
3D TERRAIN VISUALIZATION AND CPU PARALLELIZATION OF PARTICLE

SWARM OPTIMIZATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Calvin L. Wieczorek

In Partial Fulfillment of the

Requirements for the Degree

of

Masters of Science in Electrical and Computer Engineering

May 2018

Purdue University

Indianapolis, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Lauren Christopher, Chair

Department of Electrical and Computer Engineering

Dr. Brian King

Department of Electrical and Computer Engineering

Dr. John Lee

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian King

Head of the Graduate Program

iii

I would like to dedicate this to my loving family, especially my mother, Denise, for

always being there for me and supporting me throughout my life.

iv

ACKNOWLEDGMENTS

I would first like to acknowledge my professor Dr. Christopher for allowing me

the opportunity to work with her on this project, she has been a great teacher and

role model to me; her guidance and experience has been an invaluable part of this

projects’ success. I’d also like to thank my other committee members Dr. King and

Dr. Lee, for their support and knowledge they’ve taught me. Thanks to Sherrie

Tucker and Jane Simpson for their support and guidance. I want to acknowledge

Dr. Eberhart and Dr. Kennedy for inventing PSO. I would like to acknowledge my

previous members of the project and their contributions: Joshua Reynolds, Jonah

Crespo, and Paul Witcher. I want to acknowledge my Md Saiful Islam for being a

dedicated partner and his support to the project. I also want to acknowledge William

Boler for being a close dedicated partner as well as for his invaluable help, support,

and experience throughout the project. I would like to thank our contacts at Crane

on this project: Dave Acton for your guidance and relationship to our research, as

well as Scot Hawkins for this support, guidance for EW propagation, and sponsorship.

Lastly, I would like to thank NSWC Crane for providing support and funding to this

project.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . viii

ABBREVIATIONS . xi

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 PSO Background . 1

1.2 Project Background and Previous Work 1

1.3 Project Concurrent Work . 2

1.4 PSO Algorithm for Asset Allocation Background 3

1.4.1 Particles and Neighbors . 3

1.4.2 Fitness . 4

1.4.3 Process and Generations . 5

1.5 Literature Review . 7

1.5.1 PSO Visualization Review . 7

1.5.2 Elevation and Imagery Extraction Review 8

1.5.3 Threading Review . 9

1.6 Contribution Summary . 11

2 3D VISUALIZATION . 13

2.1 Software . 13

2.2 Terrain . 13

2.2.1 TerrainData . 13

2.2.2 Loading Terrain and 3D Visualization Access GUI 14

2.2.3 Loading Terrain Files GUI . 15

2.2.4 Loading and Storage of Terrain Files 16

2.2.5 Elevation Initialization . 17

vi

Page

2.2.6 Latitude and Longitude Ranges 18

2.2.7 Vector to Terrain Dimension Scaling 18

2.2.8 Looking up Elevation Data . 21

2.3 3D Visualization . 22

2.3.1 3DSurfaceWindow . 22

2.3.2 3DSurfaceWindow . 23

2.3.3 Custom 3D Objects . 24

2.4 3D Surface Window Interface . 26

3 ELEVATION AND IMAGING . 29

3.1 ARCGIS . 29

3.2 Earth Projections . 29

3.3 Extraction Methods . 31

3.3.1 Fishnet Extraction . 32

3.3.2 Set-up . 32

3.3.3 Point-by-Point Extraction . 33

3.3.4 Fishnet Implementation . 33

3.3.5 Imagery Data . 34

3.3.6 Elevation Reformatting . 35

3.3.7 ARCGIS API . 37

3.3.8 Set Up . 37

3.3.9 REST Service . 37

3.3.10 MATLAB Implementation . 38

3.3.11 Method Choice . 41

4 CPU THREADING PSO . 42

4.1 Threads . 42

4.1.1 CPU and GPU Threading . 43

4.2 OpenMP . 44

4.3 PSO Analysis . 44

vii

Page

4.3.1 PSO Time Complexity Analysis 45

4.3.2 PSO Runtime Analysis . 47

4.4 Threading Implementation . 53

4.5 Results . 55

4.6 Results Vs Theoretical . 59

4.7 Issues and Problems . 59

5 SUMMARY . 60

6 RECOMMENDATIONS . 61

REFERENCES . 62

viii

LIST OF FIGURES

Figure Page

1.1 Representation of how the particle is representing the data corresponding
to the Assets. 3

1.2 This Table describes each of the components of the fitness function. 5

1.3 A 2D representation of an optimized solution using the PSO algorithm.
Allocation Plot show the 2D placement of the assets and transmitters.
Fitness graph shows the best fitness measures between generations. The
lower graph shows frequency space and the signal assignments between
the assets and transmitters. 7

1.4 The current applied project with contributions from this research and [1].
The right side shows a 3D visualization of the PSO, solutions, ARCGIS
extracted elevation/imagery, pheromones, LOS implementation, and di-
rectional antennas. This current project implementation also integrated
and improved the work done from [9] with real-time simulation of move-
ment. 12

2.1 This table shows the descriptions of the majority of the functions imple-
mented in the TerrainData Class. 14

2.2 Dropdown menu showing access to loading terrain interface and 3D Data
Visualization interface. 14

2.3 The Interface so that a user can select image and terrain files. As well as
Latitude and Longitude information. 15

2.4 This flow chart shows the functionality of the loadTerrainFile function in
TerrainData. 16

2.5 Comparing the previous 2D display with the implemented 3D display when
the surface is initialized with no elevation or image data. 17

2.6 Demonstration of how the domain ranges change based on the given lati-
tude and longitude information. 19

2.7 A flow chart showing the process of LookupElevationData in TerrainData. 21

2.8 This table shows the descriptions of the majority of the functions imple-
mented in the 3DSurfaceWindow Class. 22

ix

Figure Page

2.9 An example from [16] displaying a 3D Surface Graph using a sinusoidal
function. 23

2.10 A flow chart showing the process of the rebuildSurfaceGraph function in
3DSurfaceWindow. 24

2.11 A 3DSurfaceGraph output example from rebuildSurfaceGraph in 3DSur-
faceWindow. 25

2.12 This table shows the descriptions of the majority of the functions imple-
mented in the 3DCustomController Class. 26

2.13 A flow chart showing the process of rebuildSurfaceGraphObjects in 3DCus-
tomController. 26

2.14 Terrain information loaded without changes the min-max sliders. The
vertical range displayed is from 0km to 20km. 27

2.15 Terrain information loaded with the min-max sliders change to more ap-
propriate values. The vertical range displayed is from 1km to 4km. 28

3.1 Map projection using a Mercator projection. It projects by projecting the
earth as a cylinder wrapped around the earth then flatted out. 30

3.2 Map projection using a Polyconic projection. It projects by projecting the
earth as a cone wrapped around the earth then flatted out. 30

3.3 Using ARCGIS for Desktop and loading in the Terrain data layer from
ARCGIS servers. 32

3.4 The Interface for creating a fishnet in ARCGIS for Desktop. 34

3.5 A display of a Fishnet along with a table showing its values after comparing
them to the Terrain layer using ’Points to Values’. 35

3.6 Input GUI from the ARCGIS World Terrain API. The inputs give a user
control of where to get the elevation data, set its resolution, file type, and
more; after submission it returns an image that represents elevation. 38

3.7 Output from the Terrain API is returned as a light intensity image. 39

3.8 Output from the Imagery API is returned as a normal image in formats
such as PNG or JPEG. 40

4.1 A Flow chart showing the time complexity of the PSO. The PSO.Run
function is broken up to run for every particle and then separated into
4 main function calls: Fly, Evaluate, PBest, and NBest. Each function’s
time complexity shown as big O(n). 46

4.2 The hardware and software used to run the runtime analysis. 48

x

Figure Page

4.3 Settings used for thread and PSO analysis. 48

4.4 Runtime Analysis of the overall PSO. 49

4.5 Runtime Analysis of Evaluate. 50

4.6 Runtime Analysis of Evaluate. 50

4.7 A Table showing the serial and parallel splits when considering between
scenarios 1 and 2. Where scenario 1 assume critical sections act as parallel
sections and scenario 2 assume critical sections act as serial. 52

4.8 Implementation of threading Evaluate in pso.cpp. 53

4.9 Implementation of remedying data collision by creating a map of the re-
ceiver objects separated by thread ID and making critical the creation,
assignment, and power check of the receiver objects. 54

4.10 Implementation of remedying data collision by creating a map of the re-
ceiver objects separated by particle ID and making critical the creation,
assignment, and power check of the receiver objects. 55

4.11 Threading GUI Implementation so that the user can enable, disable, and
set the number of threads to be run. 56

4.12 A graph showing the runtime vs asset number and comparing the serial
runtime against the threaded runtime. 57

4.13 A graph showing the runtime vs asset number and comparing the runtime
from different number of threads. 58

xi

ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

API Application Program Interface

CPU Central Processing Unit

CSV Comma-Separated Values

EW Electronic Warfare

FPGA Field Programmable Gate Array

GPSO Gaming Particle Swarm Optimization

GPU Graphics Processing Unit

GIS Geographic Information System

GUI Graphic User Interface

JPEG Joint Photographic Experts Group

NSWC Navel Surface Warfare Center

NRCS Natural Resource Conservation Service

NED National Election Dataset

OOP Object Oriented Programming

OpenCL Open Computing Language

OpenMP Open Multi-Processing

PSO Particle Swarm Optimization

PNG Portable Network Graphics

RAM Random Access Memory

SRTM Shuttle Radar Topo-graphical Mission

TIFF Tagged Image File Format

xii

ABSTRACT

Wieczorek, Calvin L. M.S.E.C.E., Purdue University, May 2018. 3D Terrain Visual-
ization and CPU Parallelization of Particle Swarm Optimization. Major Professor:
Lauren Christopher.

