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ABSTRACT

Tang, Bo M.S.E.C.E., Purdue University, December 2015. Pedestrian Protection
Using the Integration of V2V Communication and Pedestrian Automatic Emergency
Braking System. Major Professor: Stanley Yung-Ping Chien.

The Pedestrian Automatic Emergency Braking System (PAEB) can utilize on-

board sensors to detect pedestrians and take safety related actions. However, PAEB

system only benefits the individual vehicle and the pedestrians detected by its PAEB.

Additionally, due to the range limitations of PAEB sensors and speed limitations of

sensory data processing, PAEB system often cannot detect or do not have sufficient

time to respond to a potential crash with pedestrians. For further improving pedes-

trian safety, we proposed the idea for integrating the complimentary capabilities of

V2V and PAEB (V2V-PAEB), which allows the vehicles to share the information of

pedestrians detected by PAEB system in the V2V network. So a V2V-PAEB enabled

vehicle uses not only its on-board sensors of the PAEB system, but also the received

V2V messages from other vehicles to detect potential collisions with pedestrians and

make better safety related decisions. In this thesis, we discussed the architecture and

the information processing stages of the V2V-PAEB system. In addition, a compre-

hensive Matlab/Simulink based simulation model of the V2V-PAEB system is also

developed in PreScan simulation environment. The simulation result shows that this

simulation model works properly and the V2V-PAEB system can improve pedestrian

safety significantly.
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1. INTRODUCTION

1.1 Background and Motivation

According to a recent study performed by World Health Organization (WHO),

more than 1.24 million road traffic deaths occur each year and 22 percent of them

are pedestrians. In recent years, pedestrians are among the most vulnerable road

users and most accidents occurs when pedestrians trying to cross highways. Studies

indicate that males make up a higher proportion of pedestrian deaths and injuries in

traffic accidents than females. Additionally, in developed countries, older pedestrians

are often involved in road accidents, while in underdeveloped or developing areas,

children and young people are more often affected. About 1.24 million of road users

lose their lives on the world’s roads annually, making road traffic injuries the eighth

leading cause of death around the world, and the leading cause of death for young

people aged between 15 and 29 years [1].

There are many methods to improve the safety of pedestrians on the roads. For

example, we can adopt and enforce new and existing traffic laws to reduce speeding,

curb drinking and driving, decrease mobile phone use and other forms of distracted

driving. We also can put in place infrastructure which separates pedestrians from

other traffic (sidewalks, raised crosswalks, overpasses, underpasses, refuge islands and

raised medians), lowers vehicle speeds (speed bumps, rumble strips and chicanes) and

improves roadway lighting. Additionally, we can develop and enforce vehicle design

standards for both active and passive systems. passive safety usually refers to features

that help reduce the effects of an accident, such as seat belts, airbags and strong body

structures. However, active safety is increasingly being used to describe systems (such

as the Advanced Driver assistance System) that use an understanding of the state of

the vehicle to avoid or mitigate the effects of a crash.
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Pedestrian Automatic Emergency Braking (PAEB) system is a type of active sys-

tem which uses various types of on-board sensors (such as radar, mono/stereo camera,

infrared etc.) to detect the potential crash to pedestrians. The PAEB system alerts

the driver if there is an imminent collision and supports collision avoidance by apply-

ing the brake automatically if the driver does not take braking action [2]. However,

due to the range limitations of PAEB sensors and speed limitations of sensory data

processing, the PAEB system often cannot detect or do not have sufficient time to

respond to a potential crash. For example, the collision with pedestrian will be un-

avoidable if the vehicle is travelling too fast or the pedestrian enters the path of the

vehicle too quickly. Another example is that the PAEB system cannot detect the

pedestrians behind obstacles. If the pedestrian suddenly comes out from the behind

of an obstacle, the PAEB system might have not enough time to react. Addition-

ally, the harsh weather or ambient conditions may also affect the performance of the

sensors used by the PAEB system.

On the other hand, due to the fast advancement of wireless communication tech-

nology, V2V communication becomes practical. The exchanged information through

V2V enables the vehicles to make better decisions in driving control and safety [3]. In

the V2V communication network, each vehicle is one communicating node, providing

each other with safety related information, such as safety warning and traffic infor-

mation. With the help of shared information, one vehicle can acquire a full picture of

its driving environment and obtain more information to make better decisions. In the

vehicular communication systems, the vehicles can cooperate with each other which

making them more effective in avoiding road accidents and traffic jams than if each

vehicle tries to solve these problems individually.

To improve the performance of PAEB, we proposed the idea to integrate the com-

plimentary capabilities of V2V and PAEB (V2V-PAEB) to allow the information of

pedestrians sensed by the PAEB system of one vehicle to be shared in the V2V net-

work and to be used by the the PAEB system of other vehicles. So if the PAEB system

on one specific vehicle fails in detecting the potential collision with a pedestrian, it
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may still have a chance to aware about this pedestrian from the messages sent by

other vehicles and then take proper safety actions. By this means, the V2V-PAEB

will improve the road safety and have a better performance than PAEB system.

1.2 Related Work and Major Contributions

PAEB systems already benefit the road safety significantly in the real world, but

the V2V communication systems are still under research. To the best knowledge of the

authors, there is no architecture and principle of operations of the V2V-PAEB system

have been defined. In this study, we defined the architecture and the information

processing stages of the V2V-PAEB system. The V2V-PAEB system defined in this

study consists of 10 blocks and each block is designed to solve some specific problems.

The input and output of the V2V-PAEB system as well as its each block are also

defined clearly. This study provides others with the quick start for studying the

V2V-PAEB system.

One essential way to develop and evaluate a V2V-PAEB system is to develop

a real combined V2V and PAEB system and conduct real vehicle tests. However,

this approach is quite costly, dangerous and time consuming, so we developed a

Matlab/Simulink based simulation model of V2V-PAEB system. Various complex

and severe crash scenarios can be generated in the simulation environment, and the

information processing and control algorithms can be easily developed and verified.

This simulation model is organized according to the information processing stages and

the problems need to be solved of a V2V-PAEB system. Currently, the architecture as

well as some basic control algorithms have been implemented, and it works properly

under many common conditions. However, since the V2V-PAEB system is quite

complicated, this study did not solve all the problems, so the V2V-PAEB simulation

model may not work properly under some specific conditions and it still need further

study. With the predefined architecture and function blocks of this model, we can

immediately start to upgrade the algorithms in the corresponding blocks of the model
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in the future. Since the input and output for each block is defined fixed, so when the

algorithms in one block is upgraded, other blocks are not affected. This V2V-PAEB

model provides us the convenience of focusing on solving the V2V-PAEB integration

problems and minimizing the effort in writing supporting software.

Additionally, we also tested the performance of the V2V-PAEB simulation model

using several typical scenarios which described in [4]. Paper [4] used an exhaustive

analysis method to identify the scenarios that the V2V-PAEB system can improve

the pedestrian safety theoretically. Totally 96 out of 168 pedestrian related scenarios

can benefit from the V2V-PAEB system were identified. However, none of them have

been proved that the V2V-PAEB system can really benefit the pedestrian safety in

such scenarios. We can use the proposed V2V-PAEB simulation model to test these

scenarios presented in [4].

1.3 Thesis Organization

The thesis has 7 chapters and it is organized as follows. The next chapter, Chapter

2 will introduce the basic concepts of PAEB systems. Additionally, the most frequent

used sensors in PAEB systems will also be presented in this chapter. Chapter 3 will

provide the description of V2V communication systems. Chapter 4 describes the

PreScan simulation environment that used for developing the proposed V2V-PAEB

simulation model. Chapter 5 provides the detail definition of the architecture and the

information processing stages of V2V-PAEB system. current implementation of the

V2V-PAEB simulation model. In Chapter 6 we will use PreScan software to test the

proposed simulation model, and discuss the benefits of V2V-PAEB system based on

the simulation results. We will conclude this study in Chapter 7 to make a summary

of of the V2V-PAEB system and also discuss the future work based on current study.
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2. PAEB SYSTEM

2.1 Description of PAEB System

The PAEB system is specially designed for protecting pedestrians and it is one

of the key features of AEB systems. The PAEB system judges the probability of

a collision based on the position and relative speed of the vehicle with respect to

an pedestrian, and either help the driver to avoid the collision by triggering proper

warnings or help to mitigate collision damage by activating devices such as automatic

brake assist, automatic steering, and so on [5].

In February 2003, Toyota Motor Corporation developed the first commercial AEB

system and brought it to market with its high-end vehicles. Currently, the AEB tech-

nology has advanced to be able to detect and protect pedestrians as well as frontal

collisions at both the intersections and roads [6,7]. In contrast, most conventional au-

tomatic braking systems are designed to activate only when a collision is unavoidable,

help to avoid the collision or mitigate the damage caused by the collision. However,

new systems have since been developed that are capable of avoiding some types of

collisions automatically.

AEB systems usually improve the road safety in two ways: firstly, they use on-

board sensors to detect objects and help to avoid accidents by identifying critical

situations early and warning the driver; and secondly they reduce the severity of

collisions which cannot be avoided by lowering the speed of crash and, in some cases,

by preparing the vehicle and restraint systems for impact [8].

Most AEB systems use a combination of various types of sensors such as radar,

(stereo) camera and/or lidar-based technology to identify potential collision partners

ahead of the vehicle. Then AEB systems combine this information with the vehicle’s

own state information such as its travel speed and trajectory to determine whether
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a critical situation is developing. If a potential collision is detected, AEB systems

generally first try to avoid the impact by warning the driver to take proper actions.

If the driver takes no action and a collision is unavoidable, the system will then apply

the brakes automatically to reduce the damage of collision. Some systems apply full

braking pressure during the braking process, while others can apply an elevated level

according to the emergency level. Either way, the intention is to reduce the speed

with which the collision takes place. Some systems deactivate as soon as the driver

takes actions to avoid this potential collision [8].

In the year 2013, Toyota Motor Corporation has developed an AEB system that

uses automatic steering in addition to automatic braking to help prevent collisions

with pedestrians. It is the first commercial AEB system that has automatic steering

capability. Toyota is committed to developing safety technologies that help eliminate

traffic fatalities and injuries involving pedestrians and other vulnerable road users.

The new AEB system with Pedestrian-avoidance Steer Assist can help prevent col-

lisions in cases where automatic braking alone is not sufficient, such as when the

vehicle is travelling too fast or a pedestrian suddenly steps into the vehicle’s path.

If the on-board sensors detect the pedestrians in front of the vehicle and the system

determines that there is a potential collision, then the AEB system will issue a driver

warning immediately to encourage the driver to take evasive actions. The automatic

braking functions are activated if the potential collision is urgent. If the system de-

termines the potential collision is unavoidable by braking alone and there is sufficient

room for avoidance, it will activate the steer assist to steer the vehicle away from the

pedestrian in front of vehicle.

As an emerging active safety system, the AEB technology is already showing great

benefits in improving road safety in the real world. A recent report performed by IIHS

shows that the AEB technology can reduce insurance injury claims by as much as

35%. The 10 manufacturers committing to across-the-board AEB represented 57%

of U.S. light-duty vehicle sales in 2014 [9].
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Vehicle-mounted sensors are useful in detecting pedestrians and other objects

on the road. However, visibility from the vehicle is limited. It is often the case

that it is difficult or impossible to observe the dangerous object from the vehicle

itself. Due to the range limitations of PAEB sensors and speed limitations of sensory

data processing, PAEB systems often cannot detect or do not have sufficient time to

respond to a potential crash. For example, the potential collision with pedestrians

cannot be avoided if the vehicle is travelling too fast or the pedestrian enters the

path of the vehicle too quickly. Another example is that the PAEB cannot detect

the pedestrians behind the obstacles. If the pedestrian suddenly comes out from the

behind of an obstacle, PAEB might have not enough time to react. Additionally,

the performance of the sensors in PAEB systems can be easily affected by the harsh

weather or ambient environments.

2.2 Commonly Used Sensors in PAEB System

There are many types of sensors can be used for pedestrian detection in PAEB

systems. The following paragraphs present the detail information of the sensors that

commonly used in PAEB system. Additionally, we also discussed the advantages and

disadvantages for each type of sensor.

1. Radar Sensor

Radar is short for Radio Detection and Ranging or Radio Angle Detection and

Ranging. It is a system works in the frequency domain and can be used to detect,

range and track both moving and fixed objects such as vehicles and pedestrians.

Radar sensor usually transmits strong electromagnetic waves, specifically radio

waves, and uses a receiver to listen for any reflections from the obstacles. The

radar systems use the reflected signals from the detected objects to identify

their range, direction and speed. Sometimes the type of objected can also be

identified. Since the amount of signal returned to the receiver is tiny, so the

radar sensor usually amplify the reflected radio signals many times in order to
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detect them easily. Thus radar is suitable for long range detection. However,

other detectors that based on sound or visible light will have a worse perfor-

mance than radar because such type of reflections are too weak to detect at a

large range [10,11].

In the current PAEB systems, many types of radar systems can be used and

among which the Pulse-Doppler radar is the most frequent used. The Pulse-

Doppler is a type of radar system that uses the Doppler effect to detect and

locate the obstacles or objects in front of the sensor. The Doppler effect is the

change in frequency of a wave (or other periodic event) for an observer moving

relative to its source. It was first proposed by Doppler in the year 1842. The

Doppler radar system uses a transmitter to send out short pulses of waves and

simultaneously listens for the reflecting signals from objects using the receiver.

The range of the object is determined by examining the time delay between the

pulse transmission and reflection. The speed of the object can be identified by

observing the change in frequency of the waves between the transmitted signal

and the reflected signal.

The advantage of the radar sensor is that it can be used for long range and

short range detection. The difference is that a different frequency is used. In

the long range detection, the 76-77 GHz frequency is used. While for the short

range detection, a typical frequency of 24.125 GHz will be used [11].

2. Lidar

Lidar is an acronym for Light Detection and Ranging; or Laser Imaging De-

tection and Ranging, which is also frequently used in PAEB systems to detect

and track the objects. The difference with radar sensor is that the lidar sensor

determines the distance to an object or surface using laser (Light Amplification

by Stimulated Emission of Radiation) pulses instead of radio waves. Compar-

ing with the radio waves, the laser pulses use a much shorter wavelengths of

the electromagnetic spectrum. In general it is possible to image an object only
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about the same size as the wavelength, or larger. Thus the lidar sensor usually

has a higher resolution than radar sensor. However, since a shorter wavelength

is used, it usually has a shorter detection range than radar sensor. Addition-

ally, in the lidar system, the range to an object is also determined by measuring

the time delay between transmission of a pulse and detection of the reflected

signal [11].

At radar (microwave or radio) frequencies a metallic object generates a sig-

nificant reflection and can be easily detected by the radar sensor. However

non-metallic objects, such as water and concrete usually generate weaker reflec-

tions or even no detectable reflection at all, meaning some objects or obstacles

are hardly detected by radar sensors. Laser sensor (always a part of lidar sensor)

provides a better performance in such conditions. A laser sensor is an optical

source that emits laser light in a coherent beam. Laser light is typically near-

monochromatic consisting of a single wavelength and emitted in a narrow beam,

so it has a good directional feature. However, many common light sources, such

as the incandescent light bulb usually emit incoherent lights in almost all direc-

tions and over a wide spectrum of wavelengths. Additionally, the wavelengths

of laser usually range from about 10 micrometers to the UV (ca. 250 nm) which

are much smaller than that can be achieved by radar sensor systems. So a lidar

system can offer much higher resolution than radar and sometimes can obtain

the images of the detected objects. Based on the image, sometimes the type of

the objects can be identified by applying appropriate classifiers [11,12].

3. Infrared Camera

An infrared camera (also called thermal imaging camera) is a device that gen-

erates an image using infrared radiation, similar to a common camera that

generates an image using visible light. Instead of the 400700 nanometer range

of the visible light camera, infrared cameras operate in wavelengths as long as

14,000 nm (14 m) [13].
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The infrared camera makes PAEB systems possible to have the ability to see

in low light conditions, especially at nights, where the common vision camera

usually have very poor performances. The drivers also have poor night vision

compared to many animals. That’s because the human eye lacks a tapetum

lucidum. With the help of infrared camera, the road safety can be improved

significantly in bad light conditions.

