
ELECTRONIC WARFARE ASSET ALLOCATION WITH HUMAN-SWARM

INTERACTION

A Thesis

Submitted to the Faculty

of

Purdue University

by

William M. Boler

In Partial Fulfillment of the

Requirements for the Degree

of

Masters of Science Electrical and Computer Engineering

May 2018

Purdue University

Indianapolis, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Lauren A. Christopher, Chair

Department of Electrical and Computer Engineering

Dr. Brian S. King

Department of Electrical and Computer Engineering

Dr. Paul Salama

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian S. King

Head of the Graduate Program

iii

To my mother Janet, my father Michael, and my sister Cassandra. You have been

my inspiration.

iv

ACKNOWLEDGMENTS

I would like to acknowledge my professor Dr. Christopher for providing me this

opportunity to work with this project, and for her guidance and wisdom shared in

making this project successful. I would like to thank Dr. King and Dr. Salama

for their mentorship and tutelage. I would like to acknowledge Calvin Wieczorek

and Md Saiful Islam for being a dedicated partners and contributors in this work;

Jonah Crespo for his guidance and original contributions to human in the swarm;

Joshua Reynolds for his original contributions to the initial GUI; Dr. Eberhart and

Dr. Kennedy, the inventors of PSO; and Scot Hawkins for his guidance in EW

propagations and his sponsorship. I also would like to acknowledge NSWC Crane

for providing the support necessary for completing this project.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

SYMBOLS . xi

ABBREVIATIONS . xii

GLOSSARY . xiii

ABSTRACT . xiv

1 INTRODUCTION . 1

1.1 Overview and Problem Statement . 1

1.2 Project Inheritance and Continuation 3

1.3 Literature Review . 4

1.3.1 Particle Swarm Optimization (PSO) 4

1.3.2 Human in the Swarm . 6

1.3.3 Meta PSO . 7

1.4 Application of PSO . 8

1.5 Individual Contributions . 10

2 OBJECT ORIENTED PROGRAMMING MODIFICATIONS 12

2.1 Purpose . 12

2.2 Original Structure . 12

2.3 PhysicalObject Class . 15

2.4 XcvrObject Class . 15

2.5 TerrainData Class . 17

2.6 Statistics Collection . 19

2.6.1 StatObject . 19

2.6.2 Statistics Containers . 22

vi

Page

2.6.3 K-Means Clustering of Solution Statistics 23

3 HUMAN IN THE SWARM . 25

3.1 Purpose . 25

3.2 Prior Work . 25

3.3 Concept . 27

3.4 Implementation . 30

3.4.1 Calculation . 30

3.4.2 Manipulation . 33

4 DIRECTIONAL ANTENNA . 37

4.1 Purpose . 37

4.2 Concept . 37

4.3 Implementation . 39

4.3.1 PSO Modifications . 39

4.3.2 Antenna Models . 41

4.3.3 Culmination . 43

5 META-PSO . 45

5.1 Purpose . 45

5.2 Concept . 46

5.3 Implementation . 47

5.4 Usage . 48

6 RESULTS . 50

6.1 Discussion . 56

7 SUMMARY . 58

8 RECOMMENDATIONS . 59

REFERENCES . 61

VITA . 64

vii

LIST OF TABLES

Table Page

1.1 The objective fitness function is calculated as a weighted sum of the fol-
lowing components: . 10

3.1 The 4th-order polynomial approximations used for pheromone fitness. . . 31

6.1 Scenarios used for test run. Each test run contained different settings
for pheromone location, attribute, and radius, as well as terrain details.
Location is in the format (x, y, z). Location and radius are in km. 50

6.2 The parameters stayed the same across all scenarios, with the exception for
antenna beam width, which is irrelevant for the isotropic antenna pattern
scenarios. 51

6.3 Displayed are the weights gathered over a period of time. The description
gives brief information that led to the development of new weights. The
Training indicates whether the weights were tuned manually by hand,
or by Meta-PSO. The Variance, Runtime, Scaling, SNR, and Violation
columns indicates whether these were applied to the Meta-PSO fitness. . . 51

6.4 Shown below are the results for running the experiments on the isotropic
antennas. 53

6.5 Shown below are the results for running the experiments on the aperture
antennas. 54

6.6 Shown below are the total combined results for both aperture and isotropic
antennas. 54

viii

LIST OF FIGURES

Figure Page

1.1 (a) provides the main window for program control, fitness across gener-
ations, and solution display. (b) provides the 3D display of the solution
and terrain. 2

1.2 Generic example code for executing the PSO Process. 7

1.3 Shown is the particle representation of the PSO. Each particle contains
the spatial, frequency, azimuth, and elevation information for each asset. . 9

2.1 The general flow of information goes from MainWindow (the frontend
GUI of the program) to FitnessFunctionSpatialReceiver (the backend of
the program). 13

2.2 Original struct implementaions for receivers, signals, signal assignments,
and solutions. 14

2.3 PhysicalObject and PhysicalOrientation UML. All vectors for position and
velocity are replaced by PhysicalObject objects. 15

2.4 UML for Geometric objects. OrientationDomain is an abstract class con-
taining a private vector member, which stores a three-element vector.
Cartesian, Spherical, and Cylindrical inherits from OrientationDomain
to implement the different geometric domains. 16

2.5 UML for XcvrObject, RadioObject, RxObject, TxObject, and FrequencyOb-
ject. Each class shares responsibility for implementing RF propagation
and attaching it to a physical object. Receivers and signals are defined as
instances of XcvrObject. 17

2.6 UML for TerrainData and LatLongCorners. TerrainData stores the 2D
height map for terrain elevation data, and encapsulates all terrain-related
aspects. 18

2.7 UML for StatisticsContainer . 20

2.8 Shown is the class for Student’s t-distribution called StudentTDistribution,
which is used for handling the lookup of the distribution coefficients. . . . 22

3.1 (a) shows the keep-away line, illustrated with a black verticle line; all assets
must stay on the right of the line. (b) the keep-away circle, illustrated with
the black circle; all assets must stay outside of the circle. 26

ix

Figure Page

3.2 Example of keep-away circles of 50 km radius in both legacy (a) and
pheromones (b). 30 assets are optimized for placement: 7 violate the
keep-away circle penalty in (a); 0 violate the keep-away circle penalty in (b).27

3.3 Shown are the concepts representing pheromone zones. (a) shows the
concept for fitness representation of the attracting pheromone zone. (b)
shows the repelling pheromone zone. 28

3.4 The UML for PheromoneElement and PheromoneList. PheromoneList
contains a list of PheromoneElements and provides methods for validating
and getting the cost of solutions. 31

3.5 Shown is the time-cost for execution of millions of iterations of the std::exp()
function, in comparison to its polynomial approximations. The 4th-order
approximation offers the best trade-off. 32

3.6 The graph shows the polynomial approximation of the exponential and
logistics functions for attracting and repelling pheromones. 32

3.7 GUI for Pheromone Management Table . 33

3.8 Shown are the mouse controls for placing pheromones. (a) shows the
context-menu for right-clicking on the 3D surface plot. (b) shows the
selection of “Plop Zone”. (c) shows the selection of “Plop Beacon”. 34

3.9 An example of the keep-in zone being used for a straight line. The assets
are forced inside the keep-in zone, where they optimize to cover all trans-
mitters. (a) shows the 3D representation as a blue transparent cylinder.
(b) shows the 2D representation as a circle around the 3 black assets in
the “Allocation Plot”. 35

3.10 Shown is the keep-out zone in red. 35

3.11 The Beacon is being emphasized by red circles. (a) is showing the small
transparent blue dot circled in red. (b) is showing the cyan circle circled
in red. The red circles are not part of the actual program. 36

4.1 A depiction of a possible antenna pattern with -3 dBi cuttoff points for
main-lobe beam width. 38

4.2 Shown above is the concept for the directed antenna. Peak gain is calcu-
lated for the center of the beam width, and a parabolic roll-off is introduced
until -3 dBi. A gradient for guiding the PSO to the main beam is intro-
duced after the beam-width by using a linear gradient, shown in yellow,
between -90 dBi and -192 dBi. 39

4.3 Shown is the reference of orientation for azimuth and elevation. 40

x

Figure Page

4.4 Shown again is the particle representation of the PSO. Each particle con-
tains the spatial, frequency, azimuth, and elevation information for each
asset. 41

4.5 Shown is the UML for the AntennaModelFactor, AbstractAntennaModel,
and the derived AntennaModelIsotropic and AntennaModelAperture. 42

4.6 An example of a solution using directed antennas. 44

5.1 Meta-PSO is implemented by clicking the “PSO the PSO” button in the
Run Options on the Main GUI. 48

5.2 Meta-PSO menu options. 49

6.1 Displayed are the scenarios used for gathering solution asset variance and
mean runtime. 52

6.2 Shown are the results of the new weight ran against the ground-truth. . . . 55

6.3 Shown are the 3D results of the ground truth. 56

xi

SYMBOLS

C1 Constant for multiplying personal best component

C2 Constant for multiplying neighborhood best component

pi Particle’s best position

pgb Particle global-best position

pn Particle’s neighborhood best position

R3 The space of reals in X, Y, and Z

R4 The space of reals in X, Y, Z, and Frequency

R6 The space of reals in X, Y, Z, Frequency, Azimuth, and Elevation

xi Particle position/state

vi Particle velocity/state-derivative

xii

ABBREVIATIONS

2D Two-dimensional space

3D Three-dimensional space

DOD Department of Defense

EW Electronic Warfare

EWAAP Electronic Warfare Asset Allocation Problem

GB Global best solution

LB Local best

Mhz Megahertz

NB Neighborhood Best

PSO Particle Swarm Optimization

NP Nondeterministic polynomial time

RX Receiver

RF Radio Frequency

TX Transmitter

XCVR Transceiver

xiii

GLOSSARY

cost/fitness An objective value for rating the “goodness” of

particles against each other and used interchangeably

in this text

local/neighborhood best The personal best of a particle within the

neighborhood of the current particle

local optima A peak or valley in the solution space that does not

represent the most optimum solution

global optima A peak or valley in the solution space that represe–

nts the most optimum solution

particle position A particular state or solution from the problem

space represented by the particle

particle velocity The change of state from one particle position

to the next

personal best The personal best state found for the particle

xiv

ABSTRACT

Boler, William M. M.S.E.C.E., Purdue University, May 2018. Electronic Warfare
Asset Allocation with Human-Swarm Interaction. Major Professor: Lauren Christo-
pher.

Finding the optimal placement of receiving assets among transmitting targets in

a three-dimensional (3D) space is a complex and dynamic problem that is solved in

this work. The placement of assets in R6 to optimize the best coverage of trans-

mitting targets requires the placement in 3D-spatiality, center frequency assignment,

and antenna azimuth and elevation orientation, with respect to power coverage at

the receiver without overloading the feed-horn, maintaining sufficient power sensi-

tivity levels, and maintaining terrain constraints. Further complexities result from

the human-user having necessary and time-constrained knowledge to real-world con-

ditions unknown to the problem space, such as enemy positions or special targets,

resulting in the requirement of the user to interact with the solution convergence

in some fashion. Particle Swarm Optimization (PSO) approaches this problem with

accurate and rapid approximation to the electronic warfare asset allocation problem

(EWAAP) with near-real-time solution convergence using a linear combination of

weighted components for fitness comparison and particles representative of asset con-

figurations. Finally, optimizing the weights for the fitness function requires the use

of unsupervised machine learning techniques to reduce the complexity of assigning a

fitness function using a Meta-PSO. The result of this work implements a more realis-

tic asset allocation problem with directional antenna and complex terrain constraints

that is able to converge on a solution on average in 488.7167±15.6580 ms and has a

standard deviation of 15.3901 for asset positions across solutions.

