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ABSTRACT

Niu, Wensen. M.S.E.C.E., Purdue University, December 2017. A Petri Net Based
Model for AEB Systems Considering Vehicle and Pedestrian/Cyclist in a Certain
Area. Major Professor: Lingxi Li.

For AEB performance testing, surrogates and testing systems have been developed

by the Transportation Active Safety Institute (TASI). A set of tests, both for perfor-

mance of vehicle equipped with AEB systems and for harmonization of surrogates,

have been conducted under different scenarios with different variables which include

cyclist speed, vehicle speed, cyclist moving directions, and so on.

There are several braking patterns described in this thesis, which provide the

possibility to control the distance of an emergency braking. With different braking

distance and steering angle during the emergency braking, choosing the final place of

a vehicle becomes possible.

This thesis considers vehicle and pedestrian/cyclist together to avoid a crash in

a certain area rather than predicting the collision point. Petri net models were built

for both vehicle and pedestrian/cyclist in potential collision area and crossing road

scenarios. Then, controllers were designed for Petri net models and all possible states

were calculated.
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1. INTRODUCTION

1.1 Background and Motivation

Automatic Emergency Braking (AEB) systems can avoid or mitigate a crash by

detecting a potential forward crash, alerting driver to take actions, and applying

brakes [1]. AEB is also called precrash system, pre-collision system, and others. AEB

systems attract attention by both government and manufactures who announced to

make AEB as a standard feature on new vehicles from 2022 [2]. Pedestrian Automatic

Emergency Braking (PAEB) systems provide alerts and emergency braking when

pedestrian was detected by the systems via in-vehicle camera and radar [3], [4]. Cy-

clist Automatic Emergency Braking (CAEB) systems have been developed by many

automotive manufactures and have started to be equipped on vehicles [5].

For improving the AEB performance on different road situations, some other ad-

vanced driving-assistance systems, such as vehicle-to-vehicle (V2V) communication

system, may be integrated with the AEB system [6]. Other methodologies can also

be integrated for PAEB and CAEB systems to improve their performance. To avoid

the vehicle crash with pedestrian/cyclist on the road, the problem can be considered

as a mutual exclusion problem in a certain area. In order to consider vehicle and

pedestrian/cyclist as a mutual exclusion problem, Petri net models including vehicle

and pedestrian/cyclist in a certain area should be developed and analyzed. Also,

the braking strategies should be studied under certain testing environment, given a

vehicle equipped with AEB system.
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1.2 Literature Survey

Research in automatic braking systems has been conducted over several decades.

Chandler and Wood’s paper published in 1977 discussed the fundamentals to design

operation radar sensors for pedestrian detection that can help automobiles automat-

ically activate the braking systems [7]. On the other hand, a vision based real time

detection algorithm of vehicles and pedestrians was introduced by A. T. Ali and E.

L. Dagless [8], which had the Transputer-Image Processing System (TIPS), image

sensing, and geometric transformation. Moving Object Detectors (MODs), such as

edge detection, interframe differencing, and so on, were developed [8]. Furthermore,

the online vehicle and pedestrian detections based on sign pattern was introduced

in [9]. And C. Curio et al separated human walking model into 12 phrase and detected

walking pedestrian by checking those walking modes [10]. D. M. Gavrila introduced a

pedestrian recognition system which was integrated with three pedestrian recognition

systems, video-based, detection-verification framework, and stereo vision provided by

Region of Interest (ROI) [11]. After these, the vision based pedestrian detection had

been greatly developed in [12], [13], which include pedestrian detection, tracking, and

protection with real time vision and night vision.

Studies in recent ten years showed a significant progress and impressive results in

modeling, detection and control of cyclist/pedestrian autonomous emergency braking

systems and related research, such as pedestrian/cyclist detection, pedestrian behav-

ior and cyclist path prediction, AEB models including braking and evasive steering,

and driving behavior. Some research focus on pedestrian/cyclist detection which out-

put a set of pedestrian/cyclist candidates, detect with partial occlusion, overcome

some potential false, detect without high computational cost, and introduce vision-

based pedestrian/cyclist counting algorithm [14], [15], [16], [17], [18]. C. Zhou pro-

vided a stochastic optimization method to extend pedestrian tracking efficiently [15].

Pedestrian/cyclist behavior was modeled in [19], [20] and pedestrian/cyclist predic-

tion was modeled in [21], [22]. And M. K. Park et al calculated precise warning



3

distance [23] and V. R. Garate et al summarized the use of a software packages with

ability to cover all critical aspects of vulnerable road users [24]. Braking and eva-

sive steering were modeled and analyzed in [25], [26]. AEB system improved via

considering driving behavior and combining with V2X technology in [27], [28].

1.3 Problem Statement and Main Contributions

The purpose of this research is to find possible places for vehicle and pedestri-

an/cyclist to crash in certain area. This problem considered the braking strategies

in AEB system. Petri net models were built for the vehicle and pedestrian/cyclist

as a mutual exclusion problem in certain area for the AEB system. The prototype

of this model defines the layout of the potential collision area and the controller has

been designed to avoid crash between vehicle and pedestrian/cyclist. Specifically, the

certain area includes the area when pedestrian/cyclist cross road.

In this thesis, Chapter 2 reviews the concepts of Petri net which include the

terminology of Petri nets and mathematical descriptions of Petri net structure. At

the same time, examples are provided in Chapter 2 for those concepts. Chapter

3 introduces the CAEB testing, such as testing equipment, surrogate, and testing

scenarios. Then, the testing data are analyzed and braking patterns are shown, which

are used for the design of certain area layout. The concept of potential collision area

is proposed as the prototype of the certain area.

MATLAB codes are developed for processing the Petri nets model and calculating

reachable states along with coverability tree, which are introduced in Section 4.1. And

Petri net models are built for vehicle and pedestrian/cyclist and controllers has been

designed in Chapter 4. Then, Chapter 5 provides conclusions and future works.
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2. BACKGROUND ON PETRI NETS

The basic concepts of Petri nets and control of Petri nets are reviewed in this chap-

ter. The mathematical background, definitions and terminology will be used in this

thesis. Some examples are shown in this chapter. Graphical representation is a way

to model the target system. These examples are graphical models with underlying

mathematical analysis. More details about Petri nets can be found in [29].

This chapter is organized as follows. The basic Petri net concepts, such as the

structure, the marking, the state space, incident matrices, the dynamics, and state

equation are reviewed first. Followed those basic concepts, the control mechanism is

reviewed.

2.1 Petri Net Models

Petri Net Structure

Petri net graph (structure) is weighted bipartite graph N = (P, T,A,W ) [29],

where

P : a finite set of places.

T : a finite set of transitions.

A: the set of arcs from places to transitions and from transitions to places.

A ⊆ (P × T ) ∪ (T × P )

W : weight function on arcs.

There is no arcs between places and no arcs between transitions. I(tj) is used to

denote the set of input places for transitions tj; O(tj) to denote the set of output

places from transitions tj; I(Pi) to denote the input transitions for place Pi; O(Pi) to

denote the output transitions from place Pi.
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Fig. 2.1. A Petri net structure

Example 1 A Petri net structure is shown in Fig. 2.1.

In this simple Petri net structure, There is a set of places: P = {P1, P2, P3}.

The set of transitions is given by T = {t1, t2, t3, t4}, the set of arcs is by A =

{(P1, t1), (t1, P2), (P3, t2), (t2, P2), (P2, t3), (t3, P3), (P3, t4), (t4, P1)}, and

the arc weights by W (P1, t1) = 1, W (t1, P2) = 1, W (P3, t2) = 1, W (t2, P2) = 1,

W (P2, t3) = 1, W (t3, P3) = 1, W (P3, t4) = 1, W (t4, P1) = 1,

Marking and State Space

Tokens (drawn as block dots) are assigned to places. The way in which tokens are

assigned defines a marking [30].

M : P ⇒ 0, 1, 2, 3, · · ·
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M(Pj) denotes the numbers of tokens in place Pj. Subscripts for marking M

are used to denote steps. For example, the initial marking M0 denotes the initial

markings for each place, where

M0 =


M0(P1)

M0(P2)
...



Fig. 2.2. The Petri net structure with a possible initial marking

Example 2 For the Petri net shown in Fig. 2.1, there is a possible initial marking

M0 = [4 0 0]>, which is shown in Fig. 2.2.

Incident Matrix

Giving a Petri net with n places and m transitions, input incident matrix, output

incident matrix, and incident matrix can be defined uniquely in n×m dimensions as
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follows. Output incident matrix B+, captures arc weights from transitions to places;

Input incident matrix B−, captures arc weights from places to transitions; Incident

matrix is defined as B , B+−B−. In a Petri net, the incident matrices are structural

properties, and they are independent of states (markings) of the system.

Example 3 For the Petri net shown in Fig. 2.1, there are some other possible

initial markings. But they have identical incident matrices which are shown below

(because they have the same Petri net structures).

The input incident matrix is given by

B− =


t1 t2 t3 t4

P1 1 0 0 0

P2 0 0 1 0

P3 0 1 0 1


The output incident matrix is given by

B+ =


t1 t2 t3 t4

P1 0 0 0 1

P2 1 1 0 0

P3 0 0 1 0


The incident matrix is given by

B , B+ −B− =


−1 0 0 1

1 1 −1 0

0 −1 1 −1


Dynamics (enabling and firing of transitions)

A transition tj ∈ T is said to be enabled if

M(Pi) ≥ B−(Pi, tj)
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for all Pi ∈ I(tj). In other words, transition tj is enabled when the number of

tokens in each input place Pi of tj is at least as large as the arc weight from Pi to tj.

If a transition is enabled, it can fire. When it fires, it removes as many tokens as

the weight of the arc from each input place. It deposits as many tokens as the weight

of the arc to each output place.

The state equation is

Mk+1 = Mk + BVk (2.1)

where

Mk+1 is the state at step k + 1;

Mk is the state at step k;

B is the incident matrix;

Vk is the firing vector (with the dimension m× 1).

Example 4 In the Petri net shown in Fig. 2.2, transition t1 is enabled under

marking M0 = [4 0 0]>, which means it may fire. When transition t1 fires,

V0 = [1 0 0 0]>

Then, the new marking is

M1 = M0 + BV0 =


4

0

0

 +


−1 0 0 1

1 1 −1 0

0 −1 1 −1




1

0

0

0

 =


3

1

0



2.2 Control of Petri Nets

A state-based control is reviewed in this section. The control mechanism is to

introduce additional places and arcs as controller to disable or enable transitions to

avoid forbidden states. The specifications are in general in terms of constraints in the

form of inequality as below

L×M ≤ b (2.2)
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For the inequality above, slack variable, Mc, is introduced as the state of the

controller (Mc ≥ 0) to make the left side of equation equal to the right one. The

equation is shown as below

LM + MC = b (2.3)

which can be expressed in the form of matrix:

[
L I

]  M

Mc

 = b (2.4)

where I is an identity matrix.