Particle Swarm Optimization is a bio-inspired optimization technique used to ap-

proximately solve the non-deterministic polynomial (NP) problem of asset allocation

in 3D space, frequency, antenna azimuth [1], and elevation orientation [1]. This re-

search uses QT Data Visualization to display the PSO solutions, assets, transmitters

in 3D space from the work done in [2]. Elevation and Imagery data was extracted

from ARCGIS (a geographic information system (GIS) database) to add overlapping

elevation and imagery data to that the 3D visualization displays proper topological

data. The 3D environment range was improved and is now dynamic; giving the user

appropriate coordinates based from the ARCGIS latitude and longitude ranges. The

second part of the research improves the performance of the PSOs runtime, using

OpenMP with CPU threading to parallelize the evaluation of the PSO by particle.

Lastly, this implementation uses CPU multithreading with 4 threads to improve the

performance of the PSO by 42% - 51% in comparison to running the PSO without

CPU multithreading. The contributions provided allow for the PSO project to be

more realistically simulate its use in the Electronic Warfare (EW) space, adding ad-

ditional CPU multithreading implementation for further performance improvements.

1

1. INTRODUCTION

1.1 PSO Background

Particle Swarm Optimization is a bio-inspired computational tool originally devel-

oped by Russell Eberhart and James Kennedy in 1995 [3]. PSO has two main roots

of methodology: artificial life (A-life) and evolutionary computation. The artificial

life component is focused on swarm theory; swarm theory attempts to determine the

actions of collective behavior [4]. PSO’s inspiration from swarm theory was mainly

focused on determining movement of flocking birds or schooling fish. Evolutionary

computation is sharing information among individuals to achieve some solution. Orig-

inally PSO was inspired by swarm simulation, although today it is used in a variety of

optimization problems. PSO has been widely applied since its origin in 1995, solving

such problems as: rule classification in data mining [5], bi-level linear programming

problems [6], Railroad domain optimization [7], Asset allocation [8], and many more.

1.2 Project Background and Previous Work

This research is a continuation on a project worked on for Expeditionary Elec-

tronic Warfare Division, Spectrum Warfare System Department, at Naval Surface

Warfare Center (NSWC) Crane; it is also a continuation from the work done by

Joshua Reynolds [8], Jonah Crespo [2], and Paul Witcher [9]. The main idea for

the research was to use PSO to optimize placement of assets in terms to 3D space

and frequency. The optimization problem needs to be solved in near-real-time, with

constantly updating complex naval battlefield conditions. Work done in [8] devel-

oped the integration of the PSO algorithm with the problem of asset allocation in

the Electronic Warfare Environment; this worked developed the fitness function to

2

use, the majority of the 2D GUI development, and analysis of asset allocation using

PSO. The work done in [2] introduced solving the PSO in 3D solution space, early

integration of topological constraints, and human-in-the-swarm integration with 2D

user input of moving keep-away boundaries; though it did not have visualization for

the 3D solution space. The work done in [9] developed the PSO with the addition

of real-time movement simulation of assets and transmitters in 3D space, the work

also tracked simulated assets to the PSO solutions using the Hungarian algorithm to

simulate a more realistic Electronic Warfare environment.

1.3 Project Concurrent Work

In this project there are two other students that work on the project from myself.

These students work on the same project which is consistently merged using GitHub

as source control. These students are Mr. Md Saiful Islam and Mr. William Boler.

Md Saiful work is related to doing testing analysis of the project from the constant

updates to the project as well as comparing the performance to the most current

version of the projects PSO asset allocation against the Genetic Algorithm to solve the

asset allocation problem. William Boler’s work can be found in his nearly published

thesis [1]. The work done in [1] includes refactoring and adding code so that the entire

large code base becomes more Object Oriented structure rather than the procedural

and function base that it was before, as well as adding the Human-in-the-Swarm

construct of Pheromones, which act as movable attraction or repelling zones or beacon

that the user can add to the 3D solution space. The work done in [1] also includes

implementing solving for assets antenna direction in the 3D space based on radiation

patterns of antennas and implementation of a Meta-PSO in that he uses PSO to solve

for good weight to give to the fitness function.

3

1.4 PSO Algorithm for Asset Allocation Background

Work done on using the PSO for asset allocation can be seen in [8]. This section

gives a brief summary of using the PSO for asset allocation with the current state of

the project, as well as the work done that impacted the PSO algorithm.

1.4.1 Particles and Neighbors

In PSO, many particles search the solution space. After each generation of the

Particle Swarm Optimization, the fitness is evaluated for each particle, and a particle

and its neighborhood best fitness is chosen each generation. This fitness function and

the neighborhood best drives the particles toward a solution in multi-dimensional

space. In the Asset Allocation problem, this solution space consists of: 3D space, fre-

quency, antenna azimuth, and elevation orientation. Therefore, each particle searches

this solution space until converged onto an optimal solution.

Fig. 1.1. Representation of how the particle is representing the data
corresponding to the Assets.

As seen in Figure 1.1, each particle (row) is a possible solution. Each particle

has 3D location, frequency, with antenna azimuth and elevation orientation additions

regarding directional antennas for each asset. At the end of a generation, each particle

has a personal best xpb, which is the best solution that some particle has found, and

4

a neighborhood best xnb, which is the best solutions that its neighbor have found.

The neighbors of some particle i, are determined by the particle array in memory in

a range defined by the number of neighbors for the particle. These particles are first

initialized randomly throughout the solution space, then they are updated based on

the following two equations from [3]:

vi+1 = viI + C1Rand()1(xpb − xi) + C2Rand()2(xnb + xi) (1.1)

xi+1 = xi + vi+1 (1.2)

In equation 1.2, xi+1 is the future position (or frequency) for each element of each

particle in the solution space. It is updated from the previous position (or frequency)

and vi+1, the future velocity. In equation1.1, vi+1 is computed by first Ivi, where

I is in Inertia and vi is the current velocity. C1 and C2 are constants, Rand() is a

random generator. We use a random generator to give the algorithm randomness so

that it is less prone to getting stuck in local solutions and so that it more robustly

searches the solution space. (xpb − xi) is the difference between the current position

and the best position found so far, so that the particle will be given a larger velocity

when it is further away from the current personal best. (xnb − xi) is the difference

between the current position and the best position found between all the particle i’s

neighbors. This will give a larger velocity when the current position is farther away

from the best neighbors position. These 3 components are summed together so that

the particles eventually converge onto a solution.

1.4.2 Fitness

In order to determine how good a particular solution is, it’s important to have

a way to measure it. Our problem is that of asset allocation, the environment is

in Electronic Warfare (EW). The goal is so that the assets are placed in optimal

location for communication or jamming. Each asset is assigned to certain transceivers

5

that are placed throughout the EW environment based on each asset corresponding

bandwidth. The power from these assignments are checked to make sure that the feed-

horn is not overloaded. Each assets’ assignments are based on the assets frequency

bandwidth. This assignment is important to consider for the components that make-

up the fitness. In order so that placement is optimal the ongoing research done by [8]

and [1] has constructed the following fitness function over the course of the research

project:

Fitness = α̇power + βṗriority + γ̇spread+ λ̇distance+ δ̇pheromones (1.3)

Fig. 1.2. This Table describes each of the components of the fitness function.

In equation 1.3, the Greek coefficients are the weights associated to determine a

’good’ solution. Figure 1.2 shows a description of each component using in the fitness

function.

1.4.3 Process and Generations

The PSO algorithm is run iteratively, until the solution’s fitness is considered to

be optimal. Each iteration of the PSO is call a ’generation’. The Overall process used

for PSO asset allocation is as follows:

• Fly - update particles with velocity and position equations

6

• Evaluate - Determine fitness of each particle

• Update - update Particle ad neighbor particles

• Terminate - end PSO based on fitness slope/window size/max generation

This process is run over and over until the termination conditions are met. These are:

fitness slope, window size, and max generation. Fitness slope is the measurement of

the best slope from each generation. Window size is the number of times the PSO

needs to run before ending. Max Generation is a limit used in case the termination

process takes too long. Figure 1.3 is an example of running the PSO and showing the

fitness measurements among runs.