1

1. INTRODUCTION

1.1 Overview and Problem Statement

The asset allocation problem in electronic warfare (EW) involves the assignment

of transmitters to receivers in a R6 environment, with respect to xyz-spatiality, fre-

quency assignment, and heading. Receiving or jamming assets must be placed in

optimal locations to maintain adequate coverage of transmitter targets with respect

to spatial position and bandwidth assignment. Optimization of the asset placements is

an NP-Complete problem that is reducible to the traveling salesman problem (TSP).

Comparable to TSP, each receiver-transmitter assignment must be analyzed with re-

spect to power received, receiver sensitivity, target priority, receiver feed-horn power

limitations, spatial positioning, frequency and bandwidth coverage, and terrain con-

straints to find the best solution. A brute-force approach to analyzing assignments

can quickly become intractable. As such, an approximation to the real-world solution

is approached. Particle Swarm Optimization (PSO) is considered for finding an ac-

curate approximation to the real-world best solution. An application of PSO for use

in approximating signal assignments for receiving assets among transmitting targets

in an EW environment is presented, with modifications made to original work im-

proving the realism and presentation of solutions while maintaining under one second

performance metrics.

2

(a) Main Window

(b) 3D Display

Fig. 1.1. (a) provides the main window for program control, fitness across
generations, and solution display. (b) provides the 3D display of the so-
lution and terrain.

3

Figure 1.1 provides the current state of the program. Figure 1.1(a) shows the

2D solution representation, the fitness across each generation of the solution, the

spectrum coverage of each asset in the solution, inputs for fitness function weights,

the minimum spread distance, the minimum and maximum elevations, buttons for

running PSO, and a text output of the solutions. In the “Allocation Plot”, yellow,

green, and blue represent prioritized target transmitters, black circles represent the

assets in the solution, and red outlines indicate signal assignments. Figure 1.1(b)

shows the 3D solution with a pheromone keep-away zone shown as a red, transparent

cylinder. Pheromones and keep-away zones are to be explained in Chapter 3.

1.2 Project Inheritance and Continuation

This work is a continuation of research provided by [1, 2]. Reynolds [1] provides

the preliminary 2D environment for the optimization of receivers among transmitters

using Qt. Crespo [2] made advancements with implementing preliminary human-

interaction and 3D terrain constraints. The inherited work provided a visual display of

2D placements of assets, signals, keep-away boundaries, a fitness plot of the prescribed

solution, buttons for executing tasks, an options dialog box for updating parameters,

and an output text-box for displaying solution results and other messages.

Continuation work provided by this team modified the existing program to dis-

play 3D environments using Qt Data Visualization, implement advanced terrain mod-

els collected from ArcGIS, evaluate and implement multi-threading techniques, and

provide frequency-hopping characteristics while maintaining real-time performance

metrics. Further work resulted in [3, 4]: Christopher et al. [3] implemented the ini-

tial implementations of pheromone interactions; Witcher [4] implemented matching

of real-time simulated assets to solutions using the Hungarian Algorithm. Work in

terrain models, display, and multi-threading are explained by Wieczorek [5].

This thesis describes the implementations of human interaction with solution con-

vergence via pheromones, meta-PSO for fitness function optimization, eradication of

4

the distance fitness component, adjustments to the power calculations and power fit-

ness component, statistics-collecting libraries, and initial implementations of directed

antenna. Furthermore, portions of original work are re-factored to optimize the code

for increased readability and modularity. The additions described in this thesis main-

tain the under one-second benchmark requirement of solution convergence, while

increasing the readability and reuse within the code, resulting in an overall reduced

complexity of adding future modifications and increased realism of solutions.

1.3 Literature Review

1.3.1 Particle Swarm Optimization (PSO)

Particle Swarm Optimization is an evolutionary computational technique for find-

ing approximations to complex problem spaces [6,7]. It was developed by Dr. Russell

Eberhart and Dr. James Kennedy in 1995 in an effort to model the flocking behavior

of birds and the swarming behavior of insects [6]. PSO has been used in a variety

of applications [1, 2, 8–17]. PSO provides fast convergence to optimal solutions and

works in a relatively simple paradigm for rapidly solving accurate approximations to

complex and dynamic real-world problems.

The basic principle of PSO works as follows. A population of particles, each

representative of a particular solution to the problem, is initialized and flown in the

hyper-dimensional problem space. Each particle is evaluated by an objective fitness1

function, which provides a measure of the “goodness” of the particle with respect

to other particles. The objective fitness function is a model of the real-world, but

holds the property that it does not need to exactly calculate the real-world value2.

Each particle remembers its personal best position and its neighbor’s best position.

After evaluation, each particle is flown one step towards a stochastic combination of

1“Fitness” and “Cost” are used interchangeably in this text.
2Exact calculations may result in costly computations, which may increase the runtime of solution
convergence.

5

the personal best and the neighborhood best position. Equation 1.1 shows a single

particle’s velocity and equation 1.2 shows the calculation for the new particle position.

vi+1 =vi ∗ wi + C1 ∗Rand1() ∗ (pi − xi) + C2 ∗Rand2() ∗ (pnb − xi) (1.1)

xi+1 =xi + vi+1 (1.2)

For the velocity calculation in Equation 1.1, wi provides an inertia to each particle

and can be represented as a constant value, a linearly changing value, or a noisy

value [7]. In the case of this work, the inertia value is noisy. The first component of

the velocity calculation multiplies a constant C1 to a random number between [0,1],

and multiplies the random value by the distance from the personal best position to

the current position. The second component of the velocity calculation multiplies the

second constant C2 by another random number between [0,1], and multiplies the new

random value by the distance from the neighborhood best position and the current

position. Equation 1.1 provides the behavior that large distances from personal best

locations and neighborhood best locations have the greatest effect on velocity, but the

effect is attributed with noise to reduce the likelihood of particles repeating search

paths. The inertial part of the function allows particles to fly past local optima and

plateaus.

PSO neighborhoods are defined by the number of neighbors each particle has.

During each evaluation period, each particle’s neighbors within the defined neighbor-

hood are evaluated for the neighborhood best positions, and assigned to each parti-

cle. Näıve implementations of PSO provide a global best to the second component of

Equation 1.1, which can also be considered similar to setting the number of neighbors

to the population size minus one. The approach of searching for the global-best-only

has been found to under-perform in comparison to neighborhood searches [18].

PSO repeats the fly and evaluate process until some satisfactory termination con-

straint is met. These constraints are defined as the maximum number of epochs to

6

run and a termination delta within a defined window. Each epoch is defined as a

single iteration of a “fly” and an “evaluate” step. The maximum number of epochs

serves a dual-purpose in preventing the program from running for infinity and for

stopping the program at a sufficient approximation based on an empirical evaluation

of the expected number of epochs to provide a sufficient result. Experiments may

show that a sufficient result is expected after a certain number of epochs, allowing

the user to decide on a trade-off between solution precision and runtime performance.

The termination delta also serves a dual purpose by providing a minimum number of

epochs to run defined by the window size and to terminate the process early once the

solution precision becomes too fine. Similar to the experimentations with the max-

imum number of epochs, a minimum delta may be found that provides a trade-off

between solution precision and runtime performance.

Figure 1.2 provides an example code snippet of the process function. The while-

loop runs until some termination event and handles each particle. Each particle flies,

evaluates, and updates its personal best and neighborhood best with each epoch.

Upon termination, the global best is returned as the solution.

1.3.2 Human in the Swarm

The body of work shows many examples of human-swarm interaction: [19] provides

interactive controls using selection and beacon to guide foraging swarms; [20] provides

a combination of human interaction and swarm agents to solve various types of jigsaw

puzzles; [21] uses humans as swarms and a GUI interface to answer poll questions; [22]

manipulates the emotional state of humans through specific types of social media

posts; [13] implements human controls for influencing fire-fighting robots; [15] provides

human-interaction for selecting “utopia” points for trade-offs in fitness functions.

Much of the prior work in human-swarm interaction illustrates a desire to control

the swarm through influence rather than direct and obvious control of individuals in

the swarm. This work is inspired by this concept. The beacon aspect in [19] influences

7

1 Solution Pso::Process() {

2 while(/*term event*/) {

3 foreach(auto * p : particles) {

4 p->Fly(); // Fly Each particle

5 p->Evaluate(); // Evaluate "fitness"

6 p->UpdatePersonalBest(); // Get best position

7 }

8 foreach(auto * p : particles) {

9 p->UpdateNeighborhoodBest(); // Get neighbor best

10 }

11 /* Terminate ?? */

12 } // while

13 return GlobalBest(particles); // Return global best

14 } //Pso::Run

Fig. 1.2. Generic example code for executing the PSO Process.

robots within a given range to either attract or repel robots to a new area. Despite

the authors finding that selection results in better performance than beacon control,

an approach is provided in [3] which implements a combination of beacons and zones

for controlling the swarm. This work expands on [3] and provides updates to the prior

work, resulting in better control of Zones and Beacons, user interface (UI) methods

for manipulating pheromones, and better solution convergence.

1.3.3 Meta PSO

Meta PSO describes the use of PSO for optimizing the PSO problem itself. There

are different ways to define Meta PSO. [23] discusses the use of PSO to optimize the

parameters of the PSO itself, while using default parameters for the Meta PSO. [24]

discusses implementing PSO with sub-swarms of PSO for training of a neural network

to optimize PSO parameters and total number of neurons. Another consideration is

to use PSO to optimize the fitness function. [25] discusses optimizing the weights of

8

the fitness function using Wmn-PSO. Methods other than PSO have been covered

in finding the most appropriate fitness function for PSO. [26] selects several fitness

functions and chooses the best performing one. [27] applies both fitness and reliability

to a particle in order to estimate the fitness function. For the case of this work, an

approach is made using PSO to optimize the fitness function weights to minimize

variance and improve runtime costs. Due to the time-complexity cost of operating

PSO on a PSO, Meta-PSO typically is not explored, resulting in fewer available works

and a possible topic of further exploration.

1.4 Application of PSO

For the asset allocation problem, PSO is used to find the most optimal placement

of assets among targets. Example representations of these assets can be considered

as jammers covering EW targets or as radio towers receiving the best communica-

tion coverage. Placement of the assets are optimized in 3D space, frequency, and

directional heading. Each asset is given a minimum sensitivity and maximum power

level at the feedhorn and a fixed bandwidth. Targets are then assigned assets by

considering the frequency bandwidth of the receiver, the power loss at the feedhorn,

and whether or not line-of-sight (LOS) blockage is occurring. Power loss is modeled

as free-space path loss [28, p.29], with future considerations for statistical multipath

channel models and more complex propagation patterns. Equation 1.3 shows the

power loss calculation PLoss based on straight-line distance in kilometers between the

receiver and the transmitters, and frequency fMhz of the transmission signal in mega-

hertz (Mhz). Equation 1.4 shows the signal power at the receiver PRx in dBm given

the power transmitted PTx, the gain Gl of the antenna, and the power loss equation.