The initial state of the Petri net controller is obtained by

LM0 + Mc0 = b (2.5)

Then, place invariant can be used to design a Petri net controller. Based on the

definition of place invariant

X>B = 0 (2.6)

⇒
[
L I

]  B

Bc

 = 0

The incident matrix of the controller is obtained by

LB + Bc = 0 (2.7)

For a Petri net with constraint LM ≤ b, to design a Petri net controller that

satisfies constraints. The controller incident matrix is calculated by

Bc = −LB (2.8)

The controller initial state is

Mc0 = b− LM0 (2.9)
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Example 5 Consider the Petri net shown in Fig. 2.2.

Design a Petri net controller to enforce the following constraint:

M(P2) + M(P3) ≤ 2

To design the Petri net controller which satisfies the constraint, constraint was

expressed in the form of LM ≤ b, where

L =
[

0 1 1
]
, M =


M(P1)

M(P2)

M(P3)

, b = 2

For the Petri net structure shown in Fig. 2.2, the input incident matrix B−, output

incident matrix B+ and the incident matrix B are given by

B− =


t1 t2 t3 t4

P1 1 0 0 0

P2 0 0 1 0

P3 0 1 0 1

, B+ =


t1 t2 t3 t4

P1 0 0 0 1

P2 1 1 0 0

P3 0 0 1 0

, B =


−1 0 0 1

1 1 −1 0

0 −1 1 −1


Then the incident matrix and the initial state can be calculated for the controller

as follows. The controller incident matrix is

Bc = −LB = −
[

0 1 1
] 

−1 0 0 1

1 1 −1 0

0 −1 1 −1

 =
[
−1 0 0 1

]
,

and the controller initial state is

Mc0 = b− LM = 2

The Petri net with its controller that satisfies the constraints are shown in Fig. 2.3.

The control mechanism is to introduce the additional place, PC , and arcs, (PC , t1)
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Fig. 2.3. The Petri net structure with controller for Example 5

and (t4, PC), to the original Petri net which is shown in Fig. 2.2. The initial state

of the controller M(PC) = 2. And the weight of those arcs are W (PC , t1) = 1 and

W (t4, PC) = 1 respectively.

The state-based control can also be used to constrain places separately, which is

shown in the example below.

Example 6 Consider the Petri net shown in Fig. 2.4. Design a Petri net controller

to enforce the following constraint:

M(P2) ≤ 2

M(P3) ≤ 1

Similar as the example above, constraints were expressed in the form of LM ≤ b

as the matrix equation below
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Fig. 2.4. The Petri net structure for Example 6

 0 1 0

0 0 1




M(P1)

M(P2)

M(P3)

 ≤
 2

1


Since the Petri net has the same Petri net structure with the Petri net in Fig. 2.2,

the incident matrices are the same as the incident matrices in the example above.

Then the incident matrix and initial state were calculated for the controller as

follow. The controller incident matrix and the controller initial state are

Bc = −LB =

 −1 −1 1 0

0 1 −1 1

,

Mc0 = b− LM =

 2

1

−
 0 1 0

0 0 1




3

0

0

 =

 2

1
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The Petri net with its controller that satisfies the constraints are shown in Fig. 2.5.

Places, PC1 and PC2, and arcs, (PC1, t1), (t4, PC2), (PC1, t2), (t2, PC2), (PC2, t3),

(t3, PC1) are introduced to the original Petri net shown in Fig. 2.4. The weights of

the arcs are W (PC1, t1) = 1, W (t4, PC2) = 1, W (PC1, t2) = 1, W (t2, PC2) = 1,

W (PC2, t3) = 1, W (t3, PC1) = 1 respectively.

Fig. 2.5. The Petri net structure with Controller for Example 6

2.3 Summary

This chapter reviews the basic concepts of Petri net and the design processes of

the Petri net controller with certain constraints. Those concepts of Petri net will be

used in the following chapters.
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3. DATA COLLECTION AND ANALYSIS

In this chapter, data collection is introduced first. Section 3.1 will introduce equip-

ment, surrogates and scenarios. During the AEB process, braking strategies were

analyzed. In Section 3.2, the typical test results are shown and braking patterns are

abstracted from those results. In the following section, the concept of potential colli-

sion area was proposed. This potential collision area will be discussed in next chapter

to build Petri net model and design its controller. As an extension of the potential

collision area, the crossing road scenarios will be discussed in next chapter as well.

3.1 Data Collection

Equipment

An Oxford RT 3002 DGPS was used to record the vehicle location, vehicle speed,

and vehicle acceleration. The warning light for the pre-collision system was used as

the input to record the warning time and duration. The tail brake light was used

as the input to record the braking start time and duration. The brake paddle was

equipped with a contact sensor, which was used to record the time and duration of

braking which was applied by driver.

The surrogate cyclist was dragged by a carrier triggered with wireless signal from

the IR sensor, which detects vehicles passing certain positions in test scenarios. The

motion of the carrier was controlled by wireless signal from a joystick. There is also a

paddling motion of the cyclist, which was also controlled by the wireless signal from

IR sensor.
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Surrogate

Two surrogate cyclists were used in this cyclist AEB test. They are designed

based on the size of US cyclist rider population and the size of Europe cyclist rider

population, respectively. As a surrogate cyclist for AEB test, the surrogate design

includes size, radar cross-section (RCS), and the motion system. The side view of

two cyclist surrogates are shown in Fig. 3.1. The front and back view of two cyclists

are shown in Fig. 3.2.

Fig. 3.1. Side view of cyclists

(a) Front view (b) Back view

Fig. 3.2. Front and back view of cyclists
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Test site and scenario

There is a flat taxiway with old asphalt at a decommissioned airport that we use

as a test site. All cyclist AEB tests were conducted on this test site. The road surface

and the background is shown in Fig. 3.3. In this AEB test, there is a vehicle equipped

with AEB system, which is shown in Fig. 3.4.

Fig. 3.3. Test road surface with background

Fig. 3.4. Vehicle for cyclist AEB test
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Among the cyclist AEB test, there are three kinds of scenarios, moving along road,

crossing road, and crossing road with 45◦. These three scenarios are shown in Fig.

3.5. Cyclist icons in the figure show the start place of the cyclist for each scenario.

Fig. 3.5. Cyclist AEB test scenarios

In these three scenarios, the vehicle initial speed are 30km/h, 45km/h, 60km/h,

respectively, while the distance between start sensor and the origin are 30m, 45m,

60m respectively. For the moving along road scenario, the cyclist speeds is 15km/h,

or 20km/h. For the crossing road scenario and the 45◦ crossing road scenario, the

cyclist speed is 15km/h and the distance from start point to collision point is 19m.

There are several groups of stationary tests, where cyclist speed equals to 0km/h in

tests with the crossing road and moving along road positions.

3.2 Braking Patterns

In the research of braking patterns, stationary tests data were analyzed, where

AEB system works and avoids the collision. The braking patterns of stationary cyclist

AEB tests show that the braking strategies can be used for pedestrian AEB, since
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they would not be affected by the speed difference between pedestrians and cyclists.

Stationary tests data of cyclist AEB show that there are different braking patterns

for the AEB system equipped on the vehicle. In the main pattern shown in Fig.

3.6, there is an initial transient phase until the peak time tm, when the braking force

achieves the maximum braking force. After that there is a second transient time until

the settling time tr, and then a constant ratio braking phase until the vehicle stops.

Fig. 3.6. Braking pattern A

Fig. 3.7. Braking pattern B

There are two more braking patterns. One is shown in Fig. 3.7. The first phase

is the transient phase until the maximum braking force has been applied. After the



19

transient phase, the maximum braking force was applied as a constant braking force

until the vehicle stops. The other one is called pattern C which is shown in Fig. 3.8,

the brake was released after the first phase in a slow speed and the vehicle stops right

in front of the cyclist.

Fig. 3.8. Braking pattern C

The occurrence frequencies of the patterns mentioned above are shown in Fig. 3.9.

The most frequent braking pattern is A. The control strategy of braking pattern A

provides a phase with ratio which offers a possibility to control the barking distance

and braking time duration by adjusting the ratio values.

Fig. 3.9. Braking patterns frequency
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3.3 Certain Area and Potential Collision Area

The common vehicle to pedestrian/cyclist encounters are shown in Fig. 3.10.

Vehicle is moving on the road straight forward in the figure. Then, these common

encounter scenarios can be defined as follows

• Pedestrian/cyclist crossing road from either side of the road/lane;

• Pedestrian/cyclist moving along the road/lane with/against the vehicle direc-

tion.

Fig. 3.10. Common vehicle to pedestrian/cyclist encounters

Certain Area: The possible area includes the possible places considering the

moving ability of pedestrian/cyclist or the braking strategies of vehicle.
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In each of the scenarios, pedestrian/cyclist can perform different moving paths.

In this thesis, the concept of certain area is to consider pedestrian/cyclist moving in a

area rather than to study the prediction of pedestrian/cyclist paths. For pedestrian/-

cyclist in the Fig. 3.10, a certain area based on the pedestrian/cyclist moving ability

is shown as the thick rectangle in Fig. 3.11. This area can both include several lanes

or be included in one lane. It shows the possible moving area of pedestrian/cyclist

for each of those scenarios.

Fig. 3.11. A certain area of vehicle and pedestrian/cyclist

For a vehicle equipped with AEB system, steering can change the final vehicle

place in x axis which is shown in Fig. 3.11. Based on the braking patterns discussed

in the previous section, vehicle is able to control the braking distance and braking
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time duration, which means that the final vehicle place can change in Y axis shown

in Fig. 3.11. Then, there is a certain area for vehicle to stop, which is shown as the

thin rectangle in Fig. 3.11.

Fig. 3.12. Braking distance with different ratio of braking force

Not only pedestrian/cyclist can change their places in their certain area, vehicle

can select the place for final stop. Based on the different strategies and properties

among vehicles, the certain area can be changed. The certain area of vehicle can also

be included in one lane or include several lanes.

If a vehicle takes braking pattern A but with different ratio of braking force in the

last braking phase, it has different braking distances for different initial speed, which

is shown in Fig. 3.12. This figure shows a simulation of the braking distance changing

with different ratio of braking force under initial speed from 30 km/h to 50 km/h.

For different vehicle, these curves can be different because of the differences among

braking strategy and braking performance. In the figure, if the vehicle has 40 km/h

as the initial speed and it’s braking strategy allows 50% to 70% ratio of braking force
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in the last phase with braking pattern A, it can provide near 1 meter range for its

certain area in the direction of axis Y.

Potential collision area: The area is the intersection area between certain area

of vehicle and certain area of pedestrian/cyclist, where vehicle and pedestrian/cyclist

can meet such that potential crashes can happen.

In this situation, vehicle and pedestrian/cyclist encounter problem in certain area

can be considered as a mutual exclusion problem. To solve this problem, potential

collision area which is shown in Fig. 3.13 is proposed as a prototype of the certain

area. It is defined in this section and be analyzed in next chapter. Furthermore, there

are some other areas that can be analyzed. Potential collision area is an area with

several places, or spaces, which means the area that vehicle and pedestrian/cyclist

can meet so potential crashes can happen in this area.

Fig. 3.13. A potential area with four places

A potential area can be designed in different ways, which means it can be divided

into several subareas as needed. In this section a potential collision area is provided

which is shown as prototype in Fig. 3.13. In this prototype, it is assumed that vehicle

and pedestrian/cyclist have same certain area so that potential collision area is the
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certain area of vehicle and pedestrian/cyclist. Four subareas are designed in this po-

tential area as four places for Petri net modeling. It is defined that vehicle can choose

the final places following the direction of thick arrows, and the pedestrian/cyclist can

choose the final places following the direction of those thin arrows.

