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ABSTRACT

Alqaisi, Tareq S. MSECE, Purdue University, December 2017. MicroBlaze-based
Coprocessor for Data Stream Management Systems. Major Professor: John J. Lee.

Data network’s speed and availability are increasing at a record rate. More and

more devices are now able to connect to the Internet and stream data. Processing

this ever-growing amount of data in real time continues to be a challenge.

Multiple studies have been conducted to address the growing demands for real-

time processing and analysis of continuous data streams. Developed in a previous

work, Symbiote Coprocessor Unit (SCU) is a hardware accelerator capable of provid-

ing up to 150× speedup over traditional data stream processors in the field of data

stream management systems.

However, SCU implementation is very complex, fixed, and uses an outdated host

interface, which limits future improvements.

In this study, we present a new SCU architecture that is based on a Xilinx Mi-

croBlaze configurable microcontroller. The proposed architecture reduces complexity,

allows future implementations of new algorithms in a relatively short amount of time

while maintaining the SCU’s high performance. It also has an industry standard PCIe

interface. Finally, it uses a standard AMBA AXI4 bus interconnect, which enables

easier integration of new hardware components.

The new architecture is implemented using a Xilinx VC709 development board.

Our experimental results have shown a minimal loss of performance as compared to

the original SCU while providing a flexible and simple design.
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1. INTRODUCTION

With the development of the Internet of Things (IoT) and the wide availability of

wireless networks, more devices are able to continuously stream data. This increased

the need for an efficient high throughput data-intensive computing systems that are

able to process data streams in real time.

Data Stream Management Systems (DSMSes) are designed to process potentially

unbounded, dynamic data streams with limited resources such as main memory. Data

in the streams are volatile and sequential with high update rate that can also arrive

at variable pattern.

DSMSes such as Aurora [1], Gigascope [2], Nile [3], and Symbiote Coprocessor

Unit (SCU) [4] have been developed to address the increasing needs for data stream

processing. Most of these systems are software-based running on the host computer.

In contrast, SCU is a hybrid system that utilizes a hardware coprocessor to accelerate

data stream processing.

1.1 Related Work

Symbiote Coprocessor Unit (SCU) [4] is an FPGA-based coprocessor designed to

accelerate data stream applications. Study results show a speedup in the range 12.3×

to 150× over software-based DSMSes.

SCU contains a Single Instruction Multiple Data (SIMD) Very-Large Instruction

Word (VLIW) execution engine that exploits the data level parallelism and instruc-

tion level parallelism in DSMS operators. The execution engine is coupled with a

high-bandwidth multi-banked streaming memory system that is capable of writing or

reading multiple words per clock cycle.
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SCU contains a very complex state machine called Stream Controller (SC). The

SC acts as a proxy controller for the host processor. It configures, runs, and monitors

the SIMD-VLIW execution engine.

The current implementation of the SCU has three limitations. First, it is very

complex, which limits future improvements. Second, it uses the outdated Hypter-

Transport [5] protocol to interface with a host processor; at the time this study is

being conducted no new FPGAs support HyperTransport. Finally, it uses multiple

proprietary bus interconnects, which limits expansion of hardware.

1.2 Motivation

To overcome the limitations mentioned in Section 1.1, this study updates the SCU

architecture as follows:

� To reduce complexity of the SCU, the proposed architecture replaces the Stream

Controller with a microcontroller, namely MicroBlaze [6]. The use of a micro-

controller allows a software implementation of the state machine to replace the

current fixed, complex hardware-based state machine. Furthermore, Software

developers can implement new algorithms, or add new features easily without

hardware modifications.

� To increase the compatibility of the SCU, the proposed architecture replaces the

outdated HyperTransport protocol with industry standard GEN 3 high speed

PCIe bus. PCIe is widely used and can be integrated in any system.

� To allow future hardware expansion of the SCU, the proposed architecture uses

industry standard AMBA AXI4 [7] bus interconnect instead of the multiple

proprietary bus interconnects used in the current architecture.
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One might concern that replacing the hardware implementation of the control

finite state machine with a software implementation using a microcontroller would

significantly degrade performance. This is fortunately not the case as SC is not in

the critical path of the SCU’s data processing.

At the time this study is being conducted, the MicroBlaze has not been used to

control data stream coprocessors.

1.3 Thesis Outline

In order to better explain the proposed architecture, Chapter 2 introduces the

current SCU architecture. Chapter 3 provides a brief introduction to MicroBlaze sys-

tem, PCIe and AXI, and then describes in detail the proposed hardware architecture.

Chapter 4 covers the software architecture and implementation of the software-based

control finite state machine. Chapter 5 explains the experimental setup and analyzes

the performance of the proposed architecture. Finally, Chapter 6 concludes this thesis

and suggests ideas for future work.
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2. SYMBIOTE COPROCESSOR UNIT

2.1 Introduction

Symbiote Coprocessor Unit (SCU) [4] is an FPGA-based coprocessor unit designed

to accelerate data streaming applications with semi-persistent queries. SCU at its core

has a Single Instruction Multiple Data (SIMD) Very-Large Instruction Word (VLIW)

execution engine, which exploits Data Level Parallelism (DLP) and Instruction Level

Parallelism (ILP) in DSMS operators.

In addition, the SCU has its own toolchain that consists of a procedural query

language called SymQL [4] and its dedicated compiler. SCU DSMS queries are written

using SymQL, and then compiled to produce kernel binaries optimized to run on the

SIMD-VLIW engine. The overall SCU architecture and its components relevant to

this study are introduced in the following sections.

2.2 Symbiote Coprocessor Unit Architecture

The SCU is designed as a coprocessor unit. The overall SCU architecture is shown

in Figure 2.1. One of its important components is the HyperTransport Interface

(HTI), which connects the SCU to the host processor. HTI exposes several compo-

nents of the SCU, namely the command FIFO, response FIFO, Write Stripe Pipe

(WSP), and Read Stripe Pipe (RSP) onto the address space of the host processor.

The Stream Controller (SC) acts as proxy controller for the host processor, receives

commands through the command FIFO, and replies via the response FIFO. The host

processor programs the Instruction Memory (IMEM) with SymQL queries by sending

a specific command and the binaries to SC.
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Fig. 2.1.: Symbiote Coprocessor Unit architecture (Courtesy of Vaidya [4]).

The SCU contains a 320-bit wide VLIW Execution Engine (EU). EU executes

kernel binaries on input streams and produces output streams that can be read by

the host processor. The EU consists of nine functional units, namely a store unit, a

load unit, a permute unit, two ALUs, two multipliers, and finally two dividers. Each

of the functional units is SIMD-capable and operates on eight 32-bit values in parallel.

To store input and output streams, the SCU contains a 512KB multi-banked

memory called Stream Register File (SRF). The SRF is bandwidth optimized with

eight memory banks to allow the host processor or the execution engine to read and

write eight-word vector simultaneously.

To service multiple clients, the SRF implements read/write access control so as

to ensure only one client can access the SRF. Fair round-robin arbiters, namely Read

Arbiter (RA) and Write Arbiter (WA), guarantee one client access to SRF.
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The main job of Write Stripe Pipe (WSP) is to convert the sequentially stored

stream tuples in the host processor to the eight-bank striped physical layout of the

SRF, which allows the Execution Unit (EU) to access them in parallel. Read Stripe

Pipe (RSP) on the other hand restores the layout of the tuples in the SRF back to

sequential host processor layout.

In order for the kernel to run, the input tuples are pre-fetched from the SRF by

two input FIFOs. Similarly, output tuples from the EU are written in predetermined

order via three output FIFOs.

The rest of this section introduces SCU’s most important components to the

proposed architecture. Section 2.2.1 explains the architecture of the HyperTransport

Interface, being the main data distribution path in the SCU. Section 2.2.2 introduces

the SCU’s Stream Controller (SC), the main study topic of this thesis. SC is a

complex finite state machine responsible for configuring, executing, and monitoring

the VLIW Execution Engine. Section 2.2.3 covers Command and Response FIFOs,

which are used by the host processor to communicate with the SC. Finally, Section

2.2.4 provides a brief introduction to Stream Register File (SRF), the main storage

for input and output streams.

