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ABSTRACT

Eadara, Archana. M.S.E.C.E., Purdue University, May 2016. Modeling, Analysis,
and Simulation of Muzima Fingerprint Module Based on Ordinary and Time Petri
Nets. Major Professor: Lingxi Li.

In the healthcare industry, several modern patient identification and patient match-

ing systems have been introduced. Most of these implement patient identification by

their first, middle and last names. They also use Social Security Number and other

similar national identifiers. These methods may not work for many developing and

underdeveloped countries where identifying a patient is a challenge with highly redun-

dant and interchangeable first and last names of the patient, this is aggravated by the

absence of a national identification system. In order to make the patient identification

more efficient, Muzima, an interface of OpenMRS (Open source medical records sys-

tem) introduced an additional identifier, fingerprint, through a module to the system.

Ordinary and Time Petri nets are used to analyze this module. Chapter 1 introduces

Muzima fingerprint module and describes the workflow of this interface followed by

the related work, importance and applications of Petri nets. Chapter 2 introduces

Ordinary and Time Petri nets using examples. Chapter 3 discusses about the math-

ematical modeling of the Muzima Fingerprint module using Petri nets. Chapter 4

explains the qualitative and quantitative analysis done on the Muzima fingerprint

module. Chapter 5 discusses about the programming and simulation done to prove

the theoretical results obtained. Chapter 6 provides the conclusion and future work

for the thesis.
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1. INTRODUCTION

In the healthcare sector around the world, the use of Electronic Medical Records

(EMRs) is being encouraged due to the overwhelming digital evolution. One of the

most important advantages of using EMRs is the access to a patient record just a

click away. For successful operation of this feature, efficient patient identification

and patient matching algorithms are needed. For reasons such as lack of national

identification systems in many developing and underdeveloped nations and various

patient data entry issues, it is a challenge to access a specific patient record [1]. To

maintain this feature, there is a lot of ongoing research to improve these patient

identification and patient matching algorithms.

1.1 Patient Identification and Patient Matching

Healthcare organizations employ a variety of methods that identify patients at

registration and to access patient records. These methods vary from a simple at-

tribute match to highly advanced algorithms. These attributes may include first

name, middle name, last name, date of birth, medical record number (MRN), na-

tional identifier and other similar data. Such attributes are needed to identify and

discern a patient record among different data sources such as laboratory, pharmacy

and different hospitals.

An efficient patient identification and patient matching method is needed to iden-

tify and retrieve a patient record from the system to provide immediate or follow-up

care. In a survey conducted by College of Healthcare Information Management Ex-

ecutives (CHIME), 20% of the Chief Information Officers (CIOs) pointed out that a

minimum one patient suffered antagonistic condition in the past year due to mismatch

of patient records [2]. Another study indicates the risk of misallocation of laboratory



2

observation reports due to the presence of duplicate records [3]. This may result into

a threat to patient safety due to multiple clinical workflows. Accurate identification

and matching of patient record is needed as data is stored and transported digitally

among several sources and recipients.

All humans make mistakes. There are many chances of entering patient data

incorrectly into the EMR. For instance, incorrect birthdate, misspelled names, re-

dundant names, interchangeable first and last names. This may lead to the creation

of duplicate patient records (multiple records created for the same patient). In such

cases, We cannot depend upon the MRN (unique identifier generated by the EMR)

assigned to the patient record. All these factors make patient identification and pa-

tient matching more complicated. Many EMRs overcome these issues by relying on a

unique identifier such as a national identifier. Many developing and underdeveloped

nations do not yet implement a national identification system. In the absence of such

an identifier it is a challenge to identify a patient record.

1.2 Muzima Fingerprint module

OpenMRS (Open source medical records system) is a free, open source health

IT software created by volunteers from around the globe. It has evolved into a

global health IT solution and has implementations in over 80 countries along with

translations into various languages. Presently, OpenMRS is in use in 1,149 centers

around the world improving medical care for over 5.1 million patients [4].

Emerging technologies like Biometrics act as an enhancement to the existing pa-

tient identification and patient matching algorithms. Muzima, an interface of Open-

MRS introduced the use of patient fingerprint as an additional attribute to assist

these algorithms. Muzima fingerprint module works on patient identification by first

scanning the patient finger and using the fingerprint as the search input. This module

leverages a third party technology (fingerprint applet) to identify fingerprints. This

technology requires acquiring licenses to use its service. This technology verifies if the
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request is coming from a licensed source each time we access it to identify a finger-

print. The workflow of the Muzima Fingerprint Module (Fig. 1.1) can be explained

Fig. 1.1. Brief workflow of Muzima fingerprint module

as following:

1. Login into OpenMRS.

2. After successful login, locate Muzima Fingerprint module and click to launch

it.

3. In the module homepage, click on ”Search by fingerprint” button to find patient

using patient’s fingerprint as search input.
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4. This will launch the fingerprint applet and allow scanning of the finger.

5. If the licenses of the fingerprint applet are verified successfully, scanning con-

tinues otherwise scanning stops and returns back to home page with an error

message to the user.

6. In case of successful verification of licenses, the search will return a patient

record if the patient is already registered in the EMR with his/her fingerprint

or returns a message ”No patient found with this fingerprint”.

7. When no patient is found with the fingerprint, either the patient is not registered

in the EMR or the patient record is not updated with the fingerprint data. In

this case, we can search by patient name or identifier.

8. If the patient is still not found, an option is given to register the patient. If a

patient is found, then an option is given to add fingerprint.

9. Whenever a patient record is returned, clicking on the patient record takes to

the patient dashboard.

1.3 Applications of Petri Nets in Healthcare: Previous related work

Petri net is a graphical mathematical modeling tool applicable for describing and

studying various systems such as distributed, parallel and deterministic. They also

help communicate the content visually similar to other graphical tools such as flow

charts, block diagrams and networks.

Petri nets are currently used for optimal modeling in various industry areas in-

cluding healthcare. In any healthcare system, a patient is diagnosed of disease and

treated by carrying out the procedures which follow a medical protocol. [5] proposes

that for nearly all of the diseases, a medical protocol can be modeled by using a

Petri net. The different resources that are needed by the medical protocol are repre-

sented by places in the Petri net. The available instances of a specific resource are

represented by tokens in that respective place.
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Petri nets are used in another research to analyze and construct the workflow of

tele-healthcare (healthcare services built on the internet). The existence of states

and token based flow of Petri nets make the resource transfer process among different

states very clearly, helping the care providers ensure the right care actions are given

at the right time [6].

Medical data privacy invasion is one of the major concerns in the E-healthcare

setting due to the increasing number of cases of unauthorized patient medical data

access. In order to improve patient medical data security, [7] proposes an RFID

healthcare framework. The workflow of this proposed system verifies boundedness,

liveness, reachability, and reversibility by applying Petri nets. An advanced Petri

net model has been used to design a framework for trust development between trust

factors and healthcare behaviors in a global healthcare setting [8].

A high-level Petri net called Coloured Petri net (CPN) has been applied to a case

study conducted in a mental healthcare institute about enhancing the intake process

(reduction of service time and flow time). Here, CPNs are used to perform simulations

for statistical analysis in order to compare the performance of different models [9].

Another application of high-level Petri nets discusses a change management frame-

work for a healthcare service platform. This study introduces a combination of the

Petri net model (to represent system requirement changes) and redesignable Petri

nets model (to react to these changes) [10].

Timed Petri nets are another extension of Petri nets where the transitions can be

timed. [11] presents an application of Timed Petri nets in a healthcare setting. This

study uses hierarchical Timed Petri nets to reduce the complexity of the healthcare

process model and adds time constraints to the process. This method helps the

designers to test and verify timing constraint satisfiability.

