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ABSTRACT

Kakani, Monika. M.S.E.C.E., Purdue University, December 2017. Non Invasive Ap-
proach for the Detection of Human Arterial Blockages via Photo Acoustic Modelling.
Major Professor: Rizkalla Maher.

This research focuses on the detection of arterial blockage due to LDL (low density

lipoprotein). Arterial blockages are related to two kinds of fats LDL and the HDL.

HDL being the good fat, the patient does not have to undergo the biopsy, while in

case of LDL, biopsy should be performed. Issues associated with invasive approaches

raise safety concerns for patients such as infection, longer operation durations, longer

recovery time etc. This research focuses on a noninvasive imaging technique to detect

the kind of block age. Photo acoustic approach was investigated in order to simulate

human tissues leading to medical diagnosis and treatment. Photo acoustic imaging

involves production of an image on absorption of laser pulses. The laser pulses are

further scattered and absorbed producing heat. The goals of the study were to cate-

gorize the type of the tissue materials based on the output temperature distribution

via IR sensors and reflected acoustic waves via acoustic pressure sensors. The re-

flected acoustic wave and IR thermal distribution may be applied towards arterial

blockages to differentiate the different types of tissue layers. The simulation results

should have implications towards the future implementation of the practical devices

and system. Parameters including energy levels, tissue thicknesses, frequencies, pen-

etration depth, and the densities of the LDL/HDL fat materials were considered.

Various energy pulses; 1j, 3j, and 5j were considered as input sources to the tissue

materials (single or multi layers). The simulated layers considered in the study were

the skin, bone, blood, and fat cells.
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The temperature and acoustic pressure response over the various layers were an-

alyzed for the detection of blockages. The findings of the temperature and acoustic

pressure ranges can be detected by MEMS/NEMS (Micro electro mechanical sys-

tems/nano electro mechanical systems) sensors, such as IR and Piezoelectric de-

vices. Bioheat and acoustic wave equations were solved simultaneously using COM-

SOL software for multiple layers. The proper boundary conditions were provided in

the solutions of these equations. The scattering and transmission acoustic wave, and

the temperature distributions, may be used as guide to the integrated sensor system

design for future consideration. The simulation was performed in four stages:

(1) Single layer and multiple layers at a given frequency and energy level

(2) Multiple layers at a given frequency for different energy levels

(3) Multiple layers at a given energy level for different frequency and

(4) Multiple layers at a given frequency and energy levels with different size tissues.

The simulation results showed that a range of acoustic pressure between 240 and

260 need to be detected, with a differential temperature distribution in kelvin range.

Power pulses of 10MPa showed a temperature change of 175, which is believed to be

within the flexible substrate sensing devices that may be used for the practical model

of this research.

The thesis covers a proposed system for the practical model following the simula-

tion results received in this study.
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1. INTRODUCTION

1.1 Background

Medical imaging is a technique which visualizes the internal structures of the bio-

logical systems for the detection of abnormalities within human bodies. It generates

data for signal processing and computer analysis that determines the status of a

disease. These techniques involve methods such as electroencephalography (EEG),

magnetoencephalography (MEG), electrocardiography (ECG), and computer tomog-

raphy (CT).

Medical imaging techniques can be categorized into two different procedures: in-

vasive and noninvasive imaging. Invasive techniques generally involves surgical proce-

dures while noninvasive approaches provide safe imaging for diagnoses and treatment.

There have been always limitations on the use of invasive procedures, giving features

for the non-invasive techniques in many cases.

1.2 The Real Cause of Arterial Blockage

The coronary artery diseases is primarily because of the atherosclerosis, which is

principally created because of the accumulation of lipids, white blood cells and cell

debris inside the arterial walls. Atherosclerotic plaque enters the arteries causing the

arterial clog. This leads to the limitation of blood flow inside the arteries which might

rupture the arteries called as thrombosis or blood clotting. This condition completely

blocks the flow of blood in the arteries.

Atherosclerosis is primarily linked with the cholesterol in a human body [1] as the

atherosclerotic is due to the accumulation of the cholesterol [2]. Cholesterol in human

body is a lipid with four hydrocarbon rings linked together with one hydrocarbon
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group having a hydroxyl group as a tail and the other end linked to a steroid that

does not get dissolved in the blood. The structure of the cholesterol is given in the

Figure 1.1.

Fig. 1.1. Structure of cholesterol

About 80 % of the cholesterol is generated by the human liver while the rest

comes from the diet from foods through animal products such as meats, poultry, fish

and dairy products [3]. Cholesterol enables the synthesis of cell membrane, it acts

as a precursor molecule, and produces hormones and vitamin D. Cholesterol has a

very prominent role in human heart health as it can be both bad and good. Choles-

terol cannot travel inside the blood stream and lipoproteins are used to transport the

cholesterol inside the blood stream. Hence hydrophilic proteins are attached to the

cholesterol forming a lipoprotein. Lipoproteins act as a transport agent that carries
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various kinds of fats. Lipoproteins help the fats present inside the body to be trans-

ported to the required parts through receptor-mediated endocytosis [4][5]. Lipopro-

teins are built on multiple proteins each comprising of 80-100 proteins/particle. The

level of cholesterol depends on how the lipoproteins are transported. So it is the accu-

mulation of lipoproteins that cause the clog the arteries and not the cholesterol. The

lipoproteins that cause the atherosclerosis are termed as atherogenic, and Apolipopro-

tein (apoB) is found to be the most important component of atherogenic lipoprotein

[6]. Lipoproteins are classified into

1) Low density lipoprotein (LDL)

2) High density lipoprotein (HDL)

1.2.1 Low Density Lipoprotein

A single LDL fat molecule on average transports about 3,000 to 6000 depending

upon the number of molecules present inside the fat and its size (around 220 to 275

angstroms) [7]. The size of the LDL varies because it consists of a number of fatty

acids that keep changing in its number. An increase in the amount of LDL leads to

the development of coronary heart disease [8]. LDL particles drive their particles into

the arteries and these particles attract the macrophages thus leading to atherosclero-

sis.

Oxidized form of LDL results in cardiovascular diseases, as the proteoglycans re-

tain the oxidized forms of LDL. The oxidized form of LDL is generated by the necrotic

cell debris and free radicals present in the endothelium [9]. The LDL particles have

a homogeneous structure. They have two different patterns; pattern A and pattern

B. The latter is considered dangerous since they are smaller and denser in size and

can penetrate easily through the endothelium. It has a size varying between 19.0 to

20.5nm, while pattern A has a size of 20.6-22nm [10].

The concentration of the LDL vary from a person to person due to their living

style, day to day activity and hence the measurement of the LDL has certain diag-
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nostic errors. Diagnostic errors occur when a single sample is analyzed many times.

The errors occur due to the change in volume considered at the time of diagnosing

or malfunctioning of the instrument or it also might be due to the formulation of

reagent. Physiological errors occur even when the analytical errors are noticed to be

zero and these are generally occurred when the individual is diagnosed more than once.

The NIH sponsored National Cholesterol Education Program (NCEP) Adult Treat-

ment Panel III (APTIII) provides an overview of efforts to maintain the diagnosis and

treatment of LDL in order to provide attention to the primary persons likely to have

atherosclerotic diseases [11]. The LDL < 1000 mg/l is considered as an optimal value

while the ones with LDL < 1300 mg/l are likely to be at high risk and LDL < 1600

mg/l are considered to have no risk.

1.2.2 Estimation of Cholesterol

1.2.2.1 Blood Test

The most common way to check the LDL is through blood test. This technique

generally reports what amount of low density lipoprotein is driving to cardiovascular

diseases. It clinically calculates the percentage of cholesterol using a formula given

from Friedewald equation [12][13]

L = C −H −KT, (1.1)

H = HDL cholesterol, L = LDL cholesterol, C = total cholesterol, T= triglycerides

and k = 0.20 when the quantities are measured in mg/dl and 0.45 when measured in

mmol/l.
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Limitations of Blood Test

The limitations of the blood test include

1) Samples must be obtained only after 12- 14 hrs of fast

2) The triglyceride should not be greater than 4.52 mmol/l

This technique has a great impact on finding out the concentration of the LDL

particles and the size of the LDL particles rather than finding the percentage of

cholesterol present in the blood. These results have proved that the greater the

concentration of the LDL particles and smaller sized particles increases the risk of

heart diseases [14].

1.2.2.2 Ultracentrifugation

This technique involves the separation of lipoproteins by adjusting the density of

the specimen using salts such as NaBr or KBr [15] so that the particles float due to

the difference in the densities [15]. The particles containing the LDL, HDL, IDL can

be adjusted to 1.063 kg/l with the addition of KBr and then by processing it through

ultracentrifugation [16] making the LDL float. This technique is observed to be very

tedious and time consuming. It is also observed that this technique does not yield a

proper output hence the other techniques are proposed.

1.2.2.3 Electrophoresis

Electrophoresis was a technique that was initially introduced by Fredrickson and

Lees [17] which classifies the lipoprotein through their separation patterns. And then

techniques such as cellulose acetate [18] and polyacrylamide [19] electrophoresis were

introduced. Of all the techniques the one using agaros gels to separate lipoproteins

and then this followed by precipitation with polyanions [20] and densitometric [21]

scanning gave promising values [22-24].
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1.2.3 High Density Lipoprotein (HDL)

HDL are tiny particles and are the smallest among all the lipoproteins. These are

in the form of a rim usually containing 80-100 particles that mantle the cholesterol.

