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ABSTRACT

Boaks, Mawla. M.S.E.C.E., Purdue University, May 2018. Density Functional Theory
(DFT) Study of Hydrogen Storage in Porous Silicon. Major Professor: Peter J.
Schubert.

Based on plane wave DFT calculation, we carried out micro level investigation of

hydrogen storage in nanoporous silicon (npSi). One quarter of a hexagonal pore with

Palladium catalyst placed at the surface has been studied for hydrogen dissociation,

spillover, bond hopping, and diffusion for both single catalyst atom and small catalyst

cluster consisting of multiple catalyst atoms. All the DFT computations were done in

one of the biggest research supercomputer facilities of the world, Big Red II. We opted

ABINIT, an open source DFT tool for our computations. Our calculation revealed

low dissociation, spillover, and bond hoping energy barrier. The energy required to be

provided from external sources to fully recharge the storage medium from a gaseous

source at a completely empty state has also been evaluated. Hydrogen diffusion

along the inner surface of the pore as a means of bond hopping and the possibility

of quantum tunneling, a low temperature phenomena used to spontaneously go over

an otherwise less likely high energy barrier have been studied as well. Using these

micro level parameter values evaluated from the DFT study, the performance of

any potential hydrogen storage material can be compared to a set of characteristics

sought in an efficient storage media. Thus, the micro scale feasibility of this novel

npSi material based hydrogen storage technology was studied as a part of a STTR

Phase I project.
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1. INTRODUCTION

1.1 Hydrogen Storage in Porous Silicon

Hydrogen is a clean and renewable source of energy [1] [2]. Hydrogen has poten-

tial to be used as an alternative to traditional energy sources in near future. But

it will require a safe, cheap, and effective storage media to boost hydrogen as an

energy carrier. The first sought characteristics in a hydrogen storage media is its

high storage capability with H2 weight >6.0 wt.%. Nanoporous silicon synthesized in

electrochemical etching procedure from bulk silicon has shown theoretical hydrogen

storage capacity up to 6.6 wt.% [3]. Silicon is abundant and benign in nature. The

second required criteria in a storage media is hydrogen adsorption and desorption

in ambient or near ambient conditions [4]. Thirdly, reversible hydrogen releasing is

expected of a hydrogen storage medium. A NSF grant (grant number: 1648748) was

awarded to Green Fortress Engineering, Inc. to study if porous silicon based hydrogen

storage media has these mentioned characteristics [5]. This thesis work was pursued

to do micro scale study as a part of this NSF project. A relevant but out of the scope

of this thesis mass transport model was developed to compare the performance of this

nanoporous silicon based hydrogen storage medium against those requirements. For

this macroscopic mass transport model, we have evaluated some of the micro level

parameters using density functional theory (DFT) that approximates the solution

of the many body Schrödinger equation. The mass transport model calculates the

hydrogen concentration and recharge time depending on pressure and temperature.

Thus, the model should be able to assess nanoporous silicon as a potential hydrogen

storage media.
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In this system, hydrogen goes through a series of equilibrium reactions that form

different types of compounds that bond silicon and hydrogen. At the beginning,

molecular hydrogen is split into atomic hydrogen ions by the palladium catalyst,

which the ions then dissociate onto.

H2 ↔ 2H+
Pd

These hydrogen ions then bond onto dangling bonds on the silicon, creating the

Si-H bonds that form the backbone of the porous silicon storage medium.

H+
Pd + Si∗ → SiH

The net chemical reaction is as follows:

H2 + 2Si∗ ↔ 2SiH

The hydrogen atoms hop from one silicon dangling bond to the other and thus

diffusion takes place along the inner silicon surface of the pore. In this micro level

study, we have thereby investigated hydrogen dissociation, spillover, bond hopping,

and diffusion within the computational framework of DFT.

1.2 Density Functional Theory

In order to describe the properties of a collection of atoms we are mainly after the

ground state energy for the well-defined collection of atoms. We can find the ground

state by solving many body Schrödinger equation for that collection of atoms:

Ĥψ({ri}, {RI}) = Eψ({ri}, {RI}) (1.1)

ψ is the wave function here which describes our system of atoms consisting of nucleus

and electrons. ri and RI represent the positions of electrons and nuclei respectively.

Hamiltonian, Ĥ is an energy operator operating on our wave function. The energy

operator can be broken into two parts:
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Ĥ = T̂ + V̂coulomb (1.2)

T̂ and V̂coulomb are the kinetic energy operator and coulomb potential operator respec-

tively. The coulomb potential operator includes all the coulomb interactions between

charges (ie: Nuclei-Nuclei, electron-Nuclei, electron-electron). Therefore,

V̂coulomb =
qiqj
|ri − rj|

(1.3)

Here, there are bunches of electrons and nucleus which interact with one another.

This makes the Schrödinger equation difficult to solve. To make this equation a little

bit simpler to solve, we apply the Born-Oppenheimer approximation. The nuclei are

substantially heavier and slower compared to the electrons. Electrons are relatively

faster than nuclei and they take considerably lesser time to go to the lowest energy

state or ground state of electrons for fixed position of nuclei. As a result, the electrons

see the nuclei as external potential of fixed nuclei.

mnuclei >> me (1.4)

According to the Born-Oppenheimer approximation, the dynamics of atomic nu-

clei and electrons can be separated as follows:

ψ({ri}, {RI}) = ψN({RI}) ∗ ψe({ri}) (1.5)

So, we will be concentrating on first solving only the ground state of electrons for

fixed set of nuculei. Thus, we have reduced the number of variables in the Schrödinger

equation and it looks file follows:

Ĥψ(r1, r2, r3, ......., rN) = Eψ(r1, r2, r3, ......., rN) (1.6)

Hamiltonian, Ĥ only consists of three terms accordingly:

Ĥ =

[
− h̄2

2me

Ne∑
i=1

∇2
i +

Ne∑
i=1

Vext(ri) +
Ne∑
i=1

∑
j>1

U(ri, rj)

]
(1.7)
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The first term in the right hand side denotes the kinetic energy of the electrons,

second term denotes the potential due to interaction between the electrons and ex-

ternal nuclei and finally the third term denotes electron-electron repulsion.

Even after Born-Oppenheimer approximation, this is still a high dimensional prob-

lem to be solved. Here, the electron wave function, ψ is still a function of all three

spatial coordinates of each of the electrons. In our porous silicon matrix that com-

prises only quarter of a pore, there are 340 silicon atoms. Each silicon atom has 14

electrons. Therefore, Schrödinger equation of our quarter pore silicon matrix alone

is 14280 (340 × 14 × 3) dimensional problem. In order to reduce the complexity of

this problem, we switch to electron density from electron wave function. The electron

density is a true observable unlike the electron wave function. The electron density,

n(r) is a function of only 3 dimension unlike the electron wave function ψ which is

the function of all three spatial coordinates of each of the electrons. Therefore, the

dimension of the problem reduces to 3 from 3N. The electron density is defined as

the probability that the N electrons are at particular set of coordinates, r1, ...., rN .

Hence,

n(r) = ψ∗(r1, r2, ...., rN)ψ(r1, r2, ...., rN) (1.8)

If we consider any electron as a point charge located in the field of all other

electrons, we will be able to simplify the many electron problem into many one electron

problems. So, we consider single electron wave functions:

ψ(r1, r2, ...., rN) = ψ1(r1) ∗ ψ2(r2) ∗ ψ3(r3) ∗ ....... ∗ ψN(rN) (1.9)

We can re-define our electron density in terms of single electron wave functions:

n(r) = 2
∑
i

ψ∗i (r)ψi(r) (1.10)

Hohenberg and Kohn provided two theorems that is at the center of DFT. Theorem

1 states that the ground state energy is an unique functional of electron density.



5

E = E[n(r)] (1.11)

In general words, if we find the electron density that will lead to total ground

state energy. Theorem 2 states that the electron density that minimizes the energy

of the overall functional is the true electron density corresponding to the full solution

of Schrödinger equation.

E[n(r)] > E0[n0(r)] (1.12)

Here, Eo and n0(r) are minimum of the energy functional and ground state electron

density respectively. The energy functional can be broken into two parts: known and

unknown.

E [{ψi}] = Eknown [{ψi}] + EXC [{ψi}] (1.13)

The known parts consists of the kinetic energy and the potential energy terms

arising due to coulomb interactions.

Eknown [{ψi}] = − h̄
2

me

∑
i

∫
ψ∗i∇2ψid

3r+

∫
V (r)n(r)d3r+

e2

2

∫ ∫
n(r)n(r′)

|r − r′|
d3rd3r′

+ Eion (1.14)

The unknown part consists of the exchange correlation functional including all

the quantum mechanical interaction between electrons. The exchange correlation

functional is not known and they are approximated. There are two types of exchange

correlation functional commercial DFT packages utilize. One is the LDA or local

density approximation based on local electron density, the second one is GGA or

generalized gradient approximation based on gradient of electron density.

Kohn and Sham hypothesized a way to obtain the ground state electron density.

According to the Kohn-Sham scheme, we need to solve a set of single electron wave

functions that only depend on three spatial variables, ψ(r).
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[
− h̄2

2m
∇2 + V (r) + VH(r) + VXC(r)

]
ψi(r) = εi(r)ψi (1.15)

The Hamiltonian of this single electron wave function consists of kinetic energy,

external potential, Hartree potential due to electron interacting with electron density,

and the exchange correlation potential which needs to be approximated.

In the self-consistent scheme, initially a trial electron density, n(r) is guessed. This

trial electron density, n(r) is put into the Hamiltonian of equation (1.15). Solving this

Kohn-Sham equation gives a single electron wave function ψi(r). For each electron,

the Kohn-Sham equation provides individual single electron wave functions. After

evaluating the wave functions for all the electrons we can recalculate the electron

density from equation (1.10). If this new electron density is same as the trial electron

density, then we have self-consistency in our loop. The true ground state is thereby

achieved. Otherwise, the newly obtained electron density is used as a new trial density

and the iteration process continues.

