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PREFACE

This thesis titled Vehicle Sensor-Based Pedestrian Position Identification in V2V

Environment is a work as partial fulfillment for the degree of Master of Science in Elec-

trical and Computer Engineering, Purdue University. The research was conducted in

Transportation Active Safety Institute from August 2015 to November 2016.

One year ago, I started this project with heartfelt enthusiasm; however this journey

turned out to be tougher than I expected. This thesis is the report and the summary

of this long process. It expresses my vision of using mathematical and statistical

perspective to find the solution of Intelligent Transportation System Problems, and

analyzed the computational complexity in the algorithm layer.

Personally, I envolved in Intelligent Vehicle and Transportation System research

2 years ago. When I was a research assistant in University of Michigan, I got to

familiar with V2V (Vehicle-to-vehicle) communication and Intelligent System at that

moment. I felt excited when I was manipulating the smart devices and learning

the algorithms and protocols. During 2 years studying and training, I grasped the

important ideas and concepts in vehicle related research, especially when I joined into

TASI (Transportation Active Safety Institute) group 1 year ago. I felt really grateful

that I could join TASI community and exchange my ideas with my colleagues and

professors.

Finally, I hope readers can enjoy this article and find some valuable entry points

to do further studies.
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ABSTRACT

Huang, Zhi. M.S.E.C.E., Purdue University, December 2016. Vehicle Sensor-Based
Pedestrian Position Identification in V2V Environment. Major Professor: Stanley
Yung-Ping Chien.

This thesis presents a method to accurately determine the location and amount

of pedestrians detected by different vehicles equipped with a Pedestrian Autonomous

Emergency Braking (PAEB) system, taking into consideration the inherent inaccu-

racy of the pedestrian sensing from these vehicles. In the thesis, a mathematical model

of the pedestrian information generated by the PAEB system in the V2V network is

developed. The Greedy-Medoids clustering algorithm and constrained hierarchical

clustering are applied to recognize and reconstruct actual pedestrians, which enables

a subject vehicle to approximate the number of the pedestrians and their estimated lo-

cations from a larger number of pedestrian alert messages received from many nearby

vehicles through the V2V network and the subject vehicle itself. The proposed meth-

ods determines the possible number of actual pedestrians by grouping the nearby

pedestrians information broadcasted by different vehicles and considers them as one

pedestrian. Computer simulations illustrate the effectiveness and applicability of the

proposed methods. The results are more integrated and accurate information for vehi-

cle Autonomous Emergency Braking (AEB) systems to make better decisions earlier

to avoid crashing into pedestrians.
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1. INTRODUCTION

Recently, vehicle sensor-based smart systems have been studied extensively due to the

wide spreading of the high-speed internet connection and advanced control theory.

For example, autonomous cruise control system, lane departure warning system, blind

spot detection system, and even fully autonomous vehicle system are all available in

the market to cater customers needs. However, safety is always the priority feature

that we need to concern in the first place. This thesis emphasizes the important of the

safety and proposed a method to avoid car crash with pedestrians thus save peoples

life.

1.1 Definition of V2V-PAEB System

As many automobile companies have announced incorporating Autonomous Emer-

gency Braking (AEB) into their automobiles in the near future, pedestrian recognition

systems based on onboard vehicle sensors, such as radar, camera, LiDAR, etc., will

be available on more vehicles. If a vehicle can send its sensor detected pedestrian

information to nearby vehicles through the Vehicle-to-Vehicle (V2V) communication

network, receiving vehicles may be able to use this information as early pedestrian

detection and reduce the chance of crashes.

The V2V communication based on DSRC (Dedicated Short Range Communica-

tion) technology has been studied extensively in recent years [1]. Many efforts have

been made to use this technology to improve road safety. Meanwhile, there have also

been developments in Pedestrian Autonomous Emergency Braking (PAEB) technol-

ogy, which can provide autonomous braking when there is an eminent frontal crash

to a vehicle, pedestrian, or bicyclist if the driver fails to apply braking or applies

insufficient braking [2], [3]. The PAEB system uses radar, camera, and LiDAR sen-
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sors individually or in conjunction with one another to detect the presence and the

location of the object in front of the vehicle [4], [5]. For example, the authors in [4]

proposed a LiDAR and vision-based approach for pedestrian detection and tracking.

PAEB system performance has been improved significantly in recent years and

been offered as an option on many vehicles. It is certain that all vehicles will be

equipped with V2V communication capability and PAEB features in the future. How-

ever, there will also be a long period of time where vehicles with and without the

PAEB and V2V technology will coexist on the road.

If V2V works in conjunction with PAEB, this system is referred to V2V-PAEB

system. One of the problems for this system is that when a subject vehicle receives

many pedestrian position information messages from other vehicles, it does not know

if each pedestrian reported by one vehicle is the same as the pedestrian reported by

other vehicles. Therefore, it is necessary to create a method in order to accurately

determine the actual amount of pedestrians. The main goal of this thesis is to develop

an efficient method for accurately identifying the exact positions and the amount of

pedestrians from data provided by multiple vehicles equipped with PAEB systems in

the V2V communication network environment.
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Fig. 1.1.: The truck obscures the right car and the pedestrian.

In this thesis, an efficient method for accurately identifying the exact positions

and the number of pedestrians is a clustering problem. A clustering method “Greedy-

Medoid” is proposed in chapter 3 and tested in different scenarios.

1.2 V2V-PAEB System Safety Features

There are significant safety benefits when the PAEB system is integrated into

V2V communication systems. The benefits can be achieved by empowering every

V2V enabled vehicle to make PAEB decisions based on the PAEB sensory data from

other nearby vehicles. Figure 1.1 shows a scenario to demonstrate the usefulness of

an integrated V2V and PAEB (V2V-PAEB) system. When the black car on the right

lane is moving forward and a pedestrian is crossing the street, the pedestrian and the

black car cannot see each other since their views are obscured by the truck in the

middle lane. It is possible that the black car may collide with the pedestrian since it

may be too late for the black car to brake after its PAEB system sees the pedestrian.
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In a V2V-PAEB environment, the position and the trajectory of the pedestrian can

be detected by the truck and the car on the left lane and can be transmitted through

the V2V network to the black car on the right lane long before the black car can

see the pedestrian. This enables the black car on the right lane to use the received

pedestrian information to make safety decisions earlier.

