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ABSTRACT

Rathi, Neeraj R. M.S.E.C.E., Purdue University, May 2018. A Design of Low Power
Wearable System for Pre-Fall Detection. Major Professor: Maher E. Rizkalla.

Fall in recent years have become a potential threat to elder generation. It occurs

because of side effects of medication, lack of physical activities, limited vision, and

poor mobility. Looking at the problems faced by people and cost of treatment after

falling, it is of high importance to develop a system that will help in detecting the

fall before it occurs. Over the year's, this has influenced researchers to pursue the

development to automatic fall detection system. However, much of existing work

achieved a hardware system to detect pre and post fall patterns, the existing systems

deficient in achieving low power consumption, user-friendly hardware implementation

and high precision. Growth in medical devices can be seen in recent years. Today's

medical devices aim to increase the life expectancy and comfort of human being. The

systems are designed to be made reliable by improving the performance, optimizing

the size and minimizing the energy consumption. For wearable technologies, power

consumption is an important factor to be considered during system design. High

power consumption decreases the battery life, which leads to poor comfortability.

The purpose of this research is to develop a system with low power consumption to

detect human falls before they happen.

This research points towards the development of dependable and low power em-

bedded system device with easy to wear capabilities and optimal sensor structure. In

this work, we have developed a device using motion sensor to sense the subjects linear

and angular velocity, communication sensor to send the fall related information to

caretaker, and signal sensors to communicate and update user about device informa-

tion. The designed system is triggered on interrupts from motion sensor. As soon as
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the system is triggered by an interrupt signal, users balanced and unbalanced states

gets monitored. Once the unbalanced state is designated, the system signifies it as

fall by setting a fall flag. The fall decision parameters; pitch, roll, complementary

pitch, complementary roll, Signal Vector Magnitude (SVM), and Signal Magnitude

Area (SMA) are layered to classify subject's different body posture. This helps the

system to differentiate between activity of daily living (ADL) and fall. When the fall

flag is set, the device sends important information like GPS location and fall type to

caretaker. Early fall detection gives milliseconds of time to initiates the preventive

measures.

The system was designed, developed, and constructed. Near 100% sensitivity,

96% accuracy, and 95% specificity for fall detection were measured. The system can

detect Front, Back, Side and Stair fall with consumption of 100µA (650µA with BLE

consumption) in deep sleep mode, 6.5mA in active mode with no fall, and 14.5mA,

of which 8.5 mA is consumed via the BLE when fall is declared in active mode.

The power consumption was reduced because the integrated wireless communication

devices consumed power only when the fall is triggered, giving the device a potential

to communicate wirelessly.
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1. INTRODUCTION

1.1 Motivation

Falls in elder generation has become the frequent cause of injuries, physical dis-

ability, and death. Fall happens when people lose their balance state and enter into

an unbalance state, which brings them to rest inadvertently on the floor or lower

lever. According to World Health Origination (WHO) [1], fall is second leading cause

of unintentional injury death after road accidents. Each year approximately 646000

individuals die from fall globally, in addition, 37.3 million falls are severe enough to

require medical attention [1]. An average annual cost estimated on treating a fall

accident exceeds $30,000 [2]. Figure 1.1 shows the linear relation between the fall

injuries and Medicare cost [3, 4]. As it indicated, in 2012 the cost of treating fatal

and non-fatal injuries were estimated to be $35 billion in U.S and assumes to in-

crease to $101 billion by the end of 2030 [2]. Regardless of extensive fall prevention

programs [1], the number of falls and medical care is estimated to increase every

year. Most importantly, un-expected fall become dangerous for a person living alone.

Staying with fall injuries for a long time may lead to hypothermia, rhabdomyolysis

or dehydration. Near 20% of people, suffer severe injuries like trauma or fractures [5]

because they were unable to get help. Moreover, the injuries among elders may lead

to a rapid decline in health and increases the chance of early death [6]. As the popu-

lation is aging [7] the possibilities of fall among elderly, which is often due to chronic

health conditions, dizziness, muscle weakness and illness is increasing. Aging is in-

evitable but fall detection and prevention should not. The study in [8] concludes

that fall is an important factor of admittance into nursing home and therefore the

system that prevent fall needs to be implemented to delay or reduce the chances to

admittance into nursing home. The need of a device that finds preventive measure to
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Fig. 1.1. Medicare Cost Data

minimize unexpected fall is necessary. The fall and its related injuries is a challenge

in the medical field. A reliable system to detect early fall, deploy safety measures and

communicate fall information with the caretaker is highly important to decrease the

admittance ratio of elderly people into the hospital.

1.2 Fall Detection Devices

The importance of detecting and preventing a fall is unavoidable. Many re-

searchers have also considered this issue and enormous work has been done to design a

fall detection system with different approaches. In every related research, the authors

have tried to overcome the existing research or proposed new technique to identify
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Fig. 1.2. The Design Architecture of Fall Detection Systems

falls. Researchers have worked to develop systems with different categories but the

fall detection principles is either based on detecting fall before it happens know as

Pre-Fall or detecting a fall after it has taken place known as after impact fall.

Many fall detection techniques found in literature are designed with both wearable

devices and non-wearable devices. Figure 1.2 shows the design categories of the

existing systems. The non-wearable devices are embedded into the surroundings

to detect falls. It includes the combinations of sensors like floor sensors, infrared

sensors, camera, microphones, pressure sensors, acoustic sensors, and location sensors

for analyzing falls. The wearable device includes accelerometer, gyroscope, velocity

sensors and mercury tilt switches to analyze fall. In this section, we will discuss the

fall detection techniques based on Pre-Fall and after-impact fall detection.
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1.2.1 After-impact Fall Detection Devices

In after-impact fall detection, the fall is detected after the subject has fallen. Fig-

ure 1.3 gives an example of after-impact fall detection with the use of accelerometers.

The MCU (micro-controller unit) reads the real-time accelerometer raw values to

track the user. If the raw value is less than 1g (gravity unit) on any of X, Y, Z axis

the free fall is declared. Once the free-fall is declared then the device looks for high

peak in the raw values, which comes when user hit ground after fall. If the peak

is achieved the device then looks for inactivity of user, that is monitoring if user is

subconscious after the fall. If the user is not performing a normal activity after the

high peak is detected, then the fall is declared.

Adlian Jefiza [9] used Accelerometer, Gyroscope, and Back Propagation neural

network approach to detect human fall. The author used MPU6050 with Ardunio

Nano and SD card to process the data. The hardware is placed in a waist bag to

make it easy to wear for the user. The Microcontroller takes the data from MPU6050

at 20Hz. The data is then used for preprocessing and feature extraction, where the

data is normalized based on its value (minimum, maximum and average). After

preprocessing, the back propagation is used to differentiate between fall and activity

of daily living. It uses 3 layers BPNN (Backpropagation Neural Network) to get

the optimal results. Layer 1 is input where the accelerometer and gyroscope data

is received, while layer 2 includes the work pattern of BPNN, and layer 3 gives the

expected output pattern. The layer 2 calculates the output value. If the desired and

output value does not match then the weight in network is updated. The precision

of 98.33% with the overall accuracy of 98.182% is obtained by this approach.

Smriti Bhandari [10] used vision-based approach to detect fall. The system de-

veloped in this research was integrated into the home to track the individuals. The

camera was used to capture the video and provide video frames to the algorithm. The

algorithm finds the interest points from the frames, and computes the optical flow

to estimate the speed of motion. It then compares the last interest point with the
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Fig. 1.3. Flow Diagram of After-impact Fall Detection System



6

new interest point to determine the rest position of user. The significant difference in

speed of motion with downward direction and displacement greater than threshold,

and current position near floor determines fall. The precision of 93% with the overall

accuracy of 95% was obtained by this approach.

Mihail Popescu [11] used an acoustic fall detector system to detect fall. The fall

detector system consists of microphones along with motion sensor to avoid false alarm.

The system computes fall based on acoustics and uses motion sensor to cross verify

by detecting motion during the fall interval. If the fall is detected and during the fall

interval there is no motion then the system declares it as fall and sends a message to

care taker.

Lucio Ciabattoni [12] used mobile robots to determine human fall. The system

used smart phone and mobile robot to determine fall. The device first analyzes the

accelerometer data from the smartphone online. Once the fall event is triggered, then

the beacons sensor information is used to provide the location. The mobile robot

moves towards the provided location to verify if the triggered event is a fall or not,

through voice interaction with the fallen user. This approach achieved 99% sensitivity

with 74% specificity.

A fall detection using wrist-worn accelerometer and barometer was proposed by

Prayook Jatesiktat [13]. Fall is detected by integrating a three axial accelerometer

and barometer on a wrist. The accelerometer (LIS3DSH) is sampled at 100 Hz with

6 g, and the barometer (LPS25HB) is sampled at 25 Hz with resolution of 24 bit.

