
REAL-TIME ROAD TRAFFIC EVENTS DETECTION AND GEO-PARSING

A Thesis

Submitted to the Faculty

of

Purdue University

by

Saurabh Kumar

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

August 2018

Purdue University

Indianapolis, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Sarah Koskie, Chair

Department of Electrical and Computer Engineering

Dr. Brian King

Department of Electrical and Computer Engineering

Dr. Xiao Luo

Department of Computer Information Technology

Approved by:

Dr. Brian King

Head of the Graduate Program

iii

I dedicate this thesis to my dear mother Mrs. Manju Gupta who always gave

priority to education other than anything else.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Sarah Koskie for her guidance and Dr. Brian King for

his valuable suggestions. Also, I would like to thank my brother Rahul for helping

me to improve upon the presentation of this thesis.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

SYMBOLS . ix

ABBREVIATIONS . x

GLOSSARY . xi

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 Goal . 2

2 DATA COLLECTION . 4

2.1 Geo Location . 5

2.2 User Time Line . 5

2.3 System Design . 5

2.4 Data Extraction Server . 5

2.5 MySQL Server . 6

3 TEXT CLASSIFICATION . 7

3.1 Introduction . 7

3.2 Text Classification . 7

3.2.1 Feature Extraction . 8

3.2.2 Classification of Short Text . 12

3.3 Tweet Classification . 13

3.3.1 Logistic Regression Classifier . 15

3.3.2 Support Vector Machine Classifier 16

3.3.3 Feed Forward Neural Network 19

3.3.4 Results . 24

vi

Page

3.3.5 Recurrent Neural Network . 28

4 LOCATION DETECTION . 38

4.1 Previous Work . 39

4.2 Conditional Random Field . 39

4.2.1 Architecture . 40

5 SYSTEM WORKFLOW AND IMPLEMENTATION 43

5.1 System Implementation . 44

5.2 System Architecture . 44

5.3 Data Extraction and Analysis . 45

5.3.1 Twitter Data Collection . 46

5.3.2 Message Processing and Storage 46

5.4 Data Visualization . 47

6 SUMMARY . 49

REFERENCES . 50

A APPENDIX . 54

A.1 City Names and Traffic Related Key Words 54

A.2 Conventions . 55

vii

LIST OF TABLES

Table Page

3.1 Examples of Incorrect Predictions: False Positive 24

3.2 Examples of Incorrect Predictions: False Negative 26

3.3 Accuracy Table . 34

3.4 RNN Regularization . 34

3.5 Examples of Incorrect Predictions: False Positives 36

3.6 Examples of Incorrect Predictions: False Negatives 37

A.1 Traffic Related Key Words . 54

A.2 Cities’ Names and Geo Locations . 55

viii

LIST OF FIGURES

Figure Page

2.1 Tweet Extraction Architecture . 6

3.1 Bag of Words Representation . 9

3.2 Skip-Gram model . 10

3.3 Word2vec Training . 11

3.4 Classification Pipeline . 14

3.5 Sigmoid Function . 15

3.6 Kernel Feature Extraction Process . 17

3.7 Feed Forward Neural Network . 20

3.8 Different activation Functions . 21

3.9 Neural Network Training . 22

3.10 Classifier Results With Context Window Size 1 to 3 25

3.11 Classifier Results With Context Window Size 4 to 6 27

3.12 RNN Architectures . 29

3.13 RNN Bi-Directional Architecture . 31

3.14 Neural Network Dropout . 32

3.15 Different RNN Architectures . 35

4.1 Named Entity Recognition . 38

4.2 NER Architecture for Location Detection 41

4.3 NER Result . 41

5.1 Comparison of Fanout and Direct Message Passing Exchanges 45

5.2 System Architecture . 48

ix

SYMBOLS

exp(x) ex

F Feature Vector

F[j] Feature Vector at jth Layer

Fi Feature Vector ith Component

g(x) Activation Function

h(w) Hypothesis Function

I Internal State Vector for RNN
−→
I [t] Internal State Vector for Forward RNN Layer at Layer T
←−
I [t] Internal State Vector for Backward RNN Layer at Layer T

J(w) Cost Function

Mj
i Word Vector Mi j

th Component

Mi Vector Representation of Word Wi

S State Vector for NER

Wi Word Representation

w Weight Vector

wi
[j] Weight Vector ith Component at jth Layer

w[j] Weight Vector jth Layer

−→w Weight Vector for Forward RNN Layer

α Learning Rate

β Decay Factor

Θ(x) Sigmoid Activation Function

x

ABBREVIATIONS

API Application Programming Interface

FFNN Feed Forward Neural Network

JSON JavaScript Object Notation

LIDAR Light Detection and Ranging

LSTM Long Short-Term memory

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

NER Named Entity Recognition

PASM Publish and Subscriber Model

POS Part of Speech

RDBMS Relational Database Management System

RNN Recurrent Neural Network

SVM Support Vector Machine

xi

GLOSSARY

Corpus Collection of documents

Google Maps Online Mapping Service Developed by Google

Tweet Twitter user’s post

Twitter Online News and Social Networking Platform

Waze Navigation Application for Smartphone

xii

ABSTRACT

Kumar, Saurabh. M.S.E.C.E., Purdue University, August 2018. Real-Time Road
Traffic Events Detection and Geo-Parsing. Major Professor: Sarah Koskie.

In the 21st century, there is an increasing number of vehicles on the road as

well as a limited road infrastructure. These aspects culminate in daily challenges

for the average commuter due to congestion and slow moving traffic. In the United

States alone, it costs an average US driver $1200 every year in the form of fuel and

time [1]. Some positive steps, including (a) introduction of the push notification

system and (b) deploying more law enforcement troops, have been taken for better

traffic management. However, these methods have limitations and require extensive

planning [2]. Another method to deal with traffic problems is to track the congested

area in a city using social media. Next, law enforcement resources can be re-routed

to these areas on a real-time basis.

Given the ever-increasing number of smartphone devices, social media can be used

as a source of information to track the traffic-related incidents.

Social media sites allow users to share their opinions and information. Platforms

like Twitter, Facebook, and Instagram are very popular among users. These platforms

enable users to share whatever they want in the form of text and images. Facebook

users generate millions of posts in a minute. On these platforms, abundant data,

including news, trends, events, opinions, product reviews, etc. are generated on a

daily basis.

Worldwide, organizations are using social media for marketing purposes. This

data can also be used to analyze the traffic-related events like congestion, construction

work, slow-moving traffic etc. Thus the motivation behind this research is to use social

media posts to extract information relevant to traffic, with effective and proactive

xiii

traffic administration as the primary focus. I propose an intuitive two-step process

to utilize Twitter users’ posts to obtain for retrieving traffic-related information on

a real-time basis. It uses a text classifier to filter out the data that contains only

traffic information. This is followed by a Part-Of-Speech (POS) tagger to find the

geolocation information. A prototype of the proposed system is implemented using

distributed microservices architecture.

1

1. INTRODUCTION

Traffic congestion is one of the biggest problems in our modern cities. Delays, road

rage, environmental effects, and increased fuel consumption are some of its by prod-

ucts. To avoid these problems, governments and local law enforcement use inductive

loops, cameras, and radar to monitor traffic [3]. These tools are effective but have

drawbacks in term of installation and maintenance, along with high operational costs.

Large capital investments and a large workforce are required to build such infras-

tructure from the ground up, so leveraging the existing infrastructure for gathering

traffic-related information would be more viable and cost-effective. Social media plat-

forms can be used to serve that purpose. Every day millions of users on these plat-

forms communicate with each other and share their opinions. With proper content

filtering techniques, traffic-related incidents can be filtered out of all other events.

Twitter is a popular social media platform with millions of active users. It provides

a channel between friends and co-workers to communicate using desktop or mobile

applications. It offers a platform for market researchers, activists, and decision makers

to access information on a real-time basis. Organizations are using it to learn about

customer satisfaction levels [4]. Some researchers have even used it for the tracking

seismic activity [5].

In the same way, mining this open source information can be utilized to track

traffic incidents on a real-time basis. Analyzing the tweets can give us the location

information without the use of hardware like LIDAR, cameras, etc.

2

1.1 Goal

The primary objective of this thesis is to develop an ecosystem to track traffic

incidents in real time using a non-traditional source of information like social media

data. It is believed that local law enforcement agencies can utilize this information

for better traffic management and emergency response.

Currently, getting the real-time traffic information requires an array of sensors [6],

but with the rise of social media, a massive amount of real-time traffic data is flowing

through Twitter1, Facebook, and other social media platforms that can be utilized

as a substitute. These platforms are acting as a new medium where every user is a

source of information.