The application of Petri Nets to analyze and improve various frameworks and

workflows in healthcare is the major inspiration of this thesis.
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1.4 Thesis contributions

The wide range of applications of Petri nets in the healthcare industry was the mo-

tivation behind developing a generic mathematical and graphical model for Muzima

Fingerprint module in OpenMRS, on which analysis and simulation is performed.

The contributions of this thesis work can be stated as follows:

1. Proposed a mathematical and graphical model for the workflow of the Muzima

Fingerprint module using Ordinary Petri nets.

2. Extended the Petri net model in order to include timing details for transitions

using Time Petri Nets.

3. Developed an algorithm and a generic MATLAB program to analyze and verify

the reachability properties of the Petri net model developed.

4. Performed retrospective Petri net analysis (on structural and dynamic proper-

ties) taking Muzima Fingerprint module as an example. This can be used as a

template for analyzing the behavior of any software workflow.

• For retrospective analysis, we can identify issues and improve the current

workflow.

• For prospective analysis, we can avoid potential errors in the envisioned

workflow.

1.5 Thesis organization

This thesis is structured into six chapters. Chapter 1 gives an overview about

the Patient Identification and Patient Matching methods employed by healthcare

organizations and the need for regular development of these methods. It explains

the workflow of the Muzima Fingerprint module. It also provides previous literature

work related to applications of Petri nets in healthcare. Chapter 2 introduces the

mathematical and graphical modeling tool employed in this thesis i.e. Petri nets
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(Ordinary Petri net and Time Petri net) and demonstrates their properties using

examples. The objective of this chapter is to provide the reader a basic background

about Petri nets for understanding the next chapters. Chapter 3 mainly discusses

about the mathematical modeling of the Muzima Fingerprint module using Petri

nets. Then, it continues to explain the extension of this Petri net model to include

timing details for transitions. Chapter 4 explains the qualitative and quantitative

analysis done on the Petri Net model developed. It also discusses about the algorithm

developed for reachability tree method of analysis. Chapter 5 discusses about the

MATLAB program developed and simulation to prove the theoretical results obtained

for qualitative and quantitative analysis of the system. Chapter 6 concludes and

discusses future work of this thesis.
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2. INTRODUCTION TO PETRI NETS

Petri net is one of the various mathematical and graphical modeling tools for rep-

resenting distributed systems. The theory of Petri net was invented by Carl Adam

Petri in August 1939 [12]. Petri nets have finite states with infinite memory, thus

overcoming the finite memory limitations of the Finite State Machines (FSMs).

2.1 Definition, Structure, Syntax and Terminology

A Petri net graph can be defined as a weighted directed graph described as a

4-tuple function:

N = (P, T,A,W )

The elements of the function can be described as:

P a finite set of places(represent conditions under which events can occur in a discrete

event system) which are drawn as circles.

T a finite set of transitions(represent events driving a discrete event system) which

are drawn as bars.

A defined as (P × T ) ∪ (T × P ) is a set of arcs which connect places to transitions

or transitions to places. There will be no arcs connecting any two places or any

two transitions.

W defined as A→ N (natural numbers) is the weight function that assigns each arc

a natural number.

A simple Petri net graph is shown in Fig. 2.1.

From the graph we can derive,
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Fig. 2.1. An Example of Petri net graph

P = {p1, p2, p3},

T = {t1},

A = {(p1, t1), (p2, t1), (t1, p3)},

W (p1, t1) = 2, W (p2, t1) = 1 and W (t1, p3) = 1 (the default weight of an arc is 1).

We use,

I(tj) to denote the set of input places for transition tj.

I(tj) = {pi | pi ∈ P, (pi, tj) ∈ A}

O(tj) to denote the set of output places for transition tj.

O(tj) = {pi | pi ∈ P, (tj, pi) ∈ A}

I(pi) to denote the set of input transitions to place pi.

I(pi) = {tj | tj ∈ T, (tj, pi) ∈ A}

O(pi) to denote the set of output transitions to place pi.

O(pi) = {tj | tj ∈ T, (pi, tj) ∈ A}

Consider the example Petri net graph shown in Fig. 2.1. From the Petri net we

can say,

I(t1) = {p1, p2}

O(t1) = {p3}
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I(p1) = ∅

O(p1) = {t1}

I(p2) = ∅

O(p2) = {t1}

I(p3) = {t1}

O(p3) = ∅

2.2 Petri net marking

As mentioned in section 2.1, transitions of a Petri net represent events that occur

in a discrete event system and places of a Petri net represent conditions under which

these events can take place. By assigning tokens (drawn as black dots in a place) to

places we can indicate if these conditions are met. A Petri net marking M is defined

as, the way in which tokens are assigned to places [13]. Marking M can be represented

in a function as:

M : P →W = {0, 1, 2, · · · }

Marking M is a n× 1 column vector where n represents the number of places in

a Petri net.

M =


m(p1)

m(p2)
...

m(pn)

 (2.1)

In equation 2.1, m(pi) represents the number of tokens assigned to place pi. An

example of a marked Petri net (Petri net graph with tokens) is shown in Fig. 2.2

From the Fig 2.2, we can derive the marking M as:

M =


3

1

0

 (2.2)
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Fig. 2.2. An Example of a marked Petri Net

2.3 Petri net dynamics

Dynamics of a Petri net depends on firing of its enabled transitions. A transition

tj in a marked Petri net is said to be enabled when the number of tokens in each

input place of tj has at least as many tokens as the weight of the arc connecting that

place with tj. Mathematically speaking, a transition tj in a Petri net is said to be

enabled if,

m(pi) ≥ W (pi, tj) ∀pi ∈ I(tj) (2.3)

Consider an example of a marked Petri net as shown in Fig. 2.2. The marking

M of this Petri net can be given as in Eq. 2.2. Here, we can say that transition t1 is

enabled since the number of tokens in each input place (m(p1) = 3 and m(p2) = 1) of

transition t1 is greater than or equal to the respective weights of the arc (W (p1, t1) = 2

and W (p2, t1) = 1) connecting them which satisfies the inequality 2.3.

If the Petri net marking shown in Fig. 2.2 is changed to a new marking M1

M1 =


1

1

0


as shown in Fig. 2.3, transition t1 cannot be enabled since m(p1) � W (p1, t1).

An enabled transition may fire, progressing the Petri net from one marked state to

another by moving tokens through the net. The movement of tokens can be explained
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Fig. 2.3. Modified marked Petri net

as follows: when an enabled transition tj fires, it removes as many tokens as the weight

of the arc from each of its input place (I(tj)); and deposits as many tokens as the

weight of the arc to each of its output place (O(tj)). Note that at each instant only

one enabled transition may fire.

Consider the marked Petri net shown in Fig. 2.2 with its initial marking M given

as in Eq. 2.2. In this example, we can say that transition t1 is enabled (as discussed

earlier in this section) and so it may fire. When t1 fires, it first removes as many

tokens as the weight of the arc from each of its input place (I(t1) = {p1, p2}) and as a

result two tokens from p1 and one token from p2 are removed making m(p1) = 1 and

m(p2) = 0. Next, t1 deposits as many tokens as the weight of the arc to each of its

output place (O(t1) = {p3}) and as a result one token is deposited in place p3 making

m(p3) = 1 . The new state of Petri net after the firing of transition t1 is shown in

Fig. 2.4 and the marking of the Petri net changes to M1 which is given as,

M1 =


1

0

1

 (2.4)
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Fig. 2.4. New state of Petri net after t1 is fired

2.4 Analysis of a Petri net

In this section, some methods to analyze a system modeled using Petri nets are

discussed.