Fig. 3.14. Choosing place to stop in potential collision area

When AEB is needed, they can choose their final places, which is shown as the

indication of arrows in Fig. 3.14. And they can change their final places. To avoid

a collision, they should not stop finally in the same place of that area, which is a

mutual exclusion problem between a vehicle and pedestrian/cyclist in the potential

area. If the pedestrian/cyclist change the idea that choosing place 4 as the final place
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rather than choosing place 1, the vehicle can change its final place from place 4 to

place 3. It should change both its steering angle and the ratio of braking force in last

phase of the braking, for changing the final place from place 4 to place3.

Petri nets will be used as a tool to build the model of vehicle and pedestrian/cyclist

and to design the controller to make sure they would not stop in the same place. When

the AEB system is needed, a potential collision area is taken into consideration which

includes places as the potential final stop place for vehicle and pedestrian/cyclist.

To avoid a collision in a potential collision area, the Petri net models for vehicle

and pedestrian/cyclist in their certain area should be built first. Then the Petri

net controller should be designed for the combined Petri net models for vehicle and

pedestrian/cyclist. The controller is needed to avoid vehicle and pedestrian/cyclist

going to the same place during the dynamic process of the combined Petri nets.

3.4 Summary

This chapter introduces the testing equipment for control and data collection.

Then the surrogate, vehicle, and testing scenarios are also introduced. Braking pat-

terns were analyzed from the original data and the frequency is shown in Section 3.2.

After investigating braking patterns, a certain area is proposed with the potential

collision area as its prototype.
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4. PETRI NET MODEL FOR AEB SYSTEM

In this chapter, the MATLAB codes used for analysis are introduced in three subsec-

tions, inputs, functions and results. Section 4.2 includes the modeling and analysis

of vehicle and pedestrian/cyclist in the potential area. Specifically, the modeling and

analysis of vehicle and pedestrian/cyclist in crossing road scenario are illustrated in

the following section.

4.1 MATLAB Codes

This section introduces the MATLAB codes, input and functions, for design Petri

net controller and calculation of the reachable states for the Petri net with controller.

The calculation is followed by the results in both command window and an text file,

which include the coverability tree and the node type for each state.

4.1.1 Inputs

There is a main file as the input, which is named “condition.m”. The file includes

the basic parameters and constraints of the Petri net. Then it calculates parameters

of the controller. Finally, it calculates the coverability tree for the Petri net and

outputing the results as a file. An example condition file is shown in appendix An

Example Condition File.

4.1.2 Functions

Functions include methods to calculate the parameters of original Petri net and

controller for the specific constraints, such as incident matrices of original Petri net,

initial states of the controller, initial incident matrix of the controller, all states in
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coverability tree. These functions are used to process the original input file which

describes the parameters and constraints for designing the controller. There are

five functions, incident function, inicon function, controlledpetri function, transition

function, and petricon function, to complete the whole task. Each function has a

help document in MATLAB, which can be found by “help Function name” in the

command window. In the last line of each help document, it will show the relative

function name for searching those help documents for convenience. All Functions are

shown in appendix Functions.

Incident Function

Incident matrices are properties of a Petri net structure, which is a basic infor-

mation of the Petri net. This function treats the input incident matrix and output

incident matrix, which are included in the condition file, as the input. And it checks

the dimension of both input incident matrix and output incident matrix. After the

check, it will calculate the incident matrix B , B+ − B− if the dimensions of the

two matrix are the same; or it will show the error information to let you check the

incident input matrix and output incident matrix in the input file.

Inicon Function

Based on the incident matrix, initial marking, and the constraints of the Petri

net, the initial state and markings of the Petri net controller can be calculated for the

original Petri net. The inputs of this function are matrices L and b which are in the

constraints LM ≤ b, the initial marking of the Petri net M0, and the incident matrix

of Petri net. The output of this function are initial markings MC0 of the Petri net

controller and initial incident matrix BC of the Petri net controller.
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Controlledpetri Function

The parameters of the Petri net with the controller are needed to calculate all

states and the node type in the coverability tree of the Petri net with controller.

The inputs for this function are the incident matrices and initial marking of both

Petri net and the controller. Then it calculates those matrices for the incident matrix

and initial markings of the new Petri net which include the places and arcs being

introduced by the controller.

Example 7 Considering the example condition file which describes the Petri

net structure in Fig. 2.2 and the constraint in Example 5. The results of calling

controlledpetri function are shown as below

Bcpinput =



t1 t2 t3 t4

P1 1 0 0 0

P2 0 0 1 0

P3 0 1 0 1

PC 1 0 0 0

, Bcpoutput =



t1 t2 t3 t4

P1 0 0 0 1

P2 1 1 0 0

P3 0 0 1 0

PC 0 0 0 1



BBco =


1 0 0 0

0 0 1 0

0 1 0 1

1 0 0 0

, M0Mco =


4

0

0

2


Bcpinput is the input matrix of the Petri net with controller; Bcpoutput is the output

matrix of the Petri net with controller; BBco is the incident matrix of the Petri net

with controller; M0Mco is the initial markings of the Petri net with controller.
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Transition Function

Coverability tree is a finite tree with possibly infinite number of states. In this

function, node type, Petri net markings, and transition sequence are calculated. Tran-

sition sequences are recorded in Tall, and each marking is stored in Mall.

Node type is defined as variable DT . If DT = 0, it is a state with transition to

be enabled; if DT = 1, it is a duplicate node; if DT = 2, it is a terminate node in the

coverability tree. In this function,DT = 1 is the initial value each time and it checks

if there is any transition that can be enabled.

Petricon Function

Petricon function is called by the input file, condition.m, to calculate all the results

by calling functions above as needed among the process of calculating parameters for

controller, building the Petri net with controller, and generating the coverability tree.

4.1.3 Results

Results of these codes include those matrices shown in the command window and

a text file shown as in the Fig 4.1.

Example 8 After calling the functions above, the results of the Petri net with

the controller (Fig. 2.3.) are shown as below. The first line of Mall is the initial

marking. It has transitions to be enabled since the nodes type is 0. In the DT

matrix, DT (i) = 1 indicates the state is a duplicate node. There are five reachable

states for the Petri net with controller.
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Fig. 4.1. Results text file as an example

DT =



0

0

0

0

0

1

1

1

1

0

1

1

1



, Mall =



4 0 0 2

3 1 0 1

2 2 0 0

3 0 1 1

2 1 1 0

2 1 1 0

3 1 0 1

4 0 0 2

2 2 0 0

2 0 2 0

3 1 0 1

2 1 1 0

3 0 1 1



, Tall =



0 0 0 0 0

1 0 0 0 0

1 1 0 0 0

1 3 0 0 0

1 1 3 0 0

1 3 1 0 0

1 3 2 0 0

1 3 4 0 0

1 1 3 2 0

1 1 3 3 0

1 1 3 4 0

1 1 3 3 2

1 1 3 3 4
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4.2 Petri Net Modeling and Controller Design

The modeling and analysis for vehicle and pedestrian/cyclist in the potential col-

lision area are discussed in this section. The Petri net graphs are designed for both

vehicle and pedestrian/cyclist; Then, the vehicle and pedestrian/cyclist model is com-

bined and a Petri net controller is designed for it. After that, the combined Petri net

model is analyzed in detail.

To avoid a collision, a controller is needed for the combined Petri nets, which

shows in the Section 4.2.3, controller designing. The Petri net controller is designed

to guarantee that the vehicle and pedestrian/cyclist will never choose to stop in the

same place as the initial state, vehicle stops in place 4 and pedestrian/cyclist stops

in place 1.

4.2.1 Petri Net Model of Pedestrian/Cyclist

To build the Petri net model of pedestrian/cyclist in the potential collision area,

some basic parameters of the Petri net, such as places set, transition set, and arcs

set, are designed. For the potential area shown in Fig. 3.13 and the direction of the

thin arrows, the places of pedestrian/cyclist are given by

PPC = {PPC1, PPC2, PPC3, PPC4}

where P with subscript represents to No. 1, 2 , 3 , 4 pedestrian/cyclist places in the

potential area, respectively.

The transitions set is defined as TPC = {t12PC , t21PC , t13, t34PC , t43PC , t42},

where t with the subscripts ij represents that only pedestrian/cyclist has those tran-

sitions from i to j and for some transition from i to j not only has transition for

pedestrian/cyclist, those subscripts ijPC means the transition from i to j for pedes-

trian/cyclist.

In the potential collision area shown in Fig. 3.13, we define the pedestrian/cyclist

moving between place 1 and place 2 or between place 3 and place 4 as the crossing
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road direction and the pedestrian/cyclist moving from place 1 to place 3 or from place

4 to place 2 as moving along road direction. The event of each transition are shown

in Table. 4.1.

Table 4.1.
Events for Pedestrian/Cyclist Transitions in Potential Collision Area

Transition Event

t12PC Crossing road moving from place1 to place2

t21PC Crossing road moving from place2 to place1

t13 Along road moving from place1 to place3

t34PC Crossing road moving from place3 to place4

t43PC Crossing road moving from place4 to place3

t42 Along road moving from place4 to place2

Arcs set is given by

APC = {(PPC1, t12PC), (t12PC , PPC2), (PPC2, t21PC), (t21PC , PPC1),

(PPC1, t13), (t13, PPC3), (PPC3, t34PC), (t34PC , PPC4),

(PPC4, t43PC), (t43PC , PPC3), (PPC4, t42PC), (t42PC , PPC2)}

It is assumed the weight of each arc is 1. The weight from places to transitions

and the weight from transitions to places are given by:

t12PC t21PC t13 t34PC t43PC t42

PPC1 1 0 1 0 0 0

PPC2 0 1 0 0 0 0

PPC3 0 0 0 1 0 0

PPC4 0 0 0 0 1 1



33

t12PC t21PC t13 t34PC t43PC t42

PPC1 0 1 0 0 0 0

PPC2 1 0 0 0 0 1

PPC3 0 0 1 0 1 0

PPC4 0 0 0 1 0 0

t12PC

t21PC

t42

t34PC

t43PC

t13

PPC3 PPC4

PPC2PPC1

Fig. 4.2. Petri net graph for pedestrian/cyclist

The Petri net graph for pedestrian/cyclist Petri net is shown in Fig. 4.2

For the Petri net structure of pedestrian/cyclist Petri net, the incident matrices,

input incident matrix B−PC and output incident matrix B+
PC are given by

B−PC =



t12PC t21PC t13 t34PC t43PC t42

PPC1 1 0 1 0 0 0

PPC2 0 1 0 0 0 0

PPC3 0 0 0 1 0 0

PPC4 0 0 0 0 1 1
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B+
PC =



t12PC t21PC t13 t34PC t43PC t42

PPC1 0 1 0 0 0 0

PPC2 1 0 0 0 0 1

PPC3 0 0 1 0 1 0

PPC4 0 0 0 1 0 0



BPC =



t12PC t21PC t13 t34PC t43PC t42

PPC1 −1 1 −1 0 0 0

PPC2 1 −1 0 0 0 1

PPC3 0 0 1 −1 1 0

PPC4 0 0 0 1 −1 −1


4.2.2 Petri Net Model of Vehicle

For building Petri net model of the vehicle, the places set, transition set and

arcs set are defined first. The places set is PV = {PV 1, PV 2, PV 3, PV 4}, where the

subscript V i indicates the places for vehicle.

