins 25 and 26 of the micro controller, namely, SWDCLK

and SWDIO are connected to SDA and SCL of the motion sensor. Also, to understand

if there is a flow of the data from the motion sensor or not, INT pin from Motion

sensor is connected to MCU. INT pin is the interrupt pin, that sends active high

signal if the motion sensor is active. Else, it sends active low signal that the data

being sent is not from the motion sensor.

In nRF52 development board, the SDA and SCL for the motion sensor is connected

to P.04 and P.03. Interrupt is connected P.05. It should be noted that the maximum

voltage of this sensor is about 3.3V. This is well within the supply voltage of nRF52
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Fig. 4.6. nRF52832 pin assignments [67]

development kit. So, VDD of the MPU is connected to VDD of the development

board. Also, MPUs ground is connected to the ground of the board. This sets up the

required hardware connections for MPU.

As explained in the previous chapters, Flexiforces A201 has been selected as an

FSR to be used. This is an analog sensor that gives force as an output by varying

resistance. SAADC is the abbreviation for Successive Approximation Analog to Dig-

ital Converter [68]. The output from this analog sensor is sent to the SAADC and
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Fig. 4.7. TWI Master Slave block diagram [67]

the output is obtained. It is worth noting that the SAADC provides a wide range

of options related to resolution, gain and oversampling conditions. Resolution can

be 8-bit or 10-bit or 12 bit or 14 bit. Gain variation is an important key feature of

SAADC. The gain can be varied as 1/6, 1/5, 1/4, 1/3, 1/2, 1, 2 and 4. Oversampling

is another feature provided by SAADC. The user can bypass this feature or use it from

over 2x to over 256x. Usage of oversampling increases the overall noise performance.

The input is sent via analog channels, generally called as analog inputs. There

are two types of modes in which information can be passed via these channels from

the sensors:

1. Continuous mode: In this mode, the values are sampled individually, one after

the other. Hence this is called as on-shot mode or continuous mode. The data

received is easier to manipulate in this mode.

2. Scan mode: In this mode, multiple channels send the output at once. This is

generally difficult when multiple analog channels are used. Due to the difficulty

in controlling the data received and the necessity to use multiple channels, this

method is not preferred.

Due to the ease in handling of the analog data, continuous mode is selected.

Also, the analog inputs can be differentiated as eight single ended inputs or four

differential inputs or combination of both. Single ended inputs are those whose voltage
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is measured between VDD and a common ground. For example, if there are 20

single ended inputs, there will be 20 VDD or HIGHs and only one ground or LOW.

Differential inputs are used when there is a requirement to compare voltage between

HIGH and LOW. For an analog sensor used in this particular application, Single

ended inputs would be sufficient to obtain the required accuracy. Also, Single ended

inputs, also called as SE, are simple and easier to install.

Conversion of analog signals to digital signals follow:

RESULT = [V (P )− V (N)] ∗GAIN/REFERENCE ∗ 2(RESOLUTION−m) (4.1)

Where,

V(P)= Voltage at input P

V(N)= Voltage at input N

Gain= Gain set for the analog channels

REFERENCE= Reference voltage

m=0 if CONFIG.MODE=SE

m=1 if CONFIG.MODE=Diff

For the discussed setup, as given in (4.1), V(P) is the analog output obtained from

the sensor, V(N) is the ground and hence it is taken as Zero. GAIN is dependent on

the user and REFERENCE is selected as 5V. Finally, m =0 as we have assumed that

the readings are related to single ended mode. Since three of the seven Analog pins

are taken by TWI, P.02 and P.31 are selected as the analog pins for the FSRs.

4.2.1 Data Collection

To get the data from the FSRs, SAADC needs to be is to be informed with the

working environment, Keil. There are a few key points that are necessary to achieve

the working code. After downloading the SDK, activate the packet installer and select

Nordic Semiconductor. This is also followed by activating the nRF52832 xxAA and

downloading the required modules. This will also install the preexisting examples

which includes SAADC, TWI and BLE template.
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Uploading the SAADC example gives the basic head start towards the working of

it. This has several predefined libraries. As explained before, the nRF Libraries has

the basic required libraries for any program to run under Keil interface.

Header files and c files are available in it. Header files give the declaration required

whereas c files give the working function available for the user to call. App error and

app fifo files help the working environment in handling the information based on the

application. App util platform verifies the compatibility of the SoftDevice with the

program. Nrf assert deals with the ability to reset the device when the user requests

it. Retarget helps in communicating or modifying the attributes of the board.

nRF Drivers gives the access to Keil related to many drivers readily available

in SDK. The drivers have to be defined in the nRF Drivers folder before calling its

function. All the drivers were based on [69]. Apart from the previously discussed

drivers, the important drivers are:

1. Nrf drv common: This driver has all the common definitions that are used in

the other drivers. This plays a crucial role in providing a proper pathway to

various drivers. This file is a mandatory one and contains information about

interrupt request handler, SPI, TWI and SoftDevice verification.

2. Nrf delay: This helps in providing a delay in data reception. This works well

when there is a lot of data being sent in few seconds. Using functions such as

nrf delay ms() will help in delaying the output received by a given amount of

time in seconds.

3. PPI driver: Programmable Peripheral Interconnect, also called as PPI, helps

in autonomous communication between peripherals via tasks and events. This

is done while being completely independent of the CPU. It has a mechanism

through which one task can be triggered due to an event in another peripheral

which are not mutually exclusive. This synchronization is done using an internal

clock which can be delayed till 52MHz. This driver plays a major role in sending

and synchronizing information from FSRs.
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4. TIMER: This can usually operate in two modes, as a timer or as a counter.

Its base frequency is generally 16MHz. This driver is used to synchronize when

PPI is called. It also can be used with any other driver to send information

or data at a selected frequency. TIMER implements multiple capture/compare

registers. This helps in allowing the user to time and control various events

being called by various drivers. There are 5 TIMER components available,

namely, TIMER0, TIMER1, TIMER2, TIMER3, and TIMER4. TIMER0-2

has 4 CC registers (CC [0..3]) and TIMER 3-4 has 6 CC registers[0.5]. For

the selected application, TIMER0 has been selected to be used. There are two

major tasks performed by these drivers:

(a) Capture: Capture task helps in saving the values in a counter at CC[n]

register.

(b) Compare: This is generated whenever the counter is incremented and be-

comes equal to the value specified in one of the capture compare registers.

Then, both the values are compared on the basis of bits.

5. GPIOTE: This is a General Purpose input output Tasks and Events that pro-

vides the access to the existing GPIO pins. We can set, clear or toggle these

pins at rising edge or falling edge or any given change of input conditions.

6. PSTORAGE: Persistent data storage is a tool that is used for BLE. This helps

in storing the exchanged information such as bond identification, GATT Server

configuration, and/or GATT Server attribute handles.

7. UART: Universal Asynchronous receiver/transmitter, also called as UART. It

plays a major role in transfer of data. There are four different UART pins

which help in accessing the resources. RXD and CTS are the input UART pins

whereas RTS and TXD are output UART pins. Transmission occurs when the

TXD register is written with the information meant to be transmitted. When

CTS is deactivated, transmission stops and resumes when it is activated.
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4.3 Working of SAADC/FSRs

4.3.1 Basic Setup

FSR A201 has three pins to facilitate analog data reading. However, the middle

pin does not have any functionality other than providing the balance when it is placed

on a breadboard vertically. Hence, the middle part of it is removed using a wire cutter.

The comparison can be seen in Figure 4.8.

