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ABSTRACT

Witcher, Paul Ryan. M.S.E.C.E., Purdue University, May 2017. Particle Swarm
Optimization in the Dynamic Electronic Warfare Battlefield. Major Professor:
Lauren Christopher.

This research improves the realism of an electronic warfare (EW) environment

involving dynamic motion of assets and transmitters. Particle Swarm Optimization

(PSO) continues to be used to place assets in such a manner where they can com-

municate with the largest number of highest priority transmitters. This new research

accomplishes improvement in three areas. First, the previously stationary assets and

transmitters are given a velocity component, allowing them to change positions over

time. Because the assets now have a starting position and velocity, they require time

to reach the PSO solution. In order to optimally assign each asset to move in the

direction of a PSO solution location, a graph-based method is implemented. This en-

compasses the second area of research. The graph algorithm runs in O(n3) time and

consumes less than 0.2% of the total measured computation time to find a solution.

Transmitter location updates prompt a recalculation of the PSO, causing the assets

to change their assignments and trajectories every second. The computation required

to ensure accuracy with this behavior is less than 0.5% of the total computation time.

The final area of research is the completion of algorithmic performance analysis. A

scenario with 3 assets and 30 transmitters only requires an average of 147ms to update

all relevant information in a single time interval of one second. Analysis conducted on

the data collected in this process indicates that more than 95% of the time providing

automatic updates is spent with PSO calculations. Recommendations on minimizing

the impact of the PSO are also provided in this research.
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1. INTRODUCTION

Particle Swarm Optimization (PSO) is an optimization method whose solution con-

verges quickly and efficiently in scenarios with multiple constraints and objectives.

The ease of creating and running a PSO, along with its speed performance compared

to other optimization techniques, makes it an appealing and impressive tool. The

PSO combines the characteristics of genetic algorithms and evolutionary computation

approaches inspired by nature to solve complex scenarios in dynamic environments.

The technique of PSO was developed in 1995 by Professors Eberhart and Kennedy

[1]. This optimization technique is motivated by the behavior of flocks of birds and

schools of fish. Each member of the group is considered a particle, and a group of

particles, a swarm. The swarm works towards a global optima, defined by various

characteristics of the scenario. These characteristics are measured by the weight of

each term in a fitness function, where the terms are representative of the parameters

set by the user. The fitness function evaluates the suitability of the swarm’s current

state compared to a goal state that maximizes its value.

1.1 Overview and Problem Statement

This project continues the work conducted by Mr. Joshua Reynolds, Mr. Jonah

Crespo, and the Crane Naval Surface Warfare Center (NSWC) [2] [3]. In this work, a

PSO algorithm is implemented to identify the optimal locations at with to place assets

such as Unmanned Aerial Vehicles (UAV). The computation of these locations occurs

in a time span of less than one second, providing real-time updates to the dynamic

electronic warfare (EW) battle space. Assets are placed in order to conduct EW

operations with transmitters, each with a priority and particular frequency, located
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on the ground. This placement also takes into account obstacles produced by 3D

topography and allows dynamic and human interaction with the swarm [3] [4].

There are three objectives for this research. First, the behavior of the transmitters

and assets needs to be extended from their currently defined static interaction with

the battle space to one that is dynamic. The prior work assumed that the assets

and PSO solution locations shared the same 3D coordinates. Therefore, a separate

asset object needs to be added to the program in order to realistically simulate the

assignment and movement of assets to PSO-defined locations in the EW battle space.

Likewise, the transmitters will not always be stationary. For that reason, a velocity

component will be added to each transmitter, allowing it to move across the battle

space. Further, this research implements a method allowing the locations of the

transmitters assets and PSO-defined locations to automatically update on a set time

interval. The user is able to start and pause the update of these positions, as well as

reset the battle space to an initial state.

The addition of dynamic asset and transmitter behavior prompts the need for the

second objective. This objective addresses how the assets are assigned to individual

locations of the PSO solution. A graph-based method is implemented to provide the

optimal assignment of assets to the PSO solution locations. It runs in O(n3) time

and has less than a 0.2% impact on the total computation.

With the addition of algorithms and logic necessary to implement the prior two

objectives, the final objective will be to conduct code profiling. This process will

identify which functions consume the most time in running the PSO application.

Scenarios with different numbers of assets are tested. This research collects time

measurements of the PSO calculations, asset navigation, Hungarian Algorithm, and

redrawing of the GUI. These results are analyzed to pinpoint which functions are best

suited for parallelization.
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1.2 Literature Review

The concepts and theory involved in the use of PSO, dynamic asset allocation,

and the Hungarian Algorithm have been implemented in other ways in the literature.

These approaches demonstrate the flexibility of the aforementioned computational

tools and show that the contributions in this research are unique and relevant.

1.2.1 Particle Swarm Optimization

PSO has been applied for asset allocation with microgrids and transmission sys-

tems. Mohan et al. [5] optimize a microgrid with PSO in order to distribute total

load demand to microsources in a manner that maximizes the profit per unit of risk.

They add the mechanism of stochastic weight tradeoff to the PSO, which balances

the exploration of the population on a global and individual scale and diversifies the

individual members of the swarm.

Rhein et al. [6] implement a PSO to optimize the maintenance and replacement of

components in electrical transmission systems. As a result, the system maintenance

is scheduled to maximize availability and reliability while minimizing the financial

cost of said operations.

Al-Hmouz et al. use PSO to solve another type of problem [7]. Their implemen-

tation optimizes the distribution of information granularity in the analysis of time

series.

A more prominent use of PSO for asset allocation can be found in financial sce-

narios. Liang and Qu [8] use PSO to select an investment strategy for a large scale

portfolio. They modify the PSO to use Dynamic Multi-Swarms, where the entire pop-

ulation is composed of randomly grouped smaller swarms, to optimize the investment

decisions. Similarly, Dang et al. implement a PSO to maximize wealth for dynami-

cally allocated financial assets because of its low time of convergence [9]. Zhang and

Zhang also modify a PSO to maximize the financial gain for asset allocation [10].
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1.2.2 Dynamic Asset Allocation

Other approaches outside the realm of PSO have been used to optimize dynamic

asset allocation. Parque et al. [11] use the Guided Genetic Relation Algorithm, a type

of evolutionary computation technique, to adapt the allocation of assets in a financial

portfolio as the market changes. Berksekas et al. uses a neural-dynamic programming

framework to allocate defensive resources during a missile defense engagement [12].

Dynamic asset allocation in airborne scenarios has also been implemented with a

variety of other approaches. Arslan et al. use dynamic programming to solve small

allocation problems with airborne assets [13]. Their approach changes for problems

of larger scale. These problems are solved with the use of hierarchical control and

potential function methods. In both approaches, the authors aim to optimize the

allocation of air assets and ammunition to ground targets.

Another implementation of dynamic airborne asset allocation is found in McDon-

nell et al. [14]. Evolutionary search is used to allocate assets for air strikes. Factors

such as weapon effectiveness and risk are evaluated when optimizing the asset allo-

cation. The strike force assets and targets are optimally coupled together, but in a

non-spatial and non-continuous manner. This approach to asset assignment by Mc-

Donnell et al. is more limited in scope compared to the continuous assignment in

three dimensions that occurs in this research.

Naval-based solutions for assigning military assets to targets in the scope of asset

allocation are also found in the literature. Avvari et al. implements Voronoi tes-

sellation for partitioning the search space for identification of high probability areas

containing smugglers [15]. Flow maps are then created to direct the assets to the

areas where counter-smuggling operations are most likely to succeed.

Another implementation that is more offensive in nature is accomplished by An et

al. in [16]. The goal of the work by An et al. is to conduct counter piracy operations.

These operations occur in two phases. Phase I allocated assets to intercept pirates

and Phase II searches the regions not covered by the interdiction assets for other
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threats. The Gauss-Seidel Algorithm is used in Phase I to guide assets to areas that

have a high probability of pirate attacks. Phase II utilizes a partitioning algorithm

coupled with an asymmetric assignment algorithm to search the regions not covered

in the first phase for future assignments.