Transition set is TV = {t12V , t21V , t24, t31, t34V , t43V } and the arcs set is

AV = {(PV 1, t12V ), (t12V , PV 2), (PV 2, t21V ), (t21V , PV 1),

(PV 2, t24), (t24, PV 2), (PV 3, t31V ), (t31V , PV 1),

(PV 3, t34V ), (t34V , PV 4), (PV 4, t43V ), (t43V , PV 3)}

Then, the incident matrices of vehicle Petri net model are calculated. For this

Petri net model, there are four places and six transitions. The weight from the places

to transitions and the weight from transitions to places are given by

t12V t21V t24 t31 t34V t43V

PV 1 1 0 0 0 0 0

PV 2 0 1 1 0 0 0

PV 3 0 0 0 1 1 0

PV 4 0 0 0 0 0 1

t12V t21V t24 t31 t34V t43V

PV 1 0 1 0 1 0 0

PV 2 1 0 0 0 0 0

PV 3 0 0 0 0 0 1

PV 4 0 0 1 0 1 0
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In the potential collision area, the vehicle moving direction is defined as the same

direction moving from place 3 to place 1. Places PV 1 to PV 4 represent four potential

places at which vehicle would stop. To define the events for vehicle transitions, FRMB1

to FRMB4 are defined as the final braking force which would make vehicle stopped at

Places PV 1 to PV 4 respectively.

Table 4.2.
Events for Vehicle Transitions in Potential Collision Area

Transition Event

t12v Steering right and

changing the final braking force from FRMB1 to FRMB2

t21v Steering left and

changing the final braking force from FRMB2 to FRMB1

t24 Change the final braking force from FRMB2 to FRMB4

t31 Change the final braking force from FRMB3 to FRMB1

t34v Steering right and

changing the final braking force from FRMB3 to FRMB4

t43v Steering left and

changing the final braking force from FRMB4 to FRMB3

For this vehicle Petri net, the incident matrices are in 4 × 6 dimension. Input

incident matrix B−V , output incident matrix B+
V , and incident matrix BV are given by

B−V =



t12V t21V t24 t31 t34V t43V

PV 1 1 0 0 0 0 0

PV 2 0 1 1 0 0 0

PV 3 0 0 0 1 1 0

PV 4 0 0 0 0 0 1
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B+
V =



t12V t21V t24 t31 t34V t43V

PV 1 0 1 0 1 0 0

PV 2 1 0 0 0 0 0

PV 3 0 0 0 0 0 1

PV 4 0 0 1 0 1 0



BV = B+
V −B−V =



t12V t21V t24 t31 t34V t43V

PV 1 −1 1 0 1 0 0

PV 2 1 −1 −1 0 0 0

PV 3 0 0 0 −1 −1 1

PV 4 0 0 1 0 1 −1


The Petri net graph for the Petri net structure is shown in Fig. 4.3

t12V

t21V

t24

t34V

t43V

t31

PV3 PV4

PV2PV1

Fig. 4.3. Petri net graph for vehicle in potential collision area
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4.2.3 Controller Design

The two Petri net models are to be combined into one Petri net for this mutual

exclusion problem in the potential collision area.

t12V

t21V

t24

t34V

t43V

t31

PV3 PV4

PV2PV1
t12PC

t21PC

t42

t34PC

t43PC

t13

PPC3 PPC4

PPC2PPC1

Fig. 4.4. Combined Petri net graph in potential collision area

After the combination, the Petri net graph is shown as Fig. 4.4. A Petri net

controller is needed to guarantee that vehicle and pedestrian/cyclist will never choose

the same place as the final stop place. For example, initially vehicle stops in place 4

and pedestrian/cyclist stops in Place 1.

There are new place set P , transition set T , and arcs setA as follows

P = {PV 1, PV 2, PV 3, PV 4, PPC1, PPC2, PPC3, PPC4};

T = {t12V , t21V , t24, t31, t34V , t43V , t12PC , t21PC , t13, t34PC , t43PC , t42};
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A = {(PV 1, t12V ), (t12V , PV 2), (PV 2, t21V ), (t21V , PV 1),

(PV 2, t24), (t24, PV 2), (PV 3, t31V ), (t31V , PV 1),

(PV 3, t34V ), (t34V , PV 4), (PV 4, t43V ), (t43V , PV 3),

(PPC1, t12PC), (t12PC , PPC2), (PPC2, t21PC), (t21PC , PPC1),

(PPC1, t13), (t13, PPC3), (PPC3, t34PC), (t34PC , PPC4),

(PPC4, t43PC), (t43PC , PPC3), (PPC4, t42PC), (t42PC , PPC2)}.

The incident matrix is calculated based on the input incident matrix and output

incident matrix as follows. The input incident matrix, output incident matrix, and

the incident matrix are shown below

B− =



t12V t21V t24 t31 t34V t43V t12PC t21PC t13 t34PC t43PC t42

PV 1 1 0 0 0 0 0 0 0 0 0 0 0

PV 2 0 1 1 0 0 0 0 0 0 0 0 0

PV 3 0 0 0 1 1 0 0 0 0 0 0 0

PV 4 0 0 0 0 0 1 0 0 0 0 0 0

PPC1 0 0 0 0 0 0 1 0 1 0 0 0

PPC2 0 0 0 0 0 0 0 1 0 0 0 0

PPC3 0 0 0 0 0 0 0 0 0 1 0 0

PPC4 0 0 0 0 0 0 0 0 0 0 1 1



B+ =



t12V t21V t24 t31 t34V t43V t12PC t21PC t13 t34PC t43PC t42

PV 1 0 1 0 1 0 0 0 0 0 0 0 0

PV 2 1 0 0 0 0 0 0 0 0 0 0 0

PV 3 0 0 0 0 0 1 0 0 0 0 0 0

PV 4 0 0 1 0 1 0 0 0 0 0 0 0

PPC1 0 0 0 0 0 0 0 1 0 0 0 0

PPC2 0 0 0 0 0 0 1 0 0 0 0 1

PPC3 0 0 0 0 0 0 0 0 1 0 1 0

PPC4 0 0 0 0 0 0 0 0 0 1 0 0
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B = B+ −B− =



−1 1 0 1 0 0 0 0 0 0 0 0

1 −1 −1 0 0 0 0 0 0 0 0 0

0 0 0 −1 −1 1 0 0 0 0 0 0

0 0 1 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 −1 1 −1 0 0 0

0 0 0 0 0 0 1 −1 0 0 0 1

0 0 0 0 0 0 0 0 1 −1 1 0

0 0 0 0 0 0 0 0 0 1 −1 −1


For this problem, the initial state of the Petri net is

M>
0 =

[ PV 1 PV 2 PV 3 PV 4 PPC1 PPC2 PPC3 PPC4

0 0 0 1 1 0 0 0
]

The controller is designed to guarantee the marking of each place are never greater

than 1, which can be transferred into the form LM ≤ b, where

L =


1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

, M =



M(PV 1)

M(PV 2)

M(PV 3)

M(PV 4)

M(PPC1)

M(PPC2)

M(PPC3)

M(PPC4)



, b =


1

1

1

1



A slack variable, MC(MC ≥ 0), is introduced to the constraints LM ≤ b, such

that

LM + Mc = b
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[
L I

] M

Mc

 = b

The initial state for the Petri net controller of the combined Petri net is obtained

by

LM0 + MC0 = b

⇒MC0 = b− LM0 =


1

1

1

1

−


1

0

0

1

 =


0

1

1

0


The Petri net controller has the incident matrix, BC = −LB, which indicates the

relationship between the controller places and the transitions of combined Petri net

BC =



t12V t21V t24 t31 t34V t43V t12PC t21PC t13 t34PC t43PC t42

PC1 1 −1 0 −1 0 0 1 −1 1 0 0 0

PC2 −1 1 1 0 0 0 −1 1 0 0 0 −1

PC3 0 0 0 1 1 −1 0 0 −1 1 −1 0

PC4 0 0 −1 0 −1 1 0 0 0 −1 1 1


In the first section of condition file, conditionPotentialCollisionArea.m, incident

matrices are given by Bvinput, Bpcinput, Bvoutput, Bpcoutput, respectively, to rep-

resent input incident matrices and output incident matrices of vehicle and pedestri-

an/cyclist Petri net model. For the combined Petri net, incident matrices are Binput

and Boutput calculated by those incident matrices mentioned above. M0 indicates

the initial state of the combined Petri net, and the constraint of the combined Petri

net is expressed as matrices L and b.

Building the controlled Petri net and calculating the reachable states of the Petri

net is discussed below. petricon function is called with five input tuple, Boutput,

Binput, L, b, M0, for incident matrix and initial state of the Petri net controller,

which guarantees the vehicle and pedestrian/cyclist will never stop in the same place.
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Incident matrices of the combined Petri net with controller are calculated by calling

petricon.controlledpetri.BBco method. The initial state of the controlled Petri net is

given by calling petricon.controlledpetri.M0Mco method. After calculation, the results

of BBco and M0Mco are

BBco =



t12V t21V t24 t31 t34V t43V t12PC t21PC t13 t34PC t43PC t42

PV 1 −1 1 0 1 0 0 0 0 0 0 0 0

PV 2 1 −1 −1 0 0 0 0 0 0 0 0 0

PV 3 0 0 0 −1 −1 1 0 0 0 0 0 0

PV 4 0 0 1 0 1 −1 0 0 0 0 0 0

PPC1 0 0 0 0 0 0 −1 1 −1 0 0 0

PPC2 0 0 0 0 0 0 1 −1 0 0 0 1

PPC3 0 0 0 0 0 0 0 0 1 −1 1 0

PPC4 0 0 0 0 0 0 0 0 0 1 −1 −1

PC1 1 −1 0 −1 0 0 1 −1 1 0 0 0

PC2 −1 1 1 0 0 0 −1 1 0 0 0 −1

PC3 0 0 0 1 1 −1 0 0 −1 1 −1 0

PC4 0 0 −1 0 −1 1 0 0 0 −1 1 1



M0Mco> =
[ PV 1 PV 2 PV 3 PV 4 PPC1 PPC2 PPC3 PPC4 PC1 PC2 PC3 PC4

0 0 0 1 1 0 0 0 0 1 1 0
]

With the incident matrix and initial state calculated above, the structure of con-

trolled Petri net and the initial markings can be drawn as shown in Fig. 4.5. There

are four controller places to be introduced to the original Petri net, which would

guarantee the vehicle and pedestrian/cyclist will never stop in the same place.
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Fig. 4.5. Controlled Petri net with initial state in potential collision area