These transport up to hundreds of fat molecule per particle and are considered to

be denser than the other lipoproteins. HDL is considered to be an essential fat that

stabilizes the body. HDL removes the LDL from the body by transporting it to the

liver and it also heals the inner layers of the damages artery by scrubbing the walls

of the artery. According to the epidemiological studies [25-36] have related that the

high levels of HDL reduces the level of cardiovascular disease. A study conducted

by the British Regional Heart Study (BRHS) proves that HDL does not lead to a

significant risk to the coronary heart disease [37]. The cholesterol transported to the

liver are excreted into the bile and then to the intestine after conversion into the bile

acids. And hence HDL is sometimes referred as good cholesterol.

HDL is also transported to the adrenals, ovaries, and testes, and it is very impor-

tant for the synthesis of the steroid hormones. The process of transporting the HDL

cholesterol from the arteries to the liver until the conversion of bile acids is called

reverse cholesterol transport. HDL particles contain lipids and proteins that are very

low in concentrations but are very active. These particles enhance the ability of the

HDL particles in protecting the person from atherosclerosis. Direct measurement

techniques are considered to be expensive and hence HDL is tested using the blood

tests. HDL is associated with the Apo-A and it carries around 30 % of the blood

cholesterol along with the other fats [37]. HDL is also estimated in clinical laborato-

ries through ultracentrifugation or chemical precipitation with the divalent ions such

as Mg+2 and then they are coupled with the products of cholesterol oxidase reaction

to an indicator reaction and the reference method uses the combination of these two

techniques [38].
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These days the laboratories use analytical techniques in which the ApoB particles

are blocked using the antibodies and then the colometric enzyme reaction is used

to measure the non-blocked HDL particles [39]. Ultracentrifugation combined with

electrophoresis is used to measure the HDL particles as they have net charge and vary

by density and size.

1.3 Invasive Imaging

Invasive imaging techniques involve the invasion of a needle, tube, device, scope

etc., into the body within major surgeries for medical diagnosis. Examples of invasive

procedures include Coronary angiography, Intravascular Ultra Sonography (IVUS),

Virtual Histology Intravascular Ultra Sonography (VH-IVUS), Integrated Backscat-

tered Intravascular Ultra Sonography (IB-IVUS), (IMAP), and Coronary computed

tomography angiography (CCTA). NIRS-IVUS, Coronary MRA being within the

emerging techniques, and NIRF is considered within the investigation state. The

details of these invasive procedures are given below.

1.3.1 Coronary Angiography

Coronary angiography is generally suggested by doctors when they suspect the

blockage of the arteries with plaque, preventing the heart from getting pumped with

oxygen. This technique induces a dye generally iodine and then x-ray imaging tech-

nique is used to detect the presence of plaque inside the coronary arteries. This

technique is generally carried out through cardiac catheterization in which the sur-

geon first take x-ray images and chooses an appropriate place for the insertion of

catheter into the body by making a hole. If the presence of plaque is detected the

surgeon performs percutaneous coronary artery invention, which improves the flow of

blood in the coronary arteries. Then the catheter is removed from the body.
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The risks involves with coronary angiogram are very minor but is noticed to be

risky for old aged people. The risks involved with it include heart attack, kidney

damage, stroke, infection, excessive bleeding, etc., in some cases, the technique is not

preferable, while it still been used if no other options are available.

1.3.2 IVUS (Intravascular Ultra Sonography)

The main advantage of this technique over angiography is that it can image the

presence of plaque and is generally used to detect the amount of plaque present inside

the arteries and stenosis (narrowing) of arteries. This technique involves the usage of a

specially designed catheter with its distal tip attached to an ultrasound probe and the

proximal end being attached to the ultrasound equipment. Angiographic techniques

are used to view the artery or veins by placing the tip of the catheter guidewire steering

it outside the body through angiographic catheter. Sound waves are emitted from

the catheter tip ranging from 20-40 MHz and the ultrasound equipment constructs

the image. The main disadvantages of this technique are related to the cost and the

lengthy procedure in addition to the requirement of experts that are well trained.

1.3.3 VH-IVUS (Virtual Histology)

VH-IVUS provides a more detailed description of the composition of plaque (fi-

brous or fibrofatty), necrotic core and calcium density. It focuses on high radio

frequency analysis of backscattered ultrasound signals [40]. This technique has re-

finements in IVUS improving the spatial resolution. This technique cannot be used

to identify thrombus formation.
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1.3.4 IB-IVUS

IB-IVUS is an algorithm developed by Kawasaki et al [41] which utilizes the time

domain information from the radio frequency signal. This results in generating an

improvised plaque characterization with a specificity of 92 % [42][43].

1.3.5 NIRF (Near Infrared Fluorescence)

This technique improves the potential and sensitivity of biological imaging [44]

[45]. NIRF uses a source of photons generated by exciting light within a defined

bandwidth (650-900nm). When the photons are collided by optical agent or the

fluorescent probe fluorescence is emitted into the NIR window. The emitted fluores-

cence is detected by filter and high charge coupled camera. The main drawback of

this technique is that provides compositional information but does not provide any

details regarding structural information.

1.3.6 IMAP

IMAP is a type of IVUS technique developed using pattern recognition of radio

frequency signals [46][47][48][49]. IMAP technique uses a different algorithm for imag-

ing system with signal trigger is utilized.

IMAP imaging has some disadvantages. It cannot display gray scale images clearly.

The resolution of the images produced by IMAP imaging are high but they have ro-

tational distortion. It is also problematic as it needs high frequency catheters that

may backscatter the blood.

1.3.7 Summary of the Limitations of Invasive Techniques

There are still a number of drawbacks that limit the use of invasive techniques. The

following covers some of the concerns of these techniques

1) Longer time for operation
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2) Might lead to open surgery

3) Difficulty in handling the equipment

4) Risk of infection

5) Long time of recovery

6) Soars and wounds on the body

1.3.8 Issues with Invasive Approach

In addition to the above mentioned limitations for the invasive procedures, there

are still other issues that the physicians should consider within the procedures.

1) The surgeons should be aware of the emerging technologies including the equipment

being used for the imaging as the invasive technique invades inside the human body

through catheter, needles, etc

2) The coronary angiography at times might lead to the infection with cytomegalo

virus or chlamydia pneumoniae

3) Includes the incidence of cerebral emboli

4) Must be careful with lethal complications

5) These techniques do not prevent scarring

1.4 Non-Invasive Imaging

Non-Invasive imaging is a technique used to image the internal parts of human

body without involving any surgical process. Examples of non-invasive imaging are

Radiography, magnetic resonance imaging (MRI), computed tomography (CT), Ul-

trasound or medical ultrasonography, thermography, Positron Emission Tomography

(PET), and Photo Acoustic Imaging.
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1.4.1 Radiography

Radiographic imaging is a 2D imaging technique and it is mainly classified into

projection radiography and fluoroscopy. Projection radiography is mainly known as

x-rays and it is used to detect the type of fracture and to what extent the bones are

fractured. It is also used to detect the pathological changes in the lungs and visualize

the structure of intestines and stomach. It is mainly used to diagnose the ulcers.

Fluoroscopy uses a constant input of x-rays at a lower dose. It is used to generate the

real time images of the internal structures of the body. It requires and image receptor

to convert the radiation into image. The main limitations of this technique are cost

of devices, cost of converting previous records to digital, learning to use the concept,

thickness of the sensor, rigidity of the sensor, and loss or breakage of the sensor.

1.4.2 Magnetic Resonance Imaging (MRI)

MRI technique uses high field strength magnets and radio frequency pulses through

which the hydrogen nuclei of the water molecule are excited producing a signal to

be encoded. The encoded signal generates the images of the body. At times the

technique requires an intravenous dye to show the images clearly. This technique is

mainly used to image brains, pelvis (uterus/ovaries), abdominal area and breast. The

limitations of MRI scanning is the magnetic field generated by MRI scanner attracts

any metal objects, it can also pull any metal containing objects inside the body such

as medicine pumps, aneurysm clips, medical implants get heated up during the scan.

MRI scanners might cause the malfunction of heart pacemakers, defibrillation devices

and cochlear implants.

1.4.3 Computed Tomography (CT)

Computed Tomography uses rotating X-rays to generate the images of the body

which are exquisitely in detail. In this technique the x-rays are blocked by a tissue
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to create an image in which the soft tissues are poor in quality. This technique

suggests the patient to consume liquids prior to the scan. As this would help in

better evaluation of the intestines. The limitations of CT scan include the artefact,

CT scan of brain affects the nearby bones. This technique needs a person to hold his

breathe which is unmanageable by patients. Involves high dosage of radiation.

1.4.4 Ultrasound or Medical Ultrasonography

Ultrasound imaging using very high frequency sound waves to produce 3D images.

The sound waves are sent to tissue and the signals are attenuated and returned at

separate intervals. The waves are then sent to the transducer to generate the images.

This technique is generally used to image fetus in pregnant women. Limitations of

ultrasound includes the detection of nonmalignant area because of which a biopsy

might be recommended. Many cancers cannot be detected. These are not available

all around the world and insurances generally do not cover them. It requires highly

skilled operator to detect malignant lumps.

1.4.5 Positron Emission Tomography (PET)

PET is a nuclear imaging technique used to detect the functioning of organs and

tissues. It is often combined with CT imaging, a scanner, and radio pharmaceuticals.