Raboin et al. apply dynamic asset allocation to a defensively-situated naval en-

gagement [17]. They use market-based planning for task allocation of unmanned

surface vessels to guard a particular area of interest. A genetic algorithm is then

implemented to optimize the vessels’ behavior, and a velocity vector is calculated to

update their positions. Raboin et al. limit these assignments and subsequent inter-

actions between vessels and task to the maritime realm, whereas the approach in this

research for optimization of asset allocation involves interactions between ground and

airborne units.

Cutler and Nguyen also dynamically allocate assets for a tactical air defense sce-

nario in [18]. However, they use a rule-based model to allocate the resources. Oxen-

ham and Cutler then build off of this work in [19] by adding obstacles to the scenario.

A shortest path problem is then solved in a spherical geometry environment by com-

bining a visibility graph with the use of Dijkstra’s Algorithm.

A third type of military application is pursued in the work by Preece et al. in [20].

Their work utilizes a bidding protocol to assign sensor assets that operate in the realm

of intelligence, surveillance, and reconnaissance to various mission tasks. However,

the resource scheduling applied in the work by Preece et al. is simplified from that

which would occur in a real world scenario.

1.2.3 The Hungarian Algorithm

As with the related works of PSO and dynamic asset allocation, the Hungarian

Algorithm has been utilized in various implementations in the literature. The follow-

ing sections will show that while the Hungarian Algorithm has been applied to the
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problem of optimally assigning assets, the work pursued in this research is a unique

contribution to what has been accomplished the current field of work.

The first interesting use of the Hungarian Algorithm is the modification imple-

mented in [21]. Mills-Tettey et al. recognize that the Hungarian Algorithm will be

applied to assignment problems where the edge weights or costs change over time.

They present a version of the algorithm that is able to solve the assignment problem

after its cost matrix has changed. It accomplishes this in O(kn2) time, where k is

the number of changed rows or columns in the original cost matrix and n defines

the size of a partition of the bipartite graph [21]. Future work could investigate the

addition of the algorithm from Mills-Tettey et al. in this research, and if appropriate,

implement it in place of the current O(n3) version.

Another use of the Hungarian Algorithm is implemented by Huang [22]. The

author in [22] combines the Hungarian Algorithm with a genetic algorithm to find

the shortest route possible for the traveling salesman problem. The scope in this

research differs than that in Huang, as a solution to find an assignment of every asset

to a solution has to be found, rather than a single shortest path.

The Hungarian Algorithm is also utilized to optimize situations with static loca-

tions and formations. Zhang et al. uses it to place robots in a static formation [23].

The total distance traveled by the group of robots is minimized in their work. Zhao

et al. allocates sensor resources in a similar manner [24]. The sensors are stationary

and are used to track and communicate with moving targets. To ensure reliable and

accurate tracking, Zhao et al. optimize the assignment of sensors to targets. Similar

use of the Hungarian Algorithm with sensor configuration can also be found in [25].

Several works in the literature also utilize the Hungarian Algorithm for dynamic

situations. Liao et al. use the Hungarian Algorithm when deploying mobile sensors

to create a wireless sensor network [26]. They focus on optimizing the target coverage

and network connectivity with this algorithm. Optimization of the target coverage is

achieved in their work by minimizing the distance the sensors travel. However, this is

only applied to certain scenarios, with the Basic Algorithm and TV-Greedy Algorithm
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being used in all other cases to minimize the total distance traveled. Meanwhile, a

Steiner minimum tree is used to optimize the network connectivity.

Zhang and Wang utilize the Hungarian Algorithm when assigning tasks and tar-

gets to robots in [27]. Used in conjunction with the Genetic Algorithm, they are able

to optimize the risk and time for the assignment of the robots. Targets assigned to

the robots also contain a survival probability density that is accounted for when op-

timizing the assignment. Contrary to the independent behavior of each asset in this

research, Zhang and Wang assume that all robots reach their targets simultaneously.

Further, the assignment by Zhang and Wang for the robots is only updated two times

during the simulation. Since the asset and transmitter positions of this research con-

tinuously update, the formulation and solution of the assignment problem is updated

every second in the implementation of this research.

Turra et al. also optimize task assignment for unmanned vehicles with the Hungar-

ian Algorithm [28]. Each unmanned vehicle has three possible tasks for each target;

identification, verification, and attack. Timing constraints are utilized to space the

execution of the tasks apart from one another. However, minimizing the distance

traveled by the group is not the main objective for the optimization process by Turra

et al. Further, they do not apply the real time update behavior found in this re-

search to their work. Nonetheless, they do compare the efficiency of their use of the

Hungarian Algorithm for optimization with the approach in [29]. Alighanbari et al.

apply Mixed Integer Linear Programming (MILP) to coordinate the movement of

UAVs. A more complex approach using the same formulation of the scenario as a

MILP problem can be found in [30]. Here, Han et al. solve the MILP problem with

the Lagrangian relaxation method and a dynamic list planning heuristic algorithm.

Regardless, Turra et al. note that it is common for the computation required to solve

MILP problems as they are scaled upwards increases to the point of being unusable

for real time simulations [28].
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1.3 Summary of Past Contributions

This research uses the prior work on PSO and asset allocation by Reynolds [2]

and Crespo [3]. The application developed by them uses a population of particles

to determine the optimal locations to place airborne assets in order to conduct EW

operations with a group of ground-based transmitters. Crespo’s improvements include

adding a component of real-time human interaction with the swarm [3] [4] and the

addition of 3D topography from the data collected by NASA’s shuttle missions [3].

On account of the addition of 3D topography, Crespo enforces constraints on the

available solution space to maintain the realism of the simulation.

Reynolds’ and Crespo’s work also provided this research with a GUI to run the

PSO and display relevant information. This includes data on the PSO solution lo-

cations, the transmitter priorities, and the frequency bands in which the assets are

assigned. A 2D representation of the transmitter locations, keep-away boundary, and

asset locations, along with a Fitness Plot that measures the convergence of the PSO

solution, are also included in this interface.

Three significant assumptions were made in the previous work. First, the trans-

mitters were assumed to be static and unchanging in their position. Second, the PSO

solution locations are assumed to be the same as the asset locations. With this as-

sumption, the movement of the assets is modeled as jumping instantaneously to the

PSO solution. The last assumption is that the same asset is assigned to the same

PSO solution location.

1.4 Individual Contributions

This thesis describes the contributions made to solve the objectives outlined above.

The first contribution involves transforming the static behavior of the transmitters

and assets into dynamic behavior. This includes providing the user with the ability

to start, pause, and reset the battle space simulation. Next, the second contribution

is implementing a graph-based method, the Hungarian Algorithm [31] [32], alongside
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the previously developed PSO from [2] and [3]. This implementation has a time

complexity of O(n3) and consumes less than 0.2% of the total computation time

spent updating the battle space information. The third contribution involves the

collection of profiling data, its analysis, and recommendations on which parts of the

project can be optimized and parallelized.

The main sections of this paper are defined as follows. Section 2 details the ad-

dition of transmitter movements and an automatic, user-controlled update of their

positions. Section 3 explains the challenge of asset movement towards a PSO solution

and the theory and methods used to solve this challenge. Section 4 measures the per-

formance of this research’s improvements and provides analysis of said measurements.

Section 5 summarizes the contributions of this research and proposes improvements

and changes in future work.
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2. TRANSMITTERS

With the ever increasing presence and use of electronic warfare in today’s battlefield,

speed and accuracy are of the essence when observing and interacting with battlefield

data. Due to testing and simulation constraints, the PSO was only run on static

transmitter positions in the prior work [2] [3]. However, in a real world scenario, the

transmitter positions would change frequently. Adding dynamic transmitter behavior

to the application in this research allows the PSO to be tested in conditions similar

to those experienced by the warfighter. By running the PSO with these dynamic

transmitters, a solution is provided that defines the most up-to-date location in which

each asset should reside.

The new transmitter behavior is implemented in three steps. First, a velocity

component is added for each transmitter. Next, the transmitters use their velocity

component to update their location after a constant time interval. Lastly, the project

is modified to allow the user to observe automatic updates of the battle space and

control when these updates occur.