Then, a reachable states, transition sequences, and the nodes type are calcu-

lated by calling methods, petricon.transition.Mall, petricon.transition.Tall, and petri-

con.transition.DT. The results are listed as follows

Mall =



0 0 0 1 1 0 0 0 0 1 1 0

0 0 1 0 1 0 0 0 0 1 0 1

0 0 0 1 0 1 0 0 1 0 1 0

0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 1 1 0 0 0 0 1 1 0

0 0 1 0 0 1 0 0 1 0 0 1

0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 1 1 0 0 0 0 1 1 0

1 0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 1 0 0 1 0 1 0

0 0 1 0 1 0 0 0 0 1 0 1
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DT =



0

0

0

2

1

0

1

1

2

1

1



, Tall =



0 0 0

6 0 0

7 0 0

9 0 0

6 5 0

6 7 0

7 6 0

7 8 0

6 7 4

6 7 5

6 7 8


In the last section of the condition file, a text file is generated as the results by

printing the nodes type, reachable states, and transition sequences in that file. Each

line of state matrix, Mall, is a reachable state. The first line of the matrix is the initial

state which is equal to the initial state, M0Mco, of controlled Petri net. Because 1

indicates a duplicate node and 2 indicates a terminal node. For this controlled Petri

net in the potential collision area, there are 6 reachable states including the initial

state, M>
0 = [0 0 0 1 1 0 0 0]. Rall denotes the reachable states

Rall =



0 0 0 1 1 0 0 0 0 1 1 0

0 0 1 0 1 0 0 0 0 1 0 1

0 0 0 1 0 1 0 0 1 0 1 0

0 0 0 1 0 0 1 0 1 1 0 0

0 0 1 0 0 1 0 0 1 0 0 1

1 0 0 0 0 1 0 0 0 0 1 1
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4.3 Crossing Road Scenarios

In the previous section, the Petri net model of vehicle and pedestrian/cyclist was

built and the controller was designed. In addition to this, the MATLAB code was

used to build the Petri net with controller and to calculate the reachable states.

This section focuses on the situation of crossing road scenarios. The layout was

defined as shown in Fig. 4.6. which includes the movement of pedestrian/cyclist

and the potential stop places for vehicle. There are eight places in this layout of the

crossing road scenario. We define the driving direction of vehicle the same as the

direction from place 6 to place 4. And the direction between place 4 and place 5 or

among place 1 to place 3 are crossing road direction. In the layout of the crossing

road scenario, thin arrows indicate the abstract of the pedestrian/cyclist movement.

Thick arrows present the final places where vehicle would stop finally.

Fig. 4.6. Layout of crossing road scenarios

In the following subsections, Petri net model of pedestrian/cyclist and vehicle are

introduced for this scenario, as well as the controller design and analysis process.
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4.3.1 Vehicle Petri net model in Crossing Road Scenarios

In the crossing road scenario layout which is shown in Fig. 4.6, there are five places

for vehicle Petri net model. Those places are denoted by PV i, where the subscript V

means it is a place for vehicle and the subscript i indicates the number of the place

in the layout of the crossing road scenario. For the vehicle Petri net model, the set

of places is PV = {PV 4, PV 5, PV 6, PV 7, PV 8}. The transitions in vehicle Petri net

model are denoted by TijV for those transitions between places which are shared by

pedestrian/cyclist Petri net model in the certain area layout of crossing road scenario,

and Tij for those transitions only for vehicle Petri net model. The transition set is

given by TV = {t45V , t54V , t64, t58, t67, t76, t78, t87}.

Between these places and transitions, there are arcs for the vehicle Petri net model.

The arcs set is shown as below. The weights between transitions and places are given

as follows

AV = {(PV 4, t45V ), (t45V , PV 5), (PV 5, t54V ), (t54V , PV 4),

(PV 6, t64), (t64, PV 4), (PV 6, t67), (t67, PV 7),

(PV 7, t76), (t76, PV 6), (PV 7, t78), (t78, PV 8),

(PV 8, t87), (t87, PV 7), (PV 4, t58), (t58, PV 8)}

t45V t54V t64 t58 t67 t76 t78 t87

PV 4 1 0 0 0 0 0 0 0

PV 5 0 1 0 1 0 0 0 0

PV 6 0 0 1 0 1 0 0 0

PV 7 0 0 0 0 0 1 1 0

PV 8 0 0 0 0 0 0 0 1
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t45V t54V t64 t58 t67 t76 t78 t87

PV 4 0 1 1 0 0 0 0 0

PV 5 1 0 0 0 0 0 0 0

PV 6 0 0 0 0 0 1 0 0

PV 7 0 0 0 0 1 0 0 1

PV 8 0 0 0 1 0 0 1 0

To satisfy the final stopping place changing of the vehicle in crossing road scenario,

event of each transition is designed in Table 4.3 which is similar to Table 4.2. Steering

and braking with different ratio braking force is the event to change one final stopping

place to another. The braking forces in final phase of the braking duration are defined

as FV = {FRMB4, FRMB5, FRMB6, FRMB7, FRMB8}. The subscript RMB is the

abbreviation of Rational Maximum Braking force and i after RMB indicate the ratio

braking force needed to stop at each place.

Based on the relationship among the transitions and places in vehicle Petri net,

the vehicle Petri net model in the crossing road scenario layout can be expressed in

graph shown in Fig. 4.7. Places are drawn as circles and transitions are drawn as

bars. There is no number on those arcs from transitions to places and from places to

transitions, which means those arcs are with default weight of 1.

For this vehicle Petri net model, the input incident matrix and output incident

matrix are given by

B−V =



1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1


, B+

V =



0 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 1

0 0 0 1 0 0 1 0
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Table 4.3.
Events for Vehicle Transitions in Crossing Road Scenarios

Transition Event

t45v Steering right and

changing the final braking force from FRMB4 to FRMB5

t54v Steering left and

changing the final braking force from FRMB5 to FRMB4

t64 Keeping the steering angle or steering right and

change the final braking force from FRMB6 to FRMB4

t58 Keeping the steering angle or steering right and

change the final braking force from FRMB5 to FRMB8

t67 Steering right and

changing the final braking force from FRMB6 to FRMB7

t76 Steering left and

changing the final braking force from FRMB7 to FRMB6

t78 Steering right and

changing the final braking force from FRMB7 to FRMB8

t87 Steering left and

changing the final braking force from FRMB8 to FRMB7

BV = B+
V −B−V =



t45V t54V t64 t58 t67 t76 t78 t87

PV 4 −1 1 1 0 0 0 0 0

PV 5 1 −1 0 −1 0 0 0 0

PV 6 0 0 −1 0 −1 1 0 0

PV 7 0 0 0 0 1 −1 −1 1

PV 8 0 0 0 1 0 0 1 −1
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Fig. 4.7. Vehicle Petri net graph in crossing road scenarios

In this subsection, the vehicle Petri net model is developed for the layout of the

crossing road scenario. The places, transitions, and events of the vehicle Petri net

have been defined. Furthermore, the properties and incident matrices are calculated

for vehicle Petri net graph which is shown in Fig. 4.7.

4.3.2 Pedestrian/Cyclist Petri net model in Crossing Road Scenarios

In Fig. 4.6, five places are defined for the pedestrian/cyclist Petri net model,

where the place set is PPC = {PPC1, PPC2, PPC3, PPC4, PPC5}. The subscript PC

means the places for pedestrian/cyclist and the subscript i indicates the place number

in the layout.
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To change the place from one to another, there are transitions in pedestrian/cyclist

Petri net model as the transition set: TPC = {t12, t21, t23, t32, t41, t35, t45PC , t54PC}.

The subscript ij means it moves the token from place i to j if the transition is enabled.

The subscript PC indicates the transition is included in pedestrian/cyclist Petri net

model.

Arcs are among these transitions and places of the pedestrian/cyclist Petri net

model, including those from transitions to places and from places to transitions. The

arcs set is given by

APC = {(PPC1, t12), (t12, PPC2), (PPC2, t21), (t21, PPC1),

(PPC2, t23), (t23, PPC3), (PPC3, t32), (t32, PPC2),

(PPC4, t41), (t41, PPC1), (PPC3, t35), (t35, PPC5),

(PPC4, t45PC), (t45PC , PPC5), (PPC5, t54PC), (t54PC , PPC4)}

The weights of the arcs are shown below

t12 t21 t23 t32 t41 t35 t45PC t54PC

PPC1 1 0 0 0 0 0 0 0

PPC2 0 1 1 0 0 0 0 0

PPC3 0 0 0 1 0 1 0 0

PPC4 0 0 0 0 1 0 1 0

PPC5 0 0 0 0 0 0 0 1

t12 t21 t23 t32 t41 t35 t45PC t54PC

PPC1 0 1 0 0 1 0 0 0

PPC2 1 0 0 1 0 0 0 0

PPC3 0 0 1 0 0 0 0 0

PPC4 0 0 0 0 0 0 0 1

PPC5 0 0 0 0 0 1 1 0

Based on the weight of arcs, the input incident matrix B− which indicates the

weight of those arcs from places to transitions and the output incident matrix B+

which indicates the weight of those arcs from transitions to places are given by
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B−PC =



1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 1


, B+

PC =



0 1 0 0 1 0 0 0

1 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 0


With the input incident matrix and output incident matrix, incident matrix can

be calculated for the pedestrian/cyclist Petri net structure.

BPC = B+
PC −B−PC =



t12 t21 t23 t32 t41 t35 t45PC t54PC

PPC1 −1 1 0 0 1 0 0 0

PPC2 1 −1 −1 1 0 0 0 0

PPC3 0 0 1 −1 0 −1 0 0

PPC4 0 0 0 0 −1 0 −1 1

PPC5 0 0 0 0 0 1 1 −1


Then, the pedestrian/cyclist model can be drawn as shown in Fig. 4.8, which

includes all the places in the place set, transitions in the transition set, and arcs in

the arc set of pedestrian/cyclist Petri net model.

