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ABSTRACT

Gao, Tianchong. Ph.D., Purdue University, December 2019. Privacy Preserving in
Online Social Network Data Sharing and Publication. Major Professors: Stanley
Yung-Ping Chien and Xiaojun Lin.

Following the trend of online data sharing and publishing, researchers raise their
concerns about the privacy problem. Online social networks (OSNs), for example, of-
ten contain sensitive information about individuals. Therefore, anonymizing network
data before releasing it becomes an important issue. This dissertation studies the
privacy preservation problem from the perspectives of both attackers and defenders.

To defenders, preserving the private information while keeping the utility of the
published OSN is essential in data anonymization. At one extreme, the final data
equals the original one, which contains all the useful information but has no privacy
protection. At the other extreme, the final data is random, which has the best privacy
protection but is useless to the third parties. Hence, the defenders aim to explore
multiple potential methods to strike a desirable tradeoff between privacy and utility
in the published data. This dissertation draws on the very fundamental problem,
the definition of utility and privacy. It draws on the design of the privacy criterion,
the graph abstraction model, the utility method, and the anonymization method to
further address the balance between utility and privacy.

To attackers, extracting meaningful information from the collected data is essen-
tial in data de-anonymization. De-anonymization mechanisms utilize the similarities
between attackers’ prior knowledge and published data to catch the targets. This
dissertation focuses on the problems that the published data is periodic, anonymized,
and does not cover the target persons. There are two thrusts in studying the de-

anonymization attacks: the design of seed mapping method and the innovation of
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generating-based attack method. To conclude, this dissertation studies the online
data privacy problem from both defenders’ and attackers’ point of view and intro-

duces privacy and utility enhancement mechanisms in different novel angles.



1. INTRODUCTION

Online Social Networks (OSNs) have exploded in popularity. The OSN providers,
like Facebook and Twitter, own a vast amount of personal data and relationship in-
formation between their users. OSN service providers always have incentives to share
data with third parties. Service providers publish the data for new friendship rec-
ommendations, targeted advertisement feeding, application evaluation, human social
relationships analysis, etc.

However, leaking private information, e.g., users’ interests, users’ profiles, and the
linking relationships between users, can cause great panic to OSN users and service
providers. Cambridge Analytica gained access to approximately 87 million Facebook
accounts [149]. Following the data scandal, Facebook apologized amid public outcry
and fallen stock prices in 2018.

This dissertation mainly focuses on privacy preservation problems in OSN data
sharing. Intuitively, the OSN data is modeled by a graph, where the nodes show
the users and the edges show the relationships. Previously, researchers demonstrated
that naive ID removal, which simply removes users’ identities, was also vulnerable
[76, 106]. Attackers can utilize the unchanged structural information to apply a de-
anonymization attack. Hence, various anonymization techniques have been proposed
to preserve privacy. These techniques only mask the identities but also perturb the
graph structures. They include the k-anonymity based methods, i.e., making at least
k users similar to each other, and differential privacy based methods, i.e., limiting the
private information leakage.

While existing OSN anonymization schemes, especially differential privacy-based
ones, are rich in preserving privacy, the regenerated graph lacks enough utility, which
is the usefulness to the benign third parties for network analysis. Generally, this

dissertation studies the following problems that may exist in data anonymization:



the angle to balance utility and privacy, the measurement of utility and privacy,
and the unnecessary utility and privacy loss. Specifically, the main challenges of the
anonymization schemes are:

1. Network data is susceptible to the changes in the graph structure. Although
the global differential privacy techniques have a strict privacy guarantee, noise
in the published graph affects the utility of the data.

2. In differential privacy-based schemes, abstraction models are employed to trans-
form network data into numerical type. However, deploying one abstraction
model can only capture some aspects of information, while the published graph
loses the information in other aspects.

3. Existing differential-privacy schemes claim to preserve graph utility under cer-
tain graph metrics. However, each graph utility metric reveals the whole graph
in specific aspects.

4. When the privacy level of the published graph is adjustable, the utility preser-
vation of existing schemes is out of control.

Rising to these challenges, we propose several new angles to strike a smart balance
between privacy and utility. For example, when setting the privacy level, we give the
notion of local differential privacy when global differential privacy requires too much
noise. When studying the graph abstraction models, we design a comprehensive
model to combine existing models. When choosing utility metrics, we introduce a
novel metric to measure graph utility. When designing the anonymization scheme,
we choose a novel route which can adjust the utility level.

Besides OSN anonymization, OSN de-anonymization also has privacy issues but
from the attacker’s perspectives. De-anonymization helps the researchers to find
weak points in anonymization design and provides valuable insights to OSN privacy
preservation. Existing de-anonymization mechanisms mainly apply a mapping attack
between adversary’s background knowledge and the published data. After successfully
mapping the unidentified users, adversaries gather information from the published

data. The main challenges of the de-anonymization schemes are:
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Fig. 1.1.: Visual depiction of the dissertation organization.

1. Existing schemes do not take advantage of periodically published data. Most of
them can only handle the static data or cut dynamic data into pieces of static
data.

2. Based on existing de-anonymization schemes, attackers can hardly learn infor-
mation about targets if published data is not related to these users. Existing
mapping attack requires that adversary’s background knowledge and published
data involve the same group of users.

Rising to these challenges, we propose several designs to help attackers capture

meaningful information from the published data. We introduce persistent structures
to model the part in the dynamic OSN data. We use the generative adversarial

network, a deep learning model, to apply a generating-based attack.
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Figure 1.1 shows the overall organization of this dissertation. This dissertation
studies the privacy preservation problem in both anonymization and de-anonymization
aspects. Several drawbacks in existing schemes, e.g., the privacy criterion of anonymiza-
tion and the seed mapping algorithm in de-anonymization, are analyzed. This disser-
tation aims to design new schemes and improve existing schemes to avoid drawbacks.
Figure 1.2 gives a detailed technical taxonomy. This dissertation contains the follow-
ing chapters:

1. Chapter 2, “Related work” introduces the related researches in online social

network anonymization and de-anonymization.

2. Chapter 3, “Anonymization with Privacy Criterion - Local Differential Privacy”
gives the novel notion of group-based local differential privacy for achieving
higher utility when the privacy level is the same as global differential privacy.
Because hiding one node in the whole graph requires a large amount of noise,
our main idea is to hide each node in a small subgraph and hide these subgraphs
in groups.

3. Chapter 4, “Anonymization with Graph Abstraction Model - Combined dK”
gives a comprehensive model combining dK-1, dK-2, and dK-3. Because existing
graph abstraction models only extract some aspects of information from the
graph data, our main idea is to use the dK-1 and dK-2 models, which are easy
to reconstruct the graph, together with the dK-3 model, which contains more
information.

4. Chapter 5, “Anonymization with Utility Metric - Persistent Homology” pre-
serves persistent structures and differential privacy at the same time. Because
existing utility metrics cannot reveal the whole graph in different dimensions,
our main idea is to introduce the novel utility metric called persistent homology
and preserve this information in differential-private graphs.

5. Chapter 6, “Anonymization with Novel Method - Sketching” proposes a novel
route to anonymize graphs based on sketching. Because existing anonymization

mechanisms cannot adjust the utility level, our main idea is to introduce a new



anonymization mechanism based on distance preserving sketch. In the published
graph, both the utility, i.e., the distance information, and the privacy, i.e., the
released information, is adjustable.

6. Chapter 7, “De-anonymization with Mapping Seeds - Persistent Structures”
employs persistent homology to de-anonymize OSN users. Because existing
de-anonymization schemes cannot take advantage of the OSN evolution infor-
mation, our main idea is to use persistent homology to extract the holes in
different OSN epochs and map these holes.

7. Chapter 8, “De-anonymization with Novel Method - Generating-based Attack”
employs the conditional generative adversarial network model to generate in-
formation for the attackers. Because existing de-anonymization attacks cannot
utilize information not related to target users, our main idea is to apply the

deep learning model to inject this information into attackers’ results.

1.1 Anonymization with Privacy Criterion - Local Differential Privacy

In Chapter 3, our anonymization scheme is based on the Hierarchical Random
Graph (HRG) model [28]. The HRG model is a rooted binary tree with |V| leaf
nodes corresponding to |V/| vertices in the graph G. Each non-leaf node on the tree
has a number on it that shows the probability of connection between its left part and
right part. Xiao et al. applied this HRG model to achieve global e-differential privacy
over the entire dataset [153]. However, network data is sensitive to changes in the
network structure. Although these global differential-privacy techniques are rich in
preserving privacy, the regenerated graph lacks enough utility for network analysis.

The challenge in OSN anonymization is to find the genuine privacy demands and
avoid adding unnecessary noise which damages utility. Analyzing the de-anonymization
attack process can give us better guidance in designing anonymization schemes. Ex-
isting de-anonymization algorithms compute the structural similarities and attribute

similarities of nodes. Some of these algorithms choose a group of nodes as mapping



candidates of the target node [90, 120]. Some other algorithms group nodes into clus-
ters and then do subgraph matching [27, 106]. These de-anonymization algorithms
imply that anonymization does not need to hide one node with all other nodes. More-
over, the subgraph is an essential component in de-anonymization that we need to
make subgraphs similar to each other.

In this chapter, our first step towards achieving such balance is to split the whole
graph into multiple subgraphs. Graph segmentation has two main advantages: First,
it helps to reduce the noise scale of differential privacy. The notion of local differential
privacy preserves more graph utility than global differential privacy under the same
privacy parameter €. Second, it also helps to reduce the HRG output space size.
Therefore, each HRG has higher posterior probability, and regenerating a perturbed
graph from it loses less information. The subgraph model we use is the 1-neighborhood
graph, which contains a central node and its 1-hop neighborhoods.

After separating the whole graph into subgraphs, the HRG model is deployed to
extract the features with a differential-privacy approach. We introduce a grouping
algorithm based on the similarity of HRG models to enhance anonymization power.
Specifically, the HRGs with the overlap in their output space are grouped to form
a representative HRG. We use this representative HRG to smooth other subgraphs
inside the group. Since all sanitized subgraphs in a group are regenerated from one
HRG, the adversary is not able to differentiate the target even with the help of prior
knowledge.

Finally, we design the graph regeneration process. In order to replace the original
1-neighborhood graph with the perturbed one, the number of nodes in the new sub-
graph should not be fewer than that of the original graph. However, grouping makes
it possible to merge subgraphs of different sizes. Generating the representative HRG
from the largest subgraph will add many dummy nodes. Hence, we introduce two
methods called ‘virtual node’ and ‘outlier distinction’ to solve this problem. Gen-
erally, the two methods avoid adding too many nodes when satisfying the grouping

criteria, which balances privacy with graph utility.



1.2 Anonymization with Graph Abstraction Model - Combined dK

In Chapter 4, our anonymization scheme is based on the dK graph model Mahade-
van et al.. The dK model is separated into different dimensions. The dK-N model
captures the degree distribution of connected components of size N. For example,
dK-1, also known as the node degree distribution, counts the number of nodes in
each degree value. The dK-2 model, also called joint degree distribution, captures
the number of edges in each combination of two-degree values. Sala et al. employed
the dK-2 series as the graph abstraction model to achieve differential privacy [129].
However, deploying one abstraction model can only capture some aspects of informa-
tion, while other utilities are lost in the published graph. For example, because the
dK-2 graph model is the record of edges, it may not preserve information involving
more than two nodes, e.g., the clustering coefficient.

Hence, choosing an abstraction model becomes an important issue. Mahadevan
et al. proved that dK models in higher dimensions have more information than the
ones in lower dimensions, e.g., the dK-3 model is more precise than the dK-2 model
[95]. Our initial idea is to preserve differential privacy on the dK-3 model. In our
study, we find that it is hard to reconstruct the graph with only the dK-3 series.
After studying the different properties between the dK-1, dK-2, and dK-3 series. We
find that low dimensional models, e.g., dK-1, are less sensitive to noise, and can
efficiently regenerate a graph. High dimensional models can preserve more structural
information.

In this chapter, we absorb the benefits of different models and design a new com-
prehensive model that combines three levels of dK graph models. To achieve differ-
ential privacy, we introduce noise on the dK-2 level, which causes less distortion than
on the dK-3 level. Then we use the perturbed dK-2 series to get the corresponding
dK-3 and dK-1 series. After that, we use three levels of dK abstractions together in

our scheme to construct a new graph.



The noise impact is the major challenge in the graph regeneration process. Al-
though the three models in our scheme are closely related, they may conflict with
each other because of noise. Hence, we first use some dK information to regenerate
an intermediate graph, then use the remaining information to rewire the edges. In
particular, we propose two sub-schemes, called consider all together (CAT) and low
to high (LTH), with different executing sequences in the dK series.

After getting the target dK series, the general purpose of graph regeneration is
to minimize the error between it and the published graph in all three levels. In the
rewiring part, we develop three dK rewiring algorithms to reduce the errors graph-
ically. The rewiring algorithms also help us inject the remaining dK information to
the graph. The algorithms analyze the differences to find potential rewiring pairs.
Because one level of rewiring may have negative impacts on other dK levels, both
intermediate graphs apply the rewiring from lower to higher except that the LTH

graph needs no dK-1 rewiring.

1.3 Anonymization with Utility Metric - Persistent Homology

In Chapter 5, our anonymization scheme is based on persistent homology [58].
Persistent homology tracks the topological features of the whole graph at different
distance resolutions in different dimensions. In OSNs, each persistent homology bar-
code is an interval showing a component or a hole in the corresponding dimension.
The intervals begin with the distances the holes born; end with the distances the
holes die. For example, the square structure in OSN is an H; bar [1,2) in persistent
homology barcode.

Although existing anonymization schemes, e.g., dK-2 based one and HRG-based
one, claim to preserve graph utility under some specified utility metrics, the actural
utility of the published graphs is questionable for two reasons: First, the chosen
metrics are limited by the graph abstraction models. Previous studies have shown that

none of the schemes have energetic performance under all the metrics [47]. Second,
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existing metrics only describe the graph at a certain angle. For example, while the
degree distribution and the clustering coefficient disjointedly reveal graph utility in
two specific aspects, each aspect does not cover the other. Thus, lots of useful graph
information gets lost or distorted during the graph anonymization process, primarily
when the anonymization schemes are based on these types of graph metrics.