2.1 Velocity Calculation

In the first step of simulating this desired realism, a velocity component was added

to the structure in the C++ code for the transmitters. To model real transmitters, this

can be input to the program by the user or passed to it by a programming interface.

However, for testing purposes, this velocity is randomly generated for each transmitter

and bound within a small range. The velocity is then added to each transmitter’s

current location, whose new location is then used by the PSO to calculate a new

solution. The GUI displays these updates on the next time interval.
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Inspiration was gained from the current implementation of the positions of the

transmitters, which used the random number generator found in the Boost library to

obtain a radius and theta value. These two values then are converted to rectangular

coordinates and are set as the x and y transmitter velocities respectively. The x and y

locations of each transmitter are updated with their assigned x and y velocity values.

The z location of each transmitter is updated with data returned from a function

that finds the elevation at the transmitter’s new (x,y) position. In the simulations

performed in this research, the ground units are bound to the surface of the terrain.

If there are changes in the x or y coordinate for a particular transmitter, the elevation

at that new (x,y) location will be retrieved, and the transmitter’s z location will be

updated, keeping it bound to the surface of the terrain.

2.2 Updating the Location of the Transmitters

For new transmitter position updates, a few modifications needed to be added to

the code that handles the transmitter locations. These modifications ensure accurate

and realistic behavior for the transmitters.

The first modification was adding a boundary check. This served two purposes.

First, the boundary check made certain the transmitters remained in the viewable

battle space while testing their behavior. Upon reaching this boundary, the transmit-

ter in question simply reverses its direction by negating its velocity. The transmitter

then uses this new velocity to update its location, ensuring that it does not leave the

viewable battle space.

After this occurs, the velocities for each transmitter are added to its current

position for the X and Y components. The second modification is implemented for the

behavior of the transmitters in the z direction. A function uses elevation data to find

a z value to assign to a transmitter’s location at a particular (x,y) coordinate. The

elevation data lookup only occurs for simulations that include a three-dimensional

terrain file. When simulations are run without a terrain file loaded, the function
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(a) Before encountering boundary. (b) After encountering boundary.

Fig. 2.1. The green transmitter, circled in red, encounters the bound-
ary of the battle space, and reverses direction. The time step between
the two pictures is 4 seconds.

recognizes the lack of complementary elevation data and returns 0 as the value for

the transmitter’s z position.

Fig. 2.2. The transmitters (yellow, green, and blue spheres) remain
bound to the surface of the terrain. A section of Mt. Everest Terrain
is shown above.
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2.3 Updating the GUI on Set Intervals

As a result of the transmitter locations changing over time, the GUI needed to

be updated in order to reflect the actual position of each transmitter. To implement

these automatic updates, this research programs time intervals into the GUI.

Fig. 2.3. The timer code causes a GUI update every second.

The time intervals are modeled with the use of a timer in the project. The

timer is connected to a timeout signal and a function that tracks the locations of

the transmitters. This timer causes an update of the visual information to occur

once every second. Because of the speed of the PSO, a new solution to the updated

transmitter locations is calculated and displayed within this time interval.

Fig. 2.4. The Play, Stop, and Reset buttons, above, allow the user to
control the simulation of the EW battle space.

To begin this time lapse simulation, the user presses the Play button. The GUI

updates the 2D and 3D positions of the transmitters every second. It also displays

the new PSO solution during this interval. In order to pause the simulation, the user

can click the stop button. Also, the simulation can be restarted from the paused state
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by clicking the Play button. Finally, the user can return the GUI to its initial state

by hitting the Reset button. This can be done without pausing the simulation first.

2.4 Summary

In conclusion, this research improved the static behavior of the transmitters in

previous work [2] [3] to dynamic behavior that is more indicative of the situation

the warfighter would face on the battlefield. This improvement was accomplished by

adding a velocity component to the transmitters, updating the transmitter position

with its velocity component, and modifying the GUI to display the updates of the

battle space to the warfighter. These updates provide the warfighter with the most

up-to-date locations, allowing them to place assets to accurately conduct electronic

warfare operations with the transmitters.
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3. ASSET MOVEMENT

Asset placement in the previous work [2] [3] instantaneously jumps to the PSO so-

lution. In order to provide a more accurate simulation of the real-time, dynamic

battlefield, these assets now have an initial position and speed, and move towards

a PSO solution location. When set in motion, a matching PSO result location is

assigned to each asset. The program determines the correct vector needed for each

asset to reach its assigned PSO result location. The assets then use this information

to update their location.

In order to calculate an assignment that minimizes the total distance traveled by

all assets, this research utilizes graph theory. The Bipartite Matching Assignment

is selected as a model for this challenge. The background of this approach in graph

theory and the reasoning for its selection are described in the next section.

3.1 Bipartite Matching Assignment Problem

This research contains two sets of moving objects related to assets. The first set

is the solution returned by the PSO, and the second set is composed of the current

asset locations. These two sets both have the same number of elements.

The assets and PSO solution can be represented by vertices in a graph. Likewise,

the distance between elements of the asset and PSO solution sets can be represented

by weighted edges connecting the vertices of these two disjoint sets. Because every

element of the set of assets is not a member of the set of elements in the PSO solution

and vice versa, these two sets are disjoint and thus can be represented by a bipartite

graph shown in Figure 3.1 on page 16.

Each asset needs to be assigned or matched to a unique location in the PSO

solution. This matching needs to be completed in a manner that is computationally
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Fig. 3.1. The set of assets and the set of the elements of the PSO
solution are disjoint and can be drawn as a bipartite graph

efficient. Further, the sum of the distances traveled by each asset should be minimized.

This ensures that the set of assets can collectively begin comprehensive EW operations

in the shortest timespan while maintaining those operations for the longest possible

duration. In summary, this optimization goal is known as the Bipartite Matching

Assignment Problem in the literature [33] [34]. The theory behind this formulation

of the problem and possible solutions to it are discussed next.

3.1.1 Background and Theory

The theory behind the possible solutions to the Bipartite Matching Assignment

Problem is described in three parts. First, a graph G with V vertices and E edges

(G = (V,E)) is considered to be a bipartite graph if said graph contains the vertex

partitions X and Y such that V = X∪Y (Figure 3.2 on page 17). Further, X∩Y = ∅

and edges, E ⊆ X × Y [33].
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Fig. 3.2. A weighted bipartite graph, (G = (V,E)). Vertex partitions
are labeled as X and Y .

Second, a matching edge graph M , such that M ⊆ E, is present if at most one of

the edges in M is incident upon v, a set of vertices where ∀v ∈ V [33]. In graph theory,

a vertex and an edge are labeled as incident if the vertex is one of the endpoints of the

edge in question [35]. Another way of saying this is that one edge in a matching set M

cannot share an endpoint with another edge in the matching set M . Third, weights

can be added onto the edges of the bipartite graph. When weights are present, a

matching can be found that either maximizes or minimizes the sum of the weights of

the edges.

Therefore, the assignment problem takes a complete, weighted graph as its input.

A complete graph is one where every vertex is connected to every other vertex by

a unique edge [35], as seen in Figure 3.2 on page 17. The matching of the optimal

assignment, where the sum of the weights of the edges is optimized, is then returned.

If such a matching set M can assign every element of X to every element of Y in

such a way that respects the optimization of the weighted sum of the edges, then the

matching is considered perfect, and the assignment is optimal [33].
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3.1.2 Initial Attempt

First, the brute force approach for solving the assignment problem was attempted.

The locations defined by the swarm solution were examined and the closest one to

the asset in question was assigned to it. This location was then removed from the

locations available for assignment. The process continued with the remaining assets

until each one had a unique assignment.

At first glance, this solution appeared to handle the challenge of unique assignment

between set of locations and the set of assets. However, upon further analysis, it

was realized that this approach is not very efficient. While an assignment can be

found quickly, there is no way of knowing if the assignment was the optimal one.

Therefore, every possible assignment has to be checked. For n assets and n PSO

solution locations, the number of possible assignment is n! [32] [34]. In terms of time

complexity, this approach is modeled as O(n!).