4. Vision Camera

A vision camera is a device that captures the information of reality that consti-

tutes an image. Vision cameras are used in electronic imaging devices of both

analog and digital types. Currently, the most frequent used types of image sen-

sors are semiconductor charge-coupled devices (CCD) or active pixel sensors in

complementary metaloxidesemiconductor (CMOS). Both types of sensors are

used to capture light and convert it into electrical signals [14].

The CCD image sensor has thousands of cells and each cell is an micro analog

device that representing one pixel of an image. When light hits the chip it is

held as a small electrical charge in each cell. The tiny charges are then converted

to voltage one pixel at a time as they are read from the chip. Then the CCD

sensor uses some additional circuit to convert the voltage into digital signals.

Usually different voltage levels represent different colors. A CMOS imaging chip

is a type of active pixel sensor made using the CMOS semiconductor process.

Extra circuit next to each image sensor converts the light energy to a voltage.

Similar with the CCD image sensor, the CMOS also needs additional circuit to

convert the voltage to digital information. Currently, CMOS image sensor is

more popular than CCDs, and most digital still cameras use a CMOS sensor

instead of a CCD. However, CCD is still in use for cheap or low-end cameras [14].

5. Ultrasonic

Ultra-sonic sensors are frequently used in automotive industry for the short

range obstacle detection, especially for back maneuver assist applications. The
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ultra-sonic sensors usually utilize a 40 kHz sound pressure wavelength to detect

obstacles or features. The ultra-sonic sensor usually have an very short detection

range of approximately 1 to 3 meters [11].

Additionally, the ultra-sonic sensors can provide a wide angle for detecting

objects. In the horizontal direction, the maximum detection range can be 100

degrees, while for the vertical direction it would be 60 degrees. However, the

ultra-sonic sensors are easily distored by the reflections of the road and they

provide very poor positioning capabilities [11, 15].

The sensors mentioned above are frequently used for the pedestrian detection

in today’s PAEB systems. However, each type of sensor has its advantages and

limitations. In order to enhance the advantages and overcome the limitations, the

PAEB system usually uses a combination of multiple numbers and types of sensors

that give complementary information. The following table presents the advantages

and limitations for each type of sensor.

Table 2.1. The advantages and limitations of different sensors.

Sensor Advantages Limitations

Radar
1.Detect objects with reflections.
2.Accurate speed and distance detection.
3.Suitable for short/long range detection.

1.Beams are easily blocked.
2.Resolution is very low.
3.The sensor size is big.

Lidar
1.Can detect small obstacles.
2.Accurate speed and distance detection.
3.Higher resolution than Radar.

1.Smaller detection range than Radar.
2.Provides poor resolution.
3.The sensor size is big.

Infrared
Camera

1.Usable under night conditions.
2.Provide high resolution image.

1.Can not identify traffic signs.

Vision
Camera

1.Provide high resolution image.
2.Showing images of reality.
3.The sensor size is small.

1.Difficult for data processing.
2.Bad speed and distance detection.
3.Bad obstacle detection.

Ultrasonic
1.Suitable for short range detection.
2.Has a high angular detection range.

1.Easily distorted by reflections.
2.No angular position provided.
3.No echo cancellation.
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3. V2V COMMUNICATION SYSTEM

V2V is an automobile wireless communication technology designed to allow vehicles

to talk to each other share some useful information. In the V2V network, many

types of information can be shared among vehicles, such as the state information of

vehicles, safety warnings and traffic information. The V2V communication system

is an cooperative approach which can be more effective in avoiding accidents on

roads and improving traffic flows than if each vehicle tries to solve these problems

individually. For example, by sharing the vehicle state information among vehicles,

the V2V communication could help to warn the drivers about the vehicles in the blind

spot or that unseen by the drivers. Additionally, by sharing the traffic congestion

information the traffic flow can be redirected and the flow rate can be improved.

So some special vehicles such as ambulance vehicle and police vehicle can plan their

trajectory effectively to reduce the rescue time [16].

V2V communications systems use dedicated short-range radio communication

(DSRC) to exchange messages containing different types of information, such as the

vehicle information (e.g., vehicle’s speed, heading, braking status). V2V devices use

the shared information from other vehicles to detect dangerous situations and deter-

mine if a warning to the vehicles driver should be issued in order to avoid or reduce

the severity of collisions.

In DSRC based V2V communication system, the V2V messages have a transmis-

sion range of approximately 1000 meters, which exceeds the capabilities of systems

with different types of sensors and allowing more time to warn drivers and give them

more time to react to a potential dangerous situation. In addition, these radio mes-

sages are not easily blocked by the obstacles. However, the on-board sensors such

as radar sensors and cameras usually suffer these problems. For example, situations

such as those where an oncoming vehicle emerges from behind a truck, or perhaps
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from a blind spot. In those situations, V2V communications can detect the potential

collisions much earlier than radar or camera sensors. Additionally, V2V technology

can also be combined with existing on-board sensor systems such as radar and camera

sensors to provide even greater benefits than either approach alone. So the informa-

tion provided by the on-board sensors can also be shared in the V2V network. In

this case, a vehicle not only broadcast what they themselves are doing, but also what

they have ”seen”. This combined approach could also augment system accuracy and

produce more applications in automotive industry, and it will become a foundation

for developing the auto-mated vehicles [16].

Based on DSRC technology, many safety applications that help drivers with differ-

ent aspects of driving can be implemented, like warning about stopped vehicles in the

road ahead, vehicles speeding unexpectedly through intersections, vehicles in blind

spots, etc. NHTSA’s analysis of two potential applications, ”intersection movement

assist” (IMA) and ”left turn assist” (LTA), indicated there could be a 50 percent re-

duction, on average, in crashes, injuries, and fatalities for just these two applications.

Applied to the full national vehicle fleet, this could potentially prevent 400,000 to

600,000 crashes, 190,000 to 270,000 injuries, and save 780 to 1,080 lives each year. Of

course, the addition of other V2V and vehicle-to-infrastructure (V2I) safety applica-

tions would save even more lives [16].

DSRC is a bidirectional wireless communication technology permitting secure and

fast messaging needed for safety applications. DSRC works in a 75 MHz band of the

5.9 GHz spectrum and has a max range of approximately 1000 meters depending

on the surrounding environment. This band affords a relatively clean operating en-

vironment with very few preexisting users, allowing for a relatively unimpeded and

interference-free communication zone. DSRC-based devices can be installed directly

in vehicles when originally manufactured. In the DSRC V2V network, many types of

V2V messages can be shared among vehicles and serving different safety related pur-

poses. Among these V2V messages, the basic safety message (BSM) most frequently

used. In the basic system defined by the SAE J2735 standard, each moving vehicle
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updates and sends its own BSM every 100ms over the WAVE Short Message (WSM)

channel. The BSM is exchanged between vehicles and contains vehicle dynamics in-

formation such as heading, speed, and location. The BSM is updated and broadcast

to surrounding vehicles every 100 ms. The information is received by the other vehi-

cles equipped with V2V devices and processed to determine collision threats. Based

on that information, many applications can be developed. For example, it can be used

to detect dangerous situations around this vehicle and if required, a warning could

be issued to drivers to take appropriate action to avoid an potential collision [16].

Although current V2V has great potential in improving road safety, there are

still some limitations. Firstly, V2V can only benefit the safety for the V2V-enabled

vehicles. There are millions of non-V2V-enabled vehicles that cannot benefit from the

V2V technology. Secondly, current V2V-enabled vehicles only broadcast their own

state information. They will not broadcast what they have seen. So the non-V2V-

enabled objects such as pedestrians, animals and cyclist also cannot benefit from

V2V technology. Thirdly, since the V2V network is an open network, it might be

vulnerable to malicious cyberattacks and the privacy is also at risk.

The US Department of Transportation is committed to the use of DSRC technolo-

gies for active safety for both V2V and vehicle-to-infrastructure (V2I) applications.

DSRC supports innovation and product differentiation through the use of proprietary

applications. DSRC also maintains interoperability by providing standard message

sets that can be universally generated and recognized by these proprietary applica-

tions. Society of Automotive Engineers (SAE) has created SAE J2735 message sets

over DSRC. SAE J2735 defines a set of V2V, V2I, V2X messages. SAE also provided

a DSRC implementation guide that provided details of standardized message formats

(sets, frames, elements) to support interaction in DSRC applications. SAE J2735

messages are categorized in 15 types based on their typical use. The most relevant

message type for V2V-PAEB is the Basic Safety Message (BSM) that describes the

operation of the sending vehicle that can affect the safety of other vehicles. BSM is

used in multiple safety related applications such as Blind Spot Warning, Cooperative
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Adaptive Cruise Control (ACC), and Lane Change Warning (LCW). These applica-

tions are largely independent of each other. The BMS receiving vehicles make use of

the incoming stream of BSMs from surrounding (nearby) vehicles to detect potential

events and dangers [17].

Except for the Vehicle-to-Vehicle communications, the Vehicle-to-Everything com-

munications (V2X) is currently drawing more attentions from researchers. In V2X

communication systems, one communication node not only be able to communicate

with other vehicles, but also the traffic lights, toll gates, pedestrians, and even the

owner’s home. In words, anything that has DSRC device equipped can talk to other

nodes in the V2X communication networks and use the shared information to do

whatever can help improve safety or services [18].

Until 2015, the V2X technology is still in its infant stage and only Vehicle-to-

Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) Communications technologies have

been comprised. However, many researches on V2X communication have already un-

der their way and various V2X applications will be brough out and change the world.

The expected V2V mandate by the NHTSA in the U.S. will release the huge potential

of the market as the new requirements for the installation of DSRC modules in new

vehicles will be the first step towards wider V2V adoption. The strong regulatory

support, coupled with the introduction of OEM Car-to-X technologies will increase

the penetration of V2V enabling first a higher V2I penetration in new vehicles and

second the Vehicle-to-Pedestrians (V2P) and Vehicle-to-Home (V2H) communications

sub-markets to materialise from 2016 onwards. Towards the end of the forecast, the

integration of V2V, V2I, sensors and ADAS will make autonomous driving a reality

and the road safety will be improved significantly [18].

Table 3.1 shows the messages have been defined by the SAE J2735 standard. The

SAE J2735 standard only defines the messages for a vehicle sender to describe the

operation and state of the vehicle itself, but does not define any message for a vehicle

sender to describe the information of other objects around itself. In order to send

the sensory information of a PAEB system of a vehicle to other vehicles through V2V
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(for notify other vehicles the potential collision), a new set of V2V messages for the

description of PAEB sensed objects needs to be defined. In this thesis, we will develop

a new type of V2V message for sharing the sensory information among vehicles. We

will describe this new V2V message in detail in section 5.

Table 3.1.: SAE J2735 defined messages.

ID Message Description
1 MSG A la Carte A message which is composed entirely

of message elements determined by the
sender for each message.

2 MSG BasicSafetyMessage(BSM) This message (at time referred to as the
”heartbeat message”) is used in a vari-
ety of applications to exchange safety
data regarding vehicle state.

3 MSG CommonSafetyRequest This message provides a means by
which a vehicle participating in the ex-
change of the basic safety message can
unicast requests to other vehicles for
addition information which it requires
for the safety applications it is actively
running.

4 MSG EmergencyVehilceAlert This message is used to broadcast
warning messages to surrounding ve-
hicles that an emergency vehicle (typ-
ically an incident responder of some
type) is operating in the vicinity and
that additional caution is required.

5 MSG IntersectionCollisionAvoidance This message deals with providing data
from the vehicle to build intersec-
tion collision avoidance systems with.
It identifies the intersection being re-
ported on and the recent path and ac-
celerations of the vehicle.

6 MSG Map This message is used as wrapper object
to relate all the types of maps defined
in the standard.

continued on next page
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Table 3.1.: continued

ID Message Description
7 MSG NMEA Corrections This message is used to encapsulate

NMEA 183 style differential corrections
for GPS radio navigation signals as de-
fined by the NMEA (National Marine
Electronics Association) committee in
its Protocol 0183 standard.

8 MSG ProbeDataManagement This message is taken at a defined snap-
shot event to define RSU coverage pat-
terns such as the moment an OBU joins
or becomes associated with an RSU and
can send probe data.

9 MSG ProbeVehilceData The probe vehicle message is used to
exchange status about a vehicle with
other (typically RSU) DSRC readers
to allow the collection of information
about typically vehicle traveling behav-
iors along a segment of road.

10 MSG RoadSideAlert This message Road side alert is used to
send alerts for nearby hazards to trav-
elers.

11 MSG RTCM Corrections This message is used to encapsulate
RCTM differential corrections for GPS
and other radio navigation signals as
defined by the RTCM (Radio Techni-
cal Commission For Maritime Services)
special committee number 104 in its
various standards.

12 MSG SignalPhaseAndTiming This message is used to convey the cur-
rent status of a signalized intersection.

13 MSG SignalRequestMessage The Signal Request Message is a mes-
sage sent by a vehicle to the RSU in a
signalized intersection.

14 MSG SignalStatusMessage The Signal Status Message is a message
sent by a RSU in a signalized intersec-
tion.

15 MSG TravelerInformation Message Traveler Information is designed to en-
able broadcast advisory messages to
the vehicle driver based upon location
and situation relevant information.
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4. PSCAN SOFTWARE

In this study, we will not develop the real V2V-PAEB system to study the integration

of V2V communication system and PAEB system. Instead we will use PreScan to

develop a simulation model of the V2V-PAEB system. So the algorithms can be

easily created and verified. We also will use PreScan to develop various simulation

scenarios to test the V2V-PAEB simulation model. Given a specific accident scenario,

it is easy to discover the cause of the accident as well as which driver support system

concept could have prevented it. By changing the weather and light conditions, or

by adding disturbances such as sensor noise and sensor drift, the systems robustness

can be checked. So PreScan will be used extensively in this study. In this section,

the general description of PreScan is presented.

PreScan is a physics-based simulation platform that is used in the automotive

industry for development of Advanced Driver Assistance Systems (ADAS) that are

based on sensor technologies such as radar, laser/lidar, camera and GPS. It is also used

for designing and evaluating V2V communication applications as well as autonomous

driving applications. PreScan provides a dedicated pre-processor (GUI) that allows

users to build and modify traffic scenarios within minutes using a database of road sec-

tions, infrastructure components (trees, buildings, traffic signs), actors (cars, trucks,

bikes and pedestrians), weather conditions (such as rain, snow and fog) and light

sources (such as the sun, headlights and lampposts). PreScan also provides a Mat-

lab/Simulink interface that enables users to design and verify algorithms for data

processing, sensor fusion, decision making and control. In addition, a 3D visualiza-

tion viewer shows a visual representation of the created scene during simulation and

animation. The scene can be viewed at from multiple viewpoints. A viewpoint is

a camera view specified by a camera position, orientation, view angles and zoom

level [19].
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Paper [20] presents how to use PreScan software to conduct simulation experi-

ments. The V2V-PAEB simulation model works using PreScan in four easy steps.

First, the requested experiment scenarios can be built using PreScans graphic user in-

terface (GUI); second, add the sensors to vehicles and configure them properly; third,

develop simulation models in PreScans engineering workspace; fourth, run the experi-

ment and obtain the simulation result. The following sections present the components

and the use of PreScan.

4.1 Graphical User Interface

PreScan provides a dedicated pre-processor (GUI) that allows users to build and

modify traffic scenarios within minutes using a database of road sections, infras-

tructure components (trees, buildings, traffic signs), actors (cars, trucks, bikes and

pedestrians), weather conditions (such as rain, snow and fog) and light sources (such

as the sun, headlights and lampposts).

Key features to the GUI are its predefined and freely configurable library elements

which enable the users to quickly build an experiment using drag and drop actions.

Extensive reporting, preview and parsing mechanisms have been implemented helping

the users to understand what type of experiment they have built. These features

also help the users to identify discrepancies in their experiment that need to be

solved before they can actually execute an experiment in the Engineering Workspace.

Automatic conversion of older experiments is also taken care of by the GUI. The GUI

has some distinct parts as can be seen in Figure 4.1.

Tabs on the left hand side represent various library elements available. Library el-

ements include actors (cars, animated humans, trucks, etc.), infrastructural elements

(buildings, roads, trees, etc.) and sensors (cameras, radars and lidars, etc.).

Tabs on the right of the window is a so-called experiment tree: this tree shows

the relationships between elements within the experiment being built. Using this

experiment tree we can quickly see what type of sensor was installed on a car and
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Fig. 4.1. The graphic user interface (GUI) of PreScan software.

which trajectories have been assigned to it. Information not directly needed or not

directly visible in the property editor, which is just adjacent to and down below the

experiment tree, can be accessed using the object configuration dialog box that is

invoked by pressing the right mouse button when hovering over the object of choice.