In this chapter, persistent homology is employed to analyze graph utility. Unlike
the well-studied utility metrics, persistent homology gives a comprehensive summa-
rization of the graph. Since persistent homology is a novel utility metric, the main
challenge of our anonymization scheme is to extract the corresponding persistent
homology information and preserve it in the published graph.

First, our scheme model the OSN by an adjacency matrix for two reasons: (1), the
adjacency matrix contains the same topological information as the distance matrix.
Because the persistent homology filtering phase tracks the persistent structures with
different distances, the structures in the distance matrix can be easily mapped to the
ones in an adjacency matrix. (2), the adjacency matrix has less sensitivity in edge
adding or deleting than other graph abstraction models, i.e., it requires less noise
under the same privacy level.

Second, to preserve the persistent homology in OSNs, we analyze the structural
meaning of barcodes. We find that the OSN graph has the possibility of folding, which
is different from existing studies of point cloud data [13, 116]. Initially, persistent
homology defines H; bars as circular holes and H, bars as voids. However, folding
complicates the analysis of high-dimensional holes but also opens the opportunity to
extract the actual shapes of the persistent structures in OSNs. Particularly, high-
dimensional voids are folded into unique kinds of holes. Therefore, preserving the
polygons defined by the barcodes is preserving persistent homology.

Third, we design an anonymization algorithm that preserves the holes and satisfies
differential privacy. The holes occupy a small part of the network; differential privacy

is maintained through modifying the other parts. Notably, we divide the adjacency
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matrix into four kinds of sub-matrices, according to the corresponding subgraphs with
or without holes. Then different regeneration algorithms are employed to each kind

of matrix to satisfy differential privacy and preserve the holes at the same time.

1.4 Anonymization with Novel Method - Sketching

In Chapter 6, we embed All-Distance Sketch (ADS) in our OSN anonymization
mechanism. ADS has two advantages:

First, ADS accurately preserves some structural information, e.g., distances, neigh-
bors, and betweenness, with bounded error. Several OSN data applications, includ-
ing analyzing the information transmission speed and building the rumor spreading
model, have specific demands of the accurate information in the published graph.
Thus, the ADS graph is appropriate to preserve the data.

Second, ADS eliminates insignificant edges, e.g., edges not on shortest paths and
parallel edges between clusters, from the original graph. After edges removal, the
adversary will have high uncertainty whether the original graph has some specific
edges or not. Most de-anonymization attacks are seed-based [27, 119]. They use
special attributes, e.g., high degree and profile similarity, to build mapping seeds and
then extend the mapping attack [145]. Other de-anonymization attacks are often
based on subgraph isomorphism [7, 128]. Since ADS graph dramatically changes the
network structure, it is capable of defending against these attacks.

However, ADS is not designed for private data sharing. When the adversaries
are intelligent, directly sharing ADS graph leaves two main challenges in preserving
privacy:

First, because the ADS scheme does not add any edge to the published graph, the
adversary knows that every edges in the ADS graph must be in the original graph.
Hence, the performance of this anonymization scheme decreases when there is no
false positive in adversaries’ intelligent guesses on the links. In order to overcome this

shortfall, we design an edge addition and deletion algorithm, in addition to the ADS.
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Our analysis demonstrates that both the privacy and utility of our published graph
are related to the total number of edges added/deleted. Hence, we can modify the
tradeoff between privacy and utility with edge addition/deletion.

Second, even if the anonymization mechanism naively adds dummy edges, real
edges have higher importance than dummy edges. Compared with dummy edges,
real edges are more likely to be the edges along the shortest paths, which are the
backbones in the network. Therefore, an intelligent attack strategy is to generate
the ADS sample of the ADS graph. Edges in the ADS of ADS graph have a high
probability of being contained in the original graph. To tackle this problem, we
design the bottom-([, k) sketch scheme based on the original bottom-k sketch. While
bottom-k requires k nodes with the lowest ranks, bottom-(I, k) requires each node has
at least [ different paths to the source node. The newly added paths make it more
challenging to find the real paths and enhance the privacy of the published data.
Moreover, we design a new ADS graph generation process that achieves bottom-(l, k)

sketch.

1.5 De-anonymization with Mapping Seeds - Persistent Structures

In Chapter 7, our de-anonymization scheme is also based on persistent homology.
However, we apply persistent homology to dynamic OSNs. Persistent homology in
this chapter tracks the topological features of the dynamic graph at different time
resolutions in different dimensions. The barcode intervals begin with the time the
holes born; end with the time the holes die. For example, the square structure exists
from epoch 1 to epoch 2 in dynamic OSN is an Hy bar [1,2) in persistent homology
barcode.

Although existing de-anonymization attacks mainly focus on the static graphs of
OSN data, OSNs are time-variant [90, 120]. Researchers also designed de-anonymization
attacks on dynamic OSNs. Some schemes use the same methods that are used to de-

anonymization attacks upon static data. Here, a time-series graph is considered as a
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combination of pieces of graphs [41]. Hence, the method to de-anonymize dynamic
graphs is mere to sequentially de-anonymize static graphs. These schemes cannot
use the time to conduce de-anonymization. Therefore, the de-anonymization attacks
upon dynamic OSN data may face the same problems that are faced when trying to
de-anonymize static OSN data.

In this chapter, we use persistent homology to give a multi-scale description of
the time-series graphs. In particular, persistent homology filters persistent structures
over time. Persistent homology barcodes show the birth time and death time of the
holes. We examine the similarities between holes in two time-series graphs, instead
of individually considering the similarities between nodes in each piece of the graph.
If two holes match with each other, we use the nodes on the holes as seeds to further

grow the node mapping, until two time-series graph are mapped.

1.6 De-anonymization with Novel Method - Generating-based Attack

In Chapter 8, we introduce the idea of a generating-based de-anonymization at-
tack to replace existing mapping-based attacks. Specifically, we apply a deep neural
network model called Generative Adversarial Network (GAN) to absorb the high-
dimensional structure information and generate a new network to enhance the at-
tacker’s background knowledge. GAN designs a game theory scenario between the
generator and the discriminator. In this game, the generator strives to generate fake
examples similar to real examples, while the discriminator strives to discriminate be-
tween fake examples and real examples. After the game gets coverage, the generator
can generate fake examples that are indistinguishable with the discriminator.

This chapter is based on the assumption that different parts of the OSN should
have similar structural properties, e.g., degree distribution, clustering coefficient, and
some high-dimensional properties. In real-world cases, OSN service providers or third
parties sometimes directly publish a subgraph of the original OSN, but the target
persons may not be in the published graph. Hence, we would like to deploy GAN to
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generate a subgraph that contains the target persons and is similar to the published
graph. Finally, the newly generated edges may enhance the adversary’s background
knowledge, i.e., telling friendship information about the targets.

Although it is innovative to apply the GAN model to the graph domain, there

leave three main challenges:

1. How to embed the adversary’s background knowledge into our GAN model?
The adversary always has some knowledge (albeit incomplete) about target
users. This knowledge is the basic information in both a traditional mapping-
based scheme and our generating-based scheme. In this chapter, we first apply
Graph Auto-Encoder (GAE) to project the graph information into the feature
domain. Then, we deploy the Conditional-GAN (CGAN) model to inject this
information as conditional labels.

2. How to embed published data into our GAN model? The purpose of GAN is
to generate a graph having properties similar to the published graph, but not
exactly the same as any part of the graph in the published data. In this chapter,
we apply the mini-batch method to defend against the model-collapse problem.

3. How to design the deep neural network architecture in both the generator and
the discriminator? In order to collect the information of graph structure and
attributes, we choose a specific classifier model, Graph Neural Network (GNN),
in our GAN.

1.7 Contribution

In conclusion, this dissertation studies the OSN data privacy preservation problem.
The major technical contributions can also be divided into the anonymization aspect
and de-anonymization aspect.

To anonymization, this dissertation designs four novel anonymization schemes for
OSN service providers to protect data privacy. Comparing with existing anonymiza-

tion schemes, the proposed schemes achieve a different balance between privacy and
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utility from the following angles: privacy criterion, graph abstraction model, utility
metric, and impact on utility. The proposed schemes are evaluated on the real-world
OSN dataset. The evaluation results show that the proposed schemes preserve more
graph utility when the data privacy levels are similar to the existing anonymization
schemes.

To de-anonymization, this dissertation designs two novel de-anonymization schemes
for the attackers to find private information. The proposed schemes focus on the sce-
narios that the OSN service providers periodically publish data, and the published
data does not contain the targets. The experiments on real-world datasets demon-
strate that the proposed schemes have better de-anonymization accuracy than existing
schemes.
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2. RELATED WORK

2.1 Online social network anonymization

This dissertation aims to preserve the private information in online data sharing
and publication. The main topic of the dissertation focuses on publishing Online So-
cial Networks (OSNs) while preserving individual’s security and keeping information
of the network. To preserve privacy, removing the identity of each user is a straight
forward procedure before sharing the data [106]. To the adversaries, they hardly take
advantage of the released data when they cannot link the attributes/profiles with the
owners. To the third parties, removing the identities has little impact to the statistics
of the data. Naive ID removal gained widely commercial usage because of its simplic-
ity [76]. However, naive ID removal is vulnerable to inference attacks, which means
the adversaries infer the true identity with their background knowledge [100]. When
the OSN data is defined as a graph, naive ID remove does not perturb the structure of
the graph. The released data suffered from structure information de-anonymization
attacks [111, 142].

Hence, existing OSN data anonymization techniques not only removed the identi-
ties and modified the profiles, but also perturb the graph structures. Several privacy
criteria from database privacy preservation were introduced to provide guidance on
OSN anonymization. Two famous criteria are called k-anonymity and differential
privacy. k-anonymity requires that there are at least k elements in each category,
then it is hard for the attacker to differentiate these k£ elements in the inference at-
tack [138]. k-anonmity has many privacy-preservation applications. For example,
k-anonymity was embedded in the credit incentive system, or the query answering

system to preserve location data privacy [91, 144].
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In OSN anonymization, researchers defined several graph structural semantics,
e.g., a cluster, a clique, and a node-hierarchy, as the categories to achieve k-anonymity
[26, 131, 166]. These researchers designed their structure perturbation algorithms to
get graph automorphism or isomorphism with the minimum modification to original
graphs. Unfortunately, most of these k-anonymity techniques have strict limitation on
adversarial background knowledge. After choosing the specific structure semantics,
k-anonymity may be overcome by other structure semantics [76].

Differential privacy is another kind of privacy preservation criterion [? ]. Tt is
designed to protect the privacy between neighboring databases that differ by only
one element [42]. It means that the adversary cannot determine whether one of the
elements changed based on the releasing result. In our model of OSNs, the adversary

is not able to tell whether or not two users are linked in the original network.

Definition 1 (NEIGHBOR DATABASE). Given a database Dy, its neighbor

database Do differs from Dy in at most one element.

In our research, the neighbor database/graph refers to an OSN with one edge
added or deleted.

Definition 2 (SENSITIVITY). The sensitivity (Af) of a function f is the
maximum distance of any two neighbor databases in the {1 norm.

Af = lr)nal%(Hf(Dl) — f(Dy)]] (2.1)

1,72

Definition 3 (e-DIFFERENTIAL PRIVACY). A randomized algorithm A
achieves e-differential privacy if for all neighbor datasets Dy and Dy and all S C
Range(A),

Pr[A(D;) € S| < e x Pr[A(D,) € S] (2.2)

Equation (2.2) calculates the probability that two neighbor databases have the

same result under the same algorithm. Based on the definition, researchers designed

the Laplace mechanism to achieve e-differential privacy when the entries have real
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values. It adds Laplace noise with respect to the sensitivity Af and the desired
security parameters € to the result. In particular, the noise is drawn from a Laplace

=l=| Af

distribution with the density function p(z|\) = %e », where \ =

Theorem 1 (LAPLACE MECHANISM). For a function f : D — RY, the

randomized algorithm A,
A
AG) = £(6) + Lap(=T) (23)

achieves e-differential privacy [99].

Researchers also designed the exponential mechanism to achieve e-differential pri-

vacy when the query’s result is an output space instead of a real value [99].

Theorem 2 (EXPONENTIAL MECHANISM). For a function f : (G,0S) —

R, the randomized algorithm A that samples an output O from OS with the probability

e f(G,08)

AT ) achieves e-differential privacy.

proportional to exp (

The exponential mechanism resamples the original output space OS with a new
probability sequence. In particular, it assigns exponential probabilities with respect
to the sensitivity (Af) and the desired security parameters e such that the final
output space is smoothed [153].

Nowadays, differential privacy has been widely adopted in privacy preservation
for research purposes and commercial purposes, e.g., Apple and Google [36, 139].
Differential privacy theoretically guarantees that the probability of the adversaries to
differentiate any piece of information from the released data is bounded. Differential
privacy has been applied to protect the electricity usage information [162], to estimate
the cardinality of set operations [135], to answer a collection of Structured Query
Language (SQL) queries [78].

Similarly to k-anonymity, differential privacy was originally proposed for numerical-
type data in databases. The perturbation mechanisms, e.g., the Laplace mechanism,
the exponential mechanism, and the random response mechanism, are only designed

to add noise to numerical-type data. Hence, researchers designed different graph
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abstraction models, e.g., the dK graph model [60], the Hierarchical Random Graph
(HRG) model [29], and the adjacency matrix model [24], to transform OSN from
graph-type data into numerical-type data.

The choice of graph abstraction model restricts the information preserved in the
final data. For example, in the degree sequence model (dK-1) or the joint degree
model (dK-2), the relationship information involved with more than three nodes is
abandon. Hence, we designed a comprehensive model which contains the existing
dK-1 and dK-2 model as well as the high dimensional dK-3 model [49].