LPC54102 microprocessor is used to communicate with the sensors and process al-

gorithm. The device captures the raw data from accelerometer and calculates the

magnitude without applying filter. The barometer raw values are captured and fil-

tering is applied to reduce the noise. Once the accelerometer values reaches to 4g

then the algorithm traces for free fall event. Free fall event reduces the magnitude to

1g when the subject hit the ground. The pressure data from barometer is used for

feature extraction: Pleasure shift, Middle slope and Post fall slope. This data helps

to signify fall when combined with free-fall.
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Work proposed in [14] [15] [16] uses smart phones for detecting fall. The ap-

proach [14] used accelerometer within the smart phones to capture the subjects pos-

ture information such as lying, sitting and standing without movement, horizontal

movement, vertical movement, and fall. The device uses smart phone messaging

or multimedia messaging to send the fall related information to caretaker. Rahul

Tiwari [16] used android platform for fall detection and proposed the touch screen

alternative to reduce the false triggered fall. Frank Sposaro [15] continued the Tiwaris

work and provided a feature of sending SMS to caretaker and putting the phone on

speaker to confirm the fall identity when caretaker responses.

There is lot of work done for the non-wearable solutions. The research in [17] [18]

[19] make use of vision sensors, including depth cameras. In [20] radar was used as an

ambient sensor to detect falls. Solution based on pressure-sensitivity fibers to develop

smart embedded floor have been proposed in [21].

1.2.2 Pre-Fall Detection Devices

In Pre-Fall detection, the transition from balanced to unbalance state is monitored.

Once the subject reaches the unbalance state i.e. the state from where we cannot

return to balance state the fall is detected. The example in figure 1.4 below shows

the Pre-Fall detection algorithm flow diagram for accelerometer based device. The

device takes the accelerometer raw data and filters it to reduce the noise. The filtered

values are then compared to the threshold to determine if the user motion is above

the set limits. If greater, the fall parameters are calculated to determine fall or

activity of daily living (ADL). The fall is declared once it is confirmed that the values

representing motion is not ADL. Nuth Otanasap [22] implemented this approach.

The accelerometer information is shared with smartphone, via Bluetooth. The author

used nRF51822-based board; build with Arm Cortex M0 and Bluetooth. This board

is attached at chest location to track the velocity and acceleration characteristics.
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The smartphone is used as data monitoring unit, which runs the algorithm and takes

the fall decision. The developed device obtained 99.48% sensitivity, 95.31% specificity

and 97.40% accuracy.

Jian Liu [23] have proposed a prior-to-impact fall detection algorithm using2D-

information (i.e. trunk velocity and trunk angle). They proposed to use unexpected

slip-induced fall for the validation and development of algorithm. The experimental

process consists of one IMU placed at sternum to measure the linear and angular

velocity of subject's body in 3-D at sampling frequency of 100Hz. The system re-

quirement also consists of a sensing system with six infrared motion capture camera

(ProReex MCU 240, Qualisys) to calculate the 3-D positions of reflective markers at

100 HZ sampling rate. In this algorithm, first, the IMU signals are captured and trunk

extension angle and angular velocity were measured. The values of trunk extension

angle and angular velocity are then given to fall discriminant function to provide a

differentiation between ADL and fall. Once it is classified as fall then the threshold

is used to make the final decision.

Alessandro Leone [24] proposed a Pre-Fall detection system based on Electromyo-

graphy (EMG). The system identifies highly discriminative features extracted within

the EMG signals for instability detection. The threshold-based approach is used to

detect an imbalance condition about 200ms after the stimulus perturbation, in simu-

lated and controlled fall conditions. The hardware system uses wearable surface EMG

FREEEMG1000 developed by BTS Bioengineering. The wireless probes are used on

user's body to capture the data. The Probes sends the received data to a stand-alone

PC running data acquisition and elaboration algorithms.

Shaoming Shan [25] implemented Pre-Fall detection algorithm with the machine

learning approach. The author's objective was to detect the Pre-Fall with wear-

able device but due to high computing time and more hardware requirements that

made this system too complex to build. The author has used STMicroelectronics

LIS3LV02QD accelerometer to calculate the body acceleration and NEC 78K0547
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Fig. 1.4. Flow Diagram of Pre-Fall detection system
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Micro-controller Unit (MCU) to process the data. The MCU collects the data from

the accelerometer and transmits it to the PC using nRF2401 wireless module. The

PC computes the fall algorithm and takes the decision.

Ge Wu [26] have proposed the pre-impact fall detection system with inertial sen-

sors. The developed system is portable and detects fall before it occurs. The sensor

used for measurement consists of tri-axial accelerometer and a tri-axial gyroscope.

Pocket PC (HP iPAQ h5550) does processing of the sensor data. The pocket PC can

log 20 hours of data at 57 HZ. The complete system is placed in a waist bag like

encasing.

1.3 Issues and Limitations of Existing Devices

The approaches discussed above show research in pre and post fall detections. In

recent years, it has progressed from analyzing correct fall pattern to implementation

of new hardware fall detection tech (Smartwatch, smartphone). The designed ap-

proaches have several advantages over one another, but all majorly lack in meeting

low power requirements and standalone system, in addition, they are complex. En-

ergy consumption is very important factor to be considered when designing a portable

or wearable device. High-energy consumption increases cost and decreases device ef-

ficiency and comfort.

The Pre-Fall detection system proposed by Ge Wu [26] and Jian Liu [23] was

based on threshold-based fall detection using inertial sensors. The system works by

continuous monitoring of user activity and logging the data. Such utilization of CPU

results in high power consumption and reduces the comfortability of portable device

due to poor battery life. Also, fall decision based on single sensor often results in high

false alarms. Shaoming Shan [25] approached for Pre-Fall detection using machine

learning. The system was contentiously measuring data and transmitting it to PC

to provide fall information. The transmission of data to PC was done wireless hence

compromising battery life by huge factor. In addition, the portability of system
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was a concern because of the complex machine learning algorithms. The method

proposed by Alessandro Leone [24] uses probes at different body location making it

uncomfortable to use on daily basis. In addition, the device is not standalone; it

requires external PC to process data.

In [9-21] fall detection devices detects fall once it has taken place. Such system

can only inform about fall, but will not be able to take any preventive measure. On

fall, these devices either send message to care taker or make users to press a button to

request emergency. [14-16] used smart phones to detect fall detection. The approach

successfully reduces the hardware requirements but decreases the efficiency. Smart

phones have its own purpose and integration of dependent application sometimes give

false data. Considering the fall situation when user is on call, smartphone is put up

for charging, and kept aside while sleeping.

Apart from the portable system, the non-wearable system described in [10] [17-

21] has issue with cost, range, and efficiency. The vision-based system needs inte-

gration into surrounding which compromises the security, privacy and range. On

the other hand, acoustic based approach provides less cost but has a noise issues.

On contrary to non- wearable devices, the wearable devices developed using Micro-

Electro-Mechanical Systems have advantage of being available easily, less compu-

tation, smooth integration, and cheap. While using the wearable sensors, it is of

importance to place them at right location on body. The body location of a sensor

affects the detection capabilities [27] [28] . From [29] placing IMU on waist results on

best accuracy in fall detection.

Table 1.1 gives the overview of current consumption of microcontroller and devel-

opment boards used in the past for fall detections. The current consumption listed is

not derived from the research listed because of the lack of data provide in the related

studies. The data was obtained from the hardware specification data sheet.

In summary, there is need for a system that consumes less energy to be more

appropriate for wireless in addition to being a friendly user. The proposed system here

addresses these important issues. The power consumption, the hardware/software
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Table 1.1.
Summary of power consumption in Portable fall detection systems.

Sr.No Research Microcontroller Approx. Current consumption (MCU) Method

1 [13] LPC54102 9mA [13] Polling

2 [30], [31] Atmega328P 15-20mA Polling

3 [28] raspberry pi 3 0.6A Polling

4 [26] 3DM 50mA Polling
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complexity, and above all they provide better safety for patients. In addition, the

existing systems do not examine how the software and hardware can be integrated

into a wearable device in an efficient and non-intrusive manner, while this issue was

tackled in our approach. Furthermore, the designed system concerns the accuracy

and specificity. The system implemented here optimizes the number of sensors and

their locations on the human body to be appropriate for use and production.

1.4 Employment of Low power in Wearable Embedded Devices

Wearable embedded system devices are often small, portable, and hand-held. It

is an integration of sensors with one or many control units to process the sensor

data and execute the results based on the information received. It is important to

consider performance, power, flexibility, cost and reliability of portable systems as

the requirements of future devices with advanced features are getting popular. The

performance of device plays a vital role in defining the application it is used in. The

efficient software is important towards the speed of the device. The clock cycle and

instructions executed determines the speed performance of the system. The use of

complex processors to achieve the system performance increases power dissipation and

therefore, suitable measures need to be taken to minimize the power consumption in

wearable and battery-operated devices.

