
COMPRESSED CONVOLUTIONAL NEURAL NETWORK FOR

AUTONOMOUS SYSTEMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Durvesh Pathak

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

December 2018

Purdue University

Indianapolis, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Mohamed El-Sharkawy, Chair

Department of Engineering and Technology

Dr. Maher Rizkalla

Department of Engineering and Technology

Dr. Brian King

Department of Engineering and Technology

Approved by:

Dr. Brian King

Head of the Graduate Program

iii

This is dedicated to my parents

Bharati Pathak and Ramesh Chandra Pathak,

my brother Nikhil Pathak

and my amazing friends

Jigar Parikh and Ankita Shah.

iv

ACKNOWLEDGMENTS

This wouldn’t have been possible without the support of Dr. Mohamed El-

Sharkawy. It was his constant support and motivation during the course of my thesis,

that helped me to pursue my research. He has been a constant source of ideas. I

would also like to thank the entire Electrical and Computer Engineering Department,

especially Sherrie Tucker, for making things so easy for us and helping us throughout

our time at IUPUI.

I would also like to thank people I collaborated with during my time at IUPUI, De-

want Katare, Akash Gaikwad, Surya Kollazhi Manghat, Raghavan Naresh Saranga-

pani without your support it would be very difficult to get things done.

A special thank to my friends and mentors Aloke, Nilesh, Irtzam, Shantanu, Har-

shal, Vignesh, Mahajan, Arminta, Yash, Kunal, Priyan, Gauri, Rajas, Mitra, Monil,

Ania, Poorva, and many more for being around.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . x

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 Motivation . 3

1.2 Contribution . 5

2 OVERVIEW OF CONVOLUTION NEURAL NETWORK 7

2.1 Network and Architecture . 9

2.2 Convolutional Neural Networks (CNN) 10

2.2.1 Number of Parameters Calculation 13

2.2.2 Pooling . 13

2.2.3 Non Linearity or Activation Function 14

3 OBJECT DETECTION . 15

3.1 Informative Region Selection . 15

3.2 Feature Extraction . 16

3.3 Classification . 16

3.4 Deep Neural Network for Object Detection 16

3.4.1 Faster R-CNN . 19

3.4.2 YOLO . 22

3.4.3 Motivation for Object Detection 23

4 BLUEBOX 2.0 . 25

4.1 S32V234 - Vision Processor . 26

4.2 LS-2084A . 27

vi

Page

4.3 Platform Overview . 28

5 REAL-TIME MULTI SENSOR APPLICATIONS (RTMAPS) 30

6 REDUCEDSQNET ARCHITECTURAL ADVANCES 32

6.1 Accuracy . 32

6.2 Computation Time . 33

6.3 ReducedSqNet . 37

6.3.1 Baseline Architecture . 39

6.3.2 ReducedSqNet Architecture . 47

6.4 Conclusion . 56

7 SQUEEZED CNN - A NEW ARCHITECTURE FOR CIFAR-10 58

7.1 VGG-16 Architecture . 59

7.2 Squeezed CNN . 61

7.2.1 Hardware Deployment of Squeezed CNN 65

7.2.2 Bluebox 2.0 by NXP . 66

7.2.3 Real-time Multisensor Applications (RTMaps) 66

7.2.4 Deployment of Squeeze CNN . 66

7.2.5 Conclusion . 67

8 INTEGRATING CNN WITH FASTER RCNN AND YOLO 70

8.1 Squeezenet integrated with Faster R-CNN 70

8.1.1 Modification for model compatibility 71

8.1.2 Detection Results . 73

8.2 SqueezeNet integrated with You Look Only Once (YOLO) 75

8.2.1 YOLO Architecture . 75

8.2.2 Detection Results . 76

9 SUMMARY . 78

REFERENCES . 79

vii

LIST OF TABLES

Table Page

6.1 The table summarizes the base squeezeNet architecture 42

6.2 Table represents the number of parameters in reducedSqNet architecture,
the table also highlights the position of pooling layers and batch normal-
ization layers used in the architecture. 49

6.3 Results for ReducedSqNet vs squeezeNet v 1.1 57

7.1 Table highlights the number of parameters for each layer of VGG-16 ar-
chitecture . 59

7.2 Table represents Squeezed CNN architecture and Number of parameters
in each layer. 62

7.3 Summary for VGG-16 vs Squeezed CNN 64

8.1 Model Comparison for Faster R-CNN vs Modified Architectures 73

viii

LIST OF FIGURES

Figure Page

1.1 Deep Learning a subset of Machine Learning 4

2.1 Biological Neurons [11] . 8

2.2 Artificial Neural Network . 9

2.3 Multi Layer Perceptron . 10

2.4 Convolutional Neural Network [12] . 11

2.5 Represent the output dimension calculation based on Eqn 2.2 12

2.6 Convolution Kernel and Receptive fields [18] 12

2.7 Max pooling using 2× 2 Kernel . 14

3.1 Object Detection Pipeline . 15

3.2 Boost in Deep learning [19]. 17

3.3 Boost in GPU performance [20]. 18

3.4 Two train of thoughts for object detection are represented in the figure is
inspired by [13] SPP-net [21], FRCN [22], Faster-RCNN [23], R-FCN [24],
YOLO [25], SSD [26]. 19

3.5 Faster R-CNN Architecture [23] . 20

3.6 Bounding boxes generated using YOLO detection. 23

4.1 Hardware Architecture for Bluebox 2.0 [Pic Courtesy NXP]. 25

4.2 Hardware Architecture for Bluebox 2.0 [Pic Courtesy NXP]. 26

4.3 Hardware Architecture for S32V234 [Pic Courtesy NXP]. 27

4.4 Hardware Architecture for LS2084A [Pic Courtesy NXP]. 28

4.5 System overview of NXP BLBX2. 29

5.1 RTMap setup with Bluebox 2.0. 31

6.1 Accuracy measured on test batch. 33

6.2 Fire Module from squeezeNet [2]. 39

ix

Figure Page

6.3 SqueezeNet architecture v1.1 adapted for CIFAR-10 dataset. 40

6.4 Test Loss with SGD (Orange) and Adam (Blue). 44

6.5 The plot represents the multiple runs with different hyper-parameters. . . 45

6.6 Test loss at learning rate of 0.0001. 46

6.7 Proposed ReducedSqNet architecture for CIFAR-10 dataset. 48

6.8 Accuracy curves for different hyper-parameters configurations. 50

6.9 Loss curves for different hyper-parameters configurations. 51

6.10 Testing accuracy of baseline model vs reducedSqNet. 52

6.11 Testing loss of baseline model vs reducedSqNet. 53

6.12 Experimentation Results with Exponential Linear Unit. 55

6.13 This figure shows the accuracy comparison of the base squeezeNet vs the
ReducedSqnet vs ReducedSqnet with ELU. 56

7.1 This figure shows VGG-16 Architecture (Left) Proposed Architecture
(Right). 60

7.2 Test Accuracy of squeezed CNN Architecture. 65

7.3 Flow for application development using RTMaps for Bluebox 2.0. 67

7.4 Graphical interface in RTMaps. 68

7.5 Console output on RTMaps for displaying results. 69

8.1 This figure represents the SqueezeNet Architecture 71

8.2 This figure represents the integration of SqueezeNet with Faster R-CNN . 72

8.3 Detection Result for Faster R-CNN where CNN is VGG-16. 74

8.4 Detection Result for R-SqueezeNet (Faster R-CNN + SqueezeNet). 74

8.5 Detection Result for R-Squeezed CNN (Faster R-CNN + Squeezed CNN). 75

8.6 Representation of how YOLO works. 76

8.7 Detection result for SqueezeNet + YOLO on Real-Time Videos 76

8.8 Detection result for SqueezeNet + YOLO on Real-Time Videos 77

8.9 Detection result for SqueezeNet + YOLO on Real-Time Videos 77

8.10 Detection result for SqueezeNet + YOLO on Real-Time Videos 77

x

ABBREVIATIONS

CNN Convolution Neural Network

NN Neural Network

YOLO You Only Look Once

SSD Single Shot Detector

DNN Deep Neural Network

SGD Stochastic Gradient Descent

LR Learning Rate

GPU Graphic Processing Unit

TPU Tensor Processing Unit

CPU Central Processing Unit

FPGA Field Programmable Gate Array

RTMaps Real-Time Multisensor Applications

TCP/IP Transmission Control and Internet Protocol

DSE Design Space Exploration

ReLU Rectified Linear Unit

ELU Exponential Linear Unit

VGG Visual Geometry Group

UAVs Unmanned Ariel Vehicles

CV Computer Vision

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

KSIZE Kernel Size

SVM Support Vector Machines

RPN Region Proposal Network

xi

ROI Region Of Interest

NMS Non-Maximal Suppression

IOU Intersection Over Union

FCN Fully Convolutional Neural Network

xii

ABSTRACT

Pathak, Durvesh. M.S.E.C.E., Purdue University, December 2018. Compressed Con-
volutional Neural Network for Autonomous Systems. Major Professor: Mohamed
El-Sharkawy.

The word “Perception” seems to be intuitive and maybe the most straightforward

problem for the human brain because as a child we have been trained to classify

images, detect objects, but for computers, it can be a daunting task. Giving intu-

ition and reasoning to a computer which has mere capabilities to accept commands

and process those commands is a big challenge. However, recent leaps in hardware

development, sophisticated software frameworks, and mathematical techniques have

made it a little less daunting if not easy. There are various applications built around

to the concept of “Perception”. These applications require substantial computational

resources, expensive hardware, and some sophisticated software frameworks. Build-

ing an application for perception for the embedded system is an entirely different

ballgame. Embedded system is a culmination of hardware, software and periph-

erals developed for specific tasks with imposed constraints on memory and power.

Therefore, the applications developed should keep in mind the memory and power

constraints imposed due to the nature of these systems.

Before 2012, the problems related to “Perception” such as classification, object

detection were solved using algorithms with manually engineered features. However,

in recent years, instead of manually engineering the features, these features are learned

through learning algorithms. The game-changing architecture of Convolution Neural

Networks proposed in 2012 by Alex K [1], provided a tremendous momentum in the

direction of pushing Neural networks for perception. This thesis is an attempt to

develop a convolution neural network architecture for embedded systems, i.e. an

xiii

architecture that has a small model size and competitive accuracy. Recreate state-

of-the-art architectures using fire module’s concept to reduce the model size of the

architecture. The proposed compact models are feasible for deployment on embedded

devices such as the Bluebox 2.0. Furthermore, attempts are made to integrate the

compact Convolution Neural Network with object detection pipelines.

1

1. INTRODUCTION

The Convolutional Neural Network (CNN) has completely revolutionized the ”Per-

ception” domain. It has proven to be a dominant technology in tasks such as image

classification and object detection. Convolutional neural network surpasses the per-

formance when compared to the existing algorithms like SIFT, HOG, etc. in terms

of accuracy and detection time. In convolution neural network, instead of manually

engineering the features, supervised learning helps to learn these features through

learning algorithms and optimization techniques. Though the convolutional neural

networks are a great tool to attack “Perception” problems, it is computationally and

memory intensive. Due to high computational resources required for deploying the

convolution neural network, it is challenging to deploy such models on embedded

devices with memory and power constraints. Memory and power constrained device

requires architecture with a small model size for deployment. Deeper architectures

demand more computational resources than the shallow network. Hence it is vital to

develop a deep architecture with low computational cost with competitive accuracy.

Thriving research in the field of Design Space Exploration (DSE) of neural networks

for developing compact architectures for deployment on memory constrained or em-

bedded devices have made it feasible to deploy a convolution neural network on con-

strained devices. These advancements have led to accelerated growth in the design

space exploration of architectures, where the focus is on developing architectures with

a less number of parameters.

SqueezeNet [2] is one such architecture, and the paper provides some great in-

sight into developing an architecture with compact model size. Also, deeper network

with multiple hidden layers such as RESNET [3], SqueezeNet [2], VGG16, VGG19 [4]

and developing new optimization techniques, various training methodology and im-

plementation of non-linearity like ReLU [6], ELU [7], to tackle problems of vanishing

2

gradients, has substantially aided in developing and training deeper neural network

for image recognition or object detection challenge. The increasing complexity of

neural network has also led to accelerated development of various hardware architec-

tures like graphics processing unit, tensor processing unit and large-scale distributed

deep networks [8], which uses parallel architecture and multiple computation units

for example boards such as S32V234, BlueBox (embedded systems) by NXP and

NVIDIAs TITAN, TESLA, GTX 1080 (GPUs) and Jetson TK1 (embedded systems)

are widely used for deploying or accelerating training process of various deep Convo-

lutional Neural Networks. Deep Convolution Neural Networks have become the focus

of “computer vision” field to improve the performance [1]. Currently, all the state-

of-the-art model have a similar underlying structure. As discussed earlier, having a

deep convolutional neural network has better performance, but at the same time, it

is computationally expensive. Hence, to counter this issue, the concept of squeezing

the network and controlling the dimension of activation maps can be used to develop

an architecture with competitive accuracy and compact model size. This compact

model can be further used for deployment on embedded systems with memory and

power constraints.