1.3 Plane Wave DFT

In our DFT work, we used open source DFT package ABINIT. Like most of the

commercially available DFT packages, ABINIT is also a plane wave DFT package.

Our goal is to study various properties of nanoporous silicon manufactured from a

single crystalline silicon by electrochemical etching process. A crystal is a periodic ar-

rangement of atoms. Since we are dealing with a collection of atoms which is periodic

in space, plane wave DFT package is particularly chosen. The positive charged nuclei

in the atom is represented by a periodic potential, U(r) whereas free electrons are

represented by plane waves, eik·r in a crystal. When a free electron is put in a crystal

having a periodic potential, the wave function results in Bloch waves expressed as:

ψnk(r) = exp(ik · r)unk(r) (1.16)
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This Bloch wave is still plane wave in nature but modulated by the potential

which is also periodic with the lattice. In general, it’s kind of perturbed free electron.

There are couple of important concepts in actual plane wave DFT calculations for

use in any DFT package. Those concepts are depicted below:

1.3.1 Cutoff Energy

In any practical DFT calculation, a set of atoms needs to be specified. When

this set is repeated in every direction, the full three dimensional crystal structure

is generated. This can be achieved by defining a volume which fills space when

replicated in all directions. Next, the coordinates of atoms are defined that lie within

this volume. These volume and the atom coordinates collectively form a supercell.

Supercell needs to be defined in the input file of the DFT package. This supercell is

represented by a lattice vector comprising the real space. The Fourier transformation

of the real space is defined as the reciprocal space. In general, all the dimensions in real

space gets inside out in reciprocal space. The bigger quantities is real space becomes

smaller in reciprocal space and vice versa. We know that any periodic function can

be expanded by a Fourier series. In the Bloch function defined in equation (1.16),

the right most parameter unk(r) is periodic with lattice. This periodic function if

expanded by Fourier series, becomes reciprocal lattice vector.

ψnk(r) = exp(ik · r)unk(r) = exp(ik · r)
∑
G

ckexp(iG · r) (1.17)

From the above equation we can say that the Bloch wave can be represented as

the sum of plane waves. Each plane wave here has kinetic energy,

E =
h̄2

2m
|k +G|2 (1.18)

Here, the plane waves need to be summed over infinite number of reciprocal lattice

vectors due to the fact that lattice vector in real space becomes infinite in reciprocal

space. Kinetic energy of each of the plane waves also increase with the size of the
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reciprocal lattice vector. Evaluating the sum of plane waves over this infinite recip-

rocal lattice vectors doesn’t make sense. This makes the cutoff energy an important

criteria in practical DFT calculations. While evaluating the sum of the plane waves,

we discard the plane waves having higher kinetic energy than this cut off energy.

1.3.2 k-Points

The plane wave wavevectors span the reciprocal space. The primitive unit cell

in this reciprocal space is called the 1st Brillouin Zone (BZ). Any wavevector, k that

differs the primitive cell or the 1st Brillouin Zone by the reciprocal lattice vector G

can be written as k′ = k + G. This k′ is actually a phase shifted version of the

original wavevector k. Therefore, we consider the plane wave wavevectors inside the

1st Brillouin Zone that will be sufficient to capture the whole scenario. In other

words, integrals need to be evaluated only in the 1st Brillouin Zone. Accordingly,

appropriate number of k-points must to be chosen to sample the Brillouin Zone.

Finally, the integrals are evaluated by summing up over these k-points. Number of

k-points needs to be sufficiently large to sample the BZ and to get reliable energy.

1.3.3 Pseudopotential

Chemical bonding and other characteristics of materials are mainly dependent

on outer shell electrons known as valence electrons. Electrons lying in the core are

thus less important. To make DFT calculations easier, the electron density of these

less important core electrons can be replaced by a smoothed density. This is known

as frozen core approximation. The pseudopotentials approximate this core electrons

as a net positive potential and replace the electron density by a smoothed density.

Almost all the commercial DFT codes provide the library of pseudopotentials for a

list of different elements.
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1.3.4 Supercells and Periodic Boundary Conditions

While doing practical DFT calculation, we implement unit cell or the supercell as

the most basic input. This unit cell or supercell is repeated periodically in all three

dimensions for DFT calculations. Due to this replication, there will be interaction

across the periodic boundaries. Simply, we need to specify a set of atoms inside a full

three dimensional crystal structure. This can be done by specifying a volume and

specifying the coordinates of a set of atoms inside this volume that will fill up the

volume. When these volume is repeated in x, y, and z directions, it actually specifies

the full three dimensional crystal structure in space. The vectors defining the cell

volume and the atom coordinates comprise the supercell. If the supercell is defined

using minimum number of atoms, it is called primitive cell.

1.4 Nanoporous Silicon Matrix

Silicon has a diamond cubic crystal structure with a lattice constant of 5.43

Å(Angstrom). Silicon crystal has a shape of a simple cube with each side length

of 5.43 Å and consisting of two inter-penetrating face centered cubic primitive lat-

tices. The conventional silicon unit cell consists of 8 atoms [6]. The atom coordinates

that fill up the conventional unit cell volume is given in table 1.1.

In our nanoporous silicon matrix, 3.5nm pore diameter is considered based on

experimental evidence. We would require a cube having sides exceeding 4nm along

both x and y directions to allocate a complete pore. It will take at least 8 (0.543× 8

nm>3.5 nm) unit cells in both x and y direction. But, the total number of silicon

atoms will be quite high and it will take extensive computational time to converge the

DFT calculations. So, we decided to proceed with quarter pore only due to symmetry.

A silicon supercell consisting of 4× 4× 4 conventional unit cells was constructed. In

this supercell, there were 512 silicon atoms in total. The silicon supercell looked like

figure 1.1. The blue balls represent silicon atoms.
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Table 1.1.
Atom coordinates in Si conventional unit cell

X-coordinate(Å) Y-coordinate(Å) Z-coordinate(Å)

0.00000 0.00000 0.00000

0.00000 2.71535 2.71535

2.71535 0.00000 2.71535

2.71535 2.71535 0.00000

4.07302 4.07302 1.35768

4.07302 1.35768 4.07302

1.35768 4.07302 4.07302

1.35768 1.35768 1.35768

Fig. 1.1. 4× 4× 4 Silicon supercell consisting of 4 conventional unit
cells in x, y, and z directions: top view (left) and side view (right).

Next step was to remove some of the silicon atoms to place one quarter of the pore

in our silicon supercell. The center of the pore was located at the top right corner of

the supercell depicted in figure 1.1. A MATLAB function was written to remove the

silicon atom coordinates lying within the pore radius of 1.75nm. Once this function

was implemented, it etched away 172 silicon atoms from the system to imitate the
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electrochemical etching procedure done in laboratory to produce nanoporous silicon.

The pore depth was extended all the way to the bottom of the supercell. The pore

was hexagonal in shape having edges along (100) and (110) planes.

Fig. 1.2. Nanoporous silicon matrix accommodating one quarter of
a pore in a 4 × 4 × 4 silicon supercell: top view (left) and side view
(right).

1.5 DFT Computational Setup: ABINIT

There are couple of commercial DFT packages available. Initially we started

with the open source DFT package GAMESS [7]. GAMESS is an ab initio quantum

chemistry code developed and maintained by Gordon research group at Iowa State

University. We figured out couple of limitations of this package while working. For

example: it doesn’t support forming k-point grids essential to integrate over the 1st

Brillouin Zone. Activating parallel computing in GAMESS is another painstaking

task. But due to the nature of the size of our problem, parallel computation must be

adopted. This is when we opted public licensed DFT tool ABINIT [8] to carry out

our first principle DFT calculations. Throughout our DFT computation, LDA: new

Teter (4/93) with spin-polarized option [9] was our choice of exchange-correlation

functional and comes as default with ABINIT. This exchange-correlation functional
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actually reproduces widely used Perdew-Wang functional. The choice of this de-

fault LDA exchange-correlation functional was justified by the fact that generalized

gradient approximation (GGA) based exchange-correlation functionals are inferior in

performance even though they utilize information about both local electron density

and local gradient in electron density [10].

In our DFT code ABINIT, periodic boundary condition is applied in all three di-

mensions. This periodic boundary condition will create interaction between electron

densities at the periodic boundaries. Since we intend to do surface study, it is re-

quired to use vacuum between two slabs of material [10]. The sufficient vacuum space

between two slabs helps eliminating electron density in the vacuum. This essentially

removes the impact of the top of one slab to the bottom of the slab above it. This

vacuum space is generated by filling up the supercell partially along the z-dimension.

The lower part of the supercell is filled with atoms whereas the upper part is kept

empty. The atoms in lower part of the supercell fill the entire supercell in both x and

y dimensions. When this supercell is periodically replicated in all three dimensions,

they form stacked slabs of materials with a vacuum space between the slabs. These

slabs are extended infinitely along x and y directions. Literature survey suggested

a vacuum space of 15 Å (Angstrom) [11] to eliminate interaction between periodic

images. Additional 4 unit cells (5.43 Å×4) are required to maintain a vacuum space

of 15 Å. The supercell was expanded by another 4 conventional unit cells along z-

dimension whereas x and y dimensions were kept same as before. This now becomes

a 4 × 4 × 8 silicon supercell. In this newly formed supercell, upper half was kept

empty and only there were atoms in lower half of the supercell along z-direction.