In the middle there is the build area where the users have a top view of all elements

placed in PreScans world being the prime user interface for setting up an experiment.

We can directly drag the elements from the library element area and put them in the

build area. This build area has an origin point of GPS coordinate and experiment

axis coordinate system. Once an element is put in the build area, its GPS location

as well as it coordinate in the experiment axis system is determined.

4.2 Engineering Workspace

PreScan provides a Matlab/Simulink interface that enables users to design and

verify algorithms for data processing, sensor fusion, decision making and control.

Simulink is developed by MathWorks. It is a graphical programming environment for
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modeling, simulating and analyzing multi-domain dynamic systems. In this thesis, a

V2V-PAEB simulation model was created and tested using PreScan. This simulation

model will be shown in detail in section 5. Figure 4.2 is a sample of the Engineering

Workspace. All the actors that created in the GUI are effectively compiled into this

dedicated MATLAB/Simulink Engineering Workspace.

Fig. 4.2. The engineering workspace of PreScan software.

The most striking elements in the Compilation Sheet are the simulation models

of actors. All the simulation models of the actors that added in the GUI will be

presented in the Engineering Workspace. Note that they have input and output ports.

For example, the silver car in the middle has three systems on board, viz. GPS system

(known as SELF port in PreScan), a sensor called AIR (idealized sensor) and a stereo

camera system. On the top right there is a table telling what participants are present

in the experiment and what specific top-level properties they have. Also note the

block introduced in the middle: this block outputs collision detection information.
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When double clicking an actor model we will find more blocks or models generated

by the PreScan GUI. Figure 4.3 shows the internal blocks and models of the silver

vehicle model in Figure 4.2. All blocks generated by PreScan are in gray whilst the

ones inserted by the user are in default black. Next to the GPS system we also see

the presence of an antenna receiver. The various messages that can be broadcast

are defined in PreScan’s GUI. Apart from these blocks there is also a GUI inserted

trajectory and simple dynamics model. Since our V2V-PAEB simulation model a

vehicle level model, it will also be added here.

Fig. 4.3. The components of the vehicle simulation model.

4.3 The 3D Visualization Viewer

The 3D Visualization Viewer is used to visualize the experiment when the simu-

lation is running. So the users can intuitively observe the simulation process for each

experiment. Predefined viewpoints (like top view and a default scene view) are avail-
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able but the users can define their own viewpoint whenever desired. The visualization

Viewer comes with an intuitive navigation by using the mouse. Figure 4.4 shows an

example of the simulation view captured by the 3D viewer. We can see that for the

same experiment, we can have multiple viewpoints. So we do not miss the details

about the running simulation. Additionally, the 3D Visualization Viewer can be used

to generate movies or individual pictures of view-points selected. Individual picture

formats supported include PNG and JPG. With the help of the 3D Visualization

Viewer, we can record the simulation process or simulation results for further study.

Fig. 4.4. The view captured by 3D viewer.
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5. V2V-PAEB SYSTEM

As mentioned above, both the PAEB system and V2V communication systems have

their limitations in improving road safety. The V2V-PAEB system is designed for

further improving the road safety for pedestrians by integrating the complementary

capabilities of V2V and PAEB systems together. The uniqueness of this system is

that the information collected by a PAEB system on one vehicle can be shared with

other vehicles in the V2V network. Comparing with the pure V2V system and PAEB

system, the V2V-PAEB system has many advantages. It compensates the limitations

and disadvantages of both the V2V system and PAEB system.

One limitation of the PAEB system is its short detection range. Usually the

PAEB system has the max detection range of approximately 80 to 100 meters, and

it will difficult for the PAEB system to detect the objects beyond its max detection

range. Sometimes this detection range is not enough especially when the vehicle or

the objects are moving too fast. In this case, the PAEB system will have no enough

time to react to the potential collisions. By sharing the pedestrian information among

the V2V network, the detection range of PAEB system can be extended significantly

because the V2V system a max transmission range of approximately 1000 meters.

The PAEB system might also have sensor failures under some specific conditions.

It may fail to detect the pedestrians behind obstacles. While for the V2V-PAEB

system, other vehicles can tell this vehicle about this pedestrian if they have detected

this pedestrian. With the help of other vehicles, this vehicle can ”see” the pedestrians

behind obstacles and it will give the vehicle more time to react.

Additionally, the PAEB system might fail to detect pedestrians if weather con-

dition or lighting condition is bad (such as thick fog and dark night). Although

the sensors of V2V-PAEB system will have the same problems, the performance of

PAEB system still can be improved by sharing the PAEB information. If one vehicle
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failed to detect a specific pedestrian, but other vehicles may detect it successfully.

So the vehicle that failed to detect this pedestrian from PAEB system can ”see” this

pedestrian from the received V2V-PAEB Messages.

The V2V-PAEB system can benefit the road safety for non-V2P-enabled pedes-

trians. Just similar with V2V communication, vehicle to pedestrian (V2P) commu-

nication is also under its way. However, V2P communication always requires the

pedestrians being equipped with some specific devices for sharing their information.

This will be quite inflexible and costly, and the V2P technology cannot benefit the

pedestrians that have no V2P devices. However, the V2V-PAEB system also can

share the pedestrian information among the V2V network without any additional de-

vices for the pedestrians. So comparing with V2P technology, the V2V-PAEB system

can benefit the safety for both the V2P-enabled and non-V2P-enabled pedestrians

economically.

V2V-PAEB enabled vehicle utilizes the on-board sensor systems to detected pedes-

trians and send the information of the detected pedestrians to the nearby vehicles

through V2V communication systems. Meanwhile this vehicle can also receive such

type of messages from other vehicles. So this vehicle should predict the probability

of collision with the pedestrians detected from both the PAEB system and received

V2V messages, and make safety related decisions.

Figure 5.1 is an simple example showing how the V2V-PAEB system works. Two

vehicles are running fast on the road, but one pedestrian suddenly walks into the path

of them. The V2V-PAEB system on the yellow vehicle detects this pedestrian, and

then sends out a V2V-PAEB Message to report this pedestrian to the blue vehicle.

At the same time, if there is a potential collision between the yellow vehicle and

this pedestrian, a driver warning will be triggered. If the collision is inevitable, the

automatic braking will be started. For the blue vehicle, the on board V2V-PAEB

system fails in detecting this pedestrian because its view is blocked by the yellow

vehicle. However, the blue vehicle receives the V2V-PAEB Message from the yellow

vehicle, so the on board V2V-PAEB system still can ”see” and protect this pedestrian.



26

Fig. 5.1. A simple example of V2V-PAEB working process.

The V2V-PAEB model has many input parameters and output parameters. Figure

5.2 shows an example diagram of V2V-PAEB simulation model connected with its

required supporting models in a vehicle model. The block in the center is the V2V-

PAEB simulation model and these on both sides are the peripheral supporting models.

The V2V-PAEB simulation model absorbs useful information from the models on the

left side and uses this information to detect potential collisions with pedestrians and

make proper safety decisions. Then the models on the right side are informed about

these decisions and take proper actions to avoid or mitigate the potential collision

accordingly.

V2V-PAEB system usually use various types and different numbers of sensors

to detect pedestrians. Fundamentally, the sensors provide the position and motion

direction of pedestrians. Currently, the V2V-PAEB simulation model supports two
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Fig. 5.2. An example diagram of V2V-PAEB simulation model.

basic sensors (one radar sensor and one camera sensor). The information processing

stages of V2V-PAEB system do not change no matter what types and how many

sensors are used, so sensors can be easily added to or removed from this V2V-PAEB

simulation model only with minor modifications. In the real world, the sensors of

the same type usually have different performance and specifications. Then the V2V-

PAEB system will also have different performance on different vehicles due to the

variation of sensor accuracy. So in order to study how the variation of sensor accuracy

will affect the performance of V2V-PAEB system, the sensor models should be able

to be configured with different performance.

The Vehicle State Model should be able to provide the host vehicle’s real-time

state information. The vehicle state information usually include the vehicle’s speed,

heading direction and GPS location and so on. The vehicle state information is used

for predict potential collision with pedestrians and make proper safety decisions,

so the accuracy of the state information are critical to the performance of V2V-

PAEB system. For example, the pedestrian’s location contained in the V2V-PAEB

Message is calculated from the GPS location of vehicle. If the vehicle’s GPS location

is inaccurate, the pedestrian’s location will also be inaccurate, and it will cause a
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poor performance of V2V-PAEB system. In reality, the information generated by

GPS devices or other meter devices are usually have some errors. The Vehicle State

Model should be able to be configured to provide information with different accuracy

for us to study the influence of the inaccuracy of vehicle state information.

The Message Receiver Model is responsible for receiving V2V-PAEB Message that

sent by other vehicles. V2V-PAEB Message is a type of V2V communication message

that used for vehicles to share the information of pedestrians detected by their V2V-

PAEB systems. This model should be able to queue the received V2V messages

if multiple messages arrive at the same time. Additionally, since there is always a

transmission delay and packet loss of the messages in the real world, the Message

Receiver Model should provide the means for simulating such cases.

There are two types of output data generated by this V2V-PAEB simulation

model: the V2V-PAEB Message and safety decisions (See Figure 5.3). The V2V-

PAEB Message usually goes to the Message Transmitter Model and then being sent

out to the nearby vehicles. The safety decisions usually go to both the Actuator Mod-

els to take proper actions and the Display Model for displaying the simulation process

and results. For the Message Transmitter Model, the message transmission frequency

should be configurable, so we can study how the message transmission interval will

affect the performance of V2V-PAEB system. Although the recommended DSRC

message transmission interval is 100ms, it might not be suitable for V2V-PAEB Mes-

sage. That is because other DSRC messages are being sent only an event of vehicle is

going to happen (such as lane changing, hard braking), it does not happen frequently,

so there are not so many messages being transmitted among vehicles. However, the

V2V-PAEB system will send out V2V-PAEB Message whenever the vehicle detects

pedestrians. If there are too many vehicles and pedestrians in a small area, there

will be a message explosion. The suitable transmission interval should be determined

after doing specific simulations. While for the actuator models, they should be able

to provide some basic actions such as braking, steering and accelerating, and these

actions should be controllable from the V2V-PAEB simulation model.
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Figure 5.3 shows the architecture and information processing stages of the V2V-

PAEB simulation model. The processing is organized as a waterfall, the input infor-

mation is distilled in successive stages, until finally the vehicle makes safety decisions.

The Sensory Data Preprocessing stage processes raw sensory data using simple cues

and fast algorithms to identify potential pedestrian candidates. This stage needs to

have high detection rate even at the expense of allowing false alarms. The Pedestrian

Detection stage then applies more complex algorithms to the candidates from the

Sensory Data Preprocessing stage in order to separate genuine pedestrians from false

alarms. In stage Track (1), the detected pedestrians are tracked overtime to get their

trajectories. Once any pedestrians are detected by the on-board sensor systems of

vehicle, then the Send V2V-PAEB Message stage constructs a V2V-PAEB Message

and sends it to the nearby vehicles immediately. On the other hand, this vehicle may

also receive multiple V2V-PAEB Messages from other vehicles. The V2V-PAEB Mes-

sage Preprocessing stage periodically processes the received messages with a proper

cycle to obtain the motion and state information of pedestrians contained in these

messages. Then the V2V-PAEB Message Merge stage merges all the pedestrians

contains in different messages together to obtain a whole set of pedestrians that de-

tected by other vehicles. The Pedestrian Information Merge stage merges the two

set of pedestrians (one from the Pedestrian Detection stage and the other one from

the V2V-PAEB Message Merge stage) together to obtain a complete set of detected

pedestrians surrounding the host vehicle. In stage Track (2), the pedestrians obtained

from messages are also tracked overtime to get their trajectories. These trajectories

from both Track (1) and Track (2) can then be sent to Collision Prediction stage for

predicting the probability of collision between the host vehicle and pedestrians. In the

case of high probability of collision, the driver is given an appropriate warning that

enables corrective actions. If the collision is imminent, the automatic braking could

also be triggered to decelerate the vehicle and reduce the severity of collision [21].

The V2V-PAEB simulation model is not able to run by itself because it is one

component of the vehicle. When trying to run this V2V-PAEB simulation model,
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Fig. 5.3. The information processing flow of V2V-PAEB Model.

we should place it in a vehicle model and connect it with its peripheral supporting

models. Usually a simulation environment where the simulation experiment can take

place is also required. Some third party software (Such as PreScan, LabView and

CarSim) can provide such simulation environment and models, so we do not have to

develop these peripheral models as well as the simulation environment by ourselves.

When using this V2V-PAEB simulation model, we should firstly use the software to

generate the simulation experiment, the vehicle models as well as the sensor models.

Then put the V2V-PAEB simulation model in the vehicle model and connect it to

the models such as radar model and actuator models. After adding algorithms to the

V2V-PAEB model, then this experiment is ready to run. Chapter 6 presents how to

test the V2V-PAEB in the PreScan simulation software in detail.
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5.1 Inputs of V2V-PAEB Model

Similar with PAEB system, the V2V-PAEB system may also have various type

of input parameters. In this thesis, we are trying to develop a simulation model of

V2V-PAEB system rather than a real V2V-PAEB system. There will be some inputs

used only for simulation purpose, and a real V2V-PAEB system will not have such

type of inputs. In this section, we will generally discuss the possible input parameters

of the V2V-PAEB simulation model. Additionally, we will also describe the example

input parameters we have implemented in detail.

5.1.1 Possible Input Parameters of V2V-PAEB Model

Input Parameters from Sensors

Section 2 has presented the commonly used sensors in PAEB system. Each type of

sensor has its advantages and limitations, so the PAEB system may use a combination

of different types and number of sensors to detect pedestrians robustly. For the

V2V-PAEB system, it would be the same story. Usually, different types of sensors

have different capabilities. Even for the sensors of the same type, their capabilities

and performances can be implemented differently by different manufacturers. For

example, there are many types of vision cameras can be used for pedestrian detection,

they may generate videos/images with different resolutions. In addition, most of the

commonly used cameras can only generate raw video/images. In this case, the V2V-

PAEB simulation model has to use image processing to detect pedestrians from the

camera data. However, some high-end camera systems can generate both the raw

data and the processed data. For example, Mobileye is a technology company that

develops vision-based advanced driver assistance systems (ADAS) providing warnings

for collision prevention and mitigation. The firm’s pedestrian detection technology is

based on the use of mono cameras only, using pattern recognition and classifiers with

image processing and optic flow analysis. Both static and moving pedestrians can be
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detected to a range of approximately 30m using VGA resolution cameras [22]. The

camera system provided by Mobileye can identify the type of detected objects, such

a vehicles and pedestrians. Whats more, the location, speed and trajectory of the

detected objects can also be determined. If the Mobileye styled camera is used in the

V2V-PAEB system, the image processing is not essential.

PreScan software provides the simulation models for the commonly used sensors

used in PAEB system. The capability and performance of these simulation models of

sensors can be configured, and they can provide the requested data to the V2V-PAEB

simulation model, so we can focus on developing the internal algorithms of V2V-PAEB

simulation model, and do not need to waste time to developing the supporting sensor

models.

Input Parameters from DSRC Receiver

A DSRC Receiver is used for receiving V2V messages from other vehicles. In this

thesis, we use V2V-PAEB Message to share the information of detected pedestrians

among the vehicles. Ideally, there is no latency and packet loss when transmitting

the V2V messages in the DSRC network. However, there is always an uncertain time

delay and packet loss rate in the real world. Especially when there are too many

vehicles in the network or the transmission channel is interfered. Generally, a higher

transmission latency or packet loss rate can reduce the performance of V2V-PAEB

system. In the future, we will study how the transmission latency and packet loss

will affect the performance of V2V-PAEB system.

PreScan provides us with a DSRC receiver model and we can use it to receive V2V-

PAEB Messages in our V2V-PAEB system. It also provides us with the convenience

for simulating the transmission delay and packet loss.
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Vehicle State Information

The V2V-PAEB system also require the vehicle own state information when gen-

erating the V2V-PAEB Message, detecting potential collisions with pedestrians and

making safety decisions. The vehicle state information usually includes its location,

speed, heading direction, acceleration, throttle state and brake state and so on. Cur-

rently, most of the vehicle state information can be easily obtained with desired

accuracy except for the location information of vehicle. In the V2V-PAEB system,

the location of vehicles and the detected pedestrians are described using GPS coor-

dinates. The Global Positioning System (GPS) can provide the location, altitude,

and speed with near-pinpoint accuracy, but the system has intrinsic error sources

that have to be taken into account when a receiver reads the GPS signals from the

constellation of satellites in orbit.