One of the techniques to design a compact architecture is the fire modules used in

SqueezeNet [1]. This approach controls the dimension of activation maps and reduces

the number of parameters by using a convolution filter of kernel size 1x1, instead of

convolution filter of size 3x3. The implementation for fire modules in the architecture

compresses the architecture and saves memory. This technique also helps to reduce

the inference time of the network. Tasks such as object detection and image classifica-

tion are required to be implemented in real-time for application such as autonomous

driving, in such application inference time or detection time is very critical to safety

a lag due to a computationally expensive model can have a detrimental effect. Hence

reducing the model size is critical, this reduces the computational time and in turn,

reduces inference time and can help to develop real-time applications.

3

1.1 Motivation

As discussed earlier, classification, detection, and segmentation are challenging

tasks for a computer. Nevertheless, there are computer vision algorithms that are

capable of image classification, object recognition, face detection these algorithms

are fundamental to build applications for surveillance, autonomous cars, UAVs and

various other embedded systems. As the autonomy of the system increases so is the

requirement to develop an algorithm with intuitions. An algorithm with a hint intel-

ligence, so to say. Past few years have been the golden era for computer vision with

significant progress made in developing more sophisticated computer vision system.

Machine Learning supersede the historical approaches like manual feature engineering

and complex hard-coded algorithms, where rather than just searching the image for

hard-coded features, the computer tries to learn the features looking at the images

during the training process. This approach is similar to a child learning to recognize

different objects by going through the examples.

Due to the powerful and large computing platform, it has become easy to store

and compute large dataset for the training of such algorithms. The advanced learning

algorithms, training deep architectures with multiple layers on the massive data and

powerful computing platform is referred to as deep learning. Deep learning is a subset

of machine learning.

The exponential increase in hardware development and computing platforms has

shaped and accelerated the research areas related to computer vision. As discussed be-

fore concepts of deep learning are replacing historical approaches like manual feature

engineering, and complex hard-coded algorithms, where rather than just searching

the image for hard-coded features, the model tries to learn the features looking at the

images.

The Convolution Neural Network consists of multiple layers that learn high-level

and low-level features in the image propagated through the network. High-level fea-

tures are those features that concern with finding shapes and objects in the image

4

Fig. 1.1. Deep Learning a subset of Machine Learning

and is based on low-level features. Whereas, low-level features are descriptor ex-

tracted from an image containing information about visual properties. These layers

are adapted and optimized by using various optimization techniques used in deep

learning [8]. Though the neural network has been around for several years, there has

been tremendous growth in using Convolution Neural Network after 2012. Accel-

erated research in the past few years has led to the development of state-of-the-art

network architecture for Image Classification. This state-of-the-art model rivals the

accuracy of a human for classification tasks.

However, real-time deployment of these model becomes a challenge when model

size and the number of computations are in the order of billions. The tasks like clas-

sification can take considerable time. Though the power of state-of-the-art graphics

processing units can be used to implement these tasks, there is a growing need to em-

bed these applications on devices with power, size and memory constraints. Therefore,

there is a need to compress the model size while maintaining the competitive accuracy

of CNNs.

5

1.2 Contribution

This thesis examines the Design Space of convolution neural network, benchmark

the proposed network architecture on the CIFAR-10 dataset and modify the CNN

architecture to reduce the model size while maintaining a competitive level of accu-

racy. This new architecture further integrates with the object detection pipeline for

real-time object detection. Furthermore, the trained CNN and the object detector

were deployed on autonomous development platforms such as Bluebox 2.0 by NXP

using RTMaps remote studio software.

This thesis also aims to discuss well established deep convolution neural networks

like VGG-16 [4] and recreate similar architecture using fire modules [2] to compress

the network. This approach leads to a model which has a competitive accuracy and

a compact model size. VGG-16 has 16 hidden layers, and these hidden layers consist

of convolution filters with a kernel size of 3x3, pooling layer 2x2 and three fully

connected layers at the end of the network, this model has a model size of 528 MB

for the ImageNet dataset and 385 MB for the CIFAR-10 dataset. The difference in

model size is due to less number of classes in the CIFAR-10 dataset, so the output

layer has a lesser number of parameters to learn. The approach followed provides a

squeezed version of VGG-16 with a model size of 12.9 MB, which is a 96% reduction

in model size and reduces the inference time of the model. The model architecture

trained had the same number of convolution layers as VGG-16, but the fully connected

layers were removed from the network architecture to reduce the weight of the model.

Reduction in model size also leads to less overhead when uploading new models to

an embedded device many companies in the domain of autonomous driving need to

update the model wirelessly to the end device this has improved the reliability and

safety of autonomous driving systems [1]. The design target is to reduce the model

size using compact convolution filters, keeping in mind the competitive accuracy of

VGG16. As a result, two network architectures were developed the ReducedSqNet

6

with model size of 1.6MB and 2.9MB and the Squeezed CNN with model size of

12.9MB and benchmarked on the CIFAR-10 dataset.

7

2. OVERVIEW OF CONVOLUTION NEURAL

NETWORK

This chapter introduces the concept of the Neural Network and the Convolution Neu-

ral Networks and gives a brief overview of the various architectures available. Since

the first paper written in the field neural network to gain a mathematical under-

standing of biological neurons, this field has observed multiples waves of research.

The paper by Mc Culloch and Pitts [10] ”A Logical Calculus of the ideas immanent

in nervous activity”, was an early attempt to understand the mathematics behind bi-

ological neurons. The working of neurons in the brain was explained using a network

of simple electrical circuits.

Definition of Artificial Neural Network:

”A computing system made up of a number of simple, highly interconnected pro-

cessing elements, which process information by their dynamic state response to exter-

nal inputs.” – Dr Robert Hecht-Nielsen

Biological nervous systems inspire the neural network. There are approximately

80-90 billion neurons connected by 1e14 - 1e15 synapses. The basic unit of computa-

tion in a neural network is neuron also called nodes. neurons have a highly parallel

structure and very complex inter connectivity. Each neuron receives an input signal

at its dendrites of another neuron via synapses. These synapses transfer information

from one neuron to the other by either amplifying the signal or attenuating is. These

of neurons with the simple capability of amplifying or attenuating the signal when

clubbed together form a very complex architecture which enables the human body to

see, hear, move, remember etcetera.

8

Fig. 2.1. Biological Neurons [11]

There is a decade of research available to replicate what the human nervous sys-

tem is capable of, and engineers have come up with a model that mimics the neurons.

Artificial neurons are loosely biologically inspired. This forms a fundamental build-

ing block artificial neural network similar to the biological neuron artificial neural

network receives input signals Xi(Input Signal) from other neurons and these input

signals multiplied by the weightsWi(Synaptic Weights) and added with a bias bi(Bias)

term finally the output passes through a non-linear function or activation functions.

The following equation gives the output of the neurons.

Yi =
∑

Wi ×Xi + bi (2.1)

Wi is a factor that decides neurons reaction to the given signal. These weights are

analogous to slope in linear regression. Weights are the learnable parameter which

can be optimized using various numerical methods like Newtons method, Gradient

descent, Adam optimizer to model a dataset. Activationfunctions of a node defines

the output of that node given the input. Activation functions are a significant factor

9

Fig. 2.2. Artificial Neural Network

to be considered while developing a neural network architecture. It is the activation

function that helps to model non-linearity in the dataset. Without activation function,

the entire network would be just an affine function, and a linear function is incapable

of modeling complex data.

2.1 Network and Architecture

Interconnection of multiple artificial neurons forms a network. Usually, connected

in a directed acyclic graph to form a neural network. Why is network necessary?

An artificial neuron is capable of approximating simple dataset. When it comes to

more complex and high dimensional datasets, it is required to have a collection of

neurons to model the complexities and to have a better approximation. There are

various types of neural network architecture used today to tackle specific problems.

Applications like natural language processing, speech to text processing use different

types of neural networks such as Feedforward network, Single layer perceptron, Multi-

layer perceptron, Convolutional Neural network. Some Neural networks are cyclic and

are called Recurrent Neural Network. The most popular network is RNN currently

being used is LSTM (Long short-term memory). The focus of this thesis is convolution

neural networks, and other architectures are out of the scope of this report.

10

Fig. 2.3. Multi Layer Perceptron

There are a few terminologies used while discussing artificial neural networks.

Input layer: This layer consists of nodes which transfers the information to the

hidden layers. Hidden layer: This layer performs computation and transfers the in-

formation to the next layer that can be either hidden or output layer. Output layer:

This layer is responsible for the final output. To this layer activation functions are

applied e.g. SoftMax.

2.2 Convolutional Neural Networks (CNN)

Convolution Neural Networks are a deep feed-forward artificial neural network,

commonly used for image processing. The concept is slightly different from the fully

connected network. In a fully connected network, every neuron in the previous layer

is connected to every other neuron in the next layer whereas, the convolution layer

takes into account the spatial resolution and takes advantage of the fact that the input

is an image. This underlying assumption helps to reduce the number of parameters

as the neuron from the previous layer are not connected to all the neuron in the next

11

Fig. 2.4. Convolutional Neural Network [12]

layer. Due to high dimensional input, it is futile to have a fully connected layer.

Instead, we look at the spatial information of the image, i.e., the receptive field. This

receptive field is also called the kernel size. Convolutions performed in a CNN are

the dot product of filters with local regions in the input.

In a CNN there are there hyperparameters that controls the performance of the

convolution neural network such as: depth, stride and zero padding. Depth provides

the output volume of the convolution layer. It corresponds to the number of filters

that the model learns. These filters learn specific features to provide an activation

map. Stride is a value which decides how the filter slides through the image while

performing kernel convolution. Zero Padding allows us to control the dimension

of the output by padding zeros. The output dimension can be controlled using the

following relation.

OutputDimension = (W − F + 2P)/S + 1 (2.2)

Where, W is the input volume dimension, F is the filter size, P is the number of zero

padding to be used and S refers to the stride used. Let us assume we have

12

Fig. 2.5. Represent the output dimension calculation based on Eqn 2.2

Fig. 2.6. Convolution Kernel and Receptive fields [18]

W = 5, F = 3, P = 0, S = 1 in Fig. 2.5, On the left, we have an example of input

volume in red (e.g., a 32x32x3 CIFAR-10 image), and an example volume of neurons

in the first Convolution layer. Each neuron in the convolution layer is connected only

to a local region in the input volume spatially but to the full depth (i.e., all color

channels). Note, there are multiple neurons (5 in this example) along the depth, all

looking at the same region in the input - see discussion of depth columns in the text

below. On the right, we have The neurons from the Neural Network which compute

13

a dot product of their weights with the input followed by a non-linearity, but their

connectivity is now restricted to be local spatially [18].

2.2.1 Number of Parameters Calculation

The number of parameters is a significant factor to keep in mind while designing

a CNN. As model size and processing time is directly proportional to the number of

parameters. Hence it is critical to constrain the number of parameters in a model.

Inference T ime&Model Size ∝ Number of Parameters (2.3)

As number of parameters plays an important role in developing a compact model.

It is important to compute the number of parameters for a convolution layers. Number

of parameters are calculated based on dimension of activation map and kernel size

of the filter for e.g if the input layer contains 5 × 5 × 3 number of neurons and the

kernel size is 3 and number of filter is 3 we need 3× 3× 3× 5× 5× 3 = 675 number

of parameters. The assumption in the example is that, the input image size is 5× 5

and channel depth is 3 but in real life situations the image size is in the order of

227×227 with channel depth of 3 if the same kernel size of 3 is used the total number

of parameter explodes to 3× 3× 3× 227× 227× 3 = 4173849.

2.2.2 Pooling

In the CNN for downsampling the activation map, as it propagates through the

network, requires pooling layers. There are various types of pooling layer the most

commonly used is Max Pooling and Avg Pooling. The following figure is a good

representation of how pooling layer works.

14

Fig. 2.7. Max pooling using 2× 2 Kernel

2.2.3 Non Linearity or Activation Function

The non-linearity function or the activation functions are used when an affine

function of input variables cannot model the output. Activation function helps to

provide a better model. There are various activation functions used in CNN, but the

most popular is rectifying linear unit (ReLU).