Although differential privacy provides strict privacy guarantee, graph utility dra-
matically loses because the criteria aims to hide any piece of data in the whole dataset.
The noise is proportional to the size of the dataset and it damages the final output.
We combined differential privacy with k-anonymity to design a novel kind of privacy
criterion, which called group-based local differential privacy [55]. This novel criterion
ensures differential privacy in a local area and achieves k-anonymity among these
areas.

A different definition of local differential privacy is also introduced in other re-
searches [80, 81]. Kairouz et al. defined the local as the individual who anonymize
his/her data before disclose to the untrusted data curator. Google and other com-
panies adopted this definition to collect personal data [79]. Recently, researchers
also apply this definition to anonymize OSNs [121]. Under this definition, the pri-
vacy is more strict than the common differential-privacy definition but at the cost
of introducing more noise than regular differential-privacy mechanisms. In our work,
the local differential privacy is defined based on a trusted curator. Although the
curator also anonymizes subgraphs one by one, it should be aware of the global struc-
ture in subgraph connection. While the other definition requires OSNs fully locally
anonymize the data, our definition holds a global view about the network and locally

deals with the network. The results prove that our scheme is an enhancement to com-
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mon differential-privacy schemes that it reduces unnecessary noise. The two different
definitions of local differential privacy have different purpose in advancing privacy or
utility.

When analyzing the graph utility for the published data, different anonymization
mechanisms may have different advantages. For example, the dK-2 model is good
at degree distribution preservation while the HRG model does well in the cluster-
ing coefficient preservation. However, our experiments show that none of existing
anonymization mechanisms preserve good utility under all utility metrics, and there
is no graph utility metric which can comprehensively describe utility [48]. We intro-
duced persistent homology as the summary metric for graph utility. We also designed
the anonymization mechanism to preserve differential privacy as well as persistent
homology on the adjacency matrix model [50].

Persistent homology is a description of topology [165]. It has many applications,
e.g., analyzing persistent aircraft networks [116], calculating the distance between net-
works [71], and scheduling robot paths in uncertain environments [13]. Persistent ho-
mology is novel in security analysis. Speranzon and Bopardikar achieved k-anonymity
based on the zigzag persistent homology [21, 134]. Ghrist proposed the barcode to
demonstrate persistent homology [58]. It was applied to analyze the structure of the
complex network [70] and random complexes [1]. The persistent landscape, which
is the abstraction of the barcodes, was also deployed to analyze the topology data
[17]. Compared to the landscapes, barcodes present the persistent structures more
directly.

The anonymization mechanisms based on k-anonymity, differential privacy, and
other privacy criteria all set a specific privacy-level, e.g., k, as their target. However,
the impact of these mechanisms to utility is unbounded. Then we proposed a novel
anonymization mechanism which has bounded impact to both privacy and utility. Our
anonymization mechanism is based on All-Distance Sketch (ADS). This mechanism
preserves node distance information extremely well, under a comparable privacy-level

with differential privacy based mechanisms.
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The most basic sketch is called the MinHash sketch, which randomly summarizes
a subset of k items from the original set [16]. Researchers designed three variations of
MinHash sketch, named bottom-k, k-mins, and k-partition [30, 32, 34]. Specifically,
bottom-k sketch samples k items with the lowest hash values; k-mins sketch samples
one item each iteration with the lowest hash value and repeats the iteration k times
(in each iteration, the hash values are different); k-partition sketch divides the original
set into k subsets and samples one item from each subset. Based on MinHash sketch,
researchers define the all-distance sketch to sample the data with graph structures
[31]. The main idea of ADS is to keep nodes with the lowest hash values within a
specific distance to the central node.

Storing network data into ADS, which is in the format of set of node-distance
pairs, saves several orders of space [39]. However, publish this format of data is not
appropriate to the third parties who want to analyze the graph utility of OSN. Sketch
Retrieval Shortcuts (SRS) is introduced to publish a graph which summarizes ADSs
of different nodes [3]. Generally, SRS combines ADS graphs with edge merging. SRS
graph is not designed for privacy preserving data publication that it has no false
positive and it is vulnerable to attacks.

Although existing privacy and utility measurement works well with previous OSN
data application, machine learning methods have been widely applied to graph struc-
ture data which impacts both benign third parties and malicious users. Various
machine learning methods have been introduced to analyze the graph structure data.
Goyal and Ferrara divided them into four categories, e.g., factorization methods, ran-
dom walk methods, deep learning methods, and other miscellaneous methods [63].
Factorization methods applied spectrum analysis methods to factorize the graph ma-
trices, e.g., the adjacency matrix and the Laplacian matrix [2, 11]. Random walk
methods, e.g., DeepWalk and node2vec, used the nodes along a random walk as the

feature of the source node [64, 115].
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Recently, deep learning methods, which gain huge success in image area and nat-
ural language area, are applied to graph data. These methods include the graph
convolution network [84, 107], graph attention network [140], gated graph sequence
network [92], and graph auto-encoder [83]. These deep learning models aim to learn
a vector representation for each node, in which the graph structural information is
embedded. For example, the information of source node’s 1-hop neighborhoods is
embedded in the source node’s vector representation after we apply one graph con-
volution layer.

After learning the vector representation, several downstream learning tasks could
be done. These learning tasks are in two categories, node classification tasks and
graph classification tasks. Xu et al. showed the difference as the existence of informa-
tion aggregation in the classification task [155]. Their work also summarized various
types of aggregation methods, e.g., sum, average, and max. Sum preserves more in-
formation than the other two. Their ideas about the difference between individual
learning tasks and group learning tasks inspired our work.

Innovation of the graph learning methods brought the development of real-world
applications, e.g., OSN data analysis, as well as the growth of adversaries’ inter-
ests. Researchers showed the possibility of employing the gradient decent method,
which is well-studied in attacking learning of image data, to the discrete graph data
[37]. Researchers, behaving as attackers, introduced several attack methods to obtain
wrong node classification result [37, 168], change node embedding [14], and damage
the learning model [167].

One may notice the similarity between the adversarial attack task to graph data
and our privacy preservation task. Both tasks aim to obtain wrong classification
results of nodes. While the privacy preservation task has the utility preservation
requirement, the adversarial attack task also has the unnoticeable demand. These re-
quirements both limits the total amount of perturbation. However, existing limitation
considering in adversarial attacks are a bit outdated. Previous researchers still define

unnoticeable as small amount of change to statistics, e.g., limit changes of number
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of edges, and limit changes to degree distribution [167, 168]. When the adversaries
utilized machine learning tools to apply attacks, benign users have unreasonable lim-
ited access to use machine learning tools to detect the attacks. This limitation is a
bit outdated and not suitable with the development of graph data analysis.

The learning tasks, including node classification and graph classification, are ex-
tremely suitable with the OSN data. For example, third parties can apply these
machine learning models to group nodes or subgraphs into several categories. Unfor-
tunately, previous researchers did not take the machine learning results preservation
in their utility measurement. In the future, we aim to design novel anonymization

techniques with updated privacy and utility measurement based on learning.

2.2  Online social network de-anonymization

The attack upon the OSN data, i.e., the de-anonymization of published OSN
data, mainly focuses on identify the target users in the released graphs [19, 61]. The
adversaries can build an auxiliary graph with their background knowledge. Then the
task of finding the target users is transformed into a graph mapping problem [106]. If
the adversaries successfully map the nodes from their auxiliary graph into the nodes
in the released graph, they can take advantage of the information in the released
OSN, e.g., the relationships in the graph and the salary amounts in the profile.

Some existing de-anonymization mechanisms examine both the structure simi-
larity and the attribute similarity of nodes from the two graphs [90, 120]. These
de-anonymization attack can be divided into two categories, the seed-based attack
and the seed-free attack. In the seed-based attack, attackers first choose high simi-
larity nodes and map them together [4, 77, 147]. Then the attackers design several
seed-and-grow algorithms to further expand the mapping [7, 113]. In the seed-free at-
tack, attackers map nodes from the global view of matching probability [74, 110]. For

example, the Bayesian model is applied to get the pairwise matching probabilities of
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nodes in the two graphs [110]. Previous researchers theoretically and experimentally
compared the two categories of de-anonymization attacks. Seed-based attacks were
believed to have better performance with the same prior knowledge.

In the seed-based attacks, the most important part is the seed-chosen stage.
The structure change, which is introduced by both errors in adversaries’ background
knowledge and the noise injected by anonymization mechanisms, greatly affects the
performance of seed chosen [76]. OSN data is time variant although existing de-
anonymization attacks mainly focus on the static graphs. For example, Facebook
periodically releases their up-to-date OSN data, and the adversary sequentially add
his/her new knowledge to the auxiliary graph. De-anonymizing dynamic OSNs should
extract the time variant information and employ this kind of information in de-
anonymization. Otherwise, the de-anonymization attacks upon dynamic OSN data
may face the same problems that are faced when trying to de-anonymize static OSN
data.

Existing de-anonymization attack to dynamic OSNs naively combine slices of
graphs [41]. A time-series graph is considered as a combination of pieces of graphs.
Then the overall probability of mapping two nodes is the product of mapping prob-
abilities in all time-series graphs [41]. Some other work only considers the similarity
of path building time when mapping two nodes together [94]. Although these attacks
embed some temporal features in de-anonymization, there is not enough temporal
information to describe the evolution of OSNs, especially when the OSN graphs are
complex. Persistent homology provides a novel angle to analyze the evolution of
OSNSs. Persistent homology barcodes show the birth time and death time of homology
structures, i.e., holes. These structures are utilized as seeds in our de-anonymization
attacks [51].

Another shortage of existing de-aonymization attack is that the mapping attack
only focuses on the overlap part between the published data and the attackers’ back-
ground knowledge. However, the published graph may partially cover the target per-

sons or it may not cover them at all. When the attackers seek a one-to-one mapping,
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losing one user in the published graph will greatly impact the attack performance.
Then we introduced the novel generating attack to replace existing mapping attack.
The deep neural network structure Generative Adversarial Network (GAN) can learn
the high-dimensional structures and generate fake samples which are similar to input
[62]. Specifically, GAN designs a game between the two parties, the generator and
the discriminator. The generator aims to generate fake samples which can fool the
discriminator, while the discriminator aims to discriminate the fake samples with real
samples. After this game get equilibrium, our generator can generate OSNs which
are very similar to the real ones. Attackers can utilize the generator to produce graph
containing target users.

The idea of GAN is based on adversarial machine learning, in which the adversary
searches the best angle to add noise to fool the traditional machine learning classifier.
GAN extends this conception, in that it adds a virtual adversary in the learning
process [103]. The virtual adversary generates confusing samples, which are leveraged
to improve the performance and robustness of machine learning models. GAN is
widely applied in semi-supervised learning since part of the samples are self-generated
and automatically labelled [130].

Moreover, GAN can also be utilized to generate new samples that are similar to
inputs. Mirza and Osindero introduced Conditional-GAN, which generates samples
under the guidance of conditional information [101]. CGAN was applied to transfer
text description to images, extract clothes from dressed-person photos, reconstruct
objects from edge maps, colorize images, and transfer day-view photos into night-
view ones [72, 158, 160]. When handling graph structure data, e.g., OSNs, knowledge
graphs, and recommendation graphs, GAN is applied to learn the graph representa-
tion, calculate network embedding, and mimic real-world graphs [9, 15, 143|. How-
ever, among the existing studies of GAN on graph structure data focused on high-level

structure learning and analysis, few of them have applications in privacy preservation.
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GAN is also adopted in privacy attack/defense research due to its capacity for
samples generation. Hitaj et al. deployed GAN to attack the online collaborative deep
learning system [69]. Unlike the traditional design of GAN, with a virtual adversary,
the researchers act like the adversary and force the target person to progressively leak
sensitive information in the two-person game. GAN was also deployed in inferring

membership, attacking the text captcha system, and so forth [67, 157].

2.3 Privacy preserving online data sharing

Besides social network, several other kinds of online data also formalize as net-
works, e.g., the cryptographic currency network, the content delivery network. Shar-
ing these kinds of data has similarities and differences with sharing OSN data. For
example, in the cryptographic currency network, the privacy concern is similar with
the OSN data, i.e., the transaction history should keep private to other individuals.
However, the utility concern is different. There is no centralized third party car-
ing about the overall statistics, while the statistics of a specific node may be useful.

Studying these kinds of online data gives us insights in OSN data privacy preservation.

2.3.1 Cryptographic currencies

Cryptographic currencies reached a market capitalization of approximately 170
billion dollars in October 2017 [35]. The best known digital currency, Bitcoin (BTC),
had a price of 0.005 dollars when it launched in 2009. Eight years later, each BTC
equals 5000 dollars, which is 1 million higher than the original value. The explosion
in BTC price demonstrates huge success in cryptographic currency. However, some
existing cryptographic currencies face privacy leakage problems.

Based on previous digital currency system including eCash and b-money, Nakamoto
introduced Bitcoin, which is the most successful cryptographic currency in the world

(22, 23, 38]. Ethereum is another important work in cryptographic currency [152].
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It includes contracts as well as transactions in the blockchain. While the contracts
allow the users to build decentralized applications besides cryptographic currency,
these contracts also introduce vulnerabilities such as the DAO attack [6].

Nakamoto claimed that Bitcoin can achieve privacy by keeping public keys anony-
mous, but researchers studied anonymity of the public blockchain data [68, 108, 126].
Some researchers drew the Bitcoin transaction graph and analyzed the stationary
parameters in the graph [108]. Some researchers combined public keys, which are the
inputs in the same transaction, and viewed them as the same person [126]. Then
some external information, like context discovery and flow analysis, is combined with
the graph to de-anonymize the identity.

Because of privacy and latency concerns, some off-chain payment network, e.g.,
the lightning network and other payment channel networks, are built on top of ex-
isting cryptographic currencies [82, 97, 117]. Malavolta et al. studied security and
privacy problems in credit networks [96]. They built the pairwise cryptographic credit

network, which encourages we should combine it with the blockchain.

