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ABSTRACT

Ramesh, Keerthanaa M.S.E.C.E, Purdue University, December 2015. Modeling and
simulation of an automated parallel parking system using Hybrid Petri nets. Major
Professor: Lingxi Li.

In recent years, there have been a lot of technology innovations to automate the

day to day processes done by every person. These days the automobile manufacturers

introduce new features in their cars, in order to improve customer experience, like

Adaptive cruise control, Parallel park assist, etc. The objective of this thesis is to

model an automated parallel parking system and to simulate the system behavior, by

taking into account the high level events which happen when a car is parallel parked.

The tool used in this thesis to model and simulate the system is Hybrid Petri net

(HPN), which is versatile to model the real life systems. Chapter 1 deals with a brief

introduction of the related work in Hybrid Petri net modeling of real life systems,

automatic parallel parking systems and how the concept for modeling the parallel

parking system was developed. Chapter 2 deals with the general introduction about

Discrete, Continuous and Hybrid Petri nets and their dynamics which are essential

for understanding this thesis. Chapter 3 deals with the development of the model

and the various stages in the model development. Errors encountered in each stage is

briefly discussed and the improvements are discussed in the next stage of development.

This chapter concludes with the final integrated model and operation of the model.

Chapter 4 deals with the discussion of results obtained when the model is tested in

MATLAB and SIMHPN (which is a Matlab embedded simulation program). The

results are compared, the system behavior is observed and the purpose of the thesis

is justified. In Chapter 5, a conclusion is provided to summarize the entire thesis.
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1. INTRODUCTION

1.1 An introduction to parallel parking

Parallel parking is a kind of parking procedure where the vehicle is parked in

parallel to the directon of the road and also in line with other vehicles. The generic

procedure is as follows. If the parking space is between two cars, the driver either,

• moves into the space from behind the parking space or,

• drives slightly forward to the space, parallel to the car in front of the parking

space and then backs into the space, adjusting the position to complete the

parallel parking procedure.

1.2 Literature review

After gaining persective on the parallel parking procedure, a detailed literature

review was done on the existing research in the field of automated parallel parking

systems and Hybrid Petri net modelling of various real life systems, for example,

manufacturing systems, traffic control systems etc. In [14], [15] automated parallel

parking systems employing various algorithms for maneuver planning were discussed.

The mathematical models of the vehicles and geometric representations were used

in the algorithm to perform collision free maneuvering planning. Infra-red and ultra

sound sensors were used to scan the parking area to search for a suitable parking

spot. The data from the sensors was also used in the path planning. The control

logic/algorithm generated was then used in the embedded microprocessor used for

the automated parallel parking process. These algorithms were tested using a car

like robot prototype. In [20], known reference trajectory (represented by a fifth order

polynomial) was adopted and a fuzzy controller was designed to assist the car like
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mobile robot to compute a trajectory close to the reference trajectory. The car

like mobile robot followed the trajectory computed and the parking procedure was

completed.

In [16] and [17], an iterative algorithm was used in feedback and planning motion

control procedure, which localizes a vehicle’s loaction based on the data from range

measurement systems. Then proper control algorithms were used which provide an

approximate path to a designated location. Feedback was received after processing

the range data, after the motion has been executed. This feedback was then used

to decide whether the current motion is leading to the desired trajectory. Then this

algorithm was continued iteratively till the parallel parking procedure is complete

and the vehicle (CLMR) has been parked in the desired location. In [19], further

improvements were done to the existing path planning algorithms and a neuro fuzzy

behavior based controller was designed for the steering control, whose inputs are the

distances of the car and the parking space. It is different from the existing fuzzy

logic based algorithms in the sense, the car like vehicle (robot) need not know the

reference trajectory for path planning. Only the initial configuration of the robot is

necessary for it to track it’s own path based on the positions measured at discrete

intervals of time. Finally, [18] deals with a complete mechatronics system to automate

the parallel parking procedure for reverse parallel parking (where the vehicle parallel

parks from the front of the parking space) and the forward parallel parking (where

the vehicle parallel parks from behind the parking space) based on a fuzzy controller

output whose inputs are the the angles between the vehicle frame orientations and

the X axis.

In [12], the authors have developed a way to model the parallel parking system

using discrete Petri nets and then design fault tolerant supervisory controller for

the parallel parking system. In this paper, initially a parallel parking system was

modelled using the sensors as places and the high level events as transitions and a

supervisory controller was developed to prevent any unnecessary events (transitions).

Then, to prevent any failure in the controller itself (such as failure due to the faulty
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data from the sensors), another redundant controller was developed which allows for

the fault-free operation of the initial supervisory controller and also maintain its basic

functionality. This paper provided an insight on modeling using Petri nets and an

idea to adapt this approach in this thesis.

In [13], technique of automating the parallel parking approach using artificial

intelligence approach was analysed. Also, the parking space was divided into several

sections and the parking space is modelled by Petri nets with the places denoting the

sections of the space. This Petri net flow chart was then used to perfom an optimal

path planning using genetic algorithm, for collision avoidance. Based on the results of

the algorithm, the fuzzy rules were created and then a fuzzy controller was developed

for controlling the steering angle of the vehicle. This paper proved the effectiveness

of Petri net in modeling the systems with discrete event formalisms/sequences.

In [11], the authors have modeled a car safety controller along with modeling the

vehicle dynamics by using Fluid Stochastic Petri nets (Stochastic Hybrid Petri nets).

Fluid Stochastic Petri nets (FSPN) are a class of Hybrid Petri nets to model random

behaviour of system dynamics. In this paper, FSPNs having continuous transitions

with exponential firing rates and discrete transitions and places were used to model

a car safety controller. The continuous quantities modelled by the continuous places

and transitions were distance and position. The quantity distance is deterministic at

times and stochastic at other times. The model was simulated using initial values

for different parameters like speed of the truck, distance when the truck (travelling

in front of the car in the tunnel) stops, and the initial speed of the car and its initial

distance from the truck in the front. The probability density functions of the distance

of the two vehicles at various instants of time were plotted to check at what instant of

time the truck stops and when the car stops, indicating an accident has occured. This

paper proved that Hybrid (Fluid) Petri net (HPN) is an apt formalism for modeling

systems with complex dynamics, a car safety controller in this case. Similar attempts

have been made in [21] to model and simulate a transportation system using Hybrid

Petri Nets where the continuous dynamics of the passenger flow were modeled by
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the Continuous Petri net part of the HPN. [22], [23], [24], [25] dealt with modeling

and simulation of traffic control systems with HPN where the continuous behavior

modeled is the traffic flow. Finally, [27] dealt with developing a simulation model for

evaluating the design of railway transit stations based on Hybrid Petri nets.

In [4], [5] and [9] the authors have provided an insight to the modeling, simulation

and analysis of Hybrid Dynamic Systems (HDS) using Hybrid Petri nets. In [9], the

authors have dealt with modeling a real life control system (Tank Fire Control System)

using Hybrid Petri nets. Hence, it is evident that Petri nets, especially Hybrid Petri

nets can be used to model real life control systems and is very versatile in modeling

and simulation of such systems. So, based on this fact, this thesis is an attempt to

model and simulate the automated parallel parking system and to understand the

system behavior.