F (x) = max(x, 0) (2.4)

15

3. OBJECT DETECTION

The task of classifying images and estimating the location of an object constrained

in the image is called object detection. The most fundamental problem of computer

vision is object detection. Object detection can provide a semantic understanding of

images and videos. The pipeline of object detection model has three stages: Infor-

mative region selection, feature extraction, and classification.

Fig. 3.1. Object Detection Pipeline

3.1 Informative Region Selection

As the image propagates through the layers of Convolutional Neural Network, the

objects in the image may appear at any position. Using a sliding window technique on

the entire image and search for features is intuitive. This approach is computationally

costly and produces many redundant windows [13]. As sliding window techniques

16

using a scalable window is a brute force algorithm developing efficient algorithm or

techniques to select Informative region or region of interest is instrumental in reducing

the computational complexity. In architectures such as the faster R-CNN the region

Proposal network is responsible for generating proposals. A concept of anchors is

used to reduce the time complexity of the architecture.

3.2 Feature Extraction

Recognition of objects in the image requires low-level and high-level features that

can provide a semantic representation [13]. Before the advent of convolution neu-

ral networks these features where manually engineered, e.g., Haar-like features [14].

However, with optimization techniques and learning algorithms, these features can

now be learned by convolution filters.

3.3 Classification

Due to the presence of multiple objects in the image, a classifier is used to predict

class probabilities and differentiate between objects. The classifier uses models like

the support vector machine [15], Deformable part model [16] and AdaBoost [17].

Also, convolution neural networks due to its performance are quite popular choice to

perform classification tasks.

3.4 Deep Neural Network for Object Detection

Since 2012 when Alex Kizhevsky et al. proposed the convolution neural network

[1], the field of the deep neural network has experienced accelerated growth. Con-

volution neural network reduced the top 1 and top 5 classification error to 37.5%

and 17% respectively on ImageNet [1] challenge. In 2012, stacked against the tradi-

tional approaches of image classification, the AlexNet outperformed the traditional

approaches with a top 5 error rate of 15.3% vs. 26.2% [1]. These results have proved

17

the dominance of Convolution Neural Network to attack image classification tasks.

Historically, developing and training the architecture has also been dependent on

hardware architecture. The advances in hardware architectures and software frame-

works have aided in the training of the deep neural network architecture. There has

been a tremendous increase in compute capability of graphics processing units like

Tesla, GTX 1080 and tensor processing units by Google. These advances have dras-

tically reduced the training time for deep neural networks. Figure 3.2 and 3.3 show

the boosts in software frameworks and GPU performances.

Fig. 3.2. Boost in Deep learning [19].

These advancements have substantially helped developing object detection algo-

rithm based on deep neural networks. Object detection has two types of frameworks

region proposal based and regression/classification based. Figure 3.4 helps to put

18

Fig. 3.3. Boost in GPU performance [20].

things in perspective the evolution of object detection framework. These frameworks

have their pros and cons for, e.g., Region Proposal based algorithm has better accu-

racy but high computational cost when compared to box regression-based techniques.

Whereas the regression/classification-based algorithm has low computational time but

low accuracy. As observed there is a trade-off between accuracy and computational

time and the choice depends on the developer to give precedence to the model ac-

curacy or faster inference time. In the case of embedded system development which

is the focus of this thesis, the precedence is to having a low computational cost and

competitive accuracy.

Motivated to develop an object detection algorithm for real-time Autonomous

embedded systems. We discuss two models from two different frameworks Faster

R-CNN a region proposal-based architecture and YOLO a regression/classification-

based architecture. Both the architectures are modified by replacing the CNN with a

19

Fig. 3.4. Two train of thoughts for object detection are represented in
the figure is inspired by [13] SPP-net [21], FRCN [22], Faster-RCNN
[23], R-FCN [24], YOLO [25], SSD [26].

squeezed version of CNN created using fire modules to reduce the model size. These

architectures are compared with its baseline architectures concerning computation

time and accuracy. These results are discussed later in the chapter.

3.4.1 Faster R-CNN

Faster R-CNN consists of two networks, region proposal network and a convolu-

tion neural network. Region proposal network is responsible for proposing the regions

or the bounding box whereas the CNN is responsible for the classification. The faster

R-CNN architecture makes use of feature maps to generate region proposals. As this

approach reuses the feature map generated through CNN and does not use a brute

force technique such as the sliding window the computation cost is low The further

section discusses the components of faster R-CNN.

20

Fig. 3.5. Faster R-CNN Architecture [23]

Anchors:

The anchor is the most critical components in faster R-CNN. Anchors are boxes

in faster R-CNN configuration with different aspect ratios of 1:1, 1:2, 2:1. It is a

very straightforward approach to train a neural network with four output Xi, Yi, Hi,

Wi to detect the bounding box of the object but this approach fails when there are

multiple objects in the image. This problem can be resolved by running the anchors

at each spot on feature maps generated by CNN. Measure for the object detection

accuracy is Intersection Over Union (IOU), so when the IOU of a specific anchor

and ground truth label have a large intersection, the regression associated with that

anchor provides fine-tuned bounding box.

Region Proposal network:

The feature learned from the CNN is propagated through the Region Proposal

Network. The RPN has 2 objectives; firstly, it is responsible for providing two class

scores, for the object present or not present for each anchor. Secondly, it is responsible

for predicting the bounding box coordinates for the object present in the image for

each anchor, e.g., if the input feature map is 100×100. RPN generates 2×9×100×100

21

class scores for whether the object is present or not and also generate 4×9×100×100

coordinates for bounding boxes Xi, Yi, Hi, Wi.

Lloc(t
u, v) =

∑
SmoothLi

(tu − vi) (3.1)

Where,

SmoothLi
(x) ={ 0.5x2 if | x |< 1 | x | −0.5 otherwise, (3.2)

The above formula is the loss function for regressors [23].

The Mighty Classifier:

The classifier is the essential part of the Faster R-CNN network, and The CNN

is responsible for extracting features from the image and classifying the image. This

part of faster R-CNN can be modified, and various other CNN architectures can

be used to extract features for RPN. This chained network of CNN and RPN can

be trained jointly to classify images and predict bounding box. This architecture

provides the flexibility of using custom-made CNN architectures with the existing

RPN framework.

Region Of Interest Pooling:

Object detection pipeline uses the region of interest pooling layer. For finding

out the region of interest in the images, it takes a section of input feature map and

scales it to some predefined size. This fixed size is achieved by dividing the region

proposal into equal-sized sections (the number of which is the same as the dimension

of the output), finding the largest value in each section and copying these max values

to the output buffer [27]. The reason for doing this is since ROI layer is preceded

with RPN layer which can provide regions proposal with varying dimensions ROI

layer is required to convert it into a fixed dimension tensor. This is because the fully

connected layer after ROI layer expects a fixed size input tensor.

22

3.4.2 YOLO

Another common architecture in object detection pipeline proposed by Redmon

et al. [25]. YOLO stands for You Only Look Once. In YOLO the CNN is responsible

for classification and predicting the bounding box. YOLO poses the object detection

as a single regression problem [25]. There exist no region proposal networks. The

input image is divided into S×S grids, and each grid cell predicts N bounding boxes

with classification scores. Scores in YOLO is defined as Pr(Object) × IOUPred
Truth

where Pr(Object) is the softmax class possibilities and IOUPred
Truth is the intersec-

tion over the union of ground truth boxes and predicted boxes. Apart from these the

C class probabilities is predicted for each grid. The only grid containing an object

is calculated not the background. Since YOLO uses a CNN to compute both the

bounding boxes and the class scores it computationally very efficient but at the same

time it is not as accurate as Faster R-CNN.

Loss Function:

Classification Loss:

S2∑
i=0

1obj
i

∑
c∈classes

(pi(c)− p̂i(c))2 (3.3)

1obj
i → 1 if the object appears in cell i, else it is 0

p̂i(c)→ denotes conditional class probability for class c in cell i

Localization Loss:

λcoord

S2∑
i=0

B∑
j=0

1obj
i,j [(xi − x̂i)2 + (yi − ŷi)2]

+ λcoord

S2∑
i=0

B∑
j=0

1obj
i,j [(

√
Wi −

√
Ŵi)

2 + (
√
hi −

√
ĥi)

2]

(3.4)

23

1obj
i,j → 1 if thejth boundary box in cell i is responsible for detecting the object ,

otherwise 0.

λcoord weight factor for penalizing the co-ordinate loss function.

Confidence Loss:

λcoord

S2∑
i=0

B∑
j=0

1noobj
i,j (Ci − Ĉi)

2 (3.5)

Confidence loss function when no object is detected in the box.

S2∑
i=0

B∑
j=0

1obj
i,j (Ci − Ĉi)

2 (3.6)

Confidence loss function when object is detected in the box.

Ĉi → is the box confidence score in cell i.

Fig. 3.6. Bounding boxes generated using YOLO detection.

3.4.3 Motivation for Object Detection

There are various fields of research in the deep learning domain. This thesis

explores the Network optimization path [13] using compact convolution filters. In

deep learning, it is essential to strike a balance between accuracy and inference time

which is dependent on model size [28][29]. Though the accuracy of the model is an

essential factor, it is essential for real-time systems to learn compact models with a

24

fewer number of parameters [30]. This balance between accuracy and model size can

be achieved with multiple approaches one of them being using fire modules to create

a network with a lower number of parameters. Also, in 2018 Akash Gaikwad et al.

also achieved good results by pruning the network based on Taylor expansion based

criterion [31]. This can be further used in series with the approach developed in this

paper to obtain a compact model for hardware deployment.

25

4. BLUEBOX 2.0

The major challenge in porting an algorithm on the vision system is to optimally

map it to various units in the system to achieve an overall boost in the performance.

This boost in the performance requires an intimate knowledge of the individual pro-

cessors, their capabilities, and limitations. For example, APEX processors are highly

parallel computing units, with Single Instruction Multiple Data (SIMD) architecture,

and can handle data level parallelism quite good. One of the significant require-

ments of this thesis is to analyze the capability of NXP Bluebox 2.0 (BLBX2) as

an autonomous embedded system for real-time applications. Bluebox is one of the

development platforms designed for the advanced driver assistance system feature for

autonomous vehicles. The bluebox development platform is an integrated package for

creating applications for autonomous driving and is comprised of three independent

systems on chip (SoCs: S32V234, LS2084A, S32R274).

Fig. 4.1. Hardware Architecture for Bluebox 2.0 [Pic Courtesy NXP].

26

Fig. 4.2. Hardware Architecture for Bluebox 2.0 [Pic Courtesy NXP].

The BLBX2 operates on the independent embedded linux OS for both the S32V

and LS2 processors, the S32R typically runs bare-metal code or an RTOS. BlueBox

as shown in the figure 4.1 and 4.2,functions as the central computing unit (as a brain)

of the system thus providing the capability to control the car through actions based

on the inputs collected from the surrounding. This section details the information

related to the components incorporated within the bluebox.

4.1 S32V234 - Vision Processor

The S32V234 is a vision-based processor designed for computationally intensive

application related to the vision and image processing. The processor comprises of

Image Signal Processor (ISP) available on all MIPI-CSI camera inputs, providing the

27

functionality of image conditioning allowing to integrate multiple cameras. It also

contains APEX-2 vision accelerators and 3D GPU designed to accelerate computer

vision functions such as object detection, recognition, surround view, machine learn-

ing and sensor fusion applications. It also contains four ARM Cortex-A53 core, an

ARM M4 core designed for embedded related applications.

The processor can operate on the software such as Linux Board Support Packages

(BSP), the Linux OS (Ubuntu 16.04 LTS) and NXP vision SDK. The Processor boots

up from the SD card interface available at the front panel of the bluebox. A complete

overview of the S32V234 processor is shown in figure 4.3.

Fig. 4.3. Hardware Architecture for S32V234 [Pic Courtesy NXP].

4.2 LS-2084A

The LS2 processor in the BLBX2 is a general-purpose high-performance comput-

ing platform. The processor consists of eight ARM Cortex-A72 cores, 10Gb Ethernet

ports, supports a high total capacity of DDR4 memory, and features a PCIe expansion

28

slot for any additional hardware such as GPUs or FPGAs, thus making it especially

suitable for applications that demand high performance or high computation, or sup-

port for multiple concurrent threads with low latency. In addition to being suitable

Fig. 4.4. Hardware Architecture for LS2084A [Pic Courtesy NXP].

for high-performance computing, the LS2 is also a convenient platform to develop

the ARMV8 code. The LS2 is connected to a Lite-On Automotive Solid State Drive

via SATA, to provide large memory size for software installation, it also consists of

SD card interface which allows the processor to run: Linux Board Support Packages

(BSP), the Linux OS (Ubuntu 16.04 LTS) as OS

4.3 Platform Overview

For this thesis, the software enablement on the LS2084A and S32V234 SoC is de-

ployed using the Linux board support package which is built using the Yocto frame-

29

work. The LS2084A and S32V234 SoC are installed with Ubuntu 16.04 LTS which is a

complete, developer-supported system and contains the complete kernel source code,

compilers, toolchains, with ROS kinetic and Docker package. Figure 4.5 represents

the platform overview.

