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ABSTRACT

Patnala, Mounica. M.S.E.C.E., Purdue University, May 2019. High Performance GN-
RFET Devices for High-Speed Low-Power Analog and Digital Applications. Major
Professor: Maher E. Rizkalla.

Recent ULSI (ultra large scale integration) technology emphasizes small size de-
vices, featuring low power and high switching speed. Moore’s law has been followed
successfully in scaling down the silicon device in order to enhance the level of in-
tegration with high performances until conventional devices failed to cop up with
further scaling due to limitations with ballistic effects, and challenges with accom-
modating dopant fluctuation, mobility degradation, among other device parameters.
Recently, Graphene based devices offered alternative approach, featuring small size
and high performances. This includes high carrier mobility, high carrier density, high
robustness, and high thermal conductivity. These unique characteristics made the
Graphene devices attractive for high speed electronic architectures. In this research,
Graphene devices were integrated into applications with analog, digital, and mixed
signals based systems.

Graphene devices were briefly explored in electronics applications since its first
model developed by the University of Illinois, Champaign in 2013. This study em-
phasizes the validation of the model in various applications with analog, digital, and
mixed signals. At the analog level, the model was used for voltage and power ampli-
fiers; classes A, B, and AB. At the digital level, the device model was validated within
the universal gates, adders, multipliers, subtractors, multiplexers, demultiplexers, en-
coders, and comparators. The study was also extended to include Graphene devices
for serializers, the digital systems incorporated into the data structure storage. At

the mixed signal level, the device model was validated for the DACs/ADCs. In all
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components, the features of the new devices were emphasized as compared with the
existing silicon technology. The system functionality and dynamic performances were
also elaborated. The study also covered the linearity characteristics of the devices
within full input range operation.

GNRFETSs with a minimum channel length of 10nm and an input voltage 0.7V
were considered in the study. An electronic design platform ADS (Advanced Design
Systems) was used in the simulations. The power amplifiers showed noise figure as
low as 0.064dbs for class A, and 0.32 dbs for class B, and 0.69 dbs for class AB power
amplifiers. The design was stable and as high as 5.12 for class A, 1.02 for class B,
and 1.014 for class AB. The stability factor was estimated at 2GHz operation. The
harmonics were as low as -100 dbs for class A, -60 dbs for class B, and -50dbs for class
AB, all simulated at 1GHz. The device was incorporated into ADC system, and as
low as 24.5 pWatt power consumption and 40 nsec rise time were observed. Likewise,
the DAC showed low power consumption as of 4.51 yWatt. The serializer showed as
minimum power consumption of the order of 0.4mW.

These results showed that these nanoscale devices have potential future for high-
speed communication systems, medical devices, computer architecture and dynamic
Nano electromechanical (NEMS) which provides ultra-level of integration, incorpo-
rating embedded and IoT devices supporting this technology. Results of analog and
digital components showed superiority over other silicon transistor technologies in

their ultra-low power consumption and high switching speed.



1. INTRODUCTION

For years, the world of transistors has been governed by Moore's Law, which states
that the number of transistors in semiconductor circuit doubles every 18 months and
this scaling thumb rule started running into challenges for CMOS transistors. In
2003, the IBM Microelectronics CTO Dr. Bernard S. Meyerson, stated at the Inter-
national Electronics Forum in Prague: Scaling is already dead, but nobody noticed
it had stopped breathing and its lips had turned blue [1]. The advanced ULSI tech-
nology is in need of high speed, low power devices with less feature sizes, and recent
studies gave a path to a new variety of technologies known as post-silicon technology
[2]. This technology came with changes in channel size, shape, and material. This
study gives hope for a new era of new MOS type graphene-based transistors. This
work emphasizes the GNRFET structure, its device characteristics and its benefits
in analog and digital circuitries.

This study considers the preamplifier and the power amplifier of integrated am-
plifier systems. This covers their operation and input/output characteristics. Pream-
plifiers are voltage amplifiers that boost the voltage gain, then the signal is fed into
the power amplifier to drive the signal with high power efficiency [3]. Types A, B,
and AB are the three classes considered in this study.

In modern communications, the very high clock frequency and dynamic range of
video signal processing, digital signal synthesis, and wireless communications demand
high-speed and high accuracy with high resolution analog- to-digital ADCs. ADCs are
commonly used in RF systems including mobile phones, dealing with analog signals
from sounds and images. The need of high sampling rate and bandwidth of wireless
networking and radar communication necessitate the use of high-speed ADCs. If the
speed of the ADC is high, no further frequency translation is necessary for the RF

mixers and filters, and this may result in less complex high-performance systems.
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High speed ADCs are also important in industrial control and medical applications
4].

In this work, we studied and implemented 2-bit, 3-bit and 4-bit DACs. For mixed
signal applications, DACs are the most essential blocks. High-speed and low power
DACs are necessary for DSP systems, display electronics, and data acquisition sys-

tems, among others [5].