These are injected to the patient’s vein for a detailed image of the organs inside the

body. It is generally used to detect Alzheimer’s, multiple sclerosis, cancer, heart

conditions. The limitations of this technique are the radioactive materials used in

this process might not be suitable for every patient. A patient can undergo a PET

scan only a limited number of times. It is expensive and it is not offered in majority

of the medical centers.
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1.5 Photo Acoustic Imaging

Biomedical applications using photo acoustic imaging has come a long way in the

last decade [49-53]. Photo acoustic imaging also called as opto acoustic imaging is a

noninvasive imaging technique. This technique uses short EM pulses converted into

EM energy acts as a source. The delivered energy is absorbed by the tissues with time

delays and it is converted into heat. This leads to transient thermos elastic expansion

and this leads to wide band ultrasonic emission. The generated ultrasonic waves are

detected by the transducers and then the images are generated.

The spatial resolution and the maximum imaging depth of the photo acoustic

images can be manipulated with the ultrasonic bandwidth [54]. Spatial resolution of

1mm can be produced by the signals with a bandwidth of 1 MHZ while the bandwidth

being increased to 10MHz produces a spatial resolution of 0.1mm which helps in

ultrasonic penetration. PA depth profiling is a PA imaging technique where we can

determine the depth structure and properties of a sample. This technique utilizes

a wide beam of light pulses heated over a layered medium. The light pulses are

converted into energy and PA energy is spread throughout the depth of the sample. To

determine the properties of complex structures we use a method called PA tomography

(PAT), and also called opto acoustic tomography(OAT) referring to light induced PA

or thermos acoustic tomography (TAT) referring to RF-induced PAT. This technique

studies the sample by measuring various locations around the sample.

1.5.1 Features of Photo Acoustic Imaging Versus Ultrasound

The factors affecting the spatial fidelity and resolution are same for both the imag-

ing techniques but the sources used are different. An ultra sound image represents

the acoustic impedance mismatch between the different tissues hence focusing on me-

chanical and elastic properties while the photo acoustic imaging focuses on initial

pressure distribution generated due to optical energy.
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Photo acoustic imaging has a greater differentiation and specificity when compared

ultra sound imaging due to its differences in optical absorption between the tissues.

PA imaging has strong optical absorption for the hemoglobin making it suitable for

the micro vasculature.

1.5.2 Features of PA Versus other Optical Approaches

Optical imaging is a non-invasive imaging technique that uses visible light along

with the special properties of photons for producing the detailed images of organs.

This technique protects the patients from getting exposed to harmful radiation, spe-

cially used for soft tissue imaging. Optical imaging has various techniques such as

endoscopy, optical coherence tomography, photo acoustic imaging, and diffused op-

tical tomography. Patient’s internal organs are imaged by sending a flexible tube

into the human body through the patients mouth. Optical coherence tomography, a

medical imaging technique which uses light is used to produce the sub surface images.

Diffuse optical tomography is used to generate the information related to brain using

near infrared laser. Photo acoustic imaging uses laser pulses to generate the images.

Scattering of photo acoustic imaging is weaker when compared to the optical imaging

while the spatial resolution of the photo acoustic signals is high and has a depth

greater than 1mm [55].

1.5.3 Photo Acoustic Versus Infrared (Thermal/Acoustic wave genera-

tion)

Imaging through infrared rays is called as thermography and it detects radia-

tion in the long infrared rays. The images produced by thermography are called as

thermograms. Infrared rays are generally emitted by black body objects hence it is

possible to see the environment even in invisible light and it can detect the physiologi-

cal changes many years prior. Thermography uses infrared detectors for the detection

of heat and increased vascularity. Thermography cannot suspect the exact location



15

of the suspected area but it can be used as a functional testing.

Photo acoustic imaging is a structural imaging and it detects the pinpoint location

of the suspicious or effected area. This technique uses high frequency sound waves

that are bounced back by the affected area and are further collected as echoes in

order to produce the images. These are good to distinguish between solid and fluids

tissues.

1.6 Research Hypothesis

The emphasis of this work concentrates on the photo acoustic study. Photo acous-

tic waves may come in the form of LASER ENERGY applied to multiple layered

structures within the human subjects. The study presented here targets non-invasive

approach for detecting the blockages of the human arterial system. The LDL (low

density lipoprotein) fat material present inside the arterial are usually the cause of

the blood clot leading to heart attacks. Therefore, the emphasis of this work concen-

trates on means of detecting this type of material. This medical imaging approach

using photo acoustics is in efforts to a non-invasive approach for detecting the LDL

fat material inside the human arteries.

Photo acoustic imaging as optical imaging combined with acoustic imaging fea-

tures high spatial resolution and high contrast. Photo acoustic image can be produced

by inducing laser pulse onto the tissue surface and depth of penetration depends upon

the wavelength of the induced light. The induced laser pulse beams are scattered and

absorbed, and converted into heat. This heat pulse is received by the ultrasound

receiver and the PA image is formed from the received heat pulses.

Maximum permissible exposure (MPE) is the rate at which a person can be ex-

posed to the EM radiation without causing any changes or damaging the tissues [56].

If tissues are exposed beyond the MPE value it might result in destroying the tissues.

The value of the MPE depends upon the length of the wave and the duration for

which the body is exposed to the wave. The MPE is less when the duration is longer
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and it is greater if the wavelength is greater. The American national standards has

specified the different MPE levels for the specific exposure time and wavelengths [47].

These studies have proved that the photo acoustic rays do not break the biological

tissues or cause any damage to the tissues. These rays use only non-ionizing radiation

and quantifies the oxygenation of hemoglobin [56]. Hence it is ideal for the in vivo

applications.

Photo acoustic imaging has found a wide range of applications in the field of

medicine, biology and clinical assessment that assist diagnosis in cardiovascular dis-

eases, cancer etc. Figure 1.2 indicates the relation between the acoustic and thermal

energy generated from the photo acoustic source applied to the human tissue.

Fig. 1.2. Block diagram of photo acoustic imaging

In this thesis, the Photo acoustic approach was considered as a non-invasive ap-

proach for the determination of the type of arterial human blockages, considering the

research parameters impacting the final PA images from the human arterial system.

Chapter 2 details the photo acoustic imaging approach, features and limitations.

The mathematical models and the physics are given in chapter 3. Chapter 4 discusses

the results of simulation for the single and multiple layers. Chapter 5 details the pro-

posed hardware devices with flexible substrates that are suitable for the practical

model of the project. Chapter 6 gives the conclusion and future work.
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2. PHOTO ACOUSTIC IMAGING

2.1 Introduction

Evolution of photo acoustic imaging is based on the photo acoustic effect, gen-

eration of the acoustic wave with the absorption of the electromagnetic energy i.e.

the optical or the RF energy [56]. PA has come a long way from the time it has

been discovered as a sound wave by Alexander graham bell in 1880 [57] and found its

application in various fields [58-62]. It has marked its impact in biological imaging

since a decade [38-43]. PA imaging is considered as an EM enhanced ultrasound. The

tissue absorbs the incident EM wave and then it converts the EM energy into the heat

energy via thermal expansion. These waves are further received by the ultrasound

receivers and are then mapped for the absorption properties.

The energy used for generating the acoustic waves are generally the electromag-

netic waves in the optical and the RF regions. It has been studied that the waves

between these regions is not only considered to be safe for the human body but also

provide great penetration depths [63-67]. Radiations such as ultraviolet rays have

greater photon energy and hence they are considered to be harmful for human body.

The optical properties i.e. the absorption and the scattering patterns of the biological

tissues in the visible region and near IR region are related to the vibrational struc-

tures of the tissues. The scattering in the biological tissues is pretty strong and it is

described by the scattering coefficient which is equal to 100 cm-1 in the visible to near

IR region [64] and the absorption coefficient can be increased by adding the agents

such as indocyanine green [56].
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The light scattering inside the tissues follows diffusion law providing high reso-

lution images. While the RF properties are related to the physiological properties

of the tissue electrical properties and they are related by the complex of electrical

permittivity or complex conductivity. EM waves in this region are readily absorbed,

transmitted or reflected by the biological tissues but a little scattering occurs at this

range [66].

2.2 Photo Acoustic Generation

There are many imaging techniques that exist but we are interested in imaging the

biological tissues using the EM waves in between the visible region and near IR region.

The EM waves uses the thermoelastic mechanism to excite the transient ultrasonic

waves through low fluence EM radiation. The thermoelastic mechanism produces the

sound wave due to a slight increase in the temperature caused by the absorption of

EM the energy inside the biological tissues. In order to generate the acoustic waves

effectively two main conditions namely thermal and stress confinements should be

met [68]. The amount of heat dissipated due to the thermal conduction can be given

by Tth

Tth =
l2p

4DT

(2.1)

Where l2p the characteristic is linear dimension of the tissue volume being heated

and DT is the thermal diffusivity and its typical value for tissues is 1.4 x 10-3 cm2/s.

The diffusion of the heat depends on the volume of the geometry that absorbs the

heat and Tth may vary [69]. The diffusion length of the energy upon the absorption

of the pulse for a temporal time can be estimated by

δT = 22
√
DTT p (2.2)
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The value of Tp is expected to be smaller than the Tth for efficient PA wave

generation and this condition is referred as thermal confinement i.e. the heat diffused

during the excitation of the pulse is negligible. The time for the stress to be transited

to the heated region can be given by

Ts =
lp
c

(2.3)

Where c is the speed of the sound and it is expected to have a shorter Tp than Ts

and this condition is called as stress confinement. When both the stress confinement

and the thermal confinement are met there would be an increase in a pressure p0 and

this can be estimated by [68] [70]

p0 =
βC2

CpµaF
= ΓA (2.4)

Where β is the isobaric volume expansion coefficient K−1, Cp is the specific heat

in J
(Kg)

, µa is the absorption coefficient in cm−1 , F is the local light fluence in J
cm2

, A is the local energy deposition density in J
cm3 : A= µa F and Γ is referred to as

gruneisen coefficient,which relates the intial pressure p0 to the absorption co-efficient

expressed as Γ=βC2

Cp
[56].