Fig. 4.5. System overview of NXP BLBX2.

30

5. REAL-TIME MULTI SENSOR APPLICATIONS

(RTMAPS)

RTMaps: RTMaps is designed for the development of multimodal based applica-

tions, thus providing the feature of incorporating multiple sensors such as camera,

lidar, radar. It has been tested for processing and fusing the data streams in the real-

time or even in the post-processing scenarios. The software architecture consists of

several independent modules that can be used for different situation and circumstance.

RTMaps Runtime Engine: The Runtime Engine is an easily deployable, mul-

tithreaded, highly optimized module designed in a context to be integrated with

third-party applications and is accountable for all base services such as component

registration, buffer management, time stamping threading, and priorities.

RTMaps Component Library: It consists of the software module which is easily

interfaceable with the automotive and other related sensors and packages such as

Python, C++, Simulink models, and 3-d viewers, etc. responsible for the develop-

ment of an application.

RTMaps Studio: It is the graphical modeling environment with the functional-

ity of programming using Python packages. The development interface is available

for the windows and ubuntu based platforms. Applications are developed by using

the modules and packages available from the RTMaps Component library.

RTMaps Embedded: It is a framework which comprises of the component library

and the runtime engine with the capability of running on an embedded x86 or ARM

capable platform such as NXP Bluebox, Raspberry Pi, DSpace MicroAutobox, etc.

31

For this paper the RTMaps embedded v4.5.3 platform is tested with NXP Bluebox, it

is used independently on the Bluebox, and with the RTMaps remote studio operating

on a computer thus providing the graphical interface for the development and testing

purpose. The connection between the Computer running RTMaps Remote studio and

the Embedded platform can be accessed via a static TCP/IP as shown in Figure.

Fig. 5.1. RTMap setup with Bluebox 2.0.

32

6. REDUCEDSQNET ARCHITECTURAL ADVANCES

As discussed in previous chapters, there is various on-going research in the field of deep

learning to name a few, Multi-task joint optimization and multimodal information

fusion, scale adaptation, network optimization, network compression. The objective

for these researches is to improve on the performance measure of the existing state-of-

the-art models. The performance measures are the accuracy or error rate of the model

architecture on the test set (the data it has never seen before), computation time (time

it takes to make a forward pass) and space complexity (Memory require to store the

optimized weights). As these three factors are critical to evaluating the performance of

the architecture, striking the right balance between these three performance measures

is critical. This chapter discusses the development of a compact architecture proposed

in this thesis. ReducedSqNet is an attempt to adapt a state-of-the-art for a specific

dataset (CIFAR-10).

6.1 Accuracy

For a task such as classification, accuracy is the performance measure of the deep

neural network to test the performance of the architecture. The performance can also

be measured by using the error rate, i.e., the number of miss-classifications per batch.

Accuracy is measured on the training and test batch. However, using the training

dataset to evaluate the final accuracy of the model architecture has absolutely zero

advantages. Hence it is a good practice to evaluate the model architecture accuracy

with test dataset. Accuracy for a classifier is calculated for the batch size used for

testing, e.g., If there are 100 images in a batch and the model classified 70 images

correctly, that means the accuracy for the model is 70%. The following chart provides

33

a good idea about the accuracy calculation for a classifier. The class prediction is

calculated taking the argmax of the class score vector.

class prediction = Argmax(class score) (6.1)

Fig. 6.1. Accuracy measured on test batch.

6.2 Computation Time

Computation time depend on how fast the network can provide inference from the

given input, e.g. if the input image contains a cat how fast would the network be able

to infer that the give input image has a cat. The number of parameters is proportional

to the computational time and the Multiply And Accumulate Operations (MAAC) in

the model. This performance measure is critical for developing a model for low power

and low-cost embedded targets. The reason to focus on network optimization using

compact convolution filter is that for an embedded device it is essential to have a

right balance between accuracy and inference time. Having a highly accurate model

but having very high inference time is no good for a real-time system. Therefore,

it is essential to work on optimizing the network to reduce the model size and still

34

maintain a competitive accuracy. The architecture developed in this thesis qualifies

both these requirements it is fast and can be deployed on embedded targets, and if

tailored for a specific dataset it can outperform the baseline architectures.

Convolutional Factorization

The idea is to divide the convolution kernels into smaller size kernels to reduce

the number of parameters and computation time required for generating an output

activation map. One method of achieving this is using flattening proposed by Jin et

al. (2014) [38]. Flattening turns an original 3D kernel (NC×KH×KW) into three 1D

kernels (NC × 1× 1, 1×KH × 1, 1× 1×KW). This method can reduce parameters by

a factor of (NC ×KH ×KW)/(NC +KH +KW) for each output channel results show

that, both training and inference processes can be accelerated, and the accuracy can

also be better on some datasets. However, the result should be further evaluated on

large-scale datasets.

Convolution Module

The idea behind the compact convolution modules is to replace the large convolu-

tion kernels by a group of smaller convolution kernels. This approach has no hardware

or software dependencies and by far the least complicated solution to reduce the num-

ber of parameters in the convolution layer. The major motivation of this approach is

to reduce the total number of parameters required for a large convolution layer and

increase the computational efficiency for e.g., if the kernel size for convolution layer

is 7× 7×C with the input size of 100× 100× 3 then the total number of parameters

are 100 × 100 × 3 × 49 × C = 1470000 × C but if the kernel size is constrained to

3× 3× C the total number of parameters is 270000× C.

35

Strassen’s Algorithm

Convolution operation in a CNN boils down to matrix multiplications of input

feature maps with convolution kernels to produce an output feature maps. Assume

the input feature map has a spatial dimension of IH × IW and channel width of ID.

The filter size of Kx × Kx with Nk number of filters. The following gives the time

complexity of the convolution layer:

T (n) = O(IH × IW × ID ×Kx ×Kx ×Nk) (6.2)

We can optimize the matrix multiplication techniques using Strassen’s algorithm for

matrix multiplication. Assume that matrix QHi×Wo , and there are 3 channels repre-

senting input feature map. Let the WHf×Wf
represent the kernel size, and OHo×Wo

matrix represent the output feature map after convolution.

OHo×Wo = QHi×Wi
*WHf×Wf

(6.3)

The output feature map is computed by the following method:

O1,1 = W1,1 ×Q1,1 +W1,2 ×Q1,2 + ...+W1,Wn ×Q1,Qn

O2,1 = W2,1 ×Q2,1 +W2,2 ×Q2,2 + ...+W2,Wn ×Q2,Qn

.

.

.

OOn,1 = WWn,1 ×QQn,1 +WWn,2 ×QQn,2 + ...+WWn,Wn ×QQn,Qn

(6.4)

We can represent the convolution as follows:

O = W ×Q (6.5)

where,

O → Output feature map.

W → Weight matrix given by filter kernel.

Q→ Input feature map.

36

Strassen’s algorithm works on simple divide and conquer principle, the assumption

is that the W and Q matrix are evenly divisible i.e. the matrix can be divided into

equal size smaller matrix.O11 O12

O21 O22

 =

W11 W12

W21 W22

Q11 Q12

Q21 Q22

 (6.6)

O1,1 = W1,1 ×Q1,1 +W1,2 ×Q1,2

O1,2 = W1,1 ×Q1,2 +W1,2 ×Q2,2

O2,1 = W2,1 ×Q1,1 +W2,2 ×Q2,1

O2,2 = W2,1 ×Q1,2 +W2,2 ×Q2,2

to solve the equation 6.6 we need 8 multiplication but using Strassen’s algorithm we

can reduce the number of multiplication to 7.

M1 = (W1,1 +W2,2)× (Q1,1 +Q2,2)

M2 = (W2,1 +W2,2)×Q1,1

M3 = W1,1 × (Q1,2 −Q2,2)

M4 = W2,2 × (Q2,1 −Q1,1)

M5 = (W1,1 +W1,2)×Q2,2

M6 = (W2,1 −W1,1)× (Q1,1 −Q1,2)

M7 = (W1,2 −W2,2)× (Q2,1 −Q2,2)

O1,1 = M1 +M4 −M5 +M7

O1,2 = M3 +M5

O2,1 = M2 +M4

O2,2 = M1 −M2 +M3 +M6

Since we have a very large number of multiplication in convolution neural network a

single reduction in multiply operation has huge impact on computation time.

37

6.3 ReducedSqNet

Though the Strassen’s algorithm optimizes matrix multiplication, it is a very

sophisticated approach, and current deep learning framework does not have support

for such algorithms. So the approach of the compact convolution module was used

to develop a compact architecture. The architecture developed in this thesis qualifies

both of these requirements it is fast and can be deployed on embedded targets, and

if tailored for a specific dataset it can outperform the baseline architectures.

The architecture proposed, is developed in line with concepts of squeezeNet [2].

ReducedSqNet is a shallow network explicitly trained for the CIFAR-10 dataset. The

idea behind developing the ReducedSqNet model is to generate an architecture which

is easily deployable on embedded targets such as the Bluebox 2.0. Specific strategies

are put in place to achieve a compact model size.

Strategy 1:

Replace 3x3 filters with a point-wise 1x1 filter. This strategy reduces the number

of parameters by 9 times, thereby reducing the model size.

Strategy 2:

Decrease the number of input channels by using a squeeze layer which is a 1x1

point-wise filter.

Strategy 3:

Perform Down-sample at the later layers of the network to keep the dimension

of activation map large. Each convolution filter in the network produces an output

activation map with some spatial resolution. Height and width of this activation map

are controlled by the input size, the stride of convolution filter or a pooling layer. So,

to keep the dimension of activation map large, the down-sampling is implemented

38

towards the end of the network, i.e. use a convolution filter with a stride greater than

1 or use a pooling layers later in the network . The intuition behind this approach

is large activation maps as they corresponds to more features and provides better

classification accuracy [2][31].

Firstly, the depth of the baseline architecture is reduced. The intuition behind

this is approach is that, since the CIFAR-10 dataset is a smaller dataset using a

model with more number of hidden layers would model the training data too well and

perform poorly on the test set (overfitting). Secondly, since the images in the dataset

have a small dimension 32 × 32 × 3 a deep network is not required. Thirdly, the

position of pooling layers plays a crucial role in down-sampling the image. Therefore,

in line with strategy 3 discussed before, the down-sampling is performed later in the

network to keep the dimension of the activation map large. The down-sampling is

controlled using the max pooling layer and stride of the convolution layer. Instead of

using max pooling layer early in the network, the max pooling layer is implemented

later in the network. Fig. 6.7 represents the reducedSqNet architecture with just

2 max-pooling layers. In the architecture, the max pooling layer is used after the

first convolution filter and then before the last convolution filter as shown in Fig.

6.7. These changes are necessary to keep the dimension of activation maps large.

To understand specific terminologies, the network architecture for squeezeNetv1.1 is

discussed in further sections.

The primary focus of this chapter is to; understand the impact of the modifica-

tions implemented to the baseline architecture to create a compact architecture with

less number of parameters adapted for the CIFAR-10 [42] dataset. This chapter also

discusses hyper-parameter used during training process and focuses on implementing

above mentioned strategies in conjunction with batch normalization techniques to

achieve better performance than the baseline architecture. The two variant of pro-

posed architectures of ReducedSqNet are compact models of 1.6MB and 2.9MB which

are easy to deploy on an embedded targets and thus achieves better accuracy than

the baseline architecture of 2.9MB on the CIFAR-10 dataset. Fig: 6.3 represents the

39

Fig. 6.2. Fire Module from squeezeNet [2].

baseline architecture of squeezeNet and further we discuss the approach is to develop

a network architecture which is smaller than the existing squeezeNet baseline and

suitable for the CIFAR-10 dataset.

6.3.1 Baseline Architecture

SqueezeNet is a type of CNN with similar architecture to NiN (Network in Net-

work) [41]. The baseline model used is squeezeNet model v1.1. As shown in Fig.

6.3 the model consists of 10 hidden layers, the Fire modules, which are the building

block of the network and consists of a squeeze layer which is a convolution filter of

kernel size 1 and expand layers with a kernel size of 1 and kernel size of 3. This is

followed by a concatenation layer and a non-linearity, stacked together in a specific

arrangement shown in Fig 6.2. This can be termed as a sub-network. The model

architecture can be visualized as stacks of these multiple sub-networks.