The power efficiency of a device is achieved by reducing power dissipation. The

system hardware for all stages of the device process need to be designed without com-

promising system performance, size, and cost. As power is important factor in design,

it needs to be addressed carefully to meet performance requirement. The decrease in

the size of the system and increase in the integration level results in more heat gen-

eration and hence increases power dissipation. Therefore, it is a challenge to design a

device by suitably selecting the advantages and disadvantages of various processors,
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ICs, and reliable hardware and software integration. The tradeoff between energy

consumption, improved performance, size and cost can be handled by considering

different sets of design choices while implementation.

In electronic systems, it is understood that managing the average power dissipa-

tion will minimize the manufacturing and packaging cost with increased reliability.

Power reduction can be analyzed by identifying and optimizing the important factors

affecting the power dissipation. Power dissipation contributes to dynamic power and

static power.

PowerDissipation = DynamicPower + StaticPower (1.1)

Static power: In submicron technologies, static power dissipation is a result of

leakage current and subthreshold current contributing to small percentage of total

power consumption. As the circuits scaled down in size the static power consumption

increases.

Dynamic power: A changes of state when device is active results in dynamic

power dissipation. Dynamic power is also referred as sum of switching and short

circuit power dissipation. The extensive switching causes output loading resulting in

85-90% total power consumption due to dynamic power dissipation.

Power dissipation is major component in achieving low power consumption. There-

fore, to minimize power dissipation, power reduction techniques for dynamic and

static power needs to be implemented. These techniques can be applied at all level of

design hierarchy, like Algorithm, Architectural, circuit design and device technology.

As the power reduction techniques to reduce static and dynamic power can be applied

at the Micro-controller level. It is very important to select a correct MCU and write

optimal software.

Basis of MCU Selection

• Does the MCU supports low power Modes?

• If yes, the power consumption in active (Run) mode?
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• Power consumption in sleep, deep sleep and standby modes?

• What is the wake-up time between the modes?

• What are the wake-up sources?

• Operating speed, Memory, package, GPIOs, and Peripherals.

Basis of Software Design

• Employing the device operating at different voltage.

• Employing a device operating at different frequencies.

• Implementing low power modes 1. Sleep, 2. Active, 3. Halt, 4. Stop.

• Employing a device capable of operating at different clock speeds.

• Employing scheduling technique in software to reduce power consumption.

Low power system design is a holistic process that is enabled by selecting a combina-

tion of proper devices, software, and development tools.

1.5 Our Approach

Pre-Fall detection system in this research is designed to overcome the existing work

in this field. The development of Pre-Fall detection system is done by considering real

life scenarios, user flexibility and one's comfort towards using the wearable devices.

The designed system completely integrates on a belt like structure, which can be

easily wore around the waist area. As modern day embedded system must consume

less power, provide high dependability, efficient communication, and low cost, the

proposed system helps achieving the following:

• Automation: The developed device to detect fall event without any user in-

teraction.
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• Reliability: Distinguish fall event with other human daily activities.

• Power Consumption: Developed device switches between power modes to

save on power.

• Low power Wireless: Integrated with BLE capabilities to transmit fall in-

formation to care taker.

• Reaction time: The system detects Pre-Fall event approx. 250ms.

This work proposes a wearable sensor based on pre fall detection system, which

uses linear and angular velocity information from motion sensor to classify human

fall. The sensors are integrated along with the controller on to a user's belt. The fall

alert is shared to an android application developed for receiving fall information from

measuring system.

Research is also done to make sensor arranged in such a fashion that it gives high

accurate data of human orientation with easy to wear on capabilities. The developed

system also focuses toward the battery life of device with the designed algorithm to

help minimize it. Figure 1.5 shows the various design methods to be used to design

fall algorithm. The approach followed here is designated by the low power modes with

interrupts. This approach is based on interrupts but utilizes microcontroller energy

modes and low power peripherals. The designed algorithm disables the unwanted

peripherals and clocks and switches operating frequency as we they move from one

mode to another.

Design of a low power approach for Pre-Fall detection consists of selecting an

ultra-low power MCU and low power sensors, and developing an optimal algorithm.

The developed algorithm utilizes the MCU and sensor specification to achieve proper

performance, efficiency, reliability, and less power dissipation.
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Fig. 1.5. The System Approach
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1.6 Thesis Organization

The Thesis is organized in 8 chapters. As chapter 1 being introduction, chapter

2 cover the hardware components used in this work. The hardware section is further

classified into control unit, motion sensor, and wireless sensor. The chapter 3 is

communication protocol. This chapter gives the overview of the serial and wireless

communication protocol used for data transfer between MCU and sensors, and MCU

and Mobile application. The chapter 4 details the hardware and software design.

It covers the hardware architecture, pin-to-pin mapping, and software flow diagram.

This chapter also explains the Pre-Fall detection methodology. The chapter 5 explains

the computational model build to estimate sensor information and calibrate then.

It also details the fall parameter considered for Pre-Fall detection. The chapter 6

explains the low power approach and battery life estimation.

The Results are detailed in chapter 7. It explains the data collection, BLE mo-

bile application, low power and fall detection pattern results. The research is then

concluded with future proposed work in chapter 8.
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2. HARDWARE

This chapter emphasizes the hardware components used for Pre-Fall detection. This

include the micro-controller, and the sensor devices.

2.1 Control Unit

One of the important components to consider while developing an application is

the selection of control unit (MCU). The MCU with sensor devices should feature high

speed and low power for high performance system. These features will be detailed in

later chapters. Table 2.1 gives the comparison between three popular ultra-low power

micro-controllers. The EFM32GG was chosen for the design of power optimization

of the Pre-Fall system. The MCU consist the following factors:

• Minimized active and sleep mode power consumption.

• Minimized processing time.

• Quick wake up time.

• Very low current consumption: 900nA in Deep sleep and 20nA in shutoff.

• Peripheral reflex system.

• Low energy Peripherals.

2.1.1 EFM32GG-STK3700 Development Board

EFM32GG-STK3700 is a development board for EFM32GG based microcon-

trollers from Silicon Labs. This development board is built around EFM32GG990F1024

MCU with 1 MB Flash and 128 KB RAM. The figure 2.1 shows the STK3700 devel-
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Table 2.1.
Micro-controller comparison leading to the proper selection.

MCU Specification EFM32GG MSP430F5 KL

Architecture 32 bit ARM 120-25 MHz 48MHZ

Clock 48 MHZ Atmega328P 15-20mA

Current : Active Mode 150µA / MHZ 200 µA / MHZ 5.7mA

Wakeup Time 2µs 3.5 µs 4µs

I2C 2 2 2

SPI 3 4 2

UART 3 2 2

RAM and FLASH(KB) 128-1024 8-64 32-265

Peripherals operating RTC,LEUART,I2C, I/O LPUART,SPI,I2C

in power mode WDOG,LCD, I/O ADC,DAC

Supply Voltage 1.98V-3.8V 1.8V-3.6V 1.7V-3.6V

Software Tools Simplicity studio Code Composer MCUXpresso

Power estimator MSP Energy trace

Development Boards EFM32GG-STK3700 BoosterPack MKII FRDM KL46Z
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Fig. 2.1. The STK3700 Development Kit [32]

opment kit. This board contains sensors and peripherals to be used for application

development and to demonstrate the MCU capabilities. The board features on-board

SEGGER J-Link debugger and an Advanced Energy Monitoring system; to allow

flashing the code, debugging and performing real-time current profiling of an appli-

cation. The board displays many great features, which makes it the best choice of

selection over other development boards. A few features are detailed below:

• 160-segment LCD Display.

• 0.03F Super Capacitor for backup domain capacitor.

• 32 MB NAND Flash.

• LFXO and HFXO: 32.768kHz and 48.000MHz.
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2.1.2 EFM32GG Microcontroller

EFM32 MCU is a unique combination of the powerful 32-bit ARM Cortex-M3

with low energy techniques, short wake-up time from energy saving modes, and a

wide selection of peripherals. These combinations make EFM32 the world's most

energy friendly MCU in the market [33]. The EFM32GG microcontroller provides

high performance and low-energy consumption; therefore, it is well suited for this

battery operated application. This MCU is ideal for any application requiring flash

memory configurations up to 1024 kB, 128 kB of RAM and CPU speeds up to 48 MHz.

EFM32 contains two high frequency(HF) clocks oscillators, HFRCO and HFXO to

source HF clock, and two low frequency clock oscillators, LFXO and LFCRO to run

low frequency peripherals. Figure 2.2 shows the block diagram of EFM32GG MCU.

The MCU includes the Core and Memory unit, Clock Management unit, Energy

Management Unit, Serial Interfaces, I/O ports, Timers and Triggers, and Analog

interfaces. The MCU also contains the peripheral reflex system, which let all the

peripheral modules communicate with one another without CPU intervention.