2.3.2 Content delivery network

Content Delivery Networks (CDNs) are widely used in data sharing. CDNs dis-
tribute high-performance service to end-users according to their spatial position [18].
Some end-users, who directly download the data through a cellular network, can be-
have as the data servers. CDN then has the ability of mobile data offloading, making
the trade-off between the low-cost short-range communications and the high-quality
but expensive cellular network. It is first proved that Wi-Fi could be used to build
the CDN [8]. The feasibility of communication with bluetooth is discussed [66]. The
edge caching technique and the new 5G technique contain the possibility of mobile
data offloading in device-to-device communications [10, 104]. Although some of their
model also use the Poisson process to model the download requests, these techniques

lack a design to guide the behavior of the end-users from the point of view of the



29

global network. In [43], helper caches, i.e., seeds, are totally randomly chosen. Re-
cently, researchers analyzed the topology of the network and proposed specific seeding
algorithms to build CDNs [112].

Some current researches are about the caching problems in CDNs. Berger et al.
studied the algorithm to choose the hot object to download [12]. Their work is
orthogonal to the proposed scheme. When their work is about choosing the right
contents to download, our work is about choosing the right users as the servers.
Retal et al. designed a platform to provide Content Delivery Network as a Service,
which is another good addition to our work [127].

Some other researchers employed content delivery cloudlets to improve the network
performance [133]. However, the users should wear a GPS sensor and the system is
assumed to be perfectly aware of the moving path, which is unrealistic in real mobile
environments. Wang et al. proposed a probabilistic model about the mobility of users
[146]. This model analyzed spatial properties and temporal properties. In [154], the
authors employed the probabilistic model to embed the social relationships in CDN
design, but their scheme is restricted by the particular social network. Nevertheless,
previous studies give us insights to design caching schemes based on the probabilistic
mobility model.

The study of the CDN data sharing is previously published as a conference paper
in IEEE International Conference on Communications (ICC), 2019 [52].

2.3.3 Android application

Android systems are widely used in mobile & wireless environment. However, the
Android application data sometimes not shared on official store [150]. The third party
applications installed from alternative software repositories may contain malicious
code, which cause security and privacy threats to users. We study the Android
malware detection problem with the topological signature of applications based on

the function call graphs [56, 114].
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Our study follows a line of recent works [5, 57, 98, 156, 1637 | that apply ad-
vances in machine learning and data mining for Android malware detection. Some of
them were based on semantic information, which includes the signatures, API calls,
opcode, and Java methods. Droid APIMiner focused on API level information within
the bytecode since APIs convey substantial semantics about the apps behavior [? ].
More specifically, DroidAPIMiner extracted the information about critical API calls,
their package level information, as well as their parameters and use these features
as the input of classification. Droid Analytics designs a signature based analytic
system [163]. This system can automatically generate the signatures based on the
input Android application’s semantic meaning at the opcode level. Unlike previous
signature-based approaches, which are vulnerable with bytecode-level transformation
attacks, Droid Analytics can defense against repackaging, code obfuscation, and dy-
namic payloads [125]. Drebin was a combination of previous semantic based detection
methods [5]. It extracted string features from multiple Android-specific sources, e.g.,
intent /permission requests, API calls, network addresses. Although these semantic
features directly reflect the application’s behavior, novel code encryption and obfus-
cation method made these methods hard to extract the useful information [46]. In
our study, our idea is exploring the application feature space to find some special
features, which may be indirect with application’s behavior, but they should be hard
to be obfuscated.

One major kind of indirect feature space is the structure information. Researchers
first builded a FCG to show the relationships between functions. Then, Martinelli
et al. compared the subgraphs in the input FCGs with known benign or malicious
applications” FCGs, which formulates the malware detection problem as a subgraph
mining problem [98]. Zhang et al. introduced weight to FCGs and their FCGs con-
tained both Java methods and APIs [161]. They selected critical APIs and set dif-
ferent weights to nodes when these nodes’ APIs have different importance. After
that, a similarity score is given between two FCGs to measure the distance when con-

verting one FCG to another, by adding/deleting edges and nodes. In MaMaDroid,
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Onwuzurike et al. also added API information in FCGs [109]. They used a Markov
chain to extract the structural information in FCGs. Although these structure-based
detection method focused on the indirect features, all these features, e.g., the big
subgraphs, the distance between graphs, and the linear linking relationships, are easy
to be obfuscated. For example, adversaries can simply add some edges, i.e., dummy
call relationships, to make the malicious subgraph looks benign. In our study, we
choose the frequency of graphlets because it is harder to build desired graphlets with-
out affecting existing graphlets. The term of graphlet was first propose by Przulj
et al. [118]. Two recent advances on graph mining, GRAFT [123] and GUISE [124],
inspire our use of GFD as a robust and efficient topological signature for apps.

Besides semantic information and structure information, researchers also use other
features to enhance static classification performance. FeatureSmith did not directly
give the feature space. Instead, it applied Natural Language Processing (NLP) anal-
ysis to automatically collect features from other security papers [164]. However, the
performance of FeatureSmith relied on other detection methods. DroidSieve used
semantic features as well as resource centric features, e.g., certificates and their time,
nomenclature, inconsistent representations, incognito applications, and native codes.
Although DroidSieve gained success with the comprehensive feature space, it would
be vulnerable if the attackers are aware about the feature space and obfuscate every
feature.

The study of the Android malware detection is previously published as a con-
ference paper in IEEE International Conference on Communications and Network
Security (CNS), 2016 [114]. Then it is extended as a journal article in IEEE Trans-
actions on Mobile Computing (TMC), 2018 [56].
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3. ANONYMIZATION WITH PRIVACY CRITERION -
LOCAL DIFFERENTIAL PRIVACY

In this chapter, we begin with studying the privacy and utility preservation in ex-
isting anonymization mechanisms. Our analysis shows that existing anonymization
mechanisms choose the global differential privacy, which is so strict that significantly
damage the utility preservation. Hence, this chapter defines the notion of group-based
local differential privacy. In particular, by resolving the network into 1-neighborhood
graphs and applying HRG-based methods, our scheme preserves differential privacy
and reduces the noise scale on the local graphs. By deploying the grouping algorithm,
our scheme abandons the attempt to anonymize every relationship to be ordinary, but
we focus on the similarities in HRG models. In the final released graph, each individ-
ual user in one group is not distinguishable, which greatly enhances the OSN privacy.

The major technical contributions of this chapter are the following:

1. We define the notion of local differential privacy, which could preserve more
information when the privacy level is the same as global differential privacy.

2. We group the nodes with similar local features. By carefully designing two
heuristic methods, we show the grouping algorithm could enhance the privacy
level without loss of too much information.

3. We design a uniform framework to publish perturbed networks, satisfying group-
based local e-differential privacy.

This chapter is previously published as a conference paper in International Con-

ference on Wireless Algorithms, Systems, and Applications (WASA), 2017 [54]. The
extended version of this chapter is published as a journal article in IEEE Transactions

on Computational Social Systems, 2018 [55].
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Fig. 3.1.: Toy example of the OSN graph, nodes are users and edges are linking

relationships

)

by ) )

(a)l-neighborhood graph G(F) (b)1-neighborhood graph G(B)

Fig. 3.2.: 1-neighborhood graphs getting from graph in Figure 3.1

3.1 Preliminaries

In this chapter, an online social network graph is modeled as an undirected graph

G = (V. E), where V is the set of vertices and E is the set of edges. |V] is the

cardinality of the set V. Figure 3.1 shows a toy example of the OSN graph.

3.1.1 1-Neighborhood Graph

For each node v in V, we define its 1-neighborhood graph to contain all the

neighbors of v and the node v itself [93]. The 1-neighborhood graph of v is denoted
as G(v) = (V(v), E(v)), where V(v) = v U {ule,, € E} and E(v) = {ey |w,u €
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Fig. 3.3.: HRGs generated from G(B)

V(v) A ewy € E}. The node v is marked as the central node of the 1-neighborhood
graph. Figure 3.2 gives two 1-neighborhood graphs of the original graph in Figure
3.2(a). The two subgraphs have the central nodes F and B.

3.1.2 Hierarchical random graph model

Because the connection probability between two vertices depends on their degrees,
the HRG model is captured by statistical collection [28]. Specifically, an HRG model
here is an HRG T, which is a rooted binary tree with |V| leaf nodes corresponding to
|V'| vertices in the graph G. Each node on the tree except the leaf node has a number
on it that shows the probability of connection between its left part and right part.
Assume 7 is one of the interior nodes of the HRG 7T; then the probability is denoted
as p,. For example, Figure 3.3(a) is an HRG of the graph in Figure 3.2(b). The four
leaf nodes on the tree correspond to the nodes in the graph. And the connection
probability p, of the subtrees {A,C,B} and {E} is 3.

Let L, and R, denote the left and right subtrees rooted at r respectively. ny, and
ng, are the numbers of leaf nodes in L, and R,. Let E, be the total number of edges

between the two groups of nodes L, and R,.. Then, the posterior probability for the
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subtrees rooted at r is p,=E,./(nr,ng.). The posterior probability of the whole HRG
model T to represent GG is given by,

p(T) = [ [ pFr (1 = py)roeme=F (3.1)

reT

Figure 3.3 gives an example of two possible HRGs of B’s 1-hop neighborhood graph
in Figure 1(c). The p, in each root node is first calculated. For instance, in the HRG
Ts2, the root node of subtrees {A, C} and {B, E} has a probability 1/2. Because
there are two edges between the two sets of nodes, we have E,=2, p,=2/(2%*2)=1/2.
Then we get the posterior probability of the two HRGs. p(7z1) = (1/3)(2/3)* ~
0.148 while p(Tg2) = (1/2)%(1/2)% = 0.006. p(Tp1) is greater than p(Tzz), so Tp; has
more probability to represent G(B). In addition, since the size of 1-hop neighborhood
graphs are often small, there are few candidate HRGs. Actually, if the sequential
change of leaf nodes is ignored, G(B) just has two possible structures of HRG shown

in Figure 2, and 7p; is the more plausible one.

3.2 Scheme

Given a OSN graph, our goal is to publish an anonymized graph that preserves
the structural utility as much as possible, while satisfying the privacy criteria. The
overall diagram of the scheme is shown in Figure 3.4. There are four steps, as follows:

1. Finding the approximate maximum independent set and getting the 1-neighborhood

graph of each node in the set.

2. Extracting the HRGs to each node’s subgraph under the criteria of differential

privacy.

3. Grouping the HRGs and sampling one representative for each group.

4. Regenerating the 1-neighborhood graph and pasting the sanitized one to the

whole graph.
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Original graph G

1. Graph segmentation

Subgraph A Subgraph B

2. HRG extraction J\ &
[ HRG Al I HRG A1l |-+ | HRGB1 I HRG B2 | -~ ]

3. HRG grouping & sampling

Subgraph N

4. Subgraph regeneration

Subgraph a* Subgraph b*

4. Subgraph replacing \/

Original graph G —ﬂ New graph G*

Fig. 3.4.: Scheme diagram

3.2.1 Group based local differential privacy

To preserve link privacy, previous research advocated differential privacy, where
the output changes at a small probability (less than e¢) with the modification of one of
its tuple [129, 153]. It is a rigorous privacy guarantee and it may create a significant
negative impact on utility because the amount of necessary noise is proportional to
the complete graph size, which is a huge number in online social network analysis.
Researchers proposed different techniques to reduce the noise. Sala et al., for example,
sorted and clustered the query results so that less noise was needed in some clusters

[129].
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Instead of hiding every link in the network with the same probability, we reduce
the scale of the network to 1-neighborhood graphs. Also, the grouping algorithm is
adopted in our scheme to construct a confidential group. The users are hidden with
the users having similar structural information, instead of being hidden with all users
in the network.

In this chapter, we define the concept of group-based local e-differential privacy,

which can preserve privacy with less information loss.

Definition 4 (GROUP-BASED LOCAL -DIFFERENTIAL PRIVACY).
For a group of at least k nodes, a randomized algorithm A extracts local features. A
achieves group-based local e-differential privacy if for all neighbor graphs, Dy and
Dy, with one edge adding/deleting, the resultant probability Pr[A(D) € S| satisfies
Equation (2.2).

In the following sections, our anonymized graph satisfies group-based local e-

differential privacy.

3.2.2 Maximum independent set

Since we split the original network G into multiple 1-neighborhood graphs and
then perturb them, we carefully choose a set of subgraphs that could be sanitized
together without mutual influence. Initially, this requires that the two subgraphs’
central nodes are neither adjacent nor have common neighbors.

However, if the central nodes are not adjacent and the subgraph sizes are not
smaller than the original, we find a solution to assign the outer nodes and then the
perturbed subgraph can replace the original. Here, outer nodes means the nodes in
V(v) excluding the central node v. The definition of the HRG model indicates that
the leaf nodes in the HRG are always equal to the total size of the graph, which
means that the perturbation work does not change the number |V (v)|. Hence, the
straightforward approach is to search the non-adjacent nodes, which is also called

searching the maximum independent set of graph G.
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Algorithm 1 Find independent sets

Input: G: the original graph
Output: Set;: the approximate maximum independent set
LG+ G
2: |V| <= G’s total number of nodes
3: Let S be an empty stack
4: while size(S) < |V| do  » the stack S is not full

5: x < the node with lowest degree in G
6: S.push(x)
7: d < the maximum number of neighbors

8: G, + Gy —x  wdelete x’s 1-neighborhood graph from the graph G

9: end while

10: while size(S) > 0 do  » the stack is not empty

11: x < S.pop() »let x be the node painted now

12: Gy =G1+x w»add x to the graph G according to graph G

13: ¢ < color label  » paint the node x using the lowest label that x’s neighbors
haven’t used

14: end while

15: {Sety, Sets, ..., Sety} < G(c,) w» divide the nodes according to the color label

16: return Set;

The problem of finding the maximum independent set is a NP-hard optimization
problem. There are some greedy algorithms to find the approximation results. How-
ever, as differential privacy is defined on edges in this chapter, the algorithm should
guarantee that all edges are contained in at least one 1-neighborhood graph. Hence,
the output set should be the maximum independent set as well as the dominating set
of the graph. Although there are several greedy algorithms for finding independent

set or dominating set, few of them combine the two purposes together.
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Here we propose Algorithm 1 to get the approximation result. Algorithm 1 is
inspired by the graph coloring algorithm. The adjacent nodes could not have the same
color, which is similar to the limitation of the independent set. Because Algorithm 1
requires the color label to be as low as possible, every node in G is painted as label
1 or is a neighbor of label 1 nodes, which means that the Set; is also a dominating
set. Therefore, searching the independent set maintains the privacy guarantee of our

algorithm.