2.4.1 Incidence matrices

To study the dynamic behavior of Petri nets algebraically, matrix equations are

implemented. Consider a Petri net with m places and n transitions, we can define:

Output Incidence Matrix: B+ as a (m× n) matrix that captures all arc weights

from T to P . That is,

B+ =


W (t1, p1) W (t2, p1) · · · W (tn, p1)

W (t1, p2) W (t2, p2) · · · W (tn, p2)
...

...
. . .

...

W (t1, pn) W (t2, pn) · · · W (tn, pn)


The value of W (tj, pi) is zero when no arc exists from tj to pi.
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Input Incidence Matrix: B− as a (m × n) matrix that captures all arc weights

from P to T . That is,

B− =


W (p1, t1) W (p1, t2) · · · W (p1, tn)

W (p2, t1) W (p2, t2) · · · W (p2, tn)
...

...
. . .

...

W (pn, t1) W (pn, t2) · · · W (pn, tn)


The value of W (pi, tj) is zero when no arc exists from pi to tj.

Incident matrix: B as a m × n matrix obtained by the result of subtracting B−

from B+. Mathematically showing,

B = B+ −B− (2.5)

Consider the Petri net shown in Fig. 2.1 with three places and one transition. The

output incidence matrix B+ and input incidence martix B− have dimensions 3 × 1

and can be given as follows:

B+ =


W (t1, p1)

W (t1, p2)

W (t1, p3)

 =


0

0

1



B− =


W (p1, t1)

W (p2, t1)

W (p3, t1)

 =


2

1

0



B =


0

0

1

−


2

1

0

 =


−2

−1

1

 (2.6)

2.4.2 State equation of a Petri net

The state equation of a Petri net gives an algebraic tool alternative to graphical

way of describing the firing of transitions and changing the state of a Petri net.
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Given, a current state of Petri net with marking Mk and the case that a particular

transition tj is fired, the next state of the Petri net with markingMk+1 can be obtained

using the state equation of a Petri net (Eq. 2.7).

Mk+1 = Mk +BXk (2.7)

Here,

Mk+1 is the marking at time instant k + 1

Mk is the marking at time instant k

B is the incidence matrix

Xk is the firing vector at time instant k. It is a column vector with dimensions

m × 1 where m is the number of transitions in a Petri net. It has only one

non-zero entry with a value one indicating which transition fires. The form

of a firing vector is shown in the Eq. 2.8 where one appears only in jth row

(j ∈ {1, · · · ,m}), indicating the fact that transition tj is currently firing.

Xk =



0
...

0

1

0
...

0


(2.8)

Consider the Petri net example shown in Fig. 2.1 with its initial marking M0

given in Eq. 2.2. By using the state equation, let us now mathematically calculate

the next state of the Petri net (with marking M1) after the enabled transition t1 fires.

The firing vector X0 defines that the transition t1 is being fired. The firing vector will



16

be a 1 × 1 matrix as the Petri net has only one transition t1. The incidence matrix

B for this Petri net is already discussed and calculated as shown in Eq. 2.6.

M1 = M0 +BX0

=


3

1

0

 +


−2

−1

1

[
1
]

=


1

0

1


We can observe that the new marking M1 obtained algebraically using state equation

is identical to the marking obtained graphically as shown in Eq. 2.4.

2.4.3 Place Invariant

Place invariant (P -invariant) is one of the structural properties of a Petri net

which yields information about the token conservation in a Petri net. A vector X is

a place invariant if it satisfies,

XTB = 0 (2.9)

Here,

X is a m× 1 column vector where m is the number of places in a Petri net.

B is the incidence matrix.

Consider the state equation of a Petri net as discussed in Section 2.4.2,

Mk+1 = M0 +BVk

Here,

M0 is the initial marking.
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Vk is the firing vector at time instant k.

Left multiplying the state equation with XT we get,

XTMk+1 = XTM0 +XTBVk (2.10)

Since XTB = 0 from Eqn. 2.9, substituting it in Eqn. 2.10 we get,

XTMk+1 = XTM0 (2.11)

From the Eqn .2.11, it is clear that for any chosen M0, the number of tokens in a set

of places weighted by X is a constant for all markings Mk+1 that are reachable from

M0. This set of places is said to be covered by a P -invariant. If every place in a Petri

net is covered by a P -invariant, we say that the Petri net is bounded. This analysis

shows the conservation properties of a Petri net.

2.4.4 Transition Invariant

Transition invariant (T -invariant) is another structural property of a Petri net

which yields information about loops present in a Petri net. Consider the state

equation of a Petri net as discussed in Section 2.4.2.

Mk+1 = M0 +BVk

Here,

M0 is the initial marking.

Vk is the firing vector at time instant k.

B is the incidence matrix.

If there exists a vector Y (of order n×1 where, n represents the number of transitions

in a Petri net) such that:

BY = 0 (2.12)
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and there exists a valid transition firing sequence corresponding to Vk, then Y is called

the transition invariant of the Petri net. A T -invariant can lead the marking (state)

back to the same marking (state) after firing a sequence of transitions. The entries

of a T -invariant define the firing counts of the respective transitions that are present

in the firing sequence. However, the T -invariant cannot determine the order of the

transitions in the firing sequence.

2.4.5 Reachability

Reachability is one of the important behavioral properties of a Petri net. To see if

the system modeled using Petri net meets the requirements by reaching all the desired

states and by not reaching undesired states is an important problem. Reachability

helps to determine whether the Petri net model is able to reach a particular state M

from an initial state M0. A sequence of transition firings occur when the state M0 is

transformed to a state M and this sequence of firings show a functional behavior of

the system. There can be multiple sequences of transition firings which can transform

the state M0 to state M leading to possibility of different or unanticipated functional

behavior of the system reflected with the help of Petri net model.

A Petri net marking M1 is said to be reachable from another marking M , if there

exists a firing sequence of transitions that transform marking M to marking M1.

Reachable set of a Petri net is defined as the set of all markings that are reachable

from the initial marking M0 of the Petri net.

Given an initial marking M0 of the Petri net, we can obtain as many new markings

(Mi) as the number of enabled transitions (tj) which satisfy the inequality 2.13.

M0 ≥ B−(:, tj) (2.13)

When an enabled transition tj fires, the respective new marking Mi can be ob-

tained by using the state equation of the Petri net as shown in Eq. 2.14.

Mi = M0 +BX0 (2.14)
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From each of these new markings, we can further reach more markings. This

dynamics can be represented in the form of a tree called coverability tree. For a

bounded Petri net, it can be also named as reachability tree.

Nodes of this tree represent initial marking and markings reachable from it.

Arcs represent the fired transitions which transform a marking to another.

2.5 Time Petri nets

Time Petri net is a model introduced by Merlin and Farber to overcome the

limitations of ordinary Petri nets to include timing constraints [14]. Time Petri nets

add the variable, time, into ordinary Petri nets. In these type of Petri nets, two time

values (α and β) are introduced for each transition.

α represents minimum time waited by an enabled transition to fire.

β represents maximum time waited by an enabled transition to fire.

In other words, an enabled transition fires with delay θ ∈ [α, β] . The default

value of α is zero and β is infinite. Merlin defined these time delay intervals for each

transition tj to fire as static rational values and termed the time interval as static

firing interval of transition tj. The lower bound (α) is termed as the static earliest

firing time (static EFT) and the upper bound (β) is termed as the static latest firing

time (static LFT).

Time Petri nets are used in applications such as modeling and verification of

real-time concurrent systems and scheduling jobs [15–18].