Figure 1.2 shows an example of V2V-PAEB environment in a busy intersection.

Fig. 1.2.: V2V-PAEB environment in a busy intersection. Curved lines connecting

cars represent the V2V communication.

The keys for the successful operation of the collaborated V2V-PAEB are:

(1) To make each vehicle broadcast its own PAEB detected pedestrians informa-

tion and receive pedestrians information from nearby vehicles through the local V2V

network.

(2) To be able to extract accurate location and trajectory information of pedes-

trians from the V2V messages from many different sources in real-time.
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Figure 1.3 shows an information process of the V2V-PAEB system on each vehicle.

The goal of this work is to develop an algorithm that enables each V2V enabled

vehicle to construct pedestrians locations and trajectory information accurately from

the pedestrians information sent from several nearby V2V-PAEB enabled vehicles.

Fig. 1.3.: V2V-PAEB pedestrian safety decision-making process on each vehicle.

Figure 1.3 demonstrates the whole procedure of a single V2V-PAEB enabled vehi-

cle in a single time step. The vehicle constantly uses active sensors to generate PAEB

signal, adding with the GPS information about itself location, then send to the V2V

network through the antenna or DSRC device. Meanwhile, the vehicle also receives a

variety of incoming messages which are containing the similar information as it sends

out. By merging its own PAEB data and others PAEB data, the vehicle proceeds

the clustering analysis in real-time. The vehicle finally estimate how many actual

pedestrians in total and their locations. By finding the locations of pedestrians, the

vehicle then make decisions to avoid accident to pedestrians.
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1.3 V2V-PAEB Model Structure

The work described in this paper is built on the prior V2V-PAEB research effort

described in [6]. As the predecessor of Figure 1.3, Figure 1.4 shows the architecture of

the V2V-PAEB system described in [6]. The architecture assumes that V2V enabled

vehicles can broadcast their PAEB system detected pedestrians position information

as a V2V message, and can receive pedestrians position V2V messages broadcasted

from other nearby vehicles. Each vehicle makes safety decisions (warning/braking)

by predicting potential collisions based on the pedestrians locations obtained from its

own PAEB system and received V2V messages.
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Fig. 1.4.: V2V-PAEB system on each vehicle proposed in [6].

The flowchart in Figure 1.4 shows the necessary subtasks to make the V2V-PAEB

system work. Each block in Figure 1.4 represents a specific problem that needs to

be addressed in order to make the V2V-PAEB system function properly. One spe-

cific block, Pedestrian Information Merge, presents an interesting problem. When n

pedestrians and m vehicles are in a small area, each vehicle can potentially see 0 to

n pedestrians and can broadcast the pedestrians positions through the V2V network.

Due to the errors introduced by the inaccuracy of a vehicles GPS and PAEB sensors,

different vehicles may generate different pedestrian locations for the same pedestrian.

There is a high possibility that nm pedestrian positions are broadcasted in the V2V
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network. Assuming that each pedestrian is seen by at least one vehicle, and each

vehicle does not necessarily see all pedestrians, how to determine the location of n

pedestrians from m V2V messages by m vehicles is a major issue raised but not solved

in [6]. This paper describes a method for the block Pedestrian Information merge.

The method enables each V2V-PAEB enabled vehicle to construct pedestrians loca-

tion information accurately from the pedestrians information received from nearby

vehicles.

In order to extract real pedestrian information in a large set of PAEB messages

in the V2V network, the nature of the errors in the data need to be investigated.

Wang, T. et al. [7] described human tracking using Delphi ESR-Vision Fusion in

complex environments. They built a radar-vision fusion system utilizing a 77GHz

2D Delphi Electronically Scanning Radar (ESR) and a CCD camera. They described

their radar error distribution results. A simple uniform error distribution will be

taken into consideration in the experiments of this paper.

Based on our best knowledge, there is no published work on data fusion (re-

constructing pedestrians from PAEB information) in a V2V network provided from

multiple vehicles. This paper attempts to develop a data fusion (pedestrians signal

reconstruction/clustering) algorithm to address this problem. The meaning of this

process is trying to compromise the false positive (type I error, false alarm) and false

negative (type II error, miss). Since so many pedestrian signals are shared which must

be overlapping with each other, the system is trying to merge the pedestrian signals

in order to reduce both false positive and false negative of the avoidance decisions.

1.4 Avoidance Decisions

Figure 1.5 shows the avoidance decisions. In Figure 1.5 (a), False negative (type

I error, or miss) is introduced to explain the situation while the car is fail to detect

an presented pedestrian and thus will lead to an accident. In Figure 1.5 (d), False

positive (type II error, or false alarm) is introduced to explain the situation while car
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is accidentally detect an absent pedestrians and conduct an avoidance decision (either

an emergent stop, slow down, or a maneuvering which the subject car is trying to

prevent a crash can be treated as an avoidance decision). Figure 1.5 (b) and (c) are

both the correct decisions.

Fig. 1.5.: Avoidance decisions. (a) False negative (type I error, miss), a pedestrian

is in the front while response is nothing from the decision machine. (b) Correct

decision. Keeping driving without any pedestrian in the front. (c) Correct decision.

A pedestrian is presented and been detected by the system, thus proceed an avoidance

decision. (d) False positive (type II error, false alarm), no pedestrian in the front while

the system still believe there’s an pedestrian and thus proceed an avoidance decision.

Another advantage of this system is that it is not required to know how accurate

that the pedestrian signals are, comparing with the ground truth original pedestrians’

locations. The Greedy-Medoids clustering algorithm (will be discussed later) is trying
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to gather the nearest pedestrian signals sent from different vehicles as one cluster,

then choose the representative data point as the medoid. Thus the distribution of

the noisy pedestrian signals are not required as a prior knowledge to the classification

(clustering) process.

Finally, the proposed method will be tested in 3 different cases: (1) 2 near pedes-

trian scenario, (2) dense pedestrians scenario, and (3) sparse pedestrians scenario.

All those 3 cases represent different situations when cars meet pedestrians. More

scenarios (simulation cases) which are discussed in [8] can also apply on the proposed

algorithm. The computational complexity will be studied in order to know if the

algorithm is solvable in polynomial time and if it can run in real-time.