There are applications like Google Maps2 and Waze 3 that provide real-time traf-

fic updates by leveraging crowd-source data, but social media channels are left out.

For example, Waze provides an interface to report and geo-mark traffic-related in-

formation and Google collects data through Android phones, where every Android

user acts as a data source. Google’s proprietary algorithms predict the traffic con-

gestion [7] by analyzing the number of the Android users and their speed. Although

these platforms perform well, Google Maps and Waze are not utilizing other channels

like social media. Therefore the primary objective of this thesis is to utilize social

media platforms as a data source to monitor traffic incidents.

This thesis is divided into four major parts: data collection, text classification,

location detection, and system architecture. For data collection, the Twitter platform

is used as a data source. Twitter provides multiple ways to access the data using the

rest API [8]. Text classification is used to filter out Tweets related to the traffic

incidents and this is done by using a RNN model. Location detection means to

determining the location from the text. For example, consider “Stefan is going to

1Twitter is an online news and social networking platform
2Online mapping service developed by Google
3Navigation application for smartphone

3

West Pacific Street”. Here “West Pacific Street” is the location. In the last chapter,

all the components are tied together to build a scalable system for real-time data

processing.

4

2. DATA COLLECTION

At the beginning of this research, some public Twitter Id’s were manually collected

using Twitter’s search interface. Keywords like ‘traffic’, ‘rain’, etc. (shown in Table

A.2) were manually entered to the search interface to get the twitter accounts that

posted tweets having these keywords. This activity was repeated multiple times for

many cities. The main idea behind this exercise was to gather information about:

• Twitter accounts that frequently post traffic-related tweets.

• Number of Tweet being geo-tagged.

• Frequently occuring words in tweets.

The results of this task are:

• Identification of Twitter accounts in different cities that tweet traffic-related

information.

• A vocabulary of frequently used words in the Tweets.

• Less than one percent of all the tweets contains geo-tagged data.

According to the output, a list of user accounts and keywords is compiled for the

data collection task.

Twitter provides multiple ways to get the tweeted data [8] via their rest API1. Out

of these methods, only the geo-location and the user-time-line methods are used to

retrieve the data. For this thesis, only tweets that are available in the public domain

have been used.

1Method to communicate between different components

5

2.1 Geo Location

In this API, the radius, longitude, and latitude of the target city are the input

parameters [9]. The API returns all the Tweets within a given radius, where the

center is the location specified by the geo-coordinates input to the API, and all

Tweets having input keywords, within the radius.

2.2 User Time Line

In the user time-line method, the user Twitter ID is passed to the Twitter API

which returns a collection of the most recent tweets and re-tweets posted by the user

and the user’s followers [10].

2.3 System Design

An application is created on the Linux server to download the publicly available

Tweets. It requires authorization and token keys which, during an early phase of the

application creation, are automatically assigned by Twitter [11]. There are multiple

frameworks to access the Twitter API. One such example is Tweepy [12], which can

extract the data in JSON and converts it into a Python dictionary.

To get the tweets, the system, shown in the Figure 2.1, implements both user-

time-line and geolocation methods using the Tweepy framework. The system has the

following two components: the data extraction server and the MySQL server.

2.4 Data Extraction Server

The data extraction server acts as middleware between Twitter and the MySQL

server. It runs a Python program periodically to collect the data from Twitter. First,

the Tweets’ URLs are removed from the collected data. Next, Tweet Id, text and

date are stored on the MySQL server.

6

Twitter Rest API’s
User Time

Line
Geo

Location

Data Extraction
Server

MySQL
Server

Twitter
Server

Fig. 2.1. Tweet Extraction Architecture

Approximately one hundred thousand tweets were collected in three months be-

tween October, 2016 and December, 2016.

2.5 MySQL Server

MySQL is an open source RDBMS system owned by Oracle [13]. It is used to

store Tweet Id, date, and Tweet text, which are later used to train machine learning

models.

7

3. TEXT CLASSIFICATION

3.1 Introduction

Classification is a supervised machine-learning methodology that involves assign-

ing a label to set of input features. In machine-learning, a feature is an individual

measurable property of an observed phenomena [14]. Generally, a feature is a numeri-

cal value such as the age of a person, a temperature etc. In the case of text, a sequence

of letters and symbols can’t be fed directly to the machine-learning algorithms [15].

Text feature-extraction algorithms convert a string into a vector.

Classification can be of a binary or a multi-class type.

• Binary classification is often used to determine whether an item is or is not in the

class; but it can also be used if the data consists of two classes. Some common

examples are spam detection, credit-card fraudulent-transaction detection, and

gender identification.

• Examples of multi-class classification include country-of-origin detection and

language detection.

3.2 Text Classification

A text classification algorithm, according to its content, assigns one of a given set

of classes to an input document from a given set of classes. Document-type, song

genre, book type, etc. For example, consider a text classification problem to find out

whether an email is a spam or not. In this case, the classifier is a binary text classifier

and the output is either “spam” or “not spam”.

Text classification can be applied to solve a variety of problems such as:

• Understanding and identifying an opinion in a piece of text.

8

• Determining movie-review class from good, bad, or worse category.

• Spam identification.

A supervised text-classification task assigns one of a predefined set of classes.

It starts by building a hypothesis function to do the classification. A hypothesis

function is a mapping of input features to output classes and the classifier is trained

using ground-truth data. For the learning process the whole dataset is divided into

two parts; (a) test data which is used as ground-truth and (b) training data, which

is used to validate the accuracy of the classifier.

3.2.1 Feature Extraction

The first step in feature extraction is to convert the text into a vector. Some

popular text feature extraction methods are:

• Bag of words [16].

• Word2vec [17].

Bag of Words

The bag of words model is a vector space model of a text document. It is a

frequency based vector representation where each word is represented by its number

of appearances. It first builds the vocabulary using a document or set of documents

and then converts a text document into a vector using word frequencies.

“Bag of words”” refers to the fact that this model ignores grammar and word order.

To convert text into a vector involves the following steps (shown in Figure 3.1):

• Step One: Collect all documents.

• Step Two: Build the vocabulary - a collection of all the unique words in all

documents.

9

Mouse in the Hat cat In The Hat Green egg and ham

mouse in the hat cat green egg and ham

Cat and small cat in the house

mouse in the hat cat Green Egg and ham

0 1 1 1 2 0 0 0 0

Step 1

Step 2

Comparison

Input Document

Vector Representation

Step 3

Fig. 3.1. Bag of Words Representation

• Step Three: Create the document vector by comparing the words with the

vocabulary. Each word is assigned its frequency count in the vocabulary and

zero otherwise.

Word2Vec

Word2vec [17] is a word-embedding model created by a team of researchers led

by Tomas Mikolov at Google. Word embedding converts text into a vector. All the

vectors that have the same context are placed nearby.

This model takes a large corpus as input and produces higher dimensional vectors.

All the vectors have the same size. It has many advantages compared to earlier

algorithms [17]. For example the word order does not influence the resultant word

vectors generated by the model and the algorithm is computationally more efficient.

10

The Word2vec model generates word vector M based on its probability of occur-

rence based on the surrounding words, rather than its frequency. There are multiple

ways by which Word2vec can generate the word vector. The skip-gram model de-

scribed in next section is used because of its computational efficiency [17].

Skip Gram Model

In this model, the objective is to predict the target word based on the surrounding

words within a given window size. The output vector relates the likelihood of the

vocabulary words to the target words.

Consider a document having words W1, W2, ... Wt−1, Wt, Wt+1, ..., Wn. If the

window size is one, the target word Wt will predict the surrounding words Wt−1 and

Wt+1, as shown in the Figure 3.2.

𝑤𝑡

Mapping Function

𝑤𝑡−1

𝑤𝑡+1

Fig. 3.2. Skip-Gram model

Word2vec Training

In the Word2vec model, the word vectors are generated randomly and stored in

the embedding matrix, then the skip-gram model tries to learn the probability vector.

The training goal is to find the target words given a set of surrounding words. At first,

11

Embedding Matrix (generated randomly)

mouse in the hat cat green egg and ham

Softmax

Vocabulary Size

Word Vector Size Log Cost
Function

Training

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

𝑣9

Word
Vector

Mouse in the Hat

cat In The Hat

Green egg and ham

Documents

mouse in the hat cat green egg and ham

Vocabulary

Fig. 3.3. Word2vec Training

the vocabulary is built from a set of input documents. Then the embedding matrix

is generated randomly. In the training step, the embedding weights are learned using

the softmax function in (3.2). The process is described in Figure 3.3.