The other EFM32 MCU features include the following:

• Low power sensor interface (LESENSE) with deep sleep monitoring.

• Energy management system with five flexible energy modes. The current con-

sumption in each mode is,

– EM0-Run Mode : 150µA/MHz at 3V.

– EM1-Sleep Mode : 45µA/MHz at 3V.

– EM2-Deep Sleep Mode : 1.1µA at 3V.

– EM3-Stop Mode: 0.8µA at 3V.

– EM4-Shutoff Mode: 20nA at 3V.

The MCU also features autonomous and low energy peripherals, AES encryp-

tion, pulse counter, low energy UART and sensor interface, and on-chip operational

amplifiers.
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Fig. 2.2. The EFM32GG Architecture [33]
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2.2 Motion Sensors

Applications in embedded world are developed based on the information it gets

from the surroundings. The sensors measures the detected events or change in envi-

ronment and informs to master device to make decisions. The sensors measures the

physical quantities and converts it to digital, so the electronic circuits understand the

information it is receiving. Sensor technologies have played a crucial role in trans-

forming home automation, automobile, aviation, medical devices, and manufacturing.

Therefore, sensors in todays embedded systems need to be accurately fabricate with

proper electrical and mechanical standpoint. Power consumption and size of a sensor

also plays an important role, when developing a portable battery power application.

Recent advances in sensor fabrication solved power and size problem by increasing

the transistor ratio on a micro with less spacing.

Motion sensing sensors are widely used where knowing orientation and acceleration

is priority for their operation. In Pre-Fall detection system, the decision making is

based on measurement from the motion sensor data. It requires information such as

position, acceleration, pressure, altitude and orientation to identify subject's posture

or orientation. For Pre-Fall detection conducted in this research, motion sensors like

accelerometers and gyroscopes are used.

2.2.1 InvenSense MPU6050

The MPU-6050 is the integrated 6-axis Motion tracking device that combines a

3-axis gyroscope, 3-axis accelerometer, and a digital motion processor (DMP) into

a single 4x4x0.9mm package [34]. The MPU-6050 consists of three 16-bit analog-

to-digital converters (ADCs) for digitizing the gyroscope outputs and three 16-bit

ADCs for digitizing the accelerometer outputs. The gyroscope in MPU6050 can be

configured to user-programmable full-scale range of ±250, ±500, ±1000, and ±2000

degree/sec (dps) and the accelerometer can be configured to user-programmable full-

scale range of ±2g, ±4g, ±8g, and ±16g for precision tracking of both fast and slow
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Fig. 2.3. The MPU6050 Functional Block Diagram [34]

motions. The chip feature 1024 byte FIFO buffer and low power mode to help lower

system power consumption. The low power can be achieved by putting MPU6050

to sleep mode. The accelerometer remains active while gyroscope and DMP are dis-

abled in sleep mode. MPU6050 supports only I2C interface to communicate with

the MCU. It also supports user-programmable digital filters for gyroscope, and ac-

celerometer. MPU6050 interrupts can be configured using user-programmable regis-

ters INT ENABLE. Figure 2.3 shows the functional block diagram of MPU6050 [34].

The MPU6050 features in our design include:

• Configuring Clock.

• Enabling Low Power Mode.
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• Setting Sensor Data Registers.

• FIFO.

• Gyroscope and Accelerometer Self-test.

• Reading Accelerometer and Gyroscope raw values.

• Bias and LDO.

2.2.2 Analog Devices ADXL345

ADXL345 is a 3-axial accelerometer with full output resolution of 13 bit at ± 16g

by maintaining 4 mg/LSB scale factor in all g ranges. The high resolution enables the

measurement of tilt/bent changes less than 1.0 degree with measuring static acceler-

ation of gravity in tilt-sensing applications and dynamic acceleration resulting from

motion or shock. It is also capable of working in ultralow power mode that enables

intelligent motion-based power management with threshold sensing and active accel-

eration. The ADXl345 consumes as low as 40µA in low power mode with the sample

frequency of 12.5HZ and 0.1 µA in standby mode. It can be interfaced with MCU

using SPI (Serial Peripheral Interface) or I2C. It also supports software configurable

interrupts: Tap/double tap detection, activity/inactivity, and monitoring free-fall de-

tection by setting INT ENABLE register. ADXL345 also supports user-programmable

full-scale range of ±2g, ±4g,±8g, and ±16g with user-programmable data rate from

3200 to 6.25 Hz. Figure 2.4 shows the functional block diagram of ADXL345 [35].

The ADXL345 features in our design include:

• Configuring Clock.

• Enabling Low Power Mode.

• Setting Sensor Data Registers.

• Interrupts.
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Fig. 2.4. The ADXL345 Functional Block Diagram [35]
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2.3 Wireless Sensor HM-10

The wireless sensor is used to share fall related information with the care-taker.

It gives us flexibility to connect devices without having a physical connection be-

tween them. HM-10, a low energy Bluetooth sensor is used to connect wirelessly

and consume less power. It is breakout board with Texas Instruments CC2541 IC

integrated on it. BLE is also known as Bluetooth smart as it brings reduced power

consumption and cost in the similar communication range as compared to classic

Bluetooth. The HM-10 uses BLE protocol to communicate with other BLE devices.

It works on 2.4GHz ISM frequency band and uses maximum data rate of 2000 kbps.

HM-10 has connection range of 100 meters and working temperature range of -5 to

+65 degree centigrade. It switches between sleep and active mode when given de-

sired AT commands. The HM-10 communicates with MCU using UART interface.

The CC2541 SOC combines 8051 MCU with industry leading RF transceiver. It

contains 8-kB RAM, programmable memory, and user-programmable output power.

The Figure 2.5 shows the Functional Block Diagram of CC2541.

The HM-10 features in our design include:

• Configuring Baud Rate.

• Enabling Low Power Mode :- Sleep Mode.

• AT Commands.
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Fig. 2.5. The CC2541 Functional Block Diagram [36]
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3. COMMUNICATION PROTOCOLS

Communication protocols are essential for an embedded system application. It helps

in transmitting, and receiving of data from the sensors, MCU’s, and devices. Below

are the communication protocols used in this work.

3.1 Serial Communication Protocol

A single embedded system device contains different Integrated Circuits (IC).

Therefore, it is often necessary to share information between them to create an ap-

plication. For example, when we hit the acceleration paddle while driving, we see

that the speed is increasing and at the same time, it is displayed on the dash board.

Here, the paddle information is carried to motor and displayed using communication

protocols. In serial communication protocol the data is transmitted one bit at a time,

sequentially, requiring less wires compare to parallel communication protocol. The

choice is obvious to obtain simple communication between IC while using less input

and output pins, serial communication is highly preferred. For Pre-Fall detection

system following serial communication protocols were used:

1. Inter Integrated Communication (I2C): I2C is widely used two wire serial

communication protocol. Communication between two devices is established

using Master-Slave combination. Bus in I2C contains two signals of SCL (clock),

and SDA (data). I2C communication starts by setting SDA low while SCL high.

Devices with I2C can communicate with the speed of 100 kHz or 400 kHz.
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Fig. 3.1. I2C Write Read Diagram

In this work I2C bus was configured using simplicity studio em i2C library.

The I2C was enabled as a master with the default speed of 100 kHz. The

same I2C port is used to connect sensors, as the sensor have different device

addresses. The read and write cycles were performed to read and write the data

respectively.

I2C Write Write: The I2C Write Write cycle is performed when we have to

write data to the slave memory or register. Figure 3.2 shows I2C write write

diagram.

I2C Write Read: The I2C Write Read cycle is performed when we have to read

data from slave memory or register. Figure 3.1 shows I2C write read diagram.

2. Serial Peripheral Interface (SPI): SPI is three wire communication. It is

preferred over I2C when the data rate higher than 400 kHz is required. SPI

also supports data rate higher than 10 MHzs. SPI bus contains three signals,

MISO (Master in Slave out), MOSI (Master out Slave in), and CLK (Clock).

The select lines are used to differentiate sensors connecting to same SPI bus.

SPI uses separate wires for data and clock and hence called as synchronous

communication.
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Fig. 3.2. I2C Write Write Diagram
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In this work SPI is used to store data to SD card while data collection. The

Simplicity studio MicroSD SPI library API is used to configure the SPI for SD

card. The data is logged to SD card at default SPI speed.

3. Universal Asynchronous Receiver Transmitter (UART): UART is a

piece of circuitry accountable for performing serial communication. UART is a

mediator between serial and parallel. On one side of UART, a bus with eight

data lines, and on the other side there are two serial wires with Rx and Tx.

The transmitter and receiver need to operate on the same baud rate in order to

communicate information on time. Along with the baud rate, the receiver and

transmitter must have start bit, stop bit, data frame and parity. UART is used

here to communicate with the BLE sensor. It is used to send AT commands at

the baud rate of 9600.