SqueezeNet has quite a few advantages when compared to other deep neural net-

works. The most prominent advantage is the reduced number of parameters. The

40

Fig. 6.3. SqueezeNet architecture v1.1 adapted for CIFAR-10 dataset.

reduction in number of parameters is due to the squeeze layer which controls the

depth of the activation map of the layer and feeds into the expanding layers. The

choice of replacing 3x3 with 1x1 (strategy 1) and using the squeeze layer to reduce

the input channels, makes the squeezeNet ideal for embedded system and FPGA de-

ployment. SqueezeNet has achieved the AlexNet level of accuracy with a model size

of 4.8 MB on the ImageNet dataset for 1000 classes [1]. The SqueezeNet version 1.1

architecture with no bypass is replicated in Tensor-flow framework for training and

testing. The baseline model is trained from scratch on the CIFAR-10 dataset.

Various algorithms and training methodologies exists for training the SqueezeNet

on the CIFAR-10 and some of them have achieved an accuracy of more than 80%

which is more than the 73.62% accuracy achieved in this paper. However, all such

41

algorithms use transfer learning techniques. In transfer learning, the model is first

trained on a very large and generic dataset like ImageNet (138GB)[11] and then the

pre-trained model is fine-tuned on a smaller dataset like CIFAR-10. The transfer

learning technique provides better accuracy than a network, which is trained from

scratch. However, training the network using the CIFAR-10 dataset takes less time

as compared to training the network using the ImageNet dataset. Furthermore, the

comparison between two models, one with pre-trained weights and the other trained

from scratch, will be biased. Therefore the models mentioned in this chapter, are

networks which are trained from scratch, so that they can be fairly compared in

terms of size and accuracy.

The squeezeNet v1.1 adapted for the CIFAR-10 is first trained to establish a

baseline results. This baseline results are compared with results of reducedSqNet. As

mentioned earlier, squeezeNet is built using 8 fire modules. Necessary changes are

made to the baseline network so that the model can be trained using the CIFAR-10

dataset. Table 6.1 summarizes the details regarding filter kernel size and strides used

in the baseline architecture and provide details on the number of squeeze layers and

expand layers used in a specific fire module. Number of parameter for each layer can

be seen in Table 6.1.

The calculation for number of parameter is done in the following way for e.g

Convolution layer 1 with input of 3 channels and output of 64 channels and a kernel

size of 3x3 the total number of parameter are equal to 64 (Input Channels)*3 (Output

Channels)*3*3 (Kernel size) + 64 (Biases) = 1792 (The formatting of Table 6.1 was

inspired by squeezeNet paper [2]).

Weight Initialization

One of the crucial factors while training a deep neural network is the initialization

of weights before starting the training process. The main problem that researchers

face, is highly non-convex objective functions. Optimization of the function requires

42

Table 6.1.
The table summarizes the base squeezeNet architecture

Layer

Type

Output

Size

Filter

Size

Filter

Stride

Number of

s 1x1 (Squeeze)

Number of

e 1x1 (Expand)

Number of

e 3x3 (Expand)

Number of

parameters

Input Image 32 x 32 x 3 - - - - - 0

Conv 1 16 x 16 x 64 3 x 3 2 - - - 1792

Max Pool 1 8 x 8 x 64 3 x 3 2 - - - 0

Fire 2 8 x 8 x 128 - 16 64 64 11408

Fire 3 8 x 8 x 128 - 16 64 64 12432

Fire 4 8 x 8 x 256 - 32 128 128 45344

Max Pool 2 4 x 4 x 256 3 x 3 2 - - - 0

Fire 5 4 x 4 x 256 - 32 128 128 49440

Fire 6 4 x 4 x 384 - 48 192 192 104880

Fire 7 4 x 4 x 384 - 48 192 192 111024

Fire 8 4 x 4 x 512 - 64 256 256 188992

Max Pool 3 2 x 2 x 512 3 x 3 2 - - - 0

Fire 9 2 x 2 x 512 - 64 256 256 197184

Conv 10 2 x 2 x 10 3 x 3 1 - - - 46090

Avg Pool 1 1 x 1 x 10 1 x 1 2 - - - 0

Total 768586

43

weights to be initialized in the right way, If the weights are too small, the signal

attenuates as it propagates through the network and if the weights are too big, the

signal becomes too large as it propagates through the network. Both conditions

negatively impacts the performance of the network. Xaviers initialization is used

to initialize the weight parameters. Xavier initializes the weights in the network by

drawing them from a distribution with zero mean and a fixed variance. Weights can

also be initialized based on data statistics of the dataset used for training [39].

Training

After weight initialization, we proceed with the training process where the choice

of learning rate, optimizer, and the loss function plays a crucial role in reducing the

generalization error by optimizing the weights of the model. The initial choice of

optimizer for training is Stochastic gradient descent to update the weights. But,

after running optimization for nearly 33000 iterations (i.e. approximately 84 epochs

at the learning rates of 0.04 and 0.0001), the model did not converge. This is due to

a saddle point (local minimum). Hence the Adam optimizer is used and the training

is conducted at a lower learning rate. The loss curve can be seen in Fig 6.4. The

accuracy observed is 20% after 1000 iterations.

In stochastic gradient descent, a single learning rate parameter is maintained for

all weight updates and the learning rate does not change during the training process.

However, Adam computes individual adaptive learning rates for different parameters

from the estimate of the first and second moments of the gradients [43]. The following

optimization parameters are used: the decay rate of the 1st moment estimate is 0.9

and the decay rate of the 2nd moment estimate is 0.99. The learning rate is initially

kept at 0.04. In practice, Adam is currently recommended as the default algorithm to

use as it often works better than RMSProp [44] and AdaGrad [45]. At the learning rate

of 2e-4, the baseline model starts converging with Adam optimizer and the accuracy

increases. The base model is trained for 100,000 iterations which is approximately

44

255 epochs with batch sizes of 64, 128 and 256. It can be seen from Fig 6.5 that the

batch size of 256 images with learning rate of 2e-4 gives the best result for baseline

model with the mean of 63.41%. The worst performance is with the batch size of 64

with a mean of 59.09%. With the averages of multiple runs, the accuracy observed

is 63.41% for the baseline network. As seen from loss plot Fig. 6.6 that the loss

decreases up to 35000-40000 iterations and then starts increasing. This phenomenon

is over-fitting. The network starts to over-fit on the dataset and loses generality. This

is due to using a small dataset for training. It is a strong indication that particular

analysis is required to prevent over-fitting of data. To avoid over-fitting an early

stopping algorithm is implemented.

Fig. 6.4. Test Loss with SGD (Orange) and Adam (Blue).

45

Fig. 6.5. The plot represents the multiple runs with different hyper-parameters.

It is observed in Fig. 6.5 that the batch size of 256 with the learning rate of 2e-4

gives the best result for the base squeezeNet with the mean of 69.96% and the worst

performance is with the batch size of 64 with a mean of 50.09%. With multiple runs,

the average accuracy observed was 63.41% for the base network. From the loss plot

Fig. 6.6 it is observed that the loss decreases up to 35000-40000 iterations and then

starts increasing. This phenomenon is known as over-fitting. The network starts to

over-fit on the dataset and looses generality. This is due to using a small dataset for

training. It is a strong indication that particular analysis is required to prevent over-

fitting of data. To avoid over-fitting an early stopping algorithm was implemented.

46

Fig. 6.6. Test loss at learning rate of 0.0001.

47

Result: Stops the training process when validation error increases a specific

threshold.

Let θ be the initial parameters;

i = 0;

j = 0;

v = ∞ ;

P = //number of times to observe validation error before stopping;

while j < P do

Keep training for n steps;

i = i+n;

v̂ = validation error;

if v̂ < v then

j = 0;

v = v̂;

else

j = j+1;

end

end

Algorithm 1: Early Stopping Criterion

6.3.2 ReducedSqNet Architecture

It is always important to design an architecture specific to the dataset as it

provides better performance. ReducedSqNet architecture is designed for a specific

dataset (CIFAR-10). The motivation is to generate a model with less number of pa-

rameters than the baseline model and with a competitive accuracy. The modifications

were done to the network to reduce the model size and the number of parameters.

The design choices were also dependent on the dataset that was used.

48

Fig. 6.7. Proposed ReducedSqNet architecture for CIFAR-10 dataset.

The size of baseline model is 2.9MB, the proposed architecture achieves a compact

model and performs equivalently to the baseline network (squeezeNet v1.1) on the

CIFAR-10 dataset. This reduction in model size is due to change in depth of archi-

tecture. The intuition behind reducing the depth is as follows: since the CIFAR-10

dataset consists of the images of size 32x32x3 which is very small, a deeper network

may not be required to model the dataset. It is observed during the training of the

baseline network that, the test loss starts to increase after few number of iterations

which is because of over-fitting, as small dataset is used. Reducing the depth of

the the model and adding the batch-normalization layer improved the performance

of the network. Also, Reducing the depth of architecture results in less number of

parameters and reduces the model complexity which helps to counter the over-fitting

49

Table 6.2.
Table represents the number of parameters in reducedSqNet architec-
ture, the table also highlights the position of pooling layers and batch
normalization layers used in the architecture.

Layer

Types

Output

Size

Filter

Size

Filter

Stride

Number of

s 1x1 (Squeeze)

Number of

e 1x1 (Expand)

Number of

e 3x3 (Expand)

Number of

Parameters

Input Image 32 x 32 x 3 - - - - - 0

Conv 1 32 x 32 x 64 3 x 3 1 - - - 1792

Batch Norm 32 x 32 x 64 - - - - - 2

Max Pool 1 16 x 16 x 64 2 x 2 2 - - - 0

Fire 2 16 x 16 x 128 - 16/32 64 64 11408/22688

Batch Norm 16 x 16 x 128 - - - - - 2

Fire 3 16 x 16 x 128 - 16/32 64 64 12432/24736

Batch Norm 16 x 16 x 128 - - - - - 2

Fire 4 16 x 16 x 256 - 32/64 128 128 45344/90432

Batch Norm 16 x 16 x 256 - - - - - 2

Fire 5 16 x 16 x 256 - 32/64 128 128 49440/98624

Batch Norm 16 x 16 x 256 - - - - - 2

Max Pool 2 8 x 8 x 256 2 x 2 2 - - - 0

Conv 6 8 x 8 x 10 1 x 1 1 - - - 2570

Batch Norm 8 x 8 x 10 - - - - - 2

Fully Connected [640->10] - - - - - 6410

Total 129408/247264

problem as observed in Fig 6.6. Inline with strategy 3 discussed before, the down-

sampling is performed later in the network to keep the dimension of the activation

map large. The down-sampling is controlled using the max pooling layer and stride

of the convolution layer. Instead of using max pooling layer early in the network, the

max pooling layer is implemented later in the network. The Fig. 6.7 represents the

reducedSqNet architecture with just 2 max pooling layers. In the architecture the

max pooling layer is used after the first convolution filter and then before the last

convolution filter as shown in Fig. 6.7. This is necessary to keep the dimension of

activation maps large. Two variants of the model are created: one with squeeze ratio

of 0.125 and other with the squeeze ratio of 0.25. Calculations of the squeeze ratio is

as follows:

50

SqueezeRatio =
si,1x1

ei,1x1 + ei,3x3 (6.7)

si,1x1 −→ 1x1 convolution filter, squeeze layer i

ei,1x1 −→ 1x1 convolution filter, expand layer i

ei,3x3 −→ 3x3 convolution filter, expand layer i

Fig. 6.8. Accuracy curves for different hyper-parameters configurations.

Finally, a very small fully connected layer of 8x8x10 = 640 neurons is added at the

end of the network to enhance the performance of the reducedSqNet.

51

Fig. 6.9. Loss curves for different hyper-parameters configurations.

While training the reducedSqNet, data augmentation techniques such as random

flip, hue, contrast, brightness and saturation are used which introduces co-variate

shifts in the data to counter the overfitting problems which can be seen in Fig 6.6. Use

of the batch-Normalization layer, helped in the optimization process and reduced the

training time of the network. The Table 6.2 provides the details for the reducedSqNet

layers and the number of parameters per layer.

The two variants of model with different squeeze ratios are trained on tensor-flow.

The optimizer used is Adam with learning rate of 0.002 with batch sizes of 64, 128 and

256. The proposed models converged with better accuracy than the baseline network.

The Fig 6.8 shows accuracy plot for multiple runs of the reducedSqNet with various

52

batch sizes and Squeeze ratios. After multiple runs with different hyper-parameters,

it is observed that the best accuracy is achieved at a learning rate of 0.002 and squeeze

ratio of 0.25, batch size of 256 images, with a mean of 79.86% and standard deviation

of 1.5. The worst accuracy achieved is with the batch size of 64, with a mean 69.46%

accuracy. With averages of multiple runs the average accuracy observed is 74%.