Although this research conducts most of the tests and measurements described

in the analysis section with 3 assets and 3 PSO solution locations, these constraints

may change with actual, real-world use. Consequently, the factorial time complexity

causes the brute force approach to significantly increase the computation in scenarios

with 6 or more assets. The computational load from such an increase limits the range

of battlefield situations able to be handled by this application. This increase also

shifts the project away from its goal of providing real-time updates of EW operations

to the warfighter. As a result, a more efficient approach was found, and is discussed

in the next section.

3.2 Possible Solutions

3.2.1 Hungarian Algorithm

The first algorithm encountered when researching the assignment problem was the

Hungarian algorithm. This algorithm takes a cost matrix as an input and manipulates
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it to create elements with a value of zero in the cost matrix. Once a value of zero

is present in every row and column, the indices (x, y) of these zeros determine the

assignment of element x of set A to element y of set B.

This algorithm runs in O(n3) time complexity and is straightforward to implement.

Further, the algorithm allows the user the freedom to determine if the assignment

provided by the Hungarian algorithm maximizes or minimizes the total cost. The ease

of implementation, efficiency, and flexibility of this algorithm are the main reasons it

was chosen to solve the assignment problem in this research. The theory behind this

algorithm, as well as a proof of the time complexity, will be explained in Section 3.3.

3.2.2 Maximum-Flow Reduction Algorithm

The Maximum Flow Algorithm also initially appeared to be a possible solution

to the assignment problem. Two applications of this algorithm, the Ford-Fulkerson

Method and the Edmonds-Karp Algorithm [36], initially seemed to be applicable to

this project. However, literature was found stating that the presence of weighted

edges in the graph of the assignment problem would cause the Max-Flow Reduction

to fail [33]. Even if such reduction was possible, the Ford-Fulkerson and Edmonds-

Karp algorithms, due to their application of flow networks, required a source and sink

node to be added to the beginning and end of the graph [33]. Implementation of such

a requirement was deemed too complex and time consuming to run in concert with

the PSO.

3.3 Selected Approach

The Hungarian algorithm [31], also known as the Kuhn-Munkres algorithm [33], is

named to honor two Hungarian mathematicians, Kőnig and Egerváry, whose work is

the basis of the algorithm. Kuhn published his paper, The Hungarian Method for the

Assignment Problem, in 1955. In it he details how the algorithm runs in finite time
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and explains the steps of the process to follow to solve the assignment problem [31].

A summary and analysis of Kuhn’s work is presented in the following section.

3.3.1 Kőnig’s Contributions

First, Kuhn explains how the work by Kőnig is used as the theoretical basis for the

Hungarian algorithm [31]. Kőnig defines the assignment problem as assigning jobs to

individuals. This problem is simplified from the general definition of the assignment

problem by only denoting a zero or one for each intersection of a job and individual.

In this case, a one denotes that an individual is qualified for a job and a zero denotes

that the individual in question is not qualified [31]. To represent this relationship, a

qualification matrix is created. This matrix is a simplified version of a cost matrix in

the general assignment problem.

One aim of Kuhn’s paper is to find the largest number of ones that can be selected

from the qualification matrix, with each value of one having a unique column and row.

An assignment is a selection of these ones, and is considered complete if it cannot be

expanded to include more matchings between individuals and jobs. This assignment

would be labeled incomplete if an unassigned individual is able to be matched to

an unassigned job. Improvements are made on incomplete assignments by what is

termed a transfer. If the ones in the current assignment can be shifted to allow an

individual to be matched to an unassigned job, such a transfer is possible.

The following paragraphs describe the theorems developed by Kuhn as the basis

of the Hungarian Method.

“Theorem 1 An individual, job, or both the individual and job are essential if every

transfer on the given assignment results in a complete assignment.” [31]

“Theorem 2 There exists a complete assignment after every possible transfer.” [31]

At this point, Kuhn adds a parallel interpretation of the assignment problem. The

concept of a budget is introduced, where each individual is allotted a value for the
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job he or she is qualified for. As before with the qualification matrix, these values

are either a one for a qualified individual or a zero if the individual is not qualified.

Kuhn defines a budget as adequate if it provides a value of one to the individual,

job, or both that is part of a particular match of qualified individual to a job. He

summarizes this in the following theorem.

“Theorem 3 The allotment of a budget that is adequate cannot be less than the

number of qualified individuals that can be assigned to jobs.” [31]

From the proof of Theorem 3 and the language of Theorems 1 and 2, Kuhn

proposes the next theorem.

“Theorem 4 There exists an adequate budget and assignment where the total allot-

ment of said budget equals the number of jobs assigned to qualified individu-

als.” [31]

With this, Kuhn arrives at the conclusion that the largest number of jobs that

can be assigned to qualified individuals is equal to the smallest total allotment of any

adequate budget. Any assignment is optimal if and only if it is complete after every

possible transfer [31].

3.3.2 Egerváry’s Contributions

Now that the assignment problem has been shown to have an optimal solution

when reduced to a simplified one and zero state, Kuhn uses Egerváry’s work to

demonstrate how a general assignment problem can be reduced to such a state while

obtaining an optimal solution in finite time.

Before the continued development of theorems, Kuhn defines a rating matrix that

provides a numerical rating for a particular individual’s performance (rows of the

matrix) for a particular task (columns of the matrix) [31]. The summation of the

ratings from an assignment is considered a rating sum, which will be maximized in

the optimal case [32].
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The first theorem Kuhn develops in relation to the graph theory and mathematical

definitions produced by Egerváry involves adequate budgets and reaches a similar

conclusion as Theorem 3.

“Theorem 5 The total allotment of any adequate budget is not less than the rating

sum of any assignment.” [31]

From this, Kuhn states that any time in which an assignment and adequate budget

together form a total allotment equal to the rating sum, they compose a solution to

the assignment and budget problems. Therefore, Theorem 6 follows:

“Theorem 6 If all n individuals can be assigned to jobs for which they are quali-

fied in the Simple Assignment Problem (all zeros and ones) associated with an

adequate budget, then the assignment and the budget solve the given General

Assignment Problem and the rating sum equals the total allotment.” [31]

Kuhn then discusses how to improve the budget when individuals have not been

assigned to jobs they are qualified for in the Simple Assignment problem. The total

allotment is reduced by n− r, where n is the number of jobs and r the number of

essential individuals. Then it is increased by s, the number of essential jobs. Since

r + s = m, with m being the largest number of qualified individuals assigned to jobs

and m < n, the net reduction for the total allotment is n − m, whose difference is

always nonnegative [31]. Therefore, Kuhn proposes the last theorem.

“Theorem 7 If at most m < n individuals can be assigned to jobs for which they

are qualified in the Simple Assignment Problem associated with an adequate

budget, then the total allotment of the budget can be decreased by a positive

integral amount.” [31]

Accordingly, either theorem will be applied to the assignment problem. If an

adequate budget is optimal, then Theorem 6 is applied to the problem. If said budget

can be decreased, Theorem 7 applies and the budget is decreased. Because Theorem
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7 can only be applied a finite number of times before Theorem 6 becomes applicable,

Kuhn concludes the following about the General Assignment Problem.

“The largest possible rating sum for any assignment is equal to the smallest total

allotment of any adequate budget. It can be found by solving a finite sequence of

associated Simple Assignment problems.” [31] Consequently, Kuhn can now apply

this combination of approaches to the Assignment Problem into an algorithm.

3.3.3 The Hungarian Method

First, a rating matrix, R, is examined. A maximum of every row, ai, is found.

Likewise, a maximum of every column, bj, is found. All row maximums are summed

into a single summation, a. In the same way, all column maximums are summed into

a single summation labeled b.

If a > b, then vj = bj for j = 1, 2, ..., n and ui = 0 equals zero for i = 1, 2, ..., n.

However, if a ≤ b, ui = ai for i = 1, 2, ..., n and vj = 0 for j = 1, 2, ..., n. ui and vj are

nonnegative integers that, when added together, equal the value of the rating matrix

at (i, j).