1.1 Device Structure

The Graphene Nano Ribbon Field Effect Transistors (GNRFETS) are integrated
with an array of graphene nanoribbons. GNRFET uses silicon substrate, with graphene
drain and source regions, where drain and source are heavily doped. Graphene is a
signal atomic layer of graphite and is of two-dimensional honey comb structure. The
high mobility of the material enhances their switching speed and dynamic perfor-
mance. Graphene is a good conducting material, when patterned into nano-scale
ribbons with a band gap opens due to lateral quantum confinement, and this makes
it acting as a semiconductor. In a GNRFET, multiple nanoribbons are connected in
parallel to increase device strength and to form wide conducting contacts. Figure 1.1

demonstrates the 4 ribbon structure of the GNRFET device [6].
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The device SPICE model as developed by the University of Illinois, Urbana, Cham-
paign is given in Figure 1.2. The device parameters that characterize its performance
are:

1. VGS is gate to source voltage.

2. VDS is drain to source voltage.

3. IDS is the current flowing through the channel.

4. Capacitors CG, CD, CS, Csub and VCH are used to vary currents when the chan-

nel charges and discharges [6].

Like MOSFETs, GNRFETSs are also available as P-type and N-type GNRFETs.
The I-V characteristics of the N-type GNRFET and P-type GNRFET devices were
simulated at the IUPUI VLSI laboratory and were given in Figures 1.3 and 1.4 respec-
tively. The simulation was based on a VDD value of 0.7V, and a threshold voltage of
0.3V [6].
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Fig. 1.5. Dimer Lines in Graphene Nano Ribbon with Arm-chair Structure

1.1.1 Computing the Device Width

The channel width of the GNRFET is calculated based on the number of dimer
lines in a graphene nano-ribbon [6] is given by the equation:
width of GNRFET = *23(N+1)dcc
where N = number of dimer lines

dcc = carbon-carbon bond length = 0.142nm

Figure 1.5 shows the dimer lines in arm chair chirality of GNR.

1.1.2 Computing the Sub-bands

A positive sub-band edge €, [6] is given by the equation:

€a =| (1 + 2cos(§755) + dea) |

Where N = number of dimer lines
t = 2.7 eV (tight binding hoping parameter)
a = Subband index (1 < «a)

4ot «
N+1 N_+1)
Where v =0.12 eV (is the edge correction of hopping parameter at edges in tight

de, = edge correction factor = cos’(

binding Hamiltonian).



The most two lowest sub-bands have a first order effect on charge and currents, so

our model provides high accuracy and short computation time [6].

1.1.3 Computing the Channel Charge

QCH is derived from carrier density. Electron density na in sub-band « [6] is
given by equation
na = [;° f(E)* D(E)dE

Where f(E) = Fermi Dirac distribution function = W
(14+e KT )

— : — (M (catE)
D(E) = density of states = (=5 )\/(Ega(E+26a))

Where h= Planck’s constant

M= effective mass

K= Boltzmann’s constant

1.1.4 The Breakdown Voltage

Typical GNRFET breakdown voltage is in the range of 0.5 to 3 V for different
channel lengths. The short channel and high mean free path of graphene is up to
400nm, result in high ionization rate and breakdown at high biases. For example,
GNRFET with 22nm width formed by mechanical exfoliated has a breakdown voltage
of 2.5V. GNRFET with 10-20nm width formed by chemical vapor deposition has
breakdown current density 4x10~7 A/em? [6].

1.2 Device Parameters
1.2.1 Electron Mobility

Electron mobility is defined as the ease with which an electron can move through
a semiconductor due to an electric field. It is denoted by p and has units cm?/(V.s)
[7]. For better performance, electron mobility should be high. In case of graphene, it

is 1500cm?/(V.s) [8].



1.2.2 Leakage Current

Leakage current is the measure of leaked current between source and drain when
the transistor is turned off. The leakage current increases with decrease in channel
length. Although the channel lengths of the device technologies discussed here are
low, leakage current remains low due to the nano scale materials used and the changes

in gate structure [9]. The leakage current of GNRFET device is 1771 pA [8].

1.2.3 Leakage Power

The unwanted subthreshold current present in the transistor when it is off times
VDS. Leakage power is strongly influenced by transistors threshold voltage [10] and
the GNRFET has near 1240 pW [8].

1.2.4 TIon / Ioff

The ratio of maximum drain current to off leakage current defines the switching

performance of a device [11]. The on-off ratio of GNRFET is as high as 40,000. [§]

1.2.5 Delay

The time gap between the application of input signal and the visible affect at the
output of GNRFET is near 2.79 ps [8]. The unique device parameters make it good

candidate in future high speed low power systems.

1.3 Organization of Thesis

Chapter 2 covers digital components incorporated with GNRFET device and their
truth tables, boolean expressions and transient analysis responses. Chapter 3 covers
GNRFET based power amplifiers and differential amplifiers with their power gain,

noise figure and stability factors. Chapter 4 emphasizes Analog-to-Digital converters



and Digital-to-Analog converters and their power consumption analysis. Chapter 5
gives the results and discussions of the work presented in this thesis, and Chapter 6

concludes the work and suggests some future work to follow.



2. THE GNRFET DIGITAL DEVICES AND CIRCUITS

This chapter emphasis the feasibility of Graphene Nano-ribbon field effect transistors
in implementation of combinational logic circuits such as logic gates, adders, mul-
tipliers, muliplexers, Demultiplexers, Encoders, decoders, comparators and flipflops.
Transient analysis was performed using ADS platform. The simulation of GNRFET
device used is with channel length of 10nm and supply voltage 0.7V.

2.1 Logic Gates

The basic logic gates are NAND, NOR, NOT, AND, OR, XOR and XNOR gates.
NAND and NOR gates are known as Universal gates since other logic gates can be
derived from these gates, and the remaining gates are known to be derived gates.

These logic gates are building blocks of other combinational logic gates.