The 1st Brillouin Zone was initially integrated by 2×2×2 Monkhorst-Pack grid [12]

before we introduced vacuum space between periodic images. Once the vacuum was

introduced, the supercell dimension increased by a factor of 2 along z-dimension. Since

dimension increase in real space corresponds to a decrease in reciprocal space, number

of k-points along z-dimension needed to be reduced by a factor of 2. Therefore, 1st

BZ was integrated by 2 × 2 × 1 Monkhorst-Pack grid at the presence of vacuum.
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Troullier-Martins pseudopotentials [13] were used for all the elements in our system

including silicon, Pd, and hydrogen. Pseudopotentials of silicon and hydrogen were

available with the DFT code, but the Pd pseudopotentials was retrieved from another

DFT package, QuantumExpresso pseudopotential library [14]. A cutoff energy of 16

Ha (Hartree) was used for all the DFT computations done. 1 Ha is equivalent to

approximately 27.21 eV. This results in a cutoff energy of 435 eV. A convergence study

was carried out to choose the cutoff energy. We did a series of DFT computations

for the cutoff energy ranging from 16 to 32 Ha with an increase of 4 Ha. The DFT

calculations were pretty well converged with a maximum ground state total energy

variance of 0.000001 eV. For higher values of cutoff energy, the DFT code needs

to include more plane waves whose kinetic energy falls within this cutoff energy.

Therefore, we chose 16 Ha as our cutoff energy. DFT is an iterative calculation where

at the end of every iteration the newly evaluated electron density is compared to

trial electron density. If those two electron densities match, the DFT code is said

to have reached self-consistent solution. In reality, we are interested in finding the

ground state total energy for a collection of atoms. Our DFT code reports the total

energy corresponding to electron density at the end of each iteration. If the difference

between two consecutive evaluations of total energy is less than tolerance value, the

iterations are considered as converged. To make our DFT calculations highly precise,

we chose a very low tolerance value of 0.000001 Ha.

1.6 KGB Parallelization

Due to high number of atoms in our nanoporous matrix we ported our DFT code

to one of the biggest and fastest research supercomputing facilities of the world called

Big Red II. Big Red II provides 1020 computing nodes, 21,824 processor cores, and

43,648 GB of RAM [15]. Since we had access to such huge computational resources,

we wanted to activate parallel computing in ABINIT. The computational speed could

be further increased by using KGB parallelization scheme. K, G, and B stands for
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k-point, Wave vector of plane wave, and Band respectively. In KGB parallelization

scheme, standard data partitioning was done over processors corresponding to k-

points, block of bands, as well as Fourier space of coefficients over plane wave basis

set [16]. As a result, three levels of parallelization can be achieved. This scheme

gives us the provision to figure out the number of processors required on each level of

parallelization [17]. KGB algorithm suggests suitable values for number of processors

required for parallelization over k-point, plane wave wave vectors, and band level along

with the projected efficiency. For each of our DFT calculations, we ran this KGB

parallelization algorithm first to determine possible values of processors required for

parallelization over these different levels. Suitable number of processors were chosen

accordingly that corresponds to highest efficiency level.
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2. METHODS

2.1 Catalyst

In as-synthesized nanoporous silicon (npSi) based hydrogen storage systems, com-

plete dehydrogenation occurs at relatively high temperatures. At such high temper-

atures, silicon bond reformation takes place. Due to bond reformation, npSi looses

suitability for further hydrogen recharge [3]. Nanoscale catalyst atoms play a very

important role here in preventing bond reformation by bringing down the hydrogen

desorption temperature and facilitating further hydrogen dissociation and spillover

for gaseous recharge. Literature survey suggests various transition metals as suitable

candidate as catalyst atom for hydrogen storage system. Transition metals are known

for their contribution in H2 dissociation into atomic hydrogen which later recombine

with another atomic hydrogen to turn into molecular form and finally H2 evolution

between 300 and 900K [18]. The main challenge lies in overcoming the large activa-

tion barrier required to break the H-H bond. This H-H bond has a bond dissociation

energy of 436 KJ/mol [19]. Among the transition metals, Pt and Pd are specifically

known for their ability to reduce this substantial activation energy barrier [20] [21] and

therefore facilitate H2 dissociation. Strategic placement of catalyst atom is thereby

a crucial factor in nanoporous silicon based hydrogen storage system. In npSi, Si-H

and Si-H2 are most prominent with a small number of Si-H3 bonds [22]. In this Si-H3

bonds, the silicon atom is bonded to only one neighboring silicon atom and is struc-

turally the weakest among the three types of bonds silicon atoms form with hydrogen.

During dehydrogenation, this structurally weak spots are supposed to give away hy-

drogen atom first. Green Fortress Engineering, Inc. holds a patent to strategically

deposit catalyst atom to this structurally weak spots [23]. Pd is chosen as preferred

catalyst due to its known inclination for silicon. In this catalyst deposition method,
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storage media is initially heated to a temperature for partial dehydrogenation where

Si-H3 bonds give away two hydrogen atoms. The nanoporous silicon matrix is then

cooled from this temperature and Pd catalyst atom is deposited in a solution [24].

2.1.1 Single Atom Catalyst

In order to comply with the catalyst deposition patent mentioned in previous

section, we have evaluated 9 (nine) different locations as possible strategic location

for single catalyst atom on and adjacent to the intersection of (100) and (110) planes

at the pore edge. Catalyst atom was placed on or adjacent to the intersection of

(100) and (110) planes at the pore opening, moved along the pore depth, and also

moved to the silicon surface. The part of porous silicon matrix we chose for our

micro-level study comprises only about one quarter of a pore. The pore is apparently

hexagonal in shape. After carefully observing this nanoporous silicon matrix at our

hand, it’s evident that majority of the silicon dangling bonds where silicon atom is

weakly bonded to the porous matrix exist in one of the three places: periphery of the

pores near pore opening, pore walls along the pore depth, or adjacent to the pore edge

on the top surface. Possible locations of single catalyst atom was chosen according

to the symmetry of the pore morphology and presence of these dangling bonds. In

all these locations, the silicon atom on which the catalyst atom is located is bonded

to either one or two neighboring silicon atoms. Therefore, these are the structurally

weak spots favorable for strategic deposition of catalyst atoms. The following figures

show all 9 locations chosen as possible location of Pd catalyst atom for our DFT study.

Blue balls represent silicon atoms in a nanoporous silicon matrix whereas silver balls

represent Pd catalyst atoms deposited at strategic location. It is worth mentioning

here that the (100) plane is along x-axis depicted in the figures and the (110) plane

is along the diagonal of the porous matrix.
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Fig. 2.1. Single Pd atom placed on a quarter pore of porous silicon
along (110) plane at the pore mouth: top view (left) and side view
(right).

Fig. 2.2. Single Pd atom placed on a quarter pore of porous silicon
along (110) plane at pore depth: top view (left) and side view (right).
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Fig. 2.3. Single Pd atom placed on a quarter pore of porous silicon
adjacent to (110) plane on silicon surface: top view (left) and side
view (right).

Fig. 2.4. Single Pd atom placed on a quarter pore of porous silicon
at the intersection of (100) and (110) plane at the pore mouth: top
view (left) and side view (right).
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Fig. 2.5. Single Pd atom placed on a quarter pore of porous silicon at
the intersection of (100) and (110) plane at the pore depth: top view
(left) and side view (right).

Fig. 2.6. Single Pd atom placed on a quarter pore of porous silicon
adjacent to the intersection of (100) and (110) plane on silicon surface:
top view (left) and side view (right).

In nature, any collection of atoms always tend to go to lowest energy state. This

lowest energy state is most stable quantum state for the collection of atoms. In our

single catalyst atom study, we calculated the ground state total energy using our

DFT package for the collection of 340 silicon atoms and 1 Pd catalyst atom. The

silicon atoms are kept fixed whereas the Pd atom is moved to all the 9 locations we
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Fig. 2.7. Single Pd atom placed on a quarter pore of porous silicon
along (100) plane near pore mouth: top view (left) and side view
(right).

Fig. 2.8. Single Pd atom placed on a quarter pore of porous silicon
along (100) plane at the pore depth: top view (left) and side view
(right).

investigated. The ground state total energies for all the 9 locations are then compared.

Naturally, the one with lowest ground state energy denotes the most stable quantum

state and therefore most favorable location for Pd atom.
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Fig. 2.9. Single Pd atom placed on a quarter pore of porous silicon
adjacent to (100) plane on silicon surface: top view (left) and side
view (right).

2.1.2 Multiple Atom Catalyst

Catalyst atoms are expected to form clusters of at least 2 (two) or more atoms to

facilitate gaseous hydrogen dissociation and spillover process [25]. To ensure high en-

ergy density storage media where almost all the dangling silicon bonds are terminated

by hydrogen atoms for complete hydrogenation, spillover process must take place. For

spillover process to happen, the chemical potential of hydrogen needs to be increased

to a spillover favorable range [26]. Single Pd atom may not be enough to dissociate

required number of gaseous H2 to raise the H chemical potential to a range required

for spillover. Therefore, we need to consider clusters consisting of multiple catalyst

atoms. As the size of the cluster increases, multiple H2 molecules are adsorbed to the

cluster [27] [28]. These H2 molecules are dissociated and increases the H chemical

potential to a spillover favorable range. For palladium, the tetrahedron structure

consisting of 4 (four) atoms is found to be lowest in energy in DFT study [26] and

are most stable. Therefore, we have considered this tetrahedron structure of cata-

lyst atoms and evaluated at three different locations as possible strategic location

for catalysis. The reason behind the choice of these 3 locations were similar to the

case as single catalyst atoms where the main consideration for possible strategic lo-
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cation of catalyst atom was the structurally weak spots having lesser number of Si-Si

bonds. Catalyst structures were placed on and adjacent to the intersection of (100)

and (110) planes at the pore edge near the pore opening. Different orientations of

the tetrahedron structure is also considered which will be discussed in detail in later

sections.

Fig. 2.10. Cluster of 4 Pd atoms placed on a quarter pore of porous
silicon adjacent to the intersection of (100) and (110) plane: top view
(left) and side view (right).

Fig. 2.11. Cluster of 4 Pd atoms placed on a quarter pore of porous
silicon along (110) plane: top view (left) and side view (right).
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Fig. 2.12. Cluster of 4 Pd atoms placed on a quarter pore of porous
silicon at the intersection of (100) and (110) plane: top view (left)
and side view (right).