Second, a new matrix, R′, is created with the ui and vj elements. Each position,

(i, j) of the matrix is defined as ui + vj. With these values calculated, the matrix R′

is compared to the initial rating matrix R. Any index of R that has the same value

as the equivalent index in R′ is marked at that index with the value of a one in a new

matrix, Q. Any values that are different between matrices R and R′ are marked with

a value of zero.

Third, the matrix Q is examined for a set of independent ones. A set of ones is

considered independent if they do not share the same row and column. This set of

ones is then marked with asterisks (1∗).

Fourth, the matrix Q is searched for (1∗). If an asterisk is found, its column is

searched for a one. If no values of one are found, then the row the asterisk resides in

is essential. Likewise, a column is essential if it contains an asterisk in an inessential
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row. From the definition of an essential row, an inessential row is one that has a one

with an asterisk along with other ones in different rows of the same column.

Fifth, the current assignment is examined for possible transfers. If no transfers

are available at this point, skip to the next step. If transfers that free a column

containing an unassigned one are possible, they are carried out. This occurs until

a complete assignment is found. The last row involved in the transfer is considered

essential.

If no transfers were possible (before the complete assignment), all assigned columns

are essential. Recall that a column is assigned if it contains a one with an asterisk.

Next, a matrix D is created by subtracting elements of matrix R from elements of R′.

The differences in the inessential rows and columns of matrix D are then examined

and the minimum is found and labeled as d. If this is not possible, then a solution

has been found. Otherwise, the next step is taken.

With a minimum d found, one of two cases occurs. If ui > 0,∀i inessential rows,

find m = min∀i(d, ui). Then update ui by subtracting m from it ∀i in inessential

rows. Update vj in a similar manner ∀j in essential columns.

However, if ui = 0 in one of the inessential rows, find m = min∀j(d, vj). After

that, update all ui = ui + m,∀i in essential rows. Then update all vj = vj −m,∀j

inessential columns.

Once one of the two cases above is carried out, the algorithm returns back to the

second step and progresses through the subsequent steps until a solution is found.

3.3.4 Munkres’ Improvements

James Munkres published a paper two years after Kuhn detailing improvements

and an analysis of the time complexity of the Hungarian Algorithm [32]. His im-

provements are summarized in the following paragraphs, with the time complexity

analysis explained in the next section.
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Like Kuhn’s approach [31], Munkres begins with a rating matrix [32]. He then

conducts a few preliminary operations. First, the smallest element of a row is sub-

tracted from every element in that row. This is repeated for every row in the rating

matrix. Next, the smallest element of each column is subtracted from every element

residing it that column. Then, the zeros are observed. All independent zeros are

starred. Zeros are independent if they do not share a row or column with another

starred zero. Every column containing a starred zero is covered. To cover a col-

umn, one simply denotes a line running through the column in question. With this

complete, the improved algorithm is described in the following three steps [32].

1. Find and prime all zeros that are not covered. Then look at each primed zero.

If a starred zero does not reside in the same row as a primed zero, go to the

following step. If it does, cover the row with the starred and primed zeros, and

uncover the column in which the starred zero resides. Repeat this process until

all zeros have been covered, and then go to Step 3.

2. Starting with every zero that is uncovered and primed, look in the column the

uncovered and primed zero resides for a starred zero. If one exists, look in the

row of the starred zero for a primed zero. This sequence continues until a zero

cannot be found to satisfy these restrictions. The last zero found should be

primed.

Remove the star on every starred zero and star every primed zero of the se-

quence. This will result in a set of independent starred zeros that is larger in

size by one element than the previous set of starred zeros. Unprime every zero

that still has a prime symbol, uncover every row, and cover every column that

contains a starred zero. At this point, if every column is covered, then the

starred zeros form a solution. If this is not the case, return to Step 1.

3. Let h be the smallest uncovered element of the matrix. Add h to every element

of the covered rows. Subtract h from every element of the uncovered columns.

Return to Step 1.
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Time Complexity

Thus, with Kuhn’s algorithm improved, Munkres calculates the time complexity

of the new method [32]. Beginning with a matrix of m independent starred zeros,

Munkres considers the maximum number of operations necessary to obtain a matrix

with m+ 1 independent starred zeros. The following analysis follows Munkres.

The preliminary operations conducted on the initial matrix will need a most 5n+4

(where n is defined as a dimension of an n×n matrix) operations to obtain one starred

zero.

Next, Step 1 with a matrix of m starred zeros need n+ 4 operations in the worst

case to cover one horizontal line of the matrix.

For Step 3, 2n + m operations are necessary to resolve the worst case scenario

of finding the smallest uncovered element, h, and adding and subtracting it to the

necessary elements. Time n is taken for scanning a column, another n amount of time

to subtract h from every element of a column, and m amount of time for adding h to

each element of a covered row. Computing the total amount of time for Step 3 to be

completed results in (2n+m)× (m− 1) total time needed.

Once the algorithm returns to Step 1 from Step 3, it will execute n+ 4 operations

until m covered horizontal lines are present on the matrix. In the worst case, this

takes (m− 1)× (n+ 4) time.

When Step 1 leads to Step 2 in the case of each uncovered row containing an

uncovered zero, n+ 1 operations at the most will be needed to transition to this step.

Once inside of Step 2, 2m time is needed to scan a line, 2m+ 1 time to erase a prime

or an asterisk, m+ 1 time to star a zero, and 2m+ 1 time to cover or uncover a line.

Adding these operations together results in 7m+ 3 + n+ 1 time.

The time for executing Steps 1-3 will be summed from m = 1 to m = n − 1.

Because the preliminary step is not repeated outside its initial execution, it is added

on to the result of the summation. The math for this is shown below.
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Calculation of Theoretical Run Time Complexity

1. The initial summation combining the run time for each step described above.

n−1∑
m=1

{(n+ 4) + [(2n+m)× (m− 1)] + [(m− 1)× (n+ 4)] + (n+ 1) + (7m+ 3)}

(3.1)

2. After simplifying, the resultant summation is:

n−1∑
m=1

(4− n+m2 + 3nm+ 10m) (3.2)

3. Separating the summation into smaller ones and evaluating each one gives:

(4− n)
n−1∑
m=1

1 +
n−1∑
m=1

m2 + (3n+ 10)
n−1∑
m=1

m (3.3)

(4− n)
n−1∑
m=1

1 = 5n− n2 − 4 (3.4)

n−1∑
m=1

m2 =
2n3 − 3n2 + n

6
(3.5)

(3n+ 10)
n−1∑
m=1

m =
9n3 + 21n2 − 30n

6
(3.6)

4. And combining gives:

(5n− n2 − 4) +
2n3 − 3n2 + n

6
+

9n3 + 21n2 − 30n

6
=

11n3 + 12n2 + n− 24

6
(3.7)

5. Once the preliminary time cost (5n + 4) is added and the resultant sum is

simplified, the following is the result.

11n3 + 12n2 + n− 24

6
+

30n+ 24

6
=

11n3 + 12n2 + 31n

6
(3.8)

6. When considered at asymptotic bounds, it is clear that the time complexity is

O(n3).
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3.4 Implementation of the Hungarian Algorithm

After analyzing the possible ways to solve the assignment problem, the Hungarian

Algorithm was chosen as the most efficient and straightforward method. With this

in mind, prior implementations were investigated.

The C++ dlib library provides a multitude of matrix manipulation techniques,

optimization algorithms, and machine learning implementations. Within this library

is a max cost assignment function that runs the O(n3) implementation of the Hun-

garian algorithm on an input of a cost matrix. This function then returns the solution

that maximizes the cost of the assignments.

3.4.1 Dlib’s Version of the Hungarian Algorithm

The version of the Hungarian Algorithm implemented in this dlib function is

outlined in the tutorial initially followed to create the algorithm header files from

scratch. A few definitions need to be defined first.

A graph G = (V,E) of V vertices connected by E edges is given. This graph can

be partitioned into two sets, X and Y , where X ∪Y contains all of the vertices of the

graph. Additionally, the intersection of these two sets must be empty (X ∩ Y = ∅).