1.3 Thesis organization

The reminder of this thesis is organized as follows: Chapter 2 deals with the

introduction to Petri nets, Discrete Petri nets, Continuous Petri nets, Hybrid Petri

nets and also their dynamics. Chapter 3 presents the development of the model using

high level events. Various versions of the models are discussed. The drawbacks of each

version is discussed in detail and the next consecutive version of the model is designed

so that it overcomes the drawbacks discussed. The final model is discussed in detail

and then used to perform the simulation. Simulations are done using MATLAB,

using the state equations of the Petri net firing, and defining the incidence matrices

and firing vectors for the model and SIMHPN, a matlab embedded simulation tool.

Chapter 4 discusses the results obtained from simulating the model in MATLAB and

SIMHPN. Comparisons are made and system behavior is observed and the purpose

of this thesis is justified. Chapter 5 offers a summary of the entire thesis, concluding

remarks and future work to expand this thesis.
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2. INTRODUCTION TO PETRI NETS

2.1 Notations and definitions

Petri net also called as Place/Transition net is a mathematic modeling tool/language

used to represent the structural information of real life discrete/hybrid systems. They

are a graphical and intuitive way to describe systems and complex control algorithms

associated with them. Petri net was discovered by Carl Adam Petri in early 1960’s

to describe chemical processes. They are composed of two distinct nodes namely,

• Transitions - represented by vertical bar/box. The transitions will depict the

events will occur in the system.

• Places - represented by a circle. The places will depict the conditions that have

to be met for a particular event to take place. They can have a discrete number

of tokens, indicating whether the condition/resource necessary to enable the

occurrence of a particular event is present.

The nodes are connected to each other by means of weighted directed arcs. These

arcs can connect two different nodes only, that is, only a place and a transition. Arcs

cannot connect two places or two transitions. That is why Petri nets are referred to

as weighted bipartite graphs [6]. The Fig. 2.1 depicts the pictorial representations of

the notations discussed.

Fig. 2.1. Notations
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A Petri net graph could be represented as 4-tuple follows,

N = (P, T,A,w) (2.1)

where,

• P denotes a finite set of places (represented by circles). It is written as,

P = {p1, p2, ..., pm} (2.2)

• T denotes a finite set of transitions (represented by vertical bars). It is written

as,

T = {t1, t2, ..., tn} (2.3)

• A denotes a set of arcs from places to transitions or transitions to place. It is

mathematically represented as,

A ⊆ (P × T ) ∪ (T × P ) (2.4)

• w denotes the weight assigned to each arc connecting two different nodes (a

place and a transition). The default value of the arc weight is assumed to be

1 if not mentioned explicitly. An arc weight of more than one, for example

four denotes that there are four arcs of weight one between the two nodes, and

instead of adding four arcs, we can represent them with single arc of weight

four. w is represented as,

w : A→ {1, 2, 3, ...} (2.5)
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The set of input places to a particular transition tj is denoted by I(tj). Mathemati-

cally this is represented as,

I(tj) = {pi ∈ P : (pi, tj) ∈ A} (2.6)

The set of output places from transition tj is denoted by O(tj). This is represented

by,

O(tj) = {pi ∈ P : (tj, pi) ∈ A} (2.7)

Similar notations can be used for input and output transitions as well. They are

represented as follows,

I(pi) = {tj ∈ T : (tj, pi) ∈ A} (2.8)

O(pi) = {tj ∈ T : (pi, tj) ∈ A} (2.9)

Fig. 2.2. A simple Petri net model

Fig. 2.2 shows a simple Petri net. We will discuss the notations/definitions we

have seen so far for this Petri net.

P = {p1, p2, p3, p4}

T = {t1, t2}

A = {(p1, t1), (p2, t2), (p3, t2), (t1, p2), (t1, p3), (t2, p4)}

w = {1, 1, 1, 1, 1, 2}
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I(t1) = {p1}, I(t2) = {p2, p3}

I(p1) = ∅, I(p2) = {t1}, I(p3) = {t1}, I(p4) = {t2}

O(t1) = {p2, p3}, O(t2) = {p4}

O(p1) = {t1}, O(p2) = {t2}, O(p3) = {t2}, O(p4) = ∅

2.2 Marking of a Petri net

A Petri net is usually used to graphically represent the system dynamics. In order

to do so, the sequence of events that the system undergoes at various instants of

time have to be depicted. In order to do that, we need a pictorial representation of

the state in which the system is after a particular event has occured or whether the

conditions for such an event to occur has been met. For this purpose, Petri net uses

a concept of tokens. The Fig. 2.1 shows the graphical representation of a token. It

is represented by a black dot. A place can have non negative number of tokens. The

unique assignment of tokens in a Petri net is denoted as the marking. Mathematically,

we represent this as,

M : P → {0, 1, 2...} (2.10)

The marking of a Petri net is a column vector called marking vector M where each

element represents the number of tokens in each place. The number of rows/elements

in this vector is equal to the number of places in the Petri net. If the place does not

have tokens in it, the value corresponding to the particular place is 0 in the marking

vector. m(pi) denotes marking of a place pi (i.e, the number of tokens in the place

pi) where, i is the number of the place. For example, for the Petri net mentioned in

the Fig. 2.1, m(p1)=1, m(p2)=m(p3)=m(p4)=0. It has to be noted that, places P2,

P3, P4 are devoid of tokens and hence have a marking of 0. Hence the marking of a

place need not necessarily be an integer value greater than 0. A marking of 0 will

indicate the absence of a conditon for a particular event to occur or that, the system

is not present in the state indicated by the particular place.
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M0 represents the initial marking of the Petri net before any transition has fired

(or any event has occurred). The initial marking of the Petri net in the Fig. 2.1 is,

M0 =


1

0

0

0

 =
[
1 0 0 0

]T

Similarly, M1 is the next marking after an event has occured (a transition has

fired) and so on. We shall cover the dynamics and firing of transitions of the Petri

nets in detail in the next section.

2.3 Dynamics of Petri nets

In a Petri net, the transitions depict the events that can occur in a system. To

model and simulate a system behavior it is necessary to show the sequence of the

events happening in the system and depicting them pictorially at various instants

of time, by showing the various states the system transitions through. In Petri net,

this can be shown by enabling of transitions and transfering tokens from one place to

another based on the event sequence. Specific rules are required to indicate when the

particular event can happen, or more specifically, when a particular transition can be

enabled/fired [6].

• Transition tj ∈ T can be enabled if the

M(pi) ≥ w(pi, tj),∀pi ∈ I(tj) (2.11)

where, I(tj) is denoted as set of the input places to transition tj. In other

words,transition tj is enabled when the number of tokens in each input place pi

of tj denoted by M(pi) is greater than or equal to the arc weight from pi to tj,

denoted by w(pi, tj).

• When a transition is enabled, it can fire at any time. This leads to a change in

the marking of the system.
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• When a transition tj fires, from each input place pi tokens equal to the weight

of the arc connecting it to the transition tj is removed. Then to each output

place p0 the number of tokens equal to the weight of the arc connecting the

transition tj to the place is deposited.

• According to [6], the state transition function f : Nn × T → Nn is defined only

for the transitions that are enabled. Mathematically,

M ′(pi) = M(pi)− w(pi, tj) + w(tj, pi); i = 1, 2, ..., n (2.12)

This equation denotes that when a transition is fired, from each input place

pi tokens equal to the weight of the arc connecting it to the transition tj is

removed (w(pi, tj)) and to each output place the number of tokens equal to the

weight of the arc connecting the transition to the place (w(tj, pi)) is deposited.