With the increasing size of the catalyst cluster, total number of atoms in the

system was increasing. In DFT packages, the computational effort increases substan-

tially with the size of the system. In our micro-scale system, there were 344 atoms

in total. Even though we were doing our DFT computations in one of the fastest

research supercomputer facilities of the world, the computational time was extensive.

For the collection of 340 silicon atoms and Pd cluster consisting of 4 Pd atoms, we

ran the computation in Big Red 2 with an actual elapsed time of 48 hours. In high

performance computing jargon, this difference between actual program start time and

end time for any computational job is called “wall time”. During this 48 hours of wall

time, the computation was running in 288 processors in parallel for our job. Thus,

the CPU time was much higher than the wall time. The ground state energy didn’t

converge within the specified wall time. The DFT package provides several output

files (ie: density file, wave function file, etc.) at the expiration of the wall time. We

were able to utilize the density file to restart the computation from right where it

stopped which actually provides the latest trial density used by the DFT package in

pursuit of finding ground state electron density. Even after several restarts and an

approximate computational time of around 2 weeks, the job didn’t converge. That’s
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when we realized, our micro-scale system was too large for the DFT package to han-

dle. We needed to minimize computational effort by reducing the size of the system

in a way that the morphology, shape, and characteristics of the system as well as the

individual property of the bulk silicon and catalyst atoms are preserved. Therefore,

silicon atoms that fall beyond the range of 4 (four) atoms in any direction except for

the z-direction were discarded. The new system had substantially fewer number of

atoms while the pore morphology, shape, and properties were preserved.

2.2 Dissociation

The main role of catalyst atoms in our system is to facilitate the dissociation

of gaseous H2 to atomic hydrogen so that it can subsequently spillover onto the

silicon surface, as explained in the next subsection. Hydrogen is finally stored in solid

state in this silicon surface. We have studied hydrogen dissociation for both single

catalyst atom and tetrahedron catalyst structure. Since we are interested in studying

dissociation of gaseous H2 on Pd catalyst supported at silicon surface, we defined the

supercell in such a way that there were vacuums along part of the z-coordinates as

described in previous sections. One gaseous H2 was placed 15 Å(Angstrom) away

from the surface right above the pore whereas the single catalyst atom or tetrahedron

catalyst cluster was supported on the silicon surface at the lowest energy location.

H2 was placed in vacuum at a position where it doesn’t overlap with the silicon

atoms to ensure sufficient separation between periodic images [11]. This helps in

achieving easier plane wave solution. Due to the presence of a metal atom in the

system, macroscopic dielectric constant value was raised and this new value was used

onwards for speeding up the Self Consistent Field (SCF) procedure. Like the catalyst

study mentioned in previous section, reduced number of silicon atoms were considered

in case of tetrahedron catalyst structure. The dissociation energy barrier is calculated
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by comparing the total energy of the silicon substrate with one molecule of hydrogen

present 15 Å away in gaseous state with the energy of silicon substrate while the

molecular hydrogen gets dissociated and forms two bonds with catalyst atom(s).

Fig. 2.13. Gaseous H2 molecule placed on top of pore 15 Å away from
surface containing single Pd catalyst: top view (left) and side view
(right).

Fig. 2.14. Gaseous H2 molecule placed on top of pore 15 Å away from
surface containing Pd cluster consisting of 4 Pd atoms: top view (left)
and side view (right).
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2.3 Spillover

Spillover is the pathway through which hydrogen atoms move from the catalyst

atoms supported at the silicon substrate to the nearby silicon surface. Hydrogen

uptake in a storage medium is significantly increased by spillover from a supported

heterogeneous metal catalyst [25] [29]. It is assumed that the hydrogen atoms find

their way in the nearby low valence silicon surface atoms after spillover process.

Therefore, nearby silicon atoms having valence value of 2(two) or 3(three) are the

probable sites for hydrogen termination after spillover process. In this thesis, we have

carried out spillover study for both single catalyst atom and tetrahedron catalyst

structure. The spillover energy barrier is calculated by comparing the total ground

state energy of the silicon substrate along with dissociated hydrogen atoms forming

bonds with catalyst atom(s) to the energy of silicon substrate supporting catalyst

atom(s) with two adjacent low valence silicon atoms terminated by hydrogen atoms.

Fig. 2.15. Before Spillover: atomic hydrogen forms bond with Pd
catalyst; top view (left) and side view (right).
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Fig. 2.16. After Spillover: split hydrogen forms bond with low valence
silicon at nearby surface; top view (left) and side view (right).

2.4 Recharge-Discharge State

Ground state total energy at fully recharged and completely discharged porous

silicon matrix was calculated using ABINIT. The difference between these two quan-

tities provide the the energy required for recharging the porous silicon matrix. With

1(one) Pd catalyst atom near pore edge at the one quarter of the pore, every silicon

atom located in top surface and pore wall having less than 4 nearest neighbor sili-

con atoms was terminated by hydrogen atoms in solid state. The number of nearest

neighbor atoms from any silicon atom in silicon crystal is defined as the coordina-

tion number of silicon. When all these mentioned silicon atoms having coordination

number less than 4 were terminated by hydrogen atoms, this represents fully charged

state. The system looked like figure 2.17 at recharged state.

On the other hand, exact same number of atomic hydrogens (ie: 102 atoms) but in

molecular gaseous form (ie: 51 gaseous H2) were uniformly distributed in the vacuum

space over the pore. We needed a bigger supercell to accommodate these 51 gaseous

H2 molecules in the vacuum space. Therefore, we extended the supercell along z-

direction only. A new 4 × 4 × 15 supercell was constructed. Gaseous H2 molecules
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Fig. 2.17. Complete Recharged Porous Silicon Matrix at Solid State:
top view (left) and side view (right).

were uniformly distributed in the vacuum space ensuring a minimum of 15 Å distance

between the top of silicon surface and the gaseous hydrogen molecule closest to this

silicon surface. This represents the completely discharged state. The system looks

like figure 2.18 at discharged state.

Fig. 2.18. Complete Discharged Porous Silicon Matrix: Gaseous H2

in Vacuum Space: top view (left) and side view (right).
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Like we mentioned in section 2.2, we tried to place the H2 molecules in a way that

none of them are located on top of silicon to ensure easier plane wave solution for

this configuration. But still we ended up placing few H2 molecules on top of silicon

because of limited dimension in real space. Forcing all the H2 molecules close together

will imply high pressure in our system. In order to avoid that, we moved some of the

H2 molecules on top of silicon to ease off this situation.

Apart from studying the energy difference between fully charged and fully dis-

charged state only, some intermediate steps were also created in a step size of 25

percent where in each successive step 25 percent more hydrogen atoms were loaded

on silicon surface in solid state. Rest of the hydrogens remain in gaseous state as H2

molecule. In all the cases, total number of hydrogen atoms in the system were same.

The ground state total energy was calculated for all these configurations. A random

number generator function was used to remove the gaseous hydrogen molecules and

load them on silicon surface or inside the pore. In total six different random samples

were taken for this analysis. The system looked like following in different hydrogen

loading states:

Fig. 2.19. 25% Recharged Porous Silicon Matrix: 38 numbers of
gaseous H2 in Vacuum Space whereas 26 numbers of H atom in silicon
surface at solid state; top view (left) and side view (right).
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Fig. 2.20. 50% Recharged Porous Silicon Matrix: 26 numbers of
gaseous H2 in Vacuum Space whereas 50 numbers of H atom in silicon
surface at solid state; top view (left) and side view (right).

Fig. 2.21. 75% Recharged Porous Silicon Matrix: 13 numbers of
gaseous H2 in Vacuum Space whereas 76 numbers of H atom in silicon
surface at solid state; top view (left) and side view (right).
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2.5 Bond hopping

After spillover process, bond hopping process is initiated. In the bond hopping

process, the hydrogen atoms terminated in surface silicon atoms hop to the next

available silicon atoms which are 1 (one) atom further moved down the adjacent silicon

unit cell along z-direction. Therefore, initially we hypothesized of a bond hopping

distance of 5.43 Å. We initiated our bond hopping study by considering bond hopping

along z direction only. Catalyst atom(s) was removed since bond hopping occurs far

away from catalyst atom(s) and thereby catalyst has negligible or no impact.

Fig. 2.22. Bond Hopping Along Z-direction only with a Hopping Dis-
tance of 5.43 Å.

We kept the hydrogen atom fixed at the initial and final locations and then took

9 (nine) equidistant intermediate points in a straight line along z-direction. In total

there were 11 (eleven) points including the initial and final positions. We call this

images. We calculated ground state total energy for all those 11 images using DFT.

When the difference in ground state total energy was plotted against the hopping

distance in MATLAB, we got following graph:
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Fig. 2.23. Energy difference (eV) vs Bond Hopping Distance (Å) for
bond hopping in a straight line along z-direction.

The above figure demonstrates two local minima separated by a transition state.

The transition state is located around 1.63 Å away from the initial state where hy-

drogen atom is bonded to the surface silicon atom. The ground state energy of the

transition state gave an energy barrier of 2.12 eV hydrogen atom has to overcome in

order to bond hop to the next silicon atom. In reality, this is highly unlikely that the

hydrogen atom will have no movement along x and y-directions and will bond hop

along a straight line. Therefore, we decided to manually move the hydrogen atom

along x and y directions within a radius of 0.10 Å while the z-coordinate was kept

fixed. We formed a cloud of possible locations for hydrogen atom. Hydrogen atom

may exist in any of this locations during bond hopping. Our formed cloud consisted

of around 120 points which is pretty extensive considering the wall time it took in

Big Red II supercomputer. Roughly 10 points were considered for each of the images

we considered in our previous study. Ground state total energy was computed for

all those 120 positions. In figure 2.24, we have plotted the 3D cloud consisting of

all the 120 manually created possible location of H atom in bond hopping pathway.
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The size of the points increase with the increasing size of corresponding ground state

energy. Therefore, it is likely that the bond hopping pathway will go through the

string connecting the circle with smaller radius.