Edges can then be drawn between both sets. Each edge is then weighted with a value

that represents a cost between two vertices. When a vertex is not connected by an

edge, this vertex is said to be exposed.

Graph G is said to be labeled when the vertices of an edge are each given a weight.

If the sum of these weights is greater than or equal to the weight of the edge, then

the labeling is feasible.

A path tracing the edges between sets X and Y is considered alternating if each

edge has a vertex from a different set. More specifically, each edge of this path begins

in set X and ends in set Y and vice versa. If the first and last vertices in an alternating

path are exposed, the path is considered an augmenting path.
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An equality subgraph is said to span the given, labeled graph if it is composed of

vertices and edges where the sum of the labels of the vertices of each edge equal the

edges weight. When this occurs, the labeling is perfectly feasible.

If the equality subgraph contains a perfect matching, that is if the matching

is complete, then the matching of the subgraph is the maximum sum of weights.

Therefore, this matching is optimal and is the solution to the assignment problem

described by the initial graph.

Before outlining the steps needed, two definitions from [37] need to be provided

first. v’s neighborhood is defined by the vertices that share an vertex with v (v ∈ V ),

JG(v) = {u | (v, u) ∈ E}. Also, S ⊆ V , S’s neighborhood is all vertices that share an

edge with a vertex in S, JG(S) =
⋃

v∈S JG(v).

The following approach is composed of four steps.

1. Find some initial feasible vertex labeling and some initial matching.

2. If the matching M is perfect, then it is optimal, and the problem has been

solved. Otherwise, there is an exposed x ∈ X that exists. Set S contains the

member x and set T is empty. x will be the root of the alternating path built

in the next step.

3. If JGl
(S) 6= T , go to step 4. Otherwise find α, the minimum of the difference of

the sum of the labels of x and y the weight of the edge xy. A new labeling is

constructed by subtracting α from every label v ∈ S, adding α to every v ∈ T ,

and leaving all other labels in either set the same. Gl is replaced with Gl
′.

4. Find some vertex y ∈ T \JGl
(S). If y is exposed, then an alternating path from

x to y exists. The path is augmenting, and Step 2 is now executed. However, if

y is matched in M with some vertex z, add (z, y) to the alternating path and

set S = S ∪ {z} and T = T ∪ {y}. Return to Step 3.

This completes the theory section. The next section provides results from the

implemented research.
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4. ANALYSIS

4.1 Validation of Hungarian Algorithm

Integrating the dlib function, max cost assignment, into the current PSO project

involved two steps. First, a standalone testing environment was created in Microsoft

Visual Studio. This testing environment was used to understand the function, how to

call it properly, and how to use its output assign assets to swarm-defined locations.

This isolation allows all performance and run time analysis to be focused on the logic

particular to implementing the Hungarian Algorithm. The next step involves inte-

grating this implementation of the algorithm into the project. There the analysis of

the interaction between the Hungarian Algorithm and the PSO is conducted. Because

this interaction now utilizes real location data, the speed and accuracy of the program

can be measured in a setting similar to what the warfighter would experience on the

battlefield.

4.1.1 Standalone Environment

The source files from version 19.1 of the dlib were used in the validation and testing

of the behavior and performance of the Hungarian Algorithm. The dlib source file is

combined with our research files to interface to the PSO. The new files contain the

necessary interfaces to solve the assignment problem with a function that returns a

maximum cost assignment. The limitations of this assignment function, as well as

the manner in which this research solved them, are described below.
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Input Limitation

The first limitation of the dlib function was the fact that it could only take in a

cost matrix of integer type. The file included in the dlib states the reason for this

is that the data types used must result in reliable outcomes when compared with the

== operator.

Another limitation was the fact that the dlib function needed a matrix data struc-

ture as input. This restriction turned out to be inconsequential as the dlib source

files include a definition for the matrix data type.

Maximum Cost to Minimum Cost Conversion

The most important limitation is the fact that the dlib function only maximizes

the cost assignments from the cost matrix provided. In this research, the distances

between the assets and their ideal locations, as defined by the PSO, compose the cost

matrix. For our application, a function is needed which minimizes, not maximizes,

the distance the assets have to travel. Therefore, the dlib function needed to be

converted to return an assignment that minimizes the distance.

Because the input of the dlib function is a matrix, a minimum cost assignment

could be returned by a maximum cost assignment function by manipulating the input

matrix. At first, this problem appeared to have a straightforward solution of simply

negating every element of the cost matrix. However, the Hungarian Algorithm re-

quires positive integer values in order to find an accurate assignment. Upon further

analysis and testing, the cost matrix is manipulated as follows:

1. Find the maximum valued element of the matrix.

2. Divide every element of the cost matrix by this maximum value.

3. Find the reciprocal of every element by inverting it.

4. Multiply each element by 10. Take the ceiling of the result.
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5. Input the new cost matrix into the dlib function.

As seen in the example below, the assignment returned that maximizes the cost

of the manipulated matrix minimizes the cost of the original cost matrix.

Example

1. A matrix is created from the distance between every asset and every PSO lo-

cation. The rows of the matrix are the assets, and the columns are the PSO

solution locations. These two numbers are equivalent, resulting in a square

matrix.

Following the first step above, the maximum value of the matrix, 20, is identified.

The assignment elements that result in an assignment with minimum cost are

boxed in below.

4 12 10 11

12 6 16 15

16 20 18 16

13 16 15 14




2. Each element is divided by the largest element, 20. The simplified fractions are

shown below.

1
5

3
5

1
2

11
20

3
5

3
10

4
5

3
4

4
5 1 9

10
4
5

13
20

4
5

3
4

7
10
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3. Every element of the matrix is inverted.

5 5
3 2 20

11

5
3

10
3

5
4

4
3

5
4 1 10

9
5
4

20
13

5
4

4
3

10
7




4. Multiplication by 10 of each element takes place, followed immediately by the

ceiling operation on the result.

The multiplication increases the number of distinct elements in the matrix.

Executing the ceiling function on these elements converts them to integers,

allowing them to be used with the max cost assignment function from the C++

library, dlib.

50 17 20 19

17 34 13 14

13 10 12 13

16 13 14 15




5. Input the new cost matrix (pictured on the left) into the dlib maximum cost

assignment function. The returned assignment is [0, 1, 3, 2], marked by the boxes

around each element in that the transformed matrix.
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50 17 20 19

17 34 13 14

13 10 12 13

16 13 14 15




With the process complete, the assignment found for the original matrix can be

compared with the assignment found for the transformed matrix. The transformed

matrix is shown on the left with its assignment boxed in. On the right, the original

matrix is shown with elements from the same assignment boxed in.

50 17 20 19

17 34 13 14

13 10 12 13

16 13 14 15




4 12 10 11

12 6 16 15

16 20 18 16

13 16 15 14




When these boxed elements are added together for the transformed matrix, a

cost of 111 is obtained (50 + 34 + 13 + 14 = 111). Likewise, when this addition

occurs for the same assignment in the original matrix, the cost of 41 is obtained

(4 + 6 + 16 + 15 = 41).

Comparing these costs with the other possible costs that result from different

assignments within their matrix, it is clear that the sum found for the transformed

matrix is the maximum cost assignment for that matrix. The same holds true for the

original matrix.

It should be noted that this is an ‘engineering’ solution for converting the input

matrix so that a minimum cost assignment is returned by the max cost assignment

dlib function. This conversion, while not proven mathematically, has returned mini-

mum cost assignments that have been verified by hand as being accurate. Therefore
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this approximation, in all cases tested in this research, provides an assignment that

both maximizes the total cost of the transformed matrix and minimizes the total cost

of the original matrix.

4.1.2 Time Complexity

Theoretical Calculation

The time complexity of this process can be calculated theoretically. Measurements

of run time will then be used to verify the theoretical complexity.

First, the input of the program, a vector, is passed by reference and thus takes

constant time. This vector contains the distances between each asset and its end

location, which can be labeled as n assets and n locations. The number of assets

and locations are the same, so the number of elements contained within the vector is

n×n, or n2. The vector is then converted to an array, which allows for the maximum

valued element to be found quickly. In the worst case scenario, this takes O(n2) time

since there are n2 total elements to search.