Fig. 2.3. Firing of transitions (a)

Fig. 2.3 demonstrates the firing dynamics of a Petri net. The number of tokens in

place p2 is less than the weight of the arc connecting it to the transition t1. Hence,

even if the place p1 had tokens greater than the weight of the arc connecting it to the

transition t1, the transition t1 is not enabled as not all of its places satisfy Equation

2.11.

Now, consider Fig. 2.3. The number of tokens in the places p1 and p2 are now

greater than the corresponding arc weights connecting those places to the transition
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Fig. 2.4. Firing of transitions (b)

t1. Now, all the places satisfy Equation 2.11 and the transition t1 will be enabled/fired.

After the transitions fire, the number of tokens deposited in each output place will

be equal to the weight of the arc connecting the transition to the output place.

For example in Fig. 2.4 even if the place p1 has two tokens, when the transition t1

fires, only one token will be removed from it. Three tokens will be removed from place

p2 and two tokens will be deposited in the place p3 (since the arc weight from t1 to

p3 is 2) and one token will be deposited in place p4. It can be observed that the total

number of tokens removed from the input places need not be equal to the number of

tokens deposited to the output places. Token removal and deposition are functions

of the corresponding arc weights alone. So there is no conservation of tokens during

the firing of a transition. Note that, when a single place functions as an input place
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to two different transitions, even if both the transitions are enabled only one can fire

at a time. This enables us to observe system behavior through a sequence of events.

Fig. 2.5. Example of Petri net firing

Refer to Fig. 2.5. The sequence of transitions which will be fired, corresponding

markings and then finally the reachability tree/coverability tree for this Petri net

will be discussed further.The total possible reachable states of a system has to be

pictorially/graphically depicted to find out if the system can be in a particular state

after an event has occurred. Reachability tree is the graphical representation of the

reachable states of the system. According to [6], it is denoted by,

R[(P, T,A,w,m)] := {y ∈ Nn : ∃s ∈ T ∗(f(m, s) = y)}

It starts from the initial marking/state/node and ends in the final state/node also

known as the terminal node connected by directed arcs which indicate the transitions

fired.

1. The initial marking of the system is m0 =
[
2 0 0 0

]T
.

2. According to Equation 2.11, the transition t1 will be fired. One token will be

removed from the place p1 and one token will be deposited in each of the places

p2 and p3. Now, the marking of the Petri net would be m1 =
[
1 1 1 0

]T
.
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Fig. 2.6. Reachability tree

3. Then, again according to Equation 2.11 both t1 and t2 will be enabled. Since

only one of them can fire, this will lead to two separate sequences of transitions.

S = {t1t2t2} and S = {t2t1t2}.

4. Considering the first sequence, when t1 is fired again, one token will be removed

from the place p1 and one token will be deposited again in each of the places p2

and p3. Now, the marking of the Petri net would be m2 =
[
0 2 2 0

]T
. After

t2 is fired, one token will be removed from each of the places p2 and p3 and two

tokens will be deposited in the place p4 (since the arc weight is two). Now the

marking is m3 =
[
0 1 1 2

]T
. Finally after t2 is fired again, once again one

token will be removed from each of the places p2 and p3 and two tokens will be

deposited in the place p4. The final marking is m4 =
[
0 0 0 4

]T
. This node

is called the terminal node and no more transitions can be fired and this is the

end state of the system.
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5. Considering the second sequence, we arrive at the state m4 =
[
0 0 0 4

]T
.

The reachability tree describing the firing dynamics discussed so far is as shown

in Fig. 2.6.

It has to be noted that sometimes the sequence of events may repeate themselves for

unlimited number of times forming an infinite loop and a reachability tree of infinite

number of markings/nodes. Refer to Fig. 2.7 for an example.

(a) (b)

Fig. 2.7. (a) Petri net with a loop. (b) Reachability tree.

2.4 Incidence matrices and state equation of a Petri net

2.4.1 Incident matrices

The structure of a Petri net can be uniquely determined by the incident matrices.

For a Petri net with m places and n transitions, we can define three different incident

matrices as follows.

• Input Incident Matrix, B− is an m × n matrix, which captures the arc weight

from the input place pi to the transition tj.

• Output Incident Matrix, B+ is an m×n matrix, which captures the arc weight

from the transition tj to the output place pi.
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• Incident Matrix, B is also an m×n matrix given by the mathematical equation

B = B+ −B− (2.13)

It has to be noted that in an input incident matrix, if there is no arc from a place pi to

a transition tj, the corresponding entry would be denoted by a zero. In a similar sense,

in an output incident matrix, when there is no arc from a transition tj to a place pi,

then the corresponding entry would be zero. These matrices are just an indication of

the structural property of the Petri net and are independent of the number of tokens

and the states of the system. Let us discuss these concepts for the PN in Fig. 2.2.

B+ =


0 0

1 0

1 0

0 2

 B− =


1 0

0 1

0 1

0 0



B = B+ −B− =


−1 0

1 −1

1 −1

0 2


2.4.2 State equation

In case if complex systems modelled by complicated Petri nets, analysis of the

Petri net/system using reachability tree will become very cumbersome and it will

become harder to determine the next state of the Petri net. So, a mathematical

approximation has to be used to solve this problem. Hence, we can use an algebraic

mathematical representation to determine the state of the system, known as a state
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equation. By using this equation, we can find out the reachable states and the state

of the system at any particular instant. The state equation is given by,

Mk+1 = Mk +Bvk (2.14)

In the previous equation,

• Mk+1 is an m×1 vector, which denotes the marking of the Petri net at a an

instant of time k + 1.

• Mk is an m×1 vector, which denotes the marking of the Petri net at a an instant

of time k (previous instant of time).

• B is the incident matrix of the Petri net.

• vk is called the firing vector. It has a dimension of n×1 and has only one nonzero

entry at any instant of time indicating that only one transition (no more than

one transition) can fire at any instant of time. The entries can have a value of

one or zero indicating which transition will be fired in the next instant of time.

For example, we can take the Petri net in the Fig. 2.5 and verify this state equation.

When t1 fires with an initial state of M0 =
[
2 0 0 0

]T
, the next state according

to the Equation 2.14 will be,

M1 =


2

0

0

0

+


−1 0

1 −1

1 −1

0 2

×
1

0

 =
[
1 1 1 0

]T

Similarly after M1, the state of the Petri net after the transition t2 has fired (M2) can

be deduced by making the entry corresponding to the transition t2 equal to one and

the rest of the entries as zero in the firing vector and using the Equation 2.14. Hence

as seen from these calculations, the usage of the state equation simplifies the process
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of deciphering the reachable states of a system. Thus, the concept of a mathematical

state equation makes it simpler to find out the reachability tree of a highly complex

system/Petri net where manual/pictorial calculations using tokens and arc weights

becomes cumbersome.

2.5 Continuous Petri nets

So far, we have discussed in detail about Discrete Petri nets, which model the

system behavior, by modeling the discrete sequence of events which occur in the

system. Hence, Discrete Petri nets are event driven. But most of the systems, in real

time, change their state/behavior continuously with respect to time, for example,

the traffic/vehicle flow at an intersection, manufacturing of items in a continuous

manufacturing of a product in the plant to name a few. These systems cannot be

modelled by event driven Discrete Petri nets. A solution to this issue is the more

flexible Continuous Petri nets(CPN), which are driven by time rather than by events.