PLoss(dBi) =20log10(dkm) + 20log10(fMhz) + 32.45 (1.3)

PRx(dBm) =PTx(dBm) + 10log10(Gl)− PLoss(dkm, fMhz) (1.4)

9

Signal assignments between transmitters and receivers are considered as follows.

Each transmitting signal within the frequency range of the receiver are analyzed for

assignment. The power at the receiver is calculated in dBm, converted to milliwatts,

and added to the receiver’s total power received for each non-blocked signal. Signals

with the highest power at the receiver are considered the closest signals and are

assigned to that asset. Once a signal is assigned, the power at the receiver and

the particular transmitter assigned are recorded and remembered by the receiver.

The signal assignments are then used for deriving the power and priority fitness

components of the objective cost function, to be discussed in the near future.

Fig. 1.3. Shown is the particle representation of the PSO. Each particle
contains the spatial, frequency, azimuth, and elevation information for
each asset.

Each particle in the PSO represents a particular solution. The solution consists of

the set number of assets with an x, y, and z location in R3, a center frequency within

[4, 100] Mhz, and an azimuth and elevation angle in degrees. This representation is

shown in Figure 1.3. As an example, if there are three assets to solve for, then the

total dimension of the particle will be 3×(3+1+2) = 18 dimensions. As each particle

flies through the solution space, each element is individually flown with respect to

the same element within other particles. In that sense, the solution space of particles

is hyper-dimensional in R6N where N = assets.

2Future work will encompass observing more dynamic signal assignment algorithms.

10

Fitnessoverall =
∑

C∈Components

αCfitnessC (1.5)

Each particular solution is judged by an objective fitness function, as shown in

Equation 1.5, representing the weighted summation of five components: power, pri-

ority, spread, distance, and pheromone. Table 1.1 provides an outline of each com-

ponent. The power is a summation or geometric mean of the received power of each

asset. The priority is a weighted sum of all assigned signals, where the weight of each

signal is defined by its priority. The spread is the minimum spatial spread among all

the assets. The distance is the straight-line distance from the spatial centroid of the

signals. The pheromone component implements human-in-the-swarm characteristics

by providing a fitness based on the attraction or repelling of each asset from placed

pheromones in spatiality.

Table 1.1.
The objective fitness function is calculated as a weighted sum of the fol-
lowing components:

Components Description
Power Algebraic sum or geometric mean of power received across receivers.

Priority Weighted sum of priorities of signal coverage.
Spread Log of minimum spatial distance between receivers.

Distance Inverse of distance of receivers from centroid
Pheromone Attribution of pheromones to fitness cost

1.5 Individual Contributions

The continuing chapters will outline the work embodied in this text. Each chap-

ter gives a discussion about the concept, implementation, and results. Chapter 2

discusses the modifications made to the original code to implement stronger object-

oriented programming practices, resulting in increased modularity, readability, and

added functionality. Chapter 3 discusses human-swarm interaction and contributions

made by adding pheromone-inspired beacons and zones. Chapter 4 discusses the

11

addition of directional antennas to the solution to increase the realism of solutions.

Chapter 5 discusses how the fitness function weights are selected using a Meta-PSO

method with a focus to reduce the variance, runtime, and violations across solutions.

Chapter 6 provides analyzes the Meta-PSO results and proposes optimized weights.

Chapter 7 provides a summary of research contributions, and Chapter 8 contains

recommendations for future work

12

2. OBJECT ORIENTED PROGRAMMING

MODIFICATIONS

2.1 Purpose

The initial structure of the PSO code was written using the object-oriented pro-

gramming (OOP) paradigm, but much of the later additions were written using pro-

cedural concepts. To clarify, procedural programming relies on functions acting on

data structures, whereas OOP is written with the primary intention of hiding the

internal data via encapsulated data members while providing methods for accessing

these members [29, 30]. Procedural programming relies on functions understanding

the internal connections between data structures, whereas OOP hides internal data

implementation and relies on message passing interfaces.

The concept of OOP is emphasized to reduce the complexity of implementation,

reduce the possibility of developing stagnant and hard to develop code, and increase

the productiveness of team-members and future developers. Much of the world-model

is written in a procedural method, reducing the object-like nature of the receiver

and transmitter simulations to data-structures. This introduces complexities and

confusions in the project which lead to steep learning curves and long development

times. With several simple modifications, the program is made more readable, stable,

and modular.

2.2 Original Structure

Before discussing the modifications made, a quick recap of the existing structure

of the program is necessary. Figure 2.1 shows the basic layout of the code struc-

13

Fig. 2.1. The general flow of information goes from MainWindow (the
frontend GUI of the program) to FitnessFunctionSpatialReceiver (the
backend of the program).

ture in the program1. MainWindow provides the Graphical User Interface (GUI)

functionality for interacting with the underlying program and implementing settings

changes. The PsoHandler class serves as an interface between both the Pso and

FitnessFunctionSpatialReceiver (FFSR) classes, and the MainWindow class. Pso is

used to execute the PSO process by flying and evaluating each Particle. Each Par-

ticle contains a pointer to a class called FitnessFunction, which is an abstract class

that must be inherited by a derived class that implements the getCost() method.

getCost() is called by the Evaluate() function, shown in the PSO sample code from

Figure 1.2. FFSR inherits FitnessFunction and provides the implementation for get-

Cost(), as well as much of the programming logic required for representing the assets,

signals, and solutions. Much of the prior modifications made to FFSR led to the class

becoming a “superclass”, resulting in reduced readability and becoming ultimately

procedural. The rest of this chapter is devoted to describing the breaking down of

FFSR to a more readable and modular class structure in order to implement more

appropriate OOP practices.

First, take into consideration the structures used for our receivers, signals, assets,

solutions, and signal assignments, shown in Figure 2.2. The receivers, signals, and

1Due to the size of these classes, it would be unfeasible to display the entire UML of each here.

14

Fig. 2.2. Original struct implementaions for receivers, signals, signal as-
signments, and solutions.

solutions are given structs that share concepts of frequency and location. Further-

more, solution stores its concept of location differently than signal, resulting in the

possibility of confusion and bug introduction. The locations within the array signify

x, y, and z, but these array locations must be understood in advance by the program-

mer. This can become a problem in other cases, where the y and z axis are flipped

for 3D display. Another problem to be noted is that both signals and assets have the

concept of velocity, but both use different implementations for representing velocity.

One more problem is that receivers, signals, and signal assignments have a concept

of power, but what’s not known is the unit that these powers are stored in, resulting

in the potential for mismatching decibels, watts, and milliwatts.

15

2.3 PhysicalObject Class

Fig. 2.3. PhysicalObject and PhysicalOrientation UML. All vectors for
position and velocity are replaced by PhysicalObject objects.

From these observations, work is implemented to develop several classes capable

of unifying spatial, frequency, and power concepts. Figure 2.3 shows the Unified

Modeling Language (UML) for two classes: PhysicalObject and PhysicalOrientation.

PhysicalObject stores physics information for an object, with respect for mass, posi-

tion, velocity, acceleration, and orientation. The position, velocity, and acceleration

are stored as Cartesian objects, shown in Figure 2.4, which provide unifying meth-

ods for storing spatial data as vectors, while providing access as x(), y(), and z().

This maintains the original intention of vector optimization for positional data ma-

nipulation, while maintaining a uniform representation of spatiality for all objects in

the program. Furthermore, Spherical and Cylindrical classes are created to handle

conversions between the three coordinate systems.

2.4 XcvrObject Class

PhysicalObject is the class that handles the spatial location and movement of an

object, but the objects for receivers, assets, and solutions also requires frequency,

16

Fig. 2.4. UML for Geometric objects. OrientationDomain is an abstract
class containing a private vector member, which stores a three-element
vector. Cartesian, Spherical, and Cylindrical inherits from Orientation-
Domain to implement the different geometric domains.

power, and assignment capabilities. Much of this is handled in FFSR functionally,

but can also be implemented more appropriately using OOP techniques. The XcvrOb-

ject, named to symbolize both the transmitter and receiver aspect of a transceiver

and shown in Figure 2.5, is a class implemented to encapsulate the transmitter and

receiver concepts defined in FFSR, while maintaining the original functionality of the

program. Much of the functionality within FFSR is moved from FFSR into XcvrOb-

ject as static functions or object members. XcvrObject contains both transmitter and

receiver center frequencies, powers, and bandwidths, as well as signal assignments

for receivers. Calculations for free-space-loss, distance-to-horizon, to and from dBm

and mW are statically implemented via XcvrObject, removing the responsibility from

17

Fig. 2.5. UML for XcvrObject, RadioObject, RxObject, TxObject, and
FrequencyObject. Each class shares responsibility for implementing RF
propagation and attaching it to a physical object. Receivers and signals
are defined as instances of XcvrObject.

FFSR and associating these functions with a RF-related class. Calculations for check-

ing over-power and under-power of signal assignments is also encapsulated within the

XcvrObject as an object method, resulting in a more compact and organized method

for polling receivers for power constraints. XcvrObject inherits PhysicalObject, re-

sulting in the ability to define the position and RF properties within a single object

in a uniform and consistent manner, resulting in repeatable and stable code while

maintaining fast convergence times.

2.5 TerrainData Class

Much like the signal and receiver objects, terrain handling is promoted to an

object called TerrainData shown in Figure 2.6. In prior work, terrain elevation was

18

Fig. 2.6. UML for TerrainData and LatLongCorners. TerrainData stores
the 2D height map for terrain elevation data, and encapsulates all terrain-
related aspects.

stored in a 2D vector matrix of type double, which allowed for quick access to terrain

data via a simple indexed lookup. The problem with this kind of setup is that

the programmer must understand which index contains what information, what the

resolution of that data is, what units it is in, and provide many different functions

for accessing and modifying this data. Many of these functions were implemented

as members of FFSR, resulting in clutter and shadowing the intentions of FFSR.

Much of this is easily encapsulated within TerrainData by transferring ownership of

that 2D vector matrix to TerrainData as a private member, and providing methods

for loading, accessing, and translating elevation points when necessary. TerrainData

is implemented as a Singleton, allowing static access to the terrain object through

a call to instance(). By moving all of the terrain-related concepts from FFSR to

TerrainData, access to terrain information is more easily understood. This resulted

19

in a simple check for line-of-sight (LOS) blockage by scanning along the terrain from

point to point and verifying elevation points between two objects.

The advantages of using OOP practices to implement the receivers, transmitters,

solutions, signal-assignments, and terrain as objects, rather than data structures,

results in making the code much simpler to not only read and understand, but to

also modify. After these modifications were made, the task for implementing antenna

models was made quick and simple, resulting in the initial implementation for antenna

models to be written and tested in under a week. The implementation of antenna

models is discussed further in Chapter 4.