Fig. 2.24. 3D cloud of manually created possible location of H atom
in bond hopping pathway

Next, we compared the ground state energy of all the points taken against any

image and took the point with lowest energy. This process was repeated for all the

11 images. Thus, we took the minimum energy for all the 11 images and plotted the

ground state total energy vs bond hopping distance in MATLAB. The graph looked

like figure 2.25.

We figured out one additional local minima from this plot. Even though the bond

hopping energy barrier got reduced significantly from 2.12 eV to around 1.54 eV, we

can’t assure that our study covers the actual bond hopping pathway since all the

images were considered manually. But we got an important insight from this study.

Presence of an additional local minima refers to the possibility of a quasi stable state

between our initial and final image. Since there exist a high energy barrier between
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Fig. 2.25. Energy difference (eV) vs Bond Hopping Distance (Å)
calculated by taking minimum energy values for each point along H
atom’s bond hopping pathway from a cloud of manually created points
in a 3D space.

these two images, the hydrogen atom may complete one complete hop in two distinct

steps having lower energy barrier. It may hop from initial state to this quasi stable

state and finally the second hop from this state to final state will follow. The first hop

was at distance of around 2.50 Å in a diagonal direction along the crystal face, the

second hop had a distance of 2.93 Å. Thus, covering a total bond hopping distance

of 5.43 Å.

2.5.1 String Method

Next, we wanted to find the bond hopping pathway using well established methods

instead of creating images manually. We started off with String Method. The string

method is a specialized algorithm that is widely used to find Minimum Energy Path

(MEP) between initial and a final state [30]. ABINIT implements Simplified String
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Method [31] where intermediate images are generated between initial and final images

by linear interpolation method. A string connects the images. These intermediate

images are elastic in nature. At the end of each iteration, they are moved in the

direction of the forces acting on images and they get redistributed along the string

connecting them. An equal distance between the images are maintained during this

redistribution process. Thus, the string is slowly driven towards the minimum energy

path after each iteration. At the end of each iteration, the ground state total energy

is reported for each of the intermediate images. Once the difference of absolute energy

between these images fall below the tolerance value, convergence is reached and the

string connecting the images forms the minimum energy path [32].

We initiated the simplified string method by allowing the hydrogen atom to relax

at the initial and final configurations. Once we relax the hydrogen atom, the forces

acting on this atom is minimized. As a result, this configuration goes to its lowest

energy state. This will ensure two local minima at the two ends of the string con-

necting the images. Relaxed Si-H had a bond length of 1.50 Å. ABINIT code was

utilized to generate 11 intermediate images between this initial and final state. We

used a tolerance value of 0.00001 Ha. Image parallelization on top of existing KGB

parallelization scheme was used to distribute image level work-loads over a number

of processors. We scheduled DFT computation jobs in ABINIT for both the parallel

bond hopping paths:

i) Direct hop from initial to final state (Hopping Distance: 5.43 Å),

ii) Bond hop from initial to final state in two steps: first hop from initial to quasi

stable state located diagonally along the crystal face and then second hop from there

to final state. After Si-Pd bond relaxation, the first and second hopping distance

turned out to be 2.90 and 3.75 Å respectively.

Unfortunately, the computation jobs didn’t converge even after a computation

time of 2 weeks in Big Red II. Therefore, we discarded this method and started to

look for alternate methods.
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Fig. 2.26. Bond Hopping Alternate Pathways Consisting of Single
Hop(left) and Double Hop(right).

2.5.2 Nudged Elastic Band (NEB) Method

From our string method study in finding minimum energy path, we assumed

perhaps the tolerance value was pretty high. In fact, used tolerance value was 1000

times lower than default tolerance values in commercial DFT codes. Total number of

atoms in the system was 242 which was also pretty high for plane wave solution to

converge. This time number of atoms were further reduced to 85 and default tolerance

value of 0.0001 Ha was used. From literature survey we figured a convergence to a

minimum energy path is guaranteed in Nudged Elastic Band (NEB) method if enough

number of images are considered [33].

ABINIT supports three distinct NEB methods: Original NEB method, Improved

Tangent NEB method, and Climbing-Image NEB (CI-NEB) method. Due to the fact

that this Climbing-Image NEB method initiates with several iterations of original

NEB method, it’s much more computing intensive [34]. So, we adopted the Improved

Tangent NEB method in our transition state investigation. In this method, a spring

connects the images. This spring has a spring constant associated. We used the

ABINIT default value for the string constant. This default value is 2*0.05 Ha/bohr2.

Just like the string method, linear interpolation method is used to generate equidistant
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images between initial and final configurations. The resulting force acting on the

images come from a combination of two forces. First, this particular configuration

has its own potential energy surface. Second, the closest two configurations from the

current configuration has a spring force acting upon it. The image needs to be changed

according to this resulting force. The image is moved in such a way that the true force

projects toward the direction perpendicular to the minimum energy path while the

spring force from nearest neighboring configurations project parallel to the minimum

energy path [35]. Thus at the end of each iteration, these images are moved. All these

images connected together forms an energy path. When the tolerance convergence

criteria is met, the energy path connecting the images is supposed to have coincided

with the minimum energy path.

We considered both the bond hopping pathways mentioned in previous section.

For alternate pathway consisting of two hops, the hydrogen atoms are located at a

distance of 4.50 Å between which the first hop takes place. For the second hop,

the distance is 2.35 Å. Therefore, we took 7 intermediate images for the first hop

and 3 intermediate images excluding the initial and final configuration for second

hop. For direct hop, total number of images were kept same as before. With this

new method and new values of some of the input parameters, we reached the MEP

convergence after restarting the computation from the density files reasonable amount

of times. The restart from previous density file actually provides the new computation

an educated guess of the possible minimum energy pathway that helps to reach the

convergence.

2.6 Diffusion

There are two available parallel paths for hydrogen diffusion in porous silicon:

diffusion through pores and diffusion carried out in a bond hopping process along

silicon surface. Diffusion through the porous silicon matrix itself is slow enough to be

negligible [36]. Pore diffusion can be derived analytically whereas hydrogen diffusion
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along silicon surface needs to be investigated via density functional theory (DFT)

study. Associated vibrational frequency modes needs to be calculated in order to

figure out the hydrogen diffusion rate on porous silicon.

Since in our case the hydrogen atom is considered to be vibrating on silicon surface,

the interaction between hydrogen atom and silicon atoms may impact the associated

vibrational modes. Let us consider N atoms in the system and their cartesian co-

ordinates are defined as a single vector, r = (r1,....,r3N ). Here, r consists of 3N

components. We further consider the local energy minima is located at r0. New co-

ordinate is defined as x = r-r0. Next, we take the Taylor expansion along the energy

minima at r0 ignoring terms with order greater than 2. This approach of ignoring

higher order terms is known as harmonic approximation [10].

E = E0 +
1

2

3N∑
i=1

3N∑
j=1

[
∂2E

∂xi∂xj

]
x=0

xixj (2.1)

The first derivative term in Taylor expansion is zero because it was evaluated

at energy minima. Let us define a Hessian matrix consisting of 3N × 3N elements

defined by,

Hij =

[
∂2E

∂xi∂xj

]
x=0

(2.2)

If we define the atoms as classical particles following Newton’s law of motion,

then we will have, Fi = mi (d2xi/dt
2). Here, the force and mass associated with

ith coordinate are Fi and mi respectively and (d2xi/dt
2) is the acceleration of this

coordinate. If we rewrite the equation of motion in matrix form,

d2x

dt2
= −Ax

This is the mass-weighted Hessian matrix whose elements are defined as, Aij =

Hij/mi. This matrix form equation have special set of solutions associated with

the eigenvectors of A. These special solutions are called the normal modes. The

eigenvector of this matrix and their eigenvalues satisfy following equation,

Ae = λe
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Here, λ and e are eigenvalues and eigenvectors of matrix A respectively. At

initial condition (t=0), the motion of all the atoms is given by x(t=0)=ae and

dx(t=0)/dt=0, then the position of atoms can be defined in following form:

x(t) = acos(ωt)e (2.3)

Here, a is an arbitrary constant and ω =
√
λ. In general, A has 3N eigen vectors

and corresponding eigenvalues. The 3N normal mode frequencies then can be defined

using the 3N eigenvalues as follows,

νi =

√
λi

2π
(2.4)

Now, the bond hopping frequency calculation of hydrogen atom will result in 3N

= 3 eigenvalues due to the fact that hydrogen atom has 3 (three) degrees of freedom

along three spatial coordinates. The Hessian matrix in our case will be a 3x3 matrix

defined as follows:

Hij =


δ2E
δx2

δ2E
δxδy

δ2E
δxδz

δ2E
δyδx

δ2E
δy2

δ2E
δyδz

δ2E
δzδx

δ2E
δzδy

δ2E
δz2

 (2.5)

Now, from finite difference approximation the diagonal elements of the Hessian

matrix are defined as,

δ2E

δx2
≈ E(x+ δx, y, z)− 2E(x, y, z) + E(x− δx, y, z)

δx2
; (2.6)

δ2E

δy2
≈ E(x, y + δy, z)− 2E(x, y, z) + E(x, y − δy, z)

δx2
; (2.7)

δ2E

δz2
≈ E(x, y, z + δz)− 2E(x, y, z) + E(x, y, z − δz)

δz2
; (2.8)

However, the non-diagonal elements are defined as following according to finite

difference approximation:

δ2E

δxδy
≈ E(x+ δx, y + δy, z)− E(x+ δx, y − δy, z)− E(x− δx, y + δy, z) + E(x− δx, y − δy, z)

4δxδy
;

(2.9)
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δ2E

δyδz
≈ E(x, y + δy, z + δz)− E(x, y + δy, z − δz)− E(x, y − δy, z + δz) + E(x, y − δy, z − δz)

4δyδz
;

(2.10)

δ2E

δzδx
≈ E(x+ δx, y, z + δz)− E(x− δx, y, z + δz)− E(x+ δx, y, z − δz) + E(x− δx, y, z − δz)

4δzδx
;

(2.11)

Due to symmetry,
δ2E

δxδy
=

δ2E

δyδx
; (2.12)