2.1.1 The NOT Gate

Not gate is made of gnrfetpmos pull-up and gnrfetnmos pull-down devices. For a
high input voltage of 0.7V the gnrfetpmos is switched off and gnrfetnmos is switched
on to give an output voltage 0V. Similarly, for a low input voltage of OV the gnrfet-
nmos is switched off and gnrfetpmos is switched on to give an output voltage 0.7V.
The schematic of a NOT gate is given in Figure 2.1. The transient analysis response

is given in Figure 2.2.

2.1.2 The NAND Gate

The 2-bit NAND gate is designed using two gnrfetpmos in parallel acting as pull-up

tree, connected with two gnrfetnmos in series acting as pull-down tree. The schematic
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of the 2-input NAND gate is given in Figure 2.3, and the transient analysis response

is shown in Figure 2.4.

2.1.3 The NOR Gate
The 2-bit NOR gate is designed using two gnrfetpmos in series acting as pull-

up tree, connected with two gnrfetnmos in parallel acting as pull-down tree. The

schematic of the 2-input NOR gate is given in Figure 2.5, and its transient analysis

response is shown in Figure 2.6.
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2.1.4 The AND Gate

The AND gate was designed by pull-up gnrfetpmos and pull-down gnrfetnmos.
The schematic of the 2-input AND gate is given in Figure 2.7, and its transient

analysis response is shown in Figure 2.8.

2.1.5 The OR Gate

Likewise, the OR gate was designed with pull-up gnrfetpmos and pull-down gnr-
fetnmos. The schematic of the 2-input OR gate is given in Figure 2.9 and its transient

analysis response is shown in Figure 2.10.
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2.1.6 XOR Gate
The boolean expression of the XOR gate is given by
A XOR B = AB +4B

The schematic of the 2-input XOR gate is given in Figure 2.11, and the transient

analysis response is shown in Figure 2.12.
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2.1.7 XNOR Gate

The boolean expression of the XNOR gate is given by

A XNOR B = AB+AB

18

The schematic of the 2-input XNOR gate is given in Figure 2.13, and the transient

analysis response is shown in Figure 2.14.
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Fig. 2.15. Half Adder Schematic

2.2 Adders

Adders are the most important devices used in digital systems where processing of
binary numbers are required. They are mostly used in Arithmetic Logic Units (ALUs),
Program Counters, timers, Digital Signal Processing, and Graphical Processing Units
(GPUs) oriented systems for reducing complexity [12]. Low power half adder, full
adder, parallel adder, and ripple carry adder are designed and simulated using ADS.

2.2.1 Half Adder

The half adder adds two binary bits and gives sum and carry. The boolean

expressions for sum and carry are given below for inputs A and B
sum = A XOR B = AB +AB
carry = A AND B = AB

The schematic of the half adder and the transient response are given in Figures 2.15

and 2.16 respectively.
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2.2.2 Full Adder
The boolean expressions for sum and carry are given below for inputs A,B and C.
sum = A XOR B XOR C
carry = (A AND B) OR (B AND C) OR (A AND C) = AB + BC + CA

The schematic of full adder and the transient response are given in Figures 2.17 and

2.18 respectively.

Two 4-bit parallel adders implemented in this study are ripple carry adder and

carry look ahead adder.

2.2.3 Ripple carry adder

Considering two 4-bit inputs A (A4A3A42A;) and B (ByB3 By By) with LSBs A; and
By, are added using a half adder with sum; as the final sum and the carry (C;) called
an internal carry, and is added to the next significant bit. Then a full adder is used
to add the three bits As + By + C7 which generates sums and an internal carry Cl.
Similarly for the remaining bits such as (A3 + Bs+Cs) and MSB (A4 + By +C3). The
schematic of 4-bit ripple carry adder and its transient analysis are shown in Figures
2.19, and 2.20 respectively. The mathematical expressions of 4-bit ripple carry adder

for inputs A, B and output sum are given as:
sum; = Ay + By
sumg = Ay + By + (4
sums = Az + B3 + Cy

sumy=As + By + C3
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2.2.4 Carry Look Ahead Adder

The carry look ahead adder is mainly used when both inputs are high or when one
of the bits in two input binary numbers is 1 with a carry from the previous bit 1. The
implementation of carry look ahead adder is done by generating all P; and G;, where
P; is carry propagate signal and G is carry generate signal. Boolean expressions of

G, P, and the Sum and Carry outputs are given as:
P, = A; XOR B;
G; = A; AND B,
Sum; = P, XOR Carry;
Carryi+1) = G; OR (P, AND Carry;)

The schematics and transient analysis response of the carry look ahead adder are

shown in Figures 2.21 and 2.22 respectively.

2.3 Binary Subtractors

Binary subtractors are used to substract two binary numbers. It is mainly used
for decision making. Binary subtractors produce the difference and borrow. For
subtracting, the subtractor uses the basic rule of subtraction i.e., if a lower number is
subtracted from a higher number it will produce a difference without a borrow, and if
a higher number is subtracted from a lower number, it will produce the difference with
a borrow. In this study, a binary half subtractor and a full subtractor are designed

and implemented.

2.3.1 Half Subtractor

In half subtractor two binary bits are subtracted for producing the difference and

borrow. The truth table of the half subtractor is:
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A | B | Difference | Borrow
010 0 0
011 1 0
110 1 1
1]1 0 0

The boolean expressions derived from the truth table for the difference and borrow

in terms of the inputs A and B are:
Difference = A XOR B = AB +AB
Borrow = A AND B

The schematics of the full subtractor and the transient response are given in Figures

2.23 and 2.24 respectively.