2.6 Statistics Collection

Statistics are collected after the calculation of each solution. The collected statis-

tics provide a method to measure the mean, variance, standard deviation, and confi-

dence interval of each asset’s position, frequency, and heading for each run. Further-

more, statistics are collected on the output of each fitness calculation for each fitness

component for each epoch. Figure 2.7 shows the UML for the statistics container.

2.6.1 StatObject

An object is created for calculating all statistics, called StatObject. This object

holds a circular queue of data points with a set limit. In this project, the limit is

set to 2000 data points by default. Data is entered into the StatObject by calling

add val(), which takes a double value x. This value is then added to two sums, shown

in Equations 2.1 and 2.2,

Sum =Sum+ x (2.1)

Sumsqr =Sumsqr + x2 (2.2)

20

Fig. 2.7. UML for StatisticsContainer

These two values are used for calculating the sample mean, variance, and stan-

dard deviation. Equations 2.3, 2.4, and 2.5 show how mean, variance, and standard

deviation are calculated, respectively.

x̄ =
Sum

N
(2.3)

s2x =
Sumsqr − Sum2

N

N − 1
(2.4)

sx =
√
s2x (2.5)

21

Equation 2.4 is a fast way to calculate the sample variance, which is shown in

Equation 2.6.

s2x = ¯(x2)− (x̄)2 =

∑N
i=1 x

2
i − (

∑N
i=1 xi
N

)2

N − 1
(2.6)

The confidence interval is calculated using the Student’s t-distribution following

Equation 2.7. Student’s t-distribution is calculated by a lookup table, which is ac-

cessed by percentile, degrees of freedom, and sidedness. By default, the function for

calculating the confidence interval is set to find the double-sided 95% percentile, but

these can be changed by the enumerations, shown in Figure 2.8.

CI95% = x̄+ t95%,N−1
sx√
N

(2.7)

22

Fig. 2.8. Shown is the class for Student’s t-distribution called Stu-
dentTDistribution, which is used for handling the lookup of the distri-
bution coefficients.

2.6.2 Statistics Containers

There is a temporal separation between the statistics for collecting the fitness

component values and the statistics for collecting the solution values. The fitness

components are to be collected for each particle and each generation, but the solution

values are collected after the completion of a full solution. This temporal separation

is necessary because both types of statistics collection are telling different stories.

The fitness values are giving information for which fitness components are the most

23

influential throughout hunting for a solution, whereas the solution values are giving

information for how similar each solution is from each other.

The separation of these two concepts within the same class are handled through

two different function calls. For each call to getCost(), the fitness component values

are stored to the FitnessStatistics object. As a reminder, getCost() is called for each

particle and each epoch, so the fitness statistics are aggregates of all the particles for

the entire epoch. Collecting this data is valuable for determining which components

are dominating the fitness function.

Once a final solution is obtained, the runtime statistics, in milliseconds, is updated

in the StatisticsContainer, and the solution statistics are passed to the SolutionIn-

stanceContainer. SolutionInstanceContainer maintains the list of SolutionStatistics,

where each element in the list is an asset. SolutionStatistics tracks the spatial, fre-

quency, and heading statistics for each asset. Two objects shown in Figure 2.7,

FitnessComponentObject and SolutionObject, are basic structs used for passing ag-

gregated instance information.

2.6.3 K-Means Clustering of Solution Statistics

As discussed in [4], each PSO solution is not a one-for-one representation of assets.

Across different solutions, different assets may associate well with each other. For

example, asset 0 of solution 0 may better represent asset 3 of solution 1. In this

sense, we can consider each asset across all solutions as belonging to a member of a

cluster. K-means clustering, with a known k equal to the number of assets, is used

to reassign the asset statistics in SolutionInstanceContainer. K-means clustering is a

method which finds bins for the classification of points that minimizes the distance

between each point in the cluster and the cluster’s centroid. The result of k-means

clustering is to gain a more accurate statistic representation for each asset.

K-means is executed on the SolutionInstanceContainer by implementing a tempo-

rary copy of the container. This copy is assigned the median of each asset’s collected

24

x, y, and z statistics as a starting point. The Euclidean squared distance from this

point is calculated for all assets within the container, and each asset is given an assign-

ment to the closest cluster. Once all assets are assigned a new cluster, the cluster’s

centroid is updated by calculating the mean value for x, y, and z in the copy list.

This event continues until a minimum count of three iterations is reached and the

distance is no longer getting better.

K-Means is called via a function named StatisticsContainer::refactorSolution().

This function is connected to a menu option in MainWindow, and is used for repeated

runs of the PSO, Meta-PSO, and analysis of fitness weights.

25

3. HUMAN IN THE SWARM

3.1 Purpose

So far, PSO has been used to provide solutions for dynamic problems without

much consideration for the concept of “good” or “bad” areas. It may be possible

that the situation changes and that the solution must take into account areas of

the field that are preferred or off-limits. A human may be able to quickly inform

the PSO of these areas, but a method is required for establishing these boundaries

that is both intuitive and quick to process in real-time. Furthermore, the DOD has a

strong command-and-control philosophy, requiring that automation must have human

oversight.

Before discussing human-swarm interaction, it is important to make a distinction

about swarms and PSO in this work. It should be considered that this project is

optimizing a swarm of assets using a swarm optimization algorithm. In a sense, there

are two separate swarms with completely different characteristics and qualities. The

swarm of assets are the receivers being placed to provide coverage of the EW field,

whereas the PSO is a separate, centralized swarm that is solving this problem. Each

particle in the PSO has an opinion of what the final asset swarm should look like.

In the context of this text, human-swarm interaction is defined as the interaction of

humans with the asset swarm, and not the PSO.

3.2 Prior Work

Prior work in [2] provides an initial implementation to a keep-away line, shown in

figure 3.1(a). This line works by providing a penalty for any solution that results in

assets which cross to the left of the line. The penalty is a constant penalty multiplied

26

to the overall fitness. Another implementation provided by [2] is a keep-away circle

that ensures assets are generated outside of the circle, shown in Figure 3.1(b). The

keep-away circle behaves similarly to the keep-away line by providing a constant

penalty for all particles in violation.

(a) Keep-Away Line: x=15 km (b) Keep-Away Circle: radius=35 km

Fig. 3.1. (a) shows the keep-away line, illustrated with a black verticle
line; all assets must stay on the right of the line. (b) the keep-away circle,
illustrated with the black circle; all assets must stay outside of the circle.

The trade-off for such implementations is that [2] provides a quick and efficient way

for determining a “keep-away” zone, but does so at the expense of a fitness gradient.

By forgoing a gradient, the algorithm relies on the PSO being capable of providing at

least one potential solution within the short steps of epochs that can observe the safe

zone. Without a gradient guiding the solution to the zone, and if such a solution is

rare, the PSO may converge on a solution agnostic to the zone and never be guided

to it. It has been observed that too strict of constraints on a PSO problem results in

a highly sparse solution space, resulting in a higher probability of missing the global

best result. In other words, too strict of constraints on a PSO problem can result in

certain constraints being ignored while searching for better solutions, simply because

27

it is too low of a probability for the PSO to ever witness better states that meet the

constraints. This is shown in Figure 3.2(a) where too many assets results in violations

of the keep-away circle. Of the 200 particles used for this example, neither of the

particles were able to converge on a solution that guided those 7 assets outside of the

zone. It is necessary to devise a method that is able to handle this strict-constraint

problem, while maintaining the same or acceptable computational complexity. Figure

3.2(b) shows the usage of a pheromone-based concept under the same conditions to

guide the solution using a soft-step function, shortly to be explained.

(a) Legacy Keep-Away Circle (b) Pheromone Keep-Away Circle

Fig. 3.2. Example of keep-away circles of 50 km radius in both legacy (a)
and pheromones (b). 30 assets are optimized for placement: 7 violate the
keep-away circle penalty in (a); 0 violate the keep-away circle penalty in
(b).

3.3 Concept

A concept for human interaction with PSO convergence [3] is introduced, which

provides a pheromone-based, mixed-discretized method that handles the strict-constraint

problem while maintaining similar run-time results as [2]. Furthermore, procedures

are implemented for allowing the user to interact with the 3D visualization for place-

ment and movement of boundaries. Pheromones are natural chemical reactions in

28

animals, which provoke a response for sexual behavior, food acquisition, and enemy

avoidance. Animals may emit pheromones when sexually aroused to attract partners

and ants may lay pheromones to guide other ants towards locations with food. In this

sense, pheromones disperse and travel, guiding the organism much like magnetism or

gravity towards the source or the sink.

In the “pheromones” developed for this project, a soft-step function is imple-

mented to guide the convergence of the PSO to a boundary or point. A weighted

fitness component is added to the original project’s overall fitness cost, and fitness is

attributed based on distance away from the placed pheromone. The fitness cost fol-

lows an exponential equation that either increases or reduces when an object becomes

closer or further from the pheromone, respectively. The pheromones are modeled in

two ways: either with a radius as a “Zone,” or without a radius as a “Beacon.”

(a) Attract Zone (b) Repel Zone

Fig. 3.3. Shown are the concepts representing pheromone zones. (a) shows
the concept for fitness representation of the attracting pheromone zone.
(b) shows the repelling pheromone zone.

Zone pheromones provide a keep-in or keep-out zone for the assets with an asso-

ciated strength level, as shown in Figure 3.3. For example, the keep-in zone provides

a very low fitness cost for assets that are far away. This component cost increases

exponentially within the range of [0,0.25] until reaching the radius. Once the asset

29

is inside of the pheromone’s zone, the fitness is set to a constant 1.0. This allows

for a mixed-discrete fitness function that not only attracts assets to keep-in zones,

but provides enough incentive for assets to stay inside of the keep-in zones. Similar

to keep-in zones, the keep-out zones behave in reverse by pushing assets away from

the centroid of the zone, and applying constant fitness once outside. The conceptual

equations for the zones are shown in Equations 3.1 and 3.2. The significance of 283 in

the denominator of the exponent is for the diagonal distance between the corners of

a 200× 200 km2 map. The 5 multiplier signifies a near-zero value for distances near

the border of the terrain map. 200 km is the expected maximum distance imposed

on the simulation and provides a good slope for the fitness function component.

ZoneKeepIn(dkm) =

0.25(1− e−
5dkm
283.0), if dkm > radius

1.0, if dkm ≤ radius

(3.1)

ZoneKeepOut(dkm) =

0.25(e−
5dkm
283.0), if dkm ≤ radius

1.0, if dkm > radius

(3.2)

Beacon pheromones, on the other hand, do not provide a zone for keeping in or

keeping out. The fitness for the Beacon pheromone is a mostly continuous spike in the

field for objects near or far from the Beacon. Unlike [19], beacons are global and are

attributed to all assets and not just those within a radius of the beacon. Equations

3.3 and 3.4 show the equations for beacons.