2.6 Simulation tools

Simulation is important for understanding the behavior of a system. With the

same idea, Petri net models are simulated to analyze the properties and performance
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and to gain more insight into the model. Ideally, simulation of a Petri net incorporates

an algorithm to run the Petri net [19]. Such an algorithm is designed as part of this

thesis and a MATLAB code is developed implementing the algorithm. In addition,

software tool named Netlab [20] is used for simulation and to validate the results

obtained from the MATLAB code developed. Another software tool named Tina [21]

is used to simulate the developed Time Petri net.
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3. MATHEMATICAL MODELING

In this chapter, the design of a Petri net model for Muzima fingerprint module is

discussed. To model any system using Petri nets, detail understanding of the system’s

workflow is necessary. The following steps are implemented as a design process to

model Muzima fingerprint module using Petri nets:

1. Construct a detailed workflow of Muzima fingerprint module using a flow chart.

2. Identify various subflows embedded in the flow chart.

3. Design a Petri net for each subflow identified.

4. Combine all the individual Petri nets to form the final Petri net model for

Muzima fingerprint module.

5. Identify the initial marking (initial state of the Petri net) and add to the Petri

net model developed.

In this design process,

Places represent conditions, input/output data.

Transitions represent tasks, clauses.

3.1 Workflow of Muzima fingerprint module

The workflow of Muzima fingerprint module was discussed briefly in Section 1.2.

Following is a detailed explanation of the workflow along with graphical representation

using flow chart as shown in Fig. 3.1. The circles A, B and C shown in the Fig. 3.1

represent connectors in the flow chart.
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Fig. 3.1. Detailed workflow of Muzima fingerprint module
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1. Log in to OpenMRS and click on the Muzima fingerprint module shown under

the modules list. This will launch the Muzima fingerprint and displays its

homepage.

2. Go to ’Find patient(s)’ section and click on ’Search by fingerprint’ to find patient

using patient’s fingerprint. This will load the fingerprint applet. Once it loads,

place finger on the scanner. If the fingerprint applet licenses,

(a) are verified successfully, the scanning process will complete without er-

rors. After scanning completes, the module looks up the EMR database

of fingerprints of registered patients. If the fingerprint,

i. is identified, the module retrieves the associated patient record, dis-

plays patient details such as patient ID, first name, last name and

gender.

ii. is not identified, a message ’No patient found with scanned fingerprint’

is displayed to the user. It is either because the patient is not registered

in the EMR or the patient record is not updated with the fingerprint

data. In this case, we can search by patient name or identifier. Type

the search input in the text box and hit enter. The module looks up

the EMR database for the search input. If,

A. patient(s) found, the module retrieves all those patient(s) records

who match with the search input. The module displays the pa-

tient details for each retrieved patient and gives an option to add

fingerprint for those patients whose fingerprint data is missing. If

chosen to add fingerprint to the patient, click on the ’Add finger-

print’ button. Then scan the finger and confirm to add fingerprint

to the patient when prompted.

B. no patient(s) found, an option is given to register the patient into

the EMR database. If chosen to register, the module brings up

the registration form. After filling the form, click on ’Create pa-
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tient’ button. Then the registration form data is validated and the

patient is registered if the validation was successful and otherwise

not.

(b) are not verified, scanning stops and the module returns to homepage dis-

playing an error message to the user.

3. In any of the above situations where the module displays the patient record,

clicking on the patient record opens up the patient dashboard for more details

and the user can go back to the homepage.

3.2 Modularization

In this section, various sub-flows of the flow chart shown in Fig. 3.1 are identified

and organized into modules with a petri net modeled for each of them.

• Sub-flow 1: Login to OpenMRS system and launch Muzima fingerprint module.

This will bring up the homepage for Muzima fingerprint module. Fig. 3.2

represents the flow chart and Fig. 3.3 represents the Petri net model for this

sub-flow. The descriptions of the places and transitions of this Petri net model

are given in Table. 3.1.

Fig. 3.2. Flow chart representation of Sub-flow 1

• Sub-flow 2: From the homepage of Muzima fingerprint module, go to ’Find

patient(s)’ section. Click on ’Search by fingerprint’ button to search patient by

patient’s fingerprint. This will load the fingerprint applet. Once loaded, place

finger on scanner. If the applet licenses are,
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Fig. 3.3. Petri net representation of Sub-flow 1

Table 3.1 Places and transitions of Petri net model for Sub-flow 1

Place Description Transition Label

p1 Start t1 Login to OpenMRS

p2 Logged in t2 Launch Muzima fingerprint module

p3 Homepage

– verified successfully, scanning completes and the module looks up for the

scanned fingerprint in EMR database of fingerprints of registered patients.

– not verified, the module returns to homepage with an error message to the

user.

Fig. 3.4 represents the flow chart and Fig. 3.5 represents the Petri net model

for this sub-flow. The descriptions of the places and transitions of this Petri net

model are given in Table. 3.2.

• Sub-flow 3: The Muzima fingerprint module looks up for the scanned fingerprint

in the EMR database. If the fingerprint is,

– identified, the module retrieves the patient from the EMR database and

displays the patient record with basic information such as id, first name,

last name and gender. By clicking on the patient record, the module

navigates to the patient dashboard where the complete patient details can

be viewed and can return back to homepage.
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Fig. 3.4. Flow chart representation of Sub-flow 2

Fig. 3.5. Petri net representation of Sub-flow 2

– not identified, a message ’No patient found with the scanned fingerprint’

is displayed to the user.

Fig. 3.6 represents the flow chart and Fig. 3.7 represents the Petri net model

for this sub-flow. The descriptions of the places and transitions of this Petri net

model are given in Table. 3.3.
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Table 3.2 Places and transitions of Petri net model for Sub-flow 2

Place Description Transition Label

p3 Homepage t3
Go to ’Find patient(s)’

section

p4 Find patient(s) section t4
Click on ’Search by

fingerprint’

p5 Fingerprint applet loaded t5 Place finger on the scanner

p6
Check if fingerprint applet

licenses are verified
t6

Licenses are verified

successfully

p7
System triggered to look

up for scanned fingerprint
t7 Licenses are not verified

p8 Error displayed t7 Licenses are not verified

t8 Go back to Homepage

• Sub-flow 4: If no patient is found with the scanned fingerprint, it is either

because the patient is not registered in the EMR or the patient record is not

updated with the fingerprint data. In this case, we can search by patient name

or identifier. Click on ’Search by patient name or identifier’. Type input data

in text box and hit enter. The module looks up for patient(s) whose name or

identifier match with the search input. If patient(s)

– found, the module retrieves all those patients.

– not found, a message ’No patient(s) exist with the search input’ is dis-

played.

Fig. 3.8 represents the flow chart and Fig. 3.9 represents the Petri net model

for this sub-flow. The descriptions of the places and transitions of this Petri net

model are given in Table. 3.4.
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Fig. 3.6. Flow chart representation of Sub-flow 3

Fig. 3.7. Petri net representation of Sub-flow 3

• Sub-flow 5: If no patient(s) are found with the search input, that implies the

patient is not registered in the EMR system. So the module gives an option to

register the patient as a new patient. If,
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Table 3.3 Places and transitions of Petri net model for Sub-flow 3

Place Description Transition Label

p3 Homepage t9 Search all fingerprint data

p7
System triggered to look

up for scanned fingerprint
t10 Fingerprint not identified

p9 Check if fingerprint found t11 Fingerprint identified

p10

Message displayed as ’No

patient found with the

scanned fingerprint’

t12
Click on patient record to

go to patient dashboard

p11

Patient record with id,

first name, last name and

gender is displayed

t13 Return to homepage

p12 Patient dashboard

– chosen to register, the module brings up the registration form. After filling

the form, click on ’Create patient’ button to submit the form. Then the

form data is validated. If the validation is,

∗ successful, patient is registered into the EMR system. The module

then displays the newly registered patient record with basic informa-

tion such as id, first name, last name and gender.