3.2.3 HRG extraction

After collecting the maximum independent set, we get the 1-neighborhood graphs
whose central nodes are in Set;. Then the HRGs of these 1-neighborhood graphs are
extracted. The Hierarchical Random Graph (HRG) model is deployed to capture the
local features because it is easy to integrate local e-differential privacy into the HRG
and a new graph could be regenerated from the sanitized HRG. Also the HRG model
tends to group a cluster of nodes in the same branch on the tree, which preserves
more clustering information compared with other models. In this section, we first
introduce the work to extract HRG model, then derive the amount of noise necessary
to achieve a given local e-privacy level.

The number of possible HRGs is |T|=(2|V|-3)!! for a network with |V/| vertices,
where !! is the semi-factorial symbol. Compared with the global extraction, the
segmentation work largely reduces the size of graph so as the amount of computation.
Furthermore, each single HRG has higher posterior probability to represent the graph
because the HRG output space OS' is reduced. It means that regenerating a graph
from a HRG loses less utility compared with the global technique. However, extracting
the entire output space OS' is still expensive especially for large subgraphs. In our
scheme, we introduce a Markov chain Monte Carlo (MCMC) process to control the

time complexity and give an approximate result.
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(a) Original (b) Sequential change (c) Structural change

Fig. 3.5.: Two neighbor configuration samples of r’s subtree

In a profile {7*...7™} with the desired size m, the 7' stores the HRG with
the highest posterior probability p(7?), 7?2 is the second highest, etc. Specifically,
Algorithm 2 first chooses an initial HRG 75. Assume 7;! | is the most possible HRG of
the last step, then in the new step the MCMC process randomly chooses a root node
rin 71, and then configure a neighbor HRG of 7}, called T’. There are A} x2 = 48
candidate neighbors of a four-leaf-node subtree and two of the neighbor examples is

shown in Figure 3.5. The HRGs in the profile are replaced by 7' at the acceptance

p(T")
p(Tiz1)”

stored.

ratio When equilibrium of p(7) is reached, the set of m possible HRGs are

According to Theorem 3, if the expected result is to achieve e-differential privacy,
there should be another sample process after we draw the original output space. In
Algorithm 2, the MCMC process picks the HRG profile and simulate the exponential

mechanism at the same time. The exponential mechanism requires to resample the

e f(G,08)

N > So the acceptance ratio is

output space OS with the probability exp(

o) o (E7P(T)
changed from o7 to (i n 7))

Here, we still need to analyze the local sensitivity Af to finish the acceptance

ratio equation. We consider the e-differential privacy only in the link privacy area,

which means the neighbor of a graph is a graph with just one edge changes according



41

to Definition 4. We assume the edge is missing without loss of generality. So the

sensitivity could be denoted as:

Af =max (p(T(E;)) — p(T(E: —1))) (3.2)

In order to simplify the analysis, we calculate the log-based sensitivity.

log(Af) = max (mrnm (h ( nLEnR> —h < TZ;}:))) (3.3)

where h is the entropy function and h(p) = —plog(p) — (1 — p) log(1 — p).

After analyzing the relationship between the log(Af) and ny, - ng., we find that
log(A f) monotonically increases when np, - ng, increase. Because Af shows the
maximum distance between two neighborhood databases, it gets the value when ny,

and ng, have the same value equal to half of the total vertices number |—‘2/| And we

2
WVIE_q
VP 1 *
Af= 4 * 1+ﬂ_1

2 2
log(Af) = log <"Q> + <Hi] — 1> log (1 + |V|211>
-

We can make,
_ (VP
Y=\ 1

o <1 " i)y N (@ - > log <1 + %%1) (3:5)

Because y € RT when there are more than two nodes, we can further zoom the

log(Af) as follows:

have,

(3.4)

1 Y
log (1 + ;) < loge

Hence, if we use log (@) + 1 as the log-based sensitivity, the differential-privacy
criteria is satisfied. The amplitude of noise increases as |V| increases. Because |V is

the total number of nodes in the graph, Resolving the graph greatly reduce the size
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Algorithm 2 Extract differential private HRG profile

Input: G(v): the subgraph, m: profile size,
€: privacy parameter

Output: HRG profile {T*...7™}

1. Af « f(G) wcalculate the local sensitivity according to the size of graph G(v)

2: choose a random starting HRG 7y

4: while step number i < maximum iteration time do

5: randomly pick an internal node r

6: pick a neighbor HRG 7" of 7;*, by randomly

choosing a configuration of r’s subtrees

7: 7' < T with the probability

min (1, —Cxp(ﬁp(fm) )

exp(557p(T4))

9: T,™ < T’ with the probability
min (1 —exP(ﬁp(Tl)) )

exp(z57p(TI)
10:  if equilibrium of p(7;!) is researched then
11: break
12: end if

13: end while

of 1-neighborhood graph from |V| to |V (v)|. Prior studies have demonstrated that in

large network graphs, the maximum value of |V (v)]| is upper bounded by O(+/|V])

[87]. Furthermore, our algorithm adds sufficient noise to different HRGs according to

different |V (v)| but not the maximum value. So if the desired privacy criteria e is the

same, there is more utility preserved under the local e-differential privacy compared

with the global e-differential privacy.
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3.2.4 HRG grouping and sampling

Instead of hiding every user/relationship globally, we only consider the 1-neighborhood
graph with local features in the previous sections. Here our scheme adopts a grouping
algorithm to enhance the privacy power, which means that although the user could
not hide behind the whole graph, it hides in a group with other users having similar
structural information. The general procedure here is to group the similar HRGs
together and make them indistinguishable.

Intuitively, the HRGs extracted from the same 1-neighborhood graph should be
grouped together. Based on this stating point, the procedure of HRGs grouping can
also be viewed as the procedure of node grouping. Since the number of leaf nodes in
an HRG is equal to the number of nodes in the original graph, only the subgraphs
with the same size may have overlap in their output HRG space OS. Hence, for a
given graph G = (V, E), we group nodes {v} € V according to the metric |V (v)|,
number of nodes in its 1-hop neighborhood graph.

Although the group formulation procedure groups the subgraphs with the same
sizes together, not all groups have a size greater than or equal to our desired size k.
Therefore, we merge the small groups if they have the most similar |V (v)| to make
sure each group has an appropriate size which is at least k. Then, the sampling space
OS is grouped together, each group contains at least k x m candidate HRGs.

To achieve the group-based local e-differential privacy, each group chooses a rep-
resentative HRG from the group’s output space OS. There is a naive method that
samples one HRG according to its probability exp (ﬁp(T)) in the profile. In the
groups of HRGs with exact same number of leaf nodes, the naive method works well.
However, several groups have different |V (v)| because they were merged. A small
graph cannot be used to replace a large one because there is not a solution to assign
the outer nodes. Hence the naive method requires a representative HRG with at

least |V| — 1 leaf nodes. It’s not hard to imagine that the naive method uses larger
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sanitized graphs to replace smaller ones and add a huge group of dummy nodes. It
damages the utility of final graph. In order to preserve the node number, we design

the following two different methods.

Method 1 (VIRTUAL NODE). In the begining, we sort the node numbers
of subgraphs to {|Vi|, [Val, ..., [Vineal, -, |[Vk|}. Assuming |V} is the largest number
and |V,,eq| means the median number. Then the group representative HRG is chosen
from the HRGs with |V,.q| leaf nodes, because we want to use the |V,,.q| to average
other subgraphs’ size in the group.

If the subgraph’s size is larger than |V,.q4|, taking |V;| as the example, we make

the following changes. First, we get the central node of the 1-neighborhood graph,

[Vi]
|Vmﬁd|

|V1| edges are partition into these virtual nodes and u averagely. Third, since u’s and

denoted as u. Second, we add { W—l virtual nodes into the original graph G, u’s
virtual nodes’ subgraphs are all smaller than |V,.4|, their sanitized graph could be
generated from HRG with |V},cq4| leaf nodes. Finally, we combine all the virtual nodes

to u.

Method 2 (OUTLIER DISTINCTION). Compared with Method 1, there is
no special change to the subgraphs but the outliers with more special information are
caught and treated differently. Specifically, we calculate the standard deviation of the
size sequence {|Vi|, |Va, ..., |Vk|} and set a threshold std to the standard deviation. If
the group’s standard deviation is greater than std, we break the group and use each
subgraph’s own HRGs to get the sanitized graph.

In this method, we use an absolute value, standard deviation, to simulate the
amount of dummy nodes needed in the naive method. Hence, the perturbation which
adds too much dummy nodes is prevented. Although not every subgraph is grouped,
if we choose an appropriate std, it does not affect the privacy guarantee too much.
Because the group breaking only happens when the standard deviation is greater than
the threshold, in most of the real-world social networks, these groups has very high
degree nodes and their degrees are different. According to the previous research in

[75], these high-degree outliers carrying more structural information are more vulner-
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able to structural de-anonymization attacks. So instead of being considered in the
same way, different users have different importance in grouping and sampling. In this

method, these outliers are not grouped with other users.

In the HRG extraction algorithm in Section 3.2.3, our scheme introduces noise
proportional to € to make each node’s subgraph similar to all its possible neighbors.
Not like the particular group-mates in the grouping algorithm, differential privacy uses
a manner to create neighbors, or we can call it building synthetic group-mates. In the
group sampling algorithm in this section, our scheme also finds k—1 particular group-
mates for each subgraph, and makes these group-mates extremely similar to each
other. Hence, an attacker is not able to identify the target node from a confidential
group of at least k members even with the help of releasing graph and prior knowledge

of 1-neighborhood relationship.

3.2.5 Subgraph regeneration and connection

In the last part of our scheme, the subgraphs are restored from HRGs and we want
to publish the entire perturbed graph G. Firstly, the sanitized 1-neighborhood graph
is generated according to the group representative HRG. It is shown in the Subgraph
Regeneration procedure in Algorithm 3. For each internal node r, the algorithm
randomly generates E, edges between the two node groups L, and R,.

Secondly, the sanitized subgraph replaces the original 1-neighborhood graph. Specif-
ically, for each node v, the sanitized graph randomly chooses |V (v)|-1 nodes as v’s
neighbor, and we call them v’s outer nodes. No auxiliary information like the degree
sequence is used to choose these outer nodes to maintain the privacy guarantee. The
perturbed graph could be easily pasted on the original graph G when the neighbor
nodes’ label is changed to its corresponding label in the original graph. However,
the connecting algorithm forces to deal with the subgraphs having at least |V (v)|-1
nodes. A small graph is not appropriate to replace a large subgraph because it does

not have enough outer nodes. Hence in Section 3.2.4, we add a restriction in the
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Algorithm 3 Subgraph regeneration and connection

Input: G: the original graph,
{Tl...TL%J }: representative HRGs for each group
Output: A perturbed graph G
1: for each node v € V do

2: T + v’s representative HRG

3: procedure SUBGRAPH REGENERATION(v,7)

4: for each internal node r € T do

5: E, < p.*xnp. *ng. ®»p,is recorded in T
6: find the two groups L, and R,

7: randomly place E, edges between nodes from

L, and nodes from R,

8: end for

9: end procedure

10: random choose |V (v)| — 1 nodes in G(v)  »wv
has |V (v)| — 1 neighbors in G

11: G+ G+ G(v)  w» paste the perturbed subgraph
according to the neighbors

12: G + G —G(v) w»cut v’s original 1-neighborhood
graph

13: end for

14: return G » For every node in the independent set, its 1-neighborhood graph

has been replaced

group sampling algorithm that the HRGs having less than |V (v)|4.-1 leaf nodes do
not contribute to the group sampling result, where |V (v)|mne means the maximum

subgraph size in the group.
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(a) Sanitized subgraph from 7Tpy (b) Graph G with perturbed G(B)

Fig. 3.6.: One possible change on G(B)

Table 3.1.: Network dataset statistics

Dataset | # of nodes | # of edges | Max subgraph size
Facebook 4039 88234 1045

Enron 33692 183831 1383
ca-HepPh 12008 118521 491
BA graph 10000 49975 418

Figure 3.6 shows an example of subgraph regeneration and connection. The orig-
inal subgraph is G(B) in Figure 1(c), and the sanitized subgraph is based on Tps in
Figure 2(b). The HRG Tps requires to have two pairs of linked nodes, and they are
randomly connected with two edges. Figure 4(a) is one possible sanitized subgraph
rather than the original G(B). Then the Algorithm 3 randomly chooses three nodes
in the sanitized subgraph to be the node A, C, and E in the original graph. Using
the three nodes, the sanitized subgraph is pasted on the original graph. Finally, for
simplicity and anonymization purpose, the sanitized subgraphs do not contain the

labels, as well as the final releasing graph G.
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3.3 Evaluation

In this section, we evaluate our anonymization scheme over three real-world datasets,
namely Facebook, Enron and ca-HepPh [88], and a synthetic network, Barabasi-
Albert (BA) graph. Facebook is a famous social network containing users and their
relationships. Enron email communication network covers around half million emails
in Enron. ca-HepPh is collaboration networks which cover scientific collaboration
among authors in the area of high energy physics. BA graph is a generated random
scale-free network, while OSNs are thought to be approximately scale-free. Due to
space constraint, results of some datasets are omitted and readers can find them in
[54]. The statistics of these datasets are given in Table 5.2. It shows that the original
graph is 4 to 30 times bigger than the biggest 1-neighborhood graph. All experiments
have been done on a desktop workstation (8-core Intel Core i7-3820 CPU at 3.60GHz
with 12GB RAM).