U.S. government is committed to providing GPS to the civilian community at the

performance levels specified in the GPS Standard Positioning Service (SPS) Perfor-

mance Standard. For example, the GPS signal in space will provide a ”worst case”

pseudo-range accuracy of 7.8 meters at a 95% confidence level. The actual accuracy

users attain depends on factors outside the government’s control, including atmo-

spheric effects, sky blockage, and receiver quality. Real-world data from the FAA

show that their high-quality GPS SPS receivers provide better than 3.5 meter hor-

izontal accuracy. Higher accuracy is attainable by using GPS in combination with

augmentation systems. These enable real-time positioning to within a few centime-

ters, and post-mission measurements at the millimeter level [23].

In the V2V-PAEB system, the locations of the shared pedestrians are calculated

based on the GPS location of host vehicle. On the receiver side, these GPS location

of pedestrians will be converted into vehicles local coordinate system for predicting

potential collisions and making safety decisions. If the GPS location of vehicle is

not accurate, the location of pedestrians will be also inaccurate, so the accuracy

of GPS sensor is critical to the performance of V2V-PAEB system. In this thesis,
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we will study the influence of the inaccurate of PGS location to the performance of

V2V-PAEB system. Additionally, we will also study how to calibrate the inaccurate

locations of the pedestrians obtained from the received V2V-PAEB Messages. PreS-

can software provides the model of GPS sensor, and its accuracy of output data also

can be configured.

Global Variables and Simulation Configurations

In order to study the performance of V2V-PAEB system under different condi-

tions, the V2V-PAEB simulation should provide the interface to be configured with

different capabilities. For example, currently only some high-end vehicles have PAEB

systems and V2V communication systems are still under developing and testing. So

in the real world, most of the vehicles on the road have neither PAEB systems nor

V2V communication systems. In this study, we should study how the coexisting of

vehicles with different capabilities will affect the performance of V2V-PAEB system.

However, we do not have to develop different simulation models. We can config-

ure the V2V-PAEB simulation model with different capabilities (V2V only, PAEB

only, V2V-PAEB, non-V2V and non-PAEB) instead. We can use global variables to

configure the V2V-PAEB model with different capabilities.

5.1.2 Example Input Parameters of V2V-PAEB Model

Since V2V-PAEB simulation model may have various possible inputs, it is im-

possible to present all of them in this thesis. Additionally, although the V2V-PAEB

simulation model is designed to be able to accept any type of inputs, current imple-

mentation of this model only uses some typical inputs. Similar with previous section,

currently the V2V-PAEB simulation model accepts four types of information from

the following models:
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1. Vehicle State Model.

The Vehicle State Model provided by PreScan can generate the real-time state

information for the host vehicle. As can be seen in Table 5.1, this model uses

both global experiment axis system and GPS coordinate to describe the location

of host vehicle.

PreScan provides a global experiment axis system for positioning the vehicles

and pedestrians. The origin of this experiment axis system is determined when

the user creates this experiment in PreSans GUI. Each vehicle and pedestrian

in the simulation experiment is assigned coordinate (X, Y, Z) to describe its

position. Comparing with GPS, the global axis coordinate system is accurate.

The definition of the global coordinate axis system is defined in Figure 5.4.

Fig. 5.4. The global coordinate system defined in PreScan.

In the real world, we do not have the global axis coordinate system, so we use

GPS instead. We should specify the GPS location of this experiment when we

creating this simulation experiment using PreScans GUI. Then each vehicle and

pedestrian will be assigned a GPS location automatically.
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Table 5.1. The input parameters from Vehicle State Model.

Item Descriptions
X[m] The X coordinate of the vehicle in global experi-

ment axis system.
Y [m] The Y coordinate of the vehicle in global experi-

ment axis system.
Z [m] The Z coordinate of the vehicle in global experi-

ment axis system.
Latitude [deg/min/sec] The GPS Latitude position of the host vehicle. It

is represented in degrees, minutes and seconds.
Longitude [deg/min/sec] The GPS Longitude position of the host vehicle.

It is represented in degrees, minutes and seconds.
Altitude [m] The GPS Altitude position of the host vehicle.
Rot X [deg] The x-rotation of the vehicle with respect to ex-

periment axis system.
Rot Y [deg] The y-rotation of the vehicle with respect to ex-

periment axis system.
Rot Z [deg] The z-rotation of the vehicle with respect to ex-

periment axis system.
Yaw Rate [deg/s] The Yaw (Turning) rate of the vehicle.
Velocity [m/s] The moving velocity of the vehicle.
Heading Direction [deg] The moving direction of the vehicle. North is 0 de-

gree. This value is range from 0 to 360 in clockwise
direction.

Acceleration [m/s2] The acceleration of vehicle. Positive for accelera-
tion and minus for deceleration.

Throttle State [%] The throttle state of vehicle. This value is range
from 0 to 100. 0 means no throttle is applied and
100 percent means full gas throttle is applied.

Brake State [%] The brake state of vehicle. This value is range
from 0 to 100. 0 means no brake is applied and
100 percent means full brake is applied.

Steering Angle [deg] The steering Angle of vehicle. Positive for clock-
wise and minus for anticlockwise.

2. Radar Sensor Model.

Table 5.2 shows the input parameters from Radar Sensor Model. The Radar

Sensor Model can generate the processed data of detected objects. In PreScan,
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the output signal of Radar sensor contains at most 32 signals by default, mean-

ing that up to 32 objects are reported. Usually, the processed data includes the

location and speed information of the detected objects. And they are described

using the sensor coordinate system. Figure 5.5 shows the definition of the radar

sensor coordinate system.

Table 5.2. The input parameters from Radar Sensor Model.

Item Descriptions
Beam ID [-] The radar sensor can be configured with different

number of beams with different angle coverages.
This Beam ID is used for indicating which beam
is in active in the current simulation time step.

Range (R) [m] The distance between the radar sensor and the de-
tected objects. The Range is defined in Figure 5.5.

Doppler Velocity [m/s] Velocity of target point, relative to the sensor,
along the line of-sight between sensor and target
point.

Theta (θ) [deg] Azimuth angle in the sensor coordinate system at
which the target is detected. The Azimuth angle
is defined in Figure 5.5.

Phi (φ) [deg] Elevation angle in the sensor coordinate system at
which the target is detected. The Elevation angle
is defined in Figure 5.5.

Target ID [-] Numerical ID of the detected target.
Energy Loss [dB] Ratio received power / transmitted power.
Alpha (α) [deg] Azimuthal incidence angle of the sensor on the tar-

get object.
Beta (β) [deg] Elevation incidence angle of the sensor on the tar-

get object.
TIS Data [-] An array signal contains all of the sensors output.
Doppler Velocity X/Y/Z [m/s] Velocity of target point, relative to the sensor,

along the line of-sight between sensor and target
point, decomposed into X, Y, Z of the sensors co-
ordinate system.

Target Type ID [-] This is used for specifying the type of the detected
object if the radar can identify the type of detected
objects. The types are defined in Table 5.5.
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Fig. 5.5. Definitions for range, azimuth and elevation.

3. Camera Sensor Model.

Table 5.3 shows the input parameters from Camera Sensor Model. The Camera

Sensor Model can generate both the raw video/images and the processed data

to the V2V-PAEB model. The V2V-PAEB model can use the raw video/images

to image processing for pedestrian detection. Since the camera sensor can also

identify the type of detected objects and their information such as location and

speed, the V2V-PAEB model can use the processed data directly. Just the same

as radar sensor, the objects detected by the camera sensor are also described in

the sensor coordinate system.

The output signal of the camera sensor model always contains 32 signals, mean-

ing that up to 32 objects are reported. If fewer objects are detected, the unused

signals are reported as 0. If more objects are present on the sensor’s view, those

objects will not be part of the sensor output signal. Readings being output are

not sorted. If N objects are detected, they are reported as the first N out of 32

signals, but the data set output itself is not in a specific order.
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Table 5.3. The input parameters from Camera Sensor Model.

Item Descriptions
Object ID [-] Numerical ID of the detected object. It is assigned

by the camera sensor.
ObjectTypeID [-] The Type ID of the detected object. If this object

is identified successfully, it will be assigned with
an Type ID. The types are defined in Table 5.5.

Width [pixel] Width of the object’s strict bounding rectangle, as
a fraction of the screen width.

Height [pixel] Height of the object’s strict bounding rectangle, as
a fraction of the screen height.

Range [m] Range at which the target object has been de-
tected. The distance to the nearest point is re-
turned. The Range is defined in Figure 5.5.

RangeX [m] The X component of the Range, in sensor coordi-
nates.

RangeY [m] The Y component of the Range, in sensor coordi-
nates.

RangeZ [m] The Z component of the Range, in sensor coordi-
nates.

DopplerVelocity [m/s] The velocity of target point, relative to the sensor,
along the line-of-sight between sensor and target
point.

Doppler Velocity X/Y/Z The velocity of target point, relative to the sensor,
along the line-of-sight between sensor and target
point, decomposed into X, Y, Z of the sensor’s co-
ordinate system.

Theta (θ)[deg] Azimuth angle in the sensor’s coordinate system at
which the target is detected. The Azimuth angle
is defined in Figure 5.5.

Phi (φ) [deg] Elevation angle in the sensor’s coordinate system
at which the target is detected. The Elevation
angle is defined in Figure 5.5.

Video Frame The Camera Sensor Model should be able to gen-
erate video frames at a proper frame rate. There
is no requirement for the size and color depth of
the frames.
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4. DSRC Receiver Model.

The DSRC Receiver Model can receive DSRC messages sent from other vehicles,

and then put the received message into a buffer and feed to the V2V-PAEB

model. Table 5.4 presents the format of the V2V-PAEB Message. This message

consists of two parts, the vehicle information and pedestrian information. The

vehicle information contains the vehicle information such as its position, speed,

heading direction and so on. The vehicle information contains the information

of detected pedestrians such as their position, speed and size and so on. In

the future, the information of vehicle except for the sender vehicle id should

be eliminated because it is duplicated with BSM messages. However, since the

BSM messages are currently not implemented in the V2V-PAEB simulation

model, so we integrate the BSM message to the V2V-PAEB Message.

Table 5.5 presents the type of objects defined in PreScan simulation environ-

ment. Currently, there are totally 17 types of objects defined. These object

type IDs are usually used by the PAEB system and V2V system to identify a

detected object. In this study, the most commonly used actors are the Car,

Motor, and Truck/Bus and Human.

The variables for simulation environment set up is another type of input pa-

rameters for the V2V-PAEB simulation model. Table 5.6 shows a list of the

simulation environment set up variables and configurations. These variables

should be configured properly before each simulation run. These variables are

saved into the model once being initialized.

5.2 Outputs of V2V-PAEB Model

Table 5.7 shows the output parameters of the V2V-PAEB simulation model. These

output parameters will go to the actuator components of vehicle to take proper ac-

tions. Since the V2V-PAEB simulation model is developed using PreScan software,
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Table 5.4. The Formation of V2V-PAEB Message.

Item Descriptions
Vehicle Information
Temporary ID [-] The temporary ID used to identify this vehicle in

the V2V network.
Event Time [UTC] The event time of this message.
Vehicle Size [-] The size of this vehicle.
Latitude [deg/min/sec] The GPS latitude coordinate of vehicle.
Longitude [deg/min/sec] The GPS longitude coordinate of vehicle.
Altitude [m] The GPS altitude coordinate of vehicle.
Heading Direction [deg] The vehicles heading direction. North is 0 degree

and go clockwise to 360.
Speed [m/s] The moving speed of this vehicle.
Acceleration [m/s2] The acceleration of this vehicle.
Brake System Status The status of the brake system of vehicle.
Pedestrian Information
Number of pedestrians [-] The number of pedestrians contained in this mes-

sage.
ID [-] The sender assigned ID to the pedestrians.
Confidence [%] This value is used to described how confident this

pedestrian is identified.
Size [-] The size of the pedestrian.
Color [-] The color of the pedestrian.
Latitude [deg/min/sec] The GPS latitude coordinate of the pedestrian.
Longitude [deg/min/sec] The GPS longitude coordinate of the pedestrian.
Altitude [m] The GPS altitude coordinate of the pedestrian.
Speed [m/s] The moving velocity of the pedestrian.
Heading Direction [deg] The moving direction of the pedestrian. North is

0 degree. This value is range from 0 to 360 in
clockwise direction.

... ... The information for the second, third, and rest
of detected pedestrians.

and PreScan provides actuator models. We use the PreScan provided actuator model,

so the V2V-PAEB model does not have its own actuator components. The typical

actions are including driver warning, automatic braking, and automatic steering. For

example, if the Driver Warning Flag is set, the vehicle probably will trigger a warning
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Table 5.5. The Definitions of Object Type IDs in PreScan.

Object Type ID Description
1 Car
2 Motor
3 Truck/Bus
4 Human
5 Calibration element
6 Trailer
7 Actors other
8 Road (segment)
9 Building
10 Nature elements
11 Traffic sign
12 Animated traffic sign
13 Abstract object
14 Underlay
15 Infra other
16 Static other
17 Moving other

to warn the driver by sound, light or vibration. If the Automatic Braking Flag is set,

the vehicle will apply Brake Pressure to the brake systems and then the vehicle starts

to decelerate. Some approach supports automatic steering when the braking is going

on. In this case, Automatic Steering Angle is used to control the steering state of ve-

hicle. In addition, if any pedestrians have been identified, the vehicle then constructs

a V2V-PAEB Message and then the Message Transmitter Model sends this message

out.

5.3 Detail Description of the V2V-PAEB System

This section describes the architecture and the information processing process of

V2V-PAEB simulation model in details. The implementation of the proposed V2V-

PAEB simulation model is divided into 10 stages. Each stage is designed to solve
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Table 5.6. The Simulation Configurations of V2V-PAEB Simulation Model.

Item Description
Vehicle cut-off speed [km/h] The highest speed limit of the vehicle.
Max Braking Pressure [bar] The max pressure can be applied when braking.
Braking System Delay [ms] The delay of the braking system.
Lane Width [m] The width of the lane.
Radar Max Range [m] The max range that the radar sensor can detect.
Radar Max Theta [deg] The max theta angle of the radar sensor.
Radar Frequency [Hz] The sample frequency of the radar sensor.
Max Num. of Radar De-
tected Objects

The max number of objects that the radar sensor
can detect.

Max Num. of Camera De-
tected Objects

The max number of objects that the camera sensor
can detect.

Camera Sampling Rate The frame rate of the camera sensor.
Compilation Sheet Fre-
quency [Hz]

The simulation frequency of this experiment.

EGO Parameters Visualiza-
tion

This is used for specify the update frequency of
visualization components.

Max V2V Message Length The max length of the V2V-PAEB Message.
Max Num. Vehicles Sup-
ported

The max number of vehicles that can be equipped
with the V2V-PAEB simulation model.

V2V-PAEB Message Fre-
quency

The broadcasting frequency of the V2V-PAEB
Message.

Vehicle ID The unique ID that used for identify a specific ve-
hicle.

Vehicle Type This is used for specifying the type of current host
vehicle. (Etc. Sedan, SUV, or Truck).

Vehicle Color This is used for specifying the color of current host
vehicle.

Vehicle GPS Accuracy This is used for specifying the GPS accuracy of the
host vehicle.

Vehicle Capability This is used for defining the capability of this ve-
hicle. 1=non-V2V and non-PAEB; 2= V2V only;
3=PAEB only; 4=V2V-PAEB.

some specific problems. Each stage is represented by a block in Figure 5.3. So when

describing these stages, the author will firstly presents the ultimate goal of this stage,

and what problems need to be solved at this stage. Then, the author describes how



44

Table 5.7. The output of V2V-PAEB simulation model.

Object Type ID Description
Pedestrian Detection Flag
[Y/N]

This flag is used to indicate whether any pedestri-
ans have been detected. If so, this parameter will
be set to Y. Otherwise, it will be set to N.

Driver Warning Flag [Y/N] This flag is used to indicate if the driver warning
should be triggered. If this parameter is set to
Y, then a driver warning will be triggered imme-
diately. Otherwise, if this parameter is set to N,
then the vehicle will do nothing.