The definitions/notations discussed for Discrete Petri nets still hold good for the

Continuous Petri nets. However there are major differences between a Discrete and

a Continuous Petri net. They are as follows:

• The weight of the arcs connecting the places to the transitions and vice versa

need not be an integer but can be any real number.

• Structure wise, the places are denoted by double circles and the transitions as

represented by a rectangular box.

• The number of tokens in a continuous place need not be an integer and can

be any real number. For example, the real number of tokens in a continuous

place could denote the amount of materials required to manufacture a particular

product in a manufacturing assembly.

• Each transition is associated with a specific firing quantity (a non negative real

number).
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Fig. 2.8. Example of a Continuous Petri net

2.5.1 Notations and firing dynamics

The definitions and rules pertaining to the firing of transitions in a Continuous

Petri net are discussed in detail in this subsection.

According to [8] a Continuous Petri net graph is a pair (N, m0) where,

• N is the Petri net structure.

• m0 : P → < ≥ 0 is the initial marking of the system.
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• A continuous transition tj ∈ T will be enabled at any marking m, if and only

if,

∀pi ∈ •tj,mi > 0. (2.15)

• The enabling degree of a particular transition tj is

(tj,m) = min
pi∈•tj

(
mi

B−(pi, tj)

)
(2.16)

.

For example, in the Fig. 2.8, the transition t1 is 2.2 enabled.

• Any transition tj which is enabled can fire in any real quantity, α ∈ <+, which

means that the transition tj will fire at α tokens per unit time. Mathematically,

0 ≤ α ≤ enab(t,m) [8]. Refer again to Fig. 2.8 which consists of five continuous

places and two continuous transitions. Let the firing rate of t1 be 0.1, then

from an initial marking of m0 =
[
2.2 2.9 3.2 3.8 1.3

]T
after t1 is fired,

m1 =
[
2.1 2.8 3.3 3.9 1.3

]T
will be obtained. Thus it means that 0.1 tokens

will be removed from each of the places P1 and P2 and deposited at each one of

the two output places P3 and P4. Hence, the state equation for the Continuous

Petri nets is given by,

M ′ = M +BV (2.17)

Here,

M is the initial marking.

M’ is the new marking reached from the initial marking.

B is the incidence matrix/token flow matrix.

V is the firing vector. This vector is a n× 1 for a Continuous Petri net with n

number of transitions. The entries of this vector are either zero or a non zero

firing rate, corresponding to the transition. This firing rate can be any real

number as discussed earlier.
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Now, further discussing about Continuous Petri nets, the topic to be discussed is

the reachability tree. It should be noted that the Continuous Petri net can have

infinite number of reachable markings as the markings change constantly, due to

constant firing rates. Hence it is difficult to predict the total number of reachable

states using a reachability tree. Hence we use a concept known as macro marking to

depict the possible general reachable states of the CPN. Mathematically, if a CPN

has n number of places, then the total number of macro markings would be 2n.

For example, consider the CPN in Fig. 2.9. The number of continuous places is 3.

Fig. 2.9. A Continous Petri net

Now according to the previous discussion, the number of marco markings is 23 = 8

where, n = 3. These markings would be
[
0 0 0

]T
,
[
0 0 m3

]T
,
[
0 m2 0

]T
,[

0 m2 m3

]T
,
[
m1 0 0

]T
,
[
m1 0 m3

]T
,
[
m1 m2 0

]T
,
[
m1 m2 m3

]T
. It has

to be noted that the marking of P3 is initially non zero and there are no transitions to

remove tokens from this place. Hence the marking of P3 can never be zero, and it will

always be a non zero, non negative real number. Hence the states/macro markings

having m(p3) as zero are not taken into consideration and can be avoided. These

states would be
[
m1 m2 0

]T
,
[
0 m2 0

]T
,
[
0 0 0

]T
and

[
m1 0 0

]T
. After
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removing these states, we can get the final generalized macro marking for the given

CPN in Fig. 2.9. Refer to the Fig. 2.10 for the corresponding macro marking of the

CPN in the Fig. 2.9 [5].

Fig. 2.10. Macro marking

2.6 Hybrid Petri nets

In the previous sections, we have discussed Discrete Petri nets which are used to

model the discrete events in a system and Continuous Petri nets which are used to

model the continuous dynamics of a system. Most of the systems in the real world

are hybrid in the sense, they have a sequence of events which are discrete and also

have certain processes which have continuous dynamics and are not event based. For

example, if we proceed to model a transportation system or a traffic system, the flow

of passengers or vehicles would be the continuous processes happening in the system,

while the state of the traffic lights, or the transportation system are the discrete events

which govern the system. So, in order to model/simulate the hybrid systems, we need

to incorporate both discrete and continuous Petri net models together and proceed.

We differentiate the discrete and continuous places and transitions by a superscript

”c” or ”d”. A superscript of ”c” will indicate if the particular place/transition is con-

tinuous. A superscript of ”d” will indicate the particular place/transition is discrete.
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Fig. 2.11. Example of a Hybrid Petri net

2.6.1 Notations

[2] A Hybrid Petri net is a 6-tuple (P,T,Pre,Post,m0,h), where,

• P = {pd ∪ pc} is a set of places with finite number of places, continuous and

discrete. For the Hybrid Petri net in Fig. 2.11, P = {pc1, pc2, pc3, pd4, pd5}.

• T = {td∪tc} is a set of places with finite number of transitions, both continuous

and discrete. In Hybrid Petri net shown in the Fig. 2.11, T = {tc1, tc2, td3, td4}.

• The term Pre refers to the input incidence matrix, B−.

• The term Post refers to the input incidence matrix, B+.

• m0 is the initial marking of the Petri net. For example, in the Hybrid Petri net

shown in the Fig. 2.11, the initial marking is m0 =
[
3.2 3.8 1.3 1 0

]T
.

• h is the hybrid function which indicates whether the particular node is a discrete

or a continuous node. Mathematically, h : P ∩ T → {D,C} [2]. For example,

pc, tc are continuous place and transition respectively.

pd, td are discrete place and transition respectively.
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An important rule used in modeling is that, the arc weight connecting an input

discrete place pi to a continuous transition tj should be the same as the arc weight

connecting a continuous transition tj to an output discrete place pi. This rule is

followed strictly so that the marking of a discrete places is not altered and is strictly

an integer. So, when pi ∈ pd and tj ∈ tc, mathematically, we can say that,

B−(pdi , t
c
j) = B+(pdi , t

c
j)

The conditions for firing or enabling of a transition depends on whether the transition

is continuous or discrete. If it is discrete, then the condition for firing is the same as

Equation 2.11. But if it is continuous, there are certain conditions for enabling it and

these conditions depend on the input places attached to the continuous transition.

The conditions are,

• For each input place pi ∈ pd, m(pi) ≥ Pre(pi, t
c
j).

• For each input place pi ∈ pc, m(pi) > 0.