∗ not successful, patient registration fails and and one can return to

homepage.

– not chosen to register, the module returns to the homepage.

Fig. 3.10 represents the flow chart and Fig. 3.11 represents the Petri net model

for this sub-flow. The descriptions of the places and transitions of this Petri net

model are given in Table. 3.5.
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Fig. 3.8. Flow chart representation of Sub-flow 4

Fig. 3.9. Petri net representation of Sub-flow 4

• Sub-flow 6: When patient(s) are found using search by patient name or iden-

tifier, the module retrieves those patients. Then, it checks for each whether

the patient records are updated with fingerprint information. If the retrieved

patient record,

– contains fingerprint data, the patient is displayed to the user.
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Table 3.4 Places and transitions of Petri net model for Sub-flow 4

Place Description Transition Label

p10

Message displayed as ’No

patient found with the

scanned fingerprint’

t14
Click on ’Search by patient

name or identifier’

p13 Search box shown t15
Type name or identifier in

search box and hit enter

p14
System triggered to look

up for search input
t16

Search all patient names

and identifiers

p15 Check if patient(s) found t17 Patient(s) found

p16
System triggered to

retrieve all those patient(s)
t18 Patient(s) not found

p17

Message displayed as ’No

patient(s) exist with the

search input’

– does not contain fingerprint data, an ’Add fingerprint’ button is shown

with respect to the patient. Click on the button to scan the patient finger.

After scanning completes, confirm to add fingerprint to the patient record.

If,

∗ confirmed to add scanned fingerprint, the patient record is updated

with fingerprint and the module displays the patient.

∗ not confirmed to add scanned fingerprint, the module returns to home-

page.

Fig. 3.12 represents the flow chart and Fig. 3.13 represents the Petri net model

for this sub-flow. The descriptions of the places and transitions of this Petri net

model are given in Table. 3.6.
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Fig. 3.10. Flow chart representation of Sub-flow 5

Fig. 3.11. Petri net representation of Sub-flow 5
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Table 3.5 Places and transitions of Petri net model for Sub-flow 5

Place Description Transition Label

p3 Homepage t19 Look for available actions

p11

Patient record with id,

first name, last name and

gender is displayed

t20 Choose to register

p17

Message displayed as ’No

patient(s) exist with the

search input’

t21 Choose to not register

p18 Provide option to register t22 Fill in form data

p19 Registration form displayed t23 Click on ’Create patient’

p20 Filled out registration form t24 Validate form data

p21 Form ready for validation t25 Validation successful

p22 Check validation results t26 Validation unsuccessful

p23 Patient registered t27 Return to homepage

p24 Patient not registered t28 Get patient data to display

3.3 Ordinary Petri net model for Muzima fingerprint module

In Section 3.2, Petri net models were developed for each of the sub-flow of Muzima

fingerprint module. In this section, all these individual Petri nets are connected to

form the complete Petri net model. Fig. 3.14 shows the complete Petri net model for

Muzima fingerprint module. This Petri net model consists a total of 28 places and 35

transitions. The descriptions of the places and transitions of the complete Petri net

model are given in Table. 3.7.
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Fig. 3.12. Flow chart representation of Sub-flow 6

Fig. 3.13. Petri net representation of Sub-flow 6
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Table 3.6 Places and transitions of Petri net model for Sub-flow 6

Place Description Transition Label

p3 Homepage t29 Retrieve the patient records

p11

Patient record with id,

first name, last name and

gender is displayed

t30 Fingerprint exists

p16
System triggered to

retrieve all those patient(s)
t31 Fingerprint does not exists

p25
Check for each patient if

fingerprint exists
t32

Click on ’Add fingerprint’

button

p26
’Add fingerprint’ button

shown
t33 Scan fingerprint

p27
System ready to start

scanning process
t34 Confirm to add

p28
Check if confirm to add

fingerprint to patient
t35 Do not confirm to add
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t6

t27

t30
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p16

p11

t28
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t13
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t16
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p26t32

t8

p5

p6

t31

t11

t19

t33

t20

t1

t10

t4

p22
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Fig. 3.14. Petri net model for Muzima fingerprint module
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Table 3.7: Places and transitions of the complete Petri net model

Place Description Transition Label

p1 Start t1 Login to OpenMRS

p2 Logged in t2 Launch Muzima fingerprint

module

p3 Homepage t3 Go to ’Find patient(s)’ sec-

tion

p4 Find patient(s) section t4 Click on ’Search by finger-

print’

p5 Fingerprint applet loaded t5 Place finger on the scanner

p6 Check if fingerprint applet

licenses are verified

t6 Licenses are verified suc-

cessfully

p7 System triggered to look up

for scanned fingerprint

t7 Licenses are not verified

p8 Error displayed t8 Go back to Homepage

p9 Check if fingerprint found t9 Search all fingerprint data

p10 Message displayed as ’No

patient found with the

scanned fingerprint’

t10 Fingerprint not identified

p11 Patient record with id, first

name, last name and gender

is displayed

t11 Fingerprint identified

p12 Patient dashboard t12 Click on patient record to go

to patient dashboard

p13 Search box shown t13 Return to homepage

p14 System triggered to look up

for search input

t14 Click on ’Search by patient

name or identifier’

continued on next page
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Table 3.7: continued

Place Description Transition Label

p15 Check if patient(s) found t15 Type name or identifier in

search box and hit enter

p16 System triggered to retrieve

all those patient(s)

t16 Search all patient names

and identifiers

p17 Message displayed as ’No

patient(s) exist with the

search input’

t17 Patient(s) found

p18 Provide option to register t18 Patient(s) not found

p19 Registration form displayed t19 Look for available actions

p20 Filled out registration form t20 Choose to register

p21 Form ready for validation t21 Choose to not register

p22 Check validation results t22 Fill in form data

p23 Patient registered t23 Click on ’Create patient’

p24 Patient not registered t24 Validate form data

p25 Check for each patient if fin-

gerprint exists

t25 Validation successful

p26 ’Add fingerprint’ button

shown

t26 Validation unsuccessful

p27 System ready to start scan-

ning process

t27 Return to homepage

p28 Check if confirm to add fin-

gerprint to patient

t28 Get patient data to display

t29 Retrieve the patient records

t30 Fingerprint exists

t31 Fingerprint does not exists

continued on next page
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Table 3.7: continued

Place Description Transition Label

t32 Click on ’Add fingerprint’

button

t33 Scan fingerprint

t34 Confirm to add

t35 Do not confirm to add

3.4 Initial marking

In this section, token(s) are assigned to the Petri net model (Fig. 3.14) developed

for Muzima fingerprint module which defines the initial marking for this model. A

Petri net marking is defined as the assignment of token(s) to places in a Petri net.

The dynamics of a Petri net may lead to change in the position as well as number

of tokens [19]. The initial assignment of token(s) provides the initial marking M0 of

the Petri net. To execute the Petri net model developed, a token is assigned to the

place p1 indicating the start of the process. Fig. 3.15 shows the marked Petri net for

Muzima fingerprint module. The initial marking M0 is given as a 28×1 matrix with a

non-zero value one in the first row representing the token in place p1 i.e., m(p1) = 1.

M0(28×1) =
[
1 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0

]T
(3.1)

3.5 Time Petri net model for Muzima fingerprint module

As discussed in Section. 2.5, we can introduce timing constraints to transitions in

a Petri net which are expressed as the minimum and maximum time values taken by

an enabled transition to fire. Fig. 3.16 shows the Time Petri net model developed for

Muzima fingerprint module. The time delays of all the transitions are given in Table.