δ2E

δyδz
=

δ2E

δzδy
; (2.13)

δ2E

δzδx
=

δ2E

δxδz
; (2.14)

But since the H atom orientation is along the (110) plane, we need to rotate the

x and y axis by an angle of 45 degrees. A simple rotation matrix is used to serve the

purpose. The rotation matrix is defined as:

R =

cos θ − sin θ

sin θ cos θ

 (2.15)

Here,

θ = 45◦

After rotation, the x and y axis become x′ and y′ respectively. Therefore,

δx′ =
δx√

2
− δy√

2
; (2.16)

δy′ =
δx√

2
+
δy√
2

; (2.17)

The elements of the Hessian matrix were modified accordingly. The mass-weighted

Hessian matrix A will have 3 eigenvectors e1,e2, and e3 and corresponding 3 eigen-

values will be λ1, λ2, and λ3. For these eigenvalues, corresponding normal mode

frequencies will be calculated using equation (2.4).
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2.7 Zero-Point Energy

In classical mechanics, we assume that a collection of atoms always tends to relax

to a state where the total energy of the material is minimum at 0 K. The coordi-

nates of the atoms at this minimum energy or equilibrium state is called equilibrium

positions. If the temperature is raised from 0 K, the atoms start vibrating about

their equilibrium positions. But from quantum mechanical perspective, a collection

of atoms not only has this minimum energy but also vibration around their equilib-

rium positions which contributes to the total energy of the material even at 0 K. This

additional energy contribution due to vibration is known as Zero-Point Energy.

The concept of vibrational modes defined in previous section has been developed

using harmonic approximation. In harmonic approximation, each vibrational mode

can be represented by a harmonic oscillator. We can represent the potential energy

of this oscillator as follows:

E = E0 +
k

2
x2. (2.18)

In classical mechanics, the lowest energy of this oscillator is at x = 0 which is

the equilibrium state. At this equilibrium state, kinetic energy becomes zero and

the potential energy becomes E0. But according to quantum mechanics, the lowest

quantum mechanical energy will be:

E = E0 +
hν

2
(2.19)

Here, h is the plank’s constant and ν is the classical vibrational frequency. The

difference between this quantum mechanical energy and minimum energy according

to classical mechanics gives the zero-point energy. Now if we apply this concept to a

set of atoms, there will be zero-point energy contribution for each of the individual

normal modes. The minimum energy considering all the normal modes is defined as:

E = E0 +
∑
i

hνi
2

(2.20)
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We will calculate E0, the ground state total energy for the set of atoms using DFT

code. Method to calculate νi, the normal mode frequencies using DFT was described

in previous section.

2.8 Quantum Tunneling

According to transition-state theory, transition between two local energy minima

happens only if the system gains enough energy to overcome the energy barrier at

transition state. But quantum mechanics suggests that for particles with very small

mass, transition may occur by the particle spontaneously passing through this bar-

rier even though this particle energy is significantly lower than the energy barrier.

This phenomenon is known as quantum tunneling. Due to very small mass, hydro-

gen atoms can quantum tunnel on various surfaces [37]. Quantum tunneling has

been demonstrated with hydrogen on ice by making a comparison between diffusion

rate of hydrogen and deuterium [38]. Quantum tunneling usually takes place at low

temperature.
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3. RESULTS AND DISCUSSION

3.1 Pd-Si Bond Length

Literature survey suggested Pd-Si bond length for PdSi, Pd2Si and Pd3Si phases

investigated in different symmetry space groups [39]. In our DFT study, we adopted

silicon crystal structure with symmetry space group: ‘F d 3 m’. Therefore, we couldn’t

directly use the Pd-Si bond length reported in literature. The goal of our first DFT

computation was to figure out Pd-Si bond length for ‘F d 3 m’ symmetry space

group. This has a diamond structure with lattice constant, a = 5.43 Å, b = 5.43

Å, c = 5.43 Å. The symmetry space groups investigated in literature had different

lattice parameters. Two of the space groups investigated in the literature for PdSi

phase had cubic crystal structure. Diamond crystal structure is also cubic in nature

but has additional atoms due to its inter-penetrating face centered cubic nature. We

therefore evaluated the Pd-Si bond length using our DFT code ABINIT for these two

cubic crystal structures. The lattice parameters were replaced by a value of 5.43 Å.

This gave us the upper and lower bounds of Pd-Si bond length which had numeric

values of 2.09 and 2.56 Å respectively.

Pd atom was placed in our Silicon supercell at the pore edge and allowed to form

bond with nearby silicon atom. In the next step, we tried to relax this Pd-Si bond

and determine actual Pd-Si bond length. In this relaxation approach, only the Pd

atom was allowed to relax while all the silicon atoms were kept fixed. But since the

number of atoms were pretty high (ie: 341 atoms), the computation didnt converge

in reasonable amount of wall time in Big Red II. This led us to the second approach.

We tried evenly spaced 8 different bond lengths between the lower and upper bounds.

The bond length was varied between 2.09 and 2.56 Å as mentioned. Ground state

total energy was computed for the 8 different bond lengths reported in table 3.1.
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Table 3.1.
Ground State Total Energy comparison for different Pd-Si bond lengths

Pd-Si Bond Length (Å) Total Energy (eV)

2.09 -6404.60

2.16 -6404.70

2.22 -6404.70

2.29 -6404.63

2.36 -6404.52

2.43 -6404.38

2.49 -6404.23

2.56 -6404.07

In above table, total GS (ground state) energy has been rounded up to two decimal

places. Even though it shows equal energy for bond length of 2.16 and 2.22 Å, there

is actually a small energy difference of 0.000455 eV. Therefore, we have used 2.16 Å

as Si-Pd bond length for all subsequent work.

3.2 Catalyst Minimum Energy Location

3.2.1 Single Catalyst Atom

Summary of ground state energy DFT calculation for all 9 locations investigated

as possible strategic location of single Pd catalyst atom in a quarter nanoporous

silicon matrix is reported in table 3.2. Ground state total energy of location no. 9

is significantly lower compared to other 8 positions. This location was visualized in

figure 2.9. Therefore, location 9 turns out to be the strategic location for catalyst

placement. A careful review of this location reveals that this is a structurally weak

location since the Pd catalyst is bonded to a silicon atom having only 2 neighboring

silicon atoms. Consequently, this complies with the hypothesis regarding strategic
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placement of the catalyst atom. This result also provides valuable insight in choosing

possible location for Pd tetrahedron cluster deposition. It must be noted here that,

we have used a Si-Pd bond length of 2.16 Å (Angstrom) calculated in previous section

throughout our DFT computation.

Table 3.2.
Ground State Total Energy comparison for different locations of single
Pd Catalyst in a npSi matrix

Catalyst Location Etotal (eV)

1 -41771.70

2 -41771.70

3 -41774.34

4 -41774.00

5 -41774.00

6 -41774.19

7 -41772.14

8 -41772.14

9 -41775.30

3.2.2 Multiple Catalyst Atom

The catalyst cluster is supposed to be supported on our nanoporous silicon ma-

trix. Two different Pd-Pd bond lengths of 2.60 and 2.69 Å (Angstrom) have been

reported in Pd tetrahedron structure supported in a substrate [26]. Therefore, we

did compute ground state total energy for Pd cluster located at the three different

proposed locations for bond length of 2.60 and 2.69 Å respectively. The summary of

our DFT computations are presented here.
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Table 3.3.
Ground State Total Energy Comparison for different locations of a
Pd cluster in a npSi matrix

Catalyst Location Pd-Pd bond length (Å) Etotal (eV)

1 2.60 -32638.04

1 2.69 -32638.19

2 2.60 -32635.84

2 2.69 Unstable

3 2.60 -32637.20

3 2.69 -32637.10

It is evident that Pd tetrahedron with a Pd-Pd bond length of 2.69 Å located

adjacent to the intersection of (100) and (110) plane is most stable in nature. We did

further gaseous H2 dissociation and spillover studies by keeping this as the strategic

location for Pd catalyst cluster.

3.3 Dissociation Energy Barrier

Literature survey suggests that single Pd catalyst atom supported on hydrogen

storage material adsorbs 2 molecular H2 [40]. Even though previous work suggests 4

different structures, the most favorable coordination structure of this H2 adsorbed Pd

is very similar to PdH2 complex where the H-H bond is not completely dissociated,

rather extended [41]. This Pd-dihydrogen complex is called Kubas complex [42]. In

this coordination structure, the observed H-H bond length is in the range of 0.85-0.87

Å, Pd-H bond length is 1.75 Å, and the H-Pd-H angle lies between 28 to 29◦ [41]. In

our hydrogen dissociative adsorption study, we have maintained a H-H bond length of

0.85 Å. Pd-H bond length and H-Pd-H angle is set to 1.75 Å and 28.2◦. The ground

state total energy of this configuration was computed using ABINIT. The difference

between the ground state total energy of the system when H2 is 15 Å away and



47

the total energy when the porous silicon matrix contains PdH2 structure gives the

dissociation energy barrier. The computed ground state total energy values for these

two cases were -41830.52 and -41832.44 eV. Therefore, the dissociative adsorption

barrier is 1.92 eV which is quite large relative to thermal energy in temperature ranges

of interest. This high energy barrier raised the necessity of investigating hydrogen

dissociation on multiple catalyst atoms forming a cluster.

Fig. 3.1. Dissociative Adsorption of H2 on a Single Pd Atom: top
view (left) and side view (right).