Consider a document having words W1,W2, . . .Wn. The skip-gram algorithm uses

a gradient descent algorithm [18] to maximize the probability of the target word

p(Wt+i|Wt) given the surrounding words [17]:

1

n

n∑
t=1

∑
−k≤i≤k,k 6=0

log(p(Wt+i|Wt)) (3.1)

where n is the vocabulary size and k is the window size. In the skip-gram model the

conditional probability p(Wn+i|Wn) is defined as:

p(Wn+i|Wn) =
exp(M̃Wn+i

·MWn)∑ n
i=1 exp(M̃Wn+i

·MWn)
(3.2)

where n is the vocabulary size, M̃W is the output vector representation of the target

word and MW is the input representation of the target word.

12

3.2.2 Classification of Short Text

With the advancement of smartphones, the information content of online commu-

nication like Tweets and chat messages has increased over the time. This information

can be mined from the aforementioned conservations. However, in terms of infor-

mation extraction and data processing, microblogging websites like Twitter pose the

hardest challenges [19]. This is due to its limited tweet length and its unstructured

format. Tweets contain uniform resource locators (URLs), emoticons, abbreviations,

and hashtags (#), which may not always contain valuable data. Moreover, they do

not always follow normal sentence flow, grammar rules, and punctuation.

Related Work

Most of the related work focused on feature extraction. Naponget, et. al. [20] tried

to find the tweets having traffic-related information with a fixed rule and a dictionary.

In their method, a Tweet must have (at least) two keywords that must be related. In

contrast Bharathet et. al. used a naive Bayes-classifier-based approach for filtering

the Tweets. They designed a rule-based text feature-extraction method [21]. In

another study by Takeshi et. al. [22], an earthquake event detection model was built

using Twitter. They used a combination feature set including predefined keywords

and word contexts. There feature set is fed as an input to the Support Vector Machine

(SVM). Divij and Chanh performed feature extraction in the following steps [23]:

1. Remove punctuations and URLs.

2. Perform spelling correction.

3. Remove consecutive characters.

The resulting feature set is used as an input to different classifier algorithms. They

obtained accuracy of 82.71% with Logistic Regression, 72.28% with SVM and 68.7%

with boosted decision tree. One of the most significant challenges in almost all the

13

related work is to develop a classifier that understands the deeper meaning of the text.

For example, consider the sentence “Network traffic heat’s up my router”. Although

the given text doesn’t contain any information related to road traffic, filtering out

these kind of tweets with the above methods is difficult. In this work, we tried to

overcome this problem by applying multiple classifiers and to identify the best one

for this scenario.

3.3 Tweet Classification

Out of one hundred thousand Tweets that were collected, around eight thousand

Tweets were selected randomly for use as a training/test set and were manually

labelled into two classes:

• Traffic-related incidents, which contains all the traffic related tweets (those

Twitter posts that contain information related to accidents, road blocks, and

slow moving traffic).

• Non-traffic-incidents, which contains all tweets that are not related to traffic

incidents.

The labelled dataset contains 3665 Tweets of traffic class datapoints and 4514 of

non traffic class datapoints. For the data classification task, I tested (a) a logistic

regression, (b) a Support Vector Machine (SVM), (c) a Feed Forward Neural Network

(FDNN), and (d) a Recurrent Neural Network (RNN).

The approach that has been used with logistic regression, the SVM, and the

FDNN has the following framework: The program first preprocesses the data and

removes URLs, then extracts the features, and in the final stage applies classification

algorithms as shown in Figure 3.4.

The three steps are discussed in more detail below:

14

M1
1

M1
2

M1
3

M1
4

..

..

M1
n

𝑊1 𝑊2 𝑊3 𝑊4 𝑊𝑡

Tweet

Whitespace
Tokenizer

Word2Vec
Model

M2
1

M2
2

M2
3

M2
4

..

..

M2
n

M3
1

M3
2

M3
3

M3
4

..

..

M3
n

Mt
1

Mt
2

Mt
3

Mt
4

..

..

Mt
n

M4
1

M4
2

M4
3

M4
4

..

..

M4
n

𝑀1 𝑀2 𝑀3 𝑀4 𝑀𝑡

Vector Representation

Vector
Addition

F𝟏

F𝟐

F𝟑

F𝟒

..

..

F𝒏

Resultant Vector

Classifier

Fig. 3.4. Classification Pipeline

• Data Preprocessing: Twitter posts contains lots of formatted text, like hashtags,

URLs and emoticons; but, unlike the URLs, characters like hashtags and emoti-

cons can give a deeper understanding of the Tweets [24]. In the preprocessing

step URLs are removed and each Tweet is segmented into linguistic units like

emoticons, characters with hashtags, and words. This process is called tokeniza-

tion. The segmentation criteria for the tokenization process is the presence of

white spaces.

• Feature Extraction: Segmented words W1, . . . ,Wn are converted into word vec-

tors M1, . . . ,Mn using the Wor2vec model. The resultant vector F is generated

as shown in Figure 3.4 by vector addition of the individual words vector Mi,

Fi =
t∑

j=1

Mi
j (3.3)

15

and,

F = (F 1, F 2, . . . , F n), (3.4)

where t is then number of words in the tweet, and n is the size of the word

vector.

• Classification: Logistic Regression, SVM and FFNN methods were applied to

identify the best classifier.

3.3.1 Logistic Regression Classifier

Logistic regression [25] is a supervised machine-learning algorithm inherited from

the statistical domain. It uses multiple independent input variables that determine

discrete output classes. More specifically it finds the probability of the output pre-

diction given the input, i.e. P (output|input). It generates the coefficients for the

hypothesis function to predict the probability of the output class.

Fig. 3.5. Sigmoid Function

In logistic regression, the goal is to fit a best linear model (known as a hypothesis

function) that expresses the relationship between input and output variables. The

hypothesis function h(w,F), where w ≡ (w1,w2, . . . ,wn), is:

h(w,F) = g(w · F) (3.5)

16

and the wi’s are the weights associated with the input feature vector F, of size n,

and for g(x), I used sigmoid activation function,

Θ(x) =
1

1 + exp(x)
(3.6)

shown in Figure 3.5. In binary classification, the output belongs to the positive class

when h(w,F) ≥ 0.5; otherwise the output belongs to the negative class.

In supervised machine-learning algorithms, a cost function is defined to penalize

inaccurate prediction. Because of both the lack of information (the relation between

input and output is unknown) and the noise in the input features, there is always

a nonzero probability of getting the same output for different input vectors. That’s

why our end goal here is to minimize the error in the prediction. The cost function

J(w,F) is defined as:

J(w,F) = −y(F) log h(w,F)− (1− y(F)) log(1− h(w,F)) (3.7)

Here h(w,F) is the hypothesis function defined in (3.5), and y is the actual output

label associated with the input. For simplicity, F is removed from equation (3.7) and

the resulting equation can be written as:

J(w) = −y log h(w)− (1− y) log(1− h(w)) (3.8)

The weight w can be found by minimizing the cost function and optimization

methods like gradient descent [18] are used for that purpose.

3.3.2 Support Vector Machine Classifier

The SVM is a non-probabilistic binary classifier. It first pre-processes the data

and then maps it into a higher-dimensional space, whose dimension is typically much

higher than that of the input. This feature mapping is done by kernels as shown

in Figure 3.6. Linear classification models like Logistic Regression can classify the

input data with good accuracy, but only when the data is linearly separable [26].

17

Thus classification algorithms need more complex feature sets to get better accuracy,

and non-linear mapping can achieve this. For this purpose, any linear model can be

turned into a nonlinear model using kernels.

Classifier

𝐹1

𝐹2

𝐹3

𝐹4

..

..

𝐹𝑛

Kernel

Word Vector Feature Extraction Classification

𝐻1

𝐻2

𝐻3

..

..

..

..

..

𝐻𝑛

Higher Dimension
Feature Vector

Fig. 3.6. Kernel Feature Extraction Process

The use of the kernel methods helps the hypothesis function to learn non-linear

decision boundaries. Instead of learning a fixed set of parameters corresponding to

the input feature space, the hypothesis function learns the weight vector w for the

complex feature set H.

Some commonly used kernels include polynomial kernel and radial kernel.

Polynomial Kernel

The polynomial kernel method represents the input feature vector similarity over

the polynomial space. More specifically, the polynomial kernel of degree d is:

K(F1,F2) = (F1 · F2 + c)d (3.9)

where F1 and F2 are the input feature vectors, d defines the degree of the polynomial

and c is a real number. In our case F1 and F2 are the feature vectors from two

different Tweets.