3.8.
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Fig. 3.15. Petri net with initial marking
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Fig. 3.16. Time Petri net model for Muzima fingerprint module
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Table 3.8: Transitions and their time delays

Transition Description Time delay

t1 Login to OpenMRS [0,1]

t2 Launch Muzima fingerprint module [0,1]

t3 Go to ’Find patient(s)’ section [0,1]

t4 Click on ’Search by fingerprint’ [0,1]

t5 Place finger on the scanner [0,5]

t6 Licenses are verified successfully [0,3]

t7 Licenses are not verified [0,2]

t8 Go back to Homepage [0,1]

t9 Search all fingerprint data [0,1]

t10 Fingerprint not identified [0,2]

t11 Fingerprint identified [0,2]

t12 Click on patient record to go to patient dashboard [0,1]

t13 Return to homepage [0,1]

t14 Click on ’Search by patient name or identifier’ [0,1]

t15 Type name or identifier in search box and hit enter [0,1]

t16 Search all patient names and identifiers [0,1]

t17 Patient(s) found [0,2]

t18 Patient(s) not found [0,2]

t19 Look for available actions [0,1]

t20 Choose to register [0,1]

t21 Choose to not register [0,1]

t22 Fill in form data [0,1]

t23 Click on ’Create patient’ [0,1]

t24 Validate form data [0,1]

continued on next page
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Table 3.8: continued

Transition Description Time delay

t25 Validation successful [0,2]

t26 Validation unsuccessful [0,2]

t27 Return to homepage [0,1]

t28 Get patient data to display [0,1]

t29 Retrieve the patient records [0,1]

t30 Fingerprint exists [0,1]

t31 Fingerprint does not exists [0,1]

t32 Click on ’Add fingerprint’ button [0,1]

t33 Scan fingerprint [0,1]

t34 Confirm to add [0,5]

t35 Do not confirm to add [0,5]
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4. ANALYSIS

Having developed the mathematical model for the Muzima fingerprint module based

on Petri nets in Section 3.3, there is a need to analyze this model to gain more

insight about the behavior of the system. In this chapter, qualitative and quantitative

analysis is performed on the Petri net model developed for the Muzima fingerprint

module. To start the analysis, the incidence matrices of the Petri net model need to

be obtained first.

4.1 Incidence matrix

The Petri net model developed for Muzima fingerprint module (Fig. 3.14) has 28

places and 35 transitions. Therefore, the dimensions of the output incidence matrix

B+, the input incidence matrix B− and the incidence matrix B for this Petri net

model are all 28× 35.

The computation of the incidence matrices for a given Petri net is discussed in

Section 2.4.1. Similarly, the output incidence matrix B+ and input incidence matrix

B− for this Petri net model are calculated and shown in Eqn. 4.1 and Eqn. 4.2

respectively. The incidence matrix B is then calculated using B+ and B− and is

shown in Eqn. 4.3.
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B+ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0



(4.1)
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B− =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1



(4.2)
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B =



−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 −1−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 −1−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1−1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1−1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1−1


(4.3)

4.2 Qualitative analysis

In qualitative analysis of the Petri net model, two structural properties are ana-

lyzed. These properties of the Petri net are place invariant (P -invariant) and transi-

tion invariant (T -invariant).
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4.2.1 Place invariant

As discussed in Section 2.4.3, place invariants (P -invariants) are subsets of places

of a Petri net, where the algebraic sum of tokens present in these places remains

constant throughout the execution of the Petri net. P -invariants yield information

about conservation and boundedness properties of a Petri net.

Place invariant analysis is performed on Muzima fingerprint module modeled using

Petri net. P -invariant(s), if exist for this Petri net model, are obtained by solving the

Eqn. 2.9 using the incidence matrix B shown in Eqn. 4.3.

XTB = 0

where,

X28×1 =
[
x1 x2 x3 · · · x26 x27 x28

]T
xi is the weight associated with the place pi so that the weighted sum of the tokens

of these places remains a constant for all markings that are reachable from initial

marking. Solving for the P-invarints (X), we get:

x1 = x2 = x3 = · · · = x26 = x27 = x28

Let,

x1 = x2 = x3 = · · · = x26 = x27 = x28 = 1

Then, the solution X can be given as:

X28×1 =
[
1 1 1 1 · · · 1 1 1

]T
where all its entries are one. This indicates that all the places in the Petri net model

are covered by the P -invariant. This implies that the sum of tokens in all the places

is constant (= 1) for all states (markings Mk) that are reachable from the initial state

(marking M0 given in Eqn. 3.1) indicating token conservation. Since every place in

the Muzima fingerprint Petri net model is covered by the P -invariant, the Petri net

is said to be bounded.
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4.2.2 Transition invariant

Transition invariant (T -invariant) analysis of a Petri net yields information about

loops present in a Petri net. A T -invariant can lead the marking (state) back to

the same marking (state) after firing a sequence of transitions. The entries of a T -

invariant define the firing counts of the corresponding transitions that are present in

the firing sequence.

T -invariant analysis is performed on the Muzima fingerprint module modeled using

Petri nets to determine the functional loops present in the system. T -invariant(s),

if exist for this Petri net model, are obtained by solving the Eqn. 2.12 using the

incidence matrix B shown in Eqn. 4.3,

BY = 0

where,

Y35×1 =
[
y1 y2 y3 · · · y33 y34 y35

]T
yi is the firing count of transition ti that is present in the firing sequence. Solving

the equation resulted in eight T -invariants for Muzima fingerprint Petri net model

which are listed in Table. 4.1. For instance, one of the T -invariants firing sequence

t3 → t4 → t5 → t7 → t8 corresponds to a process of performing patient search by

scanning fingerprint from the homepage. Due to the fingerprint applet licenses not

verified, the module is redirected back to homepage indicating a loop in the system.

Table 4.1: Summary of T -invariants in the Muzima fingerprint Petri net model

T -invariant Remark

t3 → t4 → t5 → t7 →

t8

Return back to homepage when fingerprint applet li-

censes are not verified.

t3 → t4 → t5 → t6 →

t9 → t11 → t12 → t13

After successful patient search by fingerprint, display

the patient record, clicking on which the user can go to

patient dashboard and then return to homepage.

continued on next page
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Table 4.1: continued

T -invariant Remark

t3 → t4 → t5 → t6 →

t9 → t10 → t14 →

t15 → t16 → t18 →

t19 → t21

If no patient(s) are found with search by fingerprint,

name or identifier and if chosen not to register, return

to homepage.

t3 → t4 → t5 → t6 →

t9 → t10 → t14 →

t15 → t16 → t18 →

t19 → t20 → t22 →

t23 → t24 → t26 → t27

Go back to homepage when patient registration is un-

successful due to invalid form data.

t3 → t4 → t5 → t6 →

t9 → t10 → t14 →

t15 → t16 → t17 →

t29 → t31 → t32 →

t33 → t35

If do not confirm to add fingerprint to an existing pa-

tient, return to homepage.

t3 → t4 → t5 → t6 →

t9 → t10 → t14 →

t15 → t16 → t18 →

t19 → t20 → t22 →

t23 → t24 → t25 →

t28 → t12 → t13

After successful registration of new patient into EMR,

display the patient record, clicking on which the user can

go to patient dashboard and then return to homepage.

t3 → t4 → t5 → t6 →

t9 → t10 → t14 →

t15 → t16 → t17 →

t29 → t30 → t12 → t13

If fingerprint data already exists for patient(s) found

by searching with name or identifier, display the patient

record, clicking on which the user can go to patient dash-

board and then return to homepage.

continued on next page
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Table 4.1: continued

T -invariant Remark

t3 → t4 → t5 → t6 →

t9 → t10 → t14 →

t15 → t16 → t17 →

t29 → t31 → t32 →

t33 → t34 → t12 → t13

If fingerprint data does not exist for the patient found

by searching with name or identifier, then scan, confirm

and add fingerprint, display the patient record, clicking

on which the user can go to patient dashboard and then

return to homepage.