BeaconAttract =1− e−
5dkm
283.0 (3.3)

BeaconRepel =e−
5dkm
283.0 (3.4)

Multiple pheromones are added together, where Zone pheromones are weighted

1,000 more than Beacon pheromones. The addition of the zones introduces a dynamic

30

field of pheromones, which can be manipulated by the human in various configura-

tions for different responses. One ideal implementation is to mix the Zone keep-away

pheromone with an attracting beacon, which allows for more dynamic control of

attracting assets to coverage of possible dangerous locations, while maintaining ap-

propriate distances defined by the human.

3.4 Implementation

Implementation has been split into two subsections: calculation and placement.

Calculation discusses the implementation for the calculation of pheromone effects on

assets. Placement discusses the implementation for the user to place and manipulate

pheromones.

3.4.1 Calculation

Pheromones are implemented as a list of objects called PheromoneElements, which

the user can add, remove, and move dynamically. The UML for PheromoneElements

and the PheromoneList are shown in Figure 3.4. PheromoneList is statically defined

as a singleton design pattern for simple access with a vector of PheromoneElements,

which can be accessed publicly. The primary purpose of PheromoneList is to provide

simple methods to calculate the pheromone cost and validate potential solutions.

PheromoneElement serves the purpose of encapsulating the calculation of the cost

of an affected receiver by defining the particular pheromone attribute and shape and

selecting the correct cost function. The function getCost() takes the PhysicalObject

as a parameter, which is the base of XcvrObject, and calculates the cost based on the

distance between the PheromoneElement and the receiver, and defined settings.

The calculation of the pheromone cost for each PheromoneElement is determined

by the PheromoneAttribute and PheromoneShape enumerations, defined and assigned

for each PheromoneElement. Figure 3.4 shows the potential values for both enumer-

ations. PheromoneAttribute defines whether the PheromoneElement is a Beacon or a

31

Fig. 3.4. The UML for PheromoneElement and PheromoneList.
PheromoneList contains a list of PheromoneElements and provides meth-
ods for validating and getting the cost of solutions.

Zone pheromone. PheromoneShape is a placeholder for different shapes, where only

Cylinder has been implemented.

Table 3.1.
The 4th-order polynomial approximations used for pheromone fitness.

Action a4 a3 a2 a1 a0
Attract 4.423× 10−10 −3.564× 10−7 1.102× 10−4 −1.610× 10−2 9.871× 10−1

Repel −4.423× 10−10 3.564× 10−7 −1.102× 10−4 1.610× 10−2 1.291× 10−1

Zones and Beacons are calculated using a polynomial approximation to the fitness

function in Equations 3.3 and 3.4. A polynomial equation is used due to the computa-

tional complexity cost of calculating the std::exp() provided by the standard template

library (STL) math library. The equation used for the polynomial approximation is a

32

4th-order polynomial equation; the coefficients for the polynomial equation is shown

in Table 3.1. The purpose for choosing the 4th-order approximation is shown in Figure

3.5, where the 4th-order approximation is shown to be faster, and Figure 3.6 shows

the approximation to be a close representation of the exponential function within the

range of [0,283] with a correlation coefficient of R=0.999794.

Fig. 3.5. Shown is the time-cost for execution of millions of iterations of
the std::exp() function, in comparison to its polynomial approximations.
The 4th-order approximation offers the best trade-off.

Fig. 3.6. The graph shows the polynomial approximation of the exponen-
tial and logistics functions for attracting and repelling pheromones.

33

3.4.2 Manipulation

Manipulation of pheromones is implemented in two ways: table and GUI mouse

clicks. The table offers an easy way to define each pheromone’s placement and set-

tings, while showing the existing pheromones. Figure 3.7 shows the implementation

for the pheromone table. Pheromones can be added by pressing the “Add” button,

deleted by checking the “Delete []” checkbox and pressing delete, and modified. Mod-

ifications are made for X and Y placement, as well as radius, strength, and attribute.

Attribute controls Beacon or Zone type, and strength determines whether attracting

or repelling. Attracting pheromones are negative strength, and repelling pheromones

are positive. Both “time” and “shape” are not implemented.

Fig. 3.7. GUI for Pheromone Management Table

Pheromones can be manipulated from the 3D window through mouse clicks, as

shown in Figure 3.8. Right-clicking on the surface triggers a response from Qt Data

Visualization that gets the surface’s location in R3 in kilometers. Using this informa-

tion, the context-menu asks the user whether to “plop” a Zone or a Beacon. Figure

3.8(b) shows the controls for selecting the Zone, which provide implementations for

changing the shape, radius, strength, decay period, and whether or not the pheromone

is attracting or repelling (deflecting). The decay period originally was meant to pro-

34

vide temporary time frames for the pheromones, but was removed and has no affect.

Figure 3.8(c) shows the controls for the Beacon pheromone, where radius and shape

selection has been removed.

(a) Right-click Context Menu

(b) Zone Selected (c) Beacon Selected

Fig. 3.8. Shown are the mouse controls for placing pheromones. (a) shows
the context-menu for right-clicking on the 3D surface plot. (b) shows the
selection of “Plop Zone”. (c) shows the selection of “Plop Beacon”.

Furthermore, pheromones can be moved through a similar process as placement

by left-clicking on the pheromone through the 3D window and moving the mouse.

Clicking on the window provokes a response, which requests which QCustom3DObject

is selected. A controller was implemented which controls which and how pheromones

are drawn to the 3D window. This controller handles the mouse-clicks and manages

the movement of pheromones.

35

(a) Keep-In Zone 3D (b) Keep-In Zone 2D

Fig. 3.9. An example of the keep-in zone being used for a straight line.
The assets are forced inside the keep-in zone, where they optimize to cover
all transmitters. (a) shows the 3D representation as a blue transparent
cylinder. (b) shows the 2D representation as a circle around the 3 black
assets in the “Allocation Plot”.

Figure 3.9 shows an example of the attracting keep-in zone for a straight-line

transmitter placement problem. The assets are able to converge on a solution that

covers all transmitters, restricting all assets inside of the keep-in zone. Figure 3.10

shows the same problem using a keep-away zone as a red cylinder. The assets are

now shown to converge to a solution outside of the zone.

Fig. 3.10. Shown is the keep-out zone in red.

36

In both solutions, an attracting Beacon is used to attract the assets to a centralized

point, shown in Figure 3.11. Attracting Beacons are shown as blue transparent balls

in the 3D plot and cyan circles in the 2D plot. Repelling Beacons are shown as red

transparent balls in the 3D plot, and the same cyan circle in the 2D plot. It is shown

that beacons do not overpower the keep-away line, nor the keep-away pheromone

zones.

(a) Attracting Beacon 3D (b) Attracting Beacon 2D

Fig. 3.11. The Beacon is being emphasized by red circles. (a) is showing
the small transparent blue dot circled in red. (b) is showing the cyan
circle circled in red. The red circles are not part of the actual program.

37

4. DIRECTIONAL ANTENNA

4.1 Purpose

Up until this point, this project has assumed the usage of an isotropic antenna

with unity gain in all directions. Due to the complex nature of RF propagation, the

realization of isotropic antennas is considered impossible and only used as a refer-

ence [31]. Advanced methods of antenna pattern modeling and RF propagation have

allowed for a more realistic model of the RF battlefield environment. The usage of di-

rectional antennas is just as relevant as isotropic antennas. Therefore, it is necessary

to consider the implementation of solutions with directional antenna models. There

has been peaked interest in determining solutions to the asset allocation problem with

consideration for the effects of directional antenna gains. In this chapter, an imple-

mentation of such antenna types is accomplished and tested, proving the effectiveness

of using PSO for use with a basic model of directional antenna, and sparking interest

in continued research with more advanced considerations.

4.2 Concept

Directional antenna are characterized by their radiation patterns with respect to

the main-lobe, side-lobes, and back-lobe. The main-lobe is the intended transmis-

sion space of the signal, which is characterized by the beam-width. Beam-width is

determined by calculating the angle between the two points marking the -3 dB half-

power drop-off [32]. The side-lobes and back-lobe are the lobes which fall outside of

the beam-width, and directly in the opposite direction of the main-lobe, respectively.

These lobes are considered the unintentional byproduct of the antenna design and are

not typically used for communication purposes, with the exception of the maximum

38

Fig. 4.1. A depiction of a possible antenna pattern with -3 dBi cuttoff
points for main-lobe beam width.

peak side-lobe [32]. Due to the main-lobe’s importance in direct communication and

to reduce the complexity of the problem space, the main-lobes are only considered

for this project.

39

4.3 Implementation

To implement this design, there are several modifications that must be made.

First, the PSO must be modified to not only consider x, y, z, and frequency, but also

the antennas RF reference heading. Second, an antenna model must be implemented

and applied to the cost function. These implementations must be maintained with

minimal effect on the performance of solution convergence time.

Fig. 4.2. Shown above is the concept for the directed antenna. Peak gain
is calculated for the center of the beam width, and a parabolic roll-off is
introduced until -3 dBi. A gradient for guiding the PSO to the main beam
is introduced after the beam-width by using a linear gradient, shown in
yellow, between -90 dBi and -192 dBi.

4.3.1 PSO Modifications

Modification of the PSO for determining heading is straightforward. In this sense,

it is determined that spherical coordinates is the best way to represent the direction

of the antenna. Therefore, the additional parameters to add to the solution space

for each asset is θ for horizontal angle and φ with vertical angle. The terrain has a

reference of direction for x, y, and z. Orientation is centered at (1,0,0). Rotations

along θ and φ are associated with this reference. This results in the final solution

space for each particle to be characterized by (x, y, z, θ, φ).

40

Fig. 4.3. Shown is the reference of orientation for azimuth and elevation.

To add θ and φ to the solution space, a simple modification needed to be made

to the code. The PSO represents the values of x, y, z, and frequency as particles in

a contiguous list, multiplied by the asset identification number. Figure 4.4 illustrates

this representation. Each particle element is one of the six parameters associated

with a specific asset number. Therefore, the dimension for each particle is shown

in Equation 4.1. By changing the number of solution elements from four to six,

initialization of the solution space is complete.

particle dimensions = (solutions elements)× (assets) (4.1)

41

Fig. 4.4. Shown again is the particle representation of the PSO. Each par-
ticle contains the spatial, frequency, azimuth, and elevation information
for each asset.

A list of parameters in each epoch and particle is passed to the FitnessFunction-

SpatialReciver::getCost() function. It is at this point where the particles are translated

into XcvrObjects, and antenna models are built with the new θ and φ rotations.

4.3.2 Antenna Models

With the implementation of XcvrObject, PhysicalObject, and PhysicalOrientation

discussed in Chapter 2, antenna models are ready to be implemented. As stated

previously, the current primary focus is to implement the main-lobe portion of the

directional antenna without heavily affecting the performance and complexity of the

PSO solution. Yet, future models may require for the implementation of more ad-

vanced concepts. Therefore, it is relevant to provide an abstract class to build more

specific classes from, which only require limited interfacing.

An abstract class is considered, called AbstractAntennaModel. The implementa-

tion is shown in Figure 4.5. The virtual methods required for the developer to override

is the function for calculating the gain based on an objects physical position. Because

AbstractAntennaModel inherits a PhysicsObject, it also contains spatial positioning

information and is able to return the gain of its propagation based on the relative

position of other objects spatially. More detailed gain calculations are left for the

implementation of derived classes.