The excited EM pulse pressure acts as a source propagating the acoustic waves in

3 dimensional space. The speed of the sound inside the tissues remains constant at

1.5 mm/ s [63][64]. The scattering properties of the tissues and the depth penetration

of the waves are considered to be low for lower frequencies [63][64]. The energy lost

due to both the absorption and scattering are given by the total attenuation which

is temperature and frequency dependent. The frequency dependency of the total

attenuation can be expressed by the equation [56]

µ = aF b (2.5)

Where µ is the ultrasonic attenuation coefficient, a and b being the constants and

f is the ultrasound frequency [63]. The attenuation is expected to be increased with

the increase in frequency while the penetration depth decreases with the increase in
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frequency. The acoustic waves from the source are applied to the tissues and the waves

from the tissues are collected by the transducer. The information provided here may

assist the practical model of the project. The transducers designed are piezoelectric

based due to its marked advantages [69]. Sensors based on optical detection can

also be chosen [65-71] and these are often based on photo acoustic pressured induced

surface displacement [65][66][70] or refractive index [67] i.e. they can measure non

contact (measurement device doesńt have to touch physically) and large areas [68].

The initial pressure distribution generated in response to a wide impulse pulse is given

in Figure 2.1.

Fig. 2.1. Initial pressure distribution [56]

2.3 Scanning Tomography

PA scanning tomography is considered to be similar to the B-mode(brightness

mode or 2D mode) ultrasonography [56]. The tissue surface is scanned by an focused

ultrasonic transducer which itself converts the electrical energy into thermal energy

and the each detected signal is converted into the 1D image across the axis. All the
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images that are obtained from various positions on the same plane produce images.

The axial resolution of the image depends upon both the width of the radiation pulse

and impulse pulse of the transducer [56]. The lateral resolution depends upon the

focal diameter of the transducer and the center frequency of the received PA signals

and imaging zone depends on the focal zone of the transducer [76] as the image

resolution decreases greatly beyond the focal zone. Figure 2.2 shows the diagram of

thermoelastic scanning tomography.

Fig. 2.2. Thermoelastic scanning tomography [56]
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2.4 RF Scanned Tomography

RF induced PA imaging can be done by scanning the focused ultrasonic transducer

[71-73]. The bandwidth of the PA signal is expected to be the reciprocal of the EM

pulse width and hence a milli sec duration pulse of the RF signal can excite up to

a several megahertz [56] providing a spatial resolution in milli or sub milli meters

for centimeter thick tissue. This technique is used when the depth of penetration is

expected to be large [56]. Figure 2.3 represents the ultrasonic transducer.

Fig. 2.3. Ultrasonic transducer [56]
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2.5 Laser Based Microscopic Imaging

Laser based microscopic imaging is very similar to the RF based imaging but

this technique scales down the image to microscopic range [74]. The laser pulses can

generate an energy of 100mJ in less than 10ns and keep the ability to excite the PA

signals of 100MHZ or greater frequencies keeping the axial resolution of 30m or less.

This provides it the ability to imaging the skin and other delicate organs [56]. This

technique is noticed to have an advantage over the other imaging techniques due to

their high resolution images. Figure 2.4 shows the acoustic lens of focal length f.

Fig. 2.4. Acoustic lens of focal length f [56]
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2.6 Means of Simulation

In order to approximate the size and shape of the particle a numerical method

called as FEM can be utilized. This technique reveals the physical information of

the particle by providing the details of the individual spatial points of the cells.

This technique uses spherical waves for the simulation. Apart from this technique

cytometric techniques are also invented [56]. This technique is used to assess the

morphology of the cells and in large number.
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3. ACOUSTIC AND THERMAL POWER

TRANSMISSION THEORY

3.1 Introduction

Due to the separation between the layers in between the multilayered structures

the delaminations are detrimental to the mechanical and electrical properties. This

is due to the mismatch caused between the layers as a result of the thermal stress

[75]. Conventional techniques utilize the time delay established between the reflected

waves to construct the image but the usage if this technique is limited [76].This

technique has a limitation in its resolution. The waves are reflected only when the

size of the defect is greater or comparable to the wave length. Smaller defect size

results in scattered waves and the smaller wavelength waves are not deep enough to

penetration [76].

3.2 T.L Modeling

Two different waves are produced when a plane wave meets at the interface of

different materials transmitted wave and the reflected wave [76]. Reflections and

refractions are observed when the ultrasonic wave travels through the sublayers of

these multiple materials and the acoustic properties of these materials change the

amplitude of the outgoing wave [76]. The transfer matrix technique is used to analyze

the ultrasonic technique. Consider and incident wave given by the equation 3.1

uI = Aeiωt−k1x (3.1)

equation 3.2 and 3.3 represents the transmitted wave and the reflected wave

uT = Aeiωt−k2x (3.2)
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uR = ARe
iωt+k1x (3.3)

Equation 3.4 and 3.5 represents the combined wave equation in medium 1 and 2

u1 = Aeiωt−k2x + ARe
i(omegat+k1x (3.4)

u2 = ATe
iωt−k2x (3.5)

Applying the principles of continuity of pressure and particle velocity we get the

equations 3.6 and 3.7

A+ AR = AT (3.6)

ρ1v1(1− aR) = ρ2v2aT (3.7)

solving the equations 3.4 and 3.7 we get

AT =
2ρ1v1

ρ1v1 + ρ2v2
A (3.8)

AR =
ρ1v1 − ρ2v2
ρ1v1 + ρ2v2

A (3.9)

We can express the stresses produced by the incident, transmitted and reflected

waves by the equation 3.10, 3.11, 3.12

δI = ik1(λ1 + 2k1)e
iωt−k1x (3.10)

δT = ik1(λ2 + 2k2)e
iωt−k2x (3.11)

δR = −ik1(λ2 + 2k2)e
−iωt− k1x (3.12)

λ here denotes the wavelength and K denotes the longitudinal elastic stiffness

coefficient
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Deriving the transmission and reflection coefficients we get

T =
(λ2 + 2k2)AT

(λ1 + 2k1)A
= − 2ρ2v2

ρ1v1 + ρ2v2
(3.13)

R =
AR

A
= −ρ2v2 − ρ1v1

ρ1v1 + ρ2v2
(3.14)

The intensity coefficients are given by

T 1 =

4ρ2v2
ρ1v1

(
ρ2v2
ρ1v1

+ 1)2
(3.15)

R1 = (

4ρ2v2
ρ1v1

− 1
ρ2v2
ρ1v1

+ 1
)2 (3.16)

3.3 Derivation of T-matrix

Figure 3.1 shows the multilayer structure. Let us consider a continuous longi-

tudinal wave y(x,t) entering from the left side x=0 and they enters the first layer.

Equation 3.17 represents the wave equation after the wave has reached the steady

state.
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Fig. 3.1. Illustration of Multilayer structure

y1 = A1e
iωt−k1x +B1e

iωt+k1x (3.17)

similarly for the mth layer

ym = A1e
i(ωt−kmx) +B1e

i(ωt+kmx) (3.18)

ω here represents the angular frequency and and the wave number is given by kn

kn =
ω

vn
(3.19)

By applying the conditions of continuity and normal particle velocity e can derive

the relationship between various coefficients at the nth cell

An+1 +Bn+1 = Ane
ikna +Bne

ikna (3.20)

Zn+1An+1 − Zn+1Bn+1 = ZnCne
ikna + ZnDne

−ikna (3.21)

The acoustic impedance of the material inside the each layer can be given by the

equation 3.22

zn = ρvn (3.22)
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From the equations 3.20 and 3.21, we can derive the matrixAn

Bn

 =
1

2Zn

(Zn + Zn+1)e
ikndn (Zn − Zn+1)e

−ikndn

(Zn − Zn+1)e
ikndn (Zn + Zn+1)e

−ikndn

An+1

Bn+1

 (3.23)

= T dn

An+1

Bn+1


Similarly we can derive the matrix by observing the transmission and reflection

between the (n+ 1)th ans (n+ 2)th layers

An+1

Bn+1

 =
1

2Zn+1

(Zn+1 + Zn+2)e
ikn+1dn+1 (Zn+1 − Zn+2)e

−ikn+1dn+1

(Zn+! − Zn+2)e
ikn+1dn+1 (Zn+1 + Zn+2)e

−ikn+1dn+1

An+2

Bn+2


(3.24)

= T dn+1

An+2

Bn+2


With relevance to the 3.23 and 3.24 we getAn

Bn

 = [T dn ][T dn+1 ]

An+2

Bn+2

 (3.25)

From equation 3.25 we can getA1

B1

 = [T (m)]

Am+1

Bm+1

 (3.26)

where [T(m)]= [Td1 ][Td2 ][Td3 ].......[Tdm-1 ][Tdm ]

3.4 Impedance Matching

The ultrasonic waves are longitudinal in nature [77]. These ultrasonic waves are

sent into the human body through matched multi layers. The medium tends to act

like a refractive medium when the adjacent particles start moving away from each

other and it acts like a compressive medium when they move towards each other.

The focus point and the direction of the wave can be adjusted by the phased array
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technique [76]. The speed of the sounds depends on the density and stiffness of the

medium.A partial reflection can be seen at the boundaries of the human tissues hav-

ing a change in the acoustic impedance. These reflected waves are further collected

to form an image by the transducer.