4.3 Quantitative analysis

Petri nets have discrete states and are event driven. In quantitative analysis of

the Petri net model, the dynamic behaviors of the model are analyzed. In other

words, the different states (markings) that are reached due to occurrence of events

(transitions) are analyzed. These behaviors are characterized by the movement of

tokens in the Petri net due to firings of enabled transitions. Tokens are added or

removed from places causing a change in the state (marking) of Petri net.

Reachability tree is a finite tree representation for infinite number of states (mark-

ings). Nodes in the tree represent states (markings) and arcs represent fired transi-

tions. Following is the notation for construction of reachability tree.

Root node is the initial state (marking) of the Petri net.

Terminal node is the node from which no transition can fire.

Duplicate node is the node which is identical to a node that is already in the tree.

An algorithm is developed for the construction of reachability tree as described

below. The algorithm identifies the reachable markings and its transition firing se-

quence. It also labels nodes if they are duplicate or terminal.
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Algorithm for constructing reachability tree of a Petri net

Start algorithm

1. Declare and initialize the input incidence matrix B−, incidence matrix B and

initial marking M0 of the Petri net.

2. Initialize the reachability tree T with root node M0.

3. While non-duplicate and non-terminal markings (Mj) exist in reachability tree

T , do the following for each Mj.

4. If no transitions are enable at Mj, label Mj as ’terminal node’.

5. While enabled transitions (ti) exist at Mj, do the following for each ti.

6. Find the new marking Mk obtained by firing ti at Mj.

7. Add arc Mj
ti−→Mk to the reachability tree T .

8. If marking Mk is identical to a marking already in the reachability

tree T , label Mk as ’duplicate node’.

End algorithm

A reachability tree (Fig. 4.1) is constructed for Muzima fingerprint Petri net

model using the algorithm developed.

Since this Petri net model is conservative and bounded as discussed in Section

4.2.1, and the initial marking contains a total of one token, implies all the reachable

markings will also contain only one token. The markings in this reachability tree can

be described as

Mi = [m(p1), m(p2), · · ·m(p27), m(p28)]
T

where m(pi) = 1 and all other entries are zero. From the reachability tree shown in

Fig. 4.1,

• marking M1 is the root node.
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Fig. 4.1. Reachability tree for Muzima fingerprint Petri net model
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• blue shaded nodes are the duplicate nodes for markings M3 and M11 as labeled.

• no terminal nodes exist.

• there exists a total of 28 reachable markings.

The reachability tree analysis helps to identify if there are any overflows existing

in the system (boundedness of a Petri net). All places in this Petri net model are

1-bounded since the number of tokens in every place is always less than or equal to

1 for every marking Mi that is reachable from initial marking M0 as observed in the

reachability tree. Also, this Petri net model is safe since only 0’s and 1’s appear in

the nodes of the reachability tree.

This analysis also provides information about whether this Petri net model meets

the system requirements by reaching all the desired states and not reaching any for-

bidden states. It also helps to determine whether this Petri net model is able to reach

a particular state Mi from the initial state M1. The sequence of transition firings

which occur when the state M1 is transformed to a state Mi, shows the functional

behavior of the system. It also reflects if there are any different or unanticipated func-

tional behavior of this system when multiple sequences of transition firings transform

the state M1 to state Mi.

4.4 Time Petri net analysis

A Time Petri net model for Muzima fingerprint module is developed in Section 3.5.

Analysis can be performed on this model to determine the minimum and maximum

time elapsed for the completion of T -invariant (functional loops in the system).

Consider one of the transition invariant TI of Muzima fingerprint Petri net model

(Table 4.1) with the firing sequence t3 → t4 → t5 → t6 → t9 → t11 → t12 → t13

which defines a loop in the system described as ’after successful patient search by

fingerprint from homepage, display the patient record, clicking on which the user

can go to patient dashboard and then return to homepage’. With the help of the
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minimum and maximum elapse times for these transitions defined in Table 3.8, we

can analyze the minimum and maximum time taken to complete the TI as follows:

p3
t3[0,1]−−−→ p4

t4[0,1]−−−→ p5
t5[0,5]−−−→ p6

t6[0,3]−−−→ p7
t9[0,1]−−−→ p9

t11[0,2]−−−−→ p11
t12[0,1]−−−−→ p12

t13[0,1]−−−−→ p3

By serial fusion of transitions and their firing time ranges we get,

p3
TI[0,15]−−−−→ p3 (4.4)

From Eqn. 4.4, we can analyze the time taken to complete this transition invariant

TI lies in the range [0,15]. Table 4.2 summarizes the minimum and maximum time

taken to complete all the T -invariants (Table 4.1) for the Muzima fingerprint Petri

net model.

Table 4.2: Summary of minimum and maximum time to complete T -invariants iden-

tified for Muzima fingerprint Petri net model.

T -invariant Remark [tmin, tmax]

t3 → t4 → t5 → t7 → t8 Return back to homepage when finger-

print applet licenses are not verified.

[0,10]

t3 → t4 → t5 → t6 →

t9 → t11 → t12 → t13

After successful patient search by finger-

print, display the patient record, clicking

on which the user can go to patient dash-

board and then return to homepage.

[0,15]

t3 → t4 → t5 → t6 →

t9 → t10 → t14 → t15 →

t16 → t18 → t19 → t21

If no patient(s) are found with search by

fingerprint, name or identifier and if cho-

sen not to register, return to homepage.

[0,20]

t3 → t4 → t5 → t6 →

t9 → t10 → t14 → t15 →

t16 → t18 → t19 → t20 →

t22 → t23 → t24 → t26 →

t27

Go back to homepage when patient reg-

istration is unsuccessful due to invalid

form data.

[0,26]

continued on next page
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Table 4.2: continued

T -invariant Remark [tmin, tmax]

t3 → t4 → t5 → t6 →

t9 → t10 → t14 → t15 →

t16 → t17 → t29 → t31 →

t32 → t33 → t35

If do not confirm to add fingerprint to an

existing patient, return to homepage.

[0,27]

t3 → t4 → t5 → t6 →

t9 → t10 → t14 → t15 →

t16 → t18 → t19 → t20 →

t22 → t23 → t24 → t25 →

t28 → t12 → t13

After successful registration of new pa-

tient into EMR, display the patient

record, clicking on which the user can go

to patient dashboard and then return to

homepage.

[0,28]

t3 → t4 → t5 → t6 →

t9 → t10 → t14 → t15 →

t16 → t17 → t29 → t30 →

t12 → t13

If fingerprint data already exists for pa-

tient(s) found by searching with name

or identifier, display the patient record,

clicking on which the user can go to

patient dashboard and then return to

homepage.

[0,22]

t3 → t4 → t5 → t6 →

t9 → t10 → t14 → t15 →

t16 → t17 → t29 → t31 →

t32 → t33 → t34 → t12 →

t13

If fingerprint data does not exist for the

patient found by searching with name or

identifier, then scan, confirm and add

fingerprint, display the patient record,

clicking on which the user can go to

patient dashboard and then return to

homepage.

[0,29]
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5. SIMULATION

Simulation is important for understanding the behavior of a system. With the same

idea, Muzima fingerprint Petri net model is simulated with the help of software tools

named Netlab [20] and Tina [21] to analyze its properties, behavior and to gain more

insight into the system. The theoretical results obtained in Chapter 4 are verified

with the simulation results.