18

For simplicity, consider the input feature space of degree n, for which the square

polynomial kernel is:

K(F1,F2) =

(
n∑

t=1

Ft
1F

t
2 + c

)2

, (3.10)

where F1 and F2 are arbitrary input feature vectors. Equation (3.10) can be expand

using the binomial theorem to obtain:

n∑
i=1

[(
Fi

1F
i
2

)2
+ 2cFi

1F
i
2

]
+ c2 + 2

n∑
i=2

i−1∑
j=2

Fi
1F

j
1F

i
2F

j
2. (3.11)

Thus the new features for the pair F1 and F2 are:

F1
1, . . .F

n
1 ,F

1
2, . . .F

n
2 ,F

1
1F

1
2, . . . ,F

n
1F

n
2 ,
(
F1

1F
1
2

)2
, . . . , (Fn

1F
n
2)2 ,

F3
1F

3
2F

2
1F

2
2,F

4
1F

4
2F

2
1F

2
2,F

4
1F

4
2F

3
1F

3
2, . . . ,F

n
1F

n
2F

n−1
1 Fn−1

2 , c2 (3.12)

As seen in the (3.12), the dimension of the feature set is generally higher than that

of the original feature vector F.

Radial Kernel SVM

The Radial or Gaussian Kernel is defined as:

K(F1,F2) = exp

(
−||F1 − F2||2

2σ2

)
, (3.13)

where σ is an independent parameter and

‖F1 − F2‖ =

√√√√ n∑
i=1

(Fi
1 − Fi

2) (Fi
1 − Fi

2). (3.14)

SVM Training

Where H is the higher-dimensional feature vector obtained using the kernel method,

a hyperplane that divides the dataset into two classes can be written as:

w ·H− b = 0, (3.15)

19

where w is the normal vector to the hyperplane and the parameter b determines the

offset from the origin. Now a loss Ji(w) for a specific Hi can be defined as:

Ji(w) = max(0, 1− yi(w ·Hi − b), (3.16)

where yi is the actual label of ith dataset and w ·Hi − b is the SVM prediction. The

final goal is to minimize the cost function:

J(w) =
1

n

n∑
i=1

max(0, 1− yi(w ·Hi − b)) (3.17)

using the gradient descent method.

3.3.3 Feed Forward Neural Network

The FFNN is also known as the multilayer perceptron. The inspiration for neural

networks is taken from the human brain [27]. In the brain, different parts work

together on the same problem to obtain the result. In the same way, an Artificial

Neural Network (ANN) uses different layers working together on the same task.

The reason for the term “feed forward” is that the information flows through

the hypothesis function and, with multiple intermediate calculations, the output y is

determined. There is no feedback channel. While information is propagating forward.

In FFNNs, the primary objective is to find a hypothesis function, h(w,F), that can

map the input feature set to the output y. Data is first fed to the input layer. It then

passes through the multiple hidden layers. The output layer predicts the probability

of a certain class using the softmax function defined in (3.18).

Neural Network Architecture

An Artificial Neural Network (ANN) is a collection of an inter-connected units

known as neurons, see Figure 3.7. Each neuron transmits signals to neurons in the

next layer using a weight vector w. An output of a neuron is a real number resulting

from applying a non-linear function known as an activation function to the linear

combination of the inputs.

20

Fig. 3.7. Feed Forward Neural Network

Activation Function

The activation function controls the flow of information from a neuron. It works

as a gate, which can be viewed as the conceptual representation of a neuron firing.

Specifically, if the information is required, then the neuron will allow the information

to pass through (using the activation function); otherwise it will not.

Generally, FFNNs have three primary sections, the input layer, the hidden layers

and the output layer. These are described next:

• Input Layer: This layer acts as a bridge between the data and the neural net-

work. It passes the data to the first hidden layer. No computation is performed

here.

21

Fig. 3.8. Different activation Functions

• Hidden layers: A hidden layer consists of many neurons. It first calculates

the input weight summation and then passes the weighted sum x through an

activation function g(x).

• Output layer: The number of neurons in the output layer depends on the number

of classes in the input data. For example for binary classification the number

of output neurons is two. At the last layer, each neuron’s output gives the

probability that the input features belongs to the specific class, calculated using

the softmax function. Specifically,

p(y = i|F) =
exp(F ·wi)∑Nc

j=1 exp(F ·wj)
(3.18)

where Nc is the number of classes and wi is the weight vector assigned to the

ith class.

22

F1

F2

F3

F4

ℎ 𝑥

Fig. 3.9. Neural Network Training

Neural Network Training

Figure 3.9 shows a simple three-layer neural network having one input layer, one

hidden layer and an output layer, interconnected by weighted links. For an arbitrary

number of hidden layers, the ith neuron of the jth hidden layer computes the weighted

sum of its inputs:

F i [j + 1] = g

 ∑
1≤l≤U [j]

F[j] ·wl[j]

 ,where i ∈ {1, 2, . . . , Nj+1}, (3.19)

where wi[j] are the hidden layer weights for ith the neuron at the jth hidden layer,

U [j] is the number of neurons at the jth layer, where j =1,. . . ,Nl, where Nl denotes

the number of hidden layers, and g(x) is the activation function. The kth neuron in

the output layer gives the probability of the original feature vector corresponding to

the class k. Thus we refer to the output of this kth neuron as hk for hypothesis k. Let

lh denote the output layer, the output hk(w,F) for the kth class can be written as:

hk (w,F) = g (F [lh] ·wk [lh]) , (3.20)

In summary, the neural network first propagates the input through multiple layers

and at the last layer the probability for different classes is calculated.

23

The neural network learns the weight vectors by the process of back-propagation

[28]. Back-propagation adjust the weights first for the output layer and then works

backward through the hidden layers. Back-propagation is a method that learns from

its mistakes. In most classification tasks, the softmax function is used as an activation

function at the last layer of the neural network.

The cost function J(w), used in the neural network case, is the same as that used

logistic regression, but instead of optimizing the weights corresponding to a single

feature set it optimizes multiple weight vectors that is distributed across the neural

network. The corresponding cost cost function is:

J(w) =
Nc∑
i=1

−y log(hi(w,F))− (1− y) log(1− hi(w,F)) (3.21)

where Nc is the number of classes.

The training process consists of two steps: (a) forward propagation followed by

(b) backward propagation.

Forward propagation

In this step all the weights are randomly assigned, and then the neuron’s output

is calculated according to (3.20).

Backward Propagation

The total cost is calculated using (3.21), the gradient of the cost is back-propagated

through the network, and a gradient descent method is used to update the weights,

to get the minimum error.

24

3.3.4 Results

For the classification task, I tested different combinations of parameters including

learning rate for the gradient descent, number of layers and number of neurons in the

neural network, and the choice of kernels for the SVM. I also tested the algorithms

including logistic regression, SVM with radial and polynomial kernels of degrees 1,

3, and 5, and neural networks with multiple hidden layers in order to find the best

classifier. The results are shown in Figures 3.10, and 3.11.

Out of all the classifiers, the SVM gave the best accuracy, 96% with a Word2vec

window of size three and word vector length of 300. The SVM classifier gave the best

accuracy out of all the other classifiers.

Table 3.1. Examples of Incorrect Predictions: False Positive

Tweet Category

1 rt jbarro construction probably the more promising vehicle

for this than manufacturing

False Positive

2 m northbound between j a and j vehicle fire False Positive

3 brooklyn bushwick ave amp grand st pedestrian struck and

pinned under a train fdny amp nypdspecialops on scene op-

erating

False Positive

4 m t a n y c subways train public transit services not operating

between th st and s ferry traffic

False Positive

5 update cleared False Positive

6 cleared special event on barclayscenter False Positive

7 how we doubled our traffic within months data included traffic

sales startup

False Positive

8 propertyuklinks right on False Positive

9 burbank crash at state and austin False Positive

10 rt nypddetectives update False Positive

25

Window Size 1

Window Size 2

Window Size 3

 Fig. 3.10. Classifier Results With Context Window Size 1 to 3

Result Analysis

For the SVM, the incorrect predictions were divided into false positives and false

negatives. A false positive means the tweet is predicted to be traffic related but

actually it is not. A false negative means that the tweet is predicted to the be non-

traffic related but in actuality it’s traffic related.