2.3.2 Full Subtractor

In full subtractor three binary bits named A, B and C are used to get the difference
and borrow outputs. The truth table of the full subtractor showing all the different

combinations of inputs is:

A | B | C | Difference | Borrow
0101]0 0 0
01011 1 0
0111]0 1 1
0171 0 0
11700 1 1
11071 0 0
1{111]0 0 1
1111 1 1
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The boolean expressions derived from the truth table for the difference and borrow

in terms of the inputs A, B and C are:
Difference = A XOR B XOR C
Borrow = ((A XNOR B) AND C) OR (A AND B)

The schematics of the full subtractor and the transient response are given in Figures

2.25 and 2.26 respectively.

2.4 Binary Multiplier

Binary multipliers are electronic digital devices used for multiplying two binary
numbers. The inputs used are called multiplicand and multiplier. The bit size of the
final product is the sum of bit sizes of multiplicand and multiplier. Partial products
are obtained using AND gates, and these partial products are added using half adders
and full adders. In this study, 2x2 and 3x3 multipliers are implemented.
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2.4.1 2x2 Binary Multiplier

In 2x2 multiplier, 2-bit binary inputs are used. Multiplicand A5 A; is first mul-
tiplied by the LSB of the multiplier B;, obtained from the AND operation. The
multiplicand AsA; is then multiplied with the MSB of multiplier, By, then the two
products are added using full adders and half adders. The schematics and transient

analysis are shown in Figures 2.27 and 2.28, respectively.

2.4.2 3x3 Binary Multiplier

In 3x3 multiplier, 3-bit binary inputs are used. Multiplicand A3A;A; is first
multiplied by LSB of multiplier B;, obtained from the AND operation. The multi-
plicand A3A5A; is multiplied with next significant bit of multiplier B,. Likewise, the
multiplicand A3 A3 A; is multiplied with next significant bit of multiplier Bs. Finally,
add all the products using full adders and half adders. The schematics and transient

analysis are shown in Figures 2.29 and 2.30, respectively.
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2.5 Multiplexer

Multiplexers are used to combine data from different sources to one single data.
The select lines helps the mux to select a particular input to be switched as an output.

In this study, 2:1 MUX and 4:1 MUX, were designed and simulated.

2.5.1 2:1 Multiplexer

The 2:1 MUX is designed with 2 inputs, 1 select line, and an output. The truth

table for the MUX inputs A, B, and the select line select is given as,

Select | Output
0 A
1 B

The boolean expression of the 2:1 MUX is given as,
Output = Select A + Select B

The schematics of the 2:1 MUX and transient response are shown in Figures 2.31

and 2.32, respectively.

2.5.2 4:1 Multiplexer

A 4:1 MUX is designed with 4 inputs, 2 select lines and an output. The truth
table for MUX inputs A, B, C, D and select lines select]l and select2 are:

Select2 | Selectl | Output
0 0 A
0 1 B
1 0 C
1 1 D
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The boolean expression of the 4:1 mux is given as:

Output = Select2 Selectl A + Select2 Selectl B + Select? Selectl C + Select?2
Selectl D

The schematics of the 4:1 MUX and its transient response are shown in Figures 2.33

and 2.34, respectively.



10

IN1
2
|

fime, msec B

me, msec

=1

N2
@
r

1 2 3 4 5 0.6—
time, msec 1l |
[ 02—
{ o0ttt
1 2 3 4

time, msec

time, msec

13

ouT
5
i

. =l == = ]
o0 05 10 15 20 25 30 35 40

i5 20 25 30 35 40 45 5D time, msec

tume, msec

Fig. 2.34. 4:1 MUX Output




41

2.6 Demultiplexer

A Demux distributes one input into required number of outputs, so known as data
distributor. In this study, 1:4 Demux is implemented. A 1:4 Demux is designed with
one input, two select lines and four outputs. The truth table for 1:4 Demux is given
below with input named Data, select lines named sell, sel2 and outputs A,B,C, and

D.

Input | Sel2 | Sell | Output

Data 0 0 A
Data 0 1 B
Data 1 0 C
Data 1 1 D

The boolean expressions of the 1:4 Demux is given as:

A = Data sell sel?2
B = Data sell sel?2
C = Data sell sel2
D = Data sell sel2

The schematics of the 1:4 Demux and its transient response are shown in Figures

2.35 and 2.36, respectively.

2.7 Comparator

The comparator circuit compares the magnitude of two digital circuits. In this

study, 1-bit comparator and 2-bit comparator were implemented.
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2.7.1 1-bit Comparator

It compares the magnitude of two 1-bit binary signals to determine whether one
input is greater than, less than or equal to the second input. The truth table of the

1-bit comparator is given below:

A B|A>B| A=B | A<B
00 0 1 0
0|1 0 0 1
110 1 0 0
171 0 1 0

The boolean expressions of the 1-bit comparator are given as,

(A>B):AB
(A=B):AB + AB =A XNOR B
(A< B):AB

The schematics and transient analysis are shown in Figures 2.37 and 2.38

respectively.