2.2.1 HyperTransport Interface (HTI)

The HyperTransport Interface is the central communication component responsi-

ble for connecting SCU’s modules to the host processor. It converts the signal and

protocol mappings between HyperTransport signals and SCU’s HTI interconnects as

shown in Figure 2.2.

HTI consists of four main components, namely the HT Read Engine (HT RDE),

HT Write Engine (HT WRE), HTI Read Interconnect (HTI RDX), and lastly HTI

Write Interconnect (HTI WRX). HT RDE and HT WRE main responsibilities are

to manage and control the communication, arbitration, and ordering of the host

processor read and write transactions to the SCU components.
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Fig. 2.2.: HyperTranpsort Interface (HTI) components (Courtesy of Vaidya [4]).

Figure 2.2 also shows the SCU blocks exposed over HT address space. HTI RDX

exposes read only blocks of the SCU, in specific, Read Strip Pipe (RSP), Read Stripe

Pipe Controller (RSP CTRL), Stream Controller Response FIFO, and SC Status Reg-

ister. Additionally, HTI WRX exposes write only blocks, namely Stream Controller

Command FIFO, Write Strip Pipe (WSP), and finally WSP controller to the host.

HT RDE’s internal components are shown in Figure 2.3. Host processor requests

are enqueued in Read Request Queue. Once the HT Read Request Dispatcher detects

there is a request in the queue, it dequeues and broadcasts the request to its clients
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via HTI RDX. At the same time, the request is saved in the Response Ordering FIFO

to match it later with its response. Once the targeted client responds to the request,

the response is enqueued in the Response FIFO and sent back to the host processor.

Fig. 2.3.: HyperTransport Read Engine (HTRDE) architecture (Courtesy of

Vaidya [4]).

HTI RDX communicates with its client using a three phase protocol shown in Fig-

ure 2.4. The HT request is broadcast over three signals, htrdx req valid, htrdx req addr

and htrdx req mask. If a client accepts the request, it indicates via client htrdx

can accept, and also deasserts client htrdx can handle signal. HT RDREQ D will

only dequeue and dispatch the request if the client indicates that it can accept and also

handle the request. Once the client completes the request, it asserts client htrdx rsp rdy

line; at this point the HT RDRESP E reads the response data via client htrdx rsp data

and dispatches it to the host processor. Finally to finish the transaction, HT RDRSP E

sends a handshake signal htrdx client rsp ack.

Figure 2.5 shows the internal components of the HT Write Engine. When the HT

Write Request Dispatcher (HT WRREQ D) detects a request in the HT Write Re-
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Fig. 2.4.: HyperTransport Interface Read Interconnect Protocol (Courtesy of

Vaidya [4]).

quest Queue (HT WRREQ Q), it broadcasts the dequeued request to its clients over

four signals, namely htwrx req valid, htwrx req addr, htwrx req mask, and finally

htwrx req data. The clients are continuously monitoring these signals; once a request

is addressed to a specific client, the client responds by setting client htwrx can accept

signal. Clients can indicate to the HT WRREQ D their unavailability by asserting

their dedicated client htwrx can handle signal. Similar to the HT RDE, the request

is only dequeued and sent to the client once the client can accept and handle the

request. Handshake signal is not required to write request in contrast with read ones.

Figure 2.6 shows HyperTransport Write Interconnect signals.

2.2.2 Stream Controller

In order for the host processor to control the SCU, a Stream Controller (SC) was

designed to act as a proxy. The host processor sends commands to the SC via the

HyperTransport Interface, which then decodes and executes these commands. Exe-

cuting kernels in the SCU requires important information about the kernel binaries,
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Fig. 2.5.: HyperTransport Write Engine (HTWRE) architecture (Courtesy of

Vaidya [4]).

Fig. 2.6.: HyperTransport Interface Write Interconnect Protocol (Courtesy of

Vaidya [4]).

the stream description, and SymQL compiler optimization. The SC stores these pieces

of information in the following register files:

1. Stream Descriptor File (SDR): a 64×51-bit register file the SC uses to store

information about data streams. Data streams are stored in the SRF, and to

be able to run kernels on these streams, the Execution Engine needs to know

their start addresses in the SRF and their sizes. Each record in the SDR contains
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the start address, the end address, tuple size, and finally tuple count for each

stream. SDR layout is shown in Figure 2.7.

Fig. 2.7.: Stream Descriptor File (Courtesy of Vaidya [4]).

2. Kernel Descriptor File (KDR): a 64×50-bit register file the SC uses to store in-

formation about the kernel binaries stored in the Instruction Memory (IMEM).

Each entry in the KDR consists of the start address of the kernel in IMEM,

the kernel size, and five fields used to index the SDR to gather information

about the input and output streams in SRF. For example, if the query involves

processing of one input stream and two output streams, the Execution Engine

needs to know where the input stream in the SRF to read from and where to

store the results into. Figure 2.8 shows the layout of the KDR.

Fig. 2.8.: Kernel Descriptor File (Courtesy of Vaidya [4]).
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3. Offset Register File (ORF): a 64×5×64-bit register file that contains informa-

tion generated by the SymQL compiler to optimize the execution of the kernels.

The SC writes these values to OFFSET MEM register of the input and output

FIFOs before executing the kernel. Figure 2.9 shows the layout of the ORF.

Fig. 2.9.: Offset Register File (Courtesy of Vaidya [4]).

When the host processor commands the SCU to execute a query on a specific

stream, it first configures the SCU by writing the KDR register, then copies the

kernel binaries to the IMEM, and finally configures the ORF entries for that specific

KDR. This process is not time critical and needs to be done once per kernel. When a

data stream arrives to the host processor, the host processor first divides the streams

into windows, and then sends the SDRs specific for each window to the SC. The host

processor transfers the data stream of each window to the SRF, and commands the

SCU to run the kernel. Once the results are ready, the host processor reads the data

back.

To allow the SC to respond to the host processor’s commands while a kernel is

running, the SC contains a dedicated component named SC Kernel Run Monitor

(SC KRM) designed to configure the EU and monitor the progress of the kernel

execution. Once the SC KRM detects the completion of the kernel, it interrupts the

SCU and reports information related to the output stream(s).

As mentioned earlier, the SC interacts with multiple components of the SCU; as

a result, a communication interface named SC Transaction Interconnect (SCTX) is
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implemented. When the SC (and the SC KRM) communicates with its clients, it

asserts sc client txvalid signal specific to that client; the SC then sends a transaction

ID over sc client txid bus, and the command via sc client txcmd. If there is any

required data, it sends them over sc client txdata.

After the client finishes processing the command, it acknowledges the transaction

by asserting client sc resp ack signal; the transaction ID is also returned along with

any optional response data over client sc resp txid and client sc resp txdata buses.

Figure 2.10 shows the SCTX signals.

Fig. 2.10.: Stream Controller Transaction interface (SCTX) signals (Courtesy of

Vaidya [4]).

2.2.3 Command and Response FIFOs

Command/Response FIFOs act as staging units for communication between the

host processor and the SCU. Requests from the host processor over HT are routed

to the Command FIFO where they are staged until the Stream Controller is ready

to handle these requests. Once the SC has a response, the SC enqueues it in the
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Response FIFO to be read back by the host processor via HT RDE. Figure 2.11

shows the interface signals between SC and Command/Response FIFOs.

Fig. 2.11.: Interface signals between SC and Command/Response FIFOs

When a request from the host processor is queued in the Command FIFO, the

SC is notified via SC CMD VALID signal. If the SC can accept the data, it asserts

SC CMD ACCEPTED, and the Command FIFO dequeues and sends the data over

SC CMD lines.

Once the response is ready, the SC checks if FIFO CAN ACCEPT signal is as-

serted, which indicates the Response FIFO is not full; then the SC copies the response

data to FIFO WR DATA and asserts FIFO WR EN signal.

2.2.4 Stream Register File

The Stream Register File (SRF) is a multi-client memory system used by the SCU

to store input and output streams. Since the SRF is in the time critical data path,

it is optimized to allow double word reads and writes in one clock cycle by the host

processor.

The SRF consists of eight dual-port memory banks for a total of 512KB of storage.