(a) Three pin A201 (b) Two pin A201

Fig. 4.8. Comparison between three pin and two pin FSRs.

After setting up the project with drivers, libraries, board support, CMSIS and

device folders, the project is ready with the basic setup. The basic SAADC code

has a few preexisting functions that must be used to get the output. These include,

a function to handle the UART events (uart events handler), a function to initialize

UART (uart init), and a function to handle the timer (timer handler).

SAADC event sampling is initiated via the function, saadc sampling event init.

This function calls PPI in it and verifies it using app error function. Calling PPI helps

in initializing different peripherals at the same time. This is done to accept the BLE

module that we would be adding later. TIMER is another driver that is called for

synchronization purposes. This is done to compare the results at 400ms. TIMER0 is

allocated for SAADC. After this is done, PPI channel is then setup to inform that the

timer compares event triggers sample task in SAADC.A final assignment and verifica-
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tion of the PPI channels and TIMER has been done using app error. Further, SAADC

channels are allocated to PPI channels via saadc sampling event enable function.

Saadc init is used for primary initialization of the SAADC channels. Two analog

channels which are single ended are initialized for analog inputs, P.02 and P.31. These

pins are declared as NRF SAADC INPUT AIN0 and NRF SAADC INPUT AIN7.

The following two lines help in declaring the above two pins:

nrf saadc channel config t channel 0 config =

NRF DRV SAADC DEFAULT CHANNEL CONFIG SE

(NRF SAADC INPUT AIN0);

nrf saadc channel config t channel 1 config =

NRF DRV SAADC DEFAULT CHANNEL CONFIG SE

(NRF SAADC INPUT AIN7);

After these declarations are done, app error is used to verify proper initiations.

Now, the calibration is done using the following commands,

NRF SAADC->TASKS CALIBRATEOFFSET = 1;

while (NRF SAADC->EVENTS CALIBRATEDONE == 0);

NRF SAADC->EVENTS CALIBRATEDONE = 0;

while (NRF SAADC->STATUS ==

(SAADC STATUS STATUS Busy <<SAADC STATUS STATUS Pos));

The values obtained from the analog channels are sent into a buffer. A constant

was added to the code in order to set the value of the buffer and enhance the system

accuracy. SAADC SAMPLES IN BUFFER is used to define the number of values

that a buffer can store while processing data from analog input or channel. For two

channels, this is selected as 2. The analog value from channel 0 goes to buffer pool

[0] and the output from channel 1 goes to buffer pool [1]. The modification to the

output received from analog channel is done in SAADC callback function. Here, first

analog pin value is stored in buffer [0] and second analog value is stored in buffer

[1]. P event is used to note the event that has taken place. Using p event, data from

buffer is extracted individually and it is done as follows:
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p event->data.done.p buffer[0]

p event->data.done.p buffer[1]

Sometimes, these analog channels produce outputs less than 0. So, in order to

remove the possibility of error, values above or equal to 0 were only considered. Now,

these analog values are to be converted to be converted into pressure readings using

code available in [70]. Here, VCC/VDD is taken as 5V. This is because the voltage

received from the USB to the board is about 5V. R DIV is the resistor value used to

provide linearity to the circuit. It is taken as 10 KΩ resistor.

There is another way of declaring analog channels. The alternative declaration

can be done without using buffers. The analog values can be directly sent to UART.

Using saadc values, declaration can be done as follows:

static nrf saadc value t adc value 0;

static nrf saadc value t adc value 1;

It can be said that p event->data.done.p buffer[0] is equal to adc value 0. In other

words, adc value 0 is the direct declaration of p event->data.done.p buffer[0]. The

force is obtained from the sensors with follow the equation:

fsrV 1 = p event−>data.done.p buffer[0] ∗ V CC/1023.0 (4.2)

where,

fsrV1= Voltage reading of FSR1

p event->data.done.p buffer[0]= Values from analog channel at pin P0.02

VCC= 5V

Here, the resolution is selected as 10 bits by default, and hence the value of 1023

which is 210.

Similarly,

fsrV 2 = p event−>data.done.p buffer[1] ∗ V CC/1023.0 (4.3)

where,

fsrV1= Voltage reading of FSR1
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p event->data.done.p buffer[0]= Values from analog channel at pin P0.31

VCC= 5V

To convert analog values to pressure readings, we go through the A201 FSRs

linearity with respect to increase in force. This linearity can be differentiated as

two parts based on the resistance acting. The following is the code that helps in

accomplishing the required task:

fsrR = R DIV * ((VCC / fsrV) - 1.0);

float fsrG = 1.0 / fsrR;

if (fsrR <= 600)

force = (fsrG- 0.00075) / 0.00000032639;

else

force = fsrG/ 0.000000642857;

where,

fsrR= Force resistance

fsrG= Force conductance

Force = force generated by the sensor with respect to acceleration =1m/s2

We know that the Pressure is equal to force per unit area. Pressure is calculated

from this force readings as follows:

Pressure = Force ∗ 100 ∗ 100/185. (4.4)

This gives pressure in Pa. We need the pressure in KPa. So, we divide it with 1000

and multiply with 10m/s2 which the acceleration is due to gravity. This gives,

Pressure = Force ∗ 10 ∗ 10/185. (4.5)

where,

area of the shoes sole is considered as 185cm2 for a shoe size of 7 US.

The output now obtained are pressure readings.These pressure values cans beused

to detect gait [71–73]. In the main function, saadc sampling event init(), saadc init()

and saadc sampling event enable() were called. SAADC can be accessed in two dif-

ferent ways. The only difference between these two ways is the sampling rate. While
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direct declaration using adc value 0 gives synchronized data rate with respect to TWI

drivers, declaration using buffers need external synchronization.

4.3.2 Data Collection

The output data is collected from UART via Tera Term and sent to MATLAB

for data processing. Like discussed before, SAADC has two major properties, over-

sampling and gain. Varying the oversampling rate will take all the values in the

buffer, readings from sensor1 and sensor2, and averages the cumulative readings. This

will not serve the purpose as the readings of the sensors are to be taken separately.

Hence, oversampling is not considered here. Gain is an important parameter used to

vary the output based on our needs. Gain of an analog channel can be changed at

nrf drv saadc.h header file. In the definition at ”nrf drv saadc default channel config

SE” gain can be changed based on our requirement.

The smoothening technique uses the moving average filter to get a proper output.

This is done via MATLAB to understand the peak possible values for a normal gait.

It is important to note down the criteria followed during the data collection from

a test subject:

1. The data is taken from a shoe placed on a flat surface.

2. The test subject was asked to walk at a slow but comfortable pace.

3. The test subject was a 60 kg and has a shoe size of 7 US. This is done to get the

minimum possible peak values such that it can be used for other shoe sizes as well.

To test the working of an FSR at pressure readings about 150KPa, a COMSOL

output has been verified. The pressure readings obtained were used to provide the

base cut off for the FSRs during analyzing of the gait.
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4.4 Working of MPU

4.4.1 Basic Setup

To the above code, let us add the working code of an MPU as well. There are a few

preexisting files available to be used as the basis for MPU functionality [74]. These

files are used to make the MPU work with respect to TWI driver. There are a number

of files that describe it registers, application and, working and declaration with respect

to TWI driver. It has definitions for configuration of MPU (mpu config), configuration

of its interrupt pin (mpu int config pin), enabling of interrupt, and initiation of MPU.

Apart from the above functions, reading the accelerometer and gyroscope can be

done via app mpu code. These functions access the MPUs registers handling the

accelerometer and gyroscope values. It also has magnetometer definitions but are

not used in this application. Nrf drv mpu twi code is used to define pins of MPU to

nRF52 development kit.