26

Table 3.2. Examples of Incorrect Predictions: False Negative

Tweet Category

1 can t sleep so what do i do go to work early at least i can

get past the weigh station and avoid some beltway traffic i

suppose

False Negative

2 you d think the supermarket would be emptier in the morning

not at least traffic was lighter by the time i left for work

False Negative

3 sleepy and dreading the traffic which starts to build up in

front of her office

False Negative

4 worst traffic jam ever over hours and i ve only moved maybe

a mile

False Negative

5 tayusa she should better learn that spent too much time here

i was late today because of traffic jam

False Negative

27

Window Size 4

Window Size 5

Window Size 6

Fig. 3.11. Classifier Results With Context Window Size 4 to 6

The Tweets one, four, seven, and nine in Table 3.1 do not have any information

related to road traffic but were identified as road traffic incidents. The Tweets one,

three, and five in Table 3.2 contains traffic-related information but were predicted to

be non-traffic related incidents.

28

One reason for these incorrect prediction is the method of the feature vector

generation. The remaining incorrect predictions is due to the mislabeling of the

Tweets. The issue in feature vector generation is, as shown in (3.3) and (3.4), that

the final vector F is the summation of the individual word vectors shown in (3.4).

Thus by using the classification pipeline shown in the Figure 3.4, word positions were

not taken into consideration. More specifically, consider two sentence of seven words

W1,W2, . . .W7 in different word orders. The resultant word vector F would be the

same for both sentences.

The other thing that I found about the classier model is that it was sensitive to

some keywords like a crash, traffic light, vehicle and traffic. If one or more of these

keywords were in the tweet, then the resultant vector was assigned to the wrong side

of the classification plane, causing misclassification.

To overcome this problem, an RNN is applied with a LSTM unit. The RNN model

with LSTM unit can learn the word location dependencies in a sentence. In RNN,

every word vector is going to the individual RNN unit and every unit transfers its

learning to the next RNN unit, which is, in turn, able to recognize the much broader

meaning of the tweets.

3.3.5 Recurrent Neural Network

The reason for calling the RNN recurrent, is that it performs the same task on

every element in a given sequence. In an RNN, different nodes are connected by a

directed graph. Unlike a feed-forward neural network, an RNN does not assume that

the input feature vector components are independent. Thus the prediction of the

current word in the sentence depends on the previous words. Because of the RNN’s

internal memory, it can remember the past input.

29

RNN Architecture

The RNN can have multiple architectures two of which are shown in Figure 3.12,

i.e. Multiple-Input Multiple-Outputs (MIMO) and Multiple-Input Single-Output

(MISO). The MISO architecture (shown in Figure 3.12 A) can be used for the clas-

sification. The intermediate computation for every sequence element is done by the

RNN
Unit

…RNN
Unit

RNN
Unit

M2M1 Mt

𝑦1 𝑦2 𝑦𝑡

Figure A – Multiple Input Multiple Output RNN

y

Figure B – Multiple Input Multiple Output RNN

𝐈t−1𝐈2𝐈1𝐈0

RNN
Unit

…RNN
Unit

RNN
Unit

M2M1 Mt

𝐈t−1𝐈2𝐈1𝐈0

Fig. 3.12. RNN Architectures

RNN units which also transfer their learning to the next units. Generally the internal

state vector I is given by:

Ii [t] = g
(
wi

II
i [t− 1] + wi

MMi [t]
)
, (3.22)

where g(x) is the activation function, wI is the internal state weight vector, wM is

the input weight vector, and M the input word vector. The output y at position t is:

y[t] = g (w · I [t− 1]) , (3.23)

30

where w is the output weight vector. The most commonly used recurrent unit for the

ordered sequence data like text is the Long Short Term Memory (LSTM) [29].

Long Short Term Memory (LSTM)

The LSTM architecture is similar to that of the RNN. The only difference is in

the way it calculates the internal state. The LSTM model can capture the long-term

dependency of a word in a sentence effectively [30]. Every LSTM unit (or cell) has

three gates: the input gate, the forget gate, and output gate. The update gate output

Γu, the forget gate output Γf , and the output gate output Γo are given by:

Γi
u [t] = Θ

(
wi

u[t] Ii [t− 1] + wi
M[t]M

i [t]
)
, (3.24)

Γi
f [t] = Θ

(
wi

f [t] Ii [t− 1] + wi
M[t]M

i [t]
)
, (3.25)

Γi
o [t] = Θ

(
wi

o[t] I
i [t− 1] + wi

M[t]M
i [t]
)
. (3.26)

where Θ is the sigmoid activation function, wu is the update gate’s weight vector,

wf is the forget gate’s weight vector, wo is the output gate’s weight vector, and wM

is the weight vector for the ith input word vector.

These gates collectively determine the information flow to every unit. Where the

internal state I is,

Ii [t] = Γi
o[t]
(
Γi
u[t]Ci[t] + Γi

f [t]Ii[t− 1]
)
, (3.27)

C is,

Ci [t] = tanh
(
wi

CIi [t− 1] + wi
M[t]M

i [t]
)
, (3.28)

and tanh is the hyperbolic tangent activation function:

tanh(x) =
1− exp(−2x)

1 + exp(2x)
. (3.29)

Generally, a word in a sentence is related to both previous and subsequent words;

however, with the RNN architecture, capturing both backward, and forward depen-

dencies is difficult. This is where bidirectional RNNs (shown in the Figure 3.13) [31]

are helpful. Bidirectional RNN architecture increases the amount of information

available to the network for predictions.

31

՜
I1

M1 M2 Mt

RNN Forward Layer RNN Backward Layer

՜
I2

՜
It

՚
I1

՚
I2

՚
It

y

Fig. 3.13. RNN Bi-Directional Architecture

The basic idea in bidirectional RNNs is to create an additional backward layer for

the internal state’s propagation. More specifically, a forward-pass layer propagates

the states as shown in (3.27) and (3.28) and the backward-pass layer propagates the

states in the opposite direction.

All the calculations for the gates and the internal state are unchanged, and the

backward-pass uses a separate set of states called the backward states and a separate

sets of weights called the backward weights. The advantage of this architecture is

that the output layer can make use of the information from both previous and next

words. The output y at position t is calculated as:

y[t] = g
(−→w · −→I [t− 1] +←−w ·

←−
I [t− 1]

)
(3.30)

−→w is the forward weight vector for the forward layer,
−→
I [t] is the forward internal

state vector at layer t for the forward layer, ←−w is the backward weight vector for

the backward layer, and
←−
I [t] is the backward internal state vector at layer t for the

32

backward layer. The cost function is using both forward and backward layer internal

state vectors and to find the forward and backward weight vectors. The optimization

methods consist of the forward and backward propagation, the same as for (3.21).

Dropouts In LSTM

The dropout technique is used to address the problem of over-fitting. In the

basic dropout technique, some neurons are removed randomly from the hidden layer,

during the training phase. An example is shown in Figure 3.14. In the dropout-

network technique, instead of removing neurons, only weights (showed with dotted

line) are removed randomly from the neural network. Srivastava et al. [32] showed

that the basic dropout technique [33] is ineffective for RNNs, as they lose the ability

to retain the long-term dependencies. I applied a weight-dropped LSTM [34] inspired

by the DropOut network [35].

Figure A – Fully Connected Neural Network Figure B – Fully Connected Neural Network
with Dropout

Figure C – Fully Connected Neural Network
with DropConnect

Fig. 3.14. Neural Network Dropout

33

Results

The effect of applying dropout techniques can be seen in the Table 3.3. For the

cascaded RNN (shown in Figure 3.15-A), the cascaded RNN with neuron dropouts

in FCNN (shown in Figure 3.15-B), the cascaded RNN with adder layer (shown

in Figure 3.15-C), and cascaded RNN with neuron dropouts in FCNN and weight

dropout in RNN layer (shown in Figure 3.15-D), the accuracy for the training data is

nearly 100% while for test data it is around 91%. When 50% weight dropout in RNN

layer and 60% dropout in the FCNN layer (shown in Figure 3.15-D) were applied, the

accuracy for training and test data was around 92.5%.

The highest accuracy achieved on the test dataset was 92.6%, better than the

previous SVM classifier because the RNN was able to capture the word dependencies.

Most of the RNN’s “incorrect” predictions in Table 3.5 (Tweet 1, 3, 4, 5, 6) were

actually correct. They identified mislabeling of the dataset. Apart from that, the

RNN’s architecture was able to recognize the deeper meaning of the Tweets.

Consider the Tweets 1 and 4 in Table 3.6. These Tweets do not have information

related to road traffic. The first one is talking about subway traffic and the second

one is referring to a hit and run case. Though some of the other Tweets were labeled

incorrectly, the classifier was able to correctly predict that they contain traffic related

information. Thus, the presence of keywords such as ‘accident’, ‘congestion’ is not

affecting the prediction.