Each bank contains two 32-bit internal banks, namely Even-Bank and Odd-Bank.
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This architecture allows for a dword data to be written or read in one clock cycle by

the host processor or the EU. Figure 2.12 shows a top-level SRF architecture.

Fig. 2.12.: Stream Register File (SRF) top-level architecture (Courtesy of

Vaidya [4]).

The SCU has a SIMD execution unit that can execute each instruction on eight

words per clock cycle; to take advantage of this capability, the stream tuples are

striped across the eight SRF banks as shown figure 2.13.

Fig. 2.13.: Organization of tuples in SRF (Courtesy of Vaidya [4]).
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2.3 SymQL Query Language

To take advantage of the SIMD-VLIW execution engine in the SCU, a dedicated

C-like procedural query language called SymQL [4] was developed. SymQL, like other

DSMSs query languages, supports the concept of schema, tuples, and input/output

streams.

Figure 2.1 shows a sample SymQL query for a filter operator. The keyword stream

is used to declare the schema of the data stream just like the keyword struct used to

define a data structure in C.

Query operators can be declared using the keyword kernel, and input and output

streams can be passed to the operator as arguments with defined keywords, input and

output, as shown on line 7 of Listing 2.1.

Listing 2.1: Filter Operator code in SymQL

1 stream STR TYPE{

2 int s e n s o r i d ;

3 int tank id ;

4 f loat pre s su r e ;

5 } ;

6

7 ke rne l f i l t e r k e r n e l ( input <STR TYPE> ip , output <STR TYPE> op )

8 {

9 while ( ! eos ( ip , op ) )

10 {

11 i f ( ip . p r e s su r e >= 100)

12 {

13 op . s e n s o r i d = ip . s e n s o r i d ;

14 op . tank id = ip . tank id ;

15 op . p r e s su r e = ip . p r e s su r e ;

16 }

17

18 }

19 } ;
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3. HARDWARE ARCHITECTURE

3.1 Introduction

In Chapter 2, we introduced the architecture of the Symbiote Coprocessing Unit

(SCU) and briefly described the components related to this study. The main job of

the SCU is to accelerate processing of data streams using its optimized hardware

execution engine. As a result, the SCU is complex, device specific, and heavily

dependent on the host processor. The major goal of the SCU redesign in this study is

to reduce complexity, increase flexibility, and move some of the intelligence from the

host processor to the proposed Stream Controller (SC) replacement while maintaining

the SCU’s high performance.

Due to the nature of the data streams, the schema of the tuples is relatively

persistent; only the data is changing rapidly. As a result, the data flow through

the SCU can be divided into two categories, time critical and non-time critical. Time

critical execution path consists of components that process the continuously changing

data in the streams, and thus, performance of these components must be optimized to

meet hard deadlines. On the other hand, the non-critical configuration path consists

of components used to configure the SCU. The configuration process does not happen

frequently, but only when the schema of tuples change; as a result, high performance

is not required for components in the configuration path. Figure 3.1 shows SCU’s

Configuration and Execution paths.

To maintain the current performance of the SCU, the proposed architecture im-

plements modifications in the configuration path, while the execution path remains

unchanged from the previous architecture.

In the previous design, the host processor interacts with the SCU over Hyper-

Transport (HT) interface, which limits the SCU usage to systems that only support
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Fig. 3.1.: SCU’s Execution and Configuration paths

this protocol. To overcome this limitation, the proposed architecture replaces the HT

with high performance PCI Express bus.

At configuration time, the host processor programs the SCU with DSMS queries.

Queries consist of one or multiple operators connected to provide the desired output.

Some of these operators require preprocessing of the data in the streams, for example,

aggregation operates on sorted data. Thus, the host processor sorts the data, then

stores them in the SCU’s SRF for processing. In some applications, reducing the data

handling by the host processor, providing flexibility on the data stream sources and

destinations, and offloading the data stream preprocessing can be beneficial. To pro-

vide these benefits, the proposed architecture replaces the hardware implementation

of the SC controller with a microprocessor, which allows code developers to add or

improve features easily.
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Figure 3.2 shows the new architecture for coprocessing unit. It contains three ma-

jor components, namely Stream Management Unit (SMU), Host Processor Interface

(HPI), and finally a Stream Processing Unit (SPU).

Fig. 3.2.: MicroBlaze-based coprocessing unit overall architecture

The SMU replaces the Stream Controller (SC) in the SCU architecture. It con-

sists of a MicroBlaze controller, Advanced eXtensible Interconnect (AXI) compatible

peripherals, and a Dispatch Unit.

To maintain the high performance of the SCU, the SPU uses the same SCU com-

ponents identified in the time critical path shown in Figure 3.1, namely Write Stripe
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Pipe, Read Stripe Pipe, Stream Register File, Input and Output FIFOs, Execution

Engine, Kernel Run Monitor, and lastly the Instruction Memory.

Host Processor Interface standardizes the communication between the host pro-

cessor and the co-processor, which removes the dependency on less popular protocol

or architecture. PCIe is used in this implementation as an interface; however, the

HPI is designed to work with other protocols.

This chapter first provides a brief introduction to MicroBlaze, AXI and PCIe in

Section 3.1. Section 3.2 introduces SMU and its components. Finally, Section 3.3

examines HPI and the PCIe implementation. SPU components were introduced in

Chapter 2.

3.1.1 Peripheral Component Interconnect Express (PCIe)

PCIe is a serial bidirectional computer expansion standard introduced by Intel in

2004, and represents a shift from PCI and PCIX parallel bus model. PCIe is based on

point-to-point topology, with dedicated physical connection between two PCIe devices

called Link. Each link contains one or more differential send and receive signal pairs,

each of which is called Lane. Third generation (Gen3) of PCIe is capable of handling

up to 2 GB/s per lane, and can support up to 32 lanes per link.

Figure 3.3 represents a simplified PCIe topology. At the top is the CPU, which

interfaces with PCIe structure via the Root Complex. PCIe devices are connected

to the Root Complex and can be one of three types, namely Switches, Bridges, and

Endpoints. Switches and bridges provide expansion capabilities either by allowing

more PCIe devices to connect to the Root Complex, or by providing interfaces to

other buses. Endpoint devices act as initiators or completers of transactions on the

PCIe bus.

PCIe devices contain multiple layers of abstraction as illustrated in Figure 3.4.

Device core layer implements the core functionality of the device. It provides re-

quests and responses to the Transaction Layer whose main responsibility is to create
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Fig. 3.3.: Example PCIe topology (Courtesy of Jackson and Budruk [8]).

Transaction Layer Packets (TLPs) on the transmit side and decodes TLPs on the re-

ceive side. Data Link Layer creates and decodes Data Link Layer Packets (DLLPs).

It is also responsible for Link error detection and correction. Physical Layer is re-

sponsible for creation and decoding of Ordered-Set packets, processing all three types

of packets (TLPs, DLLPs, and Ordered-Sets), and finally transmitting or receiving

packets over the physical lines.

PCIe standard supports 256 buses, each bus of which can contain up to 32 devices,

and each device contains up to eight functions. In order for CPU to discover all PCIe

devices, it reads a defined set of registers in every PCIe device called Configuration

Space. Figure 3.5 shows Configuration Space for endpoints and bridges [8].

PCIe devices expose their internal memory space via six registers called Base

Address Registers (BARs) as shown in Figure 3.5. Each BAR contains information

regarding its type and the size of memory it implements. The host processor reads
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Fig. 3.4.: PCIe device layers (Courtesy of Jackson and Budruk [8]).

Fig. 3.5.: PCIe configuration space (Courtesy of Jackson and Budruk [8]).
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the BAR configuration and assigns an address from its address space. Once each

BAR has a designated address, all read and write operations issued to that address

are routed to the PCIe device.

3.1.2 MicroBlaze

Xilinx MicroBlaze [6] is a 32-bit Reduced Instruction Set Computer (RISC) soft-

core processor designed for implementation in FPGAs. MicroBlaze is highly config-

urable, allowing designers to select specific features required by their design such as

memory management unit, peripherals, and bus architecture. The soft-core can be

optimized for size or for performance by changing the number of pipeline stages from

three to five. The overall MicroBlaze architecture is shown in Figure 3.6.