42

Fig. 4.5. Shown is the UML for the AntennaModelFactor, AbstractAn-
tennaModel, and the derived AntennaModelIsotropic and AntennaMode-
lAperture.

As a base case to maintain consistency with the original design of the project, an

isotropic antenna is realized with the AntennaModelIsotropic class. The responsibility

of this class is to return a value of 1.0 for the gain, regardless of which position is

passed through the interface. Because the interface passes positions by reference,

there should be no major performance impact from this modification. Therefore, the

program can be tested against the original implementation with the use of isotropic

antennas to measure any costs affected by introducing the orientation parameters to

the solution space.

Implementation of the directional antennas occurs with the derived class Anten-

naModelAperture. The concept of directional antenna is shown in Figure 4.2. The

model takes beam-width information for both horizontal and vertical portions of the

feedhorn. These values are used to approximate the overall gain, based on a peak-

gain value [32], estimated by Equation (4.2), and the beam-widths. The gain changes

43

throughout the beam-width is determined by a parabolic approximation, where angle

differences of 0 in the x and y directions result in peak-gain, and angles at the edge

of the beam-width result in -3 dBi gain. This parabolic approximation is shown in

Equations 4.3 and 4.5. Equation 4.3 shows the calculation of individual coordinates

with respect to x or y directions, and Equation 4.5 combines these two components

and converts to dBi.

GainPeak,dBi =
26000.0

BWx ×BWy

(4.2)

K(θrel) =

1− 2(θrel
BW

)2 |θrel| ≤ BW

(1− | θrel
180.0
|)× 10−9 otherwise

(4.3)

|θrel| ≤180.0 (4.4)

GaindBi(θrel,x, θrel,y) =GainPeak,dBi + 5 log(K2(θrel,x)×K2(θrel,y)) (4.5)

Simply relying on the main-beam to guide the antenna is not enough, due to

the introduction of discrete cutoffs to the fitness space. At the edge of the directed

antenna’s -3 dBi limit, a gradient is provided similar to pheromones in Chapter 3.

From the edge of the beam-width to 180◦, a linear gradient is introduced from -90

dBi to -192 dBi. This gradient is provided separately for both the x and y directions.

4.3.3 Culmination

Calculation of the cost is achieved by initializing each XcvrObject asset with a

pointer to a receiver AbstractAntennaModel implementation, which is set by instan-

tiating a new antenna model of either AntennaModelIsotropic or AntennaModelAper-

ture with the current position and orientation found as a potential solution by the

PSO. The function checkOverPower() calculates the free-space loss budget. The final

gain of the received power is calculated by adding the gain from the antenna to the

free-space loss budget equation. The full complexity of the antenna model is encap-

44

sulated in the derived antenna model class used for calculating gain, resulting in no

major change to the original code-base.

Display of the solution points of the assets in 3D is now modified from black points

to arrows facing the direction of orientation. This is shown in the 3D display of the

assets, resulting in an intuitive and qualitative representation of the found solution,

shown in Figure 4.6. The direction of the arrows indicate the beam path. Future

work may encompass adding antenna beams to the 3D and 2D display.

Fig. 4.6. An example of a solution using directed antennas.

45

5. META-PSO

5.1 Purpose

The fitness function is an objective measure of the utility of each potential solution

to the problem space. In this work, fitness, cost, objective, and evaluation function all

name the same function: a function determined to model the true utility function. A

good fitness function has two properties: the fitness of each potential solution is highly

correlated with its utility and the evaluation of the fitness function is computationally

quick [33]. The problem with the EWAAP is that the utility is highly subjective;

coverage of transmitters by the assets is driven by priority, power constraints, terrain

constraints, and mission objectives. Although it is understood what a tremendously

bad situation looks like, where no assets converge on an assignment, it is difficult to

actually judge two potential solutions of similar assignments for which has the greater

utility. It may be that in one situation, we require for the assets to be closer to a

particular target, whereas in other situations we require for the asset to be out of

sight.

One such utility that is of importance is in solution repeatability. In the case

of one-off solutions, repeatability isn’t an issue; we only need to know a good asset

assignment to be implemented. In the case of real-time simulation, repeatability

is essential; assets can only move so far in reality, resulting in that highly diverse

solutions cannot be achieved. One such problematic area of repeatability can be

handled by modifying the fitness function to take into account the physical constraints

of the assets themselves. Another approach is to adjust the weights of the fitness

function in order to produce results with lower variance. Optimization of the fitness

function is examined through the use of Meta-PSO to not only increase repeatability,

but to also reduce the convergence time cost.

46

The fitness function, shown again in 5.1 and explained in 1.4, can have direct

consequences on the performance of the convergence of the solution, with respect to

convergence speed, repeatability, accuracy, and whether or not it becomes trapped in

a local maxim. Improper adjustments to the weights of each component may result

in the solution becoming out of balance, with too much emphasis on one particular

aspect over another. This may result in high variance across solutions or completely

invalid solutions. Furthermore, due to the termination constraints on maximum num-

ber of epochs and a minimum delta, the overall runtime can directly be affected. As

such, it was proposed that the fitness function be optimized in some fashion.

Fitnessoverall =
∑

C∈Components

αCfitnessC (5.1)

5.2 Concept

Up to this point, the fitness function was manually adjusted by hand and ob-

servations were made about the variance and qualitative nature of each solution. It

is necessary to provide a better, more quantitative, method to fine-tune the fitness

function for the appropriate weights. Fine-tuning of parameters is a problem which

optimization is specifically designed for. As such, PSO is considered for optimization

of the fitness weights, by implementing a meta-fitness based on variance and over-

all runtime. Initial implementations of the Meta-PSO resulted in the requirements of

actually considering normalization factors for fitness and some sense of the true objec-

tive of the original utility: signal coverage. Furthermore, violations were considered

to reduce the breaking of certain parameters, such as terrain, altitude, pheromone,

and keep-away constraints. Meta-PSO is shown to successfully choose weights for

the main fitness function with lower variance and runtime, while maintaining valid

solutions. The implementation of this work is presented here.

47

5.3 Implementation

Modifications were made to the program to implement the Meta PSO. A function

for executing running of the PSO, MainWindow::btn runClicked(), was already cre-

ated, which setup the PSO, run the PSO until termination, and provide the overall

runtime of the solution. Statistics, as defined in Chapter 2, were implemented to

collect information about each particular run. These statistics were able to collect

information about the variance across each asset’s spatial position, which are of the

most importance due to being the most difficult to change in short notice. Runtime

statistics is also collected to provide the average runtime.

A function in FitnessFunctionSpatialReceiver (FFSR), called FFSR::validate(),

was created to validate the solution. This function validates the solution to ensure

that pheromones are respected, the feedhorn is not overpowered, keep-away lines are

not crossed, receiver-signal assignments are not blocked or underpowered, and all

receivers are given at least one assignment.

A Monte Carlo simulation is used to gather statistics for each run. Targets are

given a specific central position and range within that position to populate, but are

populated randomly within that area. For a static number of iterations, the field is

randomized in position and frequency and the PSO is solved. Each particle runs this

number of iterations, and execution of the Meta PSO occurs for a given number of

maximum epochs. Each particle is judged by the fitness function shown in Equation

5.2.

48

FitnessMeta =(Fvariance)(Fruntime) + Fpower + Fcoverage + Fviolations (5.2)

Fvariance =
fitnessmean

(
∑

x∈D varx)(
∑

w∈W w + 1)
(5.3)

D = {x|x ∈ X, Y, Z} (5.4)

W = {w|w ∈ Fitness Weights} (5.5)

Fruntime =
1

(runtimemean)2
(5.6)

Fpower =
sumRxPower

sumTxPower

(5.7)

Fcoverage =
1

N

∑
i∈N

(Sigsassigned)i (5.8)

Fviolations = (1− violations

violationspotential
) (5.9)

(5.10)

5.4 Usage

Fig. 5.1. Meta-PSO is implemented by clicking the “PSO the PSO” button
in the Run Options on the Main GUI.

Execution of the Meta-PSO is began by clicking the Meta-PSO button, shown in

Figure 5.1. A pop-up menu is presented, which gives the options shown in Figure

5.2. The options available are to change the total number of particles to use, the

total iterations to execute for each evaluation, the total number of neighbors to use,

the termination delta, and the overall number of iterations to fly each particle. The

49

termination is optional and can be enabled for a limit on total iterations or minimum

delta. Monte Carlo can also be enabled or disabled, resulting in the training of the

PSO on a single solution. A total amount of runs is presented, reminding the user of

the consequence of executing Meta-PSO. An estimation of the runtime is presented,

based on the current average runtime for each solution and the presented settings.

Fig. 5.2. Meta-PSO menu options.

After the Meta-PSO has completed, a file is written presenting the global best, as

well as the personal best of all particles. Due to the time-cost of execution, a small

amount of particles and a low number of iterations is typically used, resulting in a

reduced search capability for a large problem space. It is necessary to get the personal

best for each particle for further analysis after the termination of the Meta-PSO, to

ensure that the best weights have not been missed.

50

6. RESULTS

A method must be implemented to determine the results of all the changes and their

effects on the performance. Furthermore, Meta-PSO must be validated to prove that

it is capable of providing better results than prior methods. An experiment is written

as a function that cycles through 3 different scenarios and 17 fitness function weights.

The scenarios tested are shown in Table 6.1. The weights are a combination of manual

settings and results from various Meta-PSO runs, shown in Table 6.3. Each scenario

and weight setting is run to test directional antenna and isotropic antenna for the

best set of weights. In each experiment, a total of 100 trials are run and statistics are

collected for the runtime and solutions. Metrics collected for the runtime statistics

are average, standard deviation, and confidence interval up to 95%. Metrics collected

for the solution are assets x, y, and z standard deviation for each experiment. K-

means is executed on the solution statistics to associate each asset with their expected

solution. The statistics are used to determine the best set of weights with the lowest

solution variance and the most sufficient mean runtime.

Table 6.1.
Scenarios used for test run. Each test run contained different settings
for pheromone location, attribute, and radius, as well as terrain details.
Location is in the format (x, y, z). Location and radius are in km.

Name Scenario Terrain Pheromone Location Pheromone Radius

S1 Keep-Out Default (-15,0,0) 35

S2 Keep-In Default (15,0,0) 35

S3 Keep-Out Mountain (40,50,0) 20

51

Table 6.2.
The parameters stayed the same across all scenarios, with the exception for
antenna beam width, which is irrelevant for the isotropic antenna pattern
scenarios.

Parameter Value
Signals 30

Receivers 3
Antenna Beam Width X 180◦

Antenna Beam Width Y 15◦

Tx Spread Radius 30
Frequency Step 0.10 MHz

Receiver Bandwidth 10 MHz
Receiver RF Frontend Limit 5 dBm

Receiver RF Sensitivity -88 dBm
Max Generations 1000

Swarm Termination Fitness Slope 0.01
Swarm Termination Window Size 50

Swarm Population Size 200
Swarm Neighbors 20

Table 6.3.
Displayed are the weights gathered over a period of time. The description
gives brief information that led to the development of new weights. The
Training indicates whether the weights were tuned manually by hand,
or by Meta-PSO. The Variance, Runtime, Scaling, SNR, and Violation
columns indicates whether these were applied to the Meta-PSO fitness.