Next, the arithmetic operations of division and multiplication are conducted on

each element of the array. Because these operations take constant time when com-

bined, and they are performed on every element, the total time complexity for this

step is O(n2).

After that, the ceiling function is performed on each element. Since this function

is linear in regards to the input, the time complexity here is O(n2).

Finally, the Hungarian Algorithm is run. As explained above, the run time for the

dlib implementation of this optimization algorithm is O(n3). When combining all the

time complexities from each step above, the resultant time complexity at asymptotic

values for the entire process is O(n3).

n2 + n2 + n2 + n3 = 3n2 + n3 = O(n3)
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Elapsed Time Data

With the testing environment isolated from the rest of the PSO project, the true

impact and efficiency of this implementation of the Hungarian Algorithm can be

measured. To verify that the time complexity of the Hungarian Algorithm is still

O(n3), the code was run and timed with different cost matrix dimensions (number

of assets). The minimum matrix dimension tested in this experiment, three, is the

most commonly used dimension. The maximum, 352, is the point at which no more

memory can be allocated to the cost matrix for the computations to be completed.

The other dimension values tested fall between these two extremes and were chosen

to best explore the relationship between input size and elapsed time.

Ten trials were executed consecutively for each matrix dimension (number of as-

sets), and the elapsed time was observed. The measurement of elapsed time for the

Hungarian Algorithm was limited to the function that transformed the input matrix

and executed the dlib function. The average of the ten trials for each dimension was

then obtained and can be observed in Table 4.1 on page 37. These results, and the

analysis of them, confirm the theoretical run time calculation and can be viewed in

the following tables and charts.

In order to assess the time complexity of the real world results, four different

trendlines were fit onto Figure 4.1 (page 38). This research tested four types of

trendlines; one linear and three polynomial, with the polynomial trendlines being of

order two, three, and four. The equation and coefficient of determination (R-squared

value) for each of the trendlines was then recorded and analyzed. The R-squared value

measures how well the data fits the trendline calculated [38]. These values range from

zero to one, where an R-squared value of zero demonstrates that the trendline does

not fit the measured data very well, whereas a value of one means it fits the data

perfectly. As seen in Table 4.2 on page 39, the R-squared values for the polynomial

trendlines are all greater than .99, with the second order having the highest R-squared

value.
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y = 9E-08x3 + 7E-05x2 + 0.0002x + 0.0275 
R² = 0.9993 

y = 1x3 + 5E-13x2 - 1E-08x + 3E-06 
R² = 1 
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Assets 

Average Trial Time vs. Theoretical Run Time vs. Factorial Run Time 

Average Trial Time Ideal O(n^3) Run Time Factorial Approach

3rd Order Poly. Regression Poly. (Ideal O(n^3) Run Time) Power (Factorial Approach)

Fig. 4.1. A comparison of a measured run time trendline with two
theoretical run time trendlines, O(n3) and O(n!).

However, the R-squared value should not be the only tool used to verify the

type of best fit line that matches the data. Regression residuals are used to confirm

that the R-squared value, and in turn the trendline being used, are the best match

for a dataset [39]. These residuals measure the difference between the predicted

value and the measured value [40]. This measurement is then used to evaluate how

predictable the model is. When graphed, the residuals should be independent and

normally distributed with zero mean [41]. If this were not the case, the error between
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Table 4.2.
Regression Line Equations and R-squared Values

Regression Type R-squared Value Equation

linear 0.9173 y = 0.0357x− 1.5213

2nd order polynomial 0.9999 y = 0.0001x2 − 0.0059x+ .1381

3rd order polynomial 0.9993 y = (9 × 10−8)x3 + (7 × 10−5)x2 +

.0002x+ .0275

4th order polynomial 0.9995 y = (−8×10−10)x4+(7×10−7)x3−

(6× 10−5)x2 + .0093x− .075

the observed data and predicted data could be calculated, which indicates that the

trendline does not accurately account for all the data points [39].

Although the linear best fit trendline has a high R-squared value, it is clear that

it is not normally distributed (Figure 4.2(a) on page 40). One can easily predict that

all residuals for time measurements between zero and nine will be negative, whereas

all residuals for times greater than nine will be positive. A parabolic curve in the

residual scatter plot is indicative of the need for a polynomial best fit line [41].

Residual plot analysis can also determine the best polynomial trendline to use

for the data. When a polynomial of second order is used, a pattern is found in the

residuals (Figure 4.2(b) on page 40). None of them of them are negative after a

time measurement of 0.5 ms, and as the time measurement increases, the distance

between the residual and zero does as well. This indicates the error is not normally

distributed, and thus the second order polynomial trendline is not the best trendline

to use for this data.

Likewise, the fourth order polynomial trendline does not fit the data well. Al-

though there is more variance of positive and negative residuals, this is limited to

time measurements less than 2 ms (Figure 4.2(c)on page 40). After that point, all

residuals are negative for increasing values of elapsed time. Also, the distance of the
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(a) A parabolic pattern in the residuals is eas-

ily observed.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12R
es

id
u

al
s 

Predicted Time Value 

2nd Order Polynomial Regression Residual Plot 

(b) As the time value increases, the residual

value (error) travels further from zero in the

positive direction.
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(c) As seen with the second order polynomial

regression, the residual value (error) travels

further from zero, though this time in the

negative direction, as the time increases.
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(d) The residual plot displays a mean closest

to zero and a distribution that is most uni-

form out of the regression line types tested.

Fig. 4.2. Residual Plots of Linear and Polynomial Trendlines

residuals from zero only increases, further disqualifying the fourth order polynomial

function from consideration.

The third order polynomial trendline exhibits residual behavior most indicative of

a well-chosen line of best fit. Not only do the residuals have a mean closest to zero,

they also do not form a distinct pattern (Figure 4.2(d) on page 40). Therefore, even
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with the second lowest R-squared value, the third order polynomial trendline best

exemplifies random error and thus fits the data better than the other trendlines. In

conclusion, the empirical data confirms the calculated time complexity of O(n3) for

the combination of matrix manipulations and execution of the Hungarian Algorithm.

Moving from the standalone environment, our research investigates on the perfor-

mance of the combined algorithm with the PSO.

4.2 Code Profile

Performance measurement and analysis is reported in this section. The config-

uration of the computer used and test parameters will be introduced. Then, the

data will be presented and analyzed. Finally, this research will recommend where the

improvements can be made to the code.

4.2.1 Test Configuration

All testing was run on a Lenovo ThinkPad X220 laptop computer. The compu-

tational resources of this model include an Intel i5-2520M processor, 8GB of DDR3

memory at 1600MHz, a 250GB solid state drive (SSD), and integrated Intel HD

Graphics 3000. The operating system on this machine is Windows 7 Professional 64-

bit. All trials were conducted in release mode and were run on a single CPU thread

without use of graphics processing resources.

4.2.2 Data Collection

The data collected in the code profile focuses on the time spent by particular

sections of the code. Time trials were run on the functions that calculated the PSO,

ran the Hungarian Algorithm, navigated the assets to new locations, and drew the

GUI. Ten trials were run for 30 transmitters and 3, 5, 10, 15, 25, 50, and 75 assets.

The trial times for each number of assets was averaged for each of the measured
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categories; PSO, Hungarian Algorithm, Asset Navigation, and GUI. These averages

are shown in Table 4.3 on page 42 and are graphed in Figure 4.3 on page 45.