This thesis is organized in three parts. Section II describes a mathematical model

of pedestrian information broadcasted by various senders. In Section III, an algorithm

is proposed to cluster pedestrians information from different vehicles and to find the

approximate number of pedestrians. The computational complexity of the algorithm

is analyzed. Conclusions are given in Section IV.
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2. MATHEMATICAL MODEL OF PEDESTRIANS IN

V2V MESSAGE

2.1 Constructing a Local Cartesian Coordinate System

In order to model the pedestrians and show their relative positions for the further

study, it is necessary to construct a local Cartesian coordinate system. In that sense,

the location of the vehicles and pedestrians can be expressed as the x, y, z values on

3-D Cartesian coordinate, or x, y values on 2-D Cartesian coordinate. The benefit

of using local Cartesian coordinate system rather than Global Positioning System

(GPS) is because the local Cartesian coordinate system is better to describe a local

environment since it is more nature comparing with the GPS uses longitude, latitude,

and altitude. However, usually in the intelligent transportation system, GPS data

is the only information about location that the vehicle system can derive. Thus

to construct a local Cartesian coordinate system, a conversion from GPS geodetic

coordinates to local Cartesian coordinates is needed.

The conversion from GPS geodetic coordinates to local Cartesian coordinate sys-

tem is the conversion between geodetic and ECEF (earth-centered, earth-fixed) coor-

dinates. Following fomulars shows the conversion from geodetic coordinates (latitude

φ, longitude λ, height h) to ECEF Cartesian coordinate system x, y, and z.

x = (N(φ) + h) cosφ cosλ

y = (N(φ) + h) cosφ sinλ

z =
(
N(φ)(1− e2) + h

)
sinφ

(2.1)

where,

N(φ) =
a√

1− e2 sin2 φ
(2.2)
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Where a is the semi-major axis and e is the first numerical eccentricity of the

ellipsoid. N(φ) is the distance from the surface to the z-axis [9].

Given the formular 2.1 and 2.2, it is clear that from the GPS geodetic coordinates

we can derive the ECEF Cartesian coordinate, then for a specific scenario, the local

Cartesian coordinate system will be constructed.

2.2 The Pedestrians Information in V2V Message

It is assumed that the pedestrian trajectory information detected by a PAEB

system can be broadcasted on the V2V network. The information of each pedestrian

in a V2V message can be represented by a list of parameters. Let xx, xy, and xz be

the coordinates of the vehicle in a local Cartesian coordinate system L. Let xPAEB x,

xPAEB y, and xPAEB z be the distances of the PAEB detected pedestrian to the vehicle

in xx, xy, and xz directions in L, respectively. The origin of L can be chosen anywhere,

but for convenience, x, y, and z axis are assigned to be in parallel with GPS longitude,

latitude and altitude respectively, where the zero references of x, y, and z axis point to

East, North, and the right hand rule direction, respectively, as depicted in Figure 2.1.

According to the property of PAEB sensors (GPS, Radar, camera, etc.), some of the

parameters can be considered as random variables with corresponding distribution

functions. Table 2.1 shows the example parameters used in this paper.
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Fig. 2.1.: Relationship between xx, xy, xz, xPAEB x, xPAEB y, xPAEB z, and x1, x2,

x3.

xx, xy, and xz can be obtained from vehicles GPS data. xPAEB x, xPAEB y, and

xPAEB z can be obtained and calculated by PAEB sensors. Then x1, x2, and x3 can

be calculated. Random variables X1 to X3 include the errors generated by GPS and

PAEB sensors. It is assumed that X1 to X3 are the inputs to the proposed work in

this paper. There can be many more parameters such as speed, heading, acceleration,

etc. To demonstrate the idea, only three input parameters are used in the vector.

The ground truth pedestrian refers to the accurate position and information of a

human being. Considering the inherent error introduced in sensor detected pedestri-

ans, ground truth pedestrians can be the benchmark to evaluate the error distribution

and quantify the error as well. In this thesis, it is intuitive that vehicles and their

sensors do not know the ground truth information, all they can do is using the sensor

to “estimate” the ground truth pedestrian. Each ground truth pedestrian can be
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Table 2.1: Information of Pedestrians Detected by PAEB

Parameter Ground

Truth

Sensor detected infor-

mation (with noise)

Parameter value

V ehicle ID - - V ehicle ID

x coordinate P1 X1 = Xx +XPAEB x x1 = xx + xPAEB x

y coordinate P2 X2 = Xy +XPAEB y x2 = xy + xPAEB y

z coordinate P3 X3 = Xz +XPAEB z x3 = xy + xPAEB y

...
...

...
...

Ground Truth is the actual information of a pedestrian. Uppercase X represents

random variables; lowercase x represents the realization of corresponding random

variables.

sensed as 1 or 0 pedestrian (Will address this assumption in chapter 3), which will

be the “pedestrian signal”.

2.3 Mathematical Model of Message Fusion

Let a pedestrians information sent to the V2V network by a car be a pedestrian

signal (denote as Psignal, Psignal in plural also. Psignals is represented by a matrix

that contains multiple Psignal detected by multiple cars). Psignal can be considered

as the pedestrian ground truth information, (denoted as Pinput) added to the noise

(error) introduced by the PAEB and V2V communication. Note that in a real world

situation, such as road testing, Pinput cannot be obtained. This can be demonstrated

in Figure 2.2. It is assumed that cars 2, 3 and 4 use their PAEB sensors to detect

a pedestrian and broadcast the pedestrian information through V2V messages; car

1 can receive these V2V messages. However, the three V2V messages received show
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Fig. 2.2.: V2V communication combines with PAEB system.

pedestrians at three different locations. It is not clear to car 1 if there are one

pedestrian or three pedestrians.

As the ground truth and pedestrian signal are discussed previously, since the dif-

ferences of pedestrian description of the same pedestrian are due to the inaccuracy

of vehicles GPS and PAEB sensors, we model the sensor errors by noises. Therefore,

Psignal is the sum of the ground truth pedestrian information and the noise (as de-

picted in Figure 2.3), which means Psignal is not the real attributes of one pedestrian,

but is a pedestrian with some attributes (locations, etc.) that vehicle system believes.

Fig. 2.3.: Psignal is a ground truth pedestrians information plus noise.