Fig. 6.10. Testing accuracy of baseline model vs reducedSqNet.

The Fig 6.10 shows the test accuracy for the baseline network and the proposed

reducedSqNet, which is trained with the same hyper-parameters. It is observed that

the accuracy of the proposed network is higher than the baseline architecture and the

test loss is much lower when compared to the baseline model as shown in Fig 6.11. It

can also be seen from Fig. 6.11 that the test loss for baseline network increases after

53

Fig. 6.11. Testing loss of baseline model vs reducedSqNet.

54

a few number of iterations whereas for the reducedSqNet the test losses continuously

decreases. This is due to the reduction in the depth of the architecture and data

augmentation techniques put in place to combat the overfitting problems.

Fig. 6.10 concludes that, reducing the number of parameters still maintains the

same accuracy. Hence, it would be appropriate in this scenario to conclude that,

reducing the depth of the network did not have a negative impact on the accuracy

of the model. This highlights the fact that, a compact network can be trained to

perform tasks with similar accuracy compared to its deep counterpart. Another con-

clusion regarding these changes is that since the image size on the CIFAR-10 dataset

is 32x32, having a deep network is futile. Because, towards the end of the network

the image will be too down-sampled, and the network will not be able to learn a lot of

high-level features. Therefore, a tailored architecture for the specific dataset provides

a better performance.

Note: During the training process, some experiments were conducted with non-

linearity in the network, ReLU corresponding to convolution 1 and 10 were removed

and replaced with exponential linear unit. Due to the removal of the above mentioned

ReLUs an increase in accuracy was observed. Multiple runs were recorded and ob-

served using three different batch sizes: 256, 128 and 64 with the learning rate of 2e-3

and results observed were consistent.

Results:

Replacing the ReLU with ELU caused the learning to be faster than the previous

model and had slightly better accuracy than the previously trained model. Exponen-

tial Linear units alleviate the dead ReLU problem. In contrast to ReLUs, ELUs have

negative values which allow them to push mean unit activations closer to zero like

batch normalization but with lower computational complexity.

55

Fig. 6.12. Experimentation Results with Exponential Linear Unit.

f(x) =

 x x ≥ 0

α(ex − 1) x < 0
(6.8)

Also, ELU has mean activation close to zero and does not saturate for large inputs.

It behaves similarly to a ReLU unit if the input is positive, but for negative values, it

is a function bounded by a fixed value of -1, for =1. This behavior pushes the mean

activation of neurons closer to zero which is beneficial for learning representations

that are more robust to noise. The following graphs highlight the improvement over

the baseline network.

56

Fig. 6.13. This figure shows the accuracy comparison of the base
squeezeNet vs the ReducedSqnet vs ReducedSqnet with ELU.

6.4 Conclusion

This chapter presents a compact architecture build on the principle of fire modules.

The proposed network architecture is adapted for CIFAR-10 dataset and has a smaller

model size than the baseline architecture and has a better performance, if trained from

scratch on the CIFAR-10 dataset. This paper also highlights the choice for number of

pooling layers to be used and their positions in the network. It is observed that using

the pooling layer towards the end of the network results in a better accuracy. Next,

use of batch normalization layer is also highlighted in the paper. It is observed that

57

Table 6.3.
Results for ReducedSqNet vs squeezeNet v 1.1

Model name Squeeze Ratio Model Size(MB) Accuracy

SqueezeNet v 1.1 0.25 2.9 63.4%

ReducedSqNet 0.125 1.4 70%

ReducedSqNet 0.25 2.8 74%

by adding a batch normalization layer after every convolution and fire layer reduces

the fluctuation in the loss and accuracy curves of the proposed architecture and also

results in the faster training time as compared to baseline network. The Table 6.3

provides a summary of various architectures trained and their performance measures.

Also, from Fig 6.10 and 6.11, It is observed that the accuracy of the reducedSqNet

has a better performance than the baseline model. This compact model can be used

on embedded targets for real-time classifications. It can be concluded that tailoring

the architecture for specific dataset will result in the overall improved performance.

In this chapter, we discussed an approach to reduce the model size of the existing

architecture by reducing the depth of the model and maintain the same level of

accuracy by increasing the width of the network. Table 6.3 consists of collective

information of comparison between baseline network, ReducedSqNet with squeeze

ratio of 0.125 and 0.25. It is observed that the accuracy for the modified architecture

surpasses the baseline architecture if trained from scratch. Hence it is essential to

develop specific architectures for a specific dataset.

58

7. SQUEEZED CNN - A NEW ARCHITECTURE FOR

CIFAR-10

In the previous chapter, a new architecture for CIFAR-10 was proposed by slightly

modifying the baseline architecture by adding a batch normalization layer after the

convolution filters and adding a fully connected layer at the end of the network. This

chapter focus on the same principle of developing an architecture with a compact

model size. Here we create a deeper architecture with 16 hidden layers of convolution

inspired by VGG-16 [4], with the concepts of squeeze layers discussed in previous

chapters and adding batch normalization layers. Though the proposed architecture

is very different from the VGG architecture, we use VGG-16’s performance measure

as the baseline for development. VGG-16 has 16 hidden layers, these hidden layers

consist of convolution filters with the kernel size of 3x3, pooling layer 2x2 and three

fully connected layers at the end of the network, the model has a size of 528 MB for

ImageNet dataset [32] and 385 MB for CIFAR-10 dataset this difference is due to a

smaller number of classes in the CIFAR-10 dataset. The approach highlighted in this

chapter provides a compressed version of CNN with a model size of 12.9 MB, which

is a 96% reduction in the model size. The model is trained to have the same number

of layers as VGG-16, but the fully connected layers are removed from the network

architecture to reduce the model size, and batch normalization layer is added to

the network. Reduction in the model size leads to less overhead when uploading

new models to an embedded device. Many companies in the domain of autonomous

driving need to update the model wirelessly to the end device, and this has improved

the reliability and safety of autonomous driving systems [2]. Attempts have been

made in this paper to reduce the model size of the architecture keeping in mind the

competitive accuracy of VGG16.

59

Table 7.1.
Table highlights the number of parameters for each layer of VGG-16 architecture

Layer

Type

Output

Size

Filter

Stride

Filter

Size

Number of

s 1x1 (Squeeze)

Number of

e 1x1 (Expand)

Number of

e 3x3 (Expand)

Number of

Parameters

Conv 1 1 32x32x64 1 3x3 - - - 1792

Conv 1 2 32x32x64 1 3x3 - - - 36928

Max Pool 16x16x64 2 2x2 - - - 0

Conv 2 1 16x16x128 1 3x3 - - - 73856

Conv 2 2 16x16x128 1 3x3 - - - 147584

Max Pool 8x8x128 2 2x2 - - - 0

Conv 3 1 8x8x256 1 3x3 - - - 295268

Conv 3 2 8x8x256 1 3x3 - - - 590080

Conv 3 3 8x8x256 1 3x3 - - - 590080

Max Pool 4x4x256 2 2x2 - - - 0

Conv 4 1 4x4x512 1 3x3 - - - 1180160

Conv 4 2 4x4x512 1 3x3 - - - 2359808

Conv 4 3 4x4x512 1 3x3 - - - 2359808

Max Pool 2x2x512 2 2x2 - - - 0

Conv 5 1 2x2x512 1 3x3 - - - 2359808

Conv 5 2 2x2x512 1 3x3 - - - 2359808

Conv 5 3 2x2x512 1 3x3 - - - 2359808

Max Pool 2x2x512 2 2x2 - - - 0

Dense Layer FC 4096 - - - - - 2101248

Dense Layer FC 4096 - - - - - 16781312

Dense Layer FC 10 - - - - - 40970

Total 33,683,218

7.1 VGG-16 Architecture

The Visual geometry group of the University of Oxford proposed a 16 layer ar-

chitecture known as VGG-16 [4]. It is a state-of-the-art network architecture and

evaluated on ILSVRC-2012 with 28.1% top-1 error and 9.3% top-5 error [4]. VGG

architecture has multiple variants the most famous ones are 16 layers and 19 lay-

ers deep network. Table 7.1 provides a summary of total number of parameters in

VGG-16 architecture. The VGG architecture is the most preferred architecture to

extract features from images, the pre-trained network for VGG-16 is widely available

60

online. VGG-16 is an obvious choice as many object detection architectures use VGG

architecture for classification. The VGG networks have small receptive fields of 3x3

instead of using a large receptive field of 7x7, the stride of convolution filters is 1.

The approach is to use multiple convolution filters stacked together instead of using a

single large filter. This approach also reduces the number of parameters considerably,

e.g., 3 convolution filters of kernel size 3x3 stacked together have 3x(3x3K) = 27K

parameters whereas 1 convolution filter of 7x7 has in total 49K parameters. This re-

duction in parameters has a significant impact on the model size. Fig 7.1 represents

the architecture of the VGG-16 networks.

Fig. 7.1. This figure shows VGG-16 Architecture (Left) Proposed
Architecture (Right).

61

This architecture has in total 16 layers with 13 convolution filter and 3 fully

connected networks. Each convolution filter has a kernel size of 3x3 and a stride of

1 with 5 pooling layers with the stride of 2 to down sample the image. Towards the

end of the network, there are 3 fully connected layers for computing the class scores.

7.2 Squeezed CNN

Previous chapters discuss the approach to develop a compact model and an archi-

tecture for the hardware targets. Inline with these approaches, a new fully convolution

architecture is proposed. This new architecture incorporates the positives of both the

networks (VGG-16 and SqueezeNet). The VGG-16’s depth and the stack of convo-

lution layers are recreated using the concept of fire modules and varying the squeeze

ratio to reduce the model size and achieve architecture compression. The batch nor-

malization layers are used after every convolution filters to handle the covariate shifts

introduced during data augmentation and reduce the training time. The proposed

architecture is a fully convolutional network with 16 convolution layers and no fully

connected layer. The idea behind using a fully-convolution network is motivated be-

cause the convolution neural networks are sparse and have less number of parameters.

The last layer of the convolution is modified to output class scores for the number of

classes in the CIFAR-10 dataset the changes made to the model with competitive

accuracy and minimal model size. The proposed model was trained on the CIFAR-10

dataset and could achieve the accuracy of 76.32% with a model size of 12.9 MB as

compared to 92.2% accuracy with a pre-trained model size of 385MB and 82% with

a model trained from scratch. Significant reduction in the model size of 96.78% is

achieved. Fig 7.1 (Right) represents the squeezed CNN model architecture, and table

7.2 represents the total number of parameters in Squeezed CNN architecture. The

proposed architecture consists of two convolution filters of 3x3 kernel size stacked

together followed by a max pooling layer. The convolutional filters are cascaded with

two fire modules (FireModule1 and FireModule2) followed by a max pooling layer,

62

Table 7.2.
Table represents Squeezed CNN architecture and Number of param-
eters in each layer.

Layer

Type

Output

Size

Filter

Stride

Filter

Size

Number of

s 1x1 (Squeeze)

Number of

e 1x1 (Expand)

Number of

s 3x3 (Expand)

Number of

Parameters

Conv 1 1 32x32x64 1 3x3 - - - 1792

Batch Norm 32x32x64 - - - - - 2

Conv 1 2 32x32x64 1 3x3 - - - 36928

Batch Norm 32x32x64 - - - - - 2

Max Pool 16x16x64 2 2x2 - - - 0

Fire Module 1 16x16x128 - - 32 64 64 22688

Batch Norm 16x16x128 - - - - - 2

Fire Module 2 16x16x128 - - 32 64 64 24736

Batch Norm 16x16x128 - - - - - 2

Max Pool 8x8x128 2 2x2 - - - 0

Fire Module 3 8x8x256 - - 32 128 128 45344

Batch Norm 8x8x256 - - - - - 2

Fire Module 4 8x8x256 - - 64 128 128 98624

Batch Norm 8x8x256 - - - - - 2

Fire Module 5 8x8x256 - - 64 128 128 98624

Batch Norm 8x8x256 - - - - - 2

Max Pool 4x4x256 2 2x2 - - - 0

Fire Module 6 4x4x512 - - 64 256 256 180800

Batch Norm 4x4x512 - - - - - 2

Fire Module 7 4x4x512 - - 64 256 256 197184

Batch Norm 4x4x512 - - - - - 2

Fire Module 8 4x4x512 - - 64 256 256 197184

Batch Norm 4x4x512 - - - - - 2

Max Pool 2x2x512 2 2x2 - - - 0

Fire Module 9 2x2x512 - - 16 64 64 18576

Batch Norm 2x2x512 - - - - - 2

Fire Module 10 2x2x512 - - 32 64 64 24736

Batch Norm 2x2x512 - - - - - 2

Fire Module 11 2x2x512 - - 32 64 64 24736

Batch Norm 2x2x512 - - - - - 2

Conv 2 1 2x2x64 1 3x3 - - - 73792

Batch Norm 2x2x512 - - - - - 2

Conv 2 2 2x2x32 1 3x3 - - - 18464

Batch Norm 2x2x32 1 3x3 - - - 2

Conv 3 3 2x2x10 1 3x3 - - - 2890

Batch Norm 2x2x10 - - - - - 2

Avg Pool 1x1x10 2 2x2 - - - 0

Total 1,067,128

63

and similarly, 3 stacks of 3 Fire modules are cascaded to the architecture. Finally,

in the end, one more stack of 3x3 convolution filters are added and an average pool-

ing layer to produce class scores. As discussed earlier the idea behind adding a fire

module is to reduce the number of parameters and model size. Table 7.2 contains the

accuracy and the model size for the base architecture of VGG-16 and Squeezed CNN

which is a fully convolutional network. As represented in Fig. 7.2 the accuracy of

the model goes down by nearly 16%, but the model size is reduced by a considerable

factor of 96%. This reduction in model size increases the scope of adding more layers

to the network to increase the accuracy of the architecture. This drop in size gives

room to add more hidden layers to the network to increase the accuracy but adding

layer also increases the complexity of optimization and may create problems of van-

ishing gradient, which can be tackled by injecting gradients through techniques like

auxiliary optimization techniques used in GoogleNet [33] and Residual learning [34].