7

Fig. 1.3. A 2D representation of an optimized solution using the PSO
algorithm. Allocation Plot show the 2D placement of the assets and
transmitters. Fitness graph shows the best fitness measures between
generations. The lower graph shows frequency space and the signal
assignments between the assets and transmitters.

1.5 Literature Review

1.5.1 PSO Visualization Review

Visualizing the PSO algorithm is done to better understand the PSO. Two sources

were found that closely represents similar visualizations of the PSO, which are the

paper [10] and the video [11]. In [10] the authors use a 3D histogram visualization, and

in [11] the authors visualized the particles convergence. In this research we visualize

the final output, the solutions of the PSO.

In the work done by [10] visualizes the particles’ probability distribution by using

histograms to display the distribution of a -5000 to 5000 unit 2D space with 10,000

8

particles. The work used histogram visualization which displayed the particles’ prob-

ability distribution in 3D; even though the solution space for the particles is in 2D.

The visualization done in [10] was not to display solution as in this research, but

to analyze the weaknesses of the PSO and fine tune the algorithm for better per-

formance. Visualization done in this research displays just the solution of the PSO

rather than the particles and can show realistic terrain domains rather than a set flat

plane. It is also much more clear where the solutions of the PSO in the environment

in this research compared to the work done in [10].

Other visualizations can be seen in videos such as [11]. The video in [11] shows

the particles location and movements in 3D using MATLAB, they move based on

either a maximum or minimum of a function that is displayed in 3D as well. This

video shows the nature of the particles in a 3D space. The work done in this research

displays a more realistic environment with elevation and imagery, as well as more

than 1 solution point and more components of the EW environment (pheromones,

assets, etc.). This research also better integrates into the previous project software

since it uses supporting software of QT Data Visualization since the previous project

is done using QT, rather than outside software such as MATLAB.

1.5.2 Elevation and Imagery Extraction Review

Extraction of elevation data can be done using data sources such as those described

in [12]. NRCS, or Natural Resources Conservation Service, requires high quality

elevation data. They use the NGCE, or the National Geospatial Center of Excellence,

which provides digital elevation data to NRCS staff and partners. The NRCS uses

sources such as NED, or National Elevation Dataset, that comes in resolutions 3, 10,

and 30 meters. The work done in this research uses ARCGIS to extract not just

elevation data, but imagery as well. ARCGIS uses elevation sources from a wide

variety of dataset to provide the highest resolution possible, so it will be equal or

better than the elevation data provided by NED.

9

The author in [2] ended up using data from NASAs Shuttle Radar Topo-graphical

Mission (SRTM). Although, we found that the resolution was too poor, and the

project no longer collects or updates data. The ARCGIS extraction method has higher

quality resolution data than the SRTM and is regularly updated. The extraction

process used in this research is also more dynamic and provides more control over the

data and resolution being extracted; whereas the data from SRTM was a set resolution

and only certain intervals of ranges regarding latitude and longitude. In this research

the method provided allows a user to extract from any given latitude and longitude

entered; as well as provides resolution settings and extracts the corresponding imagery

data with the elevation data.

1.5.3 Threading Review

It’s not uncommon that applications and algorithms attempt to increase their

performance by utilizing the growing field of parallelization. With multi-core CPU

processors and hundreds core GPU’s, it is not surprising to see growing utilization of

parallelization. In [13], the authors created a parallel Particle Swarm Optimization

(PSO) algorithm for bus voltage optimization. The parallel PSO strategy was to run

separate PSO’s in parallel to get a better solution, rather than decrease the runtime.

The authors used 3 threads in parallel, meaning 3 PSO runs at a time. They took

1/3 of the best solutions from each PSO, and filled the other 2/3’s randomly from the

remaining population. They found that the parallel PSO implemented outperformed

the normal PSO with higher fitness solutions and slightly faster convergence time at

the cost of increased runtime. The work done in this research decreases the runtime

and parallelizes a single PSO via threading between particles and keeping fitness

performance the same.

Similar to how threading is used in this research, some other work has been done

using GPU to increase speed of the PSO seen in [14]. This paper uses a variant of

the PSO so that it can run fully in parallel, this is called Gaming Particle Swarm

10

Optimization (GPSO). GPSO uses multiple small swarms of particles that run in-

dependently, rather than a single PSO to solve asset allocation. The solution to be

solved is similar in [14], which uses GPSO to solve the radio frequency resource al-

location problem. An analysis was implemented using an Nvidia GTX 465 against a

previously state-of-the-art AMD Phenom 3.4GHz quad-core CPU. The paper found

that using the Nvidia GTX 465 was measured to be 5 times faster than that of the

AMD Phenom when using the GPSO. Although, this was dependent on the number

of particles used; the CPU was measured to be faster around 500 particles or fewer,

where the GPU became faster when there were 500 particles or more. The 5 times

speed increase was determined with 2,300 particles. In our implementation we use

CPU threading with 4 threads, giving an increase of 42% - 51%. This research inten-

tion was to increase the performance of the PSO rather than implementing a variety

of PSO like the GPSO to increase parallelization. This research also uses a relatively

small number of particles, general 200, which would run faster on a CPU according

to [14].

11

1.6 Contribution Summary

A current representation of the project is shown in Figure 1.4. This work shown

is an accumulation of the work from this research, [1] and [9]. Where the previous

work is shown in Figure 1.3 with work done by [8] and [2]. The addition from the

previous work to the current work are as follows: 3D Visualization, Elevation and

Imagery Integration from ARCGIS, CPU threading (thread GUI not displayed), asset

tracking [9], transmitter movement [9], pheromone integration [1], pheromone display

and interface [1], directional antennas [1], Meta PSO [1], Statistic Integration [1],

Line-of-Sight integration [1]. Other improvements include general code improvements

from this research and [1], and Object Oriented integration from this research and

from [1].

The work done presented in this research is the following: 3D Data Visualization,

Elevation and Imagery Extraction, and CPU Threading. Chapter 2 describes visu-

alizing the 3D work done in [2] and improves upon it to add more realistic 3D PSO

solution space environment; this visualization was also used to support the visualiza-

tion used in the asset tracking and transmitter movement done in [9]. The work done

in [2] had early extraction of elevation data into the PSO space, Chapter 3 describes

the improvements of the extraction and integration of the elevation extraction from [2]

with high resolution elevation as well as imagery extraction methods using ARCGIS

which are more dynamic and flexible. Chapter 4 introduces the use of CPU threading

in order to improve the runtime of the PSO using OpenMP as well as an analysis of

the performance improvement that CPU threading provides. Lastly, Chapter 5 gives

a summary and Chapter 6 gives recommendations for the future work.

12

Fig. 1.4. The current applied project with contributions from this
research and [1]. The right side shows a 3D visualization of the PSO,
solutions, ARCGIS extracted elevation/imagery, pheromones, LOS
implementation, and directional antennas. This current project im-
plementation also integrated and improved the work done from [9]
with real-time simulation of movement.

13

2. 3D VISUALIZATION

This section will cover how the project shows the output of the PSO algorithm in

3D.

2.1 Software

The software used to display information is done using Qt Data Visualization

[15]; which is a Qt module used to visualize information in bar, scatter, or surface

graphs. From Qt Data Visualization we use its following classes: QCustom3DItem,

QCustom3DVolume, and Q3DSurface. These classes from Qt Data Visualization are

used to display the graphics in the project.

2.2 Terrain

This section describes how the elevation information is loaded, accessed, and ma-

nipulated. As well as describes the functions of the class TerrainData, which deals

with anything regarding the terrain information.

2.2.1 TerrainData

The elevation data needs wide access and manipulated to be integrated into the

project, so there needs to be something that handles this kind of terrain information.

This project as well as contribution from [1] implemented a class called ”TerrainData”

to handle everything related to the elevation data, access, and storage. Such functions

include: parsing elevation data from a CSV file, setting the dimensions of the terrain,

looking up elevation data, and much more. The majority of the functions implemented

can be seen in Figure 2.1.

14

Fig. 2.1. This table shows the descriptions of the majority of the
functions implemented in the TerrainData Class.

2.2.2 Loading Terrain and 3D Visualization Access GUI

In order to integrate loading terrain files and 3D Visualization, the menu is in

Figure 2.2 was added, Where ’Loading Terrain File’ gives the user access to load in

files and ’3D Surface’ opens a new window that displays the PSO solution in 3D.

Fig. 2.2. Dropdown menu showing access to loading terrain interface
and 3D Data Visualization interface.

15

2.2.3 Loading Terrain Files GUI

The work done in [2] used hard-coded file paths into the source code to store

elevation data. In order so that the application can be more dynamic and uses

more than 1 terrain file at a time, a terrain loading GUI was implemented so that the

information about the terrain can be edited and updated without closing the program.

This GUI integration also is much more intuitive than the hard-coded method in [2].

This implementation can be seen in Figure 2.3

Fig. 2.3. The Interface so that a user can select image and terrain
files. As well as Latitude and Longitude information.

From this GUI the user can select an image file in the ’Surface Images’ top file

menu, and the elevation CSV file in the ’Terrain Files’ bottom file menu. Only the

supported file formats are allowed for each file menu, such as PNG or JPEG for the

top menu and CSV for the bottom, unsupported file types are not able to be selected.