Fig. 3.6.: MicroBlaze architecture (Courtesy of XILINX [6]).
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3.1.3 Advanced eXtensible Interface (AXI)

Advanced eXtensible Interconnect is an open-standard on-chip bus architecture

first introduced by ARM in 2003 as part of ARM Advanced Microcontroller Bus

Architecture (AMBA) family. AMBA AXI4 was introduced in 2010 and is widely

used today in microcontrollers, FPGAs, and System-on-Chip (SoC) designs.

AXI4 defines three types of interfaces, which address different design needs:

� AXI4 is used for memory-mapped high performance designs.

� AXI4-Lite is used for low-throughput memory-mapped communication.

� AXI4-Stream is used for high-speed, high-throughput streaming data.

Memory-mapped AXI can be described as an interface between an AXI master

and an AXI slave components. In order for multiple masters and slaves to connect, a

structure called Interconnect block is used. The Interconnect block contains an AXI

master and AXI slave interfaces and acts as a transaction’s router between multiple

AXI masters and slaves. Figure 3.7 shows multiple AXI masters and slaves connected

via an AXI interconnect.

Fig. 3.7.: AXI interconnect

The interface between the AXI4 (or AXI4-Lite) master and slave consists of five

different channels, namely Read and Write Address Channels, Read and Write Data
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Channels, and finally the Write Response Channel. To be able to support simul-

taneous bidirectional data transfer, AXI4 (and AXI4-Lite) provides individual data

and address channels. Figure 3.8 and Figure 3.9 show AXI4 Read and Write channel

architectures, respectively.

Fig. 3.8.: AXI read channel (Courtesy of XILINX [9]).

Fig. 3.9.: AXI write channel (Courtesy of XILINX [9]).
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AXI4 and AXI4-Lite interfaces are used as the main interconnects between pe-

ripherals and MicroBlaze in the SMU design described in Section 3.2.

3.2 Stream Management Unit (SMU)

3.2.1 MicroBlaze Subsystem

At the core of the SMU lies the MicroBlaze, a 32-bit RISC microcontroller that

runs at 125MHz with 32KB instruction and data caches, 1MB of local memory,

and can access up to 4GB of DDR3 RAM. Furthermore, the MicroBlaze subsys-

tem contains standard and application specific AXI4 memory mapped peripherals,

namely a Direct Memory Access (DMA), Interrupt Controller, A Universal Asyn-

chronous Reciever/Transmitter (UART), Kernel Run Monitor Interface (KRM IF),

Command/Response FIFO Interface (CRFIFO IF), Dispatch Unit (DU), and an In-

struction Memory Interface (IMEM IF). Figure 3.10 shows the MicroBlaze subsystem

components.

Fig. 3.10.: MicroBlaze subsystem components
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The MicroBlaze accesses the peripherals and memories using two AXI4 buses,

namely AXI4-lite for configurations and AXI4 for high throughput memory access.

As mentioned in Section 3.1.3, AXI4 is defined as a point to point interface between

an AXI4 master and an AXI4 slave. To connect multiple masters and slaves, an

AXI4 interconnect is used. The MicroBlaze subsystem contains two Xilinx AXI4

Interconnects [10], namely Peripherals Interconnect and Memory Interconnect.

The Peripherals Interconnect, connects the MicroBlaze’s AX4-lite bus to the fol-

lowing peripherals for configuration:

1. Xilinx Central Direct Memory Access (CDMA) [11]: it allows the Microblaze

to configure DMA transfers, enable or disable interrupts, and provides transfer

status.

2. Xilinx Interrupt controller [12]: it allows the MicroBlaze to manage system

interrupts.

3. Xilinx UART Lite [13]: it provides debugging and testing capabilities.

4. Kernel Run Monitor Interface: it allows the MicroBlaze to run and monitor the

Execution Engine in the SPU.

5. Instruction Memory Interface: it provides the MicroBlaze with read and write

access to kernel binaries stored in SPU’s Instruction Memory.

6. Command/Response FIFO Interface: it allows the MicroBlaze to communicate

with the host processor.

7. Dispatch Unit: it allows the MicroBlaze to configure the sources and destina-

tions of the data streams.

The AXI4 Memory bus has two masters, namely the MicroBlaze and the DMA.

They are connected to the following memories:

1. Local DDR3 RAM via Xilinx Memory Interface Generator [14].
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2. KRM IF 4KB local memory. Described in more detail in Section 3.2.2.

3. Stream Register File 512KB memory, via DU. Described in more detail in Sec-

tion 3.2.5

Figure 3.11 shows the MicroBlaze subsystem implementation using Xilinx Vivado

[15].

The following sections describe the application specific peripherals designed in this

study. Section 3.2.2 covers the Kernel Run Monitor Interface, Section 3.2.3 describes

the Instruction Memory Interface, Section 3.2.4 covers Command/Response FIFO

Interface, and lastly Section 3.2.5 describes the Dispatch Unit.

3.2.2 Kernel Run Monitor Interface (KRM IF)

KRM IF is an AXI4 peripheral that allows the MicroBlaze to trigger execution

of kernels via Kernel Run Monitor in the SPU. Furthermore, KRM IF contains a

4KB memory space to store Kernel Descriptor File (KDR), Stream Descriptor File

(SDR), and Offset Register File (ORF). Figure 3.12 shows the overall architecture of

the KRM IF.

The MicroBlaze interfaces with the KRM IF using two AXI4 buses, namely, AXI4-

lite and AXI4. The MicroBlaze uses AXI4-lite to trigger execution of specific kernel,

and to read the KRM IF status via a set of 32-bit memory mapped registers as

shown in Table 3.1. To access KRM IF’s internal memory, the MicroBlaze uses the

high throughput AXI4 bus. Figure 3.13 illustrates the KRM IF internal memory

map.

The host processor triggers the execution of a specific kernel by sending Run

Kernel command to the SMU along with the kernel ID. The SMU must decode and

execute this command as fast as possible to maintain the overall high performance of

the coprocessor unit.

The KRM IF architecture provides the MircoBlaze with fast access to SDR, KDR,

and ORF at configuration time. Furthermore, due to the low latency access to con-
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Fig. 3.12.: Kernel Run Monitor Interface (KRM IF) architecture

Table 3.1.: KRM IF registers

OFFSET Register Description

00h KRM CONF KRM IF configuration register

04h KRM STATE KRM State

08h KRM EXC L Lower 32 bits of Kernel Execution Time

0Ch KRM EXC H Upper 32 bits of Kernel Execution Time

figuration data stored in its local memory, KRM IF minimizes the time required to

configure the SPU’s Kernel Run Monitor (KRM) at execution time.

To execute a specific kernel, the MicroBlaze writes the Kernel ID to KRM CONF

register, enables the interrupt, and finally triggers the kernel execution by asserting

the Run Kernel bit. Table 3.2 illustrates KRM CONF register.

KRM IF contains a simple finite state machine to configure the KRM and trigger

kernel execution as shown in Figure 3.14. When the KRM IF receives the run kernel

signal along with the kernel ID, it performs the following tasks:
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Fig. 3.13.: Kernel Run Monitor IF (KRM IF) internal memory map

1. Indexes local memory for the corresponding KDR and sends it to the KRM.

2. Indexes local memory for kernel specific attribute and sends it to the KRM.
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Table 3.2.: Kernel Run Monitor Interface Configuration (KRM CONF) register

description

Bit Field Value Description

0-5 ID 0 - 0x3F Kernel ID

6 Run Kernel 1 Write: Trigger Kernel Execution

0 Write: Write 0 to this bit has no effect

7 INT EN 0 Read: Interrupt is disabled

Write: Write 0 to this bit has no effect

1 Read: Interrupt is enabled

Write: Enable Interrupt

3. Indexes local memory for kernel specific SDRs, and sends these SDRs to the

KRM.