The state equation of the HPN is given by

M1 = M0 +Bs (2.18)

Here, M0 is the initial state of the Petri Net, M1 is the next reachable state and B

is the incidence matrix. ’s’ is the characteristic vector. This is practically the same

as the firing vector discussed previously, but its elements can be an integer or a real

number depending on whether the transition is discrete or continuous. If the given

transition is continuous, the corresponding entry would be the firing rate of the said

continuous transition. If it is discrete, the entry would be either a ’1’ or ’0’ depending

on whether it is fired or not. In the Fig. 2.11, if the firing rate of tc1 is 0.1 and that

of tc2 is 0.2, then from the initial marking is m0 =
[
3.2 3.8 1.3 1 0

]T
, the next

marking would be
[
3.3 3.6 1.6 1 0

]T
.
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3. HYBRID PETRI NET MODEL FOR THE

AUTOMATED PARALLEL PARKING SYSTEM

The modeling in this thesis was done on the assumption that the vehicle of interest

is a car. In the United States and other countries where driving is done in the right

lanes, parallel parking is done mostly in the right lane closer to the curb. Hence, if

the parking space is between two cars on the right side of the lane, there are two ways

to parallel park, as discussed in the introduction in Section 1. The two main methods

are,

• Reverse parallel parking, where the driver drives slightly forward to the space,

parallel to the car in front of the parking space and then backs right into the

space and then moves forward right into the parking space, thereby adjusting

the position to complete the parallel parking procedure. Refer to Fig. 3.1(a).

• Forward parallel parking, where the driver moves forward right into the parking

space from behind it and the backs right and finishes parking in the desired

position. This is shown in the Fig. 3.1(b).

In real life scenarios, these two methods would require multiple gear shifts to complete

parallel parking. But here we are discussing about automated parallel park assist

systems where the backing right and moving forward right can happen only once,

and the parallel parking is done at the end of one cycle of these events. Only these

two events/actions require gear shifts and hence there are only two gear shifts. So, to

summarize, the two main events identified in the parallel parking process are moving

forward right and backing right. These two are the high level events which we consider

while starting the modeling process. The other minor events and the states in which

the system resides are also taken into account to closely approximate the modeling

to an automated parallel park assist. The safety distance assumed between the car of
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Fig. 3.1. (a) Reverse parallel parking (b) Forward parallel parking

interest and the car at the front of the parking space is two feet. Similarly, the safety

distance assumed between the car of interest and the car at the back of the parking

space is two feet as shown in the Fig. 3.2. The detailed procedure of modeling the

parallel parking system is discussed in the upcoming subsections.

3.1 Development of the Discrete Petri net model

The Discrete Petri net part of the model will be used to depict the high level

events that occur in the parallel parking system. The various versions of the model

is discussed in this section with the explanation of the drawbacks of each model and

how it was overcome in the next version.
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Fig. 3.2. Safety distance between the cars

3.1.1 Version 1

Description of the model

First, the working of the model for a reverse parallel parking procedure is explained

in detail. Refer to Fig. 3.3. The car is initially at the place Pfront, which indicates

that the car is in front of the parking space. The transition t1 indicating the car

has is ready to back right fires depositing a token in place P1. Now the transition t2

indicating that the car has started backing right fires, depositing one token each in

places P2 and P5 respectively. P5 is the check place which denotes that the car has

started backing right. P2 is the place denoting state the car is in before it finishes

backing right. Now the transition t3 indicating the car has finished backing right and

is ready to move forward right fires, depositing 1 token each in places Pinter1 and P3.
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Pinter1 is also the check place to check if the car has finished backing right and has

started initiating forward right event. Now the transition t5 indicating that the car

has started moving forward right is fired and deposits 1 token each in places P6 and

P4 respectively. P6 is the check place to check if the car has finished moving forward

right. P4 is the place denoting the state the car is in before it finishes moving forward

right. Now the transition t6 fires, depositing 1 token each in P1 and Pinter2. Pinter2

is also the check place to check if the car has finished moving forward right and has

started initiating backing right event. Now the final transition t7 is fired and a token

is deposited in place Pfinal indicating the car has been parallel parked successfully.

The same sequence of events will happen accordingly (order reversed) when forward

parallel parking is done and the car is located at the back of the parking space Pback.

Drawbacks of the model

The model described above had a looping issue. The two events backing right

and forward right will happen continuously, since there is no condition to prevent the

firing of t3 and t6 for the second time, which eventually deposit tokens on P3 and P1,

necessary to initiate the firing of t2 and t5 respectively, indicating the events backing

right and moving forward right. So these events will happen continuously and will

form a never ending infinite loop of events, comprising of the events backing right

and forward right.

3.1.2 Version 2

Description of the model

Necessary changes were made to fix the problem of the infinite looping. The

Fig. 3.4 shows the second version of the discrete part of the model. The model is

basically the same except for the addition of two places Pcheck1 and Pcheck2 and their

corresponding arcs and the removal of the two places Pinter1 and Pinter2 and their arcs.
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• Pcheck1 this place is used as a checking place to make sure that the event

moving forward right does not happen the second time when it has already

been completed.

• Pcheck2 this place is used as a checking place to make sure that the event backing

right does not happen the second time when it has already been completed.

The working of the model is exactly the same with a few minor changes. So, when

the place Pcheck2 has a token after the transition t3 has fired. It has an inhibitor

arc connecting it to the transition t6. Hence, transition t6 which is essential for

depositing tokens to place P1, initiating the backing right event will not be fired if

the place Pcheck2 has a token (indicating Backing right event is already complete).

Similarly, when Pcheck1 has a token, then going forward right will be prevented from

happening twice.

Drawbacks of the model

There are two major drawbacks of this model. First, the usage of inhibitor arc

will limit the automatic nature of the algorithm and needs hard coding when it is

tested in matlab, as additional conditions have to be written for the firing of the

transitions associated with it. Also, when this model is tested in SimHPN, there will

be problems in automating and simulating this model as SimHPN does not permit

the usage of inhibitor arcs or test arcs in the model. So, an alternative solution had

to be sought for the looping problem without the usage of inhibitor arcs.

3.1.3 Version 3

Description of the model

The next stage of the development was to solve the looping problem without the

usage of inhibitor arcs. The model shown in Fig. 3.5 is a solution. The changes

made to the model are the removal of the places Pcheck1 and Pcheck2 and the inhibitor
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arcs associated with them. These places are then assigned as the output places of

transitions t1 and t4. Place Pcheck1 is then the input place of transition t3 and place

Pcheck2 is the input place of the transition t6. Hence, the transition t3 can fire only

for the first time when the place Pcheck1 has a token (indicating that the car has

started parallel parking process from the initial position at the front of the parking

space). Similarly, t6 can fire only for the first time when the place Pcheck2 has a token

(indicating that the car has started parallel parking process from the initial position

at the back of the parking space). For example, after the events backing right and

moving forward right has been completed (indicated by the firing of transitions t2

and t5), P4 will have a token. But Pcheck2 will not have a token and so, t6 will not

be enabled, preventing an infinite loop of these two major events, backing right and

moving forward right.

3.1.4 Final Discrete Petri net model

Table 3.1.
List of transitions and connections for the final DPN model

Transitions Connections
t1 Pfront → P1

t2 P1 → P2&P5

t3 P2 → P3&Pinter1

t4 Pback → P3

t5 P3 → P4&P6

t6 P4 → P1&Pinter2

t7 P5,P6,Pinter1&Pinter2 → P5

The final discrete part of the model is as shown in Fig. 3.6. The changes made

to the existing model are with reference to removing of the residual tokens. Hence

there are additional transitions to remove the residual tokens from the places P2 and

P4. The transitions t7 and t8 fire, and remove the residual token from places P2 and
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P4 respectively, and deposit them in Prem1 and Prem2 respectively. It has to be noted

that only P2 or P4 can have a token at a time, so only Prem1 or Prem2 has a token.