Pins P0.03 and P0.04 are used as analog pins receiving SCL and SDA. Accelerom-

eter and gyroscope can be selected from a wide range. The range can vary from 2G,

4G, 8G, and 16G. It is generally known fact that lower the value of g, higher the

sensitivity. So, 2G and 4G are generally used to detect the very small variations.

So, 16G is selected as the accelerometer range for this design. This is because the

accelerometer need not be very sensitive for the application as it leads to complex

readings at simple movements. Gyroscope can vary from 250DPS, 500DPS, 1000DPS

and 2000DPS. 2000DPS is selected for this design. This is because the higher the

DPS values, the less sensitive the device becomes with smaller variations.

Figure 4.9 shows the MPU9250-motion sensor used in the design. TWI driver

is added to the existing code. Now in the main code, mpu setup function is called.

This function is used to initialize the MPU driver by verifying its initiation via app

error. The configuration of the MPU is also done here. In the configuration table,

several parameters can be changed depending upon users comfort. Accelerometer and

gyroscopes values in x, y and z directions can be stated here with the users preferred
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Fig. 4.9. MPU9250-motion sensor used

selection. Here, values 0 are taken for all the 6 degrees of freedom available to get

accurate values. Sample rate can also be modified here using p mpu config.smplrt div

where p mpu config is the structure based on mpu config and smplrt div is the sample

rate divider. Here, sample rate is calculated as:

SampleRate = GyroscopeOutputRate/(1 + SMPLRT DIV ) (4.6)

where,

Sample rate is the number of samples sent per second.

Gyroscope Output Rate is the DPS selected for the application.

SMPLRT DIV is the sample rate divider which can be modified by the user to get

the desired sample rate.
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4.4.2 Interrupt Handling

After the configuration of accelerometer and gyroscope is done, interrupt pin is

configured and enabled. This is triggered whenever new information is sent from

the MPU. This interrupt pin is set as true via interrupt pin handler function. The

enabling of the interrupt pin is checked using GPIOTE function. GPIOTE function

has to verify if this interrupt pin is high or not. However, there is a high possibility

of other drivers to activate GPIOTE pins before the function triggers it. Multiple

initiations causes the device to hardfault. In order to avoid such issues, the GIPOTE

pins are initiated only when the nrf drv gpiote is init() == false. After verifying it

using the GPIOTE pins, the GPIOTE driver sends information to the system saying

that the interrupt pin is active or not. Finally, in the main code, mpu setup is called.

4.4.3 Filtering Techniques

The direct usage of the values from the accelerometer and gyroscope poses errors.

Accelerometer measures the readings obtained from various forces acting on it, thus

leading to introduction of errors which may be due to even vibrations. This is because

the readings obtained would be more than just the gravity vector. Usage of a low

pass filter on the accelerometer reduces these errors to an extent. Gyroscope, on the

other hand, drifts over time due to integration. This can be controlled by using High

pass filters.

Complementary filter:

This simple filter works based on the equation 4.7:

yk = α ∗ xk + (1− α)yk-1 (4.7)

where,

α is the filter gain which can be one of the three values:

When α=1, then yk=xkand raw data at 100% with no filtering is obtained
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When α=0, then yk=yk-1 and constant signal with 0% of the input data is obtained

With α=0.5, then value of the output signal is half its previous value and half the

new input signal value.

A complementary filter can manage both the high pass and low pass filter [75].

It should be noted that the accelerometer can show no drifting in long term and

gyroscope can show no drifting in a short term. So, to make it work, a low pass

filter is added to raw values of accelerometer while gyroscope raw data is integrated

with respect to time. Low pass filter filters the high frequency data which is a direct

result of vibrations in accelerometer. First order design was selected for this purpose.

This is relatively a simple filtering technique. However, some drawbacks have been

observed:

1. Only one measurement can be introduced to the filter at one time and output

will be of the same nature as the input.

2. No information about accuracy can be obtained.

3. A lag can be observed in the filtered signal when compared with the input

signal.

Kalman filter is a very complicated filter but is much more powerful when com-

pared with respect complementary filter [76]. This filter needs a predefined setup

model that directs the filter in its working. For any Kalman filter need prior knowl-

edge of the design to be implemented. The first step is the prediction step where the

future state of the system is predicted based on the current state. Simultaneously,

an error correction model is introduced which informs the filter about the possible

magnitude of the error. This propagation step makes sure that there is no lag due to

the ability to predict future values.

This is followed by the update step which verifies with the error correction model

to see if the obtained output from the previous step is correct or not. It is done when

the information about the accuracy is provide to the entire filter. Figure 4.10 shows
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Fig. 4.10. Working of Kalman filtering technique

the Kalman filter model. This works like that of the previous filter but has many

advantages:

1. Multiple measurements of different natures can be fed at any time.

2. Gain is chosen by the system itself.

3. Much smoother response with relatively no lag.

Both the filtering techniques were compared, and the output is available in the

results section. The obtained output from these sensors are used as a cutoff to detect

Hemiplegic gait, which can also be used for Diplegic Gait.
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4.5 Working of BLE

4.5.1 Introduction to BLE in nRF52

This is a very low power protocol which can work up to one year on a coin cell

battery when not advertising. The connection can also be maintained for a long time

and its duration can be modified by the user. It consists of a very flexible topology

which consists of several roles [77]:

1. Broadcaster: this is generally used as a transmitter only. It helps in broad-

casting the information, hence the name broadcaster. The broadcaster sends

a non-connectible data, meaning that broadcaster cannot be connected. The

purpose of it is to tell the other devices of its presence.

2. Observer: This acts as a receiver only. The information is received by it are the

advertising packets from broadcasters and peripherals.

3. Peripheral: This generally supports slave role. Peripheral generally advertises

and informs the other devices of its presence.

4. Central: This generally supports the master role. This can only send the connec-

tion request for establishing a connection. Central and peripheral is generally

called a master/slave pair where, central is the master while the peripheral is

the slave. Central device can be connected to multiple peripherals. However,

one device can function as peripheral and central as well. Figure 4.11 shows the

communication via BLE in nRF52.

4.5.2 Advertising

Broadcasting of data is called as advertising. Advertising of BLE data is one way

to inform devices about the presence of a BLE. Broadcaster or a peripheral advertises

this information. The data sent via this is either connectible or non-connectible. A
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Fig. 4.11. Communication via BLE in nRF52

Scanner or a server/central picks up this signal. There are three advertising channels

and it is transmitted to all these channels. Figure 4.12 shows the three advertising

channels. It is spread out, and this is done to avoid interference.

When a peripheral advertises data, the scanner should be able to identify the

device that is advertising. The addresses are of 48 bits and are of two types:

1. Random: This is a random number generated by the peripheral which follows

a set of rules given by Bluetooth Special Interest Group (BT SIG). These ad-

dresses can be of two types, static and private. Static addresses typically never

change until the change is requested. This change can happen only upon power

cycling. A Private address can be resolvable or non-resolvable. If resolvable, the

address can change for every given interval. This provides additional security

during advertising.
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2. Public: This is an address which has the 48-bit universal LAN MAC addresses

which can be obtained from IEEE. This will be a unique address that generally

can identify the chip vendor.

Universal unique identifier, also called as UUID helps the scanner to detect the ap-

plication that the device is being used for. The following figure shows the connection

requests and connection establishment mechanisms.

Fig. 4.12. nRF52 BLE advertising channels

When the advertising is done via channels 37, 38 and 39, a receiver period exists.