Though a lot of research have been performed on piezoelectric materials, medical

imaging transducer using the matching layer has not gained a lot of attention. In

order to achieve high sensitivity the quarter wavelength between the matching layers

and imaging medium are very important. This is because waves can not be sent into

the human body if there is a lot of difference between the piezo electric material and

the transducer [78]. If proper matching is not attained, acoustic impedance mismatch

will cause 80% of the ultrasound energy to reflect at the interface of the resonator

and the human tissue [79].In order to design a lossy backing layer transducer, theorit-

ically the acoustic impedance(zm) should be the geometric mean of the piezoelectric

material(zp) and imaging tissue(zt)

(zm) = 2

√
(zp)(zt) (3.27)

3.4.1 Principle of Quarter Wavelength Matching Layer

The ultrasonic wave transmission is improved by establishing a matching layer

in between the target medium and the front face of the piezoelectric material [76].

The best impedance matching can be achieved when the thickness of the matching

layer is quarter wavelength of the transducer operating frequency. Sensitivity of the

system is further improved by choosing an appropriate material with proper acoustic

impedance. In order to analyze the acoustic impedance of the system, transmission

matrix technique can be used [81].



31

3.5 Physical Parameters that May Impact the Multilayer Matching

Ideal multilayer matching is difficult to achieve due to its dependency on the

bandwidth [82]. The transducer bandwidth gets wider with the double layer struc-

ture [83][84][85][86] and this can be achieved by using a sequential quarter wavelength

layers with higher impedance material adjacent to the piezoelectric material and the

lower impedance material facing outwards direction. In order to make a practical

transducer with sufficient bandwidth leads to a reduction in the transducer sensitiv-

ity [87]. Precise thickness control is necessary in order to obtain proper matching

between the layers. It is not simple as the thin layers need high frequency designs.

Another major problem faced by the designers is choosing the composite materials

and predicting their material performance. One can determine the mixture ratio,

particle material, size distribution by experimental trial and error method for every

case.
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4. GOVERNING EQUATIONS AND SIMULATION

MODELS

COMSOL Multiphysics software has been used to model the device. The software al-

lows to integrate the geometry designed from various other CAD software. It allows

us to couple the multiple physics and also to enter the coupled partial differential

equations. The software has several modules categorized according to the area of

applications like electrical, chemical, mechanical, fluid, etc. The COMSOL Multi-

physics simulations can be interfaced with the CAD packages, MATLAB and Excel.

COMSOL is an easy to use software for modeling and simulating in the real world

multiphysics stream.

4.1 Models used for Modeling the Device

The modeled device needs to be integrated with the laser pulses and the heat

transfer. Hence this study uses the pressure acoustics from the acoustic physics and

bio heat transfer for the spreading the heat uniformly inside the tissues.

4.1.1 Acoustic Module

The acoustic model is used for designing the devices that use the acoustic waves

or that produce the acoustic waves that are to be measured. This module consists of

interfaces that are enabled to measure the propagation of sound in fluids and solids.

Classic problems such as scattering, diffraction, emission, radiation and transmission

of sound can be easily modeled using the pressure acoustics model. The pressure

acoustics module enables us to solve the stationary pressure in frequency domain

where the Helmholtz equation solved or as transient system where the classical scalar



33

wave equation is solved. Acoustic model has many options for boundary conditions

such as boundary condition for a wall or an impedance condition for porous layer.

Radiation or floquet boundary conditions can be used to model the open or periodic

boundaries.

4.1.2 Heat Transfer Module

The heat transfer module helps in investigating the effect of heating and cooling

inside the devices. The model consists of tools for conduction, convection and radi-

ation. It acts as a context for all the industries where the applications rely on the

creation, consumption or transfer of heat energy. The interfaced module bio heat

transfer is used for this model. It is the perfect model for the human tissues and

the biological systems through heating with microwave or resistive or chemical or

radiative heating. This model could be combined with a variety of phase change

phenomena.

4.2 Model Designing

Initially the device had been modeled with a single layer and then it has been

layered with the skin, bone, blood and fat. The circular finger at the bottom is the

acoustic source that is on for a second and then it is shut off. The rectangular layers

are filled with the skin and bone respectively. The elliptical layer serves as fat and

the rest is filled in with the blood. Figure 4.1 shows the geometry of the single and

multiple layers.

The properties of the materials that are used in designing the model are shown in

table 4.1.
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Fig. 4.1. Geometry showing single layer and multiple layers
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Table 4.1.
Properties used of the materials used

Parameter Value

Density of blood 1050

Density of fat 911

Density of skin 1109

Density of bone 1178

Electrical conductivity of blood 1.23

Electrical conductivity of fat 6.48e−2

Electrical conductivity of skin 4.91e−1

Electrical conductivity of bone 1.73e−1

Speed of sound in blood 1578

Speed of sound in fat 1140.2

Speed of sound in skin 1624

Speed of sound in bone 2117.5

Heat capacity of blood 3617

Heat capacity of fat 2348

Heat capacity of skin 3391

Heat capacity of bone 1313

Temperature 293.7 K

Frequency 1Mhz,2Mhz,3Mhz

The figures 4.2 shows the elliptical layer filled with the properties of fat and the

other layers filled with blood. The figure 4.3 shows the layer that is filled with the

properties of the bone.
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Fig. 4.2. Geometry showing single layer and multiple layers

The bottom layer of the device is filled with the skin.

Fig. 4.3. Layers filled with the properties of bone and skin
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Two different physics have been chosen for this model. The pressure acoustics

module interfaced with the acoustics model from comsol has been chosen to fill in

the entire model with the source shooting the acoustic waves into the fat. The given

figure 4.4 represents the model interfaced with pressure acoustic physics.

Fig. 4.4. Layers interfaced with pressure acoustics
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The model requires the heat to be spread evenly inside the tissues after absorbing

the acoustic waves. For this purpose the bio heat module form the heat transfer

model is utilized. The bio heat physics inside the model is as shown in figure 4.5.

The model for this study assumes that the source is located at its bottom having

Fig. 4.5. Layers interfaced with bio heat

its complete focus merging into the fat. Therefore, the energy thermal and acoustic

are focused at the artery site, propagating via the blood, bone, and skin. Figure

4.6 shows the layer set up for the simulation model. Figure 4.7 shows the mesh

distribution with 12mm and 6mm meshes within 40 cm2 blood area. The system

uses two types of meshes. A finer mesh for the corners near the fat region where the

source energy is, and little thicker mesh for the blood region. The thinner mesh was

chosen in order to cover the small size fat where the energy was localized.
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Fig. 4.6. Mesh distribution within the blood material, fat, skin and bone

Fig. 4.7. Pressure pulse assumed for simulation

4.3 The Mathematical Models

Under the assumption that the source of energy was initially acoustic pressure,

the energy conversion to bioheat occurs inside the various tissue layers. Therefore,
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the solutions of dynamic acoustic pressure and temperature throughout the multiple

tissue layers are governed by the two differential equations: the acoustic wave equation

and the bioheat equation.

4.3.1 The Acoustic Wave Equations

An initial pressure of 1MPa was applied to the skin layer was applied. Figure 2

shows the pressure pulse assumed in the simulation. The acoustic wave equations

used in this simulations are given as

∆.(
−1

ρc
)(∆pt − qd))-

(k2eqpt)

ρc
) = Qm (4.1)

Where pt= p+pb , and p is the acoustic pressure and Pb is the biological thermal

pressure.

K2
eq = (

ω

cc
)2 − k2m, km =

m

r
cc =

ω

k
, k =

ω

c
− iα, ρc =

ρc2

c2c
(4.2)

Where m is the mass density, r is the location in space, ω is the radian frequency,

Qm is the metabolic heat source, alpha is the absorption co-efficient and c is the speed

of the sound. The boundary conditions by the normal components of the amplitude

of the acoustic pressure wave at the boundary wall (see equation 4.3), and at normal

displacement dn (equation 4.4) are given by

-n.(
−1

ρc
)(∆pt − qd)) = 0 (4.3)

-n.(
−1

ρc
)(∆pt − qd)) = (iω)2dn (4.4)

Where n is the unit normal vector normal to the interface boundary, and is the

material density.
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4.4 Bio Heat Equations

ρcp∆T + ∆.q = Q+Qbio (4.5)

Qbio = ρbcp,bΩtb-T +Qmet (4.6)

Where T is the temperature, is the density, Cp is the specific heat, k is the

thermal conductivity, b is the density of blood, Cb is the specific heat of blood, wb

is the blood perfusion rate, Tb is the temperature of the blood, Q is the heat, and

Qmet is the metabolic heat source.

The model has been simulated for three different frequencies 1MHz, 2MHz and

3MHz.Frequencies greater than 3Mhz were also considered, but the software crashes

for frequencies beyond 3Mhz. Apart from the point of focus two different out focus

points have been considered and the change in temperature rise has been estimated.

Fig. 4.8. Model showing different point of focuses
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The acoustic pressure energy sourced at the fat region will result in thermal energy

conversion that propagate into the fat, blood, and the skin regions. Furthermore, the

reflected acoustic wave will also propagate via the same media. The thermal and

acoustic propagation patterns may be analyzed for the distinction of the types of fat

assumed in the simulation.

In the study, as indicated by the governing equations 4.7, 4.8, 4.9, the acoustic

pressure is function of the frequency and magnitude of the acoustic pressure. In our

simulation, we considered three types of energy as altered by the frequency 1mhz,

2mhz, and 3mhz.The p0 source was also altered to increase the energy level.