Previous DFT work suggested that catalyst clusters consisting of small number

of atoms have the ability to reduce the energy barrier for H2 dissociation on this

metal cluster [43] [44]. Such studies were limited to catalyst structures consisting of

maximum 3 atoms. Since in our case we have catalyst cluster consisting of 4 atoms,

we decided to investigate the impact of Pd cluster consisting of 4 atoms on the H2

dissociation energy barrier. Moc et al. have demonstrated that H2 is dissociated on

a Pd4 cluster and the dissociated hydrogen atoms that bridge the Pd-Pd edges not

sharing the Pd atom in a Pd tetrahedron is most favorable [45]. The Pd-Pd bond

length was kept same as the Pd-Pd bond length in a ground state Pd4 structure which

is 2.69 Å. We configured Pd4H2 structures accordingly where the dissociated H atoms

are placed at equal distance of 1.66 Å from the Pd atoms forming a Pd-Pd edge. In

total, there are two such Pd-Pd edges and these edges don’t share any Pd atom. For
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our nanoporous silicon matrix, three such configurations were made. In two of them,

the dissociated hydrogen atom gets within Si-H bond length and therefore discarded.

As a result, we could study only one configuration. It’s demonstrated in figure 3.2.

Fig. 3.2. H2 dissociation on Pd tetrahedron cluster: top view (left)
and side view (right).

The ground state total energy was computed for before and after hydrogen disso-

ciation phase just like single catalyst atom study. The before and after dissociation

ground state total energy values were -32669.14 and -32669.61 eV. This gave a re-

duced hydrogen dissociation energy barrier of 0.47 eV which is significantly lower

than the energy barrier value computed in single catalyst atom study. It was then

recommended to the experimental researchers to use clusters of catalyst atoms instead

of single atoms.

3.4 Spillover Energy Barrier

In single catalyst atom case, we investigated hydrogen spillover from the Pd atom

to the silicon dangling bonds located at adjacent silicon surface. These silicon atoms

should have a coordination number lower than 4. To find out suitable silicon dan-

gling bonds for the spilled over hydrogen atoms, we carefully looked into all the nearby

silicon atoms that match this criteria. There were 3 silicon atoms with lower coor-

dination number than 4 in a very close proximity to these relaxed hydrogen atoms.
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They had coordination numbers of 1, 2, and 3 respectively. Among these 3 atoms,

the lower two coordination number silicon atoms were closest to the Pd atom. There-

fore, we chose these two silicon atoms for spillover. The Si-H bond length was kept

1.48 Å [46] for all studies involving Si-H bond. The total ground state energy was

computed using ABINIT. Hydrogen atoms have to overcome an energy barrier for

spillover. The energy difference between the state before spillover and after spillover

provides the spillover energy barrier. From the DFT computation, the ground state

total energy of the system before and after spillover had a values of -41830.52 and

-41832.36 eV respectively. Therefore, there exists an energy barrier of 1.84 eV for

spillover.

This spillover energy barrier for single catalyst atom turned out quite large relative

to thermal energy in temperature ranges of interest. So, we decided to initiate spillover

investigation for multiple catalyst cluster. As mentioned in catalyst study section,

catalyst structures are supposed to raise H potential to spillover favorable range [26].

Since the Pd atoms forming the tetrahedron lands on some of the lower coordination

silicon atoms at the surface, we didn’t have any silicon atoms with coordination

number 1 available for spillover in our system. But, there were silicon atoms with

coordination number 2 and 3 available for spillover. We included all 3 of these nearby

silicon atoms in this spillover study. Two of them had coordination number 2 whereas

the other atom had a coordination number of 3. Figure 3.3 and 3.4 demonstrate the

state of the matrix after hydrogen spillover from catalyst cluster. Corresponding

ground state total energy computed using ABINIT is listed in table 3.4.

Table 3.4.
Spillover Barrier for Hydrogen Spillover from Pd cluster located at npSi matrix

Serial Energy Before

Spillover (eV)

Energy After

Spillover (eV)

Spillover Barrier (eV)

1
-32669.61

-32670.21 0.60

2 -32670.10 0.49
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Fig. 3.3. After Spillover from Pd Cluster: split hydrogen forms bond
with low valence silicon located at nearby surface; top view (left) and
side view (right).

Fig. 3.4. After Spillover from Pd Cluster: split hydrogen forms bond
with low valence silicon located at nearby surface; top view (left) and
side view (right).

The energy barrier for spillover from Pd cluster is considerably lower than energy

barrier from single Pd catalyst atom. Note that, even though hydrogen atom has

to overcome a lower spillover barrier in second configuration listed in table 3.4, the

dangling silicon atom is located almost 1 unit cell away from the Pd cluster. Therefore,

it is more likely that spillover will occur as per configuration 1 with a spillover barrier

of 0.60 eV.
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3.5 Energy Difference between Recharged and Discharged State

In following table, we have summarized the DFT results of hydrogen recharged-

discharged state described in section 2.4. The completely recharged state refers to

102 numbers of hydrogen atoms in solid state and no gaseous H2 molecule in the

vacuum. On the other hand, the completely discharged state refers to 51 numbers

of H2 in vacuum and no hydrogen atom in solid state. Apart from these completely

recharged and completely discharged states, we also studied 3 intermediate states. In

these intermediate states, hydrogen is present in the system as both gas and solid.

The total number of hydrogen atoms in the system including both gas and solid are

fixed throughout this study. In each of this intermediate states, 24 to 26 hydrogen

atoms are removed from vacuum and turned to solid state. This represents 25%

incremental recharge. Consequently, the intermediate states are in fact 25%, 50%,

and 75% recharged state. We used a random number generator function to choose

atoms to recharge into this storage medium. This process was repeated 6 times

resulting in the 6 samples in the left most column of table 3.5. The ground state total

energy was computed using ABINIT in all the cases.

Table 3.5.: Ground State Energy Comparison for Different Recharge Scenarios

Sample Recharge(%) Number of H2

Molecules

Number of

Solid H Atom

Total Energy

(Ha)

1

0 51 0 -1594.18

25 38 26 -1593.76

50 26 50 -1592.70

75 13 76 -1591.97

100 0 102 -1592.79

2

0 51 0 -1594.18

25 38 26 -1594.48

50 26 50 -1594.09

continued on next page
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Table 3.5.: continued

Sample Recharge(%) Number of H2

Molecules

Number of

Solid H Atom

Total Energy

(Ha)

75 13 76 -1592.37

100 0 102 -1592.79

3

0 51 0 -1594.18

25 38 26 -1594.50

50 26 50 -1594.09

75 13 76 -1593.11

100 0 102 -1592.79

4

0 51 0 -1594.18

25 38 26 -1594.48

50 26 50 -1593.38

75 13 76 -1592.64

100 0 102 -1592.79

5

0 51 0 -1594.18

25 38 26 -1594.12

50 26 50 -1594.04

75 13 76 -1593.37

100 0 102 -1592.79

6

0 51 0 -1594.18

25 38 26 -1593.38

50 26 50 -1593.00

75 13 76 -1593.01

100 0 102 -1592.79



53

The ground state total energy for different hydrogen recharge scenarios computed

in ABINIT was plotted against recharge percentage in MATLAB for all 6 samples.

Next, we took average values of the ground state energy of each loading scenario over

all the samples and plotted against recharge percentage. The following plot includes

original and average energy values. The thick line represents the average values.

Fig. 3.5. Ground State Total Energy (Ha) vs Recharge State (%)

From the tabulated data and the MATLAB plot, we see an energy difference

of 0.01 Ha/atom which is equivalent to 0.38 eV/atom between fully recharged and

fully discharged porous silicon matrix. This is the amount of energy we need to

provide from external sources for example pressure and temperature to recharge the

storage medium from complete hydrogen empty state. As described in section 2.4,

the H2 molecules were forced close together for easier plane wave solution. But this

arrangement might have led to interaction between the H2 molecules. This implies

high pressure in the storage system and is one of the probable reasons behind such

high energy requirement to charge the storage medium from hydrogen depleted state.
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3.6 Bond Hopping Energy Barrier

3.6.1 Single Hop

Below we listed the energy different between the images evaluated in NEB method

for direct single hop. From the data it’s evident that hydrogen atom will have to

overcome an energy barrier of 2.06 eV to make a direct hop of distance 5.43 Å. This

is quite big barrier for hydrogen atom to overcome. Therefore, it will probably opt

for the alternate bond hopping path consisting of two sequential hops instead of one

direct hop.

Table 3.6.
Ground State Total Energy Difference between Images for Direct Hop
from Initial to Final State.

Image Energy Difference (eV)

1 0.10

2 0.52

3 1.43

4 2.01

5 2.06

6 1.94

7 1.87

8 1.83

9 1.79

10 1.09

11 0.53

12 0.14

13 0.00
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3.6.2 Double Hop

In table 3.7 and 3.8, we listed the energy difference between the images evaluated

in Improved Tangent NEB method for double hop. First table refers to the data

of the first hop and the data listed in second table is of the second hop. For the

first hop, the transition state gives an energy barrier of 1.74 eV. The energy barrier

value is 1.45 eV for the second hop. These values are smaller compared to the energy

barrier of direct bond hop case. Therefore, we can conclude that hydrogen atom will

preferentially diffuse along the silicon surface by bond hopping process consisting of

two sequential diagonal hops along the crystal face in order to cover a vertical bond

hopping distance of 5.43 Å. Energy barrier vs Bond hopping distance is plotted in

MATLAB in figure 3.6 for both direct and indirect bond hopping pathways.

Table 3.7.
Ground State Total Energy Difference (eV) between Images for First
Hop from Initial to Quasi Stable State.

Image Energy Difference (eV)

1 0.03

2 0.31

3 0.96

4 1.52

5 1.74

6 1.47

7 0.87

8 0.25

9 0.00



56

Table 3.8.
Ground State Total Energy Difference (eV) between Images for Sec-
ond Hop from Quasi Stable State to Final State

Image Energy Difference (eV)

1 0.06

2 0.62

3 1.45

4 0.54

5 0.00

Fig. 3.6. Energy Barrier (eV) vs Bond Hopping Distance (Å)

3.7 Diffusion

In order to figure out the vibrational modes and corresponding vibrational fre-

quencies, we initially calculated the ground state total energy at local minimum using

ABINIT. This is the E(x,y,z) value as defined in Method section. To determine the

value of the energy components specified in equation (2.6) through (2.11), we need to
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do ground state total energy computation for each of the individual components of

right hand side of the equations where the H atom is moved along x or y or z and/or

their combinations by δx, δy, δz etc. These values were chosen as 0.04 Å as suggested

in literature for good convergence [10]. Once we compute these energy values, we

can generate the Hessian matrix. Since we are mainly interested in mass weighted

Hessian matrix, each of the components of Hessian matrix was divided by the mass

of hydrogen atom, m = 1.67 × 10−27 Kg. This gives us the mass weighted Hessian

matrix, A.