The Muzima fingerprint Petri net model with its initial marking (Fig. 3.15) is

given as an input to the software named Netlab [20]. The incidence matrices for this

Petri net are generated by the software and can be viewed by navigating to ’Invariants

and Algebra → Net matrices and vectors’. The incidence matrix B that is generated

for the Petri net model is shown in Fig. 5.1 and Fig. 5.2. This incidence matrix

B generated is identical to the incidence matrix calculated theoretically as shown in

Eqn. 4.3.

P -invariant(s) and T -invariant(s) are also generated by Netlab for the given input

Petri net. They can be viewed by navigating to ’Invariants and Algebra → Show

P -invariants and Show T -invariants’. The P -invariant(s) generated by Netlab for the

Muzima fingerprint Petri net model is shown in the Fig. 5.3. This result is identical

to the theoretical result obtained as shown in Section 4.2.1.

The T -invariant(s) identified by Netlab for the Muzima fingerprint Petri net model

are shown in the Fig. 5.4. These eight T -invariants are equivalent those obtained

theoretically as shown in the Table. 4.1.

The reachability tree construction of a Petri net as dicussed in Section 2.4.5 could

become exhaustive with increase in size of Petri net (increase in number of places and

transitions). To simplify the construction of reachability tree, a MATLAB program is

developed (as described below) which identifies the reachable markings, their transi-

tion firing sequence and tags them if they are duplicate or terminal. The inputs given
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to this MATLAB program to obtain the reachability tree for Muzima fingerprint Petri

net model are its input incidence matrix B−, incidence matrix B and initial marking

M0.

MATLAB program

1 %MATLAB program to list all the reachable states of a given Petri net

↪→ model and tag any duplicate or terminal nodes if exist

2 %Author: Archana Eadara

3

4 %Initial Marking is added as the first column of reachable markings

↪→ matrix with index 1

5 M(:,1) = M0;

6 %n denotes index of next reachable marking

7 n = 2;

8 %j denotes the index of marking in consideration from which enabled

↪→ transitions are fired to obtain new reachable states

9 j = 1;

10

11 %loop to find all reachable states from initial marking until only

↪→ terminal or duplicates nodes are left in the reachability tree

12 while j <= size(M,2)

13 t = 1;

14 Temp = zeros(28, 1);

15

16 %check which of 35 transitions can be enabled and then fire them

↪→ to obtain a new marking

17 while t <= 35

18 if (M(:,j) >= BMinus(:,t))

19 Temp = M(:,j) + B(:,t);

20 isduplicate = 0;

21

22 %Check if the new marking is duplicate
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23 for i = 1:n−1

24 if(M(:,i) == Temp)

25 isduplicate = 1;

26 duplicateIndex = i;

27 end

28 end

29

30 %if it is not duplicate, add the new marking to the set

↪→ of reachable markings

31 if(isduplicate == 0)

32 M(:,n) = Temp;

33 fprintf('M[%i]−−t%i−>M[%i] \n',j, t, n)

34 n = n + 1;

35 else

36 fprintf('M[%i]−−t%i−>M[%i] (duplicate node) \n',j, t,

↪→ duplicateIndex)

37 end

38 end

39 t = t + 1;

40 end

41

42 %check if the new marking is terminal node

43 if(Temp == zeros(28, 1))

44 fprintf('M[%i] is terminal node\n', j)

45 end

46 j = j + 1;

47 end

48

49 %M denotes matrix with reachable markings added as it columns

50 fprintf('\nThe number of reachable markings are %i which are added as

↪→ columns to matrix M\n', size(M,2))

51 M

The reachability tree for the Muzima fingerprint Petri net model generated from

executing the MATLAB program can be described as follows where each line in the
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form M [i] − −tj− > M [k] represents an arc (transition tj fired) of the reachability

tree drawn from the marking stored in column i of matrix M to the marking stored

in column k of matrix M .

M[1]--t1->M[2]

M[2]--t2->M[3]

M[3]--t3->M[4]

M[4]--t4->M[5]

M[5]--t5->M[6]

M[6]--t6->M[7]

M[6]--t7->M[8]

M[7]--t9->M[9]

M[8]--t8->M[3] (duplicate node)

M[9]--t10->M[10]

M[9]--t11->M[11]

M[10]--t14->M[12]

M[11]--t12->M[13]

M[12]--t15->M[14]

M[13]--t13->M[3] (duplicate node)

M[14]--t16->M[15]

M[15]--t17->M[16]

M[15]--t18->M[17]

M[16]--t29->M[18]

M[17]--t19->M[19]

M[18]--t30->M[11] (duplicate node)

M[18]--t31->M[20]

M[19]--t20->M[21]

M[19]--t21->M[3] (duplicate node)

M[20]--t32->M[22]

M[21]--t22->M[23]

M[22]--t33->M[24]

M[23]--t23->M[25]

M[24]--t34->M[11] (duplicate node)

M[24]--t35->M[3] (duplicate node)

M[25]--t24->M[26]
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M[26]--t25->M[27]

M[26]--t26->M[28]

M[27]--t28->M[11] (duplicate node)

M[28]--t27->M[3] (duplicate node)

The number of reachable markings are 28 which are added as columns to matrix M

M =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
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Fig. 5.1. Incidence matrix B generated by Netlab for the Muzima
fingerprint Petri net model

The reachability tree generated from this MATLAB program is identical to the

reachability tree generated theoretically as shown in Fig. 4.1.

To simulate the Muzima fingerprint Time Petri net model (Fig. 3.16), a software

tool named Tina [21] is used. The Time Petri net model is given as an input to the

software. To check the time taken by a T -invariant (Table. 4.1) or the time taken

to reach a state, launch the stepper simulator by navigating to ’Tools → stepper

simulator’. Use the ’min’, ’max’, ’−1’ and ’+1’ buttons to apply the desired delay

(within the range defined by α and β)for an enabled transition to fire. The total time

taken to complete a T -invariant or to reach a specific reachable state is displayed on

the right as highlighted in the Fig. 5.5. For instance, the time taken to complete

the T -invariant described with firing sequence t3 → t4 → t5 → t7 → t8 with the

maximum possible delays is obtained as 10.0 (Fig. 5.5) which is identical to the

theoretical results obtained as shown in the Table. 4.2
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Fig. 5.2. Incidence matrix B generated by Netlab for the Muzima
fingerprint Petri net model (Contd.)
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Fig. 5.3. P -invariant generated by Netlab for the Muzima fingerprint
Petri net model



65

Fig. 5.4. T -invariant generated by Netlab for the Muzima fingerprint
Petri net model
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Fig. 5.5. Simulation of Muzima fingerprint Time Petri net model
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6. CONCLUSION

The thesis herein presented both Ordinary and Time Petri net models for the work-

flow of Muzima fingerprint module focusing on the functional behavior of the system.

These developed Petri net models are able to identify the qualitative (structural be-

havior) and quantitative (dynamic behavior) characteristics of the system. It analyzed

the place invariants (token conservation) and transition invariants (functional loops)

present in the system modeled. The Time Petri net model developed identifies the

time taken to reach a particular state or to accomplish a fuctional behavior in the

system. Also the reachability tree analysis provided insight about all the possible

reachable states in the system. The generic MATLAB program developed for the

reachability tree analysis also supports the theoretical results.

6.1 Future work

Since Petri nets complement analysis of healthcare workflow, further application

of Petri net modeling will contribute to the analysis, development and testing of

the healthcare software. By assigning weights to the arcs in the Petri net model,

will help us better analyze the weight (resources) inflow and outflow requirements. A

more deeper workflow analysis can be performed for this fingerprint module which can

provide us better insight about the system for its performance improvement. Another

potential work can be performed on reducing the state space size of the Time Petri

net model by serial and lateral fusion of the Time Petri net model to identify time

delays in the system.
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