I =
1

2
ρv(ω)2x2 (4.7)

I = PV (4.8)

Comparing 4.7 and 4.8 we get a relation between the angular frequency and the

pressure.

p ∝ ω2 (4.9)
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5. RESULTS AND DISCUSSIONS

5.1 Introduction

In this work, COMSOL simulation was utilized in order to estimate the acoustic

pressure and thermal distribution for individual and multiple layers. Skin, blood, fat,

bones are the individual tissues considered in the study. The simulation addresses the

effect of tissue thicknesses, frequency, pulse energy, and penetration depths through-

out the individual layers.

5.2 Energy Conversion within the Multilayer Structure

The initial energy transmitted into the multiple layers was acoustic pressure in

Pascal (N/m2 ), which is measure in Joule/m3. This energy was transmitted and

partially converted to thermal energy. The latter may be determined via the ther-

mal parameters in relative to the acoustic parameters of the various layers. For

instance, the acoustic energy is determined from the acoustic impedance, frequency

and Grneisen parameter while the thermal energy is determined by the specific heat

capacity and thermal conductivity. The ratio of the two output energies (thermal

and acoustic) were determined by COMSOL software. It appears that the thermal

energy changes via the different layers and propagate following the heat equation de-

scribed in chapter 4. The response of both output energies were determined from the

combined solution of the acoustic and heat equations. The boundary conditions were

set to determined. both T and P at the different interfaces. The following equations

clarify the process:

W0 (the initial energy)= W1(acousticenergy) +W 2 (the thermal energy)
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The expression for acoustic energy has been explained in chapter 4, the ratio

between W1 and W2 are determined based on the parameters pressure and intensity.

These are material based parameters and change from one layer to another.

5.3 Research Parameters

After designing the model, frequency domain analysis and time dependent analysis

is done. The analysis are done using the pressure acoustics followed by Bioheat model

approach help us obtain the acoustic pressure intensity and thermal distribution. The

analysis is done on multiple layers starting with a single layer of bone followed by

1) Bone and skin

2) Bone, skin and fat

3) Bone, skin, fat and blood

The change in temperature and sound pressure for different energy levels and

different thickness is noted.

5.3.1 Study 1: Acoustic Pressure Versus Frequency Domain

Initially the study is computed for pressure acoustics at different frequencies with

physics defined for pressure acoustics keeping the bioheat unselected. A finer mesh is

used for the analysis of study 1. This study is further used for generating data sets

such as revolution 2D, mirror 2D. These data sets help us in obtaining the graphic

solutions such as acoustic pressure, sound pressure and also various temperature

distributions but varying the frequency.
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5.3.2 Study 2: Transient Analysis, Time Domain

Next the study is solved for the bioheat model in time domain using the transient

analysis. This study uses a mesh that is finer than the mesh used in the study 1. The

study 2 is used to produce data sets such as cutline 2D and cut point 2D. These data

sets help us in producing various plots such as acoustic pressure field, temperature

profile with various rise times and fall times.

5.4 Data Sets

Solutions correspond to data stored by the solvers. Every solver is linked to a data

set. Data sets help us in generating the data that is needed to create the expected

visual results.These help us in evaluating and organizing the results. Data sets are

analogous to the data that is stored in the solvers. Every solved model in comsol is

expected to have a data set. Data sets do not change the expected output. For the

simulation of this research work data sets such as revolution 2D, cut point 2D, cut

plane 2D and mirror are created.

5.4.1 Revolution 2D

The current simulation has two sets of revolution 2D data sets in it. Revolution

2D is used for generating the 3D structures using the 2D axial geometry and it helps

us in knowing what happens in the 3D. Two sets of revolution 2D (revolution 2D

1 and revolution 2D 2) are generated for 3D temperature and sound pressure level.

Figure 5.1 represents the revolution 2D 1 and revolution 2D 2 used for the simulation
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Fig. 5.1. Revolution 2D1 and Revolution 2D 2

5.4.2 Mirror 2D

Mirror data sets are used for better visualization of the outputs. Two sets of

mirror 2D data sets are generated one for the better visualization of the acoustic

pressure and the other for the better visualization of the temperature field. Figure

5.2 represents the mirror 2D 1 and mirror 2D 2 used for the simulation

Fig. 5.2. Mirror 2D1 and Mirror 2D 2
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5.4.3 1D Plot Group

1D plots are generally used plot line graphs are needed and these are little different

from using 2D and 3D.

5.4.4 Cutline 2D

Cutlines are generally used to evaluate the variables and see the results along a

line. Cutline 2D is used to generate the plot for acoustic pressure amplitude along

the radial direction in focal plane for 1sec and 2sec. Figure 5.3 represents the cutline

2D 1 and cutline 2D 2.

Fig. 5.3. Cutline 2D1 and cutline 2D 2

5.4.5 Cut point 2D

Cut point 2D data sets are used to evaluate the variables at specific point as shown

in figure 5.4. It can be placed anywhere in the geometry and it does not affect the

output. In this simulation cut point 2D is used for plotting the temperature rise and

fall curves at acoustic focus and 0.5mm off the focus. Cut point 2D 1 and cut point

2D 2 are given in Figure 5.4.
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Fig. 5.4. Cutpoint 2D1 and cutpoint 2D 2

5.5 Bone Tissue Simulation

The acoustic pressure field is observed to be high at the focal point and it is

decreasing as it goes out of the focus point. The total acoustic pressure field indicates

the presence of the fat inside the arteries differentiating the pattern in between the

fat at the focal point and the skin that is located as a layer at the bottom. Figure

5.5 shows the total acoustic pressure. When the figure 5.5 is observed, it can be seen

that the fat tissue has observed most of the acoustic pressure while the other layers

have absorbed very little acoustic energy.
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Fig. 5.5. Total acoustic pressure field

5.5.1 1 MHz/ One Joule Energy Simulation

5.4.1.1 Fat tissue

In this case, the energy source is applied to LDL fat source, and the simulation

was determined at three difference locations to data analysis. The simulations were

determined at 50mm (9.6 mm below the fat center area), 57mm (1.5 mm from the

center fat area), and 70mm (10.4mm above the fat center region) are as follows. The

temperature at the point of focus remains constant but the temperature drops as we

go out of focus.
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At focus, the temperature absorbed was 3.4◦ K above the body temperature

(293.9◦ K), while off focus the temperature at 57mm was estimated to be 2◦ K,

and was dropped to 0.4◦ K, and 0.45◦ K at 50mm and 70mm respectively. A tem-

perature change of ∆T=3.4 - 2 = 1.4◦ K occurred at 57mm, a change of∆T = 3.4

- 0.4 = 3◦ K at 50mm, and a change of ∆T = 3.4 - 0.45 = 2.95◦ K at 70mm. It is

clear that the temperate dropped to 0.5◦ K near the bone area. Figure 5.6 shows the

temperature profile for the fat material at 50mm, 57mm, and 70mm at 1MHz.

Fig. 5.6. Temperature profile for fat at 50mm, 57mm, 70mm at 1MHz

5.4.1.2 Nonfat tissue

Similar simulation was done considering a non-fat material source, and the tem-

perature distribution was determined at the three locations 50mm, 57mm and 70mm

for 1 MHz. Figure 5.7 shows the temperature profile for non-fat material at 50mm,

57mm, and 70mm at 1MHz.

The temperature at focus dropped when material used is nonfat. The temperature

at focus was 2◦ K while it is 0.9◦ K at 57mm, 0.4◦ K at 70mm and it is almost zero at

50mm. At focus the temperature was 2◦ K, while off focus the temperature at 57mm

is 1◦ K, and was dropped to 0.3◦ K and 0.4◦ K at 50mm and 70mm. A temperature
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Fig. 5.7. Temperature profile for nonfat at 50mm, 57mm, 70mm at 1MHz

change of ∆T = 1.4 - 1.3 = 0.1◦ K occurred at 57mm, and a change of ∆T= 1.4-0.25

= 1.15◦ K at 50mm, and a change of ∆T = 1.4 - 0.4 = 1◦ K at 70mm.

5.5.2 2 MHz/ One Joule Energy Simulation

With the increase in frequency the temperature increases. The temperature at

the point of focus rises to 27◦ K. While the temperature off focus is less at 50 mm

and 70 mm compared to the temperature at 57mm. The temperature for the nonfat

decreases when compared to the temperature for fat. A temperature change of ∆T =

23 -12 = 11◦ K has been observed at 57mm while a change in ∆T of ∆T = 23 - 0 =23◦

K at 50mm and 22◦ K 70mm has been noticed. Figure 5.8 shows the temperature

profile for fat material at 50mm, 57mm, and 70mm at 2MHz frequency.

For non-fat material the temperature at focus decreases to 9◦ K at focus while

a change in temperature ∆T = 9 - 7 = 2◦ K has been noticed at 57mm while the

change remains 9◦ K at 50mm and 8◦ K 70mm. Figure 5.9 shows the temperature

profile for nonfat material at 50mm, 57mm, and 70mm at 2MHz frequency.
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Fig. 5.8. Temperature profile for fat at 50mm, 57mm, 70mm at 2MHz

Fig. 5.9. Temperature profile for nonfat at 50mm, 57mm, 70mm at 2MHz

5.5.3 3 MHz/ One Joule Energy Simulation

The simulation given here is based on the same energy but the frequency is in-

creased to 3MHz. The temperature at the point of focus increases to 43◦ K at the

point of focus while a change in temperature of ∆T =43 - 25 = 18◦ K has been

observed at 57mm, and a change remains 43◦ K at 50mm and 42◦ K at 70mm.



53

Figures 5.10 and 5.11 give the temperature profile for the fat and non-fat materials

respectively at 50mm, 57mm and 70mm.