As the moving direction defined at the beginning of this section, pedestrian/cyclist

were considered mainly focus on the moving in the crossing road direction, which

means that pedestrian/cyclist can move freely among place 1 to place 3 and place 4

to place 5 in dual directions but can move in one direction from place 4 to place 1

and from place 3 to place 5. In this pedestrian/cyclist Petri net model in the crossing

road scenario, the event is defined for each transition in Table 4.4, which can satisfy

the model developed for the crossing road scenario.
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Fig. 4.8. Pedestrian/cyclist Petri net graph in crossing road scenarios

Table 4.4.
Events for Pedestrian/Cyclist Transitions in Potential Collision Area

Transition Event

t12 Crossing road moving from place1 to place2

t21 Crossing road moving from place2 to place1

t23 Crossing road moving from place2 to place3

t32 Crossing road moving from place3 to place2

t41 Along road moving from place4 to place1

t35 Along road moving from place4 to place2

t45PC Crossing road moving from place4 to place5

t54PC Crossing road moving from place5 to place4
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4.3.3 Controller and Results

The combined Petri net graph is shown in Fig. 4.9. For this combined Petri net

Fig. 4.9. Combined Petri net in crossing road scenarios

model, the place set P = {PV , PPC}, the transition set T = {TV , TPC}, and the arcs

A = {AV , APC}, where,

P = {PV 4, PV 5, PV 6, PV 7, PV 8, PPC1, PPC2, PPC3, PPC4, PPC5},

T = {t45V , t54V , t64, t58, t67, t76, t78, t87, t12, t21, t23, t32, t41, t35, t45PC , t54PC},

A = {(PV 4, t45V ), (t45V , PV 5), (PV 5, t54V ), (t54V , PV 4),

(PV 6, t64), (t64, PV 4), (PV 6, t67), (t67, PV 7),

(PV 7, t76), (t76, PV 6), (PV 7, t78), (t78, PV 8),

(PV 8, t87), (t87, PV 7), (PV 4, t58), (t58, PV 8),

(PPC1, t12), (t12, PPC2), (PPC2, t21), (t21, PPC1),

(PPC2, t23), (t23, PPC3), (PPC3, t32), (t32, PPC2),

(PPC4, t41), (t41, PPC1), (PPC3, t35), (t35, PPC5),

(PPC4, t45PC), (t45PC , PPC5), (PPC5, t54PC), (t54PC , PPC4)}
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To guarantee the vehicle and pedestrian/cyclist will never stop in the same place

for this crossing road scenario, a Petri net controller was designed for the combined

Petri net, including the vehicle Petri net and pedestrian/cyclist Petri net. The con-

straint of this combined Petri net is LM ≤ b, where

L =

 1 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 1

,M =



M(PV 4)

M(PV 5)

M(PV 6)

M(PV 7)

M(PV 8)

M(PPC1)

M(PPC2)

M(PPC3)

M(PPC4)

M(PPC5)



, b =

 1

1



The condition file is shown in appendix Crossing Road Scenarios M-File. The

constraint matrices L and b are used as input variables in the condition file. Incident

matrices of both vehicle Petri net model pedestrian/cyclist Petri net model are also

used as input variables. Incident matrices of the combined Petri net are calculated

in the condition file as follows

B− =

 B−V 0

0 B−PC

 , B+ =

 B+
V 0

0 B+
PC


Then, the condition file called functions to calculate the initial state of the controller.

The initial state of combine Petri net is defined as

M>
0 = [0, 0, 0, 1, 0, 0, 0, 1, 0, 0].

Then controller parameters are calculated. The incident matrix Bc and initial state

Mco of the controller are shown below
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Bc =

 1 −1 −1 0 0 0 0 0 0 0 0 0 1 0 1 −1

−1 1 0 1 0 0 0 0 0 0 0 0 0 −1 −1 1



Mco =

 1

1


To calculate the coverability tree of the combined Petri net with controller, the

incident matrix and initial state are calculated as follows

BBco =

 B+ −B−

Bc

 ,M0Mco =

 M0

Mco


which means BBco =



−1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1

1 −1 −1 0 0 0 0 0 0 0 0 0 1 0 1 −1

−1 1 0 1 0 0 0 0 0 0 0 0 0 −1 −1 1



M0Mco> =
[

0 0 0 1 0 0 0 1 0 0 1 1
]
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Fig. 4.10. Crossing road scenario Petri net model with controller and initial state

The structure of the combined Petri net with controller and the initial markings

are shown in Fig. 4.10. There are two controllers introduced to the combined Petri

net to guarantee the vehicle and pedestrian/cyclist will never stop at the same place.
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After calling the functions, the coverability tree is calculated, which is shown in

Fig. 4.11. The reachable states are recorded as Rall, where

Rall =



0 0 0 1 0 0 0 1 0 0 1 1

0 0 1 0 0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 1 0 0 1 1

0 0 0 1 0 0 1 0 0 0 1 1

0 0 0 1 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0 0 0 1 1

0 0 1 0 0 0 0 0 0 1 1 0

0 0 0 0 1 0 1 0 0 0 1 1

0 0 0 0 1 0 0 0 0 1 1 0

0 0 0 1 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0 1

0 1 0 0 0 0 0 1 0 0 1 0

1 0 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 1 0 0 0 0 1 1

1 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 0 1

0 0 0 0 1 1 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0 1

0 1 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 1 0 0 0 0 0 1

0 1 0 0 0 1 0 0 0 0 1 0


The reachable state matrix includes all states that can be reached and guarantees

vehicle and pedestrian/cyclist to stop in different places. Column 1 to column 10
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indicate places PV 4 to PV 8 and places PPC1 to PPC5, respectively. The first line of

Rall represents the initial state that vehicle will stop at place 7 and pedestrian/cyclist

will stop at place 3.

With the initial state [0 0 0 1 0 0 0 1 0 0]>, transitions t76, t78, t32, and t35 can

be enabled. If transition t76 fires, the state changes to [0 0 1 0 0 0 0 1 0 0]>; if

transition t78 fires, the state changes to [0 0 0 0 1 0 0 1 0 0]>; if transition t32 fires,

the state changes to [0 0 0 1 0 0 1 0 0 0]>; if transition t35 fires, the state changes to

[0 0 0 1 0 0 0 0 0 1]>. Following the transition sequences in the result shown in Fig.

4.11, those states in the coverability tree can be reached.

4.4 Summary

In this chapter, the MATLAB functions were introduced first. A input file, condi-

tion file, was used to call functions for each problem. In the input files, input variables

included incident matrices to describe the Petri net structure, and constraint matrices

to indicate which states will be avoided with the controller. Then, the initial state of

controller and the incident matrix of the controller were be calculated. The condition

file calculated the coverability tree for the combined Petri net with the controller and

provided the results including the parameters of the controller and the coverability

tree as text file.

In addition, the mutual exclusion problem between vehicle and pedestrian/cyclist

was discussed in the potential collision area which was proposed in Fig. 3.13. Petri

net model for vehicle and pedestrian/cyclist was built and the controller was designed

for the combined Petri net model in the potential collision area. The parameters of

the controller and the results were shown in Section 4.2

In crossing road scenario, the movement of the pedestrian/cyclist and the possible

stopping area of vehicle do not overlap. For this kind of scenario, Petri net model

was built and the controller was designed for the combined model in Section 4.3.
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In this chapter, vehicle and pedestrian/cyclist Petri net models were built for both

potential collision area and crossing road scenario. The controllers were designed with

state-based control, which guaranteed the vehicle and pedestrian/cyclist will never

stop in the same place to avoid the collision between vehicle and pedestrian/cyclist.
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Fig. 4.11. Coverability tree
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5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, a Petri net model is proposed considering the vehicle and pedes-

trian/cyclist in a certain area including potential collision area and crossing road

scenarios for AEB system. In the layout of potential collision area and crossing road

scenarios, the movement of pedestrian/cyclist and the possible stopping places of

vehicle are defined to follow arrows marked in those layouts. The Petri net models

were built and the controllers are designed. With the state-based control, devel-

oped controllers guarantee vehicle and pedestrian/cyclist can never stop in the same

place. The reachable states and coverability tree are discussed for the Petri net with

controllers for both potential collision area and crossing road scenario.

The basic concepts of Petri nets and the processes of controller design are reviewed

in Chapter 2. Examples are provided to help explain the concepts and controller

designing process. In Chapter 3, AEB testing, data collection, and data analysis are

introduced. The concept of certain area are proposed with descriptions.

MATLAB codes are developed to solve problems in this thesis, which are intro-

duced in the beginning of Chapter 4. Vehicle and pedestrian/cyclist Petri net model

are built for both potential collision area and crossing road scenarios. The constraints

are transferred into matrix form and controllers are designed for those combined Petri

net with constraints.

Finally, those controllers design can avoid Petri nets to reach states which indicate

collision between vehicle and pedestrian/cyclist. The Petri nets with controller are

discussed to search the reachable states and coverability tree.
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5.2 Future Work

There are some future directions to extend the research work in this thesis. One

possible extension is to explore more specific layout in certain area for vehicle with

different braking patterns. Based on the test drive of different vehicles, it can be

easily found that there are different braking patterns, especially for different vehicles

with different power systems, such as gasoline vehicles, hybrid vehicles, and plug-in

electric vehicles. These power systems provide more strategies to brake when the

AEB system is working.

Another interesting extension is to build a the model including more pedestrian/-

cyclist and vehicle rather than one vehicle and one pedestrian/cyclist. The model

including more pedestrians/cyclists and vehicles is more similar to the real world and

can be used to solve some complex situations.

Apart from the models, real-time algorithms and approaches are also helpful to

extend the research of this thesis. For the same state, there are one or more transition

sequences that can reach the state, which may have different costs. The real-time

algorithms and approaches can provide solutions for the mutual exclusion problem

on the road to choose the final state with the lowest cost.
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A. M-FUNCTIONS

function incident=incident(Boutput,Binput)

%%

% INCIDENT Incident matrix of petri net

% incident=incident(Boutput,Binput) calculate the incident

% matrix

% Def:

% B=Boutput−Binput

% B represents the incident matrix

% Binput represents the input incident matrix

% Boutput represents the output incident matrix

%

% see also controlledpetri inicon petricon transition

% Copyright Wensen Niu for MSthesis @2017

%%

% Checking number of input arguments for this function

% If the number of input arguments great than 2, program

% feedbacks the error message below

if nargin>2

error('Too many input arguments')

end

% If the number of input arguments less than 2, program feedbacks

% the error message below.

if nargin<2

error('Two matrix should be given for this function')

end

%%

if nargin==2%If the number of input arguments equals to 2
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sizeBoutput=size(Boutput);%check the size of Boutput

sizeBinput=size(Binput);%check the size of Binput

% Checking the size of Boutput and the size of Binput.

% If they are not equaled, program feedbacks the error

% message below.

if sizeBoutput 6=sizeBinput

error('Check dimensions of Binput and Boutput and keep them ...

same')

end

% If the size of Boutput and Binput are equal, calculate the

% incident matrix of the Petri net defined by Boutput and

% Binput.

if sizeBoutput==sizeBinput

% For a Petri net, the incident matrix equals the output

% incident matrix minus the input incident matrix.

% For this function, it will return incident value to its

% main program.

incident=Boutput−Binput;

end

end

function inicon=inicon(L,b,M0,B)

%%

% INICON initial state and marking of Petri net controller

% inicon=inicon(L,b,M0,B)

% is used to calculate parameters of petri net controller

% parameters:

% inicon.Bc represents the incident matrix of petri net

% controller

% inicon.Mco represents the initial states of petri net

% controller

%

% Inputs:

% L and b: L*M≤b;
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% M0: the initial state of petri net.

% B: the incident matrix of petri net.