The transitions t9 and t10 are in charge of removing the token from either of these

places and depositing it in Premf . The final transition t11 fires when there are tokens

present, one each in the places P5 (to indicate that the backing right event has been

started), P6 (to indicate that the moving forward right event has been started), and

Premf (residual token collecting place). The transition t11 fires and placing a token in

Pfinal, indicating the parallel parking process is complete.

3.2 Integrated Hybrid Petri net model development

3.2.1 Continuous Petri net part of the model

As described in the previous chapters, the Continuous Petri nets (continuous

places) can be used to model the continuous dynamics in any control system/real

time system. The continuous dynamics taken into account in this model is the dis-

tance. The Continuous Petri net part of the model which is to be integrated with the

discrete part is as shown in Fig. 3.7. The continuous place Pc1 denotes the distance

Fig. 3.7. Continuous Petri net modelling of the continuous dynamics

between the car of interest and the car at the front/back of the parking lot. The

continuous transition tc1 fires with the firing rate of 1 (1 foot). The continuous place

Pc2 keeps on collecting the tokens/distance covered by the car as it moves. When the

distance/marking of the place Pc2 reaches 4, a discrete transition at the output of this
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place fires and deposits a token at an output place designated, to indicate that the

moving forward right or backing right motion has stopped. The continuous transition

tc1 will keep on firing and depositing tokens in the place Pc2, which will then hold

the distance remaining at the end of a particular event, say moving forward right or

backing right, which is 2 feet in our case. This means that the distance between the

car of interest and the back of the car in the front of the parking space, and the car

of interest and the front of the car at the back of the parking space is 2 feet each.

3.2.2 Version 1

The first step towards developing an integrated model for simulation is to include

the Continuous Petri net dynamics in the Discrete Petri net part of the model. Refer

to the Fig. 3.2.2. Here, the continuous dynamics was added after the firing of the

transition t1 (which denotes the car has started backing right) and after transition

t7 (which denotes the car has started moving forward right). The working of the

model is basically the same as in the previously discussed models except the inclusion

of the continuous dynamics/ Continuous Petri net dynamics. So, after the car has

started backing right (firing of the transition t1), it deposits 6 tokens in the place

Pc1 (indicating the 6 feet distance between the car of interest and the car at the

back of the parking space as taken into account in this model) and one token in the

check place P5, which denotes that the backing right motion has begun. As discussed

previously, the continuous transition tc1, keeps firing with a firing quantity of 1 and

Pc2 keeps collecting the distance between the car of interest and the car at the back of

the parking space. When this distance reaches 4 feet, the transition t3 fires, indicating

that the car has stopped backing right and deposits a token in the discrete place P2,

which serves as a check to see if the car has stopped backing right. The transition t4,

which is the intermediate transition between the two main events backing right and

moving forward right, fires and deposits a token in place P3. Then the transition t7

fires, and deposits 6 tokens in the pace Pc3 (indicating the 6 feet distance between the
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car of interest and the car at the front of the parking space as taken into account in this

model) and one token at the check place P6, which indicates that the moving forward

right motion has begun. Then, as discussed previously, the continuous transition tc2,

keeps firing with a firing quantity of 1 and Pc4 keeps collecting the distance between

the car of interest and the car at the front of the parking space. When this distance

reaches 4 feet, the transition t8 fires, indicating that the car has stopped moving

forward right and deposits a token in the discrete place P4, which serves as a check

to see if the car has stopped backing right. Finally, the continuous place Pc2 and

Pc4 will hold a distance of 2 feet (since the continuous transition tc1 and tc2 keeps on

firing), which denotes the final distance between the car of interest and the car at

the front and back of the parking space respectively. Now, the transition t10 fires and

deposits the residual token at place Prem2 and t12 again fires depositing it in Premf .

Finally, the transition t13 fires, since the events have been completed and tokens are

deposited in places indicating so. A token is deposited at Pfinal, indicating the parallel

parking process is successfully completed. Similar sequence of events happens when

the car starts the parallel parking process when its initial position is at the back of

the parking space, namely Pback.

3.2.3 Final Hybrid Petri net model of an automated parallel parking

system

We can optimize the model by reducing the redundant discrete places and keep

the number of discrete and continuous places to a minimum.We start by removing

the transitions concerned with the removal of residual tokens in the places P2 and

P4. These transitions are removed since, the two parallel transitions t4, t5 and t9, t10

cannot happen simultaneously and conditions have to be specified to indicate which

transition has to fire. This will affect the dynamic nature of the firing of the Hybrid

Petri net model and also the sequence in which the events occur in the model. Hence,

following the said approach, the number of discrete places was reduced to 13. We



38

F
ig

.
3.

9.
H

y
b
ri

d
P

et
ri

n
et

m
o
d
el

of
th

e
p
ar

al
le

l
p
ar

k
in

g
sy

st
em



39

change the nomenclature of the places to differentiate the continuous and discrete

nodes and also to suit the sequence of the events. The descriptions of discrete and

continuous places are as follows:

Discrete places:

• P d
1 , P d

8 - Places indicating the car is in the front and back of the parking space

respectively.

• P d
2 , P d

9 - Places indicating the car has initiated backing right and going forward

right respectively.

• P d
3 , P d

10- Check points for checking if the car has inititated backing right and

going forward right respectively.

• P d
4 - Place indicating that the car has finished backing up right and is now ready

to go forward right.

• P d
13 - Place indicating that the car has finished going forward right and is now

ready to back up right.

• P d
15, P

d
16 - Check points for checking if the backing right and forward right

motions have been completed.

• P d
7 , P d

14 - Places to indicate that the car has started the process of backing right

and going forward right.

• P d
17 - Place to indicate that the car has been parked at the final parking spot.

Continuous places: In this modelling we consider distance as a continuous param-

eter. The continuous places are described as follows:

• P c
5 - Indicates the distance between the car of interest and the car parked at

the back of the parking spot.
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• P c
6 - Initially indicates the distance covered when the car is backing right. Fi-

nally, it will indicate the distance between the car of interest and the back car

after the parking has been completed.

• P c
11 - Indicates the distance between the car of interest and the car parked in

the front of the parking spot.

• P c
12 - Initially indicates the distance covered when the car is going forward right.

Finally, it will indicate the distance between the car of interest and the front

car after the parking has been completed.