I tested sensitivity to the weight regularization parameter. I found that the model

was sensitive to the weight regularization parameter for both the Adam algorithm [36]

and the gradient descent method. For a single layer RNN, there was an abrupt drop

in the training and test accuracy for regularization parameter 0.1, 0.01 as shown

in Table 3.4. That was the another motivation for using the weight dropout layer.

There are two obvious ways to improve the accuracy. One way would be to correct

34

Table 3.3. Accuracy Table

RNN’s Architecture Accuracy on Test Data Accuracy on Training Data

1 Cascaded RNN 91.27 99.21

2 Cascaded RNN with Neu-

ron Dropouts In FCNN

Layer

91.53 98.64

3 Cascaded RNN with

Adder Layer

91.31 99.36

4 Cascaded RNN with

Neuron Dropouts in

FCNN Layer and Weight

Dropouts in RNN Layer

92.67 92.51

Table 3.4. RNN Regularization

Adam Optimization Gradient Descent

Regularization Test Accuracy Training Accuracy Test Accuracy Training Accuracy

0 91.26 99.83 92.6 92.78

0.1 55.74 54.87 53.17 55.39

0.01 91.83 91.45 53.85 55.83

0.001 92.08 91.46 92.03 92.46

0.0001 88.78 95.84 92.52 92.57

0.00001 92.48 99.28 92.58 92.51

35

the labeled dataset. The other would be to increase the size of the dataset. As shown

in the Table 3.3, applying a dropout technique we can improves the accuracy only to

92%. The classifier needs more data to get a better understanding of the tweets.

Fig A - Cascaded RNN Fig B - Cascaded RNN with dropout at FCNN

Fig - Cascaded RNN with
adder layer

Fig - Cascaded RNN with dropout at
FCNN and weight dropout at RNN

Forward
Layer

Backward
Layer

Drop-out
Layer

Concatenate
Layer

Vector Element Wise
Addition Layer

Fig. 3.15. Different RNN Architectures

36

Table 3.5. Examples of Incorrect Predictions: False Positives

Tweet Category

1 Crash at 70th St. and Damen Ave. #Chicago False Positive

2 Update: Special Event on #5ThAvenue from 44th Street to

67th Street

False Positive

3 Disabled vehicle on the Palisades Interstate Pkwy SB north

of x91/I-87 blocks right lane #nbc4ny’

False Positive

4 Cleared: Incident on #I278 EB at Queens-Kings County Line;

Koskuisko Bridge’

False Positive

5 UPDATE: I-294 Southbound - STALL - South of HALSTED

AV - MP 1.5 - ALL LANES OPEN’

False Positive

6 .. @AM730Traffic Don’t see a stall there on our cameras right

now. Must’ve been cleared fairly quickly! r̂m

False Positive

7 Closed False Positive

8 . @wonderboy74 good news: our improvements at 24/176

should be finished in the next week - improving safety and

flow at this signal. âr (2/2)’

False Positive

9 UPDATE: The left lane is now getting through. r̂m ’ False Positive

10 Update: Construction on #M101Bus EB at 86th Street: Lex-

ington Avenue

False Positive

37

Table 3.6. Examples of Incorrect Predictions: False Negatives

1 RT @NJTRANSIT NEC:NEC, NJCL, & MidTown Di-

rect trains are subject to 15 minute delays inbound to NY due

to station congestion.

False Negative

2 Update: Incident on #Q83Bus Both directions at Liberty

Avenue:168th Street

False Negative

3 A full closure of Foster Avenue over the North Branch Chicago

River beginning Wed, Sep 7. for a bridge rehabilitation

project.

False Negative

4 Driver surrenders in hit-and-run crash that injured 6-year-old

boy via @ABC7NY. #saferidehom

False Negative

5 Road is closed False Negative

38

4. LOCATION DETECTION

Location information can reveal the underlying economic and political trends for a

given place. Twitter supports a geo-tagging features for tweets, which provideds finely

tuned geolocation information. However, only 0.1 % of the Tweets studied contained

geolocation information.

Geo-parsing of tweets, purely on their textual contents, is challenging, due to the

unstructured format. People rarely follow grammar rules on social media, and that

makes natural language processing techniques like Named Entity Recognition (NER)

difficult.

NER is a subtask of the information retrieval task where the end goal is to catego-

rize the text into predefined classes such as person names, locations, expressions, and

organizations. A named entity may be a single word or a string of words, e.g.,“west

Walnut street” is a location.

Fig. 4.1. Named Entity Recognition

39

NER can be used to solve a variety of real-world problems, for example producing

robust search algorithms to find the documents from the text queries [37], identifying

new drug hypotheses [38], and automating customer feedback analysis [39].

In the same way, determining the location from the text could be a NER problem

where the entities are the locations.

4.1 Previous Work

Researchers including Cyril and Frederic [40] and Bornet and Kaplan [41] built

Named Entity systems using sets of rules. However the NER task, just like the text

classification task, can be solved using supervised machine-learning techniques. Man-

ning [42] used a supervised machine-learning technique know as Conditional Random

Fields (CRF). The documents used in these studies were structured, i.e. had proper

grammar and punctuation.

In social media posts, people follow hardly any grammar and punctuation norms,

which makes the NER detection harder. Elsafoury tried to overcome this problem

by focusing on tweets that contained geo-coordinate information [43]. In another

approach Cheng and Lee [44] tried to determine the user home location. Ritter, Clark,

Etzioni et al. [45] tried to build a NER system specifically for Tweets. For training

they augmented data from the Penn TreeBank project [46]. Gelernter and Balaji

[47] used machine-learning techniques with a fixed sets of rules for basic sentence

correction.

4.2 Conditional Random Field

Conditional random fields (CRFs) are a probabilistic approach, used for labelling

and segmenting the sequential data. The underlying assumption in CRFs is that the

next state depends on the current state and past states.

40

Thus the primary goal is to build a conditional distribution model

p (S|M; w) = p (S1,S2, . . .Si|M1,M2, . . . ,Mj; w1,w2, . . . ,wk) , (4.1)

that can map input symbols to the possible sequence states.

For a sentence, each Mr, r = 1, . . . , j is the rth input word vector and each Sa,

a = 1, . . . , i, is the ath state. We assume that S is a finite set. In NER, S is the set of

all the named entities like persons, places, or names. Specifically,

p (S|M; w) =
exp

(
w · f(M,S)

)
i∑

a=1

exp
(
w · f(M,Sa)

) , (4.2)

where f(M,S) is a feature function and w is a weight assigned to the feature function.

The feature function f(M,S) is defined as:

f(M,S) =
i∑

a=1

E(M, a,Sa−1,Sa). (4.3)

Where E(M, a,Sa−1,Sa) is the maximum entropy from a Markov model (MEMM)

[48]. In Markov models the output of the current state is dependent on the previous

states.

The weight vector w is optimized by using gradient descent with the cost,

J(w) = arg max
1≤a≤i

exp (w · f (M,Sa))
i∑

r=1

exp (w · f (M,Sr))

. (4.4)

4.2.1 Architecture

Bidirectional RNNs can relate word dependencies for the previous and next words

in sentences and CRFs are useful for finding the current state probability with respect

to the previous state. The advantage of using LSTM with a CRF is that it can utilize

the previous and next words and then combined with the Twitter tag information

to get a more in-depth understanding of the Twitter tokens. Hence Huang et al.

41

combined a bidirectional LSTM network with the CRF layer [49]. First a Tweet is

vectorized (as shown in Figure 3.4), then the output word vectors are passed through

a bidirectional LSTM network and the LSTM output is fed to the CRF layer as shown

in Figure 4.2.

M M M

Output Tags

CRF LayerForward Layer Backward Layer

Fig. 4.2. NER Architecture for Location Detection

B - Location I - Location Other- Tags

Correct Wrong Accuracy Correct Wrong Accuracy Total Accuracy Correct Wrong Accuracy

Training Data 606 274 68.86 153 66 69.86 69.36 60639 168 99.72

Test Data 136 140 49.28 17 32 34.69 41.98 46047 97 99.79

Fig. 4.3. NER Result

42

I tested the above architecture on the Oregon State University dataset [50]. The

dataset has twenty three different tags. The results obtained are shown in Figure 4.3.

The above architecture was able to recognizing location tags with 41.98 % accuracy on

the test data. The main reason for getting such poor accuracy is that in the training

data only 0.01 % tags belong to the location category, while tags like “other”, were

in abundance and that’s why algorithm was able to predict the “other” tag with an

accuracy of 99.79% on the test dataset.

43

5. SYSTEM WORKFLOW AND IMPLEMENTATION

The system architecture is composed of multiple microservices running independently.