Automatic Braking Flag
[Y/N]

This flag is used to indicate if the automatic brak-
ing should be started. If it is set to Y, then the au-
tomatic braking will be started immediately. Oth-
erwise, if this parameter is set to N, then the ve-
hicle will do nothing.

Brake Pressure [bar] This value is used to control the deceleration of
the vehicle when the automatic braking is started.
Once the Automatic Braking Flag is set to Y, then
the Brake Pressure should be assigned a value be-
tween zero and the Max Braking Pressure. Oth-
erwise, if the Automatic Braking Flag is set to N,
then this parameter should be zero.

Automatic Steering Flag
[Y/N]

This flag is used to indicate if the automatic steer-
ing control should be started. If it is set to Y, then
the automatic steering will be started immediately.
Otherwise, if this parameter is set to N, then the
vehicle will do nothing.

Automatic Steering Angle
[deg]

This value is used to specify the steering wheel
status. A positive value means turning right, and
minus value means turning left. Once the Auto-
matic Steering Flag is set to Y, then this param-
eter should be assigned with a meaningful value.
Otherwise, it should be zero.

Time To Collision [s] Time to Collision represents for how much time
left before the collision occurs. If many pedestrians
are detected at the same time, and each one has
its TTC. Then this parameter will be set to the
smallest of them.

V2V-PAEB Message [array] The V2V-PAEB Message that contains the pedes-
trians that detected by PAEB system on vehicle.
Vehicles use this message to share the pedestrian
information through V2V communication.
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this stage has been actually implemented. The purpose of this thesis is proposing a

simulation tool for the development of V2V-PAEB system rather than providing a

complete simulation model of a V2V-PAEB system. Users using this simulation tool

should develop their own model utilizing the proposed simulation tool. Since there

are many open questions on the implementation of each stage, the models of some

stages provided by this tool are primitive. The best solutions for some stages will

require long term research or provided by the V2V-PAEB developer.

The blue block in Figure 5.3 is the pedestrian detection part of PAEB. The output

of this block is the detected pedestrians and their position and motion trajectories

(position and direction of each pedestrian in global coordinates at a specific time and

motion trajectory function).

There are many possible approaches in pedestrian detection, which depends on

the available input. The variation of the input from the radar is assumed to be a

list of objects detected by the radar and their radar cross section values (or object

types) for all radar included to a PAEB. The variation of the input of a camera can be

sequence of image frames, or a list of objects identified from image processing. Figure

5.6 shows main three possible PAEB simulations structures corresponding to input

information. More variations can be developed with variations based on the number

of input sensors and additional type of input sensors. However, the data format of

the output of PAEB block should be the same for all input variations.

The pedestrian tracking data from previously identified pedestrian trajectories can

be used for sensor fusion. The preprocessing blocks are interfacing block to translate

the data to the format needed by next block. The trajectory tracking blocks of all

three different PAEB simulation approaches have the same input and output.
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(a) Sensor fusion in image processing.

(b) Sensor fusion after image processing.

(c) Sensor fusion with processed image data input.

Fig. 5.6. Three main possible ways of PAEB simulation approaches.
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5.3.1 Sensory Data Preprocessing

Goal and Problems Description

The goal of this Sensory Data Preprocessing stage is processing raw sensory data

using simple cues and fast algorithms to identify potential pedestrian candidates, or

preparing the input sensory data in well-organized format. As we have mentioned

above, there are many possible types of sensors can be used by PAEB system. So

the Sensory Data Preprocessing may have different structures according to different

types of input information. Additionally, different types of sensors usually provide

different type of information. Even the sensors of the same type can be implemented

differently and provide different capabilities and output information. The information

may not in the desired format, or some of the information is not needed, so this block

should be designed as an interface block that can handle whatever types of sensory

input information and organize the input data in desired mode and prepare it for

future use.

Possible PAEB Simulations Structures

As mentioned in Section 2.2, various types of sensors can be employed for the

pedestrian detection systems in vehicle, so the input parameters of this stage can vary

in different approaches. Commonly used sensors for detecting pedestrians are camera

sensors in various configurations using visible light and infrared (IR) radiation, as well

as Radar and Laser sensors. Every sensor has its advantages and limitations. Even

for the same type of sensor, the performance and capabilities can be implemented

differently. In order to enhance the advantages and overcome the limitations, one can

use a combination of multiple sensors that give complementary information.

Figure 5.6 shows main three possible PAEB simulations structures corresponding

to different types of input information. These structures have considered the three

stages described in Figure 5.3 together, so if a different structure is applied to these
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three stages, the goals and problems to be solved for each stage will be different. The

following paragraphs describe these structures in detail respectively. Since there are

too many different combination of sensors can be applied in PAEB system, so for

simplicity, we will take only two sensors (one radar sensor and one camera sensor) for

example when we discuss the following structures.

1. Sensor Fusion in Image Processing

In this structure, the radar data will be used for assisting the image processing

to detect pedestrians. This Sensory Data Preprocessing will firstly preprocess

the sensory data separately for each type of sensor. Then use sensor fusion

algorithms to obtain a list of candidate pedestrians, and provide these candidate

pedestrians to the next stage Pedestrian Detection to final identification. If this

structure is used, then two types of input parameters are required: (1) the input

data from radar sensor; (2) the video image generated by camera sensor.

The Radar Preprocessing block will do the preprocessing for radar input. Radar

sensor can detect many objects at a time. Usually, the location and speed of

the detected objects are determined and sometimes the type of objects also can

be identified. In this block, filters can be applied to eliminate the objects that

the PAEB system is not interested in. The Video Preprocessing block will finish

the preprocessing for video images. Different cameras usually generate video

images with different format or quality, so in this block, the input video images

should be converted to the desired format.

The radar sensor can provide a list of potential objects with their motion and lo-

cation information but it may not tell whether the detected objects are pedestri-

ans or not with certainty. The monocular camera provides the video frames that

may contain many pedestrians, but finding out all the pedestrians by searching

a whole frame is extremely complex and time consuming. Even pedestrians are

classified from the video frame, the pedestrians motion and location informa-

tion still cannot be obtained by doing image processing. So in this stage, the



49

developers should use some fast sensor fusion algorithms to project each target

detected by radar sensor into the areas of the video frame to obtain a set of

Region of Interest (ROI). Each ROI is paired with a target detected by the

radar sensor. And these pairs will be transmitted to the next stage.

In this stage, two more issues should be considered. One is the output frequency

of the radar sensor and camera sensor. The output frequencies for radar sensor

and camera sensor are usually different. In this stage, the data from the radar

sensor and camera sensor should be synchronized. The second is the mounting

locations of sensors on the vehicle. When doing sensor fusion, the locations of

radar sensor and camera sensor should also be considered. Since both the radar

sensor and camera sensor have their own coordinate systems, they should be

transformed into the same coordinate system when doing sensor fusion.

2. Sensor Fusion after Image Processing

In this structure, the sensor fusion for the radar sensor and camera sensor will be

after the image processing. The Sensory Data Preprocessing Stage will firstly

preprocess the sensory data separately for each type of sensor. However, no

sensor fusion is done in this stage. The Pedestrian Detection Stage will do

the sensor fusion to obtain the robust verified data of detected objects. If this

structure is used, then two types of input parameters are required: (1) the input

data from radar sensor; (2) the video image generated by camera sensor.

The Radar Preprocessing block will do the preprocessing for radar input. Radar

sensor can detect many objects at a time. Usually, the location and speed of the

detected objects are determined and sometimes the type of objects also can be

identified. In this block, filters can be applied to eliminate the objects that the

PAEB system is not interested in. Additionally, different types of radar sensors

usually generate output information at different frequencies, so this stage should

also be able to handle the variation of the frequency of the input information

from sensors.
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The Video Preprocessing block will finish the preprocessing for video images.

Different cameras usually generate video images with different format or quality.

In this block, the input video images should be converted to the desired format.

Additionally, the stage usually processes raw camera data using simple cues

and fast algorithms to identify potential pedestrian candidates. This stage

needs to have high detection rate even at the expense of allowing false alarms.

The Pedestrian Detection stage then applies more complex algorithms to the

candidates from the Sensory Data Preprocessing Stage in order to separate

genuine pedestrians from false alarms.

3. Sensor Fusion with Processed Image Data Input

In this structure, the camera sensor is required to generate processed data, not

only the video image. Similar with the radar sensor, the camera sensor that

has data processing capability usually can identify the type of detected objects,

and obtain their location, speed.

The goal of this Sensory Data Preprocessing Stage is preprocessing the input

data from radar sensor and camera sensor separately, and preparing the input

data for future use. For example, it is possible that different camera sensors

or radar sensors have different capabilities and different output information.

Sometimes the data generated by sensors is not in the desired format, so this

stage is responsible for reorganizing this data into desired format. Additionally,

some filters can be applied to the input data from radar sensor and camera

sensor to eliminate the unnecessary information.

Table 5.8 shows the input parameters for the Sensory Data Preprocessing Stage

for structure C described in Figure 5.6. Since the camera sensor can provide the

processed data, the image processing based pedestrian classification is not essential.

When the simulation test is running, these parameters will be periodically provided

to this stage.
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Table 5.8. The Input Parameters of Sensory Data Preprocessing Stage.

Item Description
Radar Data The radar data is described in Table 5.2.
Camera Data The camera data is described in Table 5.3. If we

use the processed camera data, then the video im-
age is not necessary.

Table 5.9 shows the output parameters for the Sensory Data Preprocessing Stage.

These output parameters will be fed to the Pedestrian Detection Stage. Preprocessed

Sensory Data is actually a big two dimensional array. And the size of each item

in this table is Max Num. of Radar Detected Objects plus Max Num. of Camera

Detected Objects. If less objects are detected, the unused signals are reported as 0.

If N objects are detected, they are reported as the first N elements if this array.

Current Implementation

Figure 5.7 shows how this study implemented this stage. Currently we have

implemented the third case of the main three possible PAEB simulations structures

described in Figure 5.6. This stage accepts the processed data from radar sensor and

camera sensor. Then it will preprocess these two sets of input sensory data separately.

Since both the Radar Sensor Model and Camera Sensor Model can generate the

processed data in the format we need, we do not need to reorganize the format of

the input data. However, in this study, we configure the radar sensor and camera

with different output frequencies. The output frequency of the radar sensor is 25 Hz

and the output of the camera is 30 Hz. We need to synchronize the information from

sensors before using them. PreScan provides us a library function for transmitting

the frequency of input data to the desired frequency.
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Table 5.9. The Output Parameters of Sensory Data Preprocessing Stage.

Item Description
Object ID [Num] The id used for identifying this object.
Object Type ID [Num] The Type ID of the detected object. The types

are defined in Table 5.5.
Object Range [m] Range at which the target object has been de-

tected. The distance to the nearest point is re-
turned.

RangeX [m] The X component of the Range, in sensor coordi-
nates.

RangeY [m] The Y component of the Range, in sensor coordi-
nates.

RangeZ [m] The Z component of the Range, in sensor coordi-
nates.

DopplerVelocity [m/s] The velocity of target point, relative to the sensor,
along the line-of-sight between sensor and target
point.

Doppler Velocity X/Y/Z [m/s] The velocity of target point, relative to the sensor,
along the line-of-sight between sensor and target
point, decomposed into X, Y, Z of the sensor’s co-
ordinate system.

Theta (θ) [deg] Azimuth angle in the sensor’s coordinate system
at which the target is detected.

Phi (φ) [deg] Elevation angle in the sensor’s coordinate system
at which the target is detected.

Width [m] The width of the detected object.
Height [m] The height of the detected object.
Confidence [%] A confidence value is used for indicating how sure

this object has been identified.
Sensor Type [Num] This parameter is used for indicating which sen-

sor has detected this pedestrian. 1=Radar Sensor;
2=Camera Sensor; 3=Both of them.

5.3.2 Pedestrian Detection

Goal and Problems Description

As mentioned above, there are three different structures can be applied for the

blocks that locating in the blue rectangle in Figure 5.3. The implementation of this
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Fig. 5.7. Current implementation of Sensory Data Preprocessing Stage.

stage will also have three different versions due to the variation of structures. The

following paragraphs describe these different structures in detail.

1. Sensor Fusion in Image Processing

The previous Sensory Data Preprocessing stage provides a set of ROIs in a

video frame. This stage would use classifiers to distinguish pedestrians from

non-pedestrian objects for each ROI. Usually the input to the classifier is a

vector of raw pixel values of the ROIs or features extracted from them, and the

output is the decision showing whether there is a pedestrian or not. In many

cases, the confidence values are also returned.

The classifiers are usually trained using a number of positive and negative ex-

amples to determine the decision boundary between them. After training, the

classifier processes unknown samples and decides the presence or absence of the

object based on which side of the decision boundary the feature vector lies.

Some of the classifiers that are used for pedestrian detection are the follow-

ing: support vector machines (SVMs), various types of neural networks, and

statistical learning classifiers such as AdaBoost. SVM finds a hyperplane deci-

sion boundary based on maximizing the minimum separation between classes

which can be generalized to find non-linear boundaries by the use of kernel

functions. Artificial Neural Networks or Machine Learning uses multiple layers

of neuro to obtain highly non-linear decision boundaries between classes based
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on the training samples given to this classifier. Adaboost combines a number

of weak classifiers into strong classifier using weighted averaging. Weights are

iteratively learned based on mis-classified samples. Classifier cascade optimizes

performance and speed by combining multiple classifiers by feeding output of

fast but less discriminative classifier to the input of slow but more discriminative

classifier.

After the classification and verification, all the non-pedestrian objects will be

discarded. The output of this stage should be a list of pedestrians with their

information. One part of information is from the radar sensor such as their

motion and location information. The other part of information such as the

size and cloth color can be obtained by applying image processing algorithms.

In last stage each ROI has been paired with a target that detected by radar

sensor, so these two parts of information can be easily matched and combined

together.

2. Sensor Fusion after Image Processing

The difference from the first structure is that the image processing based pedes-

trian detection is not assisted by the radar sensor. The image processing will

search the whole picture to find pedestrians. Sometimes the location and speed

of the detected pedestrians can also be obtained by image processing.

Once the image processing based pedestrian is finished, then the sensor fusion

algorithms can be applied. The same pedestrian can be detected by both the

camera sensor and radar sensor, and being described differently. We just need

to fuse the radar data and camera data to obtain the robust verified data of

detected objects.

3. Sensor Fusion with Processed Image Data Input

The previous Sensory Data Preprocessing stage provides the objects that de-

tected by radar sensor and camera sensor. There are many types of objects

that can be detected by the radar and camera, and each of them provides a list
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of detected objects. And this list contains not only pedestrians, but also other

types of objects. Currently, the V2V-PAEB system is designed to be only focus

on pedestrians. So all the non-pedestrian objects should be eliminated. This

stage would use simple filters to distinguish pedestrians from non-pedestrian

objects. We fuse the lists of objects from the radar sensor and camera together

to obtain a robustly identified list of pedestrians.

Table 5.10 presents the input parameters of the Pedestrian Detection Stage. Ex-

cept for the Vehicle State, all the other four input parameters are from the previous

Sensory Data Preprocessing Stage.

Table 5.10. The Input Parameters of Pedestrian Detection Stage.

Item Description
Preprocessed Sensory Data The preprocessed sensory data from previous stage

of Sensory Data Preprocessing.
Vehicle State The vehicle state information that described in Ta-

ble 5.1.

Table 5.11 shows the output parameters of the Pedestrian Detection Stage. This

stage has only one output parameter, Detected Pedestrians. The Detected Pedestrian

is an array sized Max Num. of Radar Detected Objects * Number of Parameters per

Pedestrian.

Current Implementation

Currently, we have implemented the structure of Sensor Fusion with Processed

Image Data Input, so the goal of this stage is using the radar-camera fusion algo-

rithms to obtain the robust verified data of detected objects. This is due to the

fact that the data is derived from two separate sensors and fused, matched and then

approved. In this thesis, the V2V-PAEB simulation model uses both the two types
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Table 5.11. The Output Parameters of Pedestrian Detection Stage.