This approach can be used in future to develop a compressed architecture with much

better accuracy.

The proposed model is trained in tensorflow on the CIFAR-10 dataset. Since

the dataset contains a small set of examples, and the complexity of the model is

high (more number of the hidden layer) there is a high probability that the model

will overfit the dataset. To prevent overfitting of the model, the concept of dropout

layers where used. The dropout layer work in the following way: during the training

process some percentage of neurons are deactivated, due to this the model is forced to

learn the same feature with different connections. This approach helps in reducing the

generalization error. In the architecture, the dropout is implemented after fire module

6 and fire module 11 both dropout layer had 50 dropout percentage. Batch size used

was 512. Therefore 97 batches were required to complete 1 epoch and the network

was trained for 100 epochs approx. The test accuracy evaluated at 100 epochs had a

mean of 76.32%.

64

Table 7.3.
Summary for VGG-16 vs Squeezed CNN

VGG-16 Squeezed CNN VGG-16 (without pretrained model)

Accuracy 92.20% 76.32% 82%

Model Size 385MB 12.9MB 385MB

65

Fig. 7.2. Test Accuracy of squeezed CNN Architecture.

7.2.1 Hardware Deployment of Squeezed CNN

The squeezed CNN model is trained on a desktop pc with a core i7 processor, 32

GB RAM and GTX 1080 by Nvidia using the tensorflow framework and deployed on

BlueBox by NXP. BlueBox is a development platform for self-driving cars. It incor-

porates S32V234 which is a vision and sensor fusion processing unit, LS2084A em-

bedded computer processor and S32R27 radar micro-controller. BlueBox2.0 provides

the required performance for deploying convolutional neural networks and can be em-

bedded with Realtime Multisensor Application software (RTMaps)[35]. RTMaps is a

high-performance platform with support for frameworks such as tensorflow, opencv,

sklearn, etcetera. These packages are instrumental in developing, training and deploy-

ing neural network architectures. RTMaps studio provides an easy to use graphical

user interface and component libraries to tackle sensor fusion and computer vision

problems. The out of the box packages provided with RTMaps facilitates algorithm

prototyping and development.

66

7.2.2 Bluebox 2.0 by NXP

NXP is the leader in developing semiconductor devices for the automotive domain.

NXPs Bluebox 2.0 is a development platform targeted for developing software and

application for autonomous systems. Bluebox 2.0 incorporates S32V234 for vision

processing, LS2084A for heavy computation and S3VR27 a radar micro-controller.

S32V234 within Bluebox contains image processing platform with dual camera inter-

faces, image signal processors and APEX cores for image cognition processing and

four A-53 ARM cores. LS2084A the CPU platform contains eight ARM A-72 pro-

cessors for data crunching and provides high-performance data path and peripheral

network interfaces for networking. S32R27 is a 32-bit power architecture-based mi-

crocontroller for automotive and radar applications [36].

7.2.3 Real-time Multisensor Applications (RTMaps)

RTMaps is an asynchronous, high-performance platform to design a multisen-

sory framework and prototype sensor fusion algorithm. RTMaps has of several mod-

ules: RTMaps Runtime Engine, RTMaps Studio, RTMaps Component Library and

RTMaps SDK [37].

RTMaps studio provides a development interface for prototyping and building

real-time applications. The block diagrams in workspace made of connected compo-

nents from RTMaps libraries represents the application built in RTMaps studio. The

studio provides a user-friendly interface to set up the applications [35]. The RTMap

runtime engine takes care of base services such as component registration, time stamp

threading, and priorities.

7.2.4 Deployment of Squeeze CNN

As discussed earlier this thesis aims at developing a pipeline to design, train and

deploy CNN classifiers on Bluebox 2.0 using RTMaps studio. RTMaps provides sup-

67

port for deep learning framework such as tensorflow. Fig 7.3 provides the process of

deploying a trained network on Bluebox 2.0. The checkpoint files generated after the

Fig. 7.3. Flow for application development using RTMaps for Bluebox 2.0.

training process was saved on the Bluebox 2.0 and the RTMaps studio was connected

to the execution engine using TCP/IP which ran the software on the Linux operating

system installed on Bluebox2.0.

RTMaps provides a python structure to create and deploy python codes. The

python code for RTMaps contains three function definition Birth(), Core() and Death().

The Birth() is executed once so all the setup code can be called and implemented

within this section. Core() runs in an infinite loop. Therefore, the part of the code

that runs continuously can be defined in this section. Death() runs after the program

is halted so all the cleanup functions can be implemented under this section. This de-

fined structure makes it easy for prototyping and developing a modular code. Below

is a Fig 7.4 representing the graphical interface that RTMaps provides for developing

the algorithm.

7.2.5 Conclusion

The focus of this chapter was to design and deploy a compact version of convolu-

tion neural networks on Bluebox 2.0 development platform. The approach followed

68

Fig. 7.4. Graphical interface in RTMaps.

has two parts. Firstly, this chapter highlights the process to define a compressed archi-

tecture using the concept of fire modules train the new architecture on the CIFAR-10

dataset. Secondly, use techniques such as batch normalization and data augmenta-

tion to improve the performance of the compressed architecture. Thirdly, deploy the

network on Bluebox 2.0 using RTMaps studio.

Initially, the chapter discusses the VGG-16 architecture, types of layers used and

the number of parameters in each layer of VGG-16. This architecture serves as a

baseline architecture for developing the compact architecture. Next, this chapter

discusses the proposed compressed architecture Squeezed CNN and the number of

parameters and types of the layer used in the architecture and intuition behind using

these layers. Further, This chapter discusses the process of training the squeezed

CNN architecture and highlights the reduction in model size from 385 MB to 12.9

MB which is a reduction of 96%.

The reduction techniques using the fire modules discussed in the chapter suggests

a generic technique to create convolution neural networks for memory and power

constrained devices. The second part of the chapter is specific to Bluebox 2.0 and

RTMaps. It proposes a process that can be followed to build and deploy convolution

neural networks on Bluebox development platforms using RTMaps studio. It also

explains the code structure used in the RTMaps studio for deploying python pack-

ages. Finally, the chapter highlights and shares the result of classifier deployed on

Bluebox 2.0 in Fig 7.5. During this process of deploying convolution neural networks,

69

it was observed that RTMaps provides easy to use component libraries and the inte-

gration with the tensorflow framework is seamless. It reduces the prototyping effort

for deployment on BlueBox 2.0 and provides a very user-friendly environment for the

developer.

Fig. 7.5. Console output on RTMaps for displaying results.

70

8. INTEGRATING CNN WITH FASTER RCNN AND

YOLO

As discussed earlier the motivation behind this thesis is to create a compact convo-

lution neural network for memory and power constrained devices, that is useful for

developing real-time applications. The approaches discussed in the previous chapters

helps to generate compact models for constrained devices. However, this chapter

discusses the integration of compact architectures such as squeezenet and Squeezed

CNN with the object detection pipelines based on region proposal networks such as

faster R-CNN and classification or regression based networks such as YOLO (You

Only Look Once). The basics of object detection are discussed in chapter 3. Hence,

this chapter skips all the pieces of information provided in chapter 3.

8.1 Squeezenet integrated with Faster R-CNN

To implement object detection in real-time, it is crucial to integrate the con-

volution neural network with the object detection pipeline. The choice of CNN

is squeezeNet baseline architecture integrated with the region proposal network in

faster R-CNN. This integration is achieved by replacing the VGG-16 convolution

neural network with squeezeNet convolutional Neural Network. Since the VGG-16 is

a convolution neural network which has fully connected layers at the end of the net-

work, and the squeezeNet is a fully convolutional network. Therefore, the squeezeNet

was modified so that it can be compatible with the existing faster R-CNN pipeline.

The modification required for compatibility is the is discussed in later sections.

71

Fig. 8.1. This figure represents the SqueezeNet Architecture .

8.1.1 Modification for model compatibility

Since the squeezenet architecture is trained on a larger dataset which is the im-

agenet. Due to the pre-training on the imagenet, the model has already learned the

low-level features, and it is essential to preserve these features and modify the last

layers so that the high-level feature can be learned from the new dataset. To achieve

this, the last convolution layer Conv 10 is removed from the squeezenet architecture

which is shown in Fig 8.1. The fire module 9 layer is attached to the region pro-

posal network of faster-RCNN object detection pipeline Fig 8.2 represents the default

architecture of faster R-CNN and the changed architecture where squeezenet CNN

replaces the VGG-16 CNN. As discussed, the focus of the research is to reduce the

model size of the architecture. The changes made to the architecture made it possible

to develop a compact model and reduce the inference time of the trained network by

a factor of 2 the detection time for faster R-CNN with the VGG-16 CNN is 0.09

ms and the detection time for faster R-CNN is approximately 0.04 ms on GTX 1080

72

Fig. 8.2. This figure represents the integration of SqueezeNet with Faster R-CNN .

GPU. The model size reduction is from 553.4 MB to 80.7 MB. Though we can reduce

the model size and detection time for the architecture the Mean Average Precision

(MAP) of the current model is not at par with the benchmark model. The MAP

for the baseline architecture tested is 73%MAP whereas the MAP for the modified

architecture is 27%MAP which is less than half of the benchmarked model, but there

is a significant reduction in the detection time it is reduced by a factor of 2 and a

reduction in the model size is approximately 85%.

73

Table 8.1.
Model Comparison for Faster R-CNN vs Modified Architectures

Architecture mAP Speed Model Size

Faster R-CNN(Baseline) 73 95ms 553MB

R-SqueezeNet 33 30ms 81MB

R-Squeezed CNN 10 45ms 181MB

These modifications help to create a model feasible for deployment on embed-

ded targets. Also, create real-time applications on memory constrained and power

constrained devices. The following table presents the data regarding the various com-

bination of CNN architectures used. From the table, it is apparent that reduction

in model size the boosts the frame per secs. With the R-Squeezenet we can perform

object detection with a mAP of 27% and model size of 80.7MB. It is also observed the

the R-Squeezed CNN developed has mAP lesser that R-Squeezenet this is because the

R-Squeezed CNN is not trained on ImageNet dataset but on Tiny imageNet dataset.

Training this architecture on ImageNet will have a better mAP.

8.1.2 Detection Results

As observed in Fig. 8.5 the detection results are not accurate for R-Squeezed CNN

one way to overcome this is to train the Squeezed CNN architecture on ImageNet data

set. This approach might increase the MAP of the proposed network.

74

Fig. 8.3. Detection Result for Faster R-CNN where CNN is VGG-16.

Fig. 8.4. Detection Result for R-SqueezeNet (Faster R-CNN + SqueezeNet).

75

Fig. 8.5. Detection Result for R-Squeezed CNN (Faster R-CNN + Squeezed CNN).

8.2 SqueezeNet integrated with You Look Only Once (YOLO)

YOLO architecture poses the object detection as a regression problem. The single

convolution neural network with the fully connected layer at the end is responsible

for classifying class scores and the co-ordinate for bounding boxes. YOLO divides the

image into an S × S grid, and each grid is responsible for predicting the bounding

boxes. For YOLO we were able to train the model on Pascal VOC dataset and KITTI

dataset this idea was inspired by squeezeDet [46].