Table 3.2.
List of transitions and connections for the integrated HPN model

Transitions Connections
td1 P d

1 → P d
2 &P d

3

td2 P d
2 → P c

5&P d
7

tc3 P c
5 → P c

6

td4 P c
6 → P d

4 &P d
15

td5 P d
3 &P d

4 → P d
9

td6 P d
8 → P d

9 &P d
10

td7 P d
9 → P c

11&P
d
14

tc8 P c
11&P

d
14

td9 P c
12 → P d

13&P
d
16

td10 P d
13&P

d
10 → P d

2

td11 P d
7 &P d

16&P
d
15&P

d
14 → P d

17

Working of the model

The working of the integrated model is as follows. As discussed earlier, there are

two different methods of parallel parking. The car can be at the front of the parking

space or at the back corresponding to these two scenarios. Hence, the car can be at

the place P d
1 (reverse parallel parking) or P d

8 (forward parallel parking).
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Case 1: Reverse parallel parking

The car is initially at the place P d
1 . The transition td1 fires, indicating the car is

ready to initiate backing right. Then the place P d
2 and P d

3 have one token each. The

place P d
2 has a token, indicating that the car is ready to proceed to the next state of

backing right. The place P d
3 has a token which serves a check to indicate that the car

has initiated backing right. Now, the transition td2 fires and six tokens are deposited

at place P c
5 and one token is deposited at place P d

7 . Place P d
7 has a token indicating

that the car has started backing right. The continuous place P c
5 (denotes distance)

has six tokens indicating that the distance between the car of interest and the front

of the back car is 6 feet. The continuous transition tc3 keeps on firing with a firing rate

of 1 foot. The continuous place P c
6 keeps collecting the tokens, and also indicates the

distance travelled by the car of interest. When the distance travelled reached 4 feet,

the distance between the car and the front of the car at the back is 2 feet. This is the

safety limit considered in the model to prevent the car from colliding with the car at

the back. So, now the transition td4 indicating the car has stopped backing right fires,

depositing one token each in places P d
15 and P d

4 . The place P d
15 has a token indicating

the car has stopped backing right. The place P d
4 has a token which serves as a check

to see if the car has stopped backing right and is ready to proceed to the next state.

Now, the transition td5 which indicates that the car has finished backing right and is

ready to start moving forward right is fired. This event deposits a token to the place

P d
9 . A token in P d

9 would indicate that the car is ready to move forward right. Now

the transition td7 indicating that the car has started moving forward right will be fired.

Six tokens will be deposited in the continuous place P c
11. The continuous transition tc8

will now start to fire. The continuous place P c
12 keeps collecting the tokens in a similar

way to place P c
6 . When the distance travelled by the car of interest reaches 4 feet,

the safety limit of 2 feet between the car and the car in the front of the parking space

is reached. So, the transition td9 indicating that the car has stopped moving forward

right fires and deposits a token each at places P d
13 and P d

16. Finally, the continuous
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place P c
6 and P c

12 will hold a distance of 2 feet (since the continuous transitions tc3 and

tc8 keep on firing), which denotes the final distance between the car of interest and

the car at the back and front of the parking space respectively. Now all the check

places, P d
7 , P d

9 , P d
15 and P d

16 have tokens in them indicating the car has finally finished

the sequence of events to complete the parallel parking process in the spot. The final

transition td11 is then fired. The place P d
17 will now have a token indicating that the

car has been parked in the final desired spot.

Case 2: Forward parallel parking

The car is initially at the place P d
8 . The transition td6 fires, indicating the car is

ready to initiate backing right. Then the place P d
9 and P d

10 have one token each. The

place P d
9 has a token, indicating that the car is ready to proceed to the next state of

going forward right. The place P d
10 has a token which serves a check to indicate that

the car has initiated going forward right. Now, the transition td7 fires and six tokens

are deposited at place P c
11 and one token is deposited at place P d

14. Place P d
14 has a

token indicating that the car has started going forward right. The continuous place

P d
10 (denotes distance) has six tokens indicating that the distance between the car of

interest and the back of the car in front of the parking space is 6 feet. The continuous

transition tc8 keeps on firing with a firing rate of 1 foot. The continuous place P c
12

keeps collecting the tokens, and also indicates the distance travelled by the car of

interest. When the distance travelled reached 4 feet, the distance between the car

and the back of the car in front of the parking space is 2 feet. This is the safety limit

considered in the model to prevent the car from colliding with the car at the front.

So, now the transition T9 indicating the car has stopped going forward right fires,

depositing one token each in places P d
13 and P d

16. The place P d
16 has a token indicating

the car has stopped going forward right. The place P d
13 has one token which serves as

a check to see if the car has stopped going forward right and is ready to proceed to

the next state. Now, the transition td10 which indicates that the car has finished going
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forward right and is ready to start backing right is fired. This event deposits a token

to the place P d
2 . A token in P d

2 would indicate that the car is ready to back right.

Now the transition td2 indicating that the car has started backing right will be fired.

Six tokens will be deposited in the continuous place P c
5 . The continuous transition tc3

will now start to fire. The continuous place P c
6 keeps collecting the tokens in a similar

way to place P c
12. When the distance travelled by the car of interest reaches 4 feet,

the safety limit of 2 feet between the car and the car in the back of the parking space

is reached. So, the transition td4 indicating that the car has stopped moving forward

right fires and deposits a token each at places P d
4 and P d

15. Finally, the continuous

place P c
6 and P c

12 will hold a distance of 2 feet (since the continuous transitions tc3 and

tc8 keep on firing), which denotes the final distance between the car of interest and

the car at the back and front of the parking space respectively. Now, all the check

places, P d
7 , P d

9 , P d
15 and P d

16 have tokens in them indicating the car has finally finished

the sequence of events to complete the parallel parking process in the spot. The final

transition td11 is then fired. The place P d
17 will now have a token indicating that the

car has been parked in the final desired spot.
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4. RESULTS

In order to observe the behavior of the Hybrid Petri net model of an automated

parallel parking system, simulations should be carried out. This section talks about

the simulaton tool SimHPN, simulations that were carried out both in MATLAB and

SimHPN , the results obtained and the justification of the results.

4.1 Testing using MATLAB

The final discrete and the Hybrid Petri net model is initially tested using the

MATLAB software. The state equations and the rules for firing are incorporated

while coding the algorithm in MATLAB. The incident matrices, the firing vectors,

and the initial state of the system is defined and the state equation is used to find out

the reachable states of the system and to check if the model portrays the sequence

of events correctly. Using Equation 2.13 we can find the incident matrix B from the

input incident matrix and output incident matrix. The transitions tc3 and tc8 fire with

a firing rate of 1 foot. So the corresponding entries are equal to 1. The rest of the

entries are 1 to indicate the corresponding discrete transition will be fired. The firing

vector V is given by:

V =
[
1 1 1 1 1 1 1 1 1 1 1

]T
(4.1)

As discussed, the incidence matrix B for the HPN model will be calculated from the

input incidence and output incidence matrices B− and B+ respectively. These will

be incorporated in the MATLAB code for simulating the model.
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4.1.1 Case 1 : Reverse parallel parking

In this case the car is present initially at the front of the parking space. So, one

token is present at the place P d
1 . Hence the initial marking of the system, M0 is given

by,

M0 =
[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]T
(4.2)

The MATLAB results showing the reachability tree is shown as follows. The reachable

states are stored in a matrix to make the checking of the reachability tree simpler.

The first column is the first state, the second column is the next state and so on.

The reachable states are calculated by using the state equation given by Equation

2.14. Refer to Fig. 4.2. The transition td1 fires, indicating the car is ready to initiate

backing right. Then the place P d
2 and P d

3 have one token each. Then, the transition

td2 fires and six tokens are deposited at place P c
5 and one token is deposited at place

P d
7 . This process continues and the rest of the reachable states can be checked from

the columns of this matrix.

Fig. 4.2. First seven reachable states of the system.
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Fig. 4.3. The next seven reachable states of the system.