16

The selected files for terrain can also be read if the file is named in a particular format,

the file format is ’lat1 long1 lat2 long2 name’; this takes in the latitude and longitude

information from the named file, for example N40 W49 N39 W48 Place. The User

can also manually user latitude and longitude information with the given menu in the

top right.

Fig. 2.4. This flow chart shows the functionality of the loadTerrainFile
function in TerrainData.

2.2.4 Loading and Storage of Terrain Files

In order for elevation data to be displayed, it needs to be stored inside the program

to be referenced. The work done in [2] stored elevation data in a 2D array 1201 by

1201. The work done in this research improves upon the work done in [2] by making

the storage a 2D vector for any sized input. To populate the 2D vector without hard

coding elevation data in the program, reading from an integrated file explorer GUI

interface was used. The function in TerrainData called ”loadTerrainFile” was imple-

17

mented as an improved version to [2] that reads files in a CSV (Comma Separated

Values) file format or loads a default flat plane into the 2D vector that contains the

elevation data; this process is shown in 2.4, once the file reading is completed the

2D vector will contain the elevation data that can be used in the application. The

elevation data extracted from the user defined files are in kilometers.

2.2.5 Elevation Initialization

If no file is loaded and the ’3D Surface’ window is selected, the surface is loaded

with a 1000x1000 ’unit’ surface then transformed to match the original domains of

200kmx200km; it also isn’t loaded with a corresponding image file like the elevation

files. Figure 2.5 shows a comparison between the 2D Allocation plot and the 3D

Surface Window’s 3D plot; notice that the ranges are matched between the two:

Fig. 2.5. Comparing the previous 2D display with the implemented
3D display when the surface is initialized with no elevation or image
data.

18

2.2.6 Latitude and Longitude Ranges

When loading in a new terrain file, it’s necessary to create new ranges in the x

and y dimensions. This is implementation in TerrainData as ”updateDimensions-

FromTerrain”. The terrain data is represented as a flat square surface on the earth

where the latitude and longitude are the corresponding boundaries. When calculating

distances between the latitude and longitude points, the spherical nature of the Earth

is taken into account and the arc-distance is calculated, as seen in 2.1; this is then

projected onto a flat plane. To make the data ranges into a square, the ranges are

calculated based on the average of the two measured arc-distances from the latitude

and longitude points ((Latitude1, Longitude1), (Latitude2, Longitude2)).

Arcdistance = R 2
√

(φ)2 + (cos(φm)Λ)2 (2.1)

R = 6, 371, 000meters(Radius− of − Earth) (2.2)

φ = Latitude2 − Latitude1 (2.3)

φm = (Latitude2 + Latitude1)/2 (2.4)

Λ = Longitude2 − Longitude1 (2.5)

Figure 2.6 shows an example of the ranges being calculated and displayed given a

terrain file, the coordinates are ((N3.85,W109.7), (N37.5,W108.7)).

2.2.7 Vector to Terrain Dimension Scaling

As previously mentioned, elevation data is extracted from a CSV file then placed

into a 2D vector. It’s important to consider the source elevation files resolution.

Chapter 3 describes the extraction process in detail, but when we extract information,

the user enters latitude and longitude coordinates and an image size; such as 1000 by

1000 pixels. Although there is no corresponding relationship between the coordinates

and the pixel resolution of the extracted image. The image size determines the size of

the 2D vector, so if an image is 1000 by 1000, the 2D vector becomes 1000 by 1000.

19

Fig. 2.6. Demonstration of how the domain ranges change based on
the given latitude and longitude information.

We call the dimensional space of the 2D vector the vector space, and the dimensional

space calculated using the arc-distance formula the terrain space. In order to handle

any coordinates and vector size, we determine the step size of the terrain space in

relationship to the vector space.

20

Equation 2.6 shows the equation used to scale from the Terrain dimension, stored

in kilometers to the vector dimension, which is unitless. Where V ector(x) is the

location of the x value for the stored 2D vector, xterrain is the x location in the terrain

space, xminterrain is the minimum of the x dimension in the terrain space, xmaxterrain

is the maximum of the x dimension in the terrain space, and xLengthvector is the x

length of the 2D vector.

V ector(x) = (xterrain−xminterrain)(xLengthvector)/(xmaxterrain−xminterrain) (2.6)

We call this scaling between the vector space and the Terrain space. This was

implemented for practicality and flexibility purposes, since the 3D Visualization is

shown in a 3DSurfaceGraph; it can only display a finite resolution due to the lim-

itations of the visualization. For example, a very large area, such as 1,000km by

1,000km, with a fine resolution 10m by 10m, would take up 10,000,000,000 points

that would need to be displayed on the surface graph. The displayed resolution in

the 3DSurfaceGraph cannot display or zoom in further enough to represent such data,

and it’s highly likely that the computer used would not be able to support such a large

3D surface graph due to limited RAM memory size. Thus, during the extraction, a

resolution size is chosen so that the data is still displayed in fine detail without taking

too much resource cost. The resolution used in most of the extractions is 1,000 by

1,000, this resolution was found to not take too much memory and still display the

data in fine detail; although any resolution size can technically be chosen.

21

2.2.8 Looking up Elevation Data

Since the elevation is stored in the vector space, and the calculations for the PSO

are done in the terrain space; it’s necessary to correspond any (x,y) in the terrain

space to same elevation element stored in the vector space. We implement this as

”LookupElevationData” in TerrainData. This function first scales the (x,y) coordi-

nates from the terrain space to the vector space, implemented as ”getCoordIndex” in

TerrainData, then we return the stored value from the calculated coordinates, imple-

mented as ”getHeightFromIndex” in TerrainData. This process is shown in Figure

2.7.

Fig. 2.7. A flow chart showing the process of LookupElevationData in TerrainData.

22

2.3 3D Visualization

This section describes how the PSO and the EW space is rendered and displayed

using 3D Visualization from QT, as well as the interface for the 3D Visualization

Window.

2.3.1 3DSurfaceWindow

Similar to TerrainData, a class called ”3DSurfaceWindow” was implemented from

the contributions of this project and [1]. 3DSurfaceWindow deals with anything

regarding the 3DSurfaceGraph as well as the updates to the window that contains the

3D Visualization information. Such functions include: building the 3DSurfaceGraph

from the 2D vector, setting the Theme and Lighting of the Visualization, updating

elevation axis limits, and more. The majority of the functions implemented can be

seen in Figure 2.1.

Fig. 2.8. This table shows the descriptions of the majority of the
functions implemented in the 3DSurfaceWindow Class.

23

2.3.2 3DSurfaceWindow

In order to simulate visualization of the stored elevation data, it needs to be

represented as a 3DSurfaceGraph from Qt Data Visualization. In Figure 2.9 shows

an example from the Qt Data Visualization documentation [16] of 3DSurfaceGraph

implementation.

Fig. 2.9. An example from [16] displaying a 3D Surface Graph using
a sinusoidal function.

The creation of the 3DSurfaceGraph is done in rebuildSurfaceGraph in the 3DSur-

faceWindow class. This function creates a 3D series from the 2D vector data, although

when plotting the information using buildSurfaceDataArray from 3DSurfaceWindow,

not shown in 2.8, it scales from the vector space to the Terrain space so that the

3DSurfaceGraph’s information is seen in the kilometer terrain space. This is how the

24

plotting was done in the range example shown in 2.6. A flow chart of rebuildSurface-

Graph is shown in Figure 2.10.

Fig. 2.10. A flow chart showing the process of the rebuildSurface-
Graph function in 3DSurfaceWindow.

An example of the results from rebuildSurfaceGraph can be seen in Figure 2.11.

2.3.3 Custom 3D Objects

In order to add more information to the surface graph, a class called ”3DCustom-

Controller” was implemented from the contributions from this work and [1]. This class

handles all the other 3D visualizations that are not the Surface Graph. This includes:

targets, assets, solutions and pheromones. In order to be separated from the 3DSur-

25

Fig. 2.11. A 3DSurfaceGraph output example from rebuildSurface-
Graph in 3DSurfaceWindow.

faceGraph, these objects are added to the 3DSurfaceGraph as QCustom3DItems.

These objects are used to display, render, mesh, rotate, and texturing the signals,

solutions, assets, and pheromones. This allows the visualization to handle both sur-

face and other data. Figure 2.12 shows the majority of the functions implemented by

3DCustomController.

In order to display the objects, 3DCustomController uses a function called ”re-

buildSurfaceGraphObjects”. This function renders, sets the position, and adds each

object to the 3D Visualization. A flow chart showing the process is shown in Figure

2.13.

26

Fig. 2.12. This table shows the descriptions of the majority of the
functions implemented in the 3DCustomController Class.

Fig. 2.13. A flow chart showing the process of rebuildSurfaceGra-
phObjects in 3DCustomController.