2.4 Description of Psignals

Since the goal of the pedestrian message fusion is to extract the estimated pedes-

trian ground truth information and try to reduce the incorrect information, the
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resultingPoutput will be compared to the ground truth, Pinput. Pinput can be ex-

pressed as a vector of pedestrians P1 to Pn:

Pinput =
[
P1 P2 · · · Pn

]
(2.3)

Each pedestrian Pi, where i = 1, 2, . . . , n, is also a column vector which contains

several variables such as P1, P2, P3 in Table 2.1, and is shown in Equation 2.4. For

example, Pi,1 represents the ground truth variable P1 for the ith pedestrian.

Pi =


Pi,1

Pi,2

Pi,3

 (2.4)

Due to differences in sensor types and different sensors used on different vehicles,

different noises are applied to the ground truth vector Pi generating different Psignal

by different vehicle makes and models. Let f (·) represent the noise and vehicle ID

injection process, a parameter in each Psignal can be described as in Equation 2.5,

Qn,m =


vehicle ID

xn,m,1

xn,m,2

xn,m,3

 = f (Pi) = f

([
Pi,1 Pi,2 Pi,3

]T)
(2.5)

where Qn,m represents the nth pedestrian detected by vehicle m, which is a

“Psignal”. The process f (·) can either be the error process from PAEB hardware in

the real world or be the error process generated by computer simulations.

Elements in Qn,m have the same meaning as Pi in Equation 2.4, except a vehicle ID

inserted into the first row in Qn,m in order to distinguish which vehicle generates Pi.

Each Psignal (i.e. Qn,m) has a unique random vector to describe its ground truth

values with added noises:

−→
X n,m =

[
Xn,m,1 Xn,m,2 Xn,m,3

]T
(2.6)
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xn,m,1 to xn,m,3 in Equation 2.5 are the realizations of random variables Xn,m,1

to Xn,m,3, as shown in Equation 2.6 with respect to the nth pedestrian detected by

vehicle m.

Thus, Psignals that contains all pedestrian messages from all vehicles can be ex-

pressed as,

Psignals = F (Pinput) = F
([

P1 P2 · · · Pn

])
=


Q1,1 Q1,2 · · · Q1,m

Q2,1 Q2,2 · · · Q2,m

...
...

. . .
...

Qn,1 Qn,2 · · · Qn,m


(2.7)

where F (·) contains multiple processes of f (·) in Equation 2.5. Psignals is a

matrix that contains all Psignal which are detected by m vehicles simultaneously

(in the same V2V message processing timestamp). Inside the matrix, each column

represents a V2V message containing multiple Psignal detected by one vehicle. For

example, Q2,4 represents the 2nd Psignal detected by 4th vehicle (each vehicle has a

unique ID).

Note that even though Q1,1 and Q1,2 have the same first subscript “1”, it does not

mean that they are the same pedestrian. They represent the first pedestrian detected

by each car.

Different cars may detect different numbers of pedestrians. The number of rows n

is the maximum number of pedestrians detected by one car. If another car detects less

than n pedestrians, say r pedestrians, its r+1, r+2, . . . , n elements will be substituted

by 0 and will not be considered in the subsequent calculations. For example, assuming

that there are five ground truth pedestrians. If car 1 can only detect four Psignal and

car 2 can only detect three Psignal, both car 3 and car 4 can detect five Psignal, then

the matrix can be represented by,
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Psignals =



Q1,1 Q1,2 Q1,3 Q1,4

Q2,1 Q2,2 Q2,3 Q2,4

Q3,1 Q3,2 Q3,3 Q3,4

Q4,1 0 Q4,3 Q4,4

0 0 Q5,3 Q5,4


(2.8)

2.5 Clustering Part

The clustering part is to find the actual number of pedestrians with estimated

locations (see dashed box in Figure 2.4). This part can also refer to pedestrians’

information merge part shown in both Figure 1.3 and Figure 1.4.

Clustering analysis is a task to group many data points into several classes (clus-

ters) [10]. Each cluster has a clustering center. The input of the clustering part is

Psignals and the output is estimated pedestrians Poutput. The goal is to generate

the estimated pedestrians (Poutput) from Psignals to match Pinput. Clustering is the

process g (·) to convert Psignals to Poutput:

Poutput = g (Psignals) =
[
P ′

1 P ′
2 · · · P ′

j

]
(2.9)

Fig. 2.4.: Mathematical model of the fusion (clustering) of the pedestrian information

received from multiple vehicles.
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As shown in Figure 2.4, the significance of the clustering process is trying to refine

the original pedestrians, by providing a bunch of Psignal, thus estimates the more

accurate positions of pedestrians, reduces both false positive and false negative, helps

vehicles make better decisions as discribed in Figure 1.5 (b), (c).
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3. GREEDY-MEDOIDS CLUSTERING ALGORITHMS

3.1 Determine the Number of the Clusters

An example scenario at a road intersection is shown in Figure 3.1. There are four

cars (A, B, C and D) and five pedestrians (pedestrians 1, 2, 3, 4, and 5). Suppose in

a time step, car A can detect pedestrians 2, 3, 4, 5, car B can detect pedestrians 1, 2,

3, car C can detect pedestrians 1, 4, 5, and car D can detect pedestrian 2, 3, 4. The

matrix Psignals is

Psignals =


Q1,1 Q1,2 Q1,3 Q1,4

Q2,1 Q2,2 Q2,3 Q2,4

Q3,1 Q3,2 Q3,3 Q3,4

Q4,1 0 0 0

 (3.1)

Vehicle ID 1, 2, 3, 4 are used to represent Psignals detected by cars A, B, C, and

D in Equation 3.1, respectively.

Fig. 3.1.: A road intersection scenario.
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Figure 3.2 shows the locations of pedestrians based on Psignals in Equation 3.1.

Each Psignal is marked by the ID of the car that generates it. Table 3.1 shows the

exact locations of all Psignal in a local Cartesian coordinate system shown in Figure

3.2.

Fig. 3.2.: A road intersection scenario.