A different microservice was used for each task, for example Twitter data collection,

machine-learning algorithms, and database operations for the MongoDB and MySQL

servers.

Microservice architecture decomposes the whole system into small and lightweight

components designed for specific purposes [51]. Some of the significant benefits of this

style are:

• Scalability: Since the system architecture is composed of multiple independent

services, scaling a particular microservice instance is easier than if the services

were intertwined. If a microservice becomes a bottleneck because of slow ex-

ecution, then that particular microservice can either be run on more powerful

hardware or its multiple instances can run in parallel on additional low cost

hardware.

• Ease of development: Since every microservice is an independent module, it

can be easily removed or upgraded without affecting other services or the whole

system.

• Fault-Tolerant: Because of the decoupled nature of the message exchange sys-

tem, when a specific microservice goes down, it will not bring down the whole

system.

• Multi-Language Development: Because each microservice is independently im-

plemented, so one service can be developed using Java [13] while others can be

developed using Python [52] or C [53].

44

This modular design approach is opposite to monolithic system design where every

system component is bundled together into a single rigid container and scaling is

difficult to achieve. [51].

5.1 System Implementation

The distributed nature of the microservice architecture requires a message pass-

ing system for communication among microservices. This communication was imple-

mented using the RabbitMQ [54] message broker. The RabbitMQ message broker

uses the Publish And Subscriber Model (PASM) [55]

The PASM utilizes a message broker to route messages from the message exchange

queue. The PASM system consists of three types of components:

• Publisher: An application that puts a message on the message exchange.

• Subscriber or Consumer: An application that read the messages from the mes-

sage queue.

• Exchange: Generally routing from message exchange depends on the exchange

type. Two types of exchanges are in common use: fanout exchanges and direct

exchanges. In the fanout exchange method, all the messages are copied to all the

queues; however, in the indirect exchange method, messages are routed using

routing and binding keys.

5.2 System Architecture

The distributed microservice system has two major components as shown in Fig-

ure 5.2:

• Data Extraction and Analysis.

• Data Visualization.

45

M1 M2 M3 M4

Message Producer Fanout Exchange

M1 M2 M3 M4

Consumer

M1 M2 M3 M4

Consumer

M1 M2 M3 M4

M1 M2 M3 M4

Message Producer Direct Exchange

M1 M3

Consumer

M4 M5

Consumer

M1 M2 M3 M4

Routing Key

Routing Key

Fig. 5.1. Comparison of Fanout and Direct Message Passing Exchanges

5.3 Data Extraction and Analysis

The data extraction and analysis part of the system does all the heavy lifting for

the traffic analysis application. It consists of the Twitter data extractor and the text

analyser. More specifically, it consists of the following modules:

• Twitter Data Collection.

• Message Processing and Storage.

46

5.3.1 Twitter Data Collection

Twitter data is collected by Twitter rest APIs. In every 45 seconds, parameters

like user-id, tweet-id, keywords, and city location are passed to the API to get the

data (as described in the Chapter 2). Then the data is inserted into the fanout

message-exchange queue with three routing keys for the MySQL, MongoDB, and the

classification consumers.

5.3.2 Message Processing and Storage

Due to the large number of Twitter messages, they cannot be processed sequen-

tially on a single machine. Using message queues, data is distributed on different

servers to do different tasks and no matter how many consumers are attached to the

queue, a message is only processed by one consumer.

Classification Consumers

The classification consumer, which performs the Tweet classification, runs a trained

RNN model. The output of the classifier is then placed in a MySQL queue.

MySQL Consumers

The MySQL consumer, which performs the MySQL data storage, stores the output

of the text classification consumer, the NER, and location triangulation to the MySQL

database.

MongoDB Consumer

The MongoDB consumer stores all of the data to the MongoDB database for

archival purposes.

47

5.4 Data Visualization

To communicate with the database of extracted data, a simple user application

is built using HTML and Python. The user application interacts with the MySQL

database using HTTP requests. Whenever a user requests information, the most

recent tweets and their attributes, such as classifier output and location information,

are displayed.

48

D
at

a
So

u
rc

e

M
es

sa
ge

Ex

ch
an

ge

Fa
n

 O
u

t
M

es
sa

ge

Ex
ch

an
ge

D
at

a
Ex

tr
ac

to
r

M
es

sa
gi

n
g

Q
u

e
u

es

M
o

d
el

W
eb

 s
o

ck
et

m

es
sa

ge
s

h
tt

p

m
es

sa
ge

s
W

eb
So

ck
et

B
ac

ke
n

d
 S

er
vi

ce
s

W
eb

 S
er

ve
r

h
tt

p
R

eq
u

es
t

H
T

TP
R

ab
b

it
M

Q
C

h
an

n
e

l L
ay

e
r

M
o

n
go

D
B

 D
at

a
St

o
ra

ge

Se
rv

ic
e

M
ac

h
in

e
Le

ar
n

in
g

C
la

ss
if

ie
r

Se
rv

ic
e

M
yS

Q
L

D
at

a
St

o
ra

ge

Se
rv

ic
e

M
yS

Q
L

Q
u

e
u

e

M
o

n
go

D
B

 Q
u

e
u

e
Te

xt
 A

n
al

ys
is

 Q
u

e
u

e

C
la

ss
if

ie
r

Q
u

e
u

e

M
yS

Q
L

C
la

ss
if

ie
r

In
fo

U

p
d

at
e

Lo
ca

ti
o

n
 d

et
ec

ti
o

n
 a

n
d

tr

ia
n

gu
la

ti
o

n

V
ie

w

W
e

b
 s

o
ck

e
t

C
o

n
su

m
e

r

H
TT

P

C
o

n
su

m
e

r

Data Extraction and Analysis Data Visualization

F
ig

.
5.

2.
S
y
st

em
A

rc
h
it

ec
tu

re

49

6. SUMMARY

In this thesis, I constructed a novel algorithm that can track and geo-locate traffic

incidents from Tweets. The main issues in building such a machine learning model

are the quality and quantity of the data. With more data, the accuracy of the

classification and Named Entity Recognition tasks can be increased; however more

effort is required to label the training data and to optimize the network weights. Also,

for the NER, if the dataset has a larger number of sentences with location tags, the

current accuracy, 41% can be improved.

The best accuracy, 96% was achieved with the SVM classifier but the SVM was

not able to understand the word positions. With the RNN the accuracy was only

93%, RNN was able to get the words dependencies with the surrounding words and

this drop was because of the mislabeling of the dataset.

With a larger labeled dataset, we could try some more complex neural networks,

which would be expected to increase the classifier and Named Entity recognition task

accuracy.

REFERENCES

50

REFERENCES

[1] Inrix, Traffic Problem, 2018 (accessed June 18, 2018). [Online].
Available: http://www.businessdayonline.com/news/article/traffic-jams-cost-
u-s-drivers-1200-year-study/

[2] Federal Highway Administration, Vehicle Detection and Surveil-
lance, 2018 (accessed July 10, 2018). [Online]. Available:
https://www.fhwa.dot.gov/policyinformation/pubs/vdstits2007/03.cfm

[3] A. Roy, N. Gale, and L. Hong, “Automated traffic surveillance using fusion of
doppler radar and video information,” Mathematical and Computer Modelling,
vol. 54, no. 1-2, pp. 531–543, 2011.

[4] B. J. Jansen, M. Zhang, K. Sobel, and A. Chowdury, “Twitter power: Tweets as
electronic word of mouth,” Journal of the Association for Information Science
and Technology, vol. 60, no. 11, pp. 2169–2188, 2009.

[5] N. Ambraseys, “The seismic activity of the Marmara sea region over the last
2000 years,” Bulletin of the Seismological Society of America, vol. 92, no. 1, pp.
1–18, 2002.

[6] S. Coleri, S. Y. Cheung, and P. Varaiya, “Sensor networks for monitoring traffic,”
in Allerton conference on communication, control and computing, 2004, pp. 32–
40.