4. Indexes local memory for kernel specific ORFs, and sends them to the KRM.

5. Triggers the KRM to execute the specified kernel.

When the EU finishes execution of the kernel, the KRM IF performs the following

tasks:

1. Read kernel execution time from KRM.

2. Reads output stream’s SDRs and updates local memory.

3. Releases the Execution Engine.

3.2.3 Instruction Memory Interface (IMEM IF)

Instruction Memory Interface (IMEM IF) provides the MicroBlaze with read and

write access to kernel binaries stored in IMEM. IMEM IF maps SCU specific Stream
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Fig. 3.14.: Kernel Run Monitor (KRM IF) finite state machine
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Controller Interconnect (SCTX) used by IMEM to industry standard AXI4-Lite inter-

connect via a set of 32-bit memory-mapped registers. Figure 3.15 illustrates IMEM IF

input and output signals and Table 3.3 shows IMEM IF registers.

Fig. 3.15.: Instruction Memory Interface (IMEM IF) input and output signals

Table 3.3.: IMEM IF registers

OFFSET Register Description

00h IMEM RESP TXDATA L Lower 32 bits of IMEM RESP TXDATA[63:0]

04h IMEM RESP TXDATA H Upper 32 bits of IMEM RESP TXDATA[63:0]

08h IMEM REQ TXDATA L Lower 32 bits of IMEM REQ TXDATA[63:0]

0Ch IMEM REQ TXDATA H Upper 32 bits of IMEM REQ TXDATA[63:0]

10h IMEM REQ CNTRL Instruction Memory Request Control

14h IMEM RESP STAT Instruction Memory Response Status

KRM IF allows the MicroBlaze to send SCTX transactions to IMEM. Each request

transaction contains 64-bit data, transaction ID, and a command. The MicroBlaze
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uses registers IMEM REQ TXDATA L and IMEM REQ TXDATA H for transaction

data, and IMEM REQ CNTRL for transaction ID and command. Figure 3.16 and

Table 3.4 illustrate the IMEM REQ CNTRL register.

To send a request transaction to IMEM, the MicroBlaze sets bit TXVALID in

IMEM REQ CNTRL and monitors bit TXACK in IMEM RESP STAT register, this

bit indicates when the IMEM IF receives a response from IMEM. Each response

contains the same transaction ID sent with the request, and may contain response

data.

The MicroBlaze accesses the response data by first setting RD EN bit in reg-

ister IMEM REQ CNTRL, and then reading a 64-bit response data via registers

IMEM RESP TXDATA L and IMEM RESP TXDATA H.

IMEM contains two internal buffers, namely the Request Buffer and the Response

Buffer. KRM IF exposes the status of these buffers to the MicroBlaze. Software

running on the MicroBlaze must ensure the Request Buffer is not full before sending

new request, and must monitor the Response Buffer status to know when response

data is available. Figure 3.17 and Table 3.5 illustrate IMEM RESP STAT register.

Fig. 3.16.: Instruction Memory Request Control (IMEM REQ CNTRL) register

[offset = 10h]
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Table 3.4.: Instruction memory Request Control (IMEM REQ CNTRL) register

field description

Bit Field Value Description

0 TXVALID 0 Read: No IMEM request active

Write: Write 0 to this bit has no effect

1 Read: IMEM request active

Write: Send request to IMEM

1 RD EN 0 Read: No IMEM read active

Write: Write 0 to this bit has no effect

1 Read: IMEM read request active

Write: Read DWORD from IMEM

8 - 15 REQ WR TXID 0 - 0xFF Read: Current or last transaction ID

Write: Transaction ID for current request

16 - 23 REQ TX CMD 0 - 0xFF Read: Current or last request command

Write: Command for current request

IMEM IF contains logic to assert IMEM REQ TXVALID and IMEM RD EN sig-

nals for exactly one clock cycle to ensure synchronization and prevent multiple reads

or writes of the same data.

3.2.4 Command - Response FIFO Interface (CRFIFO IF)

Command/Response FIFO Interface (CRFIFO IF) is a memory-mapped AXI4-

lite peripheral that provides the MicroBlaze with access to commands and data

queued in the Command/Response FIFOs via a set of 32-bit registers. Figure 3.18

shows the block diagram of the CRFIFO IF and Table 3.6 shows CRFIFO IF regis-

ters.
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Fig. 3.17.: Instruction Memory Response Status (IMEM RESP STAT) register

[offset = 14h]

Fig. 3.18.: Command/Response FIFO Interface (CRFIFO IF) input/output signals

CRFIFO IF maps the commands sent by the host processor to two 32-bit read only

registers. It maps the lower 32 bits of FIFO CMD [63:0] to FIFO CMD L while the

upper 32 bits to FIFO CMD H. The MicroBlaze can send response to the host proces-

sor by writing the response data to FIFO WR DATA L FIFO WR DATA H registers,

and CRFIFO IF then combines the registers to produce FIFO WRITE DATA.
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Table 3.5.: Instruction memory Response Status (IMEM RESP STAT) register field

description

Bit Field Value Description

0 REQ FULL 0 Read: Request buffer is not full

Write: Not allowed

1 Read: Request buffer is full

Write: Not allowed

1 RESP FULL 0 Read: Response buffer is not full

Write: Not allowed

1 Read: Response buffer is full

Write: Not allowed

2 TXACK 0 Read: Request not accepted by IMEM

Write: Not allowed

1 Read: Request accepted by IMEM

Write: Not allowed

8 - 15 REQ TXID 0 - 0xFF Read: Last accepted request ID

Write: Not allowed

Furthermore, CRFIFO IF maps configuration and status signals, namely RD FIFO,

FIFO WRITE EN, and FIFO CAN ACPT, to the FIFO CNFG STAT register as

shown in Figure 3.19 and Table 3.7.

When new data arrives in the Command FIFO, CRFIFO IF interrupts the Mi-

croBlaze by asserting CMD Interrupt signal. The MicroBlaze reads FIFO CMD L

and FIFO CMD H, and then asserts CMD ACCEPTED bit in FIFO CNFG STAT

register to allow for next command to be dequeued.
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Table 3.6.: CRFIFO IF registers

OFFSET Register Description

00h FIFO CMD L Lower 32 bits of FIFO CMD[63:0]

04h FIFO CMD H Upper 32 bits of FIFO CMD[63:0]

08h FIFO WR DATA L Lower 32 bits of FIFO WRITE DATA [63:0]

0Ch FIFO WR DATA H Upper 32 bits of FIFO WRITE DATA [63:0]

10h FIFO CNFG STAT FIFO Configuration and Status

Fig. 3.19.: FIFO CNFG STAT [offset = 10h] register

Software running on the MicroBlaze must first check if the response FIFO can

accept response data, then copies the response data to FIFO WR DATA L and

FIFO WR DATA H registers, and finally asserts FIFO WR EN bit.

CRFIFO IF asserts FIFO CMD ACCEPTED and FIFO WRITE EN signals for

exactly one clock cycle to ensure synchronization and prevent FIFO overrun.
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Table 3.7.: FIFO Configuration and Status (FIFO CNFG STAT) register field

description

Bit Field Value Description

0 RD FIFO 0 Read: Command FIFO can accept request

Write: Write 0 to this bit has no effect

1 Read: Command FIFO is busy

Write: Read next DWord from Command FIFO

1 FIFO WR EN 0 Read: No write request issued to Response FIFO

Write: Write 0 to this bit has no effect

1 Read: Response FIFO is busy

Write: Write DWord to Response FIFO

2 INT EN 0 Read: Interrupt is disabled

Write: Write 0 to this bit has no effect

1 Read: Interrupt is enabled

Write: Enable Interrupt

24 FIFO CAN ACPT 0 Read: Response FIFO is full

Write: Not allowed

1 Read: Response FIFO can accept write requests

Write: Not allowed

3.2.5 Dispatch Unit (DU)

Figure 3.20 illustrates the Dispatch Unit (DU) architecture. The (DU) serves two

purposes. First, it provides the Host Processor Interface (HPI) with standardized

interconnect. Second, it exposes the SPU address space to the MicroBlaze. The

DU consists of four major components, namely HTRDE, HTWRE, Stream Router

(SR), and AXI4 Transaction Converter (AXITC). HTRDE and HTWRE provide read

and write accesses to SPU internal memory space. These are the same components
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used in the previous SCU architecture and covered in Chapter 2. The SR allows the

MicroBlaze to choose the source of the input streams, either the host processor or the

local RAM memory. Similarly, the MicroBlaze can configure the destination of the

output streams to be the host processor or the RAM. The AXITC converts AXI4 read

and write transactions to HTRDE and HTWRE specific transactions, respectively.