Description Training Variance Runtime Scaling SNR Violations Zone Type Priority Power Spread Distance Pheromone
Pre-Pheromone Manual True False False False False Legacy 6 0.1 75 1 0

Manual 1 Manual False False False False False Pheromone 6 0.1 75 1 0.1
Manual 2 Manual False False False False False Pheromone 6 0.1 75 1 1
Manual 3 Manual False False False False False Pheromone 6 0.1 75 1 10
Manual 4 Manual False False False False False Pheromone 6 0.1 75 1 100

Initial Meta-PSO True False False False False Pheromone 82.0594 2.0512 0.9755 12.9728 457.298
Add Runtime Meta-PSO True True False False False Pheromone 94.9178 6.7238 51.6139 20.5778 779.1554

Add Scaling and SNR Meta-PSO True True True False False Pheromone 11.5179 3.6895 26.1541 4.3484 75.0202
Add Power Ratio Meta-PSO True True True True False Pheromone 99.2189 44.1664 0.7956 0 35.5728

Subtract Violations Geo Meta-PSO True True True True True Pheromone 74.1668 42.836 12.563 0 270.3725
Subtract Violations Sum Meta-PSO True True True True True Pheromone 51.6092 29.9093 48.8893 0 66.3717
Multiply Violations Geo Meta-PSO True True True True True Pheromone 90.5799 108.0496 55.2396 0 1.9505
Add (1-Violations) Geo Meta-PSO True True True True True Pheromone 55.3883 70.9463 13.717 0 174.239
Add (1-Violations) Sum Meta-PSO True True True True True Pheromone 83.6944 7.5139 6.2293 0 98.5104

Modify Antenna 0 Meta-PSO True True True True True Pheromone 59.5821 1.0869 8.5821 0 74.5062
Modify Antenna 1 Meta-PSO True True True True True Pheromone 87.6669 6.56875 9.37458 0 99.0534
Modify Antenna 2 Meta-PSO True True True True True Pheromone 30.8247 0.172028 2.25244 0 70.7652

52

Each scenario is run using the same settings as shown in Table 6.2. Figure 6.1

shows the scenarios used for each experiment. The first scenario in Figure 6.1(a) is

a keep-away pheromone Zone with an attracting Beacon centralized on a set of 30

transmitters. The keep-away line and circle are disabled, except for the test case

where pheromone strength is 0. The test case with 0 pheromone strength are the

original weights found by [2]. The keep-away pheromone is set for a radius of 35 km

and centered at (-15, 0, 0). No terrain is used for this example.

(a) Keep Away Scenario (b) Keep In Scenario

(c) Mountain Scenario

Fig. 6.1. Displayed are the scenarios used for gathering solution asset
variance and mean runtime.

The second scenario shown in Figure 6.1(b) shows the case for a keep-in pheromone

Zone and an attracting Beacon. The keep-in zone uses the same 35 km radius, but

uses the keep-away line for the base case. For this scenario, a terrain is also not used.

53

The third and final scenario shown in Figure 6.1(c) shows the case for a moun-

tainous terrain with a keep-away zone. In this case, line-of-sight becomes an issue for

the PSO to overcome and a more dynamic solution space is presented.

Table 6.4.
Shown below are the results for running the experiments on the isotropic
antennas.

Priority Power Spread Distance Pheromone Position Std. Dev. Avg. Runtime (ms) Runtime Std. Dev. Runtime CI (95%)
1 6 0.1 75 1 0 20.2083 444.1250 116.8849 23.1899
2 6 0.1 75 1 0.1 17.1896 466.6000 127.5830 25.3125
3 6 0.1 75 1 1 17.7423 445.1600 116.2306 23.0602
4 6 0.1 75 1 10 17.8306 440.1250 120.1508 23.8379
5 6 0.1 75 1 100 16.5363 465.5850 117.7706 23.3657
6 82.0594 2.0512 0.9755 12.9728 457.298 12.7007 765.4350 173.1827 34.3594
7 94.9178 6.7238 51.6139 20.5778 779.1554 13.0737 813.2150 206.4757 40.9648
8 11.5179 3.6895 26.1541 4.3484 75.0202 13.2972 573.1150 144.3131 28.6317
9 99.2189 44.1664 0.7956 0 35.5728 15.0005 388.3550 86.6896 17.1992
10 74.1668 42.836 12.563 0 270.3725 15.0059 453.9850 120.1227 23.8324
11 51.6092 29.9093 48.8893 0 66.3717 28.3099 465.7950 136.8658 27.1542
12 90.5799 108.0496 55.2396 0 1.9505 24.8178 508.7450 149.0206 29.5657
13 55.3883 70.9463 13.717 0 174.239 16.2862 460.8200 122.7775 24.3591
14 83.6944 7.5139 6.2293 0 98.5104 16.1227 429.9900 98.2441 19.4916
15 59.5821 1.0869 8.5821 0 74.5062 17.8153 422.6950 98.9251 19.6268
16 87.6669 6.56875 9.37458 0 99.0534 16.3915 424.6650 111.5468 22.1309
17 30.8247 0.172028 2.25244 0 70.7652 15.2577 375.5250 78.9214 15.6580

The results for isotropic and aperture antennas are shown separately in Tables 6.4

and 6.5 respectively. For the isotropic antenna, the most accurate weights that meet

the under 1 second benchmark are set #6 at 12.7007 standard deviation, found by the

first implementation of Meta-PSO that only optimized for variance. This would make

sense due to the minimization of variance being the most important aspect of this

version of Meta-PSo. Also shown in the isotropic antenna is that despite variance

being low, runtime had tremendously increased and came close to violating the 1

second benchmark at a mean of 765.4350±34.3594 ms. The fastest set of weights

are the most recent set #17 at 375.5250±15.6580 ms, which optimize for variance,

runtime, received signal power, and minimized violations. Not only is this set the

fastest, but the standard deviation of the solutions points are close to the median of

the results at 15.2577.

The result for aperture antenna are shown in Table 6.5. Now, it is shown that

despite having the lowest variation, set #6 violates the 1 second benchmark. The

54

Table 6.5.
Shown below are the results for running the experiments on the aperture
antennas.

Priority Power Spread Distance Pheromone Position Std. Dev. Avg. Runtime (ms) Runtime Std. Dev. Runtime CI (95%)
1 6 0.1 75 1 0 37.1158 686.1917 275.9617 ±54.7508
2 6 0.1 75 1 0.1 36.9525 756.3883 300.5695 ±59.6329
3 6 0.1 75 1 1 31.0767 723.6217 264.6405 ±52.5047
4 6 0.1 75 1 10 30.0297 736.8867 260.0175 ±51.5875
5 6 0.1 75 1 100 28.8552 747.7517 264.7351 ±52.5234
6 82.0594 2.0512 0.9755 12.9728 457.298 14.3593 1242.1750 957.8861 ±190.0445
7 94.9178 6.7238 51.6139 20.5778 779.1554 14.6189 1280.2000 431.7883 ±85.6668
8 11.5179 3.6895 26.1541 4.3484 75.0202 24.0224 997.9750 357.4511 ±70.9183
9 99.2189 44.1664 0.7956 0 35.5728 16.3570 620.2150 155.8476 ±30.9202
10 74.1668 42.836 12.563 0 270.3725 15.5961 783.2583 186.2255 ±36.9471
11 51.6092 29.9093 48.8893 0 66.3717 33.8966 684.8633 205.1911 ±40.7099
12 90.5799 108.0496 55.2396 0 1.9505 34.9286 734.0400 225.5896 ±44.7570
13 55.3883 70.9463 13.717 0 174.239 17.7004 727.7300 186.9420 ±37.0893
14 83.6944 7.5139 6.2293 0 98.5104 16.7673 659.4017 158.8739 ±31.5206
15 59.5821 1.0869 8.5821 0 74.5062 19.2514 606.3983 153.9190 ±30.5375
16 87.6669 6.56875 9.37458 0 99.0534 18.1400 668.5667 170.5716 ±33.8414
17 30.8247 0.172028 2.25244 0 70.7652 15.5213 601.9083 144.0901 ±28.5875

next best set which doesn’t violate the runtime benchmark is also the fastest set, and

once again set #17, with a solution standard deviation of 15.5213 and an average

runtime of 601.9083±28.5875 ms.

Table 6.6.
Shown below are the total combined results for both aperture and isotropic
antennas.

Priority Power Spread Distance Pheromone Position Std. Dev. Avg. Runtime (ms) Runtime Std. Dev. Runtime CI (95%)
1 6 0.1 75 1 0 29.8828 565.1583 116.8849 23.1899
2 6 0.1 75 1 0.1 28.8182 611.4942 127.5830 25.3125
3 6 0.1 75 1 1 25.3036 584.3908 116.2306 23.0602
4 6 0.1 75 1 10 24.6952 588.5058 120.1508 23.8379
5 6 0.1 75 1 100 23.5167 606.6683 117.7706 23.3657
6 82.0594 2.0512 0.9755 12.9728 457.298 13.5554 1003.8050 173.1827 34.3594
7 94.9178 6.7238 51.6139 20.5778 779.1554 13.8678 1046.7075 206.4757 40.9648
8 11.5179 3.6895 26.1541 4.3484 75.0202 19.4151 785.5450 144.3131 28.6317
9 99.2189 44.1664 0.7956 0 35.5728 15.6934 504.2850 86.6896 17.1992
10 74.1668 42.836 12.563 0 270.3725 15.3038 618.6217 120.1227 23.8324
11 51.6092 29.9093 48.8893 0 66.3717 31.2284 575.3292 136.8658 27.1542
12 90.5799 108.0496 55.2396 0 1.9505 30.2979 621.3925 149.0206 29.5657
13 55.3883 70.9463 13.717 0 174.239 17.0080 594.2750 122.7775 24.3591
14 83.6944 7.5139 6.2293 0 98.5104 16.4482 544.6958 98.2441 19.4916
15 59.5821 1.0869 8.5821 0 74.5062 18.5472 514.5467 98.9251 19.6268
16 87.6669 6.56875 9.37458 0 99.0534 17.2878 546.6158 111.5468 22.1309
17 30.8247 0.172028 2.25244 0 70.7652 15.3901 488.7167 78.9214 15.6580

Table 6.6 shows the combined results for both isotropic and aperture antenna

results. It is shown that the best performing set of weights is set #17, with a solution

standard deviation 15.3901 and an average runtime of 488.7167±15.6580 ms.

55

A final verification can be made by running the new weights against the ground-

truth. In the ground-truth, transmitters are lined up and spaced equally apart in

spatiality and frequency. The spacing is equidistant across the map along the y-axis,

and one MHz for the frequency domain. Priorities are alternated between 3 and 5. In

the ground-truth, all the signals must be assigned to the receivers without overlap.

Figures 6.2 and 6.3 shows the result of the ground-truth against the new weights.

Fig. 6.2. Shown are the results of the new weight ran against the ground-
truth.