3.3.1 Experimental settings

Table 3.2 shows the important parameters in our experiment. € is a privacy
parameter to measure the ability of hiding existence edges. The smaller € is, the
better the privacy protection is [153]. In this chapter, we set a strict criteria where
€=0.1 to test the utility performance of the local privacy scheme. We set the minimum
group size to 10, corresponding to the size of networks, which contain 400-1300 users.
Each subgraph has 3 candidate HRGs, so the representative HRG is sampled from
the profile with at least 30 HRGs. In the ’outlier distinction” method, the threshold
std is initially set to 5 and the Facebook, Enron, ca-HepPh datasets results show that
there are only 0.50%, 0.03%, 0.18% nodes are not grouped and their degrees are all
greater than 45. So these nodes can be treated as outliers appropriately. We also test

the impact of different € and std.
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Table 3.2.: Parameters

Differential privacy parameter e 0.1

Group minimum size k 10

HRG profile size of one subgraph m | 3

Standard deviation threshold std 5

For comparison purposes, we implement one state-of-the-art technique, the basic
global differential-privacy algorithm with HRG models in [153] under the same privacy
criteria. Our evaluation is based on the python implementation of the work in [28].
In the following figures, previous global differential-privacy HRG scheme’s result is
marked as ‘reference’, two of our methods are marked as their name ‘virtual node’

and ‘outlier distinction’.

3.3.2 Evaluation result

To show the scalability of our scheme, we test the running time of the algorithms.
To show the utility of the released networks, we compare three most robust mea-
sures of network topology, the degree distribution, the shortest-path length and the
clustering results.

Running time. We test the efficiency of our two sub-schemes and the reference
scheme with different input graph size. Specifically, we cut the Enron email graph
into subgraphs with desired number of nodes from 1k to 15k. Then the algorithms
are evaluated on these subgraphs and the running time is shown in Figure 3.7. The
running time of the reference scheme linearly increases with the size of the graph.
Every 1k nodes addition results in an increase of about 120s in running time. The
running time of our two methods are shorter especially when the graph size is huge.
The ‘virtual node’ and the ‘outlier distinction’” methods only take about 230s to deal

with a graph having 10k nodes.
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Fig. 3.7.: Running time with different sizes of graphs

Although a graph with |V| nodes have (2|V]-3)!! possible HRGs, the MCMC
procedure gives the upper bound of the HRG space size to all the three methods.
The difference in running time mainly come from the difference of the complexity
of building HRGs. In the reference method, the global algorithm has no splitting
so that the number of nodes |V|] of the graph is also the number of leaf nodes of
the HRG. The result of the reference method demonstrates that the complexity is
approximately linearly correlated with the number of nodes.

In our two methods, splitting helps to reduce the HRG size from |V| to V(v),
and V(v) has an upper bound O(+/|V]) [87]. The result of the ‘outlier distinction’
method shows that the running time is in proportional to \/m . The ‘virtual node’
method further divides the big subgraphs. And this division significantly reduce the
running time when the graph is small. The results prove that our two methods are
scaleable to real OSNs with millions of nodes and they are more efficient than the
reference method.

Degree distribution. Degree distribution is a utility metric to show the similar-
ity of two graphs. For example, if the third-parties want to count the number of users

with 5-10 friends in the OSN, graphs with a similar degree distribution can give more
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precise information. Figure 3.8 and 3.9 show the degree distribution of the Facebook
dataset and ca-HepPh. For better presentation, we use a base-10 log scale for the X

axis because these schemes have different results in the low degree space.
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Our two methods follow the trend that there are less nodes when degree becomes
higher as the origin. However, the global differential-privacy scheme has a new trend
that the degree centralizes in a small range. There is no node degree lower than 23
in the reference anonymized result while other results have a lot of low degree nodes.
The strict differential-privacy criteria makes the nodes to be similar with each other.
So in the global algorithm result, the degree distribution is centralized in a small
area. The results under local differential privacy just have slight change because they
only take the local neighborhoods into consideration and the node is easy to be an
ordinary one. The global differential-privacy result has worse utility because it needs
to hide every node under a global version.

Clustering. Clustering coefficient is a measure of how nodes in a graph tend to
cluster together. Similar clustering coefficient distribution means the graph is a good
simulation of the clustering behavior in the original graph. While other models like
dk2 [129] may break the features of cluster, HRG model is believed to protect some
clustering information because it is a procedure of grouping close nodes together to

build the HRG.
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Fig. 3.11.: Clustering coefficient distribution of BA graph,e = 0.1.

Figure 3.10, and 3.11 show the clustering coefficient distribution of Enron and BA
graph. The global differential-privacy scheme also reduces the clustering coefficient
to a very low level. In the Enron dataset result, the highest clustering coefficient
under the global differential-privacy scheme is 0.17, the original dataset and two
local differential-privacy methods have 34.2%, 25.3% and 37.8% nodes with clustering
coefficient higher than 0.95. These nodes are the critical users in the Enron dataset
and our local differential-privacy scheme could preserve some of them.

In order to analyze the difference between the schemes in preserving clustering
results, we apply the K-means clustering method to the Facebook dataset and the
result is shown in Figure 3.12. The global differential-privacy scheme mixes the
clusters all together. On the contrary, our local privacy methods could preserve the
clustering information. Because changes happen in 1-hop neighborhood graphs in our
scheme, and the cluster size is always bigger than the size of subgraphs, then most of
the changes are inside the clusters and does not affect the clustering property. Under
the global differential-privacy scheme, nodes may randomly pick the same number of
neighbors. While there is no special rules to choose neighbors, there is no clusters

and outliers.
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(c) Outlier elimination (d) Reference

Fig. 3.12.: K-means clustering of Facebook dataset. Four graphs are the original
graph and three anonymized graph. K = 5 that all graphs have five clusters. Nodes

in the same cluster are in the same color

Shortest-path length. The shortest-path length measures the average length
from one node to every other node. Similar shortest path length distribution means
similar information transmission time in the two graphs. In order to avoid discon-
nected part, we choose to measure the maximum connected subgraphs, Figure 3.13,
3.14, and 3.15 show the distribution of average shortest length. The global differential-
privacy scheme makes every path to nearly the same length while the local differential-

privacy scheme could preserve the information.
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Fig. 3.13.: Shortest-path length distribution of Facebook, ¢ = 0.1
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Fig. 3.14.: Shortest-path length distribution of BA graph, ¢ = 0.1

Influence maximization. Influence maximization [25] is an application metric
to measure the percentage of users which are influenced by the information diffusion.
In the evaluation, the greedy algorithm described in [73] is selected to choose the
seed users. Then the independent cascade model is applied to propagate information

while the propagation probability is 0.02 for each dataset. Figure 3.16 and 3.17 show
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the percentage of influenced users with different number of seeds. The anonymized

graphs of the global differential-privacy scheme are too easy (Facebook) or too difficult

(Enron) to propagate information. The local differential-privacy anonymized graphs

have similar properties in influence maximization with the original network.
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3.3.3 Impact of parameters

In previous researches, the privacy parameter € is 1 in [153] and 5 to 100 in [129],
more loose than our setting. Theoretically, higher ¢ means loose privacy that the

adversaries may have more confidence in guessing the existence of edges. However,
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higher ¢ may also lead to more utility of the published graph because less noise is
introduced. Here we evaluate the utility of the published graph when ¢ = 1. Figure
3.18 and 3.19 show the results.

Compared with the result in Figure 3.8, the degree distribution performs closer
to the original distribution when the € is 10 times than before, especially using the
local differential-privacy algorithm. When e = 0.1, the degree error, which is a sum of
absolute difference of the number of nodes in all degree levels, are 6192, 1818 and 1515
matching with the reference result, ‘virtual node’ and ‘outlier distinction’” methods
results compared with the original graph. When ¢ = 1, the degree error are 6146,
1421, 1460, respectively.

The local differential-privacy scheme outperforms the global one under the clus-
tering coefficient when 0 = 1. The overall average clustering coefficient are 0.60, 0.01,
0.57 and 0.58 corresponding to the original graph, the result of ‘virtual node’ method
and ‘outlier distinction” method. And the standard deviation of clustering coefficient
is 0.21, 0.003, 0.22 and 0.22. The overall average shortest-path length are 3.69, 2.60,
3.93, 3.68. The standard deviation of shortest-path length is 0.56, 0.04, 0.56, 0.58.
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Although local differential-privacy methods achieves better utility with looser pri-
vacy criteria, the improvement of global method is not remarkable. It means that
the main reason of information loss may be the low probability of each single HRG,
so that the regeneration graph has low probability to be similar to the original one.
And using local features instead of global ones can significantly reduce the damage
of HRG extraction.

We also test different std in the ‘outlier distinction” method. The higher std, the
more outliers are grouped. Taking the result of ca-HepPh dataset as the example,
the degree error is 3836 when std = 5 in Figure 3.9. There are 0.18% nodes which
are not grouped. When std = 3, the degree error is 3344. There are 0.27% nodes
considered as outlier. When std = 1, the degree error is 3045. There are 0.36%
nodes considered as outlier. It shows that changing std modifies the balance between

privacy and utility.

3.3.4 Evaluation conclusion

Based on the above three measures, two of the heuristic methods perform well in
all three datasets. However, the ‘virtual node’ method could give a more strict privacy
guarantee while the result of ‘outlier elimination’ method is related with the parameter
std. Compared with the global differential-privacy algorithm, our local differential-
privacy scheme is more robust under the same strict privacy criteria. Although global
scheme takes more edges into consideration, in reality, attackers always focus on the
direct neighbors as our scheme does. And the evaluation result shows that it is
worthy reducing the network scale because it can decrease the noise level, increase

single HRG’s probability and reduce the computation work.
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3.4 Conclusion

In this chapter, we started from the utility preservation problem in existing global
differential-privacy criterion. We identified the group-based local differential-privacy
criterion and proposed a uniform framework based on HRG models to generate a
perturbed social network under that criteria. We adopted a more realistic model,
1-neighborhood graph, to capture the local features and reduce the total amount of
noise. Our scheme also contained a grouping algorithm to enhance the privacy level.
The experimental study verified that our scheme has less damage to graph utility
compared with previous global privacy schemes.

When analyzing the privacy and utility preservation of the proposed scheme, we
found that the graph abstraction model playing an important role. As discussed in
this chapter, low posterior probability of a HRG tree means regenerating the graph
may loss huge amount of information. While this chapter mainly focuses on the HRG
model, next chapter will study another graph abstraction model, the dK model. We

may continue reduce the unnecessary utility loss in the dK model in Chapter 4.
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4. ANONYMIZATION WITH GRAPH ABSTRACTION
MODEL - COMBINED DK

As discussed in the last chapter, graph abstraction model is essential in privacy and
utility preservation. In this chapter, our analysis shows that choosing inappropriate
graph abstraction model may cause unnecessary utility loss. This chapter focuses
on the dK model. Comparing with the HRG model discusses before, the dK model
preserves degree information extremely well. However, existing anonymization mech-
anisms, which based on the dK-1 model or the dK-2 model, cannot preserve the
clustering information [40, 60].

Therefore, we design and analyze a comprehensive differentially private graph
model that combines the dK-1, dK-2, and dK-3 series together. The dK-1 series
stores the degree frequency, the dK-2 series adds the joint degree frequency, and the
dK-3 series contains the linking information between edges. In our scheme, low dimen-
sional data makes the regeneration process more executable and effective, while high
dimensional data preserves additional utility of the graph. As the higher dimensional
model is more sensitive to the noise, we carefully design the executing sequence and
add three levels of rewiring algorithms to further preserve the structural information.
The final releasing graph increases the graph utility under differential privacy.

The major technical contributions of this chapter are the following:

1. We are the first to use the dK-3 model in graph anonymization, which helps to

preserve more utility than existing dK models.

2. We combine the dK-3 model with both dK-1 and dK-2 models in sampling and
graph regeneration, which mitigates the high sensitivity and complexity in the
dK-3 model and makes the design practical.

3. We design two different routes, CAT and LTH, to generate the graph efficiently

and effectively, even under the noise impact.
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Fig. 4.1.: An example of the dK model

4. We use three levels of rewiring algorithms to comprehensively utilize three kinds
of dK information in the published graph.

5. We reveal the insights and challenges of using different levels of dK abstraction
models jointly to enhance the utility under differential privacy.

This chapter is previously published as a conference paper in IEEE Annual Con-

sumer Communications & Networking Conference (CCNC), 2019 [49].

4.1 Preliminaries

In this chapter, an OSN graph is modeled as an undirected graph G = (V| E). d,
is the degree of the vertex v. e,, means an edge between nodes u and v.

Since differential privacy is applied on the query result, the dK graph model is
chosen to transform an input graph into a set of structural statistics. Although many
models can give graph statistical information, the dK graph model is better than
most of them because the dK series could be used to construct a new graph having

structural similarities with the original graph.
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The dK-N model captures the degree distribution of connected components of size
N in a target graph [95]. Figure 4.1 gives an example of the dK model. The dK-1
model, also known as the node degree distribution, counts the number of nodes in
each degree value. The dK-2 model, also called joint degree distribution, captures
the number of edges in each combination of two degree values. In this chapter, we
define the dimension of dK information as the subgraph size (N). Hence, the dK-1
series has lower dimension than dK-2. The dK-3 model captures the number of 3-
node subgraphs with different combinations of node degrees. Specifically, there are
two kinds of 3-node subgraphs with different structures, wedges and triangles.

The wedge dK-3 entry: The dK-3 entry (V,d,,d,,d,) = k means that there
are k 3-node wedges which have the node degree values equal to d,, d,, and d,,, and
each of the two subgraphs have at least one different node. In order to prevent double
counting, d, should be less than or equal to d,,. Assume the combination of nodes u,
v and w forms such a subgraph, then w should not be the neighbor of u. The node
set of the subgraph should be V' = {u} U {v|e,, € E} U{w|eyw € ENeyw ¢ E}.

The triangle dK-3 entry: The dK-3 entry (z7, d,, d,, d,,) = k means that there
are k triangles with node degree d, , d,, and d,. To prevent double counting, we
have d, < d, < d,. The node set of the subgraph should be V' = {u} U {v|e,, €
EYyU{wleyw € ENeyq € EY.