2.7.2 2-bit Comparator

This compares the magnitude of two 2-bit binary signals to determine whether
one input is greater than, less than or equal to the second input. The truth table of

the 2-bit comparator is given below:
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Ay | Ay | By | By | A>B | A=B | A<B
O] 01010 0 1 0
0[]0 0|1 0 0 1
OO0 110 0 0 1
0O]0 1|1 0 0 1
O 1]0/]O0 1 0 0
O 1,01 0 1 0
O] 1110 0 0 1
0 1 1 1 0 0 1
110110710 1 0 0
1100 ]| 1 1 0 0
110110 0 1 0
1 0 1 1 0 0 1
111 107]0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 0

The boolean expressions of the 2-bit comparator are given as,

(A > B) N AQE + Algzgl + AQAlE

(A =B): (A By + AiB)(Ay By + Ay By) = (A XNOR B, )(A; XNOR B,)
(A< B):Ay By + A; By By + Ay A, Bl
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The schematic and transient analysis are shown in figures 2.39 and 2.40, respectively.

2.8 Digital Encoders

Digital Encoders take the input and convert it into equivalent binary code. For

an n-bit encoder, 2" input lines are used. The encoders implemented in this study

are 4x2 and 8x3.
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2.8.1 4x2 Digital Encoder

For 2-bit Encoder, 4 input lines are used. It is also known as 4x2 Encoder. The

truth table of the 2-bit encoder is given as,

D3 | D2 | D1|Do| Q1| Qo

= o | O | O
el ]

o | O | = | O

o | OO | =
—

_ O | = | O

The schematics and transient analysis are shown in Figures 2.41 and 2.42,

respectively.



47

1.0 1.0
= 55—' \ ’ ‘ ’ \ ’ ‘ :’ \ 25 DS—’ \ ’ \ ’ ‘
< oo Y S
e ) PO PR R S e T I iy
6D 05 1.4 1E 28 X 30 35 40 45 540 oo OB 1.0 1.5 20 25 30 38 40 45 50
ime, mset time; msec
1.0
1.0
~ g5 }_ 05— B + 1 |
o 5}
2 oo m pp—I- 1 1 L 1
0.5 T T T T T T LI L L L L L O
00 065 10 15 20 25 30 35 40 45 50 oo (2] 10 15 20 25 a0 35 40 45 50
time. msec time, msec
10
s 05 1 1 I ] I I I I | I I I | ] ]
2 o I U | | |_| |
‘ﬂz||||||||||||||\\\\\\\||||\\\\||||||||||||||\\\\\|
00 62 04 D6 DB 10 12 14 13 22 24 28 2% 30 32 34 38 38 40 42 44 48 48 50
time, msec
800
>
E 400-]
& 200-)
o
200 T T ‘ T I T I T I T ‘ T | T I T | T ‘ T ‘ T I T I T ‘ T ‘ T ‘ T | T I T ‘ T ‘ T I T I T I T
DE D" oz 06 08 10 16 1.8 20 22 24 26 28 30 32 3% 36 38 40 42 44 46 43 50
time, msec
800
600
” 1
<= 4p0-
8 200
200 L L L L L L L ‘ T ‘ T ‘ T | T | T | T T T " T T T rT 1T T T T T 1 T 717
0p 02 04 66 05 10 12 14 28 30 32 34 35 385 40 42 44 456 435 50
time. msec

Fig. 2.40. 2-bit Comparator Output

2.8.2 8x3 Digital Encoder

For 3-bit Encoder, 8 input lines are used. It is also known as 8x3 Encoder. The

truth table of the 3-bit encoder is shown as,
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The schematics and transient analysis are shown in the Figures 2.43 and 2.44,

respectively.

2.9 2:1 Serializer

The serializer is a promising device that accesses and stores data efficiently. It
has high gain, high speed, and good memory bandwidth. Powerful applications may
include internal buses of a microprocessor that connect to slow devices such as RAMs.
Data must be accessed in parallel to fetch and store for high performance.

In this study, 2:1 Serializer was designed and simulated in ADS. The Deven and
Dodd are the two parallel data inputs given to a serializer to get a serial output.
In this design, for simulation, the Clock, Deven and Dodd were given voltage pulses
with different pulse widths as shown in Figure 2.45. The transient analysis of the
serializer is shown in Figure 2.46. The serializer is designed using edge triggered
D-flipflops, and a 2:1 transmission gate multiplexer. The schematics and timing
diagram of the D-flipflop used in the serializer are shown in Figures 2.47 and 2.48
respectively. The design multiplexer used transmission gates inorder to reduce the
number of transistors used, and accordingly the power consumption. Furthermore,
this design occupies less area on the chip. The schematics of transmission gate and

output is shown in Figures 2.49 and 2.50 respectively. Deven and Dodd are given as
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ol

D-inputs for clock synchronized edge triggered flipflops. For a low clock signal, the

multiplexer gives Deven as output, and for a high clock signal the multiplexer gives

Dodd as output.
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3. THE GNRFET ANALOG DEVICES AND CIRCUITS

The analog devices implemented in this study are Power amplifiers and differential
voltage amplifier. The different power amplifier classes implemented in this study were
class A, Class B and Class AB. These were implemented to study the power gain,
noise figure, stability, and harmonics for GNRFET based amplifiers. These high-
speed amplifiers have wide range of applications in real world such as sound systems,

wireless communications, satellite systems, embedded systems, and [oT systems.

3.1 Class A Power Amplifier

In class A amplifier the output power flows through one complete cycle of the
input AC signal. Class A operates in the linear region of the I-V characteristics of
the GNRFET. Class A amplifiers can amplify small signals with no distortion but at
low power and low efficiency rate [13].The schematics design of class A amplifier is
shown in Figure 3.1. The input and output characteristics are shown in Figures 3.2
and 3.3 respectively. The voltage gain of this amplifier is near unity.