Fig. 3.20.: Dispatch Unit (DU) architecture.

The SR contains one 32-bit memory-mapped register called Dispatch Unit Con-

figuration (DU CONF) register. The MicroBlaze accesses this register over AXI4-lite

interface, and uses it to configure the DU. Table 3.8 illustrates the DU CONF register.

If the application requires the source of input streams and destination of output

streams to be the host processor, the DU does not need to be configured by the

MicroBlaze as this is the default DU settings. The host processor can access HT RDX

and HT WRX clients directly.

The DU provides a high throughput AXI4 interface which allows fast and efficient

data transfer from and to the local RAM. AXI4 bus is capable of burst transaction [7],
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Table 3.8.: Dispatch Unit Configuration (DU CONF) register description

Bit Field Value Description

0-7 WSP SIZE 0 - 0xFF Write Strip Size in number of attributes

8-15 RSP SIZE 0 - 0xFF Read Strip Size in number of attributes

16 CONF WSP 0 Read: WSP ready for configuration

Write: Write 0 to this bit has no effect

1 Read: Configuration of WSP is in progress

Write: Configure WSP

17 CONF RSP 0 Read: RSP ready for configuration

Write: Write 0 to this bit has no effect

1 Read: Configuration of RSP is in progress

Write: Configure RSP

18 IN SRC 0 Read: Input stream source is host processor

Write: Sets input stream source to host processor

1 Read: Input stream source is DMA

Write: Sets input stream source to DMA

19 OUT DEST 0 Read: Output stream destination is host processor

Write: Sets Output stream destination to host processor

1 Read: Output stream destination is DMA

Write: Sets output stream destination to DMA

where each transaction contains up to 256, 64-bit data payload. Since the MicroBlaze

has a 32-bit data bus, reading or writing a Dword requires two transfers. To overcome

this limitation, the DU is connected to a DMA with 64-bit data bus instead.

The DU architecture exposes only the SRF to the DMA. The MicroBlaze must

first configure the WSP in case of write to SRF, or the RSP in case of read from SRF

before initiating a DMA transfer. To configure the WSP, the MicroBlaze writes
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the stream’s tuple size (number of attributes per tuple) to WSP SIZE in DU CONF

register. Similarly, The MicroBlaze configures the RSP by writing the stream’s tuple

size to RSP SIZE bits.

To better explain the architecture of the DU, we provide the following two exam-

ples.

Example 1 Output stream destination is UART

Suppose we have an application where the host processor provides two input streams,

and requires the output stream to be sent over a UART to an external display. The

MicroBlaze must first set the source of input streams to the host processor, and the

destination of the output stream to its local DDR3 RAM. After the kernel execution is

completed, the MicroBlaze reads the SDR for the output stream. The SDR contains

the stream start address in SRF, the tuple size, and the tuple count. The MicroBlaze

uses the information provided by the SDR to configure the RSP with the tuple size,

and the DMA with source address in the SRF, destination address in the RAM, and

the number of bytes to transfer. Once the DMA finishes the transfer, the MicroBlaze

sends the output stream from its local RAM to the external display over UART.

Example 2 Input stream source is Ethernet

Suppose the source of input stream is the MicroBlazes ethernet port and the destina-

tion of the output stream is the host processor. First, the MicroBlaze sets the source

of input streams to Local RAM and the destination of output streams to the host

processor. As the ethernet port copies new data streams to the local RAM, the Mi-

croBlaze divides the data streams in RAM into windows. After that, the MicroBlaze

configures the WSP with the number of attributes in each tuple, the DMA with start

address in RAM, destination address in SRF, and the byte count. The DMA trans-

fers the input stream tuples to SRF and notifies the MicroBlaze when the transfer is

finished. Finally, The MicroBlaze triggers the kernel execution and notifies the host

processor when the output stream is ready to be read from SRF via PCIe bus. The

hardware architecture of this example is covered in Section 6.2.1
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3.2.6 Host Processor Interface (HPI)

Figure 3.21 illustrates the architecture of the HPI. It contains two components,

namely Dispatch Unit Interface (DU IF), and Xilinx PCIe Integrated Block [16].

Fig. 3.21.: Host Processor Interface (HPI) architecture

To eliminate dependency on the host interface protocol, the DU IF maps the PCIe

signals to Dispatch Unit compatible interface. As a result, future host interfaces can

be easily integrated without modifying internal components of the MicroBlaze-based

coprocessor.

The Third Generation (Gen3) of PCIe supports bit rate of 8GT/s using 128b/130b

encoding [8]. The total bidirectional bandwidth is 2GB/s per lane. PCIe can support

32 lanes per link for a total of 64GB/s.

Due to SCU’s internal propagation delay, the max frequency it can operate at is

125MHz [4]. To stay compatible with the SCU’s data width of 64-bit, Gen3 PCIe can

have one lane at that frequency.

As mentioned in Section 3.1.1, PCIe devices expose their internal memory space

via six 32-bit registers called Base Address Registers (BARs). Each BAR can ad-
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Table 3.9.: PCIe Endpoint BAR configuration

BAR Addressable Space Usage

0,1 16KB Command/Response FIFO

2,3 512KB Stream Register File

4,5 512KB Reserved for second Stream Register File

dress up to 4GB of memory space. To be able to support 64-bit addressing used by

most current computers, two BARs can be combined. Table 3.9 illustrates the PCIe

endpoint BAR configuration for this study.
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4. SOFTWARE ARCHITECTURE

In Chapter 3 we described the hardware architecture of the MicroBlaze-based data

stream coprocessor. One of the study objectives is to reduce the complexity of the

finite state machine that runs the SCU by using software implementation instead of

hardware.

The coprocessor is designed to accelerate processing of data streams by offload-

ing the data and computation intensive tasks from the main CPU. To utilize the

coprocessor, the CPU must first configure it. After configuration is finished, the host

processor loads the coprocessor with the input stream(s), triggers query execution

and finally reads back the output stream(s) from the coprocessor. Configuration only

happens when the query to be executed or the description of the streams is changed.

Figure 4.1 illustrates stream processing sequence.

Configuring the coprocessor consists of providing the Stream Management Unit

(SMU) information about the data streams both input and output, also information

describing the kernel to be executed on these streams. For each stream (input or

output) the SMU needs to know the location of the data in the Stream Register File

(SRF), the schema of the tuples, and the size of the stream. In order for the SMU

to execute kernels, it first needs to know the kernel configuration, which consists of

the kernel ID, location of the kernel binaries in the instruction memory, size of the

kernel, and finally the kernel’s input and output streams.

Once the kernel information is provided to the SMU, the kernel binaries can be

copied to the instruction memory. Kernel binaries consist of instructions, constants

used in the query, and compiler optimizations specific to the kernel. Figure 4.2

illustrates SMU configuration sequence.

The coprocessor’s internal stream storage is exposed to the host processor over

PCIe. The host processor can read and write the SRF without interaction with the
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Fig. 4.1.: Stream processing sequence

coprocessor’s SMU. Once stream data are copied, the host processor triggers execution

of a kernel.

The host processor triggers kernel execution by sending a run kernel command

containing kernel ID. Once the SMU receives the command, it configures the Execu-

tion Engine (EU) via Kernel Run Monitor Interface (KRM IF). Kernel information

stored in the KRM IF is copied to the Kernel Run Monitor (KRM) along with input

and output stream’s configurations related to the identified kernel. Finally, SMU

issues a run kernel command to KRM and waits for execution to be completed. After

kernel execution is finished, the host processor is notified and results are read back.

Figure 4.3 illustrates the proposed software architecture to configure and run the

coprocessor. It consists of a main software component called Stream Manager (SM),

peripheral drivers, namely Kernel Run Monitor driver, Instruction Memory driver,

Command/Response FIFO driver, and Dispatch Unit driver. These software drivers

provide the SM with access to hardware components in the Stream Processing Unit
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Fig. 4.2.: SMU configuration sequence

(SPU). The architecture also contains an Interrupt Controller to handle interrupts

and a Register Access component with a UART driver for software debugging and

testing.