The error between two dK-3 series is defined as the sum of all absolute differences

in each corresponding dK-3 entry.

errs =y |k~ K. (4.1)

dK-3 entry

Similarly, err; and errs measure the errors in the dK-1 and dK-2 series. And our
work focuses on minimizing the error between the dK series in the published graph

and the target dK series calculated under differential privacy.
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4.2 Scheme

Given an OSN, our goal is to publish an anonymized network that preserves
the structural utility as much as possible while satisfying e-differential privacy. The
general idea is to add sufficient noise to the dK model and reconstruct a graph G
based on the perturbed dK series.

As mentioned in previous research, a model of higher dimension is more precise,
but it is difficult to directly reconstruct the graph from the dK-3 series [95, 129].
Moreover, our analysis in Section 4.3.1 shows that the dK-3 model is more sensitive
than the dK-2 model. Hence, it is not a good idea to start with adding noise to
the dK-3 series. Another option is to add noise to the dK-1 series. However, the
dK-2 and dK-3 series also need the corresponding perturbation in order to maintain
consistency. Because the dK-1 series has no information of edges, it is hard to do
those perturbations. In the scheme, we inject noise into the dK-2 series.

After injecting noise, our purpose in the graph regeneration process is to publish
a graph with similar dK series as the perturbed results (in all three levels). There

are two main routes in graph regeneration, starting with the dK-1 series or starting
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with the dK-2 series. We design two sub-schemes, shown in Figure 4.2, called CAT
and LTH, and the mutual steps are marked in ‘both’. LTH uses the dK-1 series to
reconstruct an intermediate graph, then we do two steps of rewiring on it. In CAT,
we find that when we use the dK-2 series to place edges, there is some freeness in
the sequence of placing edges, in which we can invoke the dK-3 series. Hence we call
it consider all together, which has all three levels of information. As a result, these
two sub-schemes are especially good at reducing the dK-1 or dK-2 error. After the
regeneration part, both sub-schemes have an active rewiring procedure to mitigate
their errors, e.g., the dK-2 and dK-3 series have not been used by LTH.

In the following sections, we discuss these components, which are also shown in
Figure 4.2:

1. dK-2 perturbation: perturb the dK-2 series under differential privacy,

2. dK-3 construction: build the dK-3 model with perturbed dK-2 series,

3. dK-1 recovery: recover the dK-1 information,

4. Graph regeneration: reconstruct the perturbed graph with different combina-

tions of dK series,

ot

. Target rewiring: rewire some of the edges according to the dK series.

4.2.1 dK-2 perturbation

We find that achieving dK-3 differential privacy needs much more information
distortion, which largely reduces the benefits of the dK-3 model after the analysis in
Section 4.3.1. What’s more, as the dK-2 series is the record of edges, we can make it
indistinguishable to achieve edge differential privacy. Hence, we choose to inject noise
at the dK-2 level. In particular, after counting the dK-2 entries, we add sufficient
Laplace noise to achieve differential privacy. According to Equation 2.3, the noise

level is determined by the sensitivity A f and the privacy parameter e.
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The sensitivity shows the impact of adding or deleting an edge in the model. For
a given entry (d,,d,) = k, the sensitivity is 2-d, +2-d, + 1 (see Section 4.3.1). The
perturbed dK-2 entry is (d,d,) = k + Lap(2L).

Example. Figure 4.1 shows a running example, which is also used in the following
sections. Figure 4.3 has the perturbed dK-2 series. If the value of an entry changes, it
is marked in red. We can find that some dK-2 series, like (2, 3), although not present
in the original example (have a value of 0), are created. Because of the differential

privacy request, any entries in the range between (1, 1) and (d,n4z, dinas) are modified.

4.2.2 dK-3 construction

Given the dK-2 model, we construct the dK-3 model to preserve edge linking
information. Particularly, if one dK-2 entry is perturbed, its corresponding dK-3
entries are also perturbed, which leaks no edge information beyond differential privacy.
Hence, we examine the influence of dK-2 perturbation on the dK-3 model in the
example of one edge e, ,, then do the modification.

First, there is a simple case in which all three-node pairs in the graph are wedges.
There are d, — 1 edges connected with the node u. Then the edge produces d, — 1
dK-3 entries in the form of (V,d,,d,,d,) or (V,d,,d,,d,). Similarly, it also produces
d, — 1 dK-3 entries in the form of (V,d,,d,,d,) or (V,d,,d,,d,). Hence, there are
totally d,, + d, — 2 dK-3 wedges entries produced by the edge e, ,.

Second, we improve the case that the graph has some triangles. Adding an edge
eu» between node u and v, if they have a common neighbor z, the original entry
(V,dy,d,,d,) will be changed to (7, d,, d., d,). However, if they do not have a com-
mon neighbor, there will be some new entries added, like the case before. Therefore,
the total number of dK-3 entries containing the edge e, , is also affected by the number

of triangles.
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Perturbed dK-2 series:  Constructed dK-3 series:

LAy =2-1=1 (v,1,4,2) =4—3=
(2,4 =4-1= (v,1,4,3) =0+1=
(4,49 =1 V,1,4,4)=2-1=1
(2,3)=0+1=1 (v,2,3,4) =0+1=1
(3,4)=0+1= (v,2,4,3) =0+2=2
Recovered dK-1 series: (V> 2:44) =4-2=2
(1y=1 (v,4,2,4) =2-1=1
(2) =2 (v,2,3,4)=0+1=1
3)=07~1 (v,2,4,3)=0+1=1
(4) =175~ 2 (v,3,2,4) =0+1=1
(v7,3,4,4) =0+2=2
(v,4,3,4) =0+1=1

Fig. 4.3.: Perturbed dK series

Adjusted dK-3 model. We find that if we deploy some specific counting method
for triangles, the wedges and triangles can be treated equally. Thus, the adjusted dK-3
model is proposed to simplify the calculation of the dK-3 series. The adjusted model is
completely based on the basic dK-3 series. Using the adjusted model will not increase
or decrease the ability of the dK-3 series to present or reconstruct the graph. The
new model does not change the wedge entry (V,d,, d,,d,). But if there is a triangle
entry (3/,dy,d,,d,) = k, it will be replaced by three entries, (v/,d,,d,,d,) = k,
(V,dy,dy,d,) =k, and (7,dy, d,,d,) = k. In the following sections, all dK-3 series
are sampled in the adjusted dK-3 model. After deploying the adjusted dK-3 model,
deleting or adding an edge e,, always changes d, + d, — 2 dK-3 entries. In the
following sections, a wildcard character * is used to match V and 7. The dK-3 entry
is like (x,d,,d,, dy).

In the above section, the dK-2 series is perturbed for privacy. Each unit of incre-
ment or decrement in dK-2 entries could be viewed as one edge adding or deleting.
Then we do corresponding modifications on the dK-3 series. Specifically, for increas-

ing or decreasing, there are three possible changes in dK-3 entries.
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The first possible change is called replacement. If (d,,d,) decreased by one and
(dy,d,) increased by one, the graph replaces the edge e,, by e,.,. So we pick
min(dy,d,) + d, — 2 dK-3 entries and use the number d,, to replace d, in the dK-3
entries.

The second possible change is subtracting. For each unit of decrement in (d,, d,),
the graph deletes the edge e, ,. So we reduce the dK-3 entries containing (d,, d,) by
the total value of d, + d, — 2.

The third possible change is adding. For each unit of increment in {(d,,d,), the
graph adds an edge e,,. The formation part is a little special because there is no
original record of the neighbors of u or v. So we randomly pick a structure, wedge or
triangle, and a degree number, d,, in the range of [1,d,..]. Then we add the total
value of d, + d, — 2 to the dK-3 entries containing (d,, d,, d,).

Example. In the example of Figure 4.1, the dK-2 entry (4,4) has a total of
4+ 4 — 2 = 6 corresponding dK-3 entries (V, 1,4,4) and (57,2,4,4) in the adjusted
model. In Figure 4.3, the corresponding dK-3 series is constructed. Taking the dK-2
entry (1,4) as an example, because the dK-2 perturbation causes 1 unit of decrease,
the corresponding dK-3 series has 144 — 2 = 3 units of decrease. In the constructed
dK-3 series, the first three modifications are -3’, ‘+1’, and ‘-1, while the total amount

of decrease is 3.

4.2.3 dK-1 recovery

The dK-1 series is also important in the generation of the graph. Unlike the dK-
3 series, it can be recovered directly from the dK-2 series. It is calculated by the
following equation.

<d > o ZdK-Q entry <du? dU> + ZdK-Q entry<dv? du)
v/ — dy

. (4.2)

The recovery process shows that the high dimensional data, e.g., dK-2, contains

all the information of the low dimensional data, e.g., dK-1.
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Example. In the example of Figure 4.3, as the number ‘4’ total appears 1+ 3 +
1%241 =7 times in the dK-2 series, the dK-1 series should be (4) = 1.75 ~ 2.
Although the perturbed dK-2 values are integers, the recovery dK-1 values may not
be integers. Here we can only round the value to integers because these values show
the number of nodes and we have no information besides the dK-2 series. And the
round-off error causes the two levels of dK series, dK-1 and dK-2, mismatch. In the

rewiring section, we discuss the mismatch problem.

4.2.4 Graph regeneration

Given the target dK-2, dK-3, and dK-1 series, we need to regenerate the cor-
responding graph. Focusing on a different level of dK series, we propose two sub-
schemes, namely CAT and LTH, with different regeneration algorithms.

The LTH scheme starts from the dK-1 series because of the idea that dK-1 series
is the base of the graph. If the degree of a node has an error, there will be large
distortion on the corresponding dK-2 and dK-3 series. Hence, LTH just needs the
dK-1 information and to generate a graph with the least err;. It leaves the task of
mitigating err, and errs to the rewiring procedure.

By contrast, the CAT scheme considers the dK-2 and dK-3 series in regeneration
because rewiring cannot guarantee to achieve the lowest erry and errs. This scheme
aims to reduce erry the most, while preserving some dK-3 information as well.

In both schemes, we call a node ‘saturated’ if it has as many neighbors as its label
(dK-1 information), and call it ‘unsaturated’ otherwise. If the value of a dK entry in
the graph reaches the target value, we call it ‘full’.

LTH Algorithm 4 firstly sorts the degree sequence into a non-increasing order,
which means dy > dy > ... > djy|. Each number in the sequence also represents the
target degree value of a corresponding node. Then, beginning from the first node
with degree d;, the algorithm links the node with d; nodes. These nodes are chosen

from the set of nodes that are unconnected with the first node, and they have the
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Algorithm 4 dK-1 graph regeneration (LTH)
Input: dK-1

Output: G1(V1, E1): the perturbed graph
1: V1 < dK-1 » add nodes with degree labels
2: {dy,da, ..., djy |} + dK-1
3: fori=1,i<|V|,i++ do

4: pick a node u with degree d;

5: while u is unsaturated do

6: if all nodes are connected with u then break

7 » the dK-1 is non-graphical

8: pick v with the highest degree among all unsaturated nodes unconnected with u
9: Ey adds edge ey

10: end while
11: end for

12: return G,

highest degree values in the set. According to [40], a graph can be reconstructed with
the exact dK-1 information if and only if every node v is connected to all d,, nodes in
the leftmost part of the degree sequence (having the highest degree values).

CAT In each iteration, Algorithm 5 picks one dK-3 entry and tries to add one
edge to the graph. If this algorithm can find two nodes, having corresponding degrees
in the dK-3 entry, it can pass the edge check. Here, the edge check means there are
two unsaturated nodes with the correct degree, the two nodes are not connected, and
the corresponding dK-2 entry is not full. When an edge is added in the graph, its
corresponding dK-2 and dK-3 entries are updated. The regeneration process stops
when there are no node pairs that can pass the edge check. Also, in the edge check
process, it may happen that the only pair of unsaturated nodes are already connected.
Simply connecting them together forms multi-edges in the graph, which is forbidden
in OSNs. Algorithm 6 switches one neighbor from a saturated node to an unsaturated

node with the same label.
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Algorithm 5 dK-2+ graph regeneration (CAT)
Input: dK-1, dK-2, dK-3

Output: G1(V1, E1): the perturbed graph
1: V1 < dK-1 » add nodes with degree labels
2: dK-2' < 0, dK-3' <~ 0 » initialize the dK-2 and dK-3
3: while exists dK-2 entry not full do

4: beginning phase
5: randomly pick (x,dy, dy,dy,) not full in dK-3
6: if (d,, d,) not full in dK2’ then

7 if exists u and v unconnected and unsaturated
8: if x =V, add edge e,
9: if * = v/, add edge eyv; €y w
10: update dK-2 and dK-3 entries
11: else if exists u and v connected and unsaturated
12: » adding edge causes multi-edges
13: NeighborSwitch(u, v)
14: else mark (d,,d,) full, continue
15: » (d,,d,) cannot form an edge
16: else continue
17: end if

18: do Step 6-17, between v and w

19: continuing phase
20: pick (x,dy, dy,dy), do Step 6-17 between w and x
21:

22: end while

23: return G,

There are two phases in which the Algorithm 5 chooses dK-3 entries and adds
edges. In the beginning phase, if the node pairs could pass the edge check, we ran-
domly picks a dK-3 entry and adds two or three edges to the graph accordingly. In

the continuing phase, we use the last chosen dK-3 entry, denoted as (x, d,, d,, d,), to
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Algorithm 6 NeighborSwitch(u,v)

1: find unsaturated node v’ with degree d,, e, ¢ E;

2: assume z is a neighbor of v/, e, € B and e, ¢ By
3: K removes edge e, ./, adds edge e, and e,

. increase (dy,d,) in dK-2

W

(o) (o)
)

4)

(2]
(4 @‘I

)

Fig. 4.4.: LTH results Fig. 4.5.: CAT result

find a new dK-3 series (x,d,, dy, d,). Assuming the node w could pass the edge check
with another node x, the algorithm links w, which is used in the last step with the
new node x. It stops if the newly picked node cannot pass the edge check with any
other node, then it jumps to the beginning phase again.