Item Description
Ped ID [Num] The pedestrian ID that uniquely deciding a specific

pedestrian.
Ped X [m] The X coordinate of this pedestrian in the global

coordinate system of this simulation.
Ped Y [m] The Y coordinate of this pedestrian in the global

coordinate system of this simulation.
Ped Z [m] The Z coordinate of this pedestrian in the global

coordinate system of this simulation.
Ped Lat [deg/min/sec] The GPS latitude location of this pedestrian.
Ped Long [deg/min/sec] The GPS longitude location of this pedestrian.
Ped Alt [m] The GPS altitude location of this pedestrian.
Ped Heading [deg] The heading direction of this pedestrian comparing

to the North.
Ped Speed [m/s] The moving velocity of this pedestrian.
Ped Width [m] The width of this pedestrian.
Ped Height [m] The height of this pedestrian.
Ped Confidence [%] this value indicates how confident this pedestrian

is determined.
Ped Range [m] The range between this pedestrian and the host

vehicle.
Ped RangeX [m] The X directional range between this pedestrian

and the host vehicle.
Ped RangeY [m] The Y directional range between this pedestrian

and the host vehicle.
Ped RangeZ [m] The Z directional range between this pedestrian

and the host vehicle.
Ped DopplerVelocity [m/s] The Doppler velocity of this pedestrian.
Ped DopplerVelocityX [m/s] The X directional Doppler velocity of this pedes-

trian.
Ped DopplerVelocityY [m/s] The Y directional Doppler velocity of this pedes-

trian.
Ped DopplerVelocityZ [m/s] The Z directional Doppler velocity of this pedes-

trian.
Ped Theta [deg] The Theta angle between the pedestrian and the

host vehicle.
Ped Phi [deg] The Phi angle between the pedestrian and the host

vehicle.
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of sensors (one millimeter wave radar sensor and one object camera) as a combina-

tion to detect pedestrians. Both the two sensors are mounted at the front of vehicle

and forward looking (They are mounted at the same location, so they have the same

sensor coordinate system).

As has been mentioned, both the radar sensor and the camera sensor are provid-

ing their processed data, not just the raw data, so we dont need to dig the input

parameters for more information. We just need to fuse the radar data and camera

data to obtain the robust verified data of detected objects.

Currently, a very simple algorithm is applied for the fusion of radar data and

camera data. This algorithm fuse the sensory data based on the location, object type

and moving speed of detected objects. In this thesis, the radar sensor and camera

sensor are equipped on the same location and they have the same coordinate system.

So the fusion algorithms can be simplified significantly. Since radar and camera

use different technologies to detect objects, and there are always some error of the

output information for both of them, the same object can be described differently.

Currently, some threshold values are used to tolerate and calibrate such errors. One

threshold is THRESHOLD POSITION with the value 0.2 m, and another threshold

is THRESHOLD SPEED with the value 0.2 m/s. If the difference of two locations is

smaller than THRESHOLD POSITION, they will be considered as the same location.

Similarly, if the difference of two speeds is no larger than THRESHOLD SPEED,

these two speeds will be considered as the same one.

Figure 5.8 is the flow diagram that shows how this stage has been implemented.

All the objects in the Radar Data will be compared with all the objects that in

the Camera Data to find out the objects that detected by both radar and camera.

If two objects found respectively in the radar data and the camera data have the

same location, object type and moving speed, then they will be considered as the

same object and it will be considered to be verified with 100 percent of confidence.

Otherwise, if an object can be found only in the Radar Data or the Camera Data,

then it will be considered to be identified with 50 percent of confidence.
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If an object is identified with 100 percent of confidence, then the output informa-

tion of this object should be fused by both the information from Radar and Camera

Data. Currently, the average value is used as the output information. For example,

if the speed of one object are respectively 5.8 m/s in the Radar Data and 5.9 m/s

in the Camera Data, then the output speed will be (5.8 + 5.9)/2 = 5.85 m/s. If an

object is identified with 50 percent of confidence, then the information of this object

will not be fused and will be used directly.

Since the input data from the radar sensor and camera contains the type of each

detected object, so the pedestrians can be easily identified by examining the Object

Type ID. If the Object Type ID of an object is 4, then this object is a pedestrian.

Other this object is a non-pedestrian object.

Fig. 5.8. Current implementation of Pedestrian Detection Stage.

5.3.3 Tracking (1)

Goal and Problems Description

The sensors can only provide the state information of the pedestrians, but they

do not provide their trajectories. So this stage should track all pedestrians overtime
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to get their trajectories for the Potential Collision Prediction stage to detect poten-

tial collisions. We can describe the trajectory of detected in both global coordinate

systems (such as GPS Coordinate System and Experiment Axis Coordinate System)

and local Vehicle Coordinate System.

If we need to include the trajectory information of detected pedestrians in the

V2V-PAEB Message and send the message to other vehicles, we should describe the

trajectory in global coordinate system. The location of pedestrian is tracked using its

GPS location in the GPS Coordinate System or its coordinate in the Experiment Axis

Coordinate System. We can periodically record pedestrians location with a proper

sample rate. Additionally, we do not need to track a pedestrian all the time since

it is detected at the first time, because the V2V-PAEB system usually cares about

the last several seconds. For example, we can only generate the trajectory of the

pedestrian only for the latest three seconds, and the older trajectories will not be

considered. Usually the trajectory can be described using a polynomial equation of

GPS coordinates or axis coordinates. If a vehicle receives a V2V-PAEB Message, it

will extract the trajectory of each pedestrian, and then put the vehicle itself in the

global coordinate system and check if there is a potential collision between them.

Table 5.12. The Input Parameters of Tracking (1) Stage.

Item Description
Detected Pedestrians The pedestrian information that provided by the

previous Pedestrian Detection Stage.
Vehicle State Data The current state information of host vehicle pro-

vided by Vehicle State Model.

While for the on board PAEB system, it can also use the Vehicle Coordinate

System to describe pedestrians trajectories in order to predict the collision between

the vehicle and the pedestrian conveniently. The radar sensor can provide the range

and Doppler velocity of detected pedestrians in the Radar Sensor Coordinate System
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(can be easily converted to Vehicle Coordinate System). The range and Doppler

velocity can be tracked over time and calculate the relative distance and relative

speed between the vehicle and the pedestrian. Then the relative distance and relative

speed can be used to predict collision and calculate Time to Collision between them.

Table 5.12 describes the input parameters of Tracking (1) Stage. The input pa-

rameters of this stage are the output parameters of Pedestrian Detection Stage as

well as the Vehicle State information.

Table 5.13 describes the output parameters of Tracking (1) Stage. As can be

seen, comparing with the input parameters, just four items are appended to the end

to describe the trajectory. In the global coordinate system, the trajectory can be

represented as a second order polynomial equation of GPS coordinates. In this study,

we use Ped Trajectory Coef A, Ped Trajectory Coef B and Ped Trajectory Coef C

as the coefficients of the equation. Ped Trajectory Coef A is the coefficient of the

second order item; Ped Trajectory Coef B is the coefficient of the first order item;

and Ped Trajectory Coef C is the constant item. In the vehicle local coordinate

system, we use Relative Distance and Relative Speed to abstract the trajectory of

pedestrian relative to the vehicle.

Current Implementation

In this study, the trajectories of the detected pedestrians are updated every half

second if they are represented using the global coordinate system. Currently, the out-

put frequency of the Vehicle State Model is 25 Hz. That means we have 25 sample

points per second and we can use these points to calculate the location of each pedes-

trian. Then we use a Matlab function polyfit to get the equation that presents the

trajectory of pedestrian. This function has three parameters. The first two param-

eters are vectors containing the GPS latitude and GPS longitude respectively (or X

coordinate and Y coordinate). The third parameter is the degree of the polynomial,

and in this study we use degree 2. The return value of poyfit function is a vector
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Table 5.13. The Output Parameters of Tracking (1) Stage.

Item Description
Ped X [m] The X coordinate of this pedestrian in the global

coordinate system of this simulation.
Ped Y [m] The Y coordinate of this pedestrian in the global

coordinate system of this simulation.
Ped Z [m] The Z coordinate of this pedestrian in the global

coordinate system of this simulation.
Ped Lat [deg/min/sec] The GPS latitude location of this pedestrian.
Ped Long [deg/min/sec] The GPS longitude location of this pedestrian.
Ped Alt [m] The GPS altitude location of this pedestrian.
Ped Heading [deg] The heading direction of this pedestrian comparing

to the North.
Ped Speed [m/s] The moving velocity of this pedestrian.
Ped Range [m] The range between this pedestrian and the host

vehicle.
Ped RangeX [m] The X directional range between this pedestrian

and the host vehicle.
Ped RangeY [m] The Y directional range between this pedestrian

and the host vehicle.
Ped RangeZ [m] The Z directional range between this pedestrian

and the host vehicle.
Ped DopplerVelocity [m/s] The Doppler velocity of this pedestrian.
Ped DopplerVelocityX [m/s] The X directional Doppler velocity of this pedes-

trian.
Ped DopplerVelocityY [m/s] The Y directional Doppler velocity of this pedes-

trian.
Ped DopplerVelocityZ [m/s] The Z directional Doppler velocity of this pedes-

trian.
Ped Theta [deg] The Theta angle between the pedestrian and the

host vehicle.
Ped Phi [deg] The Phi angle between the pedestrian and the host

vehicle.
Ped Trajectory Coef A The coefficient value of the second order item in

the polynomial equation of pedestrian trajectory.
Ped Trajectory Coef B The coefficient value of the first order item in the

polynomial equation of pedestrian trajectory.
Ped Trajectory Coef C The coefficient value of constant item in the poly-

nomial equation of pedestrian trajectory.
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with three elements. They are respectively the coefficients of second order, first order

and constant value items. These coefficients describe the track of the pedestrians and

they are described in Table 5.13 in detail.

The PAEB system in our V2V-PAEB does not use global coordinate system to

represent the trajectory of pedestrians. PreScan provides some libraries for calculating

the Relative Distance and Relative Speed between the vehicle and pedestrian based

on the vehicle state information and data from radar sensor. In this thesis, we use

Relative Distance and Relative Speed to track each pedestrian and predict potential

collision. Additionally, if there is a potential collision between them, the Time to

Collision (TTC) can be easily calculated using Relative Distance dividing Relative

Distance.

5.3.4 Send V2V-PAEB Message

Goal and Problems Description

This stage will construct the V2V-PAEB Message and let the DSRC Transmitter

Model to send it to other vehicles. A V2V-PAEB message is created only if at least

one pedestrian is detected. The format of V2V-PAEB message has been defined in

Table 5.4. The information of pedestrians contained in this message should include

their GPS location, speed, heading direction, color, size, and so on. Usually, the

information of the pedestrian is calculated based on the input parameters from pre-

vious Track (1) Stage and the Vehicle State Data. For example, the GPS location

of pedestrian should be calculated based on the GPS location of vehicle and their

relative location between the vehicle and pedestrian. Additionally, the color and size

of pedestrian are usually obtained by applying image processing algorithms to the

video images from camera sensor. However, since pedestrian model in PreScan also

provides the requested pedestrian information, we can directly use this when con-

structing the V2V-PAEB Messages. This is similar with the Pedestrian to Vehicle

communication.
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Table 5.14 shows the input parameters of the stage. The Detected pedestrians

After Track is the output parameter of previous stage Track (1). And Vehicle State

is the real time state information of the host vehicle.

Table 5.14. The Input Parameters of Send V2V-PAEB Message Stage.

Item Description
Detected Pedestrians After Track This is the output data of Stage Track (1).
Vehicle State Data The current state information of host vehicle.

Table 5.15 is shows the output parameters of this state. The single output is a

V2V-PAEB Message which has been described in Table 5.4 in detail.

Table 5.15. The Output Parameters of Send V2V-PAEB Message Stage.

Item Description
V2V-PAEB Message The formation of V2V-PAEB Message is described

in Table 5.4.

In addition, the V2V-PAEB message requires a timestamp which can be used

by the receivers to extrapolate and synchronize the information contained in the

messages. This timestamp comes from GPS time clock which is received by all vehicles

in the V2V network. All the vehicles in the V2V network should have the same time

clock, otherwise, the messages will be unreliable, and there we be a mess up.

The V2V-PAEB Message contains both the host vehicles and the pedestrians GPS

locations. The accuracy of these GPS locations are crucial to the V2V-PAEB system,

because a vehicle would use this locations to track the pedestrians and make safety

decisions after receiving a V2V-PAEB Message. However, most of vehicular GPS

devices have significant positioning errors [26] and latency [27]. This is a challenging

problem, but some approaches have been proposed to reduce the error of GPS devices.
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This message can be either broadcast to the V2V network or directly sent to the

selective vehicles that truly need this message. The former approach will cause the

message explosion if there are too many vehicles and pedestrians in a small area. The

computing resources would be exhausted and the network traffic will be jammed.

Thats because the V2V-PAEB Message is a special type of message and it has to be

generated and sent out periodically. It is different from other types of V2V message

such as the lane changing alarm that described in DSRC protocol. The lane changing

alarm is only generated and sent out when a vehicle is trying to change lane. So the

amount of this message is not large. However, the V2V-PAEB Message is not the same

story. For example, if there are 10 vehicles and 10 pedestrians in a small area. Each

vehicle can see all these 10 pedestrians. And they will send V2V-PAEB messages to

each other. If the V2V-PAEB generating interval is 25 ms which means 40 messages

will be sent out from each vehicle per second. So each pedestrian will handle 9*40*10

= 3600 pedestrians per second which is quite significant amount of computations.

Apparently, the amount of messages can be reduced if a larger interval for sending

the V2V-PAEB Message. However, a larger interval means that the receiver cant

obtain the real time information of the pedestrians and the receiver will be blind

before the next message comes. So if broadcasting is used, the interval of V2V-PAEB

Message should be properly chosen.

If a V2V-PAEB Message is directly sent to the vehicles that truly need this mes-

sage. The amount of messages will be reduced but it needs the host vehicle to do

some extra job to select the destinations of this message. Whats more, in the case, it

needs the V2V communication protocol to support unicast and multicast. However,

sometimes the sender may not be able to see the destination vehicles that indeed

need this message. So unicast is usually eligible to the senders that always have a

vast view field and hardly blocked by other objects. For example, the traffic lights

that located at intersections and equipped with sensors and V2V components.
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If there are too many pedestrians, and cant be put in one single packet, then

this message can be separated into multiple packets with sequenced packet identifier.

Once this message is constructed, it will be sent to nearby vehicles.

Current Implementation

PreScan provides a DSRC Message Transmitter Model that used for transmitting

the V2V-PAEB Message. Currently, the V2V-PAEB Model packs the messages ac-

cording to the protocol defined in this study and uses broadcast mode to send out

the V2V-PAEB Messages. The broadcasting interval is 100 ms. Every 100 ms, the

Send V2V-PAEB Message Stage generates a V2V-PAEB Message and then let the

Message Transmitter Model send out this message.

There is a restriction of the Message Transmitter Model that it always sends a

message with the fixed length of 200 items. In this thesis, if the length of message is

less than 200, then all the unused items will be set to zero. As has been mentioned, the

V2V-PAEB Message consist of two parts: the vehicle information and the pedestrian

information. The length of the vehicle information in the V2V-PAEB Message is 10,

and each pedestrian has 10 parameters. So the max number of pedestrians contained

in a single message is (200-10)/10=19. If the host vehicle detects more than 19

pedestrians, we can put them into multiple messages and send them out through

different messages separately.

Since the Vehicle State Model provides the real-time state information of the

vehicle, so we can use this information directly to construct the vehicle information

part of the V2V-PAEB Message. In this study, there are two ways to obtain the

pedestrian information. One way is using the vehicle state information and sensory

data to calculate the pedestrian information, such as its GPS location, speed and

heading direction. The PreScan software provides the libraries for calculating these

parameters, so these parameters are easily obtained. Another way is getting the

pedestrian information directly from the pedestrian model. PreScan provides the
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simulation model of each pedestrian in the experiment and this model can generate

the real-time state information of this pedestrian. If we use this method, we can add

some noise or shift to the parameters obtained from pedestrian model to mimic the

GPS errors or sensor errors. In this study, both of the above methods have been

implemented.

5.3.5 V2V-PAEB Message Preprocessing

Goal and Problems Description

The goal of this stage is preprocessing the incoming V2V-Messages and prepare for

future use. Usually, the preprocessing operations include message extraction, message

filtering and information synchronization.

This stage has two input parameters (See Table 5.16). The V2V-PAEB Message

that received from other vehicles, and the Vehicle State information. The detail

information of them is described respectively in Table 5.4 and Table 5.1.

Table 5.16. The Input Parameters of V2V-PAEB Message Preprocessing Stage.