This receiver period waits for the requests from the scanner, such as request for addi-

tional information. After a certain time interval, the master and slave communication

starts with slave switching on to receive packets from master. If the slave receives it,

it responds with another packet confirming an established connection.

4.5.3 Basic Setup

For BLE to work, we need to add BLE driver to the project. Name of the device,

declaration of the board being peripheral, device name and the Nordic UART service

UUID type has been defined. Nordic UART service, also called as nus is used to send
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UART information to the BLE. Advertising intervals and timeout can also be defined

here. Also, minimum and maximum connection interval is also defined. Generic Ac-

cess Profile helps in declaring connection parameters. There is a function for it which

is predefined. The function is also used in the main code. There are other functions

that help in connections. These are the on conn params evt(). Here, when the con-

nection has failed, it informs the board that it is disconnected. If there is any error

in the connection, it can be detected via conn params error handler. On adv evt() is

used to advertise about the device to nearby devices.

On ble evt() is used to provide information based on the SoftDevice on how to

respond to the BLE event occurrence when device is connected or disconnected. This

function also checks if the pairing is supported or if implementation of the BLE event

is needed or not. Ble evnt dispatch() is a function for dispatching a SoftDevice event

to all modules with a SoftDevice event handler. This function is called from the

SoftDevice event interrupt handler after a SoftDevice event has been received. There

is also a function used to define usage of SoftDevice handler.

Function for handling app uart events is that this function will receive a single

character from the app uart module and append it to a string. The string will be be

sent over BLE when the last character received was a ’new line’ i.e ’\n’ (hex 0x0D)

or if the string has reached a length of NUS MAX DATA LENGTH.

The declaration of err code=ble nus string send(ble nus t * p nus, uint8 t * p string,

uint16 t length) helps in sending the require information via BLE. There are two ways

to use this.

1. For sending characters: After declaring ble nus ts variable, in this case, m nus,

the following command can be used to send the required string of data.

err code=ble nus string send(&m nus, ”monoplegic gait”, 15);

where,

The last parameter, 15, is the number of characters present in the string, inclu-

sive of spaces and any other punctuations.
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2. For sending integer or float values: A new integer is created, buffer, which stores

the information in it and keeps sending it out to BLE in FIFO order.

err code=ble nus string send(&m nus, (uint8 t*)buffer, strlen(buffer));

where,

the last parameter is the size of the buffer being declared.

In the main function, the discussed parameters are usually called to initiate those

functions. Also, it is important to inform the board to start advertising via using the

following command.

err code = ble advertising start(BLE ADV MODE FAST);

Finally, all the codes and commands are available in a single project. There are a

few important things to do before executing the code.

1. Open project->options for the target nrf52832 xxaa. In the C/C++ tool bar,

all the paths of the drivers, libraries and any file that it called on the project,

must be included.

2. Optimization level in the code must be of Level 0. Higher the optimization

level, larger the code size. Using level 0 optimization not saves the originality

of the source code but also helps in reducing the space of the code. This can

be done at Open project->options for the target nrf52832 xxaa->C/C++ tool

bar.

3. Pre-processor symbol definitions play a major role in getting the output desired.

It helps in making the preprocessor understand what is supposed to be done

when the program runs. The definitions include declaration of UART, declaring

the presence of SoftDevice, disabling single wire interface(SWI), the type of

MPU used and the type of the board used for running the program. This is

discussed in detail in results section.

4. Nrf drv config.h is an important header file used to inform the board about

the drivers the user wants to be active. Drivers such as CLOCK, GPIOTE,
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TIMER0, TIMER3, RTC, UART0, TWI0 and SAADC are enabled. 1 is used

for enabling a driver while 0 is used to disable it. The code used in it is present

in the results section.

4.5.4 Flowchart

Fig. 4.13. Flowchart for BLE data processing

Figure 4.13 shows the flow chart about the data transmission in nRF52. Figure

4.14 explains the base station used to obtain the required FSR values and Motion

sensor information. The values obtained from these sensor readings are the used to

detect different types of gaits.

4.6 Power Consumption

The power consumption of nRF52 development board can be calculated using

an online power consumption calculator for nRF52832 micro controller [78]. For

calculation of power, the voltage was selected as 3.3V. This is because the voltage
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Fig. 4.14. Smart shoe prototype design using nRF52 development kit
as the base station

to the micro controller is at least 3.3V. The BLE interval is selected to be done at

every 75ms and TX payload is selected as 20 bytes, as the number of bytes sent by

the development kit is 20. Finally, the default TX power of the board is 0 dB/m.

The power consumption was calculated for two events:

4.6.1 Power Consumption during Advertising

For an advertising event, the estimated values are as follows:

BLE event total charge: 9.5 µC

BLE event total length: 3.9 ms

Average BLE event interval: 105.0 ms

Total average current: 92 µA



51

Fig. 4.15. Power consumption during BLE advertising event

Figure 4.15 shows the current ratings of the nrf52 development board during BLE

advertising event.The maximum current consumption is during transmission stage

of the BLE advertising. The current consumption is about 6mA. However, at sleep

mode, it consumes a mere 1.9µA.

CR2450 is a coin cell battery that has 3V 620mAh of power rating [79]. The

total time taken to discharge this coin cell battery at the peak current of 6mA can

be calculated as follows [80]:

BatteryLife = BatteryCapacityinmAh/LoadCurrentinmA ∗ 0.70 (4.8)

Where,

0.70 is the allowances considered for external factors which can affect battery life.

With battery capacity being 620mAh and load current being 6mA, the total bat-

tery life is calculated to be 72hours.
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4.6.2 Power Consumption during Peripheral Connection

For an peripheral connection event, the estimated values are as follows:

BLE event total charge: 5.5 µC

BLE event total length: 2.4 ms

Average BLE event interval: 75.0 ms

Total average current: 75 µA

Total average current: 92 µA

Fig. 4.16. Power consumption during BLE peripheral connection event

Figure 4.16 shows the current ratings of the nrf52 development board during BLE

Peripheral connection event. Here, the peripheral is the mobile device used to connect

the BLE to. The maximum current consumption is during transmission stage of the

BLE connection establishment. The current consumption is about 6mA. However, at

sleep mode, it consumes a mere 2µA.
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The CR2450 battery ratings are as follows:

BatteryLife = BatteryCapacityinmAh/LoadCurrentinmA ∗ 0.70 (4.9)

Where,

0.70 is the allowances considered for external factors which can affect battery life.

With battery capacity being 620mAh and load current being 6mA, the total bat-

tery life is calculated to be 72 hours which is similar to that of during advertising

event.

However, it should be noted that at IDLE state, the current drawn is as low

as 100µA. This means that when the device is not advertising or connecting to a

peripheral device, it lasts for almost an year.

Chapter 5 discusses about the Design of the Custom Printed circuit board (PCB)

and parameters considered while designing.
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5. HARDWARE PROTOTYPING AND DESIGN

5.1 Introduction

The main aim for the thesis is to design a custom PCB that can be placed inside

a shoe sole without any external wires in order to monitor the body walk cycle. Also,

it needs to be as compact as possible. Another condition to be satisfied is that the

components should be only on the top layer for proper sensing. The dimensions of the

board should be appropriate to the shoe size. A normal shoe is at least 5.5 inches in

width [81]. The length of the board is not a concern for the design but it is preferable

to have as small as possible in order to avoid mechanical stress from the body weight.