8.2.1 YOLO Architecture

YOLO consist of a CNN which is for classification, and the last layer is modified to

provide a tensor of S×S× (B ∗5+C), where S = grid size, B = number of bounding

boxes per grid and C is confidence for the bounding box. The modified architecture

76

Fig. 8.6. Representation of how YOLO works.

integrates the squeezeNet[2] with the YOLO pipeline with a simple modification. An

additional layer was added after the last layer, i.e. fire 9 and to provide the bounding

box and confidence score for the bounding box. Adding SqueezeNet to YOLO pipeline

reduced the model size to 10MB and the detection time reduced to 20ms.

8.2.2 Detection Results

Below are few detection results on real-time video.

Fig. 8.7. Detection result for SqueezeNet + YOLO on Real-Time Videos

77

Fig. 8.8. Detection result for SqueezeNet + YOLO on Real-Time Videos

Fig. 8.9. Detection result for SqueezeNet + YOLO on Real-Time Videos

Fig. 8.10. Detection result for SqueezeNet + YOLO on Real-Time Videos

78

9. SUMMARY

The motivation behind this thesis has been the development of convolution neural

network architecture designed specifically for embedded systems. During this thesis,

multiple CNN architectures where developed using fire modules. Firstly, a compact

architecture called ReducedSqNet was developed for the CIFAR-10 dataset this net-

work was trained and compared to the baseline model. It was observed that the

model performed better than the baseline architecture on CIFAR-10 even though the

depth and the model size was lower than the baseline network. The results for the re-

ducedSqNet network are highlighted in chapter 6 of this thesis. These results proved

that the fire modules could be used to recreate the existing architectures and with

fine-tuning, a compressed convolutional neural network with competitive accuracy

can be obtained, which is feasible for deployment on embedded systems. Next, a con-

volution neural network with 16 layers was proposed named squeezed CNN inspired

by VGG-16. Squeezed CNN was created using compact convolution filters called fire

modules, which helped to reduce the model size of the architecture. Chapter 7 in the

thesis highlights the results for squeezed CNN architecture.

Both the compact architectures are feasible for deployment on embedded systems

and were deployed on an autonomous development platform Bluebox 2.0. Further-

more, the squeezed CNN and the squeezeNet architecture were integrated with the

object detection pipelines Faster R-CNN and YOLO this gives a proof of concept that

any CNN trained can be integrated with these pipelines. Results for these integrated

models are discussed in Chapter 8. Also, the process of deploying the trained model

on the Bluebox using RTMaps software is discussed in chapter 7.

REFERENCES

79

REFERENCES

[1] Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with
deep convolutional neural networks. In Advances in neural information process-
ing systems(NIPS)(pp. 1097-1105). [online] [http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf] [Accessed
on 6th October 2018].

[2] Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer,
K., 2016. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<
0.5 mb model size. arXiv preprint arXiv:1602.07360, Cornell University.[online]
[https://arxiv.org/pdf/1602.07360.pdf] [Accessed on 6th October 2018].

[3] Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A.A., 2017, February. Inception-
v4, inception-resnet and the impact of residual connections on learning. In AAAI
(Vol. 4, p. 12).

[4] Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, Cornell University.
[online] [https://arxiv.org/pdf/1409.1556.pdf] [Accessed on 6th October 2018].

[5] Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi, M., Kitsukawa,
Y., Monrroy, A., Ando, T., Fujii, Y. and Azumi, T., 2018, April. Autoware on
board: enabling autonomous vehicles with embedded systems. In Proceedings of
the 9th ACM/IEEE International Conference on Cyber-Physical Systems (pp.
287-296). IEEE Press.

[6] Nair, V. and Hinton, G.E., 2010. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th international conference on machine
learning (ICML-10) (pp. 807-814).

[7] Clevert, D.A., Unterthiner, T. and Hochreiter, S., 2015. Fast
and accurate deep network learning by exponential linear units
(elus). arXiv preprint arXiv:1511.07289, Cornell University. [online]
[https://arxiv.org/pdf/1511.07289.pdf] [Accessed on 6th October 2018].

[8] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior,
A., Tucker, P., Yang, K., Le, Q.V. and Ng, A.Y., 2012. Large scale dis-
tributed deep networks. In Advances in neural information processing sys-
tems(NIPS) (pp. 1223-1231). [online] [http://papers.nips.cc/paper/4687-large-
scale-distributed-deep-networks.pdf] [Accessed on 6th October 2018].

[9] Conti, F. and Benini, L., 2015, March. A ultra-low-energy convolution engine for
fast brain-inspired vision in multicore clusters. In Proceedings of the 2015 Design,
Automation and Test in Europe Conference and Exhibition (pp. 683-688). EDA
Consortium.

80

[10] McCulloch, W.S. and Pitts, W., 1943. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4), pp.115-133,
Springer.

[11] Marek R, Thoughts on Machine Learning and Natural Language Processing,. [on-
line] [http://www.marekrei.com/blog/neural-networks-part-2-the-neuron/] [Ac-
cessed on 5th October 2018].

[12] Deep Neural Network: What is Deep Learning Edureka? [on-
line] [https://cdn.edureka.co/blog/wp-content/uploads/2017/05/Deep-Neural-
Network-What-is-Deep-Learning-Edureka.png] [Accessed on 5th October 2018].

[13] Zhao, Z.Q., Zheng, P., Xu, S.T. and Wu, X., 2018. Object detection with deep
learning: A review. arXiv preprint arXiv:1807.05511,Cornell University. [online]
[https://arxiv.org/pdf/1807.05511.pdf] [Accessed on 6th October 2018].

[14] Lienhart, R. and Maydt, J., 2002. An extended set of haar-like features for
rapid object detection. In Proceedings of 2002 International Conference on Image
Processing (Vol. 1, pp. I-I). IEEE.

[15] Cortes, C. Vapnik, V. Machine Learning (1995) 20: 273. [online]
[https://doi.org/10.1023/A:1022627411411] [Accessed on 5th October 2018].

[16] Felzenszwalb, P.F., Girshick, R.B., McAllester, D. and Ramanan, D., 2010. Ob-
ject detection with discriminatively trained part-based models. IEEE transac-
tions on pattern analysis and machine intelligence, 32(9), pp.1627-1645.

[17] Freund, Y. and Schapire, R.E., 1997. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of computer and system
sciences, 55(1), pp.119-139.

[18] CS231n: Convolutional Neural Networks for Visual Recognition. [online]
[http://cs231n.github.io/convolutional-networks/] [Accessed on 6th October
2018]

[19] Kayid, A., and Yasmeen K., Performance of CPUs/GPUs for Deep Learning
workloads. [online] [https://www.researchgate.net] [Accessed on 6th October
2018]

[20] Karl R., CPU, GPU and MIC Hardware Characteristics over Time [online]
[https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-
over-time/] [Accessed on 6th October 2018].

[21] He, K., Zhang, X., Ren, S. and Sun, J., 2014, September. Spatial pyramid pooling
in deep convolutional networks for visual recognition. In European conference on
computer vision (pp. 346-361). Springer, Cham.

[22] Girshick, R., 2015. Fast r-cnn. In Proceedings of the IEEE international confer-
ence on computer vision (pp. 1440-1448).

[23] Ren, S., He, K., Girshick, R. and Sun, J., 2015. Faster r-cnn: To-
wards real-time object detection with region proposal networks. In Ad-
vances in neural information processing systems (pp. 91-99). [online]
[http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-
detection-with-region-proposal-networks.pdf] [Accessed on 6th October 2018].

81

[24] Dai, J., Li, Y., He, K. and Sun, J., 2016. R-fcn: Object detection via region-
based fully convolutional networks. In Advances in neural information processing
systems (pp. 379-387). [online] [https://papers.nips.cc/paper/6465-r-fcn-object-
detection-via-region-based-fully-convolutional-networks] [Accessed on 6th Octo-
ber 2018].

[25] Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2016. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 779-788).

[26] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y. and Berg, A.C.,
2016, October. Ssd: Single shot multibox detector. In European conference on
computer vision (pp. 21-37). Springer, Cham.

[27] Tomasz G, in Data science, Deep learning, Machine learning,
[online][https://deepsense.ai/region-of-interest-pooling-explained/][Accessed
on 6th October 2018].

[28] Hong, S., Roh, B., Kim, K.H., Cheon, Y. and Park, M., 2016.
PVANet: lightweight deep neural networks for real-time object de-
tection. arXiv preprint arXiv:1611.08588,Cornell University. [online]
[https://arxiv.org/pdf/1611.08588.pdf] [Accessed on 6th October 2018].

[29] Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fis-
cher, I., Wojna, Z., Song, Y., Guadarrama, S. and Murphy, K., 2017, July.
Speed/accuracy trade-offs for modern convolutional object detectors. In IEEE
International Conference on Computer Vision and Pattern Recognition (Vol. 4).

[30] Tome, D., Bondi, L., Baroffio, L., Tubaro, S., Plebani, E. and Pau, D., 2016,
September. Reduced memory region based deep Convolutional Neural Network
detection. In 2016 IEEE 6th International Conference on Consumer Electronics-
Berlin (ICCE-Berlin) (pp. 15-19). IEEE.

[31] Gaikwad, A.,2018 ”Pruning the Convolution Neural Network (SqueezeNet) using
Taylor Expansion Based Criterion”, International Symposium on Signal Process-
ing and Information Technology,International Symposium on Signal Processing
and Information Technology IEEE.

[32] He, K., Zhang, X., Ren, S. and Sun, J., 2015. Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In Proceedings of
the IEEE international conference on computer vision (pp. 1026-1034).

[33] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. and Fei-Fei, L., 2009, June.
Imagenet: A large-scale hierarchical image database, In Computer Vision and
Pattern Recognition, IEEE (pp. 248-255).

[34] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V. and Rabinovich, A., 2015. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(pp. 1-9).

[35] Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A.A., 2017, February. Inception-
v4, inception-resnet and the impact of residual connections on learning. In Amer-
ican Association for Artificial Intelligence (Vol. 4, p. 12).

82

[36] Venkitachalam, S., Manghat, S.K., Gaikwad, A.S., Ravi, N., Bhamidi, S., El-
Sharkawy, M., Realtime Applications with RTMaps and Bluebox 2.0, Interna-
tional Conference Artificial Intelligence 2018 ICAI’18.

[37] Nxp.com. (2018). NXP BlueBox Autonomous Driving—NXP. [online]
[https://www.nxp.com/products/processors- andmicrocontrollers/arm-based-
processors-and-mcus/qoriq-layerscape-armprocessors/nxp-bluebox-autonomous-
driving-developmentplatform:BLBX] [Accessed 6th June. 2018]

[38] Intempora.com. (2018). Intempora - RTMaps - A component-based
framework for rapid development of multi-modal applications. [on-
line][https://intempora.com/] [Accessed 6th September. 2018].

[39] Jin, J., Dundar, A. and Culurciello, E., 2014. Flattened convolutional neural
networks for feedforward acceleration. arXiv preprint arXiv:1412.5474,Cornell
University. [online] [https://arxiv.org/pdf/1412.5474.pdf] [Accessed on 6th Oc-
tober 2018].

[40] Koturwar, S. and Merchant, S., 2017. Weight Initialization of Deep Neural Net-
works (DNNs) using Data Statistics. arXiv preprint arXiv:1710.10570, Cornell
University. [online] [https://arxiv.org/pdf/1710.10570.pdf] [Accessed on 6th Oc-
tober 2018].

[41] SLin, M., Chen, Q. and Yan, S., 2013. Network in net-
work. arXiv preprint arXiv:1312.4400, Cornell University. [online]
[https://arxiv.org/pdf/1312.4400.pdf] [Accessed on 6th October 2018].

[42] Krizhevsky, A., Nair, V. and Hinton, G., 2014. The CIFAR-10 dataset. [online]
[http://www. cs. toronto. edu/kriz/cifar. html] [Accessed 6th September. 2018].

[43] Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, Cornell University. [online]
[https://arxiv.org/pdf/1412.6980.pdf] [Accessed on 6th October 2018].

[44] Tieleman, T. and Hinton, G., 2012. Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural networks for
machine learning, 4(2), pp.26-31.

[45] Zeiler, M.D., 2012. ADADELTA: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701,Cornell University. [online]
[https://arxiv.org/pdf/1212.5701.pdf] [Accessed on 6th October 2018].

[46] Wu, B., Iandola, F.N., Jin, P.H. and Keutzer, K., 2017, July. SqueezeDet: Uni-
fied, Small, Low Power Fully Convolutional Neural Networks for Real-Time Ob-
ject Detection for Autonomous Driving, In Proceedings of the IEEE conference
on computer vision and pattern recognition workshop (pp. 446-454).