2.4 3D Surface Window Interface

The 3D data display window gives the users different kinds of interface options

so that they can interact with the display to allow for better visualization. Basic

features are integrated by using the 3D Surface Graph, such as zooming, and click

and dragging the camera to view the data at different angles. Timers and activators

are integrated into the 3D window so that the display can be updated with new in-

formation when the conditions are activated; such as updating every second when the

users hit the ’Play’ button. The movements and tracking from the ’Play’ interface are

27

from contributions from [9]; though the visualization and refreshing constructs were

developed by this research and [1]. When the terrain is displayed, it will look different

based on what is set for the z-axis limit display boundary. In order to give the users

a better representation of the z-domain in the display, sliders and input boxes were

implemented to give the user control over the z-axis ranges that are displayed. The

activators sense whenever there is a change in the slider or input box values and up-

dates the graph accordingly. Figure 2.14 show a loaded terrain file without modifying

the min-max elevation sliders; Figure 2.15 shows the same terrain information with

the sliders modified. The user is also able to move pheromones during PSO compu-

tation from contributions from [1], as well as other interface options. This interface

controls all interactions from the user and the 3D display.

Fig. 2.14. Terrain information loaded without changes the min-max
sliders. The vertical range displayed is from 0km to 20km.

28

Fig. 2.15. Terrain information loaded with the min-max sliders change
to more appropriate values. The vertical range displayed is from 1km
to 4km.

29

3. ELEVATION AND IMAGING

This section will cover where and how the elevation and image data was extracted,

as well as how it is converted into a format usable by the current project.

3.1 ARCGIS

We extract our elevation and imagery data from ARCGIS. ARCGIS is a geographic

information system used for management, analysis, and displaying geographic data.

The research team collaborated with ARCGIS in order to get familiar with what

ARCGIS can offer as well as ARCGIS access and software. Working with ARCGIS,

various methodology for extraction were implemented.

3.2 Earth Projections

Since the Earth is a sphere, or more accurately an oblate spheroid, it is more

difficult to project proper elevation data onto a flat surface; such as what is repre-

sented with the 3D Surface Graph. To display the data it’s necessary to project the

data of the Earth’s surface onto a plane. Although when extracting data, it will be

different based on how the Earth’s surface was projected. There are many types of

data projections when it comes to recording data from the earth surface; each one

with its set of advantages and disadvantages.

Figure 3.1 is an example of a conformal projection from [17], this type of projection

is used to keep accurate shapes over small areas. The projection type shown is called

the Mercator projection, commonly used for navigation. It used to keep angular

relationships correctly displayed. [17]

30

Fig. 3.1. Map projection using a Mercator projection. It projects
by projecting the earth as a cylinder wrapped around the earth then
flatted out.

Another type of projections are conical projection from [17], shown in Figure 3.2,

which uses a cone shape to project onto the Earth. This projection are have the least

amount of distortion where the cone interests, useful for upper or lower hemispheres.

Fig. 3.2. Map projection using a Polyconic projection. It projects by
projecting the earth as a cone wrapped around the earth then flatted
out.

31

There are many more kinds of map projections that are used to display the Earth

data, each one should be conditioned based on which areas on the earth want to be

displayed with minimal distortion. ARCGIS can extract from any kind of projection,

so it can be used for any kind of projection considered. The projection that is used

in this research is the Mercator projection; due to its property of keeping shapes

accurate over small areas. We assume that the 3D Surface Graph will display an

area that is somewhat limited within a few degrees, and not too massively large that

the Earth sphere shape will effect it too strongly. Although the distortion is some-

what minimized when the ranges are measured using arc-distances as explained in

2.4.6, where latitude and longitude are shown in Figure 2.6. Since the average of the

arc-distances is calculated, the distortion will become large based on the difference

in the latitude and longitude calculated arc-distances. When this is the case, then a

different the projection would need to be picked based on the geographical location

so that distortion is minimized.

3.3 Extraction Methods

ARCGIS has a variety of software and interfaces that can be used to extract

geographic for a very large of problems that cover more than the elevation and imagery

data extracted that is done in this project.

When extracted elevation and imagery data for the project, two main extraction

methods are used:

• Fishnet Extraction

• ARCGIS API Image Extraction

Each one has advantages and disadvantages and will be further explained in the

coming sections.

32

3.3.1 Fishnet Extraction

For the Fishnet extraction, software called ARCGIS for Desktop was provided to

our research team by ARCGIS. After some training on the software, we developed

a method to extract evaluation and imagery data using this software. This method

uses ARCGIS software to extract elevation and imagery data.

3.3.2 Set-up

ARCGIS for Desktop uses the constructs of overlapping data based on what they

call ”layers”. These layers can provide any kind of geographic information so that

the software can be used to solve problem or analyze the geographic data. The data

layer that is necessary to use is the Imagery data layer as well as the Terrain data

layer. These layers needed to be created and then integrated in the software. Figure

3.3 shows an example of loading an elevation layer by connecting to ARCGIS and

extracting the Terrain Layer from ARCGIS’s servers. The layer is an image-based

data layer that is represented in the Mercator Projection.

Fig. 3.3. Using ARCGIS for Desktop and loading in the Terrain data
layer from ARCGIS servers.

33

3.3.3 Point-by-Point Extraction

Once the Terrain and image layers are imported into ARCGIS for Desktop, it

necessary to read in the elevation values from the Terrain layer in order to extract

elevation data from the layer to be able to use with the project. A simple methodology

to do this is to place points into the system and compare the points location with the

Terrain Layers position and extract the Terrain Layers elevation data at that point;

ARCGIS calls this process ’Identify’. Although this would only give one point at a

time and be time consuming to create all the point individually. The next section

discuses a more usable version of this point by point extraction method.

3.3.4 Fishnet Implementation

Rather than getting elevation information point-by-point, we use what ARCGIS

calls a ’fishnet’ to isolate a section of the Terrain data layer to be extracted. This

feature allows the user to create a section anywhere given a range of area, then it

creates 2D array feature of points based on the given input of the fishnet creation

inputs. A creation example for fishnet is shown in Figure 3.4.

Once the appropriate inputs are given to the Fishnet creation interface is shown in

3.4, a series of points are created as a layer into ARCGIS for desktop and are displayed

in the corresponding area. Although these points have no meaning in relation to the

Terrain data layer; in order to read in the Terrain layers information at these points,

the layers need to be compared. To do this we use a tool in ARCGIS for Desktop

call ’Points to Values’ that given a series of points returns the values of some layer

at those points. In our case, we compare the points created by the fishnet and the

Terrain data layer as our values. The fishnet along with its extracted values using

’Points to Values’ with the Terrain layer is shown in Figure 3.5.

34

Fig. 3.4. The Interface for creating a fishnet in ARCGIS for Desktop.

3.3.5 Imagery Data

To extract the imagery data using ARCGIS for Desktop we add something called a

’basemap’ in the software. This creates an overlaying image data layer based on some

other layer. So we access ARCGIS’s Imagery layer and integrate into the geographic

representation of the Terrain layer. This looks at the coordinate and projection system

that the Terrain layer uses to overlay the Imagery layer correctly corresponding to

the elevation data from the Terrain Layer. This allows us to simply cut-out the image

from the Imagery data based on where the Fishnet is created.

35

Fig. 3.5. A display of a Fishnet along with a table showing its values
after comparing them to the Terrain layer using ’Points to Values’.

3.3.6 Elevation Reformatting

To be usable in the project, the data needs to be extracted from ARCGIS for

Desktop and reformatted so that the project can read it in properly. The Table in-

formation shown in 3.5 can be extracted using either Excel or as just text. Once

extracted into either text or Excel we reformat the data so that is it proper CSV for-

mat that is readable for the project. Reformatting the data was done both manually

and handled by creating code using MATLAB that automatically reformats the data

into the correct CSV format based on its output from ARCGIS.

36

Advantages and Disadvantages

There are some advantages to using the Fishnet method. One advantage is that

using the ARCGIS for desktop software allows any kind of data to be extracted rather

than just elevation data. For example, if we needed to extract terrain type based on a

raster data set we could get such information using this method. This allows for any

kind of information based on the layer information. Layers can be created by a user

or given by ARCGIS, the layer database is quite vast and can cover a wide variety of

data.

However the Fishnet method has a number of drawbacks as well. One disadvantage

is that referencing the Terrain Layer using the ’Points to Values’ uses ARCGIS credits.

These credits are used by accessing certain kinds of data from ARCGIS’s servers, a

limited number is given to our team so the number of references are limited without

further credits to be given to us by ARCGIS. Another disadvantage was the processing

time of ’Points to Values’ using ARCGIS. Extracting this data from the Terrain Layer

required the software to query each point comparison to ARCGIS’s server for the

Terrain Layer. This led to the processing time of a 100-by-100 fishnet to be around

5-15 minutes. Although it is possible that this processing speed might be biased

based on the hardware we used to run the ARCGIS for Desktop application. We

found it was too slow for very large fishnets needed for large granular data. Another

disadvantage is that the process of extracting data is more tedious and complex than

the ARCGIS API Image Extraction methods that will be covered next.