At local minimum, these matrix had following components:

A =


1.04× 1028 −7.90× 1025 5.66× 1025

−7.90× 1025 9.2× 1028 −6.61× 1028

5.66× 1025 −6.61× 1028 6.37× 1028


From this matrix we retrieved the eigenvalues using MATLAB eig function. Corre-

sponding eigenvalues are: λ1 = 0.1026×1029, λ2 =0.1040×1029 , and λ3 = 1.4547×1029.

When we put this eigenvalues in equation (2.4), it gave us following vibrational fre-

quency values at local minimum:

ν1 = 1.61× 1013 s−1, ν2 = 1.62× 1013 s−1, and ν3 = 6.07× 1013 s−1.

We can see that the ν3 value is highest among the three normal modes. These

results denote fastest diffusion along vertical direction but diffusion in lateral direction

is also sizable. Over time, our npSi charged with impure hydrogen will include poisons

which occupy dangling bond sites making them unavailable for bond hopping. Since

the lateral movement is not much slower than vertical, hydrogen will still be able to

move around poisoned sites. This may slightly slow down the recharge/discharge,

and slightly reduce the capacity, but provides robustness to this method of hydrogen

storage.
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3.8 Zero-Point Energy Corrections

In previous section, we have figured out bond hopping energy barrier using Nudged

Elastic Band (NEB) Method. NEB evaluates energy barrier from classical mechanics

perspective. It doesn’t include zero-point energy corrections. This zero-point energy

correction is particularly important for system having light atoms [10]. Since our

system involves hydrogen atoms, inclusion of zero-point energy correction may have

significant impact on the bond hopping energy barrier. In order to find zero-point en-

ergy corrected activation energy, we will need to include zero-point energy corrections

for both energy minima and transition state. In any set of atoms having N degrees of

freedom, there will be N-1 real vibrational modes and 1 (one) imaginary mode at tran-

sition state whereas the local minimum will have N real vibrational modes [10]. The

following equation gives zero-point energy corrected activation energy accordingly:

∆EZP =

(
E† +

N−1∑
j=1

hν†j
2

)
−

(
EA +

N∑
i=1

hνi
2

)
(3.1)

Here, E† and EA represents ground state total energy at transition state and en-

ergy minima respectively. Their difference denotes the activation energy, ∆E defined

in classical mechanics. In the above equation, νi and νj defines the normal mode

frequencies at local minimum and transition states respectively. The above equation

can be re-written as:

∆EZP = ∆E +
N−1∑
j=1

hν†j
2
−

N∑
i=1

hνi
2

(3.2)

Since in our system, the hydrogen atom has 3 degrees of freedom, the transition

state will have 2 real vibrational modes and 1 imaginary mode. The local minimum

will have all 3 real vibrational modes. In our alternate double hop NEB study, the

energy barrier value was 1.74 eV for the first hop. Using the method defined in

previous section, we calculated all these vibrational modes using ABINIT at both

local minimum and the transition state.
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Normal mode frequency values at local minimum were already computed in pre-

vious section. We are calculating those values at transition state. The mass weighted

Hessian matrix consists of following components:

A =


2.72× 1027 6.10× 1027 −1.50× 1028

6.10× 1027 3.57× 1027 1.48× 1028

−1.50× 1028 1.48× 1028 −2.857× 1028


Corresponding eigenvalues were as follows: λ†1 = -4.0345×1028, λ†2 =0.8762×1028

, and λ†3 = 0.9423×1028. Using the same equation (2.4) we get the frequency values:

ν†1 = 1.49× 1013 s−1, ν†2 = 1.54× 1013 s−1. Even though we don’t need the imaginary

mode frequency for zero-point energy, the value turned out as, ν†Im = 3.20× 1013 s−1.

Plank constant, h = 4.14× 10−15 eV.s. Putting all these values in equation (3.2) we

get,

∆EZP = 1.58eV.

This gives the zero-point corrected bond hopping energy barrier for the first hop.

This value is 0.16 eV lower than the bond hopping barrier calculated using classical

mechanics. The zero-point corrected activation energy can be calculated for the

second hop using the same approach.

Diffusion coefficient can be calculated using these values in following equation:

D =
1

z
νeα

2exp(−Ea
kT

) (3.3)

Here, νe is the effective vibrational frequency. The direction of first bond hop

closely aligns with z-coordinate whereas for second hop it’s aligned with x-coordinate.

Therefore, we choose νe values of 6.07× 1013 s−1 and 1.61× 1013 s−1 respectively. z

represents the coordination number which is 4. The hopping distance and activation

energy are represented by α and Ea respectively. For first hop, α = 4.50 Å. α value

is 2.35 Å for second hop. At 100◦C the kinetic energy value is 0.048 eV. Plugging all

these values in equation (3.3) we get diffusion coeeficient values for first and second
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hop: D1sthop = 1.56× 10−20m2/s, D2ndhop = 1.69× 10−20m2/s. Note that, activation

energy values of 1.58 and 1.45 eV were considered for first and second hop. The

surface diffusion is likely be limited by 1.56× 10−20m2/s.

3.9 Quantum Tunneling

Hydrogen diffusion for hydrogen storage applications may happen by bond hop-

ping and quantum tunneling [47]. The impact of quantum tunneling on overall dif-

fusion rate is controlled by crossover temperature. Below this crossover temperature,

hydrogen passes through local minimas by quantum tunneling procedure. Above this

temperature, hydrogen atom has to overcome the huge energy barrier for diffusion

along the silicon surface. Crossover temperature is defined in following equation:

Tc =
hν†ImEZP/kB

2πEZP − hν†Imln2
(3.4)

Here, ν†Im denotes the imaginary frequency at transition state. EZP and kB rep-

resents the zero-point energy corrected activation energy and Boltzmann constant

respectively. kB = 8.62 × 10−5 eVK−1. Putting the value of h, ν†Im, EZP defined in

previous section into above equation we find this crossover temperature value for our

hydrogen storage system.

Tc = 246.38K.

We anticipate that the operating temperature of our storage media will be close

to room temperature. Since the crossover temperature is below room temperature,

quantum tunneling won’t impact hydrogen diffusion in this storage media.
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4. SUMMARY

4.1 Conclusion

In this thesis, density functional theory (DFT) study was carried out to investigate

hydrogen coverage, dissociation, spillover, bond hopping, and diffusion phenomena in

nanoporous silicon matrix. The computed dissociation, spillover, and bond hopping

energy barrier values were 0.47, 0.60, 1.74 eV (first hop), and 1.45 eV (second hop)

respectively. The bond hopping energy barrier further reduced to 1.58 eV (first hop)

when we incorporated zero-point energy corrections. Tetrahedron Pd catalyst cluster

lowered the hydrogen dissociation and spillover energy barrier by 1.45 and 1.24 eV

respectively compared to single Pd atom. It has been demonstrated that the spilled

over hydrogen atoms will jump preferentially from current silicon dangling bond to

next available silicon dangling bonds in two sequential hops: first hop diagonally

along crystal face at a distance of 4.50 Å and the second hop at a distance of 2.35

Å. The value of computed energy barrier for the first hop is 1.58 eV after zero-

point energy correction. The hydrogen diffusion along pore depth shows a much

higher vibrational frequency of 6.07×1013 s−1. Since our pore is much longer in

the z-direction than x- and y-directions, fast diffusion along pore depth is a positive

attribute for the storage media. The evaluated crossover temperature suggests that

quantum tunneling won’t play any significant role since the crossover temperature is

below room temperature and much lower than the anticipated operating temperature

of our storage media. Thus, bond hopping will dominate in the hydrogen diffusion

rate in nanoporous silicon. This dissociation energy barrier is within the range of

0.20 eV to 0.60 eV preferred for any hydrogen storage media [48]. The calculated
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vibrational frequency is higher than the reported frequency of 1012 to 1013s−1 [49].

These microscopic results predicts the feasibility of nanoporous silicon as a viable

hydrogen storage medium.
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4.2 Future Work

We suggest following studies to be carried out in future to improve upon the work

depicted within the scope of this thesis:

1. Bond hopping activation energy study using Nudged Elastic Band (NEB)

method can be performed with more intermediate points and lower tolerance to find

out more accurate or exact location of the transition state. This will provide actual

or near precise activation energy.

2. Different phenomenon regarding only hydrogen recharge has been included

within the scope of this thesis, hydrogen discharge as a means of both desorption and

reverse spillover mechanism may be studied to evaluate the feasibility for complete

recharge-discharge cycle.

3. We have considered only a quarter of hexagonal pore in our DFT study where

the pore is consistent in shape. The actual shape of pore in as synthesized porous

silicon may have different irregularities. The irregularities may be incorporated in

our DFT study to have the actual pore morphology.

4. It is possible that other Pd atoms motile (movable) on the silicon surface may

migrate towards these Pd clusters and cause them to agglomerate and become bigger.

A future study should look into this.

5. To obtain precise energy value required to recharge the storage media from

complete hydrogen depleted state, future research should investigate a larger supercell

for charge-discharge. That way high pressure condition can be avoided by allowing

the H2 molecules to be away from each other. Alternate could be to place more H2

molecules over silicon. But this may require more powerful supercomputer facility.

6. In this study ABINIT default LDA based exchange-correlation functional was

used. LDA based other popular exchange-correlation functionals may be used and a

comparison study can be done between the results retrieved for different exchange-

correlation functionals.
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7. All the calculations are done in 0K in DFT. At 0K, bond reformation doesn’t

take place. Future study should incorporate the effect of non-zero temperature.
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