To design the PCB the software used was EAGLE by Autodesk. This is an Elec-

tronic Design Automation (EDA) application that can perform many tasks including

PCB layout editing, Auto-routing and Computer Aided Manufacturing (CAM). This

premium version allows usage of up to 999 schematic sheets, 16 layered PCB designs

with friendly user software when compared with other EDAs such as Fritzing and

Altium. Also, due to its free access, there is a wide variety of device and component

libraries available online. Let us discuss a few of the important concepts related to

PCB design:

Traces are the interconnection between the pins of various components which are

connected via copper ribbons [82]. For any simple circuit board, these traces are usu-

ally placed on the top surface, meaning that these are single layered PCBs. However,

as the connection complexity increases, these connections tend to go through many

layers. To facilitate a single connection to move between layers, holes are drilled

and plated through the board. These holes are generally called as vias, through-

holes or feed throughs. Interconnect density is the number of connections required

on the board. Greater the complexity of the board, higher the interconnect den-
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sity. The size of the traces impacts the size of the PCB. Smaller the trace width

size, smaller will be the PCB design. However, there are two tracing requirements,

namely, Manufacturing and electrical. The smaller traces prove to be costlier dur-

ing the manufacturing and are quite expensive to design. The nominal width size of

these traces are about 10 mils or 0.010in. The lowest possible trace width in eagle

is about 0.003in. However, these prove to be very expensive for the design. Second

limitation is related to the current carrying capacity of a trace. Consider the formula,

R = ρL/A (5.1)

Where,

R= end to end track resistance in Ohms

ρ= Resistivity of the track material in Ohm meters

L= Length of the track in Meters

A= track cross sectional area in meter squared.

From equation 5.1, the smaller the cross-sectional area, the higher the end to end

track resistance would be. This means that relatively low current passes through the

traces with low widths. The general current carrying capacity of a normal circuit

should be around 0.1 A or less. Cross talk is another issue that needs to be consid-

ered. When the trace width is small, the designer tends to bring the traces closer.

This might lead to crosstalk between the traces due to the fact that different traces

have different signal-current characteristics leading to one influencing the other. To

overcome these issues, designers generally opt for multilayer PCB designs.

There are several types of packaging available for electronic components. These

are widely divided as Dual Inline Package (DIP), Single Inline Package (SIP), Through

Hole or Surface Mount Device (SMD). SMD are used for PCB design mounting as

they are easier to install, cost effective, and more appropriate for the design. EAGLE,

was used to design the PCB. The flowchart of the design is given in Figure 5.1. The

steps of the design are:
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Schematic Entry:

The primary step to be performed in EAGLE is Schematic entry. Here, the

required libraries are loaded, and electronic components were added. The selection

of components is dependent on the data sheet of the ICs or MCUs selected. The

size of the passive electronic components and preferred locations were all detailed in

the datasheet. The alternative passive components, if required, must have the power

and voltage ratings as that of the replaced component. After the selection of the

components, the basic connections are made using wire command. These provide

the EDA with the information about the pins connected and those which are not.

Schematic also provides information about all the components and parts used. This

is obtained via NetList.

Netlist Extraction:

The Netlists are broadly divided into two types, Connection list and parts list.

Connection list gives the information about a particular net on the schematic and the

connections it has with the other pins. Parts list gives information about components

and the signal names attached with the various pins of these components. Apart from

this, there are many types of schematic information extraction lists available. These

can be executed using User Language Program (ULP). These are programs given by

EAGLE to get the required information such as Bill Of Material (BOM) which gives

the list of all components available on the schematic page. Apart from this, there are

many other programs which are executable after completion of trace routing in PCB

simulation.

PCB Simulation:

The designer can enter the PCB simulation mode, shown as brd on the toolbar

of EAGLE. Here, the air wires, the untraced wires of the PCB, and components are
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Fig. 5.1. Flowchart of PCB design flow

readily imported to the simulation mode to design the required board. The number

of layers were decided here before the placement of the components.

Gate and Package Placement:

The placement of the components is relative to the designer. In this step, all

the components are placed within the design area and are set at the locations the
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designer wants. The gate or components needs to be correctly oriented and the

packages having heat sinks underneath is preferred. Most of the packages have their

own necessary components. These components are placed in accordance with the

datasheet. Packages must be placed in a location where there is space for connections.

Trace Routing:

This is the most important part of the entire PCB design. This can be done in

two ways: manual routing or auto routing. Manual routing is more laborious but is

the most accurate method of routing. Auto routing on the other hand, is an EDA

specific program which uses algorithms to track down the closest and most accurate

paths. The best approach for routing is fusion of both Manual and Auto routing.

Manual routing is usually done for traces moving in or out of the ICs. This is done

to get better traces as auto routing tends to bring the traces near the ICs very close,

thus putting the circuit at the risk of crosstalk. However, auto routing can be used

once the completion percentage of the routing reaches around 50%. This is because

the leftover connections are usually long traces which the computer can take care of.

The trace width was selected to be between 0.006in to 0.008in. The resistance of

these wires should be minimal. It was calculated that the maximum resistance the

lines can create are about 0.01020Ω as shown in Figure 5.2.

Verification:

The final verification before sending it to the production is done using the Design

Rule Checker (DRC). This is a computer driven verification check which notifies of

any errors or warnings. Warnings are not impacting the system function, rather they

directing the user to missing listing of components. These can be ignored but errors

must be verified before the device is sent to the production. Gerber files are then

generated after meeting the design specifications. These are the crucial Gerber files

required for PCB production [84].
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Fig. 5.2. Track Resistance calculator [83]

1. Component side: extension is .cmp. This is used to provide the information

about the pads and vias available on the top layer.

2. Solder side: extension is .sol. This is used to provide information about the

pads and vias available in the bottom layer.

3. Silk screen: Extension is .plc. This is used to print the dimensions, information

about the place and names of components placed in the top layer.

4. Solder stop mask: Extensions are .stc and .sts. These are used to denote where

not to have a solder mask on top and bottom layers respectively.

5. Solder paste: Extension is .crc. This is used to show the location of placement

of the cream on the top layer of PCB for SMD packs. If SMDs are on both

layers, tcream and bcream are selected from layers section.

6. Drill data: The extension is .drd. This is used to show the location of the drills

and holes on the PCB.
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Apart from this, Pick and place, and BOM ULPs results must also be sent to the

PCB fabricator.

Production:

This is the final stage before receiving the PCB. The files discussed above are sent

as a zip file to the company, here, Advanced assembly. Sometimes, the vendor sends

the Gerber file program and the output of these files must be extracted and sent.

There are several PCB models designed for this project. The advantages and disad-

vantages of each product is discussed.

5.2 Model 1

5.2.1 Schematic

This was the first custom PCB. Here, there are several ICs added, nRF52832,

ATSAMD21G-M, MCP6004-I/SL and MPU6000. nRF 52 development kit has AT-

SAM3U2CAAU as the interface MCU. This MCU helps nRF 52 to run as SEGGER

JLINK OB or mbed OB interface firmware. This is an ARM Cortex M3 processor.

ATSAMD21G-M is a ARM cortex M4F processor which is much faster than ARM

cortex M3 [85]. Both the processors are almost identical but ARM cortex M4 has DSP

instruction add-ons. This would help the BLE module in filtering or compress the

analog signals it might receive. There is MCP6004 op amp in addition to MPU6000.