Algorithm 5 makes distinctions between wedges and triangles. It builds triangles
if the three users link with each other originally, and forces no edge between u and
w if the dK-3 entry is in the form of (V,d,,d,,d,). The dK-3 information used in
Algorithm 5 could preserve more structural information on the triangles and wedges,
which is helpful in reconstructing a network with similar clustering information.

Example. Figure 4.4 and Figure 4.5 give the example of regenerated graphs
from the perturbed dK series in Figure 4.3. When the numbers on nodes represent
the request degree, the LTH result satisfies the dK-1 series. However, it has no dK-2
information, e.g., (2,4) = 4 in the graph, but the desired value is 3. Compared with

the given dK series in Figure 4.3, we have err; = 0, erry = 4, errs = 18.
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dK-2 rewiring

dK-3 rewiring

(e ()
(o o =)

Fig. 4.6.: Examples of rewiring

By contrast, the CAT result seems to satisfy the dK-2 requirement perfectly.
However, one node with mark ‘3" and one with ‘4’ do not have the required degree,
and all the dK-2 series are exhausted. err; happens because of mismatch, and has
a impact on erry and errs. Compared with the given dK series, we have err; = 2,
erry = 4, and errs = 13. Comparing the two results of the example, each sub-scheme

has an advantage in preserving information.

4.2.5 Target rewiring

As mentioned in the last section, there is no dK-2 and dK-3 information preserved
in the LTH intermediate graphs. LTH needs to compare the graph with the target
dK-2 and dK-3 series and apply rewiring. Intuitively, the CAT intermediate graph
only needs to apply the dK-3 rewiring because it does not consider the dK-3 entries
in their entirety. However, after analyzing the noise impact in Section 4.3.2, we
find that the result that satisfies the dK-2 series may have non-trivial error in dK-1

information. As a result, the CAT scheme needs dK-1, dK-2, and dK-3 rewiring, from
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Algorithm 7 Target rewiring

Input: dK-1, dK-2, dK-3, G

Output: Go(Va, Es): a new graph

1

2:
3:
4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:

0 G=Gy

dK-1 rewiring
u, v unsaturated and unconnected, Fy adds edge ey,
u, v unsaturated and connected, NeighborSwitch(u, v)

: u needs two or more edges, NeighborSwitch (u, u)

dK-2 rewiring
dK-2' +~ G2 w» count the dK-2 in dK-1 rewired graph
: while there exists dK-2 rewiring pairs do

Es removes ey, 4, €.y, adds ey y, €y

end while

dK-3 rewiring
dK-3° <~ G5  » count the dK-3 in dK-2 rewired graph
err§ <dK-3°— dK-3  » store the initial error
i =0 »the step number
while there exists dK-3 rewiring pairs do

E;‘H TeMOVeS €y, €y, 2, adds ey 2, €y

get new dK-3'! and erri™!
if erré“ > erré, reject the rewiring, G’;rl =G}
t=1+1
do the rewiring check, Step 11-14, between ey, €y

end while

return Gy

lower to higher. Here we propose three levels of dK rewiring algorithms: each level of

the rewiring preserves the lower dimensional information, but may change the higher

dimensional information.
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dK-1 rewiring. Given (G; as the input, we build edges between pairs of unsatu-
rated nodes. Building each edge reduces err; by two. There are two special cases in
the dK-1 rewiring shown in Algorithm 7. First, there are just two unsaturated nodes
and they are already linked. A neighbor switch process should be applied on these two
nodes. Second, there is just one node unsaturated, but it needs at least two edges.
Then the neighbor switch should also be applied on this node. Here the neighbor
switch process in dK-1 rewiring is slightly different from the one in Algorithm 6. It
has no limitation on the degree of v'; it just needs v" and u to be unconnected.

dK-2 rewiring. In this step, errsy is reduced while keeping the result from the
first step. Figure 4.6 shows the dK-2 rewiring process described in Algorithm 7.
The dK-2 series in the intermediate graph is compared with the target dK-2. The
algorithm applies the rewiring procedure if the prerequisites are satisfied. We define
the dK-2 rewiring prerequisites such that (d,,d,) and (d,,d.) are higher than the
target, and (d,,d,) and (d,,d,) are lower than the target. When at least three out
of four prerequisites are satisfied, we admit a rewiring pair to reduce erry by at least
two.

dK-3 rewiring. errs is reduced with a similar procedure. Figure 4.6 shows two
kinds of rewiring on the same six nodes. It is notable that the two different solutions
lead to the same direct dK-3 changes, which is denoted as the direct impact of dK-3
rewiring. However, the rewiring process may also have indirect impact on dK-3, e.g.,
some entries involving nodes u and v are also changed. Hence, in each iteration,
Algorithm 7 calculates the dK-3 series of the new graph called dK-3' and finds the
dK-3 rewiring pairs. We admit a step of dK-3 rewiring only if the dK-3 error is
decreased.

Numerically, in the example of Figure 4.6, the rewiring changes the dK-3 series
directly but keeps the dK-2 unchanged if and only if d,, # d,, d, = d,, and d,, # d..
Hence, we define the dK-3 rewiring prerequisites as (%, d,, d,, d,) and (x,d,,d,,d.)
are higher than the target, and (x,d,,d,,d.) and (x,d,,d,,d,) are lower than the

target. We also admit the pair when at least three requirements are satisfied. Here
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dK-1 series before rewiring:

{Iy=1

2)=3

3y =1

=1

dK-1 series after rewiring:
{1y=1

(2)=

3)=1

(4)=2

Fig. 4.7.: dK-1 rewiring

the rewiring can directly reduce errs by at least two. Structurally, the two types of
dK-3 series have additional prerequisites on the existence of edges. For example, if
the value of the entry (57, d,,, dy, d.) is lower than the target value, there should be one
edge between u and z before rewiring, then rewiring builds a triangle automatically.

Example. Figure 4.7 shows the example of dK-1 rewiring when the original
graph is in Figure 4.5. When the original graph has two unsaturated nodes but the
two nodes are linked, a neighbor switch process involving the right node with mark
‘2" can help all nodes satisfy the dK-1 series.

Figure 4.8 shows the example of dK-2 rewiring when the original graph is in Figure
4.4. In the simple example, Figure 4.7 and Figure 4.8, are the same graph which shows
that the CAT result after dK-1 rewiring can get the same graph as the LTH result
after dK-2 rewiring. Both graphs have erry = 1 and errs = 2, which shows that the

rewiring algorithms can significantly reduce the error in the dK series.

4.3 Analysis
4.3.1 Sensitivity analysis

The sensitivity shows the impact of adding or deleting an edge in the dK-2 model.
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dK-2 series before rewiring:

(1,3) =1
(2,4) =4
(4,4)=1
<3s4> =2
dK-2 series after rewiring:

N TN AT A
[FEN e
L0 b s
S M ST S
I B
e

Fig. 4.8.: dK-2 rewiring

Theorem 3. Given an entry (d,,d,) in the dK-2 model, the sensitivity Af is
upper bounded by 2 - d, +2-d, + 1.

Proof: Let e, be a new edge added to the graph G between nodes z and y. There
is one new dK-2 series (d,, d,) getting incremented by 1. Also, the degrees of x and
y increase from d, and d, to d, + 1 and d, + 1, respectively. In the original dK-2
model, there are d, series related with the node x. They are in the form of (d,,d,)
and (d,,d,). They are deleted and new series, (d,, d, + 1) and (d, + 1, d,), are added.
Hence, totally 2 -d, + 2 -d, + 1 dK-2 series are changed when adding the edge. [

Similarly, given the dK-3 series (x, d,, d,, d.), the sensitivity of the adjusted model
is 2 (dy + d,) - dyaw + (dy + d.), where d,q, is the max degree value in the graph.

4.3.2 Performance analysis

In this section, we analyze the noise impact on dK graph models and then show
the ability of our schemes to reduce dK error under noise.

If the dK series is graphical, which means it can build a graph, it must obey the
following rules:

1. The values of dK entries being non-negative integers.
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-

(a) target graph (b) regeneration result

Fig. 4.9.: Example of the dK-1 rewiring

2. The dK-1 information, if in non-increasing degree sequence form, following the

Erdos-Gallai theorem [44],

; V-1
o di <j(i+1)+ > min{j+1,di}. (4.3)
i=0 i=j+1

3. The dK-2 entries having (d,,d,) < (d,) - (d,),
(dyydy) < do - {do), (o)) < dy - (d)
,if d, = dy, and (d, d,) < (d.)* — (dg).

4. The dK-3 entries having (, d,,dy, d.) < (d;,d,) - (dy,d.),
(*,dy, dy, dy) < dy - (dy,dy), (*,dy,dy, d,) < dy-(dy,d,)
,if dy = d,, and (x,d,,d,, d,) < (ds, d,)?* — (d;,d,)

In most of the real cases, the perturbed dK-2 and dK-3 series are non-graphical,
so we need to fix the dK-2 and dK-1 values to non-negative integers. However, the
approximation makes the dK series conflict with one another. For instance, if the
degree value 3 appears 4 times in the dK-2 series, we can just make (3) = 3 ~ 1.
Hence, we introduce the rewiring algorithms and apply the approximation graphically

from lower to higher.
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When considering the ability of reducing err;, our LTH scheme has such a prop-

erty.

Property 1. The dK-1 regeneration result (LTH) has less erry than the dK-2+
regeneration result (CAT), although CAT has the dK-1 rewiring algorithm.

Proof: Because the dK-1 regeneration algorithm is directed by the Erdds-Gallai
theorem [44], it always builds a graph when the dK-1 information is graphical. If
the dK-1 information is not graphical, the dK-1 regeneration algorithm adds possible
links to high-degree nodes as much as possible, which does not form a forbidden link
enlarging erry [40].

We also show the shortage of the CAT scheme in an example. Assuming the
target dK-1 information is (6) = 1, (2) = 6, Figure 4(a) is a correct result of the
dK-1 regeneration algorithm. Although Figure 4(b) violates the dK-2 series of the
graph, it is still a possible intermediate graph published by the dK-2+ regeneration
algorithm. Then the dK-1 rewiring algorithm cannot add neighbors to unsaturated
node v. Although the nodes u and w are the possible candidates, the neighbor switch
process is impossible because all neighbors of them are linked with v, which is the
only unsaturated node in the graph. Hence, the dK-1 rewiring cannot get the correct
graph, while the LTH scheme can. [

As shown in the example, the ability of the dK-1 rewiring algorithm is limited.
Also, our analysis shows that the dK-2 and dK-3 rewiring algorithms have the possi-
bility of trapping in a local area when searching for the global minimum. The detailed
analysis is omitted for space. Here the term local minimum is defined as there is no
neighbor graph (with one edge changing) having lower error than the rewiring re-
sult. The rewiring pairs reduce the error by two or four in dK-2 and dK-3 rewiring
algorithms. Considering some particular pairs may trap the error in the local area.

In conclusion, all three kinds of rewiring algorithms have the possibility of trapping
in a local area when searching for the global minimum. It is significant to choose a

start graph before rewiring. LTH starts from a graph with the best dK-1, the most



Table 4.1.: Network dataset statistics

Dataset | # of nodes | # of edges
ca-HepTh 9877 25998
Facebook 4039 88234

Enron 2977 7198

30

basic information. CAT starts from a graph with some dK-3 information, which
restricts the level of errs. Our two schemes use two routes to deal with the noise and

the conflict problem. Each of them has its own advantages in reducing the error.

4.4 Evaluation

In this section, we evaluate our anonymization scheme over three real-world datasets,
namely ca-HepTh, Facebook, and Enron [88].

€ is a privacy parameter to measure the ability of hiding existing edges. Smaller
€ means a more strict privacy guarantee, as well as more noise injected into the
model. We generate e-private graphs with € € [5,100] to evaluate the performance
under different different-privacy levels. For comparison purposes, we implement one
state-of-the-art technique as the reference method, which is the differential privacy
algorithm, with only the dK-2 model [129, 148]. In the following figures, results of
this scheme are marked as ‘reference’, two of our sub-schemes are marked as ‘CAT’
and ‘LTH’, respectively.

To show the utility of the released networks, we apply experiments on the ro-
bust measures of network topology: the average shortest path length, the clustering
coefficient, and the average degree. We also evaluate the three levels of errors.

Clustering coefficient. Clustering coefficient is a measure of how nodes in
a graph tend to cluster together. While the dK-2 model may break the features

of a cluster, a scheme with the dK-3 series is believed to preserve partial clustering
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information because structural information like the triangles and wedges are included.
Figure 4.10 shows the clustering coefficient distribution under different e. In the
original ca-HepTh graph, 28% of nodes have the median clustering coefficient (0.2 to
0.8). However, when ¢=20, this kind of node only occupies the 9% of total nodes in
the reference result, 12% in the CAT graph, and 13% in the LTH graph. The three
dK anonymization methods all lose some clustering information.

The original ca-HepTh dataset has an average clustering coefficient of 0.47. When
e = b, the average clustering coefficient of the reference result is 0.21, and it’s 0.24
for CAT and 0.26 for LTH. When ¢ = 100, the average clustering coefficient is 0.12,
0.25, and 0.27 for the reference, CAT, and LTH result, respectively. The figures show
that the clustering coefficient distribution of our two schemes are always closer to
the original distribution than the reference result. The dK-3 series in our scheme
preserves the structure information of triangles and wedges, which determines the
clustering coefficient. Hence, the reference scheme shows more randomness, while our
schemes can preserve more clustering information.

Average shortest path length. The average shortest path length measures
the average length of the shortest path from one node to every other node. Figure
4.12 shows the average shortest length distribution in three datasets when e = 20.
Take the result of the Enron dataset as an example: the overall average shortest path
length of the original data is 3.61, and the reference, CAT, and LTH schemes have
the result 4.20, 3.54, and 11.35, respectively. The figure shows that the reference
scheme and the CAT scheme can preserve the shortest path