Suppose car C receives Psignals that contains the information from other cars,

without knowing actually how many pedestrians are on the road. To reconstruct

pedestrians (Poutput) based on Figure 3.2, car C needs to generate Poutput using the

clustering analysis to split Psignals into several clusters, and then find the center of

each cluster. Then the set of these clustering centers becomes Poutput. The correct

and incorrect clustering processes with five and four clustering centers are shown in

Figure 3.3(a) and Figure 3.3(b), respectively.
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Table 3.1: 5 Pedestrians’ Parameter

Psignal ID Detected by which

vehicle (V ehicle ID)

Location (x, y, z) (center of

the pedestrian) (meter)

1 A (33.719, 23, 0)

2 A (36.469, 20.688, 0)

3 A (37.5, 15.625, 0)

4 A (20.469, 4.875, 0)

5 B (6.406, 25.75, 0)

6 B (32.906, 22.188, 0)

7 B (37.656, 22.438, 0)

8 C (9.219, 24, 0)

9 C (36.469, 14.688, 0)

10 C (21.469, 3.906, 0)

11 D (34.406, 21.75, 0)

12 D (37.5, 20, 0)

13 D (39, 14.688, 0)

Psignal ID is used for distinguishing each Psignal in this example.

(a) Correct clustering process. (b) Incorrect clustering process.

Fig. 3.3.: Correct (a) and incorrect (b) clustering results.
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Since pedestrian 2 is close to pedestrian 3 (could be the same walking speed and

same direction/heading), it is reasonable that the clustering algorithm classifies them

into one class. However, it will fail to identify a pedestrian. In statistical hypothesis

testing, it is a false negative error [11].

To prevent false negative errors, additional information V ehicle ID is used in the

clustering process. Assuming that one pedestrian cannot be detected by a PAEB

sensor as two pedestrians, assumption 1 is adopted (see dashed oval area in Figure

3.4):

(Assumption 1) If there exist two Psignal with the same sender ID (V ehicle ID),

they cannot be clustered into the same cluster (classified as one pedestrian).

Based on Assumption 1, Psignals in the dashed oval area in Figure 3.4 cannot be in

one cluster. This assumption can be applied in clustering process to classify Psignals

better since the V ehicle ID information is available and useful. The Greedy-Medoids

clustering algorithm described in next section uses this assumption.

Fig. 3.4.: Two pedestrians have several similar Psignal detected by cars.
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3.2 Greedy-Medoids Clustering Algorithm Approach

To cluster Psignals and to reconstruct pedestrians from multiple vehicles’ V2V

messages, typical clustering algorithms such as K-Means and K-Medoids [12], [13]

cannot be applied since they require the number of the clusters in advance. In

V2V-PAEB scenarios, the number of pedestrians is not known. Even density-based

clustering methods, for example, DBSCAN (Density Based Spatial Clustering of Ap-

plications with Noise), such as [14], [15] yield good approaches to discover the number

of clusters, however, they do not make use of the important knowledge of Vehicle ID,

which is not applicable in the V2V-PAEB pedestrian information merging problem.

These clustering methods provide useful information for Greedy-Medoid clustering

algorithm.

With reference to statistical hypothesis testing [11], say a type I error is an absent

pedestrian while the response is existed. A type II error is an existed pedestrian while

the response is absent (see Figure 3.5).

Fig. 3.5.: Statistical hypothesis testing applies on PAEB detection.

Type I and type II errors are also called “false positive” and “false negative”,

respectively. Decreasing both type I error (false positive) and type II error (false
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negative) is desirable in the clustering process. However, they cannot be decreased at

the same time. To make a compromise, a threshold parameter will be used to balance

the type I and type II errors. Based on this approach, we can make the following

assumption:

(Assumption 2) If a Psignal is far from any other Psignal, then it can be considered

as in another cluster.

Therefore, a distance function dist(o, p) needs to be defined to measure the dis-

tance between two Psignal o and p. To quantify the distance between two Psignal,

we use Euclidean distance since it is widely used in [12]. Note that vehicle ID is not

used in distance calculation.

A medoid is defined as a representative Psignal of a cluster. Following are the

detailed steps of Greedy-Medoids clustering algorithm for determining the number of

the clusters and clustering centers.

Algorithm 1 GREEDY-MEDOIDS CLUSTERING

1: PrimeV ehicle,MedoidList = INITIALIZATION(DThreshold)

2: MedoidList = ASSIGNMENT (PrimeV ehicle,MedoidList)

3: MedoidList = UPDATING(MedoidList)

4: MedoidList = ASSIGNMENT (0,MedoidList)

5: return MedoidList

Algorithm 2 INITIALIZATION(DThreshold)

1: Find a vehicle (call it the PrimeV ehicle) which sends the most number of Psignal.

2: Define all Psignal detected by the PrimeV ehicle as initial medoids and store them into a list

called MedoidList.

Discussion: The first ASSIGNMENT uses the following greedy strategy in line

21-23:

dist(Pcurrent,M)
D0

R
D1

dist(S,M) (3.2)

D0: Keep S and reject Pcurrent.

D1: Reject S and add Pcurrent.
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Algorithm 3 ASSIGNMENT(PrimeV ehicle,MedoidList)

Require: DThreshold

1: for each vehicle V except the PrimeV ehicle do

2: Initialize an empty list WaitingList.

3: Append all Psignal detected by V into WaitingList.

4: while WaitingList is not empty do

5: Initialize an empty list MatchedList.

6: Delist a Psignal from WaitingList and call it Pcurrent.

7: for each medoids M from MedoidList do

8: if dist(Pcurrent,M) ≤DThreshold then

9: Append M into MatchedList.

10: end if

11: end for

12: if MatchedList is empty then

13: Append Pcurrent into MedoidList. . Set Pcurrent as a new medoid.

14: else

15: . MatchedList is not empty.

16: for each M from sorted MatchedList do

17: if the cluster having a medoid M (call it M cluster) does not contain a Psignal (call

it S) sent by vehicle V then

18: Assign Pcurrent to the M cluster.

19: goto line 4.

20: else

21: if dist(Pcurrent,M) < dist(S,M) then

22: Assign Pcurrent to M cluster.

23: Move S from M cluster to WaitingList.

24: goto line 4.

25: else

26: goto line 16.

27: end if

28: end if

29: end for

30: end if

31: if Pcurrent still remains unassigned status then

32: Append Pcurrent into MedoidList. . Set Pcurrent as a new medoid.

33: end if

34: end while

35: end for
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By applying this strategy, the algorithm will traverse all vehicles’ messages ex-

cept the message from PrimeV ehicle. The algorithm stops when all Psignal are

assigned to clusters.

There is an issue with this strategy. Suppose after ASSIGNMENT, a cluster is

shown as in Figure 3.6 where the medoid is circle 1 that comes from the PrimeV ehicle

and circles 2 to 6 are assigned to circle 1. It appears that choosing circle 3 as the

medoid is much better since it is closely surrounded by other Psignal while circle 1 is

more likely a noise.