3.2 Wireless Communication Protocol

Wireless communication can be short ranged or long ranged based on specific

application and uses radio, sonic, electromagnetic and free-space optical as different

modes to transfer information. The advancement in the field of wireless has added

an important feature to embedded device development, circuit designing, home au-

tomation, automobile, and smart watches. The BLE protocol is used to establish the

wireless communication in this work.

Bluetooth Low Energy: BLE or Bluetooth Low Energy is a short range protocol

suitable for embedded applications. The low power in BLE is achieved by transmitting

infrequent and small data packets with maximum bit rate of 30 KB/s. BLE is not

suitable for high throughput streaming applications. BLE works on asynchronous

connection, which means that the connection is terminated when data transfer is

complete and the connection is made when the data is available. Connecting ⇒

transmitting ⇒ disconnecting ⇒ sleep. The operation of BLE can be explained by

studying following modes.
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• Standby: In standby mode, no device transmit or receives data.

• Advertising: In advertising mode the data is been broadcasted to listening

scanner. The data can be a request to form a connection. No data transfer is

guaranteed in this mode. Advertising mode uses Generic Access Profile (GAP)

layer.

• Scanning: In scanning mode the device listens to advertising mode. It checks

if any device wants to form a connection.

• Initiating: In Initiation state, the connection is established.

• Connection: In connection mode, the connected devices transmits server to

client data. It is a one to one transfer with data guaranteed to be sent and

verified. The connection mode uses generic attribute profile layer (GATT).

GATT defines transmit and receive of short pieces of data called attributes

between server and client.

To achieve low power and reliable performance, the BLE protocol is optimized

from the classical Bluetooth. The optimization is done by sending short packets to

reduce the transmit peak current and receive time, reducing RF channels to improve

discovery and connection time, single protocol etc. Figure 3.3 shows the BLE protocol

layers.
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Fig. 3.3. The BLE Protocol Layers
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4. SYSTEM ARCHITECTURE SOFTWARE DESIGN

The system architecture is the integrated software/hardware system that is designed

to provide the minimum power consumption earliest possible fall detection. The

power consumption is important for the wearable devices so the portable battery

may last longer. The approach followed here is based on the system approach and

the selection of the processor, the sensor, and the wearable devices.

4.1 The Block Diagram

Figure 4.1 gives the overview of low power Pre-Fall detection system designed

in this work. The system is divided into the sensing unit, the controller unit and

the communication unit. The system illustrates the relationship between these three

units for better explanation of the system function.

Sensing unit: The sensing unit consists of the activity monitoring sensors namely

accelerometer and gyroscope. This unit is responsible for reliable data acquisition

from ADXL345 and MPU6050 sensors mounted on the human body as a wearable

technology.

Controlling unit: The controlling unit is the heart of the system. It consists

of EFM32GG microcontroller and HM-10 BLE sensor. Its functionality includes

initializing motion sensors, calibrating motion sensors, reading raw data, processing

and computing raw data, analyzing computed data, and deciding about the fall. The

unit also helps in transmitting the fall information to the smart phone connected via

bluetooth low energy.

Communication unit: The communication unit helps with transmitting the

fall critical information to the caretaker, hospital, or health-care provider. This unit

consists of the mobile application, which connects the bluetooth low energy to the
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Fig. 4.1. The System Overview

one on the controlling unit. On fall, the communication unit receives the information

and transmits it to the caretaker in the form of a message with the time of fall and

GPS location.

4.2 Functional Diagram

The functional diagram in figure 4.2 shows the hardware connection of Pre-Fall

detection system. The motion sensors, ADXL345 and MPU6050 communicates with

control unit (microcontroller) using I2C protocol at the default speed of 100 kHz. The

ADXL345 sensor is configured at full range of 13 bit ADC to sample data at 100Hz

low power mode with the measurement range of ± 4g. The sensor is also configured

to generate free-fall and activity interrupts by setting bits in register INT ENABLE.

This interrupts are mapped to INT1 and INT2 pins of ADXL345 by setting bits in

register INT ENABLE. The MPU6050 sensor uses internal clock source and 16 bit ADC

to sample the data. It is configured to sample accelerometer and gyroscope data at 1
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Fig. 4.2. The Hardware Connection Diagram

kHz with the accelerometer measurement range of ± 4g and gyroscope measurement

range of 250 degree/s. The HM-10 communicates with control unit using UART at

default baud rate of 9600. Tables 4.1, 4.2, and 4.3 give the pin-to-pin connection

overview of the hardware design.
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Table 4.1.
Connection between MCU to ADXL345

MCU Pins ADXL345 PINS

I2C1 LOC0 PC4 (SDA) SDA

I2C1 LOC0 PC5 (SCL) SCL

GPIO PB11 INT1

GPIO PB12 INT2

VCC VCC

VCC CS

GND GND

Table 4.2.
Connection between MCU to MPU6050

MCU Pins MPU6050 PINS

I2C1 LOC0 PC4 (SDA) SDA

I2C1 LOC0 PC5 (SCL) SCL

VCC VCC

VCC VIO

GND GND

Table 4.3.
Connection between MCU to HM-10

MCU Pins HM-10 PINS

UART1 LOC2 PB9 (TX) RX

UART1 LOC2 PB10 (RX) TX

VCC VCC

GND GND
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Fig. 4.3. The Pre-Fall Detection Approach

4.3 Software Design

The figure 4.3 shows the methodology of Pre-Fall detection. The approach is to

sense high peaks in patient movements, which are caused by unstable actions, start of

fall, and sudden sit. The high peak above the threshold generates an interrupt, waking

up the MCU and motion sensor to track human body posture for next two seconds.

The window of two seconds is used to classify patient's activity after the peak. It also

helps in minimizing unrecognized true-fall events. To ease our understanding on fall

dynamics, the following events are defined.

• Interrupt Threshold: Motion thresholds are the acceleration peaks generated

during a sudden sit, shock moments, freefalls, and rest. During occurrence of

fall there is either drop down in acceleration or sudden peak. Detecting it gives

a starting point of sudden activity or fall.

• Fall Time: Fall time is the time when the interrupt is generated to the time

when the fall happened.
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• Response Time: Response time is the time taken by the Pre-Fall detection

system to identify and declare fall since interrupt occurred.

• Fall Detection: Detecting a fall at a posture from where the person cannot

return to the normal or balance state. The fall detection decision in this work

is truly based on thresholds.

PrefallT ime = FallT ime−ResponseT ime (4.1)

The equation 4.1 gives us time at which the Pre-Fall detection system have de-

tected a fall. This time helps us in designing a safety trigging system to protect

patient.

4.4 The Flow Diagram

The Algorithm flow diagram is classified into two parts:

1. Initialization and deep sleep mode.

2. Interrupts and Interrupt service routine.

Figure 4.4 describes the flow chart of the initialization and deep sleep mode soft-

ware flow. On reset or power down, the code starts from the start address. The

first step on start is to initialize the Micro-controller (MCU). The initialization of the

MCU consists of restoring the static RAM, initializing the peripherals (GPIO, I2C,

and UART), configuring clock (Main and Peripheral) and disabling the unwanted

peripherals and clock. After MCU initialization, the motion sensor checks for its

connection and communication status. Both the motion sensors are connected on

the same I2C bus/port. This is possible because both sensors have different device

addresses. Further, we perform I2C WR (Write read) for ADXL345 and MPU6050

to read the device address. If the device address returns by the slave (ADXL and

MPU6050), and it matches the expected data stored in the micro, we move forward,

otherwise the fault LED lights up.
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Fig. 4.4. The Flow Diagram to Initialize and Sleep
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Once the sensor connection check is successful; we calibrate both the motion

sensors. Sensor calibration is done by setting up an appropriate sensor register to

configure the device, and get average count biases. Calibration is necessary because

there are variations between the sensor data. For critical applications where precise

measurements are required, calibration to the reference gives the desired result. Af-

ter sensor calibration, we initialize the sensor to the desired configuration: setting

up interrupt registers, data rate, resolution, range, low power mode etc. Now, the

next step is to check the belt location. To detect the Pre-Fall accurately, it is of high

importance to place the belt at the right location (around the waist). This step will

keep on looping until the set thresholds are met. Once the actual raw values are in

range, we break the loop and initialize the interrupts. This is done by setting MCU

to expect the interrupt on specific pins with a callback. After we complete this setup

successfully, we put the MPU6050 to sleeping mode. MPU6050 sensor data is only

needed when calculating the fall parameters. Initially, it's just ADXL345 that oper-

ates at the low power mode to track users linear velocity. It generates an interrupt

when motion above the threshold is achieved. Until the time we get interrupted by

ADXL345 we put the processor in deep sleep mode. In deep sleep mode, the current

consumption by the core is pulled down to 90µA at 3V supply voltage. Therefore,

putting the MCU in deep sleep mode assists with the minimum power consumption.