[7] D. Barth, The bright side of sitting in traffic: Crowdsourcing road
congestion data, 2018 (accessed May 20, 2018). [Online]. Available:
https://googleblog.blogspot.ca/2009/08/bright-side-of-sitting-in-traffic.html

[8] Twitter, Get Tweets, 2018 (accessed June 18, 2018). [Online]. Available:
https://developer.twitter.com/en/docs/api-reference-index.html

[9] Tweepy, Filtering Tweets by location, 2018 (accessed June 19, 2018). [Online].
Available: https://developer.twitter.com/en/docs/tutorials/filtering-tweets-by-
location.html

[10] Twitter, Get Tweet timelines, 2018 (accessed May 20, 2018). [Online]. Available:
https://googleblog.blogspot.ca/2009/08/bright-side-of-sitting-in-traffic

[11] D. Twitter, Authentication, 2018 (accessed June 18, 2018). [Online]. Available:
https://developer.twitter.com/en/docs/basics/authentication/guides/access-
tokens.htm

[12] Tweepy, Twitter API access via python, 2018 (accessed May 21, 2018). [Online].
Available: http://tweepy.readthedocs.io/en/v3.5.0/index.html

51

[13] Oracle, Java, 2018 (accessed June 7, 2018). [Online]. Available:
https://java.com/en/

[14] John Paul Mueller, Luca Massaron, Machine Learning: Creat-
ing Your Own Features In Data, 2018 (accessed June 20, 2018).
[Online]. Available: https://www.dummies.com/programming/big-data/data-
science/machine-learning-creating-features-data/

[15] I. Guyon and A. Elisseeff, “An introduction to feature extraction,” in Feature
extraction. Springer, 2006, pp. 1–25.

[16] Y. Zhang, R. Jin, and Z.-H. Zhou, “Understanding bag-of-words model: a statis-
tical framework,” International Journal of Machine Learning and Cybernetics,
vol. 1, no. 1-4, pp. 43–52, 2010.

[17] Y. Goldberg and O. Levy, “word2vec explained: Deriving Mikolov et al.’s
negative-sampling word-embedding method,” arXiv preprint arXiv:1402.3722,
2014.

[18] M. Vorontsov, G. Carhart, and J. Ricklin, “Adaptive phase-distortion correction
based on parallel gradient-descent optimization,” Optics letters, vol. 22, no. 12,
pp. 907–909, 1997.

[19] K. Bontcheva, L. Derczynski, A. Funk, M. Greenwood, D. Maynard, and
N. Aswani, “Twitie: An open-source information extraction pipeline for mi-
croblog text,” in Proceedings of the International Conference Recent Advances
in Natural Language Processing RANLP 2013, 2013, pp. 83–90.

[20] N. Wanichayapong, W. Pruthipunyaskul, W. Pattara-Atikom, and P. Chaovalit,
“Social-based traffic information extraction and classification,” in ITS Telecom-
munications (ITST), 2011 11th International Conference on. IEEE, 2011, pp.
107–112.

[21] B. Sriram, D. Fuhry, E. Demir, H. Ferhatosmanoglu, and M. Demirbas, “Short
text classification in Twitter to improve information filtering,” in Proceedings of
the 33rd international ACM SIGIR conference on Research and Development in
information retrieval. ACM, 2010, pp. 841–842.

[22] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes Twitter users: real-
time event detection by social sensors,” in Proceedings of the 19th international
conference on World wide web. ACM, 2010, pp. 851–860.

[23] C. N. Divij Gupta, Detecting Real-Time Messages of Public Inter-
est in Tweets, 2018 (accessed May 21, 2018). [Online]. Available:
snap.stanford.edu/class/cs224w-readings/mathioudakis10twitter.pdf

[24] W. Wolny, “Sentiment analysis of Twitter data using emoticons and emoji
ideograms,” Studia Ekonomiczne, vol. 296, pp. 163–171, 2016.

[25] D. R. Cox, “The regression analysis of binary sequences,” Journal of the Royal
Statistical Society. Series B (Methodological), pp. 215–242, 1958.

[26] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support vector ma-
chine learning for interdependent and structured output spaces,” in Proceedings
of the 21st international conference on Machine learning. ACM, 2004, p. 104.

52

[27] E. T. Rolls and A. Treves, Neural networks and brain function. Oxford Univer-
sity Press Oxford, 1998, vol. 572.

[28] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural
networks for perception. Elsevier, 1992, pp. 65–93.

[29] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with lstm,” 1999.

[30] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of recur-
rent network architectures,” in International Conference on Machine Learning,
2015, pp. 2342–2350.

[31] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE
Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[32] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regular-
ization,” arXiv preprint arXiv:1409.2329, 2014.

[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” The Jour-
nal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[34] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimizing lstm lan-
guage models,” arXiv preprint arXiv:1708.02182, 2017.

[35] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of neural
networks using dropconnect,” in International Conference on Machine Learning,
2013, pp. 1058–1066.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[37] T. Joachims, “Optimizing search engines using clickthrough data,” in Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2002, pp. 133–142.

[38] R. Burbidge, M. Trotter, B. Buxton, and S. Holden, “Drug design by machine
learning: support vector machines for pharmaceutical data analysis,” Computers
& chemistry, vol. 26, no. 1, pp. 5–14, 2001.

[39] W. Jin, H. H. Ho, and R. K. Srihari, “Opinionminer: a novel machine learn-
ing system for web opinion mining and extraction,” in Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data min-
ing. ACM, 2009, pp. 1195–1204.

[40] T. Eftimov, B. K. Seljak, and P. Korošec, “A rule-based named-entity recognition
method for knowledge extraction of evidence-based dietary recommendations,”
PloS one, vol. 12, no. 6, p. 12(6), 2017.

[41] C. Bornet and F. Kaplan, “A simple set of rules for characters and place recog-
nition in French novels,” Frontiers in Digital Humanities, vol. 4, p. 6, 2017.

53

[42] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local information
into information extraction systems by Gibbs sampling,” in Proceedings of the
43rd annual meeting on association for computational linguistics. Association
for Computational Linguistics, 2005, pp. 363–370.

[43] F. A. Elsafoury, Monitoring urban traffic status using Twitter messages. Thesis
submitted to the Faculty of Geo-Information Science and Earth Observation of
the University of Twente, the Netherlands, February, 2013.

[44] Z. Cheng, J. Caverlee, and K. Lee, “You are where you tweet: a content-based
approach to geo-locating twitter users,” in Proceedings of the 19th ACM inter-
national conference on Information and knowledge management. ACM, 2010,
pp. 759–768.

[45] A. Ritter, S. Clark, O. Etzioni et al., “Named entity recognition in tweets: an
experimental study,” in Proceedings of the conference on empirical methods in
natural language processing. Association for Computational Linguistics, 2011,
pp. 1524–1534.

[46] Twitter, Get Tweet timelines, 2018 (accessed May 20, 2018). [Online]. Available:
https://cs.nyu.edu/grishman/jet/guide/PennPOS.html

[47] J. Gelernter and S. Balaji, “An algorithm for local geoparsing of microtext,”
GeoInformatica, vol. 17, no. 4, pp. 635–667, 2013.

[48] M. Collins, Log-Linear Models, MEMMs, and CRFs, 2018 (accessed June 7,
2018). [Online]. Available: http://www.cs.columbia.edu/ mcollins/crf.pdf

[49] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for sequence tag-
ging,” arXiv preprint arXiv:1508.01991, 2015.

[50] Alan Ritter, W-NUT data, 2018 (accessed February 17, 2018). [Online].
Available: https://bit.ly/2LeuxK9

[51] J. L. Martin Fowler, Microservices: a definition of this new ar-
chitectural term, 2018 (accessed June 7, 2018). [Online]. Available:
https://www.martinfowler.com/articles/microservices.html

[52] P. Community, Python, 2018 (accessed June 7, 2018). [Online]. Available:
https://www.python.org

[53] C. Community, C, 2018 (accessed June 7, 2018). [Online]. Available:
http://www.cplusplus.com/reference/

[54] rabbitmq, Rabbitmq Message Broker, 2018 (accessed June 7, 2018). [Online].
Available: https://www.rabbitmq.com/

[55] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski, “The padres distributed
publish/subscribe system.” 2005, pp. 12–30.

APPENDIX

54

A. APPENDIX

A.1 City Names and Traffic Related Key Words

Table A.1. Traffic Related Key Words

Key Word

1 #traffic

2 marriage

3 happy

4 rain

5 water

6 drain

7 traffic

8 road

9 block

10 road accidents

11 accidents

12 congestion

13 construction

14 frustrated

15 stuck

55

Table A.2. Cities’ Names and Geo Locations

City Name Geo Coordinate

1 Chicago 41.881832, -87.627760

2 Chennai 13.083162, 80.282758

3 New York 40.714264, -73.978499

4 London 51.505234, -0.111244

5 New Delhi 28.612952, 77.211953

6 Indianapolis 39.767927, -86.158749

7 Bombay 19.110914, 72.885140

8 New Jersey 40.279865, -74.517549

A.2 Conventions

This chapter summarizes all the conventions that have been used in this Thesis

• Vector Dot Product It is represented by “·” Ex. w ·M

• Vector with square bracket represent the vector at specific layer, Ex. F[i], feature

vector at layer i.

• Vector component-wise multiplication is wiFi