The power gain, noise figure, stability factor K, source and load impedances are
calculated. Figure 3.4 and 3.5 show the stability and Noise Figure respectively. Figure
3.6 shows the power gain, noise figure and their corresponding impedances. Figure

3.7 shows the harmonics of class A amplifier.

3.2 Class B Power Amplifier

In class B amplifier the output power flows for only half cycle of the input AC
cycle. Class B power amplifier shows high efficiency when compared to the class A

amplifier. Class B power amplifier exhibits distortion which is the main disadvantage
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of this class [14]. The schematic design of class B amplifier is shown in Figure 3.8.
The input and output characteristics of class B amplifier are shown in Figures 3.9
and 3.10 respectively.

The power gain, noise figure, stability factor K, source and load impedances
are calculated. Figure 3.11 and 3.12 show the stability factor and Noise Figure re-
spectively. Figure 3.13 shows the power gain, noise figure, and their corresponding

impedances. Figure 3.14 shows harmonics of class B amplifier.

3.3 Class AB Power Amplifier

Class AB is formed by combining class A and class B to combine the advantages
of both classes. The output power in class AB amplifier flows for more than half cycle
and less than a complete cycle of the AC input cycle. The distortion of the class B
is eliminated and the efficiency is increased [15]. The schematic design of class AB
amplifier is shown in Figure 3.15. The input and output characteristics of class AB
amplifier are shown in Figures 3.16 and 3.17 respectively.

The power gain, noise figure, stability factor K, source and load impedances
are calculated. Figure 3.18 and 3.19 show the stability factor and Noise Figure re-
spectively. Figure 3.20 shows the power gain, noise figure and their corresponding

impedances. Figure 3.21 shows harmonics of class AB amplifier.

3.4 Differential Amplifier

It is a voltage amplifier. The output voltage is the voltage difference between two
inputs. The differential amplifier may also provide voltage gain. The schematics and

transient analysis are shown in Figures 3.22 and 3.23, respectively.
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Fig. 3.12. Graph Representing Class B Noise Figure
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4. THE GNRFET MIXED SIGNAL DEVICES AND
CIRCUITS

Mixed signal circuits are designed using both analog and digital devices. Mixed signal
circuits are used in many applications such as communications, embedded systems
and IoT devices and systems [16]. Analog-to-Digital converters and Digital-to-Analog
converters are implemented in this study. ADS platform with minimum 10nm channel

sized GNRFET with an input voltage of 0.7V was considered.

4.1 Analog-to-Digital Converters (ADC)

ADCs are among the essential components in mixed signal systems where both
analog and digital devices are integrated. Physical quantities available in real world
need analog-to-digital converters to convert analog signals into digital form, in order
to enable DSP processors evaluate the analog information and process it as needed
[17]. In this work, TIQ (Threshold Inverting Quantization) comparator using two
cascaded inverters as a voltage comparator and thermometer code to binary code
encoder are used [18]. The block diagram of an ADC is shown in Figure 4.1.

In TIQ), first inverter switches the voltage internally whereas second inverter acts
as a gain booster and manages the propagation delay. As the number of graphene
nano ribbons of the P-type and N-type GNRFETSs varied, the inverters generate
different switching voltages, which act as the reference voltage to compare the input
analog signal with TIQs are arranged in parallel. For n-bit ADC, we need 2™ TIQ
comparators [19]. The schematic of the TI(Q is shown in the Figure 4.2.

The encoder used here is a thermometer code to binary code encoder. Firstly,

the thermometer code was converted to the grey code, then to the binary code. The
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inputs of the encoder were taken from the outputs of TIQs that wer arranged in
parallel [19].
The ADCs implemented in this study were 2-bit, 3-bit, and 4-bit ADCs.

4.1.1 2-bit ADC

In order to design the 2-bit ADC, 4 different TIQs were used. When P-type
GNRFET uses number of ribbons equals 2, the N-type GNRFET uses a number of
ribbons to be 15. Similarly, the remaining combinations (P-type GNRFET, N-type
GNRFET) used were (4,13), (8,9), (16,1). The encoder used in 2-bit ADC was 4X2
Encoder. The schematics and transient response of the 2-bit ADC are shown in

Figures 4.3 and 4.4 respectively.

4.1.2 3-bit ADC

In order to design 3-bit ADC, 8 different TIQs were used. When P-type GNRFET
uses number of ribbons equals 1, the N-type GNRFET uses a number of ribbons to
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Fig. 4.4. 2-bit ADC Output
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be 16. Similarly, the remaining combinations (P-type GNRFET, N-type GNRFET)
used were (2,15), (3,14), (4,13), (5,12), (6, 11), (7,10), (8,9). The encoder used in
3-bit ADC was 8X3 Encoder. The schematics and transient response of the 3-bit

ADC are shown in Figures 4.5 and 4.6 respectively.

4.1.3 4-bit ADC

In order to design 4-bit ADC, 16 different TIQs were used. When P-type GNRFET
uses number of ribbons equals 1, the N-type GNRFET uses a number of ribbons to be
16. Similarly, the remaining combinations (P-type GNRFET, N-type GNRFET) used
were (2,15), (3,14), (4,13), (5,12), (6, 11), (7,10), (8,9), (9,8), (10,7), (11,6), (12,5),
(13,4), (14,3), (15,2), (16,1). The encoder used in 4-bit ADC was 16X4 Encoder. The
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)

Hum=1

Fig. 4.7. 4-bit ADC Schematic

schematic and transient response of the 4-bit ADC are shown in Figures 4.7 and 4.8
respectively.