Item Description
V2V-PAEB Message This is the V2V-PAEB Message that described in

Table 5.4.
Vehicle State Data The current state information of host vehicle from

Vehicle State Model. The detail descriptions are
shown in Table 5.1.

Table 5.17 demonstrates the output parameters of this stage. Each item in this

table is an array sized Max Num. of Radar Detected Objects * Max Num. of Vehicles

Supported. For example, if the radar sensor can detect at most 2 objects and there

are at most 2 vehicles that can send V2V-PAEB Message to the host vehicle, then

the array size would be 2*2 = 4. It means that this stage can handle at most 4
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pedestrians at a time. The first two elements are the pedestrian information from

vehicle, and the last two elements of this array are the pedestrian information from

vehicle two, and so on and so forth.

Table 5.17. The Output Parameters of V2V-PAEB Message Preprocessing Stage.

Item Description
Pedestrians Detection Flag
[Num]

The elements of this array are basically used as a
flag used to indicate if other parameters have a sig-
nificant value at the same location. For example,
if Pedestrians Detection Flag (i) = 1, then Pedes-
trians Speed (i) will also has a meaningful value,
which is the moving speed of a specific pedestrian.
Additionally, if sums all the elements of Pedestrian
Detection Flag up, then the total number of the
observed pedestrians can be obtained.

Pedestrians Confidence
[Num]

This value describes how confident the pedestrian
is identified.

Pedestrians Size [Num] The size of the pedestrian.
Pedestrians Color [Num] The color of the pedestrian.
Pedestrians Speed [m/s] The moving speed of the pedestrian.
Pedestrians Heading [deg] The heading direction of the pedestrian. It is the

angle comparing to the North in the clockwise di-
rection.

Pedestrians Acc [m/s2] The acceleration of the pedestrian.
Pedestrians Range [m] The distance from the host vehicle to the pedes-

trian.
Pedestrians Theta [deg] The angle between the forward direction of host

vehicle and the pedestrian.
Pedestrians dRotZ [deg] The differential value of the rotate angle in the Z

direction between the host vehicle and the pedes-
trian.

Pedestrians dx [m] The differential distance in the X direction be-
tween the host vehicle and the pedestrian.

Pedestrians dy [m] The differential distance in the Y direction be-
tween the host vehicle and the pedestrian.

Pedestrians dz [m] The differential distance in the Z direction between
the host vehicle and the pedestrian.
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As has been discussed before, if the V2V-PAEB model utilizes broadcasting to

send V2V-PAEB Messages, there will be a message explosion if there are too many

vehicles and pedestrians in a small area. A receiver can receive many V2V-PAEB

Messages at a very short period of time. However, it might be that many of them

are useless to the receiver. In this sense, the receiver should eliminate such useless

messages as soon as possible. Otherwise, it will waste the computing resources of the

receiver. Usually, the useless messages can be eliminated by applying proper filters.

All the received V2V-PAEB Message should be firstly fed to the filters. Table 5.18

shows the filtering methods that can be used in the V2V-PAEB simulation model.

If a received message passes all the above filters, then it should be put into a

message queue. This stage would periodically read a number of messages from the

queue and extract the pedestrian information in them. The size of the queue should

be large enough to hold the max number of messages that the simulation experiment

can generate. So the queue size should be Max Num. of Vehicles Supported * Length

per Message.

Since there is always an uncertain time delay for messages transmitting on the

V2V network, the current locations of all the pedestrians contained in the messages

might have been changed a lot by the time the messages arrive at the host vehicle.

So current locations of these pedestrians need to be predicted and calibrated using

the timestamp information contained in the messages. In addition, these messages

were usually generated and arrived at different time, and they need to be synchronized

before using them. Since the pedestrian location information in V2V-PAEB Messages

are described using the world coordinate system (GPS location), they need to be

converted to the host vehicles local coordinate system.

Additionally, the V2V network is an open network and it can be hacked. Some

vehicles in the network may send messages with inaccurate or even false information

of pedestrians. They may also send out messages at an extremely high frequency and

try to jam the traffic V2V network. This stage should provide some mechanism to
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Table 5.18. The Message Filters of V2V-PAEB Message Preprocessing Stage.

Filter Description
Message Type Filter The V2V Message Receiver Model can receive

many types of V2V messages at the same time.
Then all of these messages will be fed to the V2V-
PAEB Message Preprocessing Stage. However,
the V2V-PAEB system currently needs only V2V-
PAEB Messages. So all the non-V2V-PAEB Mes-
sages should be discarded.

Sender ID Filter The V2V network usually has a blacklist which
contains the vehicles that have done some mali-
cious behaviors. All the messages that from the
senders that contained in the blacklist should be
denied.

Location Filter This filter would check the location of the sender
and the pedestrians contained in the message.
If they are far away from the host vehicle, or
even they are on the different street, this message
should be discarded because they do not post any
potential collision with the host vehicle.

Event Time Filter In the V2V network, there is always some uncer-
tain time of delay when a message traveling from
the sender to the receiver. This filter would exam-
ine the event time of a message, and compare it
with a threshold. If the event time of this message
is earlier than this threshold, it will be considered
to be expired and then eliminated.

detect such misbehavior [24]. Otherwise, serious safety problems can be caused by

such type of misbehavior.

Current Implementation

Figure 5.9 shows the current implementation of the V2V-PAEB Message Process-

ing Stage in V2V-PAEB simulation model. As mentioned above, there are many

problems in the V2V-PAEB Message Processing Stage. However, in this thesis, we
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only focus on four basic and typical problems for providing a fundamental structure

of this this block. If needed, we can easily update the algorithms of this block in the

future. The implementation of these four steps are listed as following.

Fig. 5.9. Current implementation of the V2V-PAEB Message Processing Stage.

The step Filter the Received Messages will filter the incoming messages. All the

filters mentioned in Table 5.18 have been implemented in V2V-PAEB simulation

model. For each received message, the Sender ID Filter will check if the sender is
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in the blacklist. If it is in the blacklist, then this message will be discarded. If the

message is accepted by the Sender ID Filter, then it will go to the Message Type

Filter. In this filter, the Message Type will be examined and only the V2V-PAEB

Message can pass this filter. If this message is accepted by the Message Type Filter,

then it will be fed to the Event Time Filter. This filter will compare the Event Time

of this message with current time. We use a threshold value to determine if this

message is too old and should be discarded. Currently, this threshold value is set

to be 1.5 s. That means if this message was generated more than 1.5 s ago, it will

be discarded. Sender Location & Pedestrian Location Filter is the last filter that

will filter the message based on the locations of both the sender and the pedestrians

contained in the message. Currently, if the distance between the sender and the host

vehicle is more than 100 meters, then this message will be discarded. In addition,

if their distance is within 100 meters, then this filter will continue to examine the

distance between the host vehicle and each pedestrian contained in this message. If

the distance between the host vehicle and any pedestrian is bigger than 50 meters,

then this pedestrian will be discarded. If one message has passed all the above filters

successfully, then this message and the pedestrians contained in this message will be

accepted finally.

The step Put Messages in Message Queue will temporarily store the received V2V-

PAEB Messages. Currently, the size of the queue is Max Num. Vehicles Supported.

It means that this message queue can store at most Max Num. Vehicles Supported

V2V-PAEB Messages. Thats enough because the V2V-PAEB Messages are being

sent out by the sender and processed by the receiver at the same frequency. Once

a message has been processed by the receiver, this message will be deleted from the

message queue.

The step Synchronize Message Information will predict the current information

for each pedestrian contained in this V2V-PAEB Message. Message information syn-

chronization is especially necessary if V2V-PAEB Message Frequency is low, or the

message transmission delay is big. In current implementation, the V2V-PAEB Mes-
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sage Frequency is 100, which means every 10 ms, a V2V-PAEB Message will be

generated and sent out. In addition, currently the time delay for message transmis-

sion is set to zero which means no time delay. So we can assume that within such a

short period of time, the information of each pedestrian does not change. So we do

not apply message information synchronization here.

The step Put Pedestrians in Vehicle Local Coordinate System will project each

pedestrian into the local coordinate system of the host vehicle. Since the location

information for each pedestrian is a GPS coordinate, the host vehicle should convert

it to the local coordinate system. PreScan provides the tools GPS2XYZ for converting

GPS coordinate to local coordinate.

5.3.6 V2V-PAEB Message Merge

Goal and Problems Description

The previous stage provides N sets of pedestrians that obtained from the received

messages. It is possible that a pedestrian is detected by different vehicles at the same

time, so there are usually many duplicated pedestrians here. In addition, due to the

inaccuracy of different sensors, the information of the same pedestrian can be reported

differently from messages that from different vehicles and even from different messages

of the same vehicle. It is also possible that different pedestrians are mapped to the

same location by different vehicles. In some extreme conditions, the host vehicle may

receive messages that containing many false pedestrians. This stage serves for merging

all these message data together to obtain a list of pedestrians without duplicate ones.

This stage will also calibrate the information of each pedestrian should as accurate

as possible.

Table 5.19 describes the input parameters of this stage. The Preprocessed V2V-

PAEB Message is the output data of the V2V-PAEB Message Preprocessing Stage.

This is a multiple dimensional vector containing many preprocessed V2V-PAEB Mes-
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Table 5.19. The Input Parameters of V2V-PAEB Message Merge Stage.

Item Description
Preprocessed V2V-PAEB
Messages

The preprocessed V2V-PAEB Messages that de-
scribed in detail in Table 5.17.

Vehicle State Data The current state information that described in
detail in Table 5.1.

sages. The Vehicle State Data is the real time state information from the Vehicle State

Model.

Table 5.20 presents the output parameters of this stage. This is a multiple di-

mensional vector containing the information of many pedestrians. The V2V-PAEB

Message Merge Stage has merged and calibrated the information of pedestrians ex-

tracted from the received messages, and all the duplicated pedestrians have been

eliminated.

Current Implementation

Figure 5.10 shows the current implementation of V2V-PAEB Message Merge

Stage. Currently, a very simple algorithm is applied for the merge of V2V-PAEB

Messages. This algorithm merge the V2V-PAEB Messages based on the location and

moving speed of pedestrians contained in the messages.

Since there are always some error of the output information for both of the radar

sensor and camera sensor, the same pedestrian can be described differently by de-

ficient vehicles. Currently, some threshold values are used to tolerate and calibrate

such errors. One threshold is THRESHOLD POSITION with the value 0.5 m, and

another threshold is THRESHOLD SPEED with the value 0.3 m/s. If the difference

of two locations is smaller than THRESHOLD POSITION, they will be considered

as the same location. Similarly, if the difference of two speeds is no larger than

THRESHOLD SPEED, these two speeds will be considered as the same one. In ad-
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Table 5.20. The Output Parameters of V2V-PAEB Message Merge Stage.

Item Description
Pedestrians Detection Flag
[Num]

The elements of this array are basically used as a
flag used to indicate if other parameters have a sig-
nificant value at the same location. For example,
if Pedestrians Detection Flag (i) = 1, then Pedes-
trians Speed (i) will also has a meaningful value,
which is the moving speed of a specific pedestrian.
Additionally, if sums all the elements of Pedestrian
Detection Flag up, then the total number of the
observed pedestrians can be obtained.

Pedestrians Confidence
[Num]

This value describes how confident the pedestrian
is identified.

Pedestrians Size [Num] The size of the pedestrian.
Pedestrians Color [Num] The color of the pedestrian.
Pedestrians Speed [m/s] The moving speed of the pedestrian.
Pedestrians Heading [deg] The heading direction of the pedestrian. It is the

angle comparing to the North in the clockwise di-
rection.

Pedestrians Acc [m/s2] The acceleration of the pedestrian.
Pedestrians Range [m] The distance from the host vehicle to the pedes-

trian.
Pedestrians Theta [deg] The angle between the forward direction of host

vehicle and the pedestrian.
Pedestrians dRotZ [deg] The differential value of the rotate angle in the Z

direction between the host vehicle and the pedes-
trian.

Pedestrians dx [m] The differential distance in the X direction be-
tween the host vehicle and the pedestrian.

Pedestrians dy [m] The differential distance in the Y direction be-
tween the host vehicle and the pedestrian.

Pedestrians dz [m] The differential distance in the Z direction between
the host vehicle and the pedestrian.

dition, a simple logic was used to determine if two pedestrians from different messages

are the same pedestrian. Currently, if two pedestrians have the same location and

speed, they will be considered as the same pedestrian.
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As mentioned above, a pedestrian can be described differently in different V2V-

PAEB Messages, so the information of this pedestrian should be calibrated after it is

matched and verified. In this thesis, we calculate the average value for each parameter

of the pedestrian and use this average value to describe this pedestrian. For example,

a pedestrian is contained in 5 V2V-PAEB Messages, and its speed in these messages

are described respectively as 1.45 m/s, 1.50 m/s, 1.58 m/s, 1.45 m/s and 1.60 m/s.

So the speed of this pedestrian will be determined as (1.45+1.50+1.58+1.45+1.60)

= 1.516 m/s. Other parameters such as the location, heading direction, Range and

Theta are also calculated in the same way.

Fig. 5.10. Current implementation of V2V-PAEB Message Merge Stage.
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5.3.7 Tracking (2)

Goal and Problems Description

Similar to the purpose of Track (1) stage, all the pedestrians detected from the re-

ceived V2V-PAEB Messages should also be tracked over time to get their trajectories

in order to predict their future locations and detect potential collisions.

Since the locations of pedestrians extracted from the V2V-PAEB Messages are

presented using GPS coordinates, so the trajectories of pedestrians should be also

presented using Global Coordinate System (GPS Coordinate System or Experiment

Axis Coordinate System). Usually, the trajectory of one pedestrian can be obtained if

at least two V2V-PAEB Messages that contain this pedestrian arrive at the receiver.

The more V2V-PAEB Messages contain this pedestrian received, the more accurate

the trajectory will be.

Table 5.21 shows the input parameters of this stage. The Merged V2V-PAEB

Messages is the output parameter of V2V-PAEB Message Preprocessing Stage. The

duplicate pedestrian information containing in the Merged V2V-PAEB Messages have

been eliminated and calibrated. The Vehicle State Data is the output data of Vehicle

State Model. It provides the real time state information of the vehicle.

Table 5.21. The Input Parameters of Tracking (2) Stage.

Item Description
Merged V2V-PAEB Messages The output parameter of V2V-PAEB Message Pre-

processing Stage.
Vehicle State Data The current state information that described in

detail in Table 5.1.

Table 5.22 shows the output parameters of this stage. The trajectory of pedes-

trian is also presented as a second order polynomial equation. In this study, we

use Ped Trajectory Coef A, Ped Trajectory Coef B and Ped Trajectory Coef C as
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the coefficients of the equation. Ped Trajectory Coef A is the coefficient of the sec-

ond order item; Ped Trajectory Coef B is the coefficient of the first order item; and

Ped Trajectory Coef C is the constant item.

Current Implementation

In this study, once a V2V-PAEB Message containing one specific pedestrian ar-

rives, the trajectory of pedestrian will be updated. Currently, the V2V-PAEB Mes-

sage is generated and sent out every 100 ms. That means we usually have 10 (the

number can vary due to transmission delay and packet loss) sample points per sec-

ond and we can use these points to calculate the location of each pedestrian. Then

we use a Matlab function polyfit to get the equation that presents the trajectory of

pedestrian. This function has three parameters. The first two parameters are vectors

containing the GPS latitude and GPS longitude respectively. The third parameter is

the degree of the polynomial, and in this study we use degree 2. The return value of

polyfit function is a vector with three elements. They are respectively the coefficients

of second order, first order and constant value items.

5.3.8 Pedestrian Information Merge

Goal and Problems Description

Now there are two sets of detected pedestrians: one is detected from the on-board

sensor systems of host vehicle; and the other one is detected from the received V2V-

PAEB Messages. This stage is responsible for merging them together to obtain a

complete set of pedestrians surrounding the host vehicle.

It is possible that some of the pedestrians that reported by other vehicles can

also be detected by host vehicle’s on-board sensor systems. So in this stage, all the

duplicated pedestrians should be eliminated. It is also possible that the on-board

sensors of host vehicle and the V2V-PAEB Messages describe the same pedestrian
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Table 5.22. The Output Parameters of Tracking (2) Stage.