The software execution is driven by two interrupts, specifically KRM Interrupt

(KRM Int) and Command/Response FIFO’s Interrupt (CRFIFOs Int). KRM Int in-

terrupts the SM after the EU finishes kernel; KRM INT is configured as Fast Interrupt

and the highest priority. CRFIFOs Int notifies the SM when new data is available

from the host processor in the Command/Response FIFOs.
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Fig. 4.3.: SMU software architecture

In this chapter, we first describe the software drivers in Section 4.1, and then

Section 4.2 describes the SM and its state machine.

4.1 Software Drivers

4.1.1 Kernel Run Monitor Software Driver

KRM software driver allows the SM to configure the KRM hardware compo-

nent via KRM IF peripheral. It provides the SM with five functions, namely En-

able Interrupt, Disable Interrupt, Read Kernel Execution Time, Get KRM State, and

finally Run Kernel. Enabling and disabling the KRM Int is accomplished by asserting

or resetting the INT EN bit in KRM CONF register. The Get KRM State method

reads the KRM STATE bits in KRM STATE register and returns it to the SM.

The main function of the KRM driver is to trigger kernel execution in the EU.

Run Kernel function sets the kernel ID and asserts the Run Kernel bit in KRM CONF

register. Once execution is completed, the Read Kernel Execution Time function

combines KRM EXC L and KRM EXC H registers and returns execution time in

clock cycles.
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Figure 4.4 shows the flowchart Run Kernel function.

Fig. 4.4.: KRM Run Kernel function flowchart

4.1.2 Instruction Memory Interface Software Driver

IMEM interface software driver provides the SM with methods to read and write

binaries to the Instruction Memory via IMEM IF peripheral. It abstracts reading and

writing to both instruction and constant memory arrays, also, handling the status

signals. Figure 4.5 illustrates the flowchart for writing to IMEM. The IMEM driver

first configures the IMEM with the number of instructions and the start address; it

then starts copying the binaries to IMEM. The same procedure also applies to writing

constants.

The IMEM driver reads kernel binaries by first configuring the IMEM for read

operation with start address and number of instructions. It then checks if the IMEM
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Fig. 4.5.: Write IMEM flowchart

response buffers are not empty, and finally setting the read enable bit. Reading from

IMEM is implemented for debugging purposes only.

4.1.3 Command/Response FIFO Software Driver

The SM communicates with the host processor via CRFIFO IF. CRFIFO software

driver provides SM with methods to receive host processor commands, and to reply

with data if requested.
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CRFIFO driver interrupts (if enabled) the SM when new commands or data are

received by the Command FIFO. Once the SM reads the command, the driver sets

the read FIFO (RD FIFO) bit in FIFO CONFIG STAT register to de-queue the next

set of data if available.

When the SM sends data to the host processor, the CRFIFO driver first checks if

the Response FIFO is not full, and then copies the data and asserts the write enable

signal. Figure 4.6 illustrates the read and write operations of the CRFIFO driver.

Fig. 4.6.: CRFIFO read and write flowchart

4.1.4 Dispatch Unit Software Driver

Dispatch Unit (DU) software driver exposes the SPU’s internal memory to the SM.

Data can be read and written by the SM through two methods, namely WriteMemory

and ReadMemory. Furthermore, the driver allows SM to control the source of the

input streams and the destination of the output streams.
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Since the DU is connected to the DMA, the DU driver configures the DMA before

moving data between the SRF and the local RAM. Figure 4.7 illustrates the flowchart

for DU’s driver WriteMemory method. SM provides the source address in RAM, the

destination address in SRF, the tuple size, and the number of tuples in the stream.

WriteMemory first sets the input stream source in the DU CONF register to DMA,

writes the tuple size to WSP SIZE bits and asserts bit CONF WSP bit. Finally,

WriteMemory function configures the DMA and initiates the transfer.

Fig. 4.7.: DU WriteMemory flowchart

ReadingMemory sets the output stream destination to DMA, and then configures

the RSP by setting the RSP SIZE and asserting CONF RSP bit. Finally, it configures

the DMA with source address in SRF, destination address in RAM, and transfer size

in bytes. ReadMemory method is illustrated in Figure 4.8.
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Fig. 4.8.: DU ReadMemory flowchart

DU driver allows the SM to choose the source of input streams and the destination

of output streams by calling SetStreamSource and SetStreamDestination methods, re-

spectively. SetStreamSource sets the source of input streams to the DMA by asserting

IN SRC bit in DU CONF register. SetStreamDestination sets the destination of the

output streams to the DMA by asserting OUT SRC bit in DU CONF register. Input

stream’s source, and output stream’s destination are set to the host processor by

default.
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4.2 Stream Manager

Stream Manager is the main software component; it contains the state machine

that controls the coprocessor. Furthermore, SM stores information related to streams

and kernels, namely SRD, KDR, and ORF. These registers are logically stored in

software arrays, but the physical memory is located in the KRM IF.

Figure 4.9 illustrates SM’s state machine. At start up, the SM waits in idle state

until a new command is received from the host processor. The command is then

decoded and SM moves to the corresponding state. The commands supported by SM

are as follows:

Fig. 4.9.: Stream Manager (SM) state machine

1. Write Stream Descriptor File (SDR): it contains information related to input

and output streams such as, stream ID, stream start address in SRF, tuple

count, and tuple size. SM stores SDRs in a 64×64-bit array.
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2. Read Stream Descriptor File: SM decodes the stream ID, and then fetches the

SDR value from SDR’s array.

3. Configure Kernel: it contains Kernel Descriptor File (KDR), kernel constants,

kernel instructions, and compiler optimizations. KDRs are stored in a 64×64-bit

array.

4. Read Kernel: SM decodes the kernel ID, and then fetches the corresponding

KDR from KDR’s array, finally reads binaries from IMEM and sends them back

to the host processor.

5. Run Kernel: SM triggers the execution of the kernel by the EU via KRM IF.

In the processing command state, the 64-bit command from the host processor

is decoded. Read and write SDR commands are processed immediately. The other

commands are processed in their corresponding states. Configure kernel state contains

the state machine illustrated in Figure 4.10.

Read kernel state consists of reading kernel binaries and constants from IMEM.

The offset buffers are read from offset arrays, and finally the data is sent to the

host processor via the Response FIFO. Read kernel command is used for debugging

purposes only.

Run kernel state consists of triggering the KRM IF to configure and run a specific

kernel. When the kernel execution is finished, an interrupt is generated and the SM

acknowledges and releases the KRM.

One of the SM’s main responsibilities is to manage information related to streams

and kernels, for example KDR and SDR. The SM stores such information in software

arrays, for easy access and management. However, these arrays must be stored in

KRM IF physical memory to correctly configure the EU. Software application must

ensure the correct placement of KDR, SDR, and ORF registers in KRM IF memory.

The following example illustrates a sample placement of these registers.
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Fig. 4.10.: Configure Kernel state machine

Example 3 SDR, KDR, and ORF placement in KRM IF local memory

Suppose the KRM IF memory is allocated from 0xC0000000 to 0xC0000FFF in

the MicroBlaze 4GB address space. The software application must ensure the SDR,

KDR, and ORFs are stored in the KRM IF address range by modifying the linker

script file. The KRM IF memory must be defined first; then a memory section is

declared. Listing 4.1 illustrates defining memory and declaring sections in MicroBlaze

linker script file.

Listing 4.1: Defining memory and sections in MicroBlaze linker script file

1 /* Def ine Memories in the system */

2



58

3 MEMORY

4 {

5 mi g 7 s e r i e s 0 : ORIGIN = 0x80000000 , LENGTH = 0x40000000

6 KRM IF : ORIGIN = 0xC0000000 , LENGTH = 0x00001000

7 }

8

9 /* Dec la r ing Memory Sec t i on */

10

11 . Sec1 : {

12 * ( . Sec1 )

13 }> KRM IF

After the KRM IF memory is defined and new section is declared in the linker

script file, the software application must explicitly place SDR, KDR, ORF arrays in

the defined section. Listing 4.2 shows how to place arrays in KRM IF memory.