Fig. 5.10. Temperature profile for fat at 50mm, 57mm, 70mm at 3MHz

Fig. 5.11. Temperature profile for nonfat at 50mm, 57mm, 70mm at 3MHz

In a similar pattern, the temperature at focus drops to 23◦ K for nonfat material.

We also noticed a temperature change of ∆T = 23 - 18 = 5◦ K at 57mm and the

change in temperature ∆T remains 23◦ K at 50mm and 22◦ K at 70mm. Figures 5.12

gives the distributions at the bone materials for 1MPa.
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Fig. 5.12. Temperature distributions at the bone materials for 1MPa

Fig. 5.13. Temperature profile for fat at 50mm, 57mm, 70 mm at
P0 =10MPa at 1MHz
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Fig. 5.14. Temperature profile for fat at 50mm, 57mm, 70 mm at
P0 =10MPa at 2MHz

Fig. 5.15. Temperature profile for fat at 50mm, 57mm, 70 mm at
P0 =10MPa at 3MHz

The temperature near the bones is zero hence an increase in the pressure pulse have

been made to notice a significant temperature change at the bones. The simulations

for P0 = 10MPa at 50mm, 57mm and 70mm for the frequencies 1MHz, 2MHz and

3MHz are shown respectively in Figures 5.13, 5.14 and 5.15. The simulations at bones

for when the pressure pulse has been raised to 10 in Figure 5.16.
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Fig. 5.16. Temperature profile for bones at P0 =10MPa for1MHz, 2MHz and 3MHz

5.6 Acoustic Pressure Profile

Sound pressure has been investigated for 1MHz, 2MHz and 3MHz. The output

has been observed to be higher from 240dB to 260 dB as we increased the frequency

at the point of focus. Figure 5.17 represents the pressure that is being used at the

point of focus and the total acoustic pressure that is being lost. The point of focus is

at 59.6mm and the energy that is being reflected beyond the 59.6mm point is lost.

Fig. 5.17. Pressure at the point of focus and the total acoustic pressure that is lost
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Figure 5.18 and Figure 5.19 represent the total acoustic pressure plotted to the

pressure amplitude. These plots helps us in noticing the significant power that is being

dissipated beyond the point of focus. With the increase in frequency the amount of

energy dissipated as loss also increases with the increase in acoustic pressure.

Fig. 5.18. Acoustic pressure field for 1MHz and 2MHz

Figure 5.20 shows a comparison between the variation in acoustic pressure fields

for a single layer tissue and multilayer tissue at 1MHz.
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Fig. 5.19. Acoustic pressure at 3MHz

Fig. 5.20. Acoustic pressure for single layer and multilayer tissue at 1MHz

5.7 Impact of the thicknesses

The study has been extended to include the impact of the thicknesses on the

power transmission (thermal and acoustic). In that study, we considered two different



59

thicknesses for the bone tissue materials. The impact may be attributed to the

different acoustic impedance of the tissue materials at given thicknesses, and the

power transmission and reflections of the overall multilayer structure. This issue is

important for the variations of the tissue thicknesses for different patient’s conditions.

The above data was investigated for 5mm bone thickness. The following simulation

gives the impact when 10mm thickness was considered.

5.7.1 Under the Condition of P0 =1MPa

With 1MHz

Thickness of skin and thickness of bone has been increased. With the change in

thickness the temperature drop at the point of focus and off focus has been noticed.

A ∆T = 4.8 - 1.2 = 3.6◦ K has been observed when the thickness of the bone has been

increased. The temperature change with increase in skin was noticed to be slightly

greater than the change observed with the increase in temperature. A ∆T = 4.9 - 1.2

= 3.7◦ K was noticed. Figure 5.21 and 5.22 show the temperature, acoustic pressure

field, pressure when thickness of skin and bone are varied.

Fig. 5.21. Temperature, acoustic pressure field, pressure at 1MHz with thicker bone
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Fig. 5.22. Temperature, acoustic pressure field, pressure at 1MHz with thicker skin

With 2MHz

The frequency has been raised to 2MHz and the change in temperature has been

noted by increasing the thickness of the skin and bone. When the thickness of the

bone is greater than the thickness of the skin, a temperature change of ∆T = 14 - 8

= 6◦ K has been noticed. Further the thickness of the skin has been increased and a

temperature change of ∆T = 21 - 9 = 12◦ K has been seen.

Figure 5.23 and 5.24 show the temperature, acoustic pressure field, pressure when

thickness of skin and bone are varied at 10MPa for 2MHz frequency.
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Fig. 5.23. Temperature, acoustic pressure field, pressure at 2MHz with thicker bone

Fig. 5.24. Temperature, acoustic pressure field, pressure at 2MHz with thicker skin

5.7.2 Under the Condition of P0 =10MPa

With 1MHz

Further the pressure has been increased to 10MPa to notice a significant rise in

temperature near the bones. At 1MHz frequency a temperature change of ∆T =

50 - 10 = 40◦ K has been noticed and when the thickness of the skin is greater a

temperature change was observed to be the same. Figure 5.25 and 5.26 show the
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temperature, acoustic pressure field, pressure when thickness of skin and bone are

varied at 10MPa for 1MHz frequency.

Fig. 5.25. Temperature, acoustic pressure field, pressure at 1MHz
with thicker bone at P0 =10MPa

Fig. 5.26. Temperature, acoustic pressure field, pressure at 1MHz
with thicker skin at P0=10MPa



63

With 2MHz

The frequency has been raised to 2MHz and the change in temperature has been

noted by increasing the thickness of the skin and bone. When the thickness of the

bone is greater than the thickness of the skin, a temperature change of ∆T = 300 -

40 = 260◦ K has been noticed. Further the thickness of the skin has been increased

and a temperature change of ∆T = 260 - 30 = 230◦ K has been seen. Figure 5.27

and 5.28 show the temperature, acoustic pressure field, pressure when thickness of

skin and bone are varied at 10MPa for 2MHz frequency.

Fig. 5.27. Temperature, acoustic pressure field, pressure at 2MHz
with thicker bone at P0=10MPa
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Fig. 5.28. Temperature, acoustic pressure field, pressure at 2MHz
with thicker skin at P0=10Mpa

5.8 Conclusion

The analysis of the photo acoustic approach for the diagnosis of type of fat inside

human arteries showed promises for future implementation. It is suggested that the

future approach focuses on the fat present inside the skin and the bones as well. The

simulation considered different types of bones and skin with varying thicknesses.
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The differences in pressure and temperature throughout the multiple tissue layers

indicate the ability for MEMS and NEMS devices to detect the change.

In temperature and acoustic pressure parameters. The research parameters inves-

tigated in this work cover the frequency, tissue thickness, and acoustic pressure. The

acoustic pressure and frequency were Parameters used for investigating the proper

non-invasive approach covered in this work, while the tissue thicknesses are patient

specifics.

Since the findings depend on the patient thicknesses, the approach followed here

suggest that the impact of frequency and acoustic pressure for a given thickness should

lead to a proper diagnostic approach.

The temperature change for all cases were ranging between 1.4◦ K, and 175◦ K,

which is very doable via MEMS devices. Chapter 6 details future implementation

for the typical temperature and acoustic pressure change as received from ten result

section of this work.

There have been efforts done to run the simulation for higher frequencies such as

20MHZ as seen by other research efforts in the field, however, simulation at this high

frequency showed some instability in the simulation. This may be attributed to soft-

ware ability to run at this very high frequency for multiple tissue thicknesses. Even

though, the three frequency values used in the study were sufficient and provided

clear findings on the issues.

The temperature change and acoustic change given for different tissue thicknesses

may be attributed to the change in the acoustic impedances of the different layers.

The mismatching impedances of the different layers may lead to different power trans-

mission.This was clearly covered in chapter 3 of the thesis.

The ratio between the acoustic and thermal energy generated from the initial

acoustic energy may be estimated for the hardware design that could be more suited

to the higher energy exhibiting the arterial information. This is reserved for future

work.
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5.9 Data Analysis

The following data summarize the impact of the acoustic energy as the frequency

changes from 1 to 3MHz, and the effect of the acoustic power as P0 changes from

1 to 10MPa. The temperature and acoustic pressure profiles while propagating and

penetrating throughout the multiple layers are summarized below.
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6. FUTURE WORK

6.1 Introduction

In this chapter we elaborate on the practical model of the system that enables

monitoring the dynamic and special temperature and acoustic pressure distribution

throughout the multiple layers from the human artery until beyond the skin layer.

This hardware monitoring system will assist with the medical diagnosis for various

patients. The research parameters obtained in the result section of the thesis have led

to the proper selection of the hardware devices and processing units. Data received

from the artery were both acoustic pressures and infrared. Therefore, the focus of this

chapter is seeking IR sensors that can detect the ∆T(temperature) dynamic change

throughout the human body, and the acoustic pressure sensors that can detect a

change of nearly a small fraction of Mega Pascal. The devices proposed here are

generally sensors that can detect a change in temperature within the body. The

choice of these sensors was based on their ability to monitor the artery temperature

and acoustic distribution from outside body.

6.2 Infrared Devices

High technology IR sensors are used in wireless communication between a trans-

mitter and a receiver. In this case, however, the IR sensors are meant to be tempera-

ture detectors from a distance (to detect the temperature at the artery and throughout

the body from outside).