Fig. 3.6.: Different choose of medoid in a cluster.

Remember the reason for choosing circle 1 as the medoid was because circle 1

comes from the PrimeV ehicle. If circle 3 was initially observed by the PrimeV ehicle,

circle 3 would be the medoid. To eliminate this randomness, UPDATING and the

second ASSIGNMENT are added.

Discussion: UPDATING finds a better initial medoid set with respect to each

cluster, which has minimum total distance error in the cluster. This step also elimi-

nates the randomness of the observer PrimeV ehicle in INITIALIZATION, which

strongly affects the result (MedoidList) in the first ASSIGNMENT.

Figure 3.7 shows the flow chart of the ASSIGNMENT step.
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Algorithm 4 UPDATING(MedoidList)

1: Initialize an empty list BetterMedoidList.

2: for each cluster C do

3: MinimumError ← +∞
4: for each Psignal p from cluster C do

5: error ←
∑

o∈clusterC dist(o, p) . o represents all other Psignal from cluster C.

6: if If error < MinimumError then

7: MinimumError ← error

8: BetterMedoid ← p

9: end if

10: end for

11: Append BetterMedoid into BetterMedoidList.

12: end for

13: MedoidList ← BetterMedoidList
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Fig. 3.7.: Flowchart of the ASSIGNMENT step.
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The second ASSIGNMENT with a better set of initial medoids in MedoidList

generated in UPDATING without any PrimeV ehicle.

Based on above steps, the approximate number of pedestrians is reconstructed

(Poutput = MedoidList) based on the pedestrian information provided by near-by

vehicles through the V2V network. The number of pedestrians in Poutput and Pinput

can be interpreted as follows:

If the value DThreshold is fairly small, as well as a small noise for Psignal genera-

tion, then it is very likely that Poutput = Pinput.

If the value DThreshold is fairly small, but the random noise for Psignal generation

is large, then it is very likely that Poutput > Pinput. It means a ground truth pedes-

trian is considered as more than one pedestrian due to large differences in Psignals of

the same ground truth pedestrian.

If the value DThreshold is large, then it is very likely that Poutput < Pinput. It

means more than one ground truth pedestrians are considered as one pedestrian.

3.3 Correctness of the Greedy-Medoids Clustering Algorithm

To show the correctness of the Greedy-Medoids clustering algorithm, it is nec-

essary to prove that the target vehicle is able to make correct decision based on

clustering result.

Note that the goal of the Greedy-Medoids clustering algorithm is to filter out the

noise by refining a small group of representative data points (medoids). The key point

is, after filtering, the representative data points are very close to the ground truth.

In ASSIGNMENT, a greedy approach is used to assign Psignal to the nearest

medoid. Greedy algorithms do not always yield optimal solutions [16], but they are

efficient in a real-time communication (V2V communication) system, since each time

line 12-32 in ASSIGNMENT either assign a Psignal to the nearest acceptable medoid,

or let this Psignal become a new medoid. Eventually, all Psignal will be assigned to

their clusters while the maximum distance among all clusters is less than threshold
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DThreshold. Thus, it is easy to show that Psignal is either a representative data point

for decision-making, or a noisy data point. By increasing or decreasing the distance

threshold DThreshold, the number of the representative data points (medoids) will

decrease or increase correspondingly.

By grouping each cluster with different Psignal detected by different vehicles inside

of each cluster, one clustering center (medoid) will represent one estimated pedestrian.

(Based on Assumption 1)

After UPDATING, a group of medoids with minimum distance in each corre-

sponding cluster will be generated. It can be shown intuitively that these medoids

are able to offer good knowledge to make a decision compared to unfiltered raw data

Pinput.

3.4 Simulation Example

Simulations were conducted using the Matlab and PreScan software by applying

the Greedy-Medoids clustering algorithm to the scenarios shown in Figure 3.1, Figure

3.9 and Figure . In order to be able to show the results in a 2D plot, the Euclidian

distance in x, y, z coordinate was used as the unit of DThreshold.

Simulation case 1: 2 near pedestrian scenario

Figure 3.8 shows the simulation results of Poutput with DThreshold = 4 meters.

The number of the pedestrians in Poutput matches that in Pinput. The location of

each pedestrian in Poutput (red cross medoid in Figure 3.8) is a good estimate of

that in Pinput (black circle in Figure 3.8). As shown in Figure 3.8, compared to the

original pedestrians in Figure 3.1, we can see the Greedy-Medoids clustering algorithm

is acceptable without any prior knowledge of the number of the pedestrians.
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Fig. 3.8.: Clustering result with DThreshold = 4 meters. Note that medoids are also

Psignal.

Simulation case 2: Dense pedestrians scenario

There are six cars and nine pedestrians in an intersection. It is assumed that

the error between all Psignal and the ground truth Pinput are uniformly distributed

within [−1.5, 1.5] meters in both x and y directions. Poutout was generated by the

Greedy-Medoid clustering algorithm with DThreshold = 4 meters (see Figure 3.10).

The result demonstrates that the medoids of each cluster is close to a ground truth

pedestrian.
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Fig. 3.9.: A scenario with 6 cars and 9 pedestrians.

From Figure 3.10, we can see the representative data points (medoids) are very

close to ground truth pedestrian. It also filters out a large number of Psignal which are

not likely a pedestrian. This result is a good example that shows the Greedy-Medoid

clustering algorithm can reduce false positive and remain false negative.
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Fig. 3.10.: Clustering result of 6 cars 9 pedestrians scenario. Error= [−1.5, 1.5],

DThreshold = 4 meters.

Simulation case 3: Sparse pedestrian scenario

This example shows seven cars and five pedestrians in a two-lane road, where

each car sees only one pedestrian (see Figure 3.4). The purpose of this scenario is

to explain extreme cases that a car can only detect 1 or 0 pedestrians. Figure 3.11

and Figure 3.12 show the sparse Psignal cases with DThreshold = 4 meters and 1

meter, respectively. As the distance threshold DThreshold is decreased from 4 meters

to 1 meter, the number of the clusters increased (see Figures 3.11 and 3.12). If the

threshold is fairly small, since none of the Psignal are adjacent to each other, final

Poutput is exactly the Psignals.
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Fig. 3.11.: Clustering result of 7 cars 5 pedestrians’ scenario. Error= [−1.5, 1.5],

DThreshold = 4 meters.
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Fig. 3.12.: Clustering result of 7 cars 5 pedestrians’ scenario. Error= [−1.5, 1.5],

DThreshold = 1 meter.