%

% see also controlledpetri incident petricon transition

% Copyright Wensen Niu for MSthesis @2017

%%

% Checking number of input arguments for this function

% If the number of input arguments great than 4, program

% feedbacks the error message below.

if nargin>4

error('Too many input arguments');

end

% If the number of input arguments less than 4, program feedbacks

% the error message below

if nargin<4

error('This function should have four inputs');

end

%%

if nargin==4%If the number of input arguments equals to 4

% Saving size value of L, b, M0, and B to it corresponding

% variable prepare for the logic check.

sizeL=size(L);%check the size of L

sizeb=size(b);%check the size of b

sizeM0=size(M0);%check the size of M0

sizeB=size(B);%check the size of B

% Getting logic value for error checking

inicon.boolean.logisignA1=sizeM0(1)==sizeB(1);

% Does rows of M0 equals to rows of B?

inicon.boolean.logisignA2=sizeM0(2)==1;

% Does M0 is a column vector?

inicon.boolean.logisignA=inicon.boolean.logisignA1&& ...

inicon.boolean.logisignA2;

% A equals to "A1 and A2"

inicon.boolean.logisignB=sizeL(2)==sizeB(1);
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% Does columns of L equal to rows of B?

inicon.boolean.logisignC1=sizeb(1)==sizeL(1);

% Does rows of b equals to rows of L?

inicon.boolean.logisignC2=sizeb(2)==sizeM0(2);

% Does b is a column vector?

inicon.boolean.logisignC=inicon.boolean.logisignC1&& ...

inicon.boolean.logisignC2;

% C equals to "C1 and C2"

% Checking logic values.

if inicon.boolean.logisignA==0

% If rows of M0 does not equal to rows of B, program

% feedbacks the error message below. If M0 is not a

% column vector, program also feedbacks the error message

% below.

error('Rows of column vector M0 should equal to as rows of B')

elseif inicon.boolean.logisignB==0

% If columns of L does not equal to rows of B, program

% feedbacks the error message below

error('Columns of coefficient matrix of constraint should ...

equal to rows of B')

elseif inicon.boolean.logisignC==0

% If rows of b does not equal to rows of L or b is not a

% column vector, program feedbacks the error message

% below.

error('b should be a scale or a column vector with rows same ...

as rows of L')

else

% According to state−based control of Petri nets,

% calculate the incident matrix of controller and initial

% state of controller to design a controller for a Petri

% net.

inicon.Bc=−L*B;

inicon.Mco=b−L*M0;

% For this function, it will return the inicon structure

% for its main program. The inicon structure include the
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% incident matrix of controller that called inicon.Bc and

% the initial state of controller that called inicon.Mco.

end

end

function controlledpetri=controlledpetri(Boutput,Binput,Bc,Mco,M0)

%%

% CONTROLLEDPETRI Generate a "controlled petrinet"

% controlledpetri=controlledpetri(Boutput,Binput,Bc,Mco,M0)

% calculate the BBco, Bcpinput, Bcpoutput, and M0Mco of a

% "controlled Petri net"

% Def:

% BBco:The incident matrix of the "controlled Petri net"

% Bcpinput: The input incident matrix of the "controlled

% Petri net"

% Bcpoutput: The output incident matrix of the

% "controlled Petri net"

% M0Mco: The initial state of the "controlled Petri net"

%

% see also incident inicon petricon transition

% Copyright Wensen Niu for MSthesis @2017

%%

% Jusge number of input arguments for this function.

% If the number of input argument great than 5, program feedbacks

% the error message below.

if nargin>5

error('Too many input arguments')

end

% If the number of output argument less than 5, program feedbacks

% the error message below.

if nargin<5

error('Five input arguments should be given for this function')
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end

%%

if nargin==5%If the number of input arguments equals to 5

sizeBoutput=size(Boutput);%check the size of Boutput

sizeBinput=size(Binput);%check the size of Binput

sizeBc=size(Bc);%check the size of Bc

boolean.A=sizeBoutput==sizeBinput;

% Does size of Boutput equals to size of Binput?

boolean.B=sizeBc(2)==sizeBinput(2);

% Does columns of Bc equals to columns of Binput?

if boolean.A==0

% If size of Boutput does not equal to size of Binput,

% program feedbacks the error message below.

error('Boutput and Binput should have same dimension')

elseif boolean.B==0

% If columns of Bc does not equal to columns of Binput,

% programs feedbacks the error message below.

error('Bc should has same columns with Binput and Boutput')

else

signBc=sign(Bc);%checking sign of each entry of Bc

% Generating two zeros matrix with the dimension same as

% Bc's dimension.

controlledpetri.Bcinput=zeros(sizeBc);

controlledpetri.Bcoutput=zeros(sizeBc);

% A "for" loop for setting value for entries of Bcinput,

% the input incident matrix of controller, and Bcoutput,

% the output incident matrix of controller.

for i=1:sizeBc(1)%"for" loop for rows

for j=1:sizeBc(2)%"for" loop for columns

if signBc(i,j)==−1

controlledpetri.Bcinput(i,j)= ...

controlledpetri.Bcinput(i,j)−Bc(i,j);

controlledpetri.Bcoutput(i,j)= ...

controlledpetri.Bcoutput(i,j);

elseif signBc(i,j)==0
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controlledpetri.Bcinput(i,j)= ...

controlledpetri.Bcinput(i,j);

controlledpetri.Bcoutput(i,j)= ...

controlledpetri.Bcoutput(i,j);

elseif signBc(i,j)==1

controlledpetri.Bcinput(i,j)= ...

controlledpetri.Bcinput(i,j);

controlledpetri.Bcoutput(i,j)= ...

controlledpetri.Bcoutput(i,j)+Bc(i,j);

end

end

end

% Calculating Bcpinput, Bcpoutput, B, BBco, and M0Mco and

% puting them into structure controlledpetri.

controlledpetri.Bcinput;

controlledpetri.Bcoutput;

controlledpetri.Bcpinput=[Binput;controlledpetri.Bcinput];

controlledpetri.Bcpoutput=[Boutput;controlledpetri.Bcoutput];

controlledpetri.B=incident(Boutput,Binput);

controlledpetri.BBco=[controlledpetri.B;Bc];

controlledpetri.M0Mco=[M0;Mco];

% For this function, it will return structure

% controlledpetri to its main program.

end

end

function transition=transition(Bcpinput,BBco,M0Mco)

%%

% TRANSITION Transition of a "Controlled Petri net"

% transition=transition(Bcpinput,BBco,M0Mco) calculate all

% states in Coverability Tree.

% Def:

% Bcpinput: input incident matrix of "Controlled Petri

% net".
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% BBco: incident matrix of "Controlled Petri net".

% M0Mco: initial state of "Controlled Petri net".

%

% see also controlledpetri incident inicon petricon

% Copyright Wensen Niu for MSthesis @2017

%%

sizeBcpinput=size(Bcpinput);%checking the size of Bcpinput

% Generating a identity matrix with the dimension of columns of

% Bcpinput by the columns of Bcpinput

V=eye(sizeBcpinput(2));

% initialize M0McoT, which used to store state(s) for next

% time fire by enabled transition, to the initial state.

M0McoT=M0Mco';

sizeM0McoT=size(M0McoT);%checking the size of M0McoT

Mi=1;% initialize Mi to 1

% Mi is used as a pointer to point the row of Mall which help to

% store all state into correct place in Mall.

transition.Mall(Mi,:)=M0McoT;%store initial state into Mall

Ti=1;% initialize Ti to 1

% Ti is used as a pointer to point the row of Tall which help to

% store all transition sequence into correct place in Tall.

transition.Tall(Ti)=0;

% store 0 as there is no transition sequence to the initial state

%%

%DT(i)=0 represents the state is a fireable state.

%DT(i)=1 represents the state is a duplicate node.

%DT(i)=2 represents the state is a terminal node.

DTi=1;%initialize DTi to 1

% DTi is used as a pointer to point the row of DT which help to

% store kind of all state into correct place in DT.
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% Flag is used as a flag to determine whether continue to next

% fire. If the flag equal to 0, program stop.

% Ddetect is used to store DT value in one transition, Which is

% used to determine whether to fire next transition for all state

% obtained in last time transition.

%%

% "for" loop is used to determin the initial value of

% transition.DT(DTi,:), Ddetect, and flag.

for i=1:sizeM0McoT(1)

for j=1:sizeBcpinput(2)

if M0McoT(i,:)'<Bcpinput(:,j)

transition.DT(DTi,:)=2;

Ddetect=1;

flag=0;

else

transition.DT(DTi,:)=0;

Ddetect=0;

flag=1;

end

end

end

% Dtistart is used to help store transition sequence to Tall.

% Initialize DTistart to 2, since we will not use it at very

% begin of this program.

DTistart=2;

%%

while flag 6=0

% initialize Tistart to DTistart in each time of loop

Tistart=DTistart;

% check the size of M0McoT for each time of loop

sizeM0McoT=size(M0McoT);
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% n helps to store M to M0Mco, initialize it to 1 at begining

% of each time of loop.

n=1;

% start a "for" loop from 1 to the rows of M0McoT

for i=1:sizeM0McoT(1)

% Use Ddetect to determine whether the state can be fire by any

% transition of the Petri net.

if Ddetect(i)==0

% So the state can be fired by some transition

for j=1:sizeBcpinput(2)

% Start a "for" loop from 1 to the columns of

% Bcpinput, the input incident matrix of

% "Controlled Petri net.

if M0McoT(i,:)' ≥Bcpinput(:,j)

% If the transpose of state i can be fired by

% the j transition,

sizeTallold=size(transition.Tall);

Ti=Ti+1;

sizeTall=size(transition.Tall);

% use flag to help storing transition

% sequence to Tall.

if flag≥2

for f=1:flag−1

transition.Tall(Ti,f)= ...

transition.Tall(Tistart,f);

end

end

transition.Tall(Ti,flag)=j;

% iterate DTistart

sizeTallnew=size(transition.Tall);

if sizeTallnew(2)==sizeTallold(2)+1

DTistart=Ti;

end

% storing M to Mall

M=M0McoT(i,:)'+BBco*V(:,j);
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Mi=Mi+1;

transition.Mall(Mi,:)=M';

sizeMall=size(transition.Mall);

% iterate DTi

DTi=DTi+1;

transition.DT(DTi,:)=0;

% storing the value that represents the state

% kind to DT.

for k=1:sizeMall(1)−1

% Checking whethe the state is a

% duplicate state. If it is a duplicate

% state, writing 1 to the corresponding

% place in DT.

if M'==transition.Mall(k,:)

transition.DT(DTi,:)=1;

end

end

% initialization Mdetect to a zeros matrix,

% which is used to check whether the state is

% a terminal state. If it is a terminal

% state, writing 2 to the corresponding place

% in DT.