Generally infrared devices can communicate from short distance to medium range

distances within the centimeter range, depending on the mode of the device; near,

mid and far waves. One of the best examples of an infrared device is the TV remote
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controller. IR communication cannot be established between two rooms and IR rays

cannot pass through the walls. Acoustic devices are generally used for amplification

or to produce the sound waves. Most of the photo acoustic signals are generally used

for imaging purposes. These devices are used for both invasive and noninvasive imag-

ing. In invasive imaging the devices are manufactured as probes and sent into the

human body. Infrared signals lie in between the visible light and micro wave signals

i.e the region in between the 0.75 µm and 1000 µm in the electromagnetic spectrum

is termed as the infrared region. According to Plancks radiation law, infrared rays

are emitted by any object that has its temperature greater than 0 kelvin.

IR sensors are electronic devices that are used for the detection of heat or motion

by emitting or detecting the infrared radiation. Infrared sensors are classified into

two types: passive infrared sensors and active infrared sensors. The sensors which

emit and also detect the emitted signals are termed as active infrared sensors while

the sensors that only measure the infrared radiation than emitting the signals are

called as passive infrared sensors (PIR sensors).

IR sensors generally need an IR source, a transmission medium, an optical system,

a detector and a signal processor. The IR rays needs a medium to be transmitted.

The optical system is used to converge the IR rays into the detection system. De-

tectors are of two types: thermal and quantum. Thermal detectors are independent

on the wavelength and has a material detector in them, while the quantum detec-

tors depend on the wavelength. The output obtained from the detectors need to be

amplified as they are very small magnitude in nature. Hence signal processors are

required.

IR sensors finds its applications as radiation thermometers which detect the tem-

perature of the body by direct contact, flame monitors which detect and monitor the

emitted light from the flames, moisture analyzers, IR imaging, remote sensing, etc.,

IR imaging is one of the primary applications of the IR sensors. Thermal IR detectors

map the detected temperature distributions on to the image.
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6.3 Acoustic Sensors

Acoustic sensors are electronic devices that are used to measure the level of sound

pressure. When acoustic waves travel through certain materials, the acoustic waves

influence the material properties that they travel through. Any changes to the prop-

erties of these materials changes the amplitude and velocity of the acoustic waves,

which are then captured by the transducers and then characterized into the digital

output. The changes in the properties can be figured out by measuring the frequency

or phase characteristics [82] [83]. All the devices need a piezoelectric layer to generate

these acoustic waves. Pressure from electricity is termed as piezoelectricity which is

the production of electrical charges out of mechanical stress. These sensors generally

use two inter digital transducers (IDTs); one that converts the incoming signal into

mechanical signal while the other converts the mechanical signal to electrical signal.

Both the transducers are electrodes that are interlocked in a comb like structure.

The frequency of the wave scan be altered with the change in the distance between

the electrodes [84]. Change in length, width and position of these IDTs varies the

performance of the sensors. These sensors are generally used in telecommunications

industry in order to detect the disturbances and prevent the unwanted change in the

output. These sensors also detect the mechanical failures in the components [85]. The

infra-red modes are shown in Figure 6.1, where the near wave can detect a distance

of 14000-4000 cm−1, the mid will characterize materials within 4000-400 cm−1, and

the far can detect a distance in the order of 400-10 cm−1. These distance ranges vary

from one sensor to another. As it can be seen, a distance of near 10 cm−1 can be

detected via IR devices.
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Fig. 6.1. IR modes
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6.3.1 Approaches

Diagnostic approach is based on two main assumptions:

1) The initial energy is transmitted to the artery, and released from the artery into

the body. The natural response of the energy through the bone, blood, and skin can

be used in the medical diagnoses.

2) The initial energy is transmitted from outside until reached the artery, then the

source of energy is then turned off, and let the energy at the artery released throughout

the skin, fat, bone, and blood). Under this procedure, the assumption made was that

the bone and skin materials have shorter fall time than the human artery. In this

case, the energy in the artery is till stored, while the other materials have negligibly

small energy.

6.3.2 The Focal Energy at the Artery

The transducers that can provide the first approach are devices that can shoot

energy into the artery. These are preferred to have piezoelectric layer on top of

the SiO2. Piezoelectric sensors, and are generally used to measure the change in

pressure, strain, acceleration, temperature or force, by converting them into electric

charge. Piezoelectric materials provide a high transformation of acoustical energy to

bandwidth energy and vice versa [86]. They also provide high and uniform acoustical

interaction with the semi conducting material [86]. ZnO and AlN are two popular

ceramic piezoelectric materials considered in general. But ZnO has stronger piezo-

electric coupling when compared to AlN [86]. On top of piezoelectric layer a layer of

gold is assumed to be deposited because it has high electrical conductivity, providing

better resistance to oxidation, low hardness and reduction to the signal attenuation

[87].

The fabrication of the device take place in four steps. The first step involves the

removal of the oxide layer from the substrate. Reactive ion etching process can be

used for the removal of the oxide layer. Now a layer of ZnO is sputtered onto the wafer.
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Fig. 6.2. The structure of the device

A layer of gold is either sputtered or electro plated for uniform distribution along the

chip. The chip is lastly patterned using a solution of H3PO4:CH3COOH:H2O in a

1:1:150 ratio [87]. Figure 6.2 shows the structure of the device.

The transducer is designed in such a way that it has two transducers placed in

concentric circles in the form of eight fingers with some finger space in between. One

of the transducers acts as an input source and the other acts as an output source. The

transducers used in this model are the IDTs (interdigital transducers). IDTs are three

port devices built with electrodes having one electric port and two acoustic ports. If

we give input to an electric port, the other two ports generates surface acoustic waves.

If one of the acoustic ports is given input, an electric signal and an acoustic wave will

be generated [88]. When an electric voltage is applied, it generates an electric field

and the generated waves are received by the receiver. The difference in the electric

field between the adjacent electrodes converts the input signal into acoustic waves
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Fig. 6.3. A part of transducer and it’s dimensions

and the vice versa happens at the output [88]. According to the designed model

the radius of the transducer should be 58.6 mm and the length of the arc should be

46.01mm.

The propagation of the surface waves depends on the thickness of the piezoelectric

layer. The ideal thickness for ZnO was found to be 6 micro meters [89]. To arrive at a

proper resonating frequency the finger space should half the resonating wavelength λ.

Changing the number of finger pairs do not change the sensitivity of the device but

using 16 fingers lead to crosstalk between the resonators hence 8 fingers are suggested.

The acoustic wave travels through the piezo electric material to a distance equal to 1.5

times the focal length. This sets a delay line of 500 micro meters hence an elliptical

structure instead of circular is suggested.
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6.3.3 Transducer that Shuts off after Heating up the Fat

This design involves placing a thermal sensor on a micro machined plate through

which a substrate is connected via bridge arms. The micro machined plate and bridge

arms form the membrane layer having the sacrificial polyimide layer underneath [90].

A half wheat stone bridge is formed by depositing the piezo resistors and by patterning

the bridged arms. These are later interconnected through the aluminum. Two bridge

serves as the bridge for thermal sensor interconnects while the other half is used

to house the piezo resistors [90]. Considering a six arm piezo resistor four of the

arms have piezo resistors on them while the other two have titanium interconnects.

Six different materials can be used to design this model with silicon nitride as the

membrane layer and polysilicon as the piezo resistive layer. For the thermal sensor

yttrium barium copper oxide [91-93], gold, titanium can be used. Aluminum layer

can be used as metallization layer for connecting the wheat stone bridge resistors

acting as pressure sensor. Polys ilicon can be used as the piezo resistor material as it

has high strain gauge values [91-93].

6.4 Acoustic Sensor for 0.5Mpas Pressure Detection

The device consists of a saw device that is heated and suspended due to its tem-

perature sensitivity. The device is made pressure sensitive by choosing a proper saw

material and also by increasing the operating frequency. The concepts of thermody-

namics and gas kinetic theory explains the working of the device. The temperature

of the system is said to be in equilibrium when the induced power due to heating is

equal to the conducting gas and the power dissipated due to radiation into the sur-

roundings. The change in the pressure induces the change in power due to conduction

and this change can be compensated by varying the power that is dissipated due to

radiation. And this leads to a variation in device temperature from T eq to T f (final

equilibrium) and this change can be expressed by
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∆T =
4

√
ψ(T 0 − T eq)∆P

εσ
− T eq (6.1)

Where ∆P is the change in pressure,T0 is the temperature of the gas, ε is the emissivity

of the substrate σ is the Stephans constant and ψ is given by

ψ =
3
2k

2
√

2π.mkT 0

(6.2)

Where k is the Boltzmann constant and m is the mass of one gas molecule.

The heating resistor of the device is made up of a delay line surrounded by gold or

platinum film. The structure is then deposited on a piezoelectric dye and is suspended

completely with the wire bonding for providing it with thermal insulation. IDTs of

the saw device are connected to the PCB, heater and RF (SMA connector) through

wires. The electric current needed for heating the device can be varied by changing the

number of wires used for connecting, this increases the thermal conduction between

the saw device and the PCB. RF signal is transmitted via PCB, SMA and coaxial

connector.

6.4.1 IR Sensor for Temperature Detection

A temperature sensor-RTD manufactured by Honeywell sensing and productivity

solutions with the part number HRTS-5760-B-U-0-12 packaged as a probe is highly

recommended to be used for this device. It can detect temperature around 0.5◦ K

with an accuracy of 0.5◦ C. This device has a tolerance rate of 0.1. The device is very

actively available.

6.5 The Processing Unit

The output from the transducer is sent to the amplifier to the charge amplifier.

From which the output is fed to a low pass filter in order to remove the noise from
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Fig. 6.4. Processing unit

the signals. And then the signals are sent to an ADC. The signals from the ADC are

fed to the oscilloscope. Figure 6.4 shows the block diagram of the processing unit.
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