4.2 Digital-to-Analog Converters (DAC)

The DAC circuit uses current mirror for dividing the reference current according
to W-2W topology, so the current flows through the first two FET transistors in the
circuit is Iref/2 which is considered as Most Significant Bit (MSB). Similarly, the
current flowing through the last two FET devices will be Iref/2" which is considered
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Fig. 4.8. 4-bit ADC Output
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as Least Significant Bit (LSB). For Implementing DACs, we used 5 pA reference
current (Iref). The input supply voltage is taken 0.7 V. Capacitors are taken in the
fF range.

W-2W Current Mirror topology is a contemporary technique for implementing
DACs [20]. When two FET devices of W/L topology are connected source to source
and drain to drain then the equivalent FET topology is (2W/L). If two devices are
connected; drain of one FET device with W /L topology is connected with source of
other FET device with W/L topology. The equivalent FET topology is then equal
to (W/2L). There will be a smaller number of FET devices which means less layout
area, and this is the main feature of this topology. The area of the FET DAC |[21]

using this topology is given by:

Where 7 is the layout fill factor with n < 1

Figure 4.9 shows the W-2W topology. Figures 4.10 and 4.11 show the schematics
and transient response of the 2-bit DAC respectively. Figures 4.12 and 4.13 show
the schematics and transient response of the 3-bit DAC respectively. Figures 4.14
and 4.15 show the schematics and transient response of the 4-bit DAC respectively.



78

Drain

Drain

Drain
Gate WL Drain

Gate I WL I W/L [ -3 I 2W/L
Gate I I I
— WL

Source

Source Source
Gate WL

Source

Fig. 4.9.

=
= 0

Tran

Tran1
StopTime=10 usec
MaxTimeStep=0.01 usec

SRC6
Mdc=0.7 V'

R1
R=100 kGhm

J_ c ouT

0
C=011F Num=3

T~ i

R

|_Probet Ll

R2
R=100 kChm Num=4

c2
c-11F

VDG
t SRC7
= Vde=07V

Wdc=0.7 vV

Vi Puise H
SRC X1
Vpeak=0.7V
Vide=0V

= Freq=500 Hz
—L Width=3 usec
~ Rise=1usec

Fall=1 usec

Delay=0 nsec
Weight=no gnrg!
Hammonics=16 | X4

I

Weignt=n
Harmonic

Fig. 4.10. 2-bit DAC Schematic



79

1.0 1.0
S o054 > 05
0.0——— T ] T 00— —— T I
0 2 4 6 8 10 0 2 4 5 8 10
time, usec time, usec
10
5 o5
Q. ]
e L R A R B
0 2 4 6 8 10
time, usec
Fig. 4.11. 2-bit DAC Output
e
ke
V=07V StopTime=5 msec
R MaxTimeStep=0.01 msec
R1
R=100 kOhm
J_E1 ouTo
C=01fF Num=3
DC ‘ i
ey ecgun L Ret00 0 ) Probe2 Nomed
Vde=0.7V —[‘ : C=1ffF

i

fetnmos.

Freq=500 Hz
Width=0.3 msec

Delay=0 nsec

i A antial input [15e
Rise=0.1 msec x3 +|_ sker
Fall=D 1 msec = Vde=0.7V

rmonics=16

anrfkinmos
x11

gnifetnmas
X8

Fig. 4.12. 3-bit DAC Schematic



06
S oa
02— .. 08
0.”.."‘H‘“‘H‘“..."H“HH‘HH“...‘HH‘HH i
0! 05 10 25 40 45 50 .
time, msec 5 04
-~ =] ]
] 02-{
06— 1
T o4 | L R T o e e e e A EE s ma s e
= j | 0.0 05 10 15 20 25 30 35 40 45 50
02-] i I | | .
] fime, msec
0.0- ....|....|....|....|....|....|....|....|.."|..H
0 05 10 K 0 25 3l 35 40 45 50
time, msec
08
06
g oa
02
L L L . e
5 .0 15 20 25 30 35 40 5 50
time, msec

Fig. 4.13. 3-bit DAC Output

v

v.DC

Tran
_ SlopTime=5 msec
R MaxTimeStep=001 msee

SRCE
Vde=0.7V

R=100 kOnm

R 3 - ) | RSt e=1J y AL d :'Emm\m. =
all=0 S i SRCT
Delay=0 fsec V=07V
=np s
Harmonics= i

1}

= Rise=01 msec
Fall=0.1 msec »
T 7 anretnimas.
Weight=no 3 3 arit S i
Harmonics=16 | X4 b grifinmos o
X5
gnrietnimos
TFrxe

Fig. 4.14. 4-bit DAC Schematic



06—

0.4~

INO

0.2

-

1]

L e e e B
3.0 35 40 45

time, msec

08
] 06—
o A 1 S AR R -
00 50 5 04
o
time, msec il
0
8 0.0- \\\\‘\\\\‘\\II'\\\\‘\\\\‘\II\‘\\\\‘\\\\‘\\II‘\\\\
06—+ 00 08 10 15 20 25 30 5 40 45
S 04 time, msec
0.2
R A 0 L AR DS £ 6o
5 10 15 20 25 30 -
2 a0
fime, msec =l
. 2 200
06— L o L B e AL s e A B o
0.0 05 10 15 20 25 30 35 40 45 0
04
4 time, msec
024
o M g e e s
0o 10 15 20 25 50

time, msec

Fig. 4.15. 4-bit DAC Output



82

5. RESULTS AND DISCUSSIONS

In this chapter, the characteristics of devices implemented in this study were dis-
cussed. Table 5.1 gives the power consumption of digital circuits implemented in this
study. Table 5.2 gives power gain, noise figure, stability factor of power amplifiers at
2GHz designed and implemented in this study. The power consumption of 4-bit ADC
is found to be 24.5 W with 40nsec rise time. Table 5.3 represents the characteristics
of the Digital-to-Analog Converters.