Mdetect=zeros(1,sizeBcpinput(2));

for m=1:sizeBcpinput(2)%"for" loop

% If M less than each column of Bcpinput,

% it is a terminal state. each m of M

% will be written to 1

if M≥Bcpinput(:,m)

Mdetect(1,m)=0;

else

Mdetect(1,m)=1;

end

end

if Mdetect≥1
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transition.DT(DTi)=2;

else

transition.DT(DTi)=transition.DT(DTi);

end

M0Mco(:,n)=M;%store M to M0Mco

n=n+1;

end

end

end

Tistart=Tistart+1;

end

M0McoT=[];

M0McoT=M0Mco';

M0Mco=[];

Ddetect=[];

Ddetect=transition.DT(DTistart:DTi,:);

if Ddetect≥1

flag=0;

else

sizeTall=size(transition.Tall);

flag=flag+1;

end

end

function petricon=petricon(Boutput,Binput,L,b,M0)

%%

% PETRICON Petri net with controller

% petricon=petricon(Boutput,Binput,L,b,M0)

% is used to calculate parameters of petrinet with

% controller Parameters:

% petricon.petri.B represents the incident matrix

% petricon.inicon is a structure that includes initial

% states of controller

% Boutput represents the output incident matrix
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%

% see also controlledpetri incident inicon transition

% Copyright Wensen Niu for MSthesis @2017

%%

% Checking number of input arguments.

if nargin 6=5

% If the number does not equal to 5, program feedbacks the

% error message below.

error('Pleas check number of input arguments. It should be 5')

end

%%

if nargin==5%if the number of input arguments equals to 5

sizeBoutput=size(Boutput);%check the size of Boutput

sizeBinput=size(Binput);%check the size of Binput

sizeL=size(L);%check the size of L

sizeb=size(b);%check the size of b

sizeM0=size(M0);%check the size of M0

% Getting logic value for error checking

petricon.boolean.logisignA1=sizeBinput(1)==sizeBoutput(1);

% Does rows of Binput equals to rows of Boutput?

petricon.boolean.logisignA2=sizeBinput(2)==sizeBoutput(2);

% Does columns of Binput equals to columns of Boutput?

petricon.boolean.logisignA=petricon.boolean.logisignA1&& ...

petricon.boolean.logisignA2;

% A equals to "A1 and A2"

petricon.boolean.logisignB=sizeL(2)==sizeBoutput(1);

% Does columns of L equals to rows of Boutput?

petricon.boolean.logisignC=sizeL(1)==sizeb(1);

% Does rows of L equals to rows of b?

petricon.boolean.logisignD=sizeM0(1)==sizeBoutput(1);

% Does rows of M0 equals to rows of Boutput?

% Checking logic values.

if petricon.boolean.logisignA==0

% If size of Binput does not equals to size of Boutput,
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% program feedbacks the error message below.

error('Size of Binput should equals to size of Boutput');

elseif petricon.boolean.logisignB==0

% If columns of L does not equal to rows of Boutput,

% program feedbacks the error message below.

error('Columns of L should equals to rows of Boutput')

elseif petricon.boolean.logisignC==0

% If rows of L does not equal to rows of b, program

% feedbacks the error message below.

error('Rows of L should equals to rows of b')

elseif petricon.boolean.logisignD==0

% If rows of M0 does not equal to rows of Boutput,

% program feedbacks the error message below.

error('Please check initial state. It should be a column ...

vector and has same row(s) with row(s) of Boutput')

else%If there is no error, continue to calculating

% Calling incident function calculates incident matrix of

% input incident matrix and output incident matrix of

% Petri net model.

petricon.petri.B=incident(Boutput,Binput);

% Calling inicon function calculates parameters of

% controller for Petri net

petricon.controller=inicon(L,b,M0,petricon.petri.B);

petricon.controller.Bc;

petricon.controller.Mco;

% Calling controlledpetri function calculates parameters

% of "Controlled Petri net"

petricon.controlledpetri=controlledpetri(Boutput,Binput, ...

petricon.controller.Bc,petricon.controller.Mco,M0);

petricon.controlledpetri.Bcpinput;

petricon.controlledpetri.Bcpoutput;

petricon.controlledpetri.BBco;

petricon.controlledpetri.M0Mco;

% Calling transition function calculate Coverability Tree

petricon.transition=transition( ...
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petricon.controlledpetri.Bcpinput, ...

petricon.controlledpetri.BBco, ...

petricon.controlledpetri.M0Mco);

end

end
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B. AN EXAMPLE CONDITION M-FILE

% This is An Example Condition File

clc

clearvars

Binput=[1 0 0 0;0 0 1 0;0 1 0 1]

Boutput=[0 0 0 1;1 1 0 0;0 0 1 0]

L=[0 1 1 ]

b=2

M0=[4 0 0]'

% Calculating parameters for Controller.

petricon=petricon(Boutput,Binput,L,b,M0);

Bc=petricon.controller.Bc

Mco=petricon.controller.Mco

% Building the Petri net with Controller.

Bcpinput=petricon.controlledpetri.Bcpinput

Bcpoutput=petricon.controlledpetri.Bcpoutput

BBco=petricon.controlledpetri.BBco

M0Mco=petricon.controlledpetri.M0Mco

%%%%%%%%%%results%%%%%%%%%%

% Calculate the Coverability Tree

Mall=petricon.transition.Mall

Tall=petricon.transition.Tall

DT=petricon.transition.DT

% output the result as a file.
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sizeDT=size(DT);

head=' node each transition \n type states ...

sequences';

fid=fopen('wensenExample.txt','wt');

fprintf(fid,[head '\n']);

for i=1:sizeDT(1)

fprintf(fid,' %d %d %d %d %d %d %d %d %d %d\n',...

DT(i,1),Mall(i,:),Tall(i,:));

end

fclose(fid);
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C. POTENTIAL COLLISION AREA M-FILE

clc

clearvars

%%

% input initial conditions for petri net in this section

% input incident matrix of pedestrian/cyclist Petri net

Bvinput=[1 0 0 0 0 0;0 1 1 0 0 0;0 0 0 1 1 0;0 0 0 0 0 1];

% output incident matrix of pedestrian/cyclist Petri net

Bvoutput=[0 1 0 1 0 0;1 0 0 0 0 0;0 0 0 0 0 1;0 0 1 0 1 0];

% input incident matrix of vehicle Petri net model

Bpcinput=[1 0 1 0 0 0;0 1 0 0 0 0;0 0 0 1 0 0;0 0 0 0 1 1];

% output incident matrix of vehicle Petri net model

Bpcoutput=[0 1 0 0 0 0;1 0 0 0 0 1;0 0 1 0 1 0;0 0 0 1 0 0];

% generating a zeros matrix which has same dimension with above

% matrix's dimension

zeros46=zeros(4,6);

% calculate input incident matrix for combined Petri net

Binput=[Bvinput,zeros46;zeros46,Bpcinput]

% calculate output incident matrix for combined Petri net

Boutput=[Bvoutput,zeros46;zeros46,Bpcoutput]

% generate a 4 by 4 identical matrix

eye4=eye(4);

% input coefficient matrix of constraint

L=[eye4,eye4]

% generate a 4 by 1 ones matrix

ones41=ones(4,1);

% input column vector of constraint

b=ones41

% input initial state of combined Petri net
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M0=[0 0 0 1 1 0 0 0]'

%%

% calculate initial states of controller.

% problem and reachable state of the "Controlled Petri net"

% Call functions, petricon.

petricon=petricon(Boutput,Binput,L,b,M0);

% parameters of controller

Bc=petricon.controller.Bc

Mco=petricon.controller.Mco

% incident matrix of "Controlled Petri net"

Bcpinput=petricon.controlledpetri.Bcpinput;

Bcpoutput=petricon.controlledpetri.Bcpoutput;

BBco=petricon.controlledpetri.BBco

M0Mco=petricon.controlledpetri.M0Mco

% all states, all transition sequences, and the kind of state

Mall=petricon.transition.Mall%each row is a marking state

Tall=petricon.transition.Tall

% each row of Tall represents a transition sequence to the

% corresponding row in Mall.

DT=petricon.transition.DT

% each row of DT represents the kind of state to the

% corresponding row in Mall

%%

% This section generate a txt file for the results

%%%%%%%%%%show data%%%%%%%%%%

sizeDT=size(DT);

head=' node each transition \n kinds ...

states sequences';

fid=fopen('PCA41.txt','wt');

fprintf(fid,[head '\n']);

RS=0;

for i=1:sizeDT(1)

fprintf(fid,' %d %d %d %d %d %d %d %d %d %d %d %d %d ...

%d %d %d \n',...
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DT(i,1),Mall(i,:),Tall(i,:));

if DT(i,1) 6=1

RS=RS+1;

end

end

fclose(fid);

RS
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D. CROSSING ROAD SCENARIO M-FILE

clc

clearvars

%%

% input initial conditions for petri net in this section

% input incident matrix of vehicle Petri net

Bvinput=[1 0 0 0 0 0 0 0;

0 1 0 1 0 0 0 0;

0 0 1 0 1 0 0 0;

0 0 0 0 0 1 1 0;

0 0 0 0 0 0 0 1;];

% output incident matrix of pedestrian/cyclist Petri net

Bvoutput=[0 1 1 0 0 0 0 0;

1 0 0 0 0 0 0 0;

0 0 0 0 0 1 0 0;

0 0 0 0 1 0 0 1;

0 0 0 1 0 0 1 0;];

% input incident matrix of vehicle Petri net model

Bpcinput=[1 0 0 0 0 0 0 0;

0 1 1 0 0 0 0 0;

0 0 0 1 0 1 0 0;

0 0 0 0 1 0 1 0;

0 0 0 0 0 0 0 1;];

% output incident matrix of vehicle Petri net model

Bpcoutput=[0 1 0 0 1 0 0 0;

1 0 0 1 0 0 0 0;

0 0 1 0 0 0 0 0;
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0 0 0 0 0 0 0 1;

0 0 0 0 0 1 1 0;];

% generating a zeros matrix which has same dimension with above

% matrix's dimension

zeros58=zeros(5,8);

% calculate input incident matrix for combined Petri net

Binput=[Bvinput,zeros58;zeros58,Bpcinput]

% calculate output incident matrix for combined Petri net

Boutput=[Bvoutput,zeros58;zeros58,Bpcoutput]

% generate a 2 by 2 identical matrix

eye2=eye(2);

% generate a 2 by 3 zero matrix

zero23=zeros(2,3);

% input coefficient matrix of constraint

L=[eye2,zero23,zero23,eye2]

% generate a 2 by 1 ones matrix

ones21=ones(2,1);

% input column vector of constraint

b=ones21

% input initial state of combined Petri net

M0=[0 0 0 1 0 0 0 1 0 0]'

% M0=[0 0 1 0 0 1 0 0 0 0]'

% M0=[0 0 1 0 0 1 0 0 0 0]'

% M0=[0 0 1 0 0 1 0 0 0 0]'

%%

% calculate initial states of controller.

% problem and reachable state of the "Controlled Petri net"

% Call functions, petricon.

petricon=petricon(Boutput,Binput,L,b,M0);

% parameters of controller

Bc=petricon.controller.Bc

Mco=petricon.controller.Mco

% incident matrix of "Controlled Petri net"

Bcpinput=petricon.controlledpetri.Bcpinput
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Bcpoutput=petricon.controlledpetri.Bcpoutput;

BBco=petricon.controlledpetri.BBco

M0Mco=petricon.controlledpetri.M0Mco

% all states, all transition sequences, and the kind of state

Mall=petricon.transition.Mall%each row is a marking state

Tall=petricon.transition.Tall

% each row of Tall represents a transition sequence to the

% corresponding row in Mall.

DT=petricon.transition.DT

% each row of DT represents the kind of state to the

% corresponding row in Mall

%%

% This section generate a txt file for the results

%%%%%%%%%%show data%%%%%%%%%%

sizeDT=size(DT);

head=' node each transition \n kinds ...

states sequences';

fid=fopen('CRS73.txt','wt');

fprintf(fid,[head '\n']);

RS=0;

j=1;

for i=1:sizeDT(1)

fprintf(fid,' %d %d %d %d %d %d %d %d %d %d %d %d %d ...

%d %d %d %d %d %d \n',...

DT(i,1),Mall(i,:),Tall(i,:));

if DT(i,1) 6=1

RS=RS+1;

Rall(j,:)=Mall(i,:);

j=j+1;

end

end

fclose(fid);

Rall