MCP6004 is an op amp that has 4 inputs and ground pairs with 4 output terminals,

hence the number 4 in the name. This is the opamp selected by the FlexiForce to

be used to amply the output of the sensor. MPU6000 is the motion sensor used for

Custom PCB. This sensor is sufficient to get the required output and is comparable to

MPU9250 which was used in the software implementation. The components around

the ATSAMD21G-M is selected based on the configuration specified in the datasheet

as shown in the figure 5.3. Similarly, the components around nrf52832 were also
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Fig. 5.3. QFN48 internal LDO reference model [67]

selected based on the datasheet. The Schematic QFAA QFN48 with internal LDO

setup was used for the design. The bill of material was given in the datasheet itself

and the same or similar components were used.

5.2.2 PCB Layout

This is a two layered PCB design but does not have any components at the bottom

layer. This is to avoid the possibility of breakage when in the bottom layer. The

PCB design is included in the results chapter. Autorouting is also used to help with

connecting the components for following the schematic the circuit design. Though

direct routing was used to connect a few paths that were not extensively used. The

DRC checks spacing of a minimum size of 6 mil between various tracks, and also

multiple signals on the same wire, pad, and via. The same size was used for drills or

holes with the minimum drill size being 0.35mm. The PCB quote gives the dimensions
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Fig. 5.4. Fabricated Custom PCB based on Model 1

and the number of SMDs used. Also, PCB design guidelines given in the nrf52832

datasheet which were followed. This includes placement of the components and the

distance between them. Figure 5.4 shows the PCB with the various components. The

various parameters of the board were shown in Figure 5.5.

5.2.3 Drawbacks

Usage of an interface MCU is preferred but not required. Presence of this MCU

not only consumes space but also complicates the circuit. The absence of antenna

and NFC in this design can be considered as another drawback. MCP6004 covers

more space than required. Heat sinks when first ignored within the board, the high

power components did not last long. The board is then redesigned and the heat sink

metal was added to protect the devices from the thermal heating.
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Fig. 5.5. Model 1 board parameters

5.3 Model 2

5.3.1 Schematic

The new design is based on the Sparkfuns nrf52832 breakout board. This design

removes the usage of interface MCU and uses MCP6002. MCP 6002 is an op amp

that has only two input and ground pairs with two output signals. Also, as seen in

the specifications, the device is very compact, smaller than the previous design. It

has an antenna added as per the nRF52 requirements. Apart from this, there is also

a pin for NFC. Two buttons were provided to help in resetting and bootloading.
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5.3.2 PCB layout

This has the similar Design rule check with only the change in minimum drill size

which is 0.6 mil in this design. Apart from this, adding an antenna and NFC can be

considered as a major change for this design.

Fig. 5.6. Model 2 board parameters

5.3.3 Drawbacks

The major drawback associated with this small size is that the antenna requires

drills or holes placed at every 10mm in x and y directions for reducing heat radiation.
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In order to avoid thermal effect on the board components, the space around the was

void (not utilized). As it can been in Figure 5.6, the number of components on the

board increased when compared to the previous model. Hence, this model was not

favorably selected for the PCB fabrication.

5.4 Model 3

5.4.1 Schematic

This is the final PCB design model that was used. The drawbacks of the previous

designs were eliminated by placing drills every 10 mm on the board. A proper NFC

pin (FPC) was installed to facilitate the connection of the NFC antenna. This reduces

the requirement of the design with antenna, with minor drawback regarding the use

of a battery cell at the bottom layer in order to balance out the space used by antenna

side of the board.

Fig. 5.7. Fabricated Custom PCB based on Model 3
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Figure 5.7 shows the fabricated final prototype. Though it is not as small as model

2, it is much compact when compared to model 1. Another major design change is the

elimination of the op amp. Using the gain in the software, the required output can

be obtained from the FSRs. This design was done by taking Nordic semiconductors

development support to eliminate any possibility of errors. It is known that the

voltage supplied by the USB is about 5V. A voltage regulator was used in all the

three models to bring it down to 3.3V so that the power consumption will not impact

the nrf52832. The voltage for FSRs and motion sensors are connected to this 3.3V

line. Finally, a number of holes or drills are provided under the nrf52832 to act an

heat sink to eliminate the possibility of damage due to heat. The dimensions and the

number of components can be seen in Figure 5.8.

5.5 Effect of Relative Humidity and Temperature in Shoe Sole

Deng et al., [86] studied the relative humidity and temperature inside the shoe

with respect to time was clearly discussed. Regular shoes were used in this experiment

and results were as follows:

1. As the duration of wearing of the shoe progresses, the temperature in the shoe

increased gradually. The normal temperature inside a shoe is about 21◦C. As the

time progresses, this temperature reached about 27◦C in 100 minutes.

2. The relative humidity inside the shoe is about 30% at the nominal conditions.

As the time progresses, the humidity inside the shoe also increases. The relative

humidity increases to 90% in 90 minutes. However, the temperature and relative

humidity tends to stabilize in 30 minutes and 10 minutes while walking. Considering

these values, all the components selected for the Custom PCB were within this limit.

Most of the components works without an issue between temperatures, -55◦C to

125◦C. Moisture sensitivity level is the electronic standard for an IC which is exposed

to ambient room conditions for any given time [87]. Most of the components used
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Fig. 5.8. Model 3 board parameters

has the relative humidity of 85% at a temperature of 30◦C. These components are

categorized as MSL level-1.
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6. PROTOTYPING OF THE CUSTOM PCB

6.1 Testing and Debugging

During the testing and debugging phase of the custom PCB design, the issues

that might be introduced and probable solution opted is discussed below:

1. There might be issues with the design proposed or in the schematics. The de-

sign was based on the nordic semiconductors’ reference design. The designed

schematic was verified again with respect to datasheet to eliminate the possi-

bility of errors.

2. Careful inspection of the Custom PCB has been done with components and

circuit connections.

3. There are two open connections that jumpers were used to close the circuit.

4. The orientation and the placement of the components need to be verified versus

the schematics.

5. Proper firmware needs to be dumped into the custom PCB. The way in which

this is done is relative to the processor. JLINK debugger is used to dump

the firmware into the custom PCB. SoftDevice is later dumped into it using

nrfjprog.

6.2 Verification of Working of the PCB

The oscilloscope and voltmeters were used to verify the working functions of the

custom PCB based on the flow of the voltage throughout the board. Initially, it was

observed that the voltage from the USB is not being supplied to the nrf52832 MCU.
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This was because of an error during fabrication. A jumper was connected to make it

a closed circuit. Three holes on both the sides of the USB pin was provided to verify

the voltage across the device. The proper output voltage with levels of 5V and 3.3V

were verified as specified in the design.

Figure 6.1 shows the results obtained from the oscilloscope. This shows that

the voltage across the USB and the ground of the PCB is uniform and cyclic. The

Fig. 6.1. Readings taken from oscilloscope

current ratings of the board was compared with the Development kit. Between 5V

and ground, the resistance was about 11MΩ in the development kit. This was the

same for the custom PCB as well. Also, the resistance between 3.3V and ground were

about 7µA. From [67], the minimum current rating is about 0.4 µA when the system

is off and 1.6 µA when system is on. From Ohm’s law, it can be seen that the current

satisfies the condition mentioned.
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The issue was with the analog channel output. The resistance at those pins were

370Ω. For a FSR to work, a high resistance at the pins were required. To eliminate

that issue, an external resistors were added in series to the FSR. Since the basic

conditions were all met, the code is then dumped to verify it is working. Before that,

board initiation was done.

6.3 Initiation of the Board

The board needs to detected by the system to dump the code. This can be done

either by writing driver for the board or by using debuggers. For this thesis, debuggers

were used to dump the code. There are two different debuggers that can be used to

dump the code.