Although the processing time and credit usage issues can be remedied if the layer

is not connected to ARCGIS’s server; the ARCGIS API Image Extraction method

allows unlimited sections of the Terrain layer to be downloaded and used with the

ARCGIS for desktop software. The ARCGIS API Image Extraction method can be

used to supply the images for ARCGIS for Desktop; so it’s still possible to use those

extracted images with the Fishnet Extraction.

37

3.3.7 ARCGIS API

The next method used is ARCGIS API Image Extraction, this method uses a

REST service from ARCGIS to extract images that contain elevation and imagery

data. Instead of ARCGIS software, this method uses MATLAB to reformat the

exported images from the REST service into a format usable by the project.

3.3.8 Set Up

To use this method only requires using MATLAB script files and using an ARCGIS

account to access the REST Service. These methods rely on extracting images from

two different REST services provided by ARCGIS: World Terrain and World Imagery.

3.3.9 REST Service

The ARCGIS API REST Service allows a user to extract an image based on input

given to the service. Both inputs are fairly similar, shown in Figure 3.6 is the Terrain

API REST Service’s input interface. For the Terrain API it will return a grayscale

image that represents elevation. Each pixel value is displayed by the brightness

of the pixel; more intensity whiteness represents higher values and darker intensity

represents lower values. The image format that that is used with the MATLAB files

are TIFF images, which can be chosen in the image format option. The input options

for elevation data extraction is shown in Figure 3.6. In order to get granular data the

image format we use either 32bit or 64bit format. This allows the elevation data to

be precise and cover the entire domain of possible values regarding elevation.

The ARCGIS API REST Service for imagery simply returns an image, such as PNG

or JPEG, with similar input as shown in Figure 3.7. An example of the Imagery API

is shown in Figure 3.8.

38

Fig. 3.6. Input GUI from the ARCGIS World Terrain API. The in-
puts give a user control of where to get the elevation data, set its
resolution, file type, and more; after submission it returns an image
that represents elevation.

3.3.10 MATLAB Implementation

MATLAB script was developed in order to take in the grayscale image from the

Terrain API and transform it into a CSV format so that it can be read into the project

application properly. The script has the user choose the downloaded TIFF file for

the ARCGIS API. In order to reduce user error during the file format transfer, the

script expects the TIFF file to be named in the proper format as discussed in 2.4.5

Loading Terrain Files; e.g.N40E40 N41E41 AreaName.tif.

39

Fig. 3.7. Output from the Terrain API is returned as a light intensity image.

When the MATLAB script is run it takes the TIFF and converts into a proper CSV

format. This format is so that the elevation in one row is separated by commas and

each row is separated by new lines. A CSV file is outputted that is named the same

as the input file to remove user input error; e.g. N40E40 N41E41 AreaName.csv.

40

Fig. 3.8. Output from the Imagery API is returned as a normal image
in formats such as PNG or JPEG.

Advantages and Disadvantages

There are some useful reasons to why it’s advantageous to use the ARCGIS API

Image Extraction method. First, it does not require the use of ARCGIS credits and

can be used as long as the API is in service by ARCGIS. Second, the processing speed

41

is much faster than the Fishnet Method. Lastly, it doesn’t need external knowledge

of ARCGIS software and it much easier and simpler to extract terrain data than the

Fishnet method.

This method has its disadvantages as well. One disadvantage is it less robust

than the Fishnet method, which can handle a wider variety of data and data layers.

Although, there are more geographic information in the API than just imagery and

terrain; but the data layers in the Fishnet method can be user made and cover a

wider variety than what the API provides.

3.3.11 Method Choice

Either extraction can be used, depending on the need to extract terrain and im-

agery. While both methods of extraction were done for displaying terrain visualiza-

tion, the primary choice that was used is the second method; ARCGIS API Image

Extraction.

42

4. CPU THREADING PSO

This section covers how and why CPU threading was done in order to in increase

the performance of the PSO. It will also evaluate the increased performance, consid-

eration, and current issues of the CPU threading implementation.

4.1 Threads

A thread, short for ”thread of execution”, is a sequence of instructions to be

processed. With growing multitasking and time-consuming applications in machines,

threads can be used for running many processes simultaneously or to parallelize a

single execution. With growing processing hardware advancements such as multi-

core processors, each of which can handle different instruction sequences executions

in parallel. Single-core processors handle multi-threaded tasks by using what is called

simultaneous multi-threading; where multi-core processors handle threads using mul-

tiple cores [18].

Single-core processors use simultaneous multi-threading which is where the front

end of the processor alternates between threads by fetching batches of instructions

from one thread then the other [18]. The processor handles which stream of instruc-

tions go with each thread with embedded hardware [18].

Multi-core processors handle threads by using more than one core in parallel.

Although, when doing parallel processing, it is important to have mutually exclusive

data between the streams of instructions so that data collisions do not occur.

43

4.1.1 CPU and GPU Threading

Computers process information with two different kinds of processors, CPUs, or

Central Process Units, and GPUs, or Graphics Processing Units. CPU processing is

where most of the information on a computer gets processed, it handles information

quickly and is close to the main memory so that processing is fast. GPU processing

handles graphics processing and can be used to run programs in parallel, it can run

large parallel processes very quickly but is further away from the main memory making

data transference slower.

Parallel execution using threads are done in two general manners: CPU threading

and GPU threading. CPU threading is done by using the multiple cores of the CPU;

these are 4-16 high preforming cores, although high-end CPUs can have an even

higher number of cores. GPU threading is done by processing the threads on the

GPU cores; these cores are generally hundreds of low preforming cores.

In the project, we use CPU threading. The reason why CPU threading was

chosen over GPU is because the threaded process has a fast execution time and the

data transfer between the CPU and GPU is too slow in comparison. In this research

the parallelization is done on the Evaluation function in the PSO for each particle,

this process is very quick and runs between less than 1ms to 5ms; depending on the

flow of the pso and the complexity of particle representation. The PSO converges

using information gathers between generations; therefore it would not be possible to

run all the generations in parallel.

GPU threading computation performance was tested using OpenCL [19], which is

software that runs a C-based kernel in parallel on any kind of computation platform;

such as CPU, GPU, FPGA, etc. OpenCL runs a defined kernel in parallel. However

with the OpenCL version that we used it could only handle C programming language

inside the kernel. Our PSO algorithm would need to be re-written without the object

based support from C++. However, after testing matrix addition, we found that the

program would run significantly slower on the GPU for applications that would only

44

take a few milliseconds due to the transfer time from the CPU to the GPU. The

Fly function in the PSO was re-written to test the GPU performance, since it was

simple. The data was reformatted so that it was able to use OpenCL buffers; we found

that the OpenCL using GPU computation greatly reduced the overall performance

of the project, and so decided to not use GPU threading from that observation.

CPU threading was chosen because it doesn’t require transfer of data, and has low

overhead, using it were able to improves the runtime of the PSO.

4.2 OpenMP

This project uses OpenMP to do CPU threading. The OpenMP API supports

multi-platform shared-memory parallel programming in C/C++ [20]. OpenMP was

chosen due to its C++ support and increased thread performance due to optimiza-

tion and thread polling as described in [21]. [21] describes 4 main overhead costs of

OpenMP: thread library startup, thread start up, per-thread (loop scheduling), and

lock management. OpenMP uses thread pooling, which re-uses threads rather than

recreating them, this makes the cost of thread start-up a one time cost rather than

each time the threads are used. We found that OpenMP outperformed standard

threading, which is why it been chosen.

4.3 PSO Analysis

To improve the speed of the PSO with threading, it’s important to analysis the

PSO to determine where threading would be most effective first. This section covers

a time complexity, run time analysis, as well as covering the theoretical speedup of

threading.

45

4.3.1 PSO Time Complexity Analysis

Time complexity is the computational complexity that estimates the runtime

based on variables of the function or algorithm. In this analysis we use big O, which

measures the limiting behavior of some function when it towards a certain value or

infinity. A flow chart showing an analysis of time complexity of the PSO is shown in

Figure 4.1.

46

Fig. 4.1. A Flow chart showing the time complexity of the PSO.
The PSO.Run function is broken up to run for every particle and
then separated into 4 main function calls: Fly, Evaluate, PBest, and
NBest. Each function’s time complexity shown as big O(n).

47

At the top of Figure 4.1 PSO.Run represents the process of the PSO running, the

PSO is run for every generation shown as FOR N Generations below PSO.Run. On

top of that it is also run for each particle. Then the PSO is broken up into 4 main

functions: Fly, Evaluate, PBest and Nbest. The parameters of the PSO will change

which functions take up more overall time in the PSO. For example having more

targets, called signals in the code, will increase the runtime cost of AssignSignals ;

where more assets, called receivers in the code, will increase the runtime cost of the

fitness component functions. It’s also noted that most of the function’s runtime in

getCost is mostly controlled by the number of assets and signal assignments; and

AssignSignals is controlled by the total number of targets.

4.3.2 PSO Runtime Analysis

The runtime analysis looks at where the PSO is spending its time. To do this we

have to implement high resolution timers in micro-seconds to get a proper analysis.