Figure 4.5 explains the Interrupts and Interrupt service routine flow in Pre-Fall detec-

tion algorithm. The interrupt from ADXL345 puts the device into RUN mode from

Deep sleep mode. On interrupt, the device saves the current executing instruction

address into the stack and jumps onto the interrupt service routine (ISR). Once we

enter into ISR, we first disable the interrupt and enable MPU6050 from sleep mode.

Disabling an interrupt is necessary to avoid MCU generating interrupts when we are

calculating fall parameters.
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Fig. 4.5. The Flow Diagram to Handle Interrupts and Detect Pre-Fall
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A loop of two seconds is used to track user activity after interrupt is detected. In

the loop, we first get the raw data from MPU6050 and ADXL354. The raw data is

then computed to remove drift and noise by using low pass filter for ADXL345 and

complementary filter for MPU6050. The computed values are now angles, which are

used to analyze users body posture.

Sudden sit, Bending, and few normal-inclining users body poster results in a range

of fall. Therefore, an additional comparison is needed to successfully differentiate

between the fall and activity of daily living (ADL). Once the user's body posture

is classified to be in range, then we calculate and compare SVM and SMA with the

stored thresholds. If both the values are greater than the set threshold, fall variable is

set and we exit the loop. If the range condition and the SVM and SMA do not meet

the threshold, we exit the loop, without updating the fall variable. After exiting the

loop we first put the MPU6050 to sleep mode and then checks if fall variable is set.

If the fall variable is set, we alert the user by sending emergency notification. The

interrupts are then enabled and we exit the ISR to get into deep sleep mode.

4.5 Software Environment

In this project, a simplicity studio from silicon labs is used as development tool

to build the software. It is a launching pad for anything needed to configure and

develop with EFM32 MCU. It helps greatly with reducing the time and complexity

by providing a high-powered IDE, hardware configuration tool, power consumption

measurement tool, and links to helpful resources. As an Integrated Development En-

vironment (IDE), simplicity studio also comes with an inbuilt compiler and debugger.

1. Compiler: The GNU GCC compiler is used to compile the software. It helps

in optimizing the code and converting it to a machine language (HEX). The

compiler built the code in regards to the hardware selected, because hardware

architecture: ports, clock, memory, and peripherals plays crucial role in suc-

cessfully generating the processor specific machine code.
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2. Debugger: Segger J-link debugger is used to flash and debug the code. The

debugger helps in identifying bugs by providing a way to pause/step the program

and set break points to analysis the registers, variables, and functions.

3. Energy Profiler: The starter kit used includes Advanced Energy Monitor-

ing (AEM). It is the hardware component installed on the kit to measure the

current consumption. The samples of current consumption from AEM are sent

over j-link debug to the IDE. AEM with the sampling frequency of 6250Hz

measures current from 0.1µA to 50 mA with absolute accuracy of 1µA and rel-

ative accuracy of 0.1µA. The Energy profiler displays the AEM current sample

waveform.
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5. COMPUTATIONAL MODEL

In Pre-Fall detection processes, accelerometers ′ and gyroscopes ′ information are

used to detect human fall. The implementation of mathematical model is designed to

be less complex for low power computation. The reduced complexity and computation

power helps to significantly reduce battery power consumption, while maintaining the

fall detection accuracy and system performance.

In this approach, we detect the Pre-Fall by thresholding the velocity and accelera-

tion in horizontal and vertical directions of users moment. In [37], authors described

a single tri-axial accelerometer, which is enough for human fall detection as sufficient

information to classify human body posture, and this information can be extracted

from its measurements. The gyroscope is added to further reduce the false fall prob-

ability. Using both gyroscope and accelerometer helps to determine accurate static

and dynamic human postures, at the same time it reduces computational cost and

enhance the system accuracy [38].

5.1 The Accelerometer

Accelerometer measures acceleration, which is the rate of change of velocity of

a subject. Acceleration can be measured in three directions (X, Y, and Z) simul-

taneously in G-forces (g). Accelerometer works by sensing either static (gravity) or

dynamic (vibrations and movements) forces in acceleration. As acceleration holds

direction and magnitude, it can be used to sense the orientation of the device. Ac-

celerometer measures 1g when aligned with earth's downward gravitational field. So

when the subject is tilted, the 1g get's distributed among the three axis. To deter-

mine the fall movement, the subject orientation can be measured using participation

of two or three axis. Figure 5.1 shows the acceleration points in X, Y and Z axis with
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Fig. 5.1. Angle Measurement using Accelerometer

respective to acceleration vector. To have the best accuracy, all three axes are used

to determine the angle. The three components of the acceleration vector are given

as:

Ax = arctan(
x√

y2 + z2
) (5.1)

Ay = arctan(
y√

x2 + z2
) (5.2)

Az = arctan(
z√

x2 + y2
) (5.3)
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During static conditions, the inclination of the accelerometer with respect to ver-

tical is known. In Dynamic conditions, the inclination using accelerometer measure-

ment is noisy since gravity is added to the system acceleration component. Digital

filters were used to suppress the noise by separating the gravity vector and body

acceleration vector.

5.2 The Gyroscope

Gyroscope measures angular velocities that are derived from the angular positions

of gyroscopes. The rate of change of position over time, can be measured in degrees

per second.

θi =
dθ

dt
(5.4)

The angular position can be obtained by integrate the angular velocity. So, assuming

that at t=0 we start with the initial angular velocity, θi(0). The angular position at

any given moment t can be obtained from the following equation:

θ =

t∫
0

θi(t)dt ≈
t∑

i=o

θi(t)Ts (5.5)

As seen from the above equation, the third part is the approximated value that

we assume while using digital systems.

5.3 The Digital Filter

The most important and essential part for detecting the fall accurately is the

measurements acquired from accelerometer and gyroscope. The raw values do not

provide precise position and orientation of the object. Therefore, the digital filter is

needed to get the optimized value of the signals measured from the sensors. Below

are the problems associated with accelerometer and gyroscope raw output.
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Fig. 5.2. The Accelerometer Raw Data

• Noise in Accelerometer: Accelerometer results in accurate rotation angles

as long as the only force acting on it is gravity. When moving or rotating,

the accelerometer value causes fluctuation in its reading, making it prone to

noise. In Pre-Fall system, as user wear accelerometer, the body acceleration

gets add up with the gravity acceleration, creating uncertainties in accelerometer

measurement. Figure 5.2 shows the noise in accelerometer data.

• Noise in Gyroscope: The gyroscope measures angular velocity (ω) at interval

(t), which is converted into angular position (ω*t) by integrating the gyroscope

measurement data. The integration leads to repeatedly adding up computed

intervals, generating bias error. This generates a gyroscope drift, when used for

a longer time. Hence, it does not return back to zero when the system went

back to its original position. Figure 5.3 shows the noise in the gyroscope data.
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Fig. 5.3. The Gyroscope Raw Data
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5.4 The Complementary Filter

The use of accelerometer and gyroscope for fall detection in real time situations,

requires a math filter to combine the measured data returned by the sensors. A

complementary filter is used where one source gives good information about low

frequency signal while the other gives good information about high frequency signals.

Complementary filter manages low pass as well as high pass filters simultaneously.

The idea behind using complementary filter is to combine slow moving signals (long

term signals) from accelerometer and fast moving signals (short term signals) from

gyroscope to provide accurate information.

In static conditions, the accelerometer gives accurate values of orientation and in

dynamic situations; the gyroscope gives the accurate value of tilts. Hence, the overall

best solution for detecting fall, is to pass the accelerometer signals through a low pass

filter and gyroscope signals through a high pass filter. Then combining the outputs

(low pass and high pass), and multiplying with gains summing to unity to get filtered

angle. The Complementary filter results in accurate data filtering with minimum

complexity and computation requirements as compared to Kalman filter. Kalman

filtering has been thought of for its widely used applications in aerospace, navigation

systems and high precision applications. Some of the issues that discourages applying

it in the low power consumption, was related to its system complexity, computational

inefficiency, and CPU load. In particular, for complexity, it is complex to implement

Kalman filter on top of the 32bit powerful ARM cortex M3 MCU. Because the filter

needs to calculate the coefficients of the matrices, measurement error, and the process

based error, etc are not trivial for real time application. In addition, the sensors

output that can be used may result from Gaussian distribution. Above all, the use

of kalman filter increases the execution time, hence increases the power consumption.

Therefore, the complementary filter was used in this application.