3.5 Computational Complexity Assessment

This section briefly discusses the running time assessment of ASSIGNMENT in

the Greedy-Medoids clustering algorithm. Since V2V communication is a real-time

process, focusing more on the time complexity takes precedence over the memory

space complexity.

Suppose we can calculate the distance between two Psignal in linear time, then

the worst case complexity of ASSIGNMENT can be expressed as,

(m− 1)(
wlm(wlm + 1)

2
(nlogn+ p+ 1)) (3.3)
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where n is the number of the clusters (medoids), m is the number of the vehicles,

wlm is the length of the WaitingList with regards to vehicle m, and p represents

the number of Psignal in one cluster.

Equation 3.3 shows that for each vehicle except PrimeV ehicle(m− 1), consid-

ering the worst case, each data Pcurrent from WaitingList will be replaced by next

Pcurrent (push data point S back into WaitingList, line 21-23 in ASSIGNMENT).

So for each vehicle we need traverse at most wlm(wlm+1)
2

times. For each loop, the dis-

tances between Pcurrent and the current Medoids need to be sorted (line 16), which

can cost nlogn in optimum running time [16]. After sorting, line 17 in the algorithm

costs linear time O(p), and the decision can be made in O(1) time, where O(·) is

well-known O-notation representing an asymptotic upper bound [16]. Note that the

number of clusters (medoids) may also increase in each loop. But in the worst case

n cannot be greater than the total number of Psignals. Let k be the total number of

Psignals, Equation 3.3 can be rewritten as,

O(m · wl2m · (nlogn+ p)) (3.4)

Since m · wlm = k = number of the Psignals and n ≤ k, p ≤ k, Equation 3.4 can

be expressed as,

O(k3logk) (3.5)

Equation 3.5 is the upper bound running time of ASSIGNMENT. Similarly, the

complexity is O(k2) in INITIALIZATION and O(k3) in UPDATING. Then the upper

bound complexity of the GREEDY-MEDOIDS CLUSTERING should be,

O(k2 + k3(2 · logk + 1)) = O(k3logk) (3.6)

According to the specification of DSRC [17], [18], 0.1 seconds is the time interval

of two consecutive timestamps (10 message/second). It is necessary to make sure the

Greedy-Medoids clustering algorithm can generate results in less than 0.1 seconds.
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Even though the running time of the Greedy-Medoids clustering algorithm grows

rapidly when the number of the Psignals increases, in many scenarios with sparse

pedestrians (for example, less than 5 people in a road intersection), the Greedy-

Medoids clustering algorithm can cluster Psignals and reconstruct pedestrians very

well within the given 0.1 seconds.
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4. HIERARCHICAL CLUSTERING APPROACH - AN

EFFICIENT WAY BASED ON ASSUMPTION 1

In Section III, an intuitive Greedy-Medoid Clustering Algorithm is proposed to solve

Assumption 1 and Assumption 2 problem for identifying and classifying Psignals based

on K-Medoids clustering and greedy approach. In this section, based on Assumption

1, an efficient hierarchical clustering algorithm is ultilized and a matrix based solution

is proposed.

4.1 Matrix Based Solution

The matrix based solution (especially 2 dimensional distance matrix) is a popular

and efficient way to illustrate the idea intuitively while solving the problem quick and

smart. Usually the distance matrix, a 2-D array, contains the distance between each

data point, are symmetric. It describes the relationship between each data points. In

many different constraint clustering analysis, distance matrix is very useful to tackle

the problem.

To illustrate the matrix based solution method, a case is adopted for demonstrate

the idea and the meaning of the inside data in matrix.

Considering a scenario with 3 pedestrians (say ped p1, p2, p3) and 4 cars (say car

A,B,C,D), suppose each vehicle can sense all pedestrians, then the total number of

Psignals is 3 × 4 = 12. Table 4.1 shows the relationship of each Psignal. Figure 4.1

shows the visualized data. Psignals is simulated by a uniform distribution ([−1.5, 1.5]

meters).
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Table 4.1: 3 Pedestrians 4 Cars’ Parameters

Psignal ID Locations (x, y) Detected by

which vehicle

(V ehicle ID)

Pedestrian

1 (6.644199, 17.282080) A p1

2 (5.792567, 17.193826) B p1

3 (5.697515, 18.725224) C p1

4 (3.995532, 17.816467) D p1

5 (8.252002, 3.673744) A p2

6 (7.435576, 4.865974) B p2

7 (8.095334, 5.337754) C p2

8 (8.918196, 3.170066) D p2

9 (11.912089, 16.507965) A p3

10 (10.333733, 17.614958) B p3

11 (10.758729, 19.076866) C p3

12 (11.115410, 17.488841) D p3

The order of p1, p2, p3 does not taken seriously consideration. All data follow

uniform distribution [−1.5, 1.5] meters on both x and y axes.

Fig. 4.1.: 3 pedestrians 4 cars’ scenario with 12 Psignal and ground truth data points.
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Fig. 4.2.: 12 by 12 Psignal Euclidean distance relationship matrix.

The matrix based solution is, for example, considering Psignal 1 and Psignal 5

are both detected by vehicle A, then Psignal 1 and Psignal 5 cannot be classified into

one cluster. Under this condition, we can plot a matrix where it has 12 rows and 12

columns (same number of Psignal), and measure the Euclidean 2D distances of each

pair of Psignal. “Inf” means they cannot be classified into one cluster, as set them

infinity. See Figure 4.2.

Figure 4.2 illustrates the connections between each Psignal data points based

on Euclidean distances. Data should be clustered automatically based on there

strong/weak connections. (Say the smaller value that the distance have, then the

stronger their connection is)

Based on this matrix, a hierarchical clustering under Assumption 1 is proposed

to cater this problem.