Fig. 4.4. The last few reachable states of the system.

Finally, to confirm the results, we can check the states of the system towards the end

of the parallel parking process. After the car has stopped backing right and going

forward right, the continuous places P c
6 and P c

12 will collect the distance remaining

between the car of interest and the cars at the front and back. The safety distance

considered in this thesis is 2 feet. So, if we notice in the Fig. 4.4, the places P c
6 and
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P c
12 will have 2 tokens each, the place P d

13 will have a residual token 1 (since we have

removed the transitions associated with removal of residual tokens to enable testing

in MATLAB and simulation in SimHPN) and finally, a token in the final place P d
17

to indicate the parking has been completed.

4.1.2 Case 2 : Forward parallel parking

In this case the car is present initially at the back of the parking space. So, one

token is present at the place P d
8 . Hence the initial marking of the system, M0 is given

by,

M0 =
[
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

]T
(4.3)

Finally, to confirm the results, we can check the states of the system towards the end

of the parallel parking process. Similar to the reverse parallel parking scenario, in

case of forward parallel parking, as seen in the last state in Fig. 4.7, the places P c
6

and P c
12 will have 2 tokens each, the place P d

13 will have a residual token 1. Finally, a

token in the final place P d
17 indicates that the parking has been completed.

Fig. 4.5. The first 7 reachable states of the system.
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Fig. 4.6. The next 7 reachable states of the system.

Fig. 4.7. The last few reachable states of the system.
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4.2 Simulations using SimHPN

4.2.1 Introduction to SimHPN

SimHPN is a software tool/program embedded in MATLAB, which is used in the

simulation of Hybrid Petri net systems [7]. A short introduction to the SimHPN tool

and its GUI interface is discussed in this section. The input to a SimHPN tool can

be imported from a .mat file or given directly through the input GUI window of the

simulator. Fig. 4.8 shows the GUI of the SimHPN simulator. The inputs are given

to the fields named Pre, Post, Lambda, M0, T.Type. The description of the inputs is

as follows:

• Pre: Indicates the input incident matrix of the Hybrid Petri net B−.

• Post : Indicates the output incident matrix of the Hybrid Petri net B+.

• Lambda: Indicates the firing vector of the Hybrid Petri net transitions, V.

• T.Type: Indicates the transition type of the Hybrid Petri net transitions. ’c’

denotes that the particular transition is of continuous type. ’d’ denotes the

particular transition is of discrete type.

• M0 : Indicates the initial marking/state of the Hybrid Petri net/system.

The output of the simulator is the marking evolution of the Hybrid Petri net system.

It shows the marking of the system when it proceeds through a sequence of states.

4.2.2 Simulation results in SimHPN

This section details the results got by simulating the forward and reverse parallel

parking process from the Hybrid Petri net model. As discussed previously, there are

different initial markings for the HPN model, based on whether the parallel parking

is forward parallel parking or reverse parallel parking.
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Fig. 4.8. SimHPN simulator GUI

Reverse parallel parking

The initial marking for this case is,

M0 =
[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]T
Giving this as the input in M0 field of the GUI window and giving the rest of the

inputs as discussed in the previous section, we can get the simulated result by clicking

on the simulate button in the GUI. Fig. 4.9 shows the result of simulating the forward

parallel parking with the HPN model. It shows the marking of all the places present

in the model.

We can refine this result by plotting only the markings of the places which indicate

the major events happening in the parallel parking system. So it is enough to monitor

the marking evolution of P c
5 , P c

6 , P c
11, P

c
12, P

d
15, P

d
16, P

d
17. The places P c

5 , P c
6 , P c

11 and

P c
12 will depict the distance dynamics. P d

15 will indicate the end of backing right

event. P d
16 will indicate the end of moving forward right event. P d

17 will indicate the
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Fig. 4.9. Simulation of the reverse parallel parking scenario

end of the parallel parking process. Fig. 4.10 shows the simulation result containing

the marking evolution of places indicating only the major events. The place P c
5 has

a marking of 6 initially. As the backing right event is initiated, the marking of the

place P c
6 increases from the value 0 gradually. Finally, the marking of the place P d

15

reaches a discrete value 1 when the marking of the place P c
6 reaches a value 4. It has

to be noted that the marking of the place P c
6 goes on increasing in the simulation ,

since there is no priority set to stop tc3 from depositing tokens in the place P c
6 . Finally

the marking of the place P c
5 will reach a value 0 and that of P c

6 will reach a value 2,

indicating the safety distance of 2 feet at the end of the backing right event. Similarly,

P c
11 and P c

12 will also reach the values of 0 and 2 respectively. P d
16 will reach a discrete

value 1 to indicate the end of moving forward right event. Finally, the marking of

the place P d
17 reaches 1 after the end of the major events backing right and moving

forward right, to indicate the end of the parallel parking process.
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Fig. 4.10. Simulation of the reverse parallel parking indicating the high level events

Forward parallel parking

The initial marking for this case is,

M0 =
[
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

]T
Giving this as the input in M0 field of the GUI window and giving the rest of the

inputs as discussed in the previous section, we can get the simulated result for the

forward parallel parking process as shown in the Fig. 4.11.
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Fig. 4.11. Simulation of the forward parallel parking scenario indicat-
ing the high level events
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5. CONCLUSION

5.1 Summary of the work

This thesis is an attempt to model the automated parallel parking system using

Hybrid Petri net and simulate the behavior of the system. Petri net modeling concept

simplified the process of graphically representing the complex dynamics of the system.

So, initially, a Discrete Petri net model was developed, which modeled the major

events which happen during the parallel parking process. There were several versions

of this model, each with its own set of drawbacks. The drawbacks were rectified and

the final model was tested using MATLAB algorithms to check if the model correctly

portrays the sequence of events. Then the continuous dynamics of the system was

discussed and was modelled by Continuous Petri net. This Continuous Petri net

model was then integrated with the Discrete Petri net model and was tested again

with MATLAB. Then SimHPN, a MATLAB embedded tool to simulate the Hybrid

Petri nets was introduced and the results obtained from simulation using SimHPN

were also discussed. Finally, the modeling using Hybrid Petri net is justified using

the results from both MATLAB and SimHPN. The practical application of this thesis

would be using this modeling approach to model control algorithms of various systems

like adaptive cruise control, car safety systems, etc. and to evaluate their design and

working mechanisms. This approach can be potentially used to evaluate every control

system, and systems that involve complex dynamics. The algorithms governing these

systems could be tested for errors. Debugging various components of the algorithm

becomes simpler with this approach, as the working of the system could be visualized

using simulations from SimHPN.
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5.2 Future work

There is a broad scope for future work in this thesis. This work has taken into

account the high level events/transitions happening in the parallel parking system.

Hence this work can be expanded to include many low level or complex intermediate

events, to closely approximate the real life parallel parking system. Another direction

in which this work could be expanded is to include other continuous dynamics like

steering angle, position of the car etc. and model them using Continuous Petri nets as

well to simulate the behavior of the system. This would be a good approach to closely

approximate a parallel parking system. Finally, the modeling procedure can be tried

using Fluid Stochastic Petri nets (FSPN), Timed Hybrid Petri nets, which take into

account the stochastic probabilities of the events and the time involved respectively.

Modeling using these various types of Petri nets would also be a very good approach

to simulate a real life parallel parking system.
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