Listing 4.2: Placing arrays in KRM IF local memory

1 // Ass i gn ing arrays to KRM IF l o c a l Memory

2 v o l a t i l e u64 mau64 KDRMEM[ 6 4 ] a t t r i b u t e ( ( s e c t i o n ( ” . Sec1” ) ) ) ;

3 v o l a t i l e u64 mau64 AttrMEM [ 6 4 ] a t t r i b u t e ( ( s e c t i o n ( ” . Sec1” ) ) ) ;

4 v o l a t i l e u64 mau64 SDRMEM[ 6 4 ] a t t r i b u t e ( ( s e c t i o n ( ” . Sec1” ) ) ) ;

5 v o l a t i l e u64 mau64 IPF0 offMEM [ 6 4 ] a t t r i b u t e ( ( s e c t i o n ( ” . Sec1” ) ) ) ;

6 v o l a t i l e u64 mau64 IPF1 offMEM [ 6 4 ] a t t r i b u t e ( ( s e c t i o n ( ” . Sec1” ) ) ) ;

7 v o l a t i l e u64 mau64 OPF0 offMEM [ 6 4 ] a t t r i b u t e ( ( s e c t i o n ( ” . Sec1” ) ) ) ;

8 v o l a t i l e u64 mau64 OPF1 offMEM [ 6 4 ] a t t r i b u t e ( ( s e c t i o n ( ” . Sec1” ) ) ) ;

9 v o l a t i l e u64 mau64 OPF2 offMEM [ 6 4 ] a t t r i b u t e ( ( s e c t i o n ( ” . Sec” ) ) ) ;
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5. EXPERIMENTATION AND RESULTS

To compare the performance of the MicroBlaze-based coprocessor against the Sym-

biote Coprocessor Unit (SCU), the MicroBlaze-based hardware architecture is syn-

thesized and implemented on Xilinx Virtex-7 XC7VX690T FPGA [17] using Xilinx

VC709 [18] Evaluation Board. Table 5.1 shows the resource utilization percentage of

the MicroBlaze-based coprocessor indicating that the XC7VX690T FPGA has enough

resources for future work.

Table 5.1.: Synthesis results

Resource % Utilization

Slice Registers 15.00

Slice LUT 32.42

Memory LUT 8.56

Block RAM 18.10

DSP48 2.83

In this chapter we first describe the testbench setup used to evaluate the pro-

posed design, and then we compare the performance of MicroBlaze-based coprocessor

against the SCU.

5.1 Testbench Setup

Figure 5.1 shows the block diagram of Xilinx VC709 evaluation board used for

the experiments. The VC709 evaluation board contains a Virtex-7 XC7VX690T with
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52,920 Kb Block RAM and 433,200 LUTs. The Virtex-7 is connected to the test

computer through a PCI Express edge connector. Test results and debug information

are sent to the test computer via the USB to UART bridge.

Fig. 5.1.: Xilinx VC709 evaluation board block diagram (Courtesy of XILINX [18]).

The test computer runs test software that configures the Stream Management Unit

(SMU), writes input streams to Stream Register File (SRF), triggers kernel execution,

and finally reads the output streams from SRF.

To measure kernel execution times accurately, an AXI4 hardware timer is added to

the MicroBlaze-based coprocessor. The timer starts counting when the SMU receives

Run Kernel command and stops when KRM interrupt is handled and the Execution

Engine is free to process the next stream. The SMU transmits the measured execution

times to the test computer using its USB port. Figure 5.2 shows the testbench setup.
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Fig. 5.2.: Testbench setup

5.2 Performance Comparison

5.2.1 Kernel Execution Performance

To compare the performance of the MicroBlaze-based coprocessor against the

SCU, three queries, namely map(n), filter(n), and aggregate(n) were executed; the

execution time measured by the hardware timer is collected and compared to the
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reported [4] execution time of the SCU on the same queries. Table 5.2 and Table

5.3 show comparison of execution time (in milliseconds) for the three queries on two

different window sizes.

Table 5.2.: Kernel execution time for various operators on 4096 tuples window size

Query SCU MicroBlaze-based Coprocessor

(msec) (msec)

map(4096) 0.258 0.267

filter(4096) 0.531 0.540

aggregate(4096) 0.258 0.267

Table 5.3.: Kernel execution time for various operators on 16384 tuples window size

Query SCU MicroBlaze-based Coprocessor

(msec) (msec)

map(16384) 1.013 1.022

filter(16384) 2.082 2.091

aggregate(16384) 0.841 0.850

The MicoBlaze-based coprocessor takes on average 9 microseconds longer than

the SCU to execute the queries independent of the query, or the window sizes. The

delay is due to the handling of KRM interrupt by the MicroBlaze.
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5.2.2 PCIe Bandwidth

To measure the PCIe bandwidth, the test software writes 512KB of data to the

SRF and reads them back. The time is measured, and the derived average bandwidth

in this particular system setup is 796 MB/s.



64

6. SUMMARY

6.1 Thesis Conclusions

This study has proposed and implemented three modifications to the Symbiote

Coprocessor Unit (SCU). First, the hardware implementation of the Stream Con-

troller was replaced with a soft-core microcontroller, namely MicroBlaze. Second,

HyperTransport host processor interface was replaced with high speed Gen 3 PCI

Express interface. Finally, industry standard AXI4 interconnect replaced multiple

proprietary interfaces used in the SCU.

The following provides a list of contributions brought by the aforementioned mod-

ifications.

1. The coprocessor is controlled by a software finite state machine instead of the

previous complex hardware-based implementation. In general, software is easier

to implement, debug, and test.

2. The highly configurable MicroBlaze provides the system with flexibility and

intelligence. New software algorithms and control logic can be implemented in

relatively short amount of time.

3. Industry standard AXI4 interconnect provides easier integration of new and

existing AXI4 compatible peripherals.

4. High speed industry standard PCIe allows wider selection of host processors.

PCIe is used in most modern computer systems.

5. The proposed architecture presents a software and hardware platform for de-

velopment of future data stream processing applications.
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The main target of this study is to provide a simple, flexible, future ready archi-

tecture while maintaining the SCU’s high performance. Experimental results show

the software-based control state machine adds a negligible 9 microseconds overhead

to the overall execution time achieved by the SCU.

6.2 Future Work

6.2.1 Stand-alone Stream Processing Unit

In some applications, such as process control, it is desired to use a smaller, cheaper,

stand-alone stream processing unit. Figure 6.1 shows an architecture of such a unit.

For configuration, the unit implements a web server where the user can design new

queries, select which query to execute, and configure the IP addresses for input stream

source and output stream destination. The queries are compiled by the MicroBlaze

and stored in the SPU’s Instruction Memory (IMEM).

Once the unit is configured, the Ethernet port copies input streams to its local

RAM where the MicroBlaze divides these streams into windows and performs any

preprocessing on the data. After that, the DMA copies the windows to the SRF.

Finally, the MicroBlaze triggers kernel execution in the SPU.

Once the SPU executes the kernel, the MicroBlaze transfers the output stream

from SRF to the desired destination on the network via its Gigabit Ethernet port.

The MicroBlaze-based coprocessor hardware architecture proposed in this study

can be easily modified by removing the PCIe interface and adding an existing IP for

the Gigabit Ethernet port.

New software application needs to be developed on top of the software architecture

introduced in this study.
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Fig. 6.1.: Stand-alone Stream Processing Unit

6.2.2 Distributed Stream Processing System

Current host processors have a limited number of PCIe slots, which limits the

number of Stream Coprocessor units it can utilize. To overcome this limitation, the

host processor can be connected to a network of Stand-alone Stream Processing Units

through its Gigabit Ethernet port. Figure 6.2 illustrates a network-based Distributed

Stream Processing System.
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The host processor configures each unit, sends input streams for processing, trig-

gers the kernel execution, and finally reads the output streams.

To implement such a system, only software modifications are needed to the Stand-

alone Stream Processing Unit while the hardware architecture remains the same as

described in 6.2.1.

Fig. 6.2.: Distributed stream processing system

6.2.3 Multiple Stream Processing Units

To increase the throughput of the MicroBlaze-based coprocessor, a second Stream

Processing Unit (SPU) can be added to the design. Figure 6.3 shows such an archi-

tecture with two SPUs.
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Fig. 6.3.: MicroBlaze-based coprocessor with two SPUs
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