The estimated θt is estimated via the expression:
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Fig. 5.4. Comparison of Complementary Filter Design with Raw Data

Compangle = (0.97) ∗ (Compangle +Gyrodata ∗ dt) + (0.03) ∗ Acceldata (5.6)

The complementary design is used to estimate both the Roll angle and Pitch

angles. Equation (5.6) shows complementary filter formula. The gyroscope output

is integrated with the current angle. Then it is combined with the accelerometer

value, which is processed with equation (5.1). The constants 0.97 and 0.03 are filter

gains. This indicates that the filter will take 97% of the gyroscope data, and added

to the 2% of the accelerometer data. It can be changed to tune the filter based on the

application. Figure 5.4 shows the results obtained after applying the complimentary

filter to accelerometer and gyroscope output. The complementary filter removes noise

from the accelerometer and eliminates gyro drift.
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5.5 The Fall Parameters

5.5.1 Identifying Motion and Rest

It is necessary to distinguish between user activity and rest condition, with a

suitable measure that include signal variations in all three axis. Such measure is

described in [39], and is Signal Magnitude Area (SMA). SMA gives the static and

dynamic positions of the patient by integrating the acceleration vectors (X, Y and Z)

averaged over sampling period and summing it.

SMA =
1

t
(

t∫
0

|x(t)|dt+

t∫
0

|y(t)|dt+

t∫
0

|z(t)|dt) (5.7)

x(t), y(t), and z(t) refer to the body components of the x-, y-, and z-axis samples.

Practically determining the acceleration values for motion (dynamic activity) and rest

(static activity) sets an SVM threshold.

5.5.2 Postural Orientation Information

Postural information is required to identify relative tilt of body in space. To

differentiate between ADL and fall it is important that we provide a distinction

between them. Signal Vector Magnitude (SVM) is used to determine the fall. SVM

provides a measure of movement intensity derived from accelerometer signal. The fall

is determined by monitoring change in magnitude of acceleration, because it decreases

rapidly during fall and before impact. During fall the body acceleration vector will

be in the direction of gravity vector. According to [39] SVMi is calculated at the ith

sample of the acceleration values on the X, Y and Z axis.

SVMi =
√
x2i + y2i + z2i (5.8)
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6. LOW POWER DESIGN AND ESTIMATION

The low power approach in this work focuses on minimizing energy consumption of

microcontroller based systems. The low voltage CMOS process have significantly

contributed in lowering the power consumed by the micro-controller, but there is still

need of work to design a low power system than just fabrication process . Our aim is

to select ultra-low power micro-controller and optimize the fall detection algorithm

using the MCU features to extend battery life. The MCU selection was done by

considering power consumption in low power and run modes, low power peripherals,

and different operating frequencies. In this chapter, we focus on innovative approach

taken to lower energy demands of wearable Pre-Fall detection system.

The MCU consumes most power since it handles most arithmetic and logic oper-

ations, among others. Therefore, it is important to understand the cause of power

consumption and steps to minimize it. As discussed in chapter 1, the power consump-

tion can be defined by Static and Dynamic power. The Dynamic power is defined

as the power consumed when the micro-controller is running and performing its pro-

grammed tasks. While the static power is defined as, a power consumed when the

micro-controller is ideal (not running the code).Therefore, to calculate the overall

average power consumption it is important to know the time application expects to

spend in deep-sleep and active.

• Active Mode: The Power consumption of a CPU, when active and processing

the algorithm is highly important because of the higher power dissipation in

active mode. The power loss in active mode happens due to dynamic power

(6.1), which consume power while switching CMOS circuits. In (6.1), V is the

supply voltage, f is the switching frequency and C is the load capacitance.



56

DynamicPower = V 2 ∗ f ∗ C (6.1)

Therefore, by reducing the dynamic power, the total power consumption in

active mode can be minimized. As the supply voltage (V) is a squared term

in dynamic power equation, reducing it will significantly help in lowering dy-

namic power. The frequency of the application can also be lowered depending

on the communication or sampling speed requirement, and processing perfor-

mance. Therefore, from the (6.1), we can also say that lowering the operating

frequency will result in lower dynamic power. The equation (6.3) gives the

energy consumption in active mode.

(6.1) can also be represented as:

DynamicPower = V ∗ (C ∗ V ∗ F )

DynamicPower = V ∗ I (6.2)

Where, I = Dynamic Current = (C * V * F )

From (6.2), Energy is defined as:

ActiveModeEnergy = DynamicPower ∗ Time

= IActive ∗ TimeActive ∗ VActive (6.3)

• Deep sleep mode: Pre-Fall algorithm is designed to spend the majority of

time in low power deep-sleep mode waiting for external interrupt-events to wake-

up the CPU. The power loses in deep sleep mode happens due to static power.

While the code not actively running, the current consumption is due to bias

currents for analog circuits, and leakage current. Static power consumption is

important factor for pre-fall detection device, as the majority of time is spent

in sleep mode. The static power can be reduced by using a MCU with designed
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advanced power management unit designed specifically to reduce leakage cur-

rent. Other techniques used to reduce static power are disabling analog blocks,

disabling ram blocks, and reducing supply voltage.

DeepSleepModeEnergy = IDeepsleep ∗ TimeDeepsleep ∗ VDeepsleep (6.4)

Therefore, from above the total energy can be calculated as,

TotalEnergy = ActiveModeEnergy +DeepSleepModeEnergy

= (IDeepsleep ∗ TimeDeepsleep ∗ VDeepsleep) + (IActive ∗ TimeActive ∗ VActive) (6.5)

Average Current Consumption can be represented as,

AverageCurrent =
(IDeepsleep ∗ TimeDeepsleep) + (IActive ∗ TimeActive)

TimeDeepsleep + TimeActive

(6.6)

Analyzing further, the power consumption is not restricted to deep sleep and

active mode. Power is also consumed when there is transition for deep-sleep to active

as show in Figure 6.1. During wake-up, a significant amount of power is used in

preparing MCU to acquire data and process it.

Therefore, the total energy consumed is given by,

TotalEnergy = ActiveModeEnergy +DeepSleepModeEnergy +WakeupEnergy

The following steps are taken to achieve reduced current consumption:

1. Using Energy Modes: The most efficient way to save energy is spend-

ing less time in Active mode. when active, the MCU alone consumes 150

µA/MHz(2.3mA/14MHz). On the other hand, when CPU is in deep sleep

mode it consumes 1.7µA. The API from em emu library is used to switch be-

tween Active and deep sleep modes.

2. Using Low energy peripherals: The EFM32GG is built for ultra-low power

capabilities. The availability of peripheral or modules varies as you move from

one energy mode to another. This is done in order to save power. The MCU
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Fig. 6.1. The Current Consumption
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comes with peripherals which are standard, but a layer of low energy is added

on the top of it to make it low power. UART, I2C and SPI are redesigned to

use lower energy in EFM32GG architecture.

• LEUART: Low energy UART is a basic UART with a layering of dedi-

cated low power hardware on the top of it. LUART uses 9600 baud rate

with current consumption of 150nA in sleep. The advantages of using

LEUART is it receives and transmit data packets while CPU is in deep

sleep mode.

3. Disabling unused peripherals/modules: All the unconnected GPIO and

other peripherals are disabled to avoid GPIO leakage and save energy.

4. Turning off clocks to unused peripherals/ modules: The clock to unused

peripherals contributes to energy consumption, even though the peripherals

are disabled. The energy get still consumed by the module if the clock is

still running. Therefore, it is energy efficient to turn off the clock for unused

peripherals.

5. Optimizing clock frequency: As the energy consumed is directly propor-

tional to the clock speed in CMOS circuit, it is important that the proper steps

are taken to achieve the power management. In EFM32 several clock source and

frequency choices are available to run the system at desired speed: HFRCO,

HFXO, LFRCO and LFXO. The HFRCO and HFXO is a high frequency source

clock. While HFXO uses external crystal resonator with 4-48MHz, the HFRCO

uses internal RC with runtime selectable 1, 7, 11, 14, 21 or 28 MHz. The

HFRCO clock was selected to run at 14 MHz. The pre-scaling of clock is

avoided, because prescaler logic consumes addition power than that of using

direct oscillator.
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6. Using lower operating voltage: Lowering the voltage further reduces power

consumption. Looking at the sensor specifications ADXL345, MPU6050, HM-10

and EFM32GG work at power of 3V.

7. Optimizing Libraries: The low level drivers developed for the MCU and

sensors contains the APIs suitable for all applications. It is therefore important

to remove the unwanted APIs to increase speed, reduce code size, and energy

optimization.
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7. RESULT AND DISCUSSION

The test of the fall detection system has been conducted based on the hardware and

software structure described above. The prototype was designed and tested in the

lab environment. The data was analyzed from the test results gained from 3 females

and 4 males subject's performing simulated falls and activity of daily living. The

subject's age, body mass and height lie between 25-40 years, 45-80 kg, and 167-182

cm respectively. Figure 7.1 shows the designed system for Pre-Fall detection.

Fig. 7.1. The Practical Model
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7.1 Data Collection System

The data collection system was developed to:

• Analyze the fall data: To computed complimentary filter data, low-pass filter

data, and SVM and SMA data.