Item Description
Pedestrians Detection Flag
[Num]

The elements of this array are basically used as a
flag used to indicate if other parameters have a sig-
nificant value at the same location. For example,
if Pedestrians Detection Flag (i) = 1, then Pedes-
trians Speed (i) will also has a meaningful value,
which is the moving speed of a specific pedestrian.
Additionally, if sums all the elements of Pedestrian
Detection Flag up, then the total number of the
observed pedestrians can be obtained.

Pedestrians Confidence
[Num]

This value describes how confident the pedestrian
is identified.

Pedestrians Size [Num] The size of the pedestrian.
Pedestrians Color [Num] The color of the pedestrian.
Pedestrians Speed [m/s] The moving speed of the pedestrian.
Pedestrians Heading [deg] The heading direction of the pedestrian. It is the

angle comparing to the North in the clockwise di-
rection.

Pedestrians Acc [m/s2] The acceleration of the pedestrian.
Pedestrians Range [m] The distance from the host vehicle to the pedes-

trian.
Pedestrians Theta [deg] The angle between the forward direction of host

vehicle and the pedestrian.
Pedestrians dRotZ [deg] The differential value of the rotate angle in the Z

direction between the host vehicle and the pedes-
trian.

Pedestrians dx [m] The differential distance in the X direction be-
tween the host vehicle and the pedestrian.

Pedestrians dy [m] The differential distance in the Y direction be-
tween the host vehicle and the pedestrian.

Pedestrians dz [m] The differential distance in the Z direction between
the host vehicle and the pedestrian.

Ped Trajectory Coef A The coefficient value of the second order item in
the polynomial equation of pedestrian trajectory.

Ped Trajectory Coef B The coefficient value of the first order item in the
polynomial equation of pedestrian trajectory.

Ped Trajectory Coef C The coefficient value of constant item in the poly-
nomial equation of pedestrian trajectory.
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differently, so the information of duplicate pedestrians should also be calibrated and

verified. Usually, the information from on-board sensors is usually more reliable than

that from the received messages. So the information of pedestrians from the on-

board sensor systems can be used to calibrate or verify the pedestrian information

from messages.

Table 5.23 demonstrates the input parameters of this stage. One parameter is the

tracked pedestrians from Track (1) Stage, and another one is the tracked pedestrians

from the Track (2) Stage. The input parameters from Track (1) and Track (2) should

have the similar format, so that they can be merged in this stage.

Table 5.23. The Input Parameters of Pedestrian Information Merge Stage.

Item Description
Pedestrians From Track (1) Stage This input parameter is from the output of the

Track (1) Stage. The detail information of this
parameter is described in Table 5.13.

Pedestrians From Track (2) Stage This input parameter is from the output of the
Track (2) Stage. The detail information of this
parameter is described in Table 5.22.

Vehicle State Data The current state information that described in
detail in Table 5.1.

Table 5.24 shows the output parameters of the Pedestrian Information Merge

Stage. The items of the output are basically the same as the output parameters of

Tracking (1) and Tracking (2) only with some minor differences. One difference is

the number of pedestrians containing in this output parameter. That is because the

duplicated pedestrians have been eliminated. Another difference is the value for each

parameter containing in this output data. That is because the value of each parameter

might have been calibrated based on the input from Tracking (1) and Tracking (2)

stages.
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Table 5.24. The Output Parameters of Pedestrian Information Merge Stage.

Item Description
Pedestrians Detection Flag
[Num]

The elements of this array are basically used as a
flag used to indicate if other parameters have a sig-
nificant value at the same location. For example,
if Pedestrians Detection Flag (i) = 1, then Pedes-
trians Speed (i) will also has a meaningful value,
which is the moving speed of a specific pedestrian.
Additionally, if sums all the elements of Pedestrian
Detection Flag up, then the total number of the
observed pedestrians can be obtained.

Pedestrians Confidence
[Num]

This value describes how confident the pedestrian
is identified.

Pedestrians Size [Num] The size of the pedestrian.
Pedestrians Color [Num] The color of the pedestrian.
Pedestrians Speed [m/s] The moving speed of the pedestrian.
Pedestrians Heading [deg] The heading direction of the pedestrian. It is the

angle comparing to the North in the clockwise di-
rection.

Pedestrians Acc [m/s2] The acceleration of the pedestrian.
Pedestrians Range [m] The distance from the host vehicle to the pedes-

trian.
Pedestrians Theta [deg] The angle between the forward direction of host

vehicle and the pedestrian.
Pedestrians dRotZ [deg] The differential value of the rotate angle in the Z

direction between the host vehicle and the pedes-
trian.

Pedestrians dx [m] The differential distance in the X direction be-
tween the host vehicle and the pedestrian.

Pedestrians dy [m] The differential distance in the Y direction be-
tween the host vehicle and the pedestrian.

Pedestrians dz [m] The differential distance in the Z direction between
the host vehicle and the pedestrian.

Ped Trajectory Coef A The coefficient value of the second order item in
the polynomial equation of pedestrian trajectory.

Ped Trajectory Coef B The coefficient value of the first order item in the
polynomial equation of pedestrian trajectory.

Ped Trajectory Coef C The coefficient value of constant item in the poly-
nomial equation of pedestrian trajectory.
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Current Implementation

Figure 5.11 shows the current implementation of Pedestrian Information Merge

Stage. Currently, a very simple algorithm is applied for the merge of pedestrian in-

formation that from the on-board sensor systems and V2V-PAEB Messages. This

algorithm merges the pedestrian information based on the location and moving speed

of pedestrians contained in the messages. This is quite similar with the implementa-

tion of V2V-PAEB Message Merge Stage.

Since there are always some error of the output information for both of the radar

sensor and camera sensor, the same pedestrian can be described differently by de-

ficient vehicles. Currently, some threshold values are used to tolerate and calibrate

such errors. One threshold is THRESHOLD POSITION with the value 0.3 m, and

another threshold is THRESHOLD SPEED with the value 0.2 m/s. If the difference

of two locations is smaller than THRESHOLD POSITION, they will be considered

as the same location. Similarly, if the difference of two speeds is no larger than

THRESHOLD SPEED, these two speeds will be considered as the same one. In ad-

dition, a simple logic was used to determine if two pedestrians from different messages

are the same pedestrian. Currently, if two pedestrians have the same location and

speed, they will be considered as the same pedestrian.

As mentioned above, a pedestrian can be described differently in different V2V-

PAEB Messages, so the information of this pedestrian should be calibrated after it is

matched and verified. In this thesis, we calculate the average value for each parameter

of the pedestrian and use this average value to describe this pedestrian. For example,

a pedestrian is contained in 5 V2V-PAEB Messages, and its speed in these messages

are described respectively as 1.45 m/s, 1.50 m/s, 1.58 m/s, 1.45 m/s and 1.60 m/s.

So the speed of this pedestrian will be determined as (1.45+1.50+1.58+1.45+1.60)

= 1.516 m/s. Other parameters such as the location, heading direction, Range and

Theta are also calculated in the same way.
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Fig. 5.11. Current implementation of Pedestrian Information Merge Stage.

5.3.9 Potential Collision Detection

Goal and Problems Description

This stage would project the current trajectories of the pedestrians and the host

vehicle into future and determine the possibility of collision based on geometric com-

putations. There are many approaches for predicting the collision between the host

vehicle and pedestrians. Usually the speed and trajectory of the pedestrians as well

as the host vehicle are assumed do not change significantly during that time. Some

approaches assume the vehicle and pedestrians as points when predicting the prob-

ability of collision. This way is convenient for computation but it will lose some

precision. So the dimensions and sizes of both the host vehicle and the pedestrians

should also be considered when predicting the potential collision.
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Once a potential collision is detected, then the TTC should be calculated to show

when the potential collision happen. In addition, a Collision Confidence value should

be given for indicating how sure this potential collision is identified.

Table 5.25 shows the input parameters of Potential Collision Prediction Stage. In

this stage, the potential collision is predicted based on the current state information

of both the host vehicle and the detected pedestrians.

Table 5.25. The Input Parameters of Potential Collision Prediction Stage.

Item Description
Detected pedestrians This is from the output of Pedestrian Information

Merge Stage. The detail information of this pa-
rameter is described in Table 5.20.

Vehicle State Data The current state information that described in
detail in Table 5.1.

Table 5.26 shows the output parameters of the Potential Collision Prediction

Stage. Each potential collision is presented by the TTC and its confidence. The

TTC is used for indicating how soon this potential collision will occur. And its

confidence is used for specifying how sure the potential collision is.

Table 5.26. The Output Parameters of Potential Collision Prediction Stage.

Item Description
Time to Collisions (TTCs) [s] The time to collisions for each of the detected po-

tential collision.
Collision Confidences [%] The confidence for each detected potential colli-

sion.
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Current Implementation

Figure 5.12 shows the current implementation of this stage. In this thesis, both

the vehicle and the pedestrians are considered as points. So the calculation of the

potential collision can be simplified significantly. This stage will check the detected

pedestrians one by one to determine if there will be a potential collision between the

vehicle and each pedestrian. The prediction of potential collision can be finished in

the following two steps.

Fig. 5.12. Current implementation of Potential Collision Prediction Stage.

The first step is examine the trajectories of both the pedestrian and host vehicle,

and check if they can meet at some point in the future. If there is no cross point

between their trajectories, then there will be no potential collision between them.

Otherwise, there might be a potential collision. Then the second step is checking if

they can reach the cross point at the same time. If they can reach this cross point

at the same time, there will be a potential collision with them. Otherwise, there

will be no potential collision. So after these two simple steps, a potential collision
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is determined. However, since the vehicle and the target pedestrian may not travel

with constant speed, and the trajectories may also change suddenly, so the potential

collision may not be determined with 100 percent of confidence. Currently, we assume

that both the vehicle and the pedestrian travel with constant velocity and do not make

sharp turns. So the potential collision is determined with 100 percent of confidence.

5.3.10 Decision Making

Goal and Problems Description

This stage is responsible for making proper safety decisions when potential colli-

sions are detected. For each potential collision, the Time to Collision (TTC) should

be used for evaluating its emergency level [25]. In the case of high level of emergency,

the proper driver warning should be triggered to enable corrective actions. If the col-

lision is imminent, the automatic braking could also be started to avoid or mitigate

the potential collision.

If the automatic braking is decided, then the braking pressure should be calcu-

lated. In different conditions, the braking pressure can be different. Sometimes full

braking is essential and sometimes partial braking is fine. Some approach supports

automatic steering when the braking is going on. In this case, the decision strategy

for automatic steering should also be implemented in this stage [5].

Table 5.27. The Input Parameters of Decision Making Stage.

Item Description
Detected Potential Collisions The detected potential collisions from the previous

stage. They are described in details in Table 5.26.
Vehicle State Data The current state information that described in

detail in Table 5.1.
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Table 5.28. The Output Parameters of Decision Making Stage.

Object Type ID Description
Pedestrian Detection
Flag [Y/N]

This flag is used to indicate whether any pedestri-
ans have been detected. If so, this parameter will
be set to Y. Otherwise, it will be set to N.

Driver Warning Flag
[Y/N]

This flag is used to indicate if the driver warning
should be triggered. If this parameter is set to
Y, then a driver warning will be triggered imme-
diately. Otherwise, if this parameter is set to N,
then the vehicle will do nothing.

Automatic Braking
Flag [Y/N]

This flag is used to indicate if the automatic brak-
ing should be started. If it is set to Y, then the au-
tomatic braking will be started immediately. Oth-
erwise, if this parameter is set to N, then the ve-
hicle will do nothing.

Brake Pressure [bar] This value is used to control the deceleration of
the vehicle when the automatic braking is started.
Once the Automatic Braking Flag is set to Y, then
the Brake Pressure should be assigned a value be-
tween zero and the Max Braking Pressure. Oth-
erwise, if the Automatic Braking Flag is set to N,
then this parameter should be zero.

Automatic Steering
Flag [Y/N]

This flag is used to indicate if the automatic steer-
ing control should be started. If it is set to Y, then
the automatic steering will be started immediately.
Otherwise, if this parameter is set to N, then the
vehicle will do nothing.

Automatic Steering
Angle [deg]

This value is used to specify the steering wheel
status. A positive value means turning right, and
minus value means turning left. Once the Auto-
matic Steering Flag is set to Y, then this param-
eter should be assigned with a meaningful value.
Otherwise, it should be zero.

Time To Collision [s] Time to Collision represents for how much time
left before the collision occurs. If many pedestrians
are detected at the same time, and each one has
its TTC. Then this parameter will be set to the
smallest of them.
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Table 5.27 describes the input information of Decision Making Stage. The De-

tected Potential Collisions are the output of previous stage Potential Collision Predic-

tion, and the Vehicle State Data is the real time state information of the host vehicle.

The reason for transmitting the Vehicle State information to this stage is that the

vehicle usually makes different decisions according to its own state.

Table 5.28 describes the output parameters of the Decision Making Stage. As can

be seen in Figure 5.2, these output parameters will be transmitted to other models

of vehicle for either taking actions or displaying the simulation results.

Current Implementation

Usually, a safety decision will be made based on both the detected potential colli-

sions and current state of the host vehicle. The logic of the decision making process

can be extremely complicated. However, in this thesis, only some simple logic are

used to demonstrate the decision making process and the use of this stage.

Pedestrian Detection Flag is calculated based on the input parameter Detected

Potential Collisions. As has been mentioned above, if a potential collision with pedes-

trian is detected, the Collision Confidences will be set to 100. So the Collision Confi-

dences value can be used to determine the Pedestrian Detection Flag. If the Collision

Confidences has the value 100, then set the Pedestrian Detection Flag to Y. Other-

wise, it will be N.

Many potential collisions can be detected with different TTCs at the same time.

Then the potential collision that has the smallest TTC will be chosen to determine

the Driver Warning Flag and the Automatic Braking Flag. If current TTC is smaller

than the value of THRESHOLD WARNING, then the Driver Warning Flag will be

set to Y. Otherwise, it will be N. In addition, if current TTC is smaller than the

value of THRESHOLD BRAKING, then the Automatic Braking Flag will be set to

Y. Otherwise, it will be N.
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Once the Automatic Braking Flag is set to Y, then the output parameter Brake

Pressure should be calculated immediately. Usually, the Braking Pressure will be

different under different emergency level and the vehicle state. The max value of

Brake Pressure is the predefined global variable Max Braking Pressure. Currently, the

V2V-PAEB does not support automatic steering, so the output parameter Automatic

Steering Flag will be always set to N and Automatic Steering Angle will be always

zero.

Table 5.29. Threshold values used for making decisions.

Item Description
THRESHOLD WARNING A threshold value that used for determine the

Driver Warning Flag. This value is usually cal-
culated real-time according to the state of vehicle
or the emergency level of potential collision.

THRESHOLD BRAKING A threshold value that used for determine the Au-
tomatic Braking Flag. This value is also usually
calculated real-time according to the state of vehi-
cle or the emergency level of potential collision.

From the year 2013 to 2014, two different 2013 model year sedans with PAEB

capability were tested by IUPUI TASI group, and 400 test runs were for one vehicle

and 350 for the other one. We collect two sets of data that describing the PAEB

performance of both the vehicles. Finally, a decision making simulation model for each

vehicle was developed based on the testing data. In paper [26], the implementation

of the decision making model is presented in detail.

In this study, the V2V-PAEB simulation model currently does not support auto-

matic steering. So the output parameter Automatic Steering Flag will be always set

to N and Automatic Steering Angle will be always zero.
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6. SIMULATION TEST OF V2V-PAEB MODEL

The proposed V2V-PAEB simulation model has been implemented and tested in

PreScan environment. PreScan comprises several modules that together provide ev-

erything the V2V-PAEB simulation model needs. The intuitive graphical user in-

terface (GUI) allows us to build the experiment scenario and model the requested

sensors, while the Matlab/Simulink interface enables us to develop and test the V2V-

PAEB simulation model. The following sections present how to develop and test the

V2V-PAEB simulation model using PreScan environment.

6.1 Build Experiment Scenario

Most of the V2V-PAEB scenarios for improving pedestrian safety in [4] are in

the extreme conditions that the PAEB systems usually have very poor performances.

Figure 6.1 is an example scenario chosen from paper [4] for testing the V2V-PAEB

simulation model. In this scenario, five vehicles and one pedestrian are at the inter-

section. The traffic light changes from green to red when the pedestrian is crossing

street. At the same time, vehicle 5 is approaching this intersection quickly and the

driver sees the traffic changes to green, so the driver does not stop and keeps driving.

Both the pedestrian and vehicle 5