Using JLINK Debugger

SWD pins were used to debug the PCB. The debug in of the custom board is

connected to debug out of the JLINK debugger. Figure 6.2 shows the connection of

the debugger with the PCB. When the commands shown in Figure 6.3 were entered in

the JLINK command prompt, the custom PCB is then detected. Now, the previously

used JLINK bin file was again dumped into this PCB. It can also be seen that

when the reset button on the PCB was pressed, the red light blinks on the JLINK

debugger. However, no further programming can be done on the PCB without loading

the SoftDevice in it. To accomplish that, nrfjprog commander is used along with the

nRF52 development kit acting as the debugger.

Using Development Board as a Debugger

The development board was connected to the PCB as shown in the Figure 6.4. The

debug in of the PCB is connected to the debug out of the nRF52 development kit. The

dumping of the SoftDevice via nrfjprog in command prompt. Now, the preexisting
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Fig. 6.2. Bootloading with JLINK Debugger

Fig. 6.3. Output received at JLINK Commander
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code is dumped into the custom PCB via Keil. The only variation from the previous

setup is the usage of level 3 optimization. The changes in the pressure sensor is

noted at UART. Due to the lack of drivers in the custom PCB, the output from the

Fig. 6.4. Working set up of custom PCB with nRF52 Development board

analog signals cannot be seen directly on the screen. The device uses the UART

driver available on the nRF52 development board to get the output on TeraTerm.

This drawback can be eliminated when the drivers for it can be written which was

considered as a future work. Chapter 7 discusses about the results obtained in this

thesis and the impact of the results in the field of gait research.
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7. RESULTS

The setup used to detect a human gait with nRF52 development kit as the base

station with motion sensor and FSRs embed in it. Figure 7.1 was the smart shoe

prototype used to get the desired outputs from the system.

7.1 Output from FSRs

It was previously discussed about gains in SAADC analog channels. Two FSRs

were placed, one at heel and one at toe area respectively. Two walk cycles were

considered while recording the values obtained. The outputs obtained from the sensor

for different gains are as shown below.

Figure 7.2 shows the output of the two FSRs with gain =1/6. Here, It can be

seen that the maximum peak pressure value is about 4KPa. This makes it difficult to

differentiate between the no pressure condition and peak pressure condition. Hence,

this gain was not used to get the desired output.

Figure 7.3 shows the output of the two FSRs with gain =1/5. Here, the maximum

peak pressure value is about 6KPa. Just like with gain-1/6, this is also difficult to

differentiate between the no pressure condition and peak pressure condition. Hence,

this gain was also not used to get the desired output.

Figure 7.4 shows the output of the two FSRs with gain =1/4. Here, the maximum

peak pressure value is about 6.5KPa. Just like with the previous conditions, this is

also difficult to differentiate between the no pressure condition and peak pressure

condition.

Similarly, Figure 7.5 and Figure 7.6 gives peak pressure value as 12. Though these

are higher when compared with previous gains, the difference is not big enough to be

used for all cases.
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Figure 7.7 shows a decent difference between the minimal pressure value and the

peak. This may be selected for to be the required gain value. However, Figure 7.8 of

Gain=2 shows a much better difference when compared with Gain=1.

When differences in the pressure is to be only considered, then Gain =4 gives

the best possible result as shown in Figure 7.9. However, gain=4 poses another issue.

With increase in pressure, the values change drastically. To eliminate such possibility,

Gain=2 was the best out of all the given gains. Hence, it was selected for the design.

7.1.1 Flexibility and Sensitivity

Flexibility of the FSR was verified by manually applying pressure to bend the

sensor area inward as shown in Figure 7.10(a) and outward as shown in Figure 7.10(b).

It was observed that the bending effects the sensors leading to abnormal analog

readings. To eliminate this issue, thin tapes were used to fix the FSRs from moving

or bending. Sensitivity of the FSRs was tested using COMSOL Multiphysics. 350KPa

pressure was applied and the results can be seen in Figure 7.11. The output obtained

shows that the sensors work as expected even at high pressures. The displacement

on the sensor is very negligible. The output for two FSRs placed at a distance of 10

cm, distance between heel to toe, is given in Figure 7.12.

7.2 Output from the Motion Sensor

The accelerometer of the MPU9250 has been varied between 2G and 16G. The

results are given in Figure 7.13 for 2G and Figure 7.14 for 16G. Accelerometer with

16G sensitivity is used for this work. The comparison between various filters are

given in the Figure 7.13 and Figure 7.14. The accelerometer values are sent through

the low pass filter, and gyroscope values are sent through high pass filter for the

complementary filter. Because Kalman filter gives a smoother and better output, it

was selected for the filtering method.
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7.3 BLE Outputs

Figure 7.15 shows the advertising of the device when the code is downloaded into

it. Figure 7.16 shows the log data when the device is connected to a mobile device

via BLE. Figure 7.18 shows the output displayed on the phone based on the data

received from analog values. The sensor values can be also be seen on the mobile

device if required as shown in Figure 7.17.

7.4 Improper Gait: Analysis and Diagnosis

Normal Gait

The walk cycle of a Normal Gait can be seen in Figure 7.19. (1) shows the heel

strike,(2) shows foot flat to mid stance transition, end of (2) shows initiation of heel

off, end of (3) initiates toe off. (4) is the mid-swing to swing transition. End of (4)

shows the initiation of heel strike, thus completing a walk cycle.

Normal gait is detected when all the stages (except swing) are detected within a

specified time and output is sent via BLE which can be seen in Figure 7.20.

The output for the Normal gait can also be shown as per the Figure 7.21. This

shows the amount of readings taken from each of the stages in a walk cycle. It is

known that the 60% of an entire walk cycle comprises of the selected foot being in

contact with the ground. The obtained result shows the percentage of each stage in a

walk cycle when a part of the foot is in contact with the floor. When the cumulative

readings of Heel strike, foot flat and toe off conditions cover over 60%, then the gait

is considered to be normal.

Parkinson’s Gait

The walk cycle of Parkinson’s Gait can be seen in Figure 7.22 . As discussed, the

walk cycle of a person suffering from Parkinsonian disease has smaller walk cycle and

mostly contains foot flat condition.
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Parkinson’s Gait is detected when most of the readings are within ((30<heel<80)

&&5<toe<15)) for a period of time (40 readings). The output is sent via BLE which

can be seen in Figure 7.23.

The output for the Parkinson’s Gait can also be shown as per the Figure 7.24.

This shows the amount of readings taken from each of the stages in a walk cycle.

From the previous discussion, it can be seen that the readings from foot flat occupies

most of the output. When the readings of the foot flat condition cover over 60%,

then the gait is considered to be Parkinson’s Gait.

Injured Gait

The walk cycle of Injured Gait can be seen in Figure 7.25. As discussed, the walk

cycle of a person suffering from an injury at toe has smaller walk cycle and mostly

contains heel strike condition.

Injury Gait is detected when it satisfies (heel>50&&toe<5) for a period of time.

The output is sent via BLE can be seen in Figure 7.26.

The output for the Injury Gait can also be shown as per the Figure 7.27. This

shows the amount of readings taken from each of the stages in a walk cycle. From the

previous discussion, it can be seen that the readings from heel strike occupies most

of the output. When the readings of the heel strike condition cover over 60%, then

the gait is considered to be Injury Gait.