• Examine the thresholds for activity of daily living and fall.

• Handle false triggered fall.

Data collection is necessary to evaluate how user's daily activities are; what accel-

eration range they belong into; what action triggers peak values; finding fall pattern;

finalizing the thresholds; and examine motion sensor position. Figure 7.2 shows the

data collection system design and Figure 7.3 shows the software flow diagram of data

logging.

7.2 Bluetooth Mobile application

The Bluetooth mobile application was develop to receive fall signals from the

detection system and send emergency message to caretaker. The Application utilizes

the smart phone built in BLE, GSM and location sensor to receive and send message

with GPS coordinates. It supports panic button to call and share location with care

taker. The application also notifies subject that detection unit has detected the fall

and an emergency text has been sent to caretaker. The application was developed

in MIT app inventor. It supports and builds application for android-based smart

phones. The app builder was used because of its simplicity and reliable programming

structure. The Figure 7.4 shows mobile application. The Figure 7.5 shows results.
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Fig. 7.2. The Data Logging System Design
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Fig. 7.3. The Data Logging Flow Diagram
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Fig. 7.4. The Mobile Application Screen
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Fig. 7.5. Fall Result Using BLE App
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7.3 Low power Test Results

The power consumption of the system: Microcontroller, MPU6050, ADXL345

and HM-10 is been monitored through Silicon labs Energy profiler. The current

consumption was brought down to ≈ 600µA when processor in sleep mode and ≈

6mA during run mode. The current consumption gets higher when fall happens,

because BLE sensor wakes up from sleep to send data.

1. MCU Power Consumption: Figure 7.6 shows the power consumption when

MCU is in deep sleep mode and no sensors are connected to the system. The

average current consumed by microcontroller in deep sleep mode is 1.7 µA.

Figure 7.7 shows the power consumption when MCU is running in Active mode

at 14MHz. The average current consumption in active mode is 2.3mA.

2. ADXL345 Power Consumption: Figure 7.8 shows the power consumption

of an accelerometer and MCU. The red line shows the applied voltage to the

sensor and MCU. The ADXL345 is configured to operate in low power mode. It

measures the acceleration data while MCU in sleep mode to monitor subjects

body posture. The power consumed by the ADXl345 and MCU during deep

sleep mode operation is 83.66µA. According to data sheet at the low power data

rate of 100Hz, the sensor must consume 55µA, when supplied 2.5V. In our case

the supply voltage is 3.3 V therefore the current consumed is slightly higher.

3. MPU6050 Power Consumption: Moving forward we configure MPU6050

to operate in low power mode. Figure 7.9 shows MCU and MPU6050 current

consumption when MCU acting in deep sleep mode and MPU6050 in measure-

ment mode. As it can be seen the current consume by MPU6050 is 3.80mA.To

overcome this problem, we put mpu6050 to sleep mode. Figure 7.10 show the

power consumed by MPU6050 when in sleep mode. The current consumption

for MPU6050 and MCU is now 8.57µA.
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Fig. 7.6. The MCU Deep Sleep Mode Power Consumption

Fig. 7.7. The MCU Active Power Consumption
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Fig. 7.8. The ADXL345 and MCU Deep Sleep Mode Power Consumption

Fig. 7.9. The MPU6050 Active Mode Power Consumption
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Fig. 7.10. The MPU6050 Sleep Mode Power Consumption
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Fig. 7.11. The BLE Connected Mode Power Consumption

4. BLE Power Consumption: The Power consumed by HM10 in connected

and Sleep mode is shown in figure 7.11 and figure 7.12. The module consumes

approx. 8.55 mA in connected mode and 526.55µA in sleep mode.

The figure 7.13 shows the total current consumed by MPU6050, ADXL345 and

MCU in active and sleep mode. In low power mode ADXL345 consumes 78µA and

with MPU6050 and MCU it adds ups to 90µA. When interrupt occurs, we wake up

MPU6050 which consumes 3.8mA. The ADXL345 power consumption stays the same

78µA and the 2.3mA is consumed by MCU to make a total of 6.1mA.
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Fig. 7.12. The BLE Sleep Mode Power Consumption

Fig. 7.13. Overall Power Consumption
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7.4 Fall Pattern Test Results

7.4.1 Recognizing Patterns using Low-Pass and Complementary Filter

Data

Figure 7.14 shows the pattern acquired during walking and standing using the

pitch and roll angles from low-pass and complimentary filters. Figure 7.15 shows

the data during rest and getting up from rest. There is a sudden rise and fall in

Comp Roll angle during the getting up position, while all the other angles decrease

smoothly. Figure 7.16 shows all activity of daily living patterns. During walking

and standing, there is smooth transition between the activities, but while performing

sitting activity, there is a change in Comp Roll and PitchAcc angle. Figure 7.17

shows the front fall pattern. During the fall a significant rise in PitchAcc, RollAcc,

Comp Roll, Comp Pitch angles can be seen. Figure 7.18 shows the back-fall pattern.

During back fall, Comp Roll and PitchAcc angles rises, while RollAcc and Comp Pitch

angle decreases. Figure 7.19 and figure 7.20 shows the side fall patterns. The data

pattern change can be seen during the right and left fall. Figure 7.21 shows the

complete fall pattern.

7.4.2 Recognizing Fall Patterns using SVM and SMA

The data pattern acquired from low pass filter and complementary filter, exhibits

sitting and resting activity pattern closely aligns with fall patterns. Therefore, adding

one more layer of decision factor eliminates eliminate the risk of false fall detection.

Figure 7.22 shows the SVM and SMA data for performing sitting, walking and stand-

ing activities. Figures 7.23, 7.24, 7.25 and 7.26 shows the fall pattern acquired.
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Fig. 7.14. Data Pattern During Walking

Fig. 7.15. Data Pattern During Resting
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Fig. 7.16. Data Pattern During ADL

Fig. 7.17. Data Pattern During Front Fall
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Fig. 7.18. Data Pattern During Back Fall

Fig. 7.19. Data Pattern During Right-Side Fall
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Fig. 7.20. Data Pattern During Left-Side Fall

Fig. 7.21. Data Pattern During complete Fall
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Fig. 7.22. ADL Data Pattern Using SVM and SMA

Fig. 7.23. Back-Fall Data Pattern Using SVM and SMA
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Fig. 7.24. Front-Fall Data Pattern Using SVM and SMA

Fig. 7.25. Left-Side-Fall Data Pattern Using SVM and SMA
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Fig. 7.26. Right-Side-Fall Data Pattern Using SVM and SMA
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Table 7.1.
Data Set

Activity Incidents True Positive Fall False Negative Fall

Human Fall Front Fall 20 0

Back Fall 15 0

Left-side Fall 21 0

Right-side Fall 21 0

ADL False Positive fall True Negative fall

—— ——–

Sitting Down 4 40

Standing up 1 70

Walking 0 70

Resting 5 30

7.4.3 System Test Results

The results are obtained by performing test for four kinds of fall and four kinds of

ADL. Each fall and ADL posture has been repeated at least 15 times on each subject

to determine thresholds. The accuracy, sensitivity, and specificity is determined using

equations 7.3, 7.1, 7.2 and from the test data in Table 7.1. The designed system

estimates accuracy of 96.63%, sensitivity of 100%, and specificity of 95.45%.

Sensitivity =
TPF

TPF + FNF
(7.1)

Specificity =
TNF

FPF + TNF
(7.2)

Accuracy =
TPF + TNF

TPF + FNF + FPF + TNF
(7.3)
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8. CONCLUSION AND FUTURE WORK

In this work, a full characterization of the Pre-Fall detection system was conducted.

This covered the hardware and software design, and the low power features. The

system was simulated and built. The practical results showed significant impact on

the speed and power consumption. Near 250ms was measured from the time of fall

detection to the time when the fall occurs. This time is also analyzed to be sufficient

to trigger safety devices that protect the patient when the fall occurs. Therefore, in

the future work, the Pre-Fall prevention system can be designed and developed to

prevent users knee, heap, and head areas from injuries. The comfort of the system

can be further increased by making it a generic wearable device with low power

IoT devices. Energy harvesting will be an important additive component to the

system to elongate the battery life, and this is also reserved for future consideration.

Within the approach, the subject’s body postures were extracted from the angular

velocity and acceleration data. The thresholding based classification model was used

to differentiate between fall and ADL. The designed system results in accuracy of

96.63%, sensitivity of 100%, and specificity of 95.45%. The proposed design also

features wireless capabilities to communicate fall information to caretakers.

The low power implementation was approached via the use of low power processor,

the utilization of sleeping mode while in idle, and the software algorithm that featured

low power. The low power is important in saving battery life, thus, minimizing system

cost and increasing the reliability and the efficiency of the device.

The study also considered the optimum number of sensors and their locations on

the body. The designed Pre-Fall detection system was found be optimum when worn

by user on the waist.
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