4.2 Hierarchical Clustering

The hierarchical clustering is a method of clustering analysis to cluster dataset

in a hierarchical way. In hierarchical clustering, agglomerative and divisive are two

typical strategies to do the clustering. In general, the merges and splits are determined

in a greedy manner. The results of hierarchical clustering are usually presented in

a dendrogram. [19] In this paper, Ward’s method [20] is used for merging the data
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points together and grows up till reaching the root [21], [22], where Calinski-Harabasz

Pseudo F-Statistic [23] is adopted to determine the number of the clusters.

Based on Table 4.1 example, a ”bottom up” agglomerative clustering is applied.

Figure 4.3 shows the hierarchical relationship of the dataset under the condition of

Figure 4.2. The reason we cluster data point 6, 7, 5, 8 in one group is because the

relationship between any pair of these data points are relatively close, which verifies

the usefulness of the distance matrix and the “infinity distance” constraint.

Fig. 4.3.: 3 pedestrians 4 cars’ Ward’s method hierarchical clustering dendrogram.

4.3 Determine the Number of the Clusters

Comparing with the Greedy-Medoid Clustering Algorithm which it use DThreshold

to determine the number of the clusters, as an semi-supervised machine learning,

hierarchical clustering method still need an approach to estimate the number of the

clusters. There’re several popular methods to determine the number of the clusters:
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Elbow method [24]; Average silhouette method [25]; Gap statistic method [26], etc. As

mentioned above, in this thesis, Calinski-Harabasz Pseudo F-Statistic [23] is adopted.

Based on our experiments, such 3 pedestrians 4 cars scenario does not show a

good quality of the estimation due to the number of the signals is insufficient. More

densed case will provides us a good estimation of the clusters.

Simulation case 5:

To test this hierarchical clustering method, another scenario with 8 pedestrians

and 10 cars are evaluated. Psignals is simulated by a uniform distribution ([−3, 3]

meters). As shown in Figure 4.4, the original Psignals are really hard to tell where

they come from.

Fig. 4.4.: 8 pedestrians 10 cars’ scenario with 80 Psignal and ground truth data points.

Figure 4.5 shows the hierarchical relationship of the dataset under the condition

of Figure 4.4. By Letting the cut (number of the clusters) equals to from 2 to 79

(number of the clusters cannot be less than 2 and greater or equal to 80), the gap

statistics (where the number of Monte Carlo (bootstrap) samples = 50) is shown in
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Figure 4.6, and it concludes that when k = 7, i.e. the number of the clusters = 7,

hierarchical clustering approach yields the optimal solution for this scenario. The

final result of the Figure 4.4 data points aggregation (based on Euclidean distance) is

shown as Figure 4.7. The final result of the estimated pedestrians (choose the mean

value of each group) is shown as Figure 4.8.

Fig. 4.5.: 8 pedestrians 10 cars’ complete-link, average-link, and single-link hierarchi-

cal clustering dendrogram.
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Fig. 4.6.: 8 pedestrians 10 cars’ gap statistics with cluster number from 2 to 20 (21 -

79 is omitted). Number of Monte Carlo (bootstrap) samples = 50.

Fig. 4.7.: 8 pedestrians 10 cars’ scenario matrix data points aggregation (based on

Euclidean distance).
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Fig. 4.8.: 8 pedestrians 10 cars’ scenario estimating result. Mean value estimated

pedestrians are the big black circles, ground truth are the big red circles, Psignals are

the small black dots.

From Figure 4.8, it is easily to be observed that the quality of hierarchical clus-

tering, even the signal applies strong noises, is really robust and works pretty well.

4.4 Computational Complexity and the Comparision with Greedy-Medoid

Clustering Algorithm

It has been proved that the time complexity of average-link hierarchical clustering

is O(n2 · logn) [27]. Comparing with Greedy-Medoid Clustering Algorithm, hierarchi-

cal clustering method create a dendrogram first, then by cutting them into separate

groups, hierarchical clustering can obtain the best estimated number of the clusters

based on the gap statistics. Also, by utilizing the Assumption 1 in matrix based

approach, hierarchical clustering algorithm solves the pedestrians’ signals clustering

problem without any former knowledge about the dataset nor the number of the



47

groups it should be divided. By utilizing gap statistics, hierarchical clustering is able

to determine the number of the cluster and the groups of the data points.

However, Greedy-Medoid Clustering Algorithm provides an easier understanding

on how the data association procedure works. Greedy-Medoid Clustering algorithm

also describes the problem based on the distance threshold, which provide a more na-

ture way to aggregate/disperse data points comparing with the gap statistics. Thats

being said, hierarchical clustering method still provides a smarter, more efficient ap-

proach which could be used in the real world.
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5. CONCLUSION

As PAEB and V2V technologies are becoming mature, sending PAEB detected pedes-

trian information to the V2V network provides a potential benefit to make safety

decisions earlier and more effective. This paper has provided a solution for a specific

pedestrian data fusion problem in the V2V-PAEB system. A mathematical model of

the pedestrian information generated by the PAEB system in the V2V network was

introduced. The proposed Greedy-Medoids clustering algorithm enables a subject ve-

hicle to approximate the number of pedestrians and their estimated locations from a

large number of pedestrian alert messages by many nearby vehicles through the V2V

network and the subject vehicle itself. The simulation results have demonstrated the

effectiveness and applicability of the proposed method.

This thesis also briefly introduce the hierarchical clustering and distance matrix

apply on the V2V-PAEB problem. A simulation is given to verify the usefulness of

this technique. A brief comparison between Greedy-Medoid clustering algorithm and

hierarchical clustering is introduced.

Both results of Greedy-Medoid clustering and hierarchical clustering can be useful

for PAEB system to make the warning/braking decisions earlier and hence, improving

its pedestrian safety performance. The same idea can be applied to other objects (such

as bicyclists) on the road.
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6. SUMMARY

The purpose of this thesis is to estimate the actual number and geolocation of pedes-

trian signals during processing the AEB messages in a V2V network. The result can

help the AEB system to make safety relate action more accurately. Vehicles can re-

spond to potential collision to pedestrians early do avoid driving into those dangerous

areas.

This paper is trying to envision the near future transportation system when all cars

are mounted on V2V devices and be able to communicate and exchange messages. At

that moment, the shared information needs to filter out duplicated data and errors.

Thus, clustering analysis will be considered as an approach to do this process. In

that sense, Greedy-Medoid clustering algorithm provides a effective way to estimate

pedestrians from various signals. Hierarchical clustering and number of the clusters

estimation also provide an applicable way to solve this specific problem.
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