Hemiplegic Gait

Hemiplegic Gait output was also obtained from the motion sensor which is given

in Figure 7.28. It shows a noticeable variation in angle, by -10◦, when compared with

normal readings. This is used to detect this abnormal gait. It is detected when it

satisfies (heel<7&&toe<7) and motion sensor readings show values less than -7◦. The

output is sent via BLE can be seen in Figure 7.29.
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The output for the Hemiplegic Gait can also be shown as per the Figure 7.30.

The Figure shows that the output of the sensors can also be sent to the mobile device

along with the notification of abnormal gait. For this prototype, only one set of sensor

output for roll and pitch was shown but multiple results from sensors can be to the

obtained on the phone which can be saved as a data file. This data file can be viewed

later for comparison and further diagnosis.

7.5 Flowchart

Figure 7.31 shows the flowchart of the code written. Pressure values and the

motion sensor thresholds were taken from the previous results. The output of the

code can be seen on the mobile phone as seen in the Figure.

7.6 PCB Layouts

The schematics and PCB layout of the three models are given in Figure 7.32 to

Figure 7.39. Final output from all the sensors embed are given in Figure 7.40.
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Fig. 7.1. Prototype of the smart shoe
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(a) Output of FSRs without filtering for gain=1/6

(b) Output of FSRs with smooth filtering for gain=1/6

Fig. 7.2. Outputs obtained from FSRs with Gain=1/6.
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(a) Output of FSRs without filtering for gain=1/5

(b) Output of FSRs with smooth filtering for gain=1/5

Fig. 7.3. Outputs obtained from FSRs with Gain=1/5.
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(a) Output of FSRs without filtering for gain=1/4

(b) Output of FSRs with smooth filtering for gain=1/4

Fig. 7.4. Outputs obtained from FSRs with Gain=1/4.
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(a) Output of FSRs without filtering for gain=1/3

(b) Output of FSRs with smooth filtering for gain=1/3

Fig. 7.5. Outputs obtained from FSRs with Gain=1/3.
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(a) Output of FSRs without filtering for gain=1/2

(b) Output of FSRs with smooth filtering for gain=1/2

Fig. 7.6. Outputs obtained from FSRs with Gain=1/2.
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(a) Output of FSRs without filtering for gain=1

(b) Output of FSRs with smooth filtering for gain=1

Fig. 7.7. Outputs obtained from FSRs with Gain=1.
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(a) Output of FSRs without filtering for gain=2

(b) Output of FSRs with smooth filtering for gain=2

Fig. 7.8. Outputs obtained from FSRs with Gain=2.
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(a) Output of FSRs without filtering for gain=4

(b) Output of FSRs with smooth filtering for gain=4

Fig. 7.9. Outputs obtained from FSRs with Gain=4.
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(a) Output of FSRs when bent inward

(b) Output of FSRs when bent outward

Fig. 7.10. Flexibility test of the FSRs.
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Fig. 7.11. COMSOL simulation of single FSR at 350KPa

Fig. 7.12. COMSOL simulation of two FSRs at 350KPa
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(a) Output of pitch for 2G accelerometer and 2000DPS gyroscope

(b) Output of roll for 2G accelerometer and 2000DPS gyroscope

Fig. 7.13. Roll and Pitch values of 2G accelerometer and 2000 DPS Gyroscope
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(a) Output of pitch for 16G accelerometer and 2000DPS gyroscope

(b) Output of roll for 16G accelerometer and 2000DPS gyroscope

Fig. 7.14. Roll and Pitch values of 16G accelerometer and 2000 DPS Gyroscope
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Fig. 7.15. Output from nRF toolbox Application when the device is advertising.
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Fig. 7.16. Output from nRF toolbox Application-UART module when
the device is connected.
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Fig. 7.17. Output from nRF toolbox Application- sensor values received via BLE.
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Fig. 7.18. Output from nRF toolbox Application-UART module when
the device is connected.
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Fig. 7.19. Output of a Normal Gait
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Fig. 7.20. Output of a Normal Gait in BLE
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(a) Normal Gait Readings-1 (b) Normal Gait Readings-2

Fig. 7.21. BLE results for Normal Gait Diagnosis
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Fig. 7.22. Output of a Parkinson’s Gait
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Fig. 7.23. Output of a Parkinson’s Gait in BLE
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(a) Parkinson’s Gait Readings-1 (b) Parkinson’s Gait Readings-2

Fig. 7.24. BLE results for Parkinson’s Gait Diagnosis
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Fig. 7.25. Output of an Injured Gait
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Fig. 7.26. Output of an Injured Gait in BLE
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(a) Injury Gait Readings-1 (b) Injury Gait Readings-2

Fig. 7.27. BLE results for Parkinson’s Gait Diagnosis

Fig. 7.28. Output of a Hemiplegic Gait
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Fig. 7.29. Output of an Hemiplegic Gait in BLE
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Fig. 7.30. BLE results for Hemiplegic Gait Diagnosis
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Fig. 7.31. Flowchart of the code
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Fig. 7.35. Layout of Board2
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Fig. 7.36. Schematic of Board3 Part 1
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Fig. 7.37. Schematic of Board3 Part2
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Fig. 7.38. Schematic of Board3 Part3

Fig. 7.39. Layout of Board3
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Fig. 7.40. Outputs from two FSRs and Motion sensor
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8. DISCUSSION AND FUTURE WORK

Integrated sensor system

In general, the study here integrates a gait diagnostic system via integrated sensor

system. This combines the sensor components, the DSP with filtering schemes. A

second objective in this research work is to provide a working code which can detect

various gaits and diagnose some medical issues.

Distinguished product from existing technology

Our approach in this work was distinguished from others in the sense that it pro-

vides an integrated hardware and software system that can provide accurate diagnosis

as compared to existing systems. For instance, Pacilli et.al., [29] shows the recognition

of a gait but not analyzing it. The work done provides the analysis and detection of

various gaits, such as Hemiplegic gait, Parkinsons gait and an Injury gait. Different

types of improper gaits were discussed and the possibility of detection the diagnosis

via sensors were detailed.

Optimum power consumption

The power consumption is another important contribution of this thesis. The sleep

mode turns off the BLE advertising so that the device lasts longer was proper approach

to minimize the power consumption of the portable system. The components were

selected to work under temperature and relative humidity present inside the shoe.
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Custom PCB design

The secondary aim of this thesis is to design an integrated system via a working

custom PCB. Custom PCB was designed and working function was verified. The

BLE of the custom PCB advertises itself, which confirms it is working. The output

can be seen via UART but it requires the development kit for the results to be visible.

Additional research needs to be done on utilizing the maximum performance of the

custom PCB.

8.1 Future Work

There is a scope of adding another PCB to the sole of the second shoe to detect

other gaits as well. More FSRs can be added to the shoe to get a more refined output.

Furthermore, flexible PCB can be designed to make it more user friendly. Usage of

rechargeable batteries increases the productivity of the shoe. Sending the data to

the cloud and storing it for future examination can be added at later stages of the

research.
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9. CONCLUSIONS

In this study we have demonstrated a working model with the approach for the

software and hardware design of an integrated sensor system that will serve appli-

cations in medical sciences. The software approach may fit into other applications

related to filtering and DSP embedded and IoT applications.

The future work that may need to build on this work may include adding another

PCB to the sole of the second shoe to detect other gaits as well. More FSRs can be

added to the shoe to get a more refined output. Furthermore, flexible PCB can be

designed to make it more user friendly. Sending the data to the cloud and storing it

for future examination can be added at later stages of the research.

In order to have portable system, a low power consumption using other approaches

within low power chips may be pursued. Energy harvesting for energy saving power

may be also considered. The practical model demonstrated in this work may need

more testing verification with varieties of patient cases.
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