Table 4.3.
Average Time (ms) in Various Functions for Different Asset Counts

Asset Number PSO Hungarian Algorithm Asset GUI

3 140.3113 0.0099 0.3793 6.64666

5 352.1408 0.00883 0.39975 6.32979

10 97.69465 0.02038 0.38156 7.75303

15 145.06875 0.03639 0.6925 8.70874

25 246.416 0.09249 0.56056 10.7546

50 509.891 0.3591 0.35342 14.4559

75 867.0009 0.89272 0.24767 21.33815

4.2.3 Results and Analysis

The first observation that should be made from this data is the efficiency of the

Hungarian Algorithm. Usage of the algorithm alongside the PSO code results in time

measurements that are very similar to those seen in the standalone environment. The

time spent in the Hungarian Algorithm function does not even surpass 1 ms with the

largest amount of assets, 75, tested. When compared to the sum of all the time

measurements taken for each number of assets tested, the code spends an average of

0.037% of its time executing the Hungarian Algorithm. This portion of the time is so

low in value that the visual comparison between it and the rest of the code can only

be seen in Figure 4.4 on page 46

Like the Hungarian Algorithm, the asset navigation is not a significant contributor

to the total time. On average, it consumes 0.213% of the total time to execute

these functions. One aspect where the asset navigation differs from the Hungarian
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Algorithm is how its execution time scales as the number of assets increases. The

time in the Hungarian Algorithm steadily increases, whereas the time spent in asset

navigation increases for asset counts up to 15, and then decreases. Our hypothesis for

this behavior is that the PSO solution locations are spread out more for asset counts

above 15. This decreases the distance, and thus the calculation and movement, needed

for the assets to reach their assigned positions.

Of the three non-PSO related functions measured, the functions that draw the GUI

contribute the most to the overall time. On average, the GUI will take 4.08% of the

total time. Unlike the asset navigation, the time spent drawing the GUI continuously

increases as the asset count increases. This is likely the result of the number of objects

that need to be drawn steadily increases for increasing asset counts.

Lastly, the PSO calculation consumes the majority of the time measurements.

Out of the total time of all functions, 95.671% on average will be dedicated to the

PSO. Interestingly, the average PSO time for 10 assets is a third of the PSO time for

5 assets. A likely explanation for this behavior is that 10 assets are able to fulfill the

majority of the constraints for most, if not all, of the transmitters. Therefore, the

PSO does not have to spend as much time finding optimal solutions.

One can conclude that 10 assets is the most optimal number of assets to use in

order to communicate with all 30 transmitters in the shortest amount of time. This

behavior is least optimal with 50 and 75 assets, where average times to find a PSO

solution are respectively 509.891 ms and 867.0009 ms. With this number of objects in

the area, the frequency spectrum is very crowded. This negatively impacts the PSO

as it has to spend more time minimizing interference between assets while finding

solutions that maximize the fitness function.

4.2.4 Recommendations

As seen above, the PSO calculation time consumes the majority of the time in

each interval. Therefore, optimization should be conducted in this area to reduce the
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time expenditure and lower the global time spent by the application for every interval

update. Likewise, methods to parallelize the PSO and harness a GPU for calculating

solutions is another recommended approach to pursue in future work.
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5. SUMMARY

5.1 Conclusions

As discussed in the abstract and introduction, this research makes improvements

to the prior work in [2] and [3] to provide a dynamic asset allocation solution in less

than one second. In doing so, the objectives introduced in the Introduction Chapter

have been achieved. First, the behavior of the transmitters and assets was changed

from static to dynamic. Also, the updates of the transmitters, assets, and PSO

solution locations were automated. The user is able to start, pause, and reset the

automatic updates that occur in the simulation. These updates occur in under one

second, providing the warfighter with a real-time view of the EW operations in the

battle space.

Next, this research accomplished the objective of how to assign assets to PSO

solution locations. By modeling the relationship between assets and the PSO solu-

tion as a Bipartite Matching Assignment Problem, this mapping was achieved with

a graph-based method. Known as the Hungarian Algorithm, the method runs in

O(n3) time. The data provided in the Analysis chapter demonstrates the effective-

ness of the combined algorithm implemented in this research, and its minimal impact

on computation time. When running alongside the PSO and GUI functions, this

implementation Hungarian Algorithm consumes no more than 0.1%, and on average

0.037%, of the total computation time.

The last objective, code profiling, was successfully completed in this research. The

data collected from this profiling indicates that more than 95% of the time needed

to update the information in the application is spent on the PSO. The profiling also

demonstrated the drawing functions for the GUI consumed at most 7.325%, and 4.08%

on average, of the total time. Even with an asset count of 75, the total computation
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for the entire application remains under 1 second. However, the PSO’s computational

load can still be improved. This research provides recommendations on two different

approaches to achieve this improvement.

5.2 Future Work

Further research can be conducted in three areas. The first area pertains to the

transmitters, the second to the assets, and the third on the project as a whole.

5.2.1 Transmitters

The first way in which the transmitters can be improved is how they interact with

the terrain and battle space as a whole. All transmitters are bound to the surface of

the terrain for testing purposes in this research. However, in a real world scenario,

some of these transmitters would have air capabilities, allowing them to depart from

the terrain. Future work that addresses this possibility by unbinding the transmitters

from the terrain surface would make the simulation of the battle space more realistic.

Second, this research focuses on dynamic position changes and velocities for the

transmitters. In reality, the frequency behavior of each transmitter could change as

well. Frequency hopping and other dynamic frequency behaviors should be included

in future work. The changes in general frequency behavior caused by 3D movement

of the transmitters should also be taken into consideration and pursued.

Lastly, an application programming interface (API) can be developed for this

project. This research tests the performance of the PSO and assignment of assets to

PSO solution locations. While the current implementation is satisfactory for analysis

purposes, the addition of an API would make this application ready for real world

use. The API would read in military information from different sources and use that

information to update the positions and velocities of the transmitters. Further, the

frequency characteristics for each transmitter can be modified with such an interface.

These updates would be fed into the current application automatically, allowing the
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program to run on actual data from the battle space without the user’s manual input.

Therefore, the dynamic 3D location and frequency behavior of the transmitters would

provide effortless, real-time situational awareness of the battle space.

5.2.2 Assets

Unlike the transmitters, all of the assets possess a uniform speed. In the real world,

different airborne assets may be used in conjunction with each other. For example, an

F-16 fighter could be deployed alongside two Predator drones to support a squad of

U.S. Marines. Both the fighter and the drones would have different speeds and thus

would approach the locations of the PSO solution at different rates. Further, if there

is a limitation on the altitude or distance a particular asset can travel, the assignment

of assets to PSO solutions locations would have to adjust in order to maintain the

EW operations being conducted.

In addition, assets used for EW may not always be airborne. EW operations can

be launched from ground-based units. Also, EW could be expanded in the underwater

battle space by using it with submarines or Unmanned Underwater Vehicles (UUV).

Because the assets can be defined in terms of their role in air, land, or sea theaters

of operation, their frequency characteristics would likely be different as well. There-

fore, further work should investigate and provide a method that makes the frequency

behavior of the assets dynamic and modifiable.

The API proposed in the above section detailing future work for the transmitters

can also be utilized with the assets. The warfighter would experience many of the same

benefits listed in the preceding section, allowing them to maximize their situation

awareness with real-time data and updates.

5.2.3 Program Improvements

Several improvements can be made to the program as a whole. First, the variance

in the PSO solution is high when the weights for the fitness function from the previous
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research are used. This is likely a result of the recent changes that have been made

to the code. Even with small changes in the positions of the transmitters, the PSO

solution locations can jump as much as 100 kilometers from their previous location.

This causes the assets to significantly change their current course, increasing the time

and fuel spent to arrive at the final location. This delay and extra cost in fuel reduces

the effectiveness and length of time of the EW operations that can be conducted.

Because of this, the weights of the fitness function need to be adjusted in order to

minimize the variance while still providing accurate PSO solutions.

Second, further analysis of the code profiling needs to be completed. Upon comple-

tion, the areas in which parallelization would benefit the operation and performance

of the project would be identified. These areas would then be converted to run in

parallel on a graphics processing unit (GPU) with the rest of the code running on the

CPU.

Work on creating pheromones and implementing them into the rest of the program

continues to be developed outside of the scope of this research. However, since the

pheromones create areas of attraction and resistance for the assets, their interaction

with the assets needs to be refined. One method of doing this will be to implement

a path-finding algorithm that is able to avoid the pheromone areas of resistance

completely while maintaining a course towards its assigned location. Consideration

will also have to be made for whether the distance assets would have to travel to

avoid these areas should be included in the distance calculated from the PSO solution

locations.
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