This analysis compares the runtime of the total PSO runtime against its components

as well as the subroutines called within Evaluate and getCost.

Test Environment

The hardware and software using for testing is shown in Figure 4.2. In this case

the most important components would be the Intel processor, the NVIDIA GPU is

only used for displaying the 3D Visualization.

The following measurements were done by running the application with the default

loaded environmental setup shown in 2.5 with the options’ setup shown in 4.3.

48

Fig. 4.2. The hardware and software used to run the runtime analysis.

Fig. 4.3. Settings used for thread and PSO analysis.

49

Test Measurements

Figure 4.4 shows a table of the runtime comparisons between the functions of the

PSO. The data gathered is from running the environment described in Test Environ-

ment for 5 runs and taking the average amongst the runs. The average runtime takes

154.2 generations to converge. The setup environment is shown in Figure 4.3 and Fig-

ure 2.5. Important data from Figure 4.4 is that about 80% of the total runtime lies

inside Evaluate. Evaluate returns the fitness value based on the current generation

and particle environment between generations.

Fig. 4.4. Runtime Analysis of the overall PSO.

Figure 4.5 shows the runtime analysis of Evaluate, where getCost takes up 89.7%

runtime; the other 10.3% creates a variable to store particle information from the

current particle and passes it as an argument to getCost.

Figure 4.6 shows the runtime analysis of getCost, where the critical sections, de-

scribed in the next section, Threading Implementation, take up 64.3% of the function.

This critical section is shown in 4.10 and 4.9. OpenMP describes a critical section

as ”...sections to prevent multiple threads from accessing the critical section’s code

at the same time, thus only one active thread can update the data referenced by

50

Fig. 4.5. Runtime Analysis of Evaluate.

the code. ” [20]. The other 35.7% of the code which contains the fitness function

components and penalty functions, and are freely threaded without critical sections.

Fig. 4.6. Runtime Analysis of Evaluate.

It’s important to emphasize that the recorded measurements come from running

the functions for every particle as well as every generation. In these measurements

we ran the PSO using 200 particles and it took an average of 154.2 generations to

converge. Thus, to get the runtime of the PSO per generation, the results would need

to be divided by 154.2, and to get the runtime per particle they would need to be

divided again by 200. Using the runtime from 4.4 that would make the runtime of the

PSO per generation 2.2473ms; and each particle in that generation take 0.011237ms.

These are important because we can only parallelize each generation, this is because

of the convergence property of PSO.

51

From the observation, it was decided that it would be best to only use threading

on Evaluate since took the most runtime compared to the rest of the functions in the

PSO.

Theoretical Threading Speedup

The maximum possible speed up from parallelizing code is calculated by using

Amdahl’s law:

SpeedUp = 1/((1 − p) + p/s) (4.1)

Where p is the proportion of execution time that the part benefiting from improved

resources originally occupied, and s is the speedup of the part of the task that benefits

from improved system resources. In our case p is the section of code that is run using

threading, and s is the number of CPU cores using for threading.

It is important to notice that this describes perfectly breaking the code into fully

serial and fully parallel sections. For our research, we have a serial section and a

parallel section with a critical section in it. Critical sections can only have 1 thread

running them at a single time, but that doesn’t mean that the code is completely

running in serial during all the critical sections. Hypothetically, consider 2 threads

running code in which 60% of the start of the code is critical and the remaining

40% can run in parallel. Thread 1 can run and finish its critical section, blocking

thread 2 since only 1 thread can run a critical section at a time. Once thread 1

finishes its critical section, thread 1 can freely run the remaining 40% in parallel

with the critical section of thread 2; meaning that a certain part of the process

can be run by both threads at the same time even if one thread is in a critical

section. Although the portion of runtime in true parallel is decided by the software

and hardware that handles thread scheduling and blocking; this makes it difficult to

measure the theoretical speedup with the given configuration. An important thing to

remember with equation 4.1 is that it assumes that there is no overhead or delay when

52

running code in parallel. Depending on the configuration, it can be very difficult to

achieve the speedup results from the calculations from 4.1.

Using information from 4.4, 4.5, and 4.6; we can determine the total portion of the

code that is in serial, the portion of the code that can run in parallel, and the portion of

the code which is in critical sections. Since we can’t measure an absolute speedup with

the critical sections, we will consider a number of scenarios to analyze our maximum

speedup and compare it to our results from Threading Implementation. In these

scenarios we will use 4.1 to determine the maximum speed between 2-4 threads, we

will also determine different ways to break the code into serial and parallel sections

based on the understanding of the code being parallelized.

The scenarios that will be considered are the following: scenario 1 assume critical

sections act as parallel sections, and scenario 2 assume critical sections act as serial.

This implies that for scenario 1, all of evaluate runs in parallel; and for scenario 2 only

the noncritical sections run in parallel. The percentage split of serial and parallel, as

well as the speedup calculated using 4.1, is shown in 4.7.

Fig. 4.7. A Table showing the serial and parallel splits when con-
sidering between scenarios 1 and 2. Where scenario 1 assume critical
sections act as parallel sections and scenario 2 assume critical sections
act as serial.

53

From 4.7 we can assume that the range of maximum speed up using 4 threads is

between 34% and 146%.

4.4 Threading Implementation

In order to thread Evaluate, we need to use OpenMP pragma’s on the outermost

function call. This was done in pso.cpp and is shown in Figure 4.8.

Fig. 4.8. Implementation of threading Evaluate in pso.cpp.

The variable Threadnum is passed in the pragma to determine the number of

threads to be used in the for loop. Threading existing code that runs in serial often

is difficult because the original development often doesn’t consider how the code will

run in parallel. Just doing the following to thread Evaluate, causes the program to

crash due to a data collision. Because of this, it was necessary to look at the data

relationship and possible areas of data collision in the code.

After analyzing Evaluate as well as everything that was connected to it, we deter-

mined that there was a function reference to a file called fitness SpatialReceiver.cpp,

which is the majority of the work is done in Evaluate, that every particle object would

share access to. This shared access to the same function file causes a data collision

between the classes representing the Receivers, or Assets, which caused the program

to crash when attempting to thread the function.

To remedy this we needed to create memory exclusion between the threads, so

that each thread would access its own memory so that it didn’t cause a data collision.

54

Unfortunately, we never were able to completely remove all dependencies within the

code so that each thread was completely mutuality exclusive. Since the code that

is being parallelized is very complex and shared between many objects and depen-

dencies in the project, it’s difficult to determine data dependencies and if they can

be remedied. Although, we determined that Receivers is able to become exclusive if

we separated the data into a vector and access it exclusively between threads. This

was done using a map to access the vector of Receivers so that each thread had its

own copy of the receivers object, shown in Figure4.8. We also use openMP’s critical

pragma to deal with section that needed to run in serial. The critical pragma only

allows 1 thread to run the section at a time; without this critical section the receiver

placement and assignment would not be acted as expected in the project.

The data separation of the receiver object was done in two ways to try to make

the threading more efficient: thread ID separation and particle ID separation. With

thread ID separation we create a vector of receiver objects based on the number of

threads, so the mapping would be based on the thread ID. This method uses the least

amount of memory possible while keeping the data excluded. This implementation is

shown in Figure 4.9.

Fig. 4.9. Implementation of remedying data collision by creating a
map of the receiver objects separated by thread ID and making critical
the creation, assignment, and power check of the receiver objects.

The other method to further stabilize the threading possess is to create more data

exclusion. This was desired because of OpenMP’s thread pooling. Thread polling is

creating the threads only once and then re-uses them. In this method we separated

55

by particle ID, where every thread instance references a different receiver object. For

example, if there are 200 particles, there would be a vector of 200 receivers and each

particle would reference a different copy of the receiver object. This implementation

is shown in Figure 4.10

Fig. 4.10. Implementation of remedying data collision by creating a
map of the receiver objects separated by particle ID and making crit-
ical the creation, assignment, and power check of the receiver objects.

A GUI was also implemented so that threading was enabled and changed, this

implementation is shown in the bottom right in Figure 4.11.

4.5 Results

Performance testing for threading was done on an Intel Core i5-6400 CPU @

2.70GHz with 4 cores, using 4 threads. Default start-up settings were used, shown in

Figure 4.11 with the options shown in Figure 4.3. The environment was a flat plane

that is 200km by 200km.

56

Fig. 4.11. Threading GUI Implementation so that the user can enable,
disable, and set the number of threads to be run.

57

Fig. 4.12. A graph showing the runtime vs asset number and compar-
ing the serial runtime against the threaded runtime.

A graph showing the performance improvements with changing asset amounts is

shown in Figure 4.12. Each recorded point was done by randomizing the transmitter

placement before each run while keeping the radius the same, this was done so that

a more generalize solution was measure rather than a specific configuration of the

transmitters. Each test took the average runtime of 50 runs. The speed increase from

threading was from 42% to 51% higher than serial runtime from the graph shown in

Figure 4.12.