It also presents a comparative data between the most advanced devices in silicon
technology and the data obtained in this study. Table 5.4 presents available data for
the FinFET device characteristics. Even though, very limited information available

for the FinFET devices, what presented here reflects the features and drawbacks of

both.



Table 5.1.
Power Consumption of all Digital Components

Digital Component

Static Power

Dynamic Power

NOT Gate 0.6pW 0.12pW
NAND Gate 0.9pW 0.09pW
NOR Gate 1.2pW 0.09pW
XOR Gate 4.9pW 122nW
XNOR Gate 2.1pW 122nW
Half Adder 85mW 2140 W
Full Adder 126nW 490nW
Ripple Carry Adder 151nW 1.8uW
Carry Look Ahead Adder 286nW 0.3uW
Half Subtractor 28.1nW 214nW
Full Subtractor 57.3nW 490nW
2X2 Multiplier 51.5nW 122nW
3X3 Multiplier 173nW 30.6 uW

2:1 MUX 11.8nW -

4:1 MUX 28.71aW -

1:4 Demux 15.7aW -
1-bit Comparator 62.3nW 306nW
2-bit Comparator 89. "W 490nW
4X2 Encoder 40nW 490nW
8X3 Encoder 72.8 nW 735nW

Serializer 400nW -




Table 5.2.

Characteristics of the Power Amplifiers

Power Amplifier

Power Gain

Noise Figure

Stability

Class A

3.478dB

0.064dB

10.171

Class B

0.870dB

0.318dB

1.005

Class AB

0.126dB

0.397dB

1.012

Table 5.3.

Characteristics of the DACs

DAC Device

Power Consumption

SNDR

INL DNL

2-bit

4.431 W

13.8

0.625LSB | 0.88LSB

3-bit

4.48uW

19.8

0.3125LSB | 0.63LSB

4-bit

4.51 W

25.8

0.156LSB | 0.39LSB

Table 5.4.

Comparison of FinFET and GNRFET

Characteristics

FinFET

GNRFET

Input Supply Voltage

0.7V

0.7v

Electron Mobility

575 cm?/(V.s)

1500cm?/(V.s)

Leakage Current

4157pA

1771pA

Ton/Toff

17500 A/A

40000 A/A

Leakage Power

2910pW

1240pW

Delay

2.82ps

2.79ps

84



85

6. CONCLUSION AND FUTURE WORK

In this study, the GNRFET device model developed at the University of Illinois,
Champaign has been verified for various applications including digital, analog and
mixed signals. With minor modifications to the device parameters, reflecting the
channel specifications used in the model, device performance proved to be stable in its
operation for various components. The employment of the GNRFET devices in these
components has resulted in unique characteristics including low power consumption
and high switching speed. The GNRFET devices considered in the design was of
10nm channel length, suggesting successful applications for the ULSI (ultra large scale
integrated circuits) that are suitable for future computer architectures including GPUs
and CPUs. The data received in this study is superior over the silicon technology
as compared to the most advanced FinFET devices, in its power consumption and
switching speed. The 10nm nano scale channel length considered in this work may
result in comparable level of integration with FinFET technology. Lack of available
data on the 7Tnm scale FinFET makes it hard to draw a fair conclusion on other issues
related to the manufacturing processes, packaging etc. Furthermore, since GNRFET
devices are still in prototyping stage makes it challenging to draw a conclusion at the
system level for fair comparison, and this is reserved for future considerations. The
designed serializer gave output with minimum data loss. The building blocks of the
serializer used were also designed at high efficiency.

The study shows successful designs for the three power amplifier classes A, B,
and AB with proper characteristics, including very low power consumption, low noise
figures, high stability factors, and minimum harmonics. The designed amplifiers were
including passive components, so further study can extend to power amplifier design
with active components. Various attempts were made for the active loads, however

some issues were still remaining with output performance. A phase shift and a dc
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output component were observed, and the relation between Vout and Vd was not
found accurate. This may be attributed to the capacitive components associated
with the device model, leading to the output phase shift. The circuit seems to have
some mismatching operating conditions, resulting in a dc output. Future efforts
should emphasize different designs for proper differential to single output conversion.
Device sizing may also be an issue for adjusting the stage gain. These efforts were
also reserved for future considerations. GNRFET ADCs and DACs designed and
simulated in this study have less rise time and low power consumption as compared
to current technology.

Future work may continue to address issues related to RF applications with inter-
facing to IoT and embedded devices that makes it suitable for high speed 5G com-
munications, computer architectures, and medical technology. Applying GNRFET
to PLL (phase Locked Loops), an important unit in communications and comput-
ers may be considered for future implementation. This includes phase detectors and
voltage controlled oscillators. Issues of impedance matching when interfacing these
devices with FinFET technology may be of great interest to integrate features of both
technology.
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