56

(a) 3D Top (b) 3D Rear

(c) 3D Side

Fig. 6.3. Shown are the 3D results of the ground truth.

6.1 Discussion

The results have shown that the most recent modifications to the Meta-PSO, as

presented in Chapter 5, produce the best set of weights with respect to runtime and

solution precision. The Meta-PSO outperforms the hand-chosen set of weights pro-

vided by prior work. This shows that Meta-PSO is an effective approach to optimizing

the fitness function weights for the internal PSO. One thing to note is that runtime

is typically much longer than prior work. Crespo [2] presented an average runtime of

57

178 ms, which is close to half that of 375.5250 ms. There are several reasons for this

increase, all due to the added functionality provided in this research. The longest

computation is the Line of Sight (LOS) check which increases time-complexity by

adding an extra dimension of checking terrain for blocking. Other lesser computa-

tions are added for statistics calls for getCost() and 3D visualization. Despite the

increase in runtime cost, increased realism for the project is achieved. Due to the

optimization of the Meta-PSO, the performance under 1 second is maintained. From

the Meta-PSO analysis, the distance fitness component now can be replaced by a

Beacon Pheromone. And finally, the Meta-PSO is able to reduce the variance over

the hand-picked weights while maintaining accuracy in the ground-truth tests.

58

7. SUMMARY

This work has successfully presented the usefulness and effectiveness of the modifica-

tions applied to the Electronic Warfare (EW) Asset Allocation Problem (EWAAP).

Object-oriented programming (OOP) concepts has been implemented to provide more

readable, reusable, and modular code. Human-swarm interactions has been imple-

mented using the concepts of pheromone Zones and Beacons to allow a user to provide

keep-in and keep-out areas to the problem space. Directional antenna has been imple-

mented to provide more realistic and flexible RF propagation models. Optimization

of the fitness function weights with Meta-PSO has been shown to provide faster and

more precise solutions, resulting in a better performing PSO model. Solutions are

able to converge on average in multiple scenarios in 488.7167±15.6580 ms within a

standard deviation of 15.3901 for asset positions.

59

8. RECOMMENDATIONS

It is recommended that work be continued in implementing more complex RF propa-

gation and antenna models. Work should also be implemented in defining the assets

as land, sea, and undersea assets, providing limitations on asset physics and spatial

movements. It is recommended that these implementations be made by inheriting

from PhysicalObject or XcvrObject to extend the capability of assets, and providing

physics limitations via soft penalties to the fitness function.

The program should be modified to allow the user to select whether physics lim-

itations are important for calculation, for real-time simulations, or if only the final

solution is important. In this sense, it should be determined if a single, good solution

is the most important aspect of the program, or if a highly repeatable solution for re-

peated realtime calculations of automated moving targets. If repeatability is of higher

priority, the fitness function should take into consideration the physics limitations of

the asset that it is calculating for, such as directional changes and acceleration limits.

Receiver-transmitter signal assignments should be re-evaluated to determine if

a more dynamic signal assignment should be implemented. Currently, the closest

signal to the receiver is assigned, but it may be possible that another receiver which

is not heavily loaded would be capable of taking the assignment. If a better signal

assignment scheme can be implemented, this may result in higher repeatability across

solutions.

The implementation of the 3D surface using Qt Data Visualization is reaching its

limit with the current scheme. Better 3D representations should be investigated, i.e.

Unity or Unreal game/simulation engines. Qt Data Visualization is more geared to

presenting static 3D models, rather than animations. There are currently problems in

the code where transparent objects are not properly applying the correct Z-depth due

to the underlying Qt render engine. In order to appropriately implement transparent

60

options, either the render engine will need to be reimplemented and modified, or a

costly volumetric renderer will need to be implemented instead of the current custom

object model.

More work can be implemented with providing more geometric shapes, or even

custom shapes, for the pheromone Zones. Cylinder is implemented and Sphere would

be another more simple modification, but more dynamic types of shapes will require

extra consideration for collision detection and 3D presentation.

Finally, 2D and 3D beams should be provided to show the antenna patterns and

the directions they are pointing.

REFERENCES

61

REFERENCES

[1] J. Reynolds, “Particle swarm optimization applied to real-time asset allocation,”
Purdue University MS Thesis, Indianapolis, IN, 2015.

[2] J. Crespo, “Asset allocation in frequency and in 3 spatial dimensions for elec-
tronic warfare application,” Purdue University MS Thesis, Indianapolis, IN,
2016.

[3] L. Christopher, W. Boler, C. Wieczorek, J. Crespo, P. Witcher, S. A. Hawkins,
and J. Stewart, “Asset allocation with swarm/human blended intelligence,” in
2016 Swarm/Human Blended Intelligence Workshop (SHBI), October 2016, pp.
1–5.

[4] P. R. Witcher, “Particle swarm optimization in the dynamic electronic warfare
battlefield,” Purdue University MS Thesis, Indianapolis, IN, 2017.

[5] C. Wieczorek, “3D terrain visualization and cpu parallelization of particle swarm
optimization (unpublished master’s thesis),” Purdue University, Indianapolis,
IN, 2018.

[6] R. C. Eberhart, J. Kennedy et al., “A new optimizer using particle swarm the-
ory,” in Proceedings of the sixth international symposium on micro machine and
human science, vol. 1. New York, NY, 1995, pp. 39–43.

[7] J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2001.

[8] R. C. Eberhart and J. Kennedy, “The particle swarm: social adaptation in
information-processing systems,” in New ideas in optimization. McGraw-Hill
Ltd., UK, 1999, pp. 379–388.

[9] C. Wen and R. C. Eberhart, “Genetic algorithm for logistics scheduling problem,”
in WCCI. IEEE, 2002, pp. 512–516.

[10] Y. Del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez, and
R. G. Harley, “Particle swarm optimization: basic concepts, variants and ap-
plications in power systems,” IEEE Transactions on Evolutionary Computation,
vol. 12, no. 2, pp. 171–195, 2008.

[11] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromag-
netics,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp.
397–407, 2004.

[12] A. Konak, G. E. Buchert, and J. Juro, “A flocking-based approach to main-
tain connectivity in mobile wireless ad hoc networks,” Applied Soft Computing,
vol. 13, no. 2, pp. 1284–1291, 2013.

62

[13] A. M. Naghsh, J. Gancet, A. Tanoto, and C. Roast, “Analysis and design of
human-robot swarm interaction in firefighting,” in The 17th IEEE International
Symposium on Robot and Human Interactive Communication, 2008. RO-MAN
2008. IEEE, 2008, pp. 255–260.

[14] F. Johansson and G. Falkman, “Real-time allocation of defensive resources to
rockets, artillery, and mortars,” in 2010 13th Conference on Information Fusion
(FUSION). IEEE, 2010, pp. 1–8.

[15] I. Montalvo, J. Izquierdo, S. Schwarze, and R. Prez-Garca, “Multi-objective
particle swarm optimization applied to water distribution systems design: An ap-
proach with human interaction,” Mathematical and Computer Modelling, vol. 52,
no. 7, pp. 1219 – 1227, 2010, last date accessed: 3/18/2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0895717710000695

[16] M. Iqbal and C. G. Freitas, Alex A.and Johnson, “Protein interaction infer-
ence using particle swarm optimization algorithm,” in Evolutionary Computa-
tion, Machine Learning and Data Mining in Bioinformatics, E. Marchiori and
J. H. Moore, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.
61–70.

[17] A. E. Forooshani, A. A. Lotfi-Neyestanak, and D. G. Michelson, “Optimiza-
tion of antenna placement in distributed mimo systems for underground mines,”
IEEE Transactions on Wireless Communications, vol. 13, no. 9, pp. 4685–4692,
September 2014.

[18] J. Kennedy, “The particle swarm paradigm is a particle swarm,” in 2016 Swar-
m/Human Blended Intelligence Workshop (SHBI), October 2016, pp. 1–5.

[19] A. Kolling, K. Sycara, S. Nunnally, and M. Lewis, “Human swarm interaction:
An experimental study of two types of interaction with foraging swarms,” Journal
of Human-Robot Interaction, vol. 1, pp. 78–95, June 2013.

[20] D. Palmer, M. Kirschenbaum, E. Mustee, and J. Dengler, “Human-swarm hy-
brids outperform both humans and swarms solving digital jigsaw puzzles,” in
2014 IEEE Symposium on Swarm Intelligence (SIS). IEEE, 2014, pp. 1–8.

[21] L. Rosenberg, D. Baltaxe, and N. Pescetelli, “Crowds vs swarms, a comparison
of intelligence,” in 2016 Swarm/Human Blended Intelligence Workshop (SHBI),
October 2016, pp. 1–4.

[22] A. D. I. Kramer, J. E. Guillory, and J. T. Hancock, “Experimental
evidence of massive-scale emotional contagion through social networks,”
Proceedings of the National Academy of Sciences, vol. 111, no. 24,
pp. 8788–8790, 2014, last date accessed: 3/18/2018. [Online]. Available:
http://www.pnas.org/content/111/24/8788

[23] C. Veenhuis, “Advanced meta-pso,” in 2006 Sixth International Conference on
Hybrid Intelligent Systems (HIS’06), December 2006, pp. 54–54.

[24] M. Meissner, M. Schmuker, and G. Schneider, “Optimized particle swarm opti-
mization (opso) and its application to artificial neural network training,” BMC
Bioinformatics, vol. 7, p. 125, 2006.

63

[25] S. Sakamoto, T. Oda, M. Ikeda, L. Barolli, F. Xhafa, and I. Woungang, “In-
vestigation of fitness function weight-coefficients for optimization in wmn-pso
simulation system,” in 2016 10th International Conference on Complex, Intelli-
gent, and Software Intensive Systems (CISIS), July 2016, pp. 224–229.

[26] Z. Ma and G. A. E. Vandenbosch, “Comparison of weighted sum approaches for
pso fitness functions in antenna design,” in 2012 9th European Radar Conference,
October 2012, pp. 516–519.

[27] T. Hendtlass, “Fitness estimation and the particle swarm optimisation algo-
rithm,” in 2007 IEEE Congress on Evolutionary Computation, September 2007,
pp. 4266–4272.

[28] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.

[29] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, 1st ed.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2008.

[30] L. R. Da. Object oriented programming. Last date accessed: 3/18/2018.
[Online]. Available:
http://www.ctp.bilkent.edu.tr/r̃ussell/java/LectureNotes/1 OOConcepts.htm

[31] H. F. Mathis, “A short proof that an isotropic antenna is impossible,” Proceedings
of the IRE, vol. 39, no. 8, August 1951.

[32] J. S. Seybold, Introduction to RF Propagation. Wiley-Interscience, September
2005.

[33] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed.
Pearson Education, 2003.

VITA

64

VITA

William Boler is a Computer Engineering student at Indiana University-Purdue

University, Indianapolis (IUPUI). He is currently a graduate student with intentions

to obtain a Master’s in Computer Engineering, and is studying computational intel-

ligence under the guidance of Dr. Lauren Christopher. William served in the United

States Navy active-duty as an Information Systems Technician and learned about RF

propagation through technical experience and training.