The ideal thread number is generally automatically determine by OpenMP’s

get num procs() command; which returns the number of usable logical processors on

the machine that is running. On the machine that was used for testing, it has 4

logical processors; meaning 4 threads would be optimal. An analysis was done on the

effect of the number of threads vs. performance, shown in Figure 4.13. This graph

58

shows that the impact of 2 threads still increases the performance similar to 3 or even

4 threads; this has to do with the overhead with more threads and blocking, as well

as the short runtime of a few milliseconds. Since the processor can only handle up to

4 threads at a time, the high number of threads doesn’t change performance.

Fig. 4.13. A graph showing the runtime vs asset number and compar-
ing the runtime from different number of threads.

It is important to remember that the section being threaded runs very quickly,

around 2.2473ms. This is important because the overhead cost of OpenMP threads

becomes more significant with smaller runtime [21]; thread overhead is mainly from

the blocking cost from the critical section and the scheduling cost amongst threads.

Additionally, if a processor has 4 cores, it doesn’t necessarily mean a program will

necessarily run 4 times faster. This has to do with the hardware and memory resources

available on the processor, as well as the scheduling cost of threading.

59

4.6 Results Vs Theoretical

From our results, it was found that the maximum speed up was around 51% with

4 threads. We determined that our theoretical maximum speed up was between 34%

and 146% from Figure4.7. If we consider scenario 1, in which critical sections run

as if they are parallel, with only 2 thread we get a maximum speed up 66%. Also,

if we analysis figure 4.13 we notice that runtime didn’t increase past 2 threads; and

the measured performance increase with two threads is 61.6%. From this we see

that the critical sections have an effect on the number of threads being used and will

somewhat limit the performance achieved to running just 2 threads. This makes sense

since 57.7% of Evaluate is in a critical section, meaning 46% of the entire PSO runtime

is in a critical section. Around half of the time spent in the parallel section is in a

critical section, that implies that 1 thread would at least block all other threads 50%

of the time if they are all in critical sections. With the performance comparison and

portion of the parallel code that is in a critical section; it means the that maximum

speed up is similar to the maximum speedup found in scenario 1 with 2 threads, which

is assuming the critical section runs in parallel with 2 threads. This implies that the

maximum speed up from threading with any number of threads in this application

lies around 66% with the current setup.

4.7 Issues and Problems

Unfortunately there are some issues with the current implementation of threading

the PSO. One issue is that we were unable to completely remove all critical section,

this is important because critical section slows down the threading speedup since

only one thread can enter a critical section at a time. Another issue is that, on a

rare occurrence, the output of the PSO with threading doesn’t appear to be what is

expected. Although, this occurrence only happens in about 1 in every 40 runs or so.

It’s possible that it is a data collision, an unexpected outside effect of threading, or

an outside bug somewhere in the project.

60

5. SUMMARY

This research uses QT Data Visualization to display the PSO solutions, assets,

transmitters in 3D space from the work done in [2]. Elevation and Imagery data was

extracted from ARCGIS (a geographic information system (GIS) database) to add

overlapping elevation and imagery data to that the 3D visualization displays proper

topological data. This research also improves the performance of the PSOs runtime,

using OpenMP with CPU threading to parallelize the evaluation of the PSO by par-

ticle. The use of 4 threads improves the performance of the PSO by 42% - 51% in

comparison to running the PSO without CPU threading. The contributions provided

allow for the PSO project to be more realistically simulate its use in the Electronic

Warfare (EW) space, adding additional threading implementation for further perfor-

mance improvements.

61

6. RECOMMENDATIONS

Further analysis and work towards optimizing and improving upon the threading

should be continued. If possible, it is recommended to completely remove all critical

sections while preventing data collisions. Further work on the movement of transmit-

ters to simulate more realistic movement found in the EW space should be done. To

do this a transmitter movement scheduler that defines movement based on time and

user defined input schedule is recommended. This scheduler would need to give the

user enough freedom so that they can move the transmitters based on the time passed.

Further classification of both transmitters and assets can better simulate real life ob-

jects, there these objects would be created based on people and vehicles that would

commonly be found in the EW space; such as cars, people, planes, jeeps, tanks, etc.

This implementation can be done by inheriting OOP created objects already found

in the source code that was implemented from [1]. It is recommended to use ARCGIS

to extend the elevation and imagery data by including terrain types (such as grass,

gravel, cement), this can be used in signal refection for the RF propagation model.

Lastly, it is recommended to extend the project to simulate a cityscape environment.

Cityscape data would have to be extracted from a data source, such as ARCGIS. This

data would need to have a high enough resolution to distinguish between ground and

buildings. Although, to support cityscape environment; additions would need to be

added to the existing project in order for the application to run as expected. These

additions would include: crash detection for assets, path finding for ground and air

units, cityscape propagation models, extraction of building and ground type data,

proper transparency visualization, as well as other features necessary for a cityscape

environment to be used for simulating asset allocation in the EW space using the

PSO.

REFERENCES

62

REFERENCES

[1] W. Boler, “Electronic warfare asset allocation with human-swarm interaction
(unpublished master’s thesis),” Master’s thesis, Purdue (IUPUI), Indianapolis,
IN, 2018.

[2] J. Crespo, “Asset allocation in frequency and in 3 spatial dimensions for elec-
tronic warfare application,” Master’s thesis, Purdue (IUPUI), Indianapolis, IN,
2016.

[3] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,”
MHS95. Proceedings of the Sixth International Symposium on Micro Machine
and Human Science, vol. 1, pp. 39–43, 1995.

[4] X. Hu, “Pso tutorial,” (last date accessed: 4/11/2018). [Online]. Available:
http://www.swarmintelligence.org/tutorials.php

[5] N. Holden and A. A. Freitas, “A hybrid pso/aco algorithm for discovering
classification rules in data mining,” Journal of Artificial Evolution and
Applications, p. 111, 2008 (last date accessed: 4/11/2018). [Online]. Available:
https://www.hindawi.com/journals/jaea/2008/316145/abs/

[6] R. J. Kuo and C. C. Huang, “Application of particle swarm optimization
algorithm for solving bi-level linear programming problem,” April 2009 (last
date accessed: 4/11/2018). [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0898122109002260#!

[7] Q. Wu, C. Cole, and T. McSweeney, “Applications of particle swarm
optimization in the railway domain,” April 2016 (last date accessed:
4/11/2018). [Online]. Available: https://www.tandfonline.com/doi/abs/10.
1080/23248378.2016.1179599?journalCode=tjrt20

[8] J. Reynolds, “Particle swarm optimization applied to real-time asset allocation,”
Master’s thesis, Purdue (IUPUI), Indianapolis, IN, 2015.

[9] P. R. Witcher, “Particle swarm optimization in the dynamic electronic warfare
battlefield,” Master’s thesis, Purdue (IUPUI), Indianapolis, IN, 2017.

[10] B. Secrest and G. Lamont, “Visualizing particle swarm optimization - gaussian
particle swarm optimization,” Proceedings of the 2003 IEEE Swarm Intelligence
Symposium. SIS03 (Cat. No.03EX706), June 2003.

[11] CalcProgrammer1, December 2011 (last date accessed: 4/11/2018). [Online].
Available: https://www.youtube.com/watch?v=bbbUwyMr1W8

[12] “Natural resources conservation service,” (last date accessed: 4/11/2018). [On-
line]. Available: https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/
ngce/elevation/

63

[13] O. Ivanov, B. C. Neagu, and M. Gavrilas, “A parallel pso approach for opti-
mal capacitor placement in electricity distribution networks,” 2017 International
Conference on Modern Power Systems (MPS), July 2017.

[14] M. Rabinovich, P. Kainga, D. Johnson, B. Shafer, J. J. Lee, and R. Eberhart,
“Particle swarm optimization on a gpu,” 2012 IEEE International Conference
on Electro/Information Technology, June 2012.

[15] “Qt data visualization,” (last date accessed: 4/11/2018). [Online]. Available:
http://doc.qt.io/qt-5/qtdatavisualization-index.html

[16] “Surface example,” (last date accessed: 4/11/2018). [Online]. Available:
https://doc.qt.io/qt-5.10/qtdatavisualization-surface-example.html

[17] “Map projections - types and distortion patterns,” (last date accessed:
4/11/2018). [Online]. Available: http://geokov.com/education/map-projection.
aspx

[18] J. Stokes, “Ask ars: what is a cpu thread?” (last date accessed: 4/11/2018).
[Online]. Available: https://arstechnica.com/information-technology/2011/04/
ask-ars-what-is-a-cpu-thread/

[19] “Opencl - the open standard for parallel programming of heterogeneous
systems,” (last date accessed: 4/11/2018). [Online]. Available: https:
//www.khronos.org/opencl/

[20] “Home,” (last date accessed: 4/11/2018). [Online]. Available: http:
//www.openmp.org/

[21] P. Lindberg and Intel, “Performance obstacles for threading: How
do they affect openmp code?” June 2017 (last date accessed:
4/11/2018). [Online]. Available: https://software.intel.com/en-us/articles/
performance-obstacles-for-threading-how-do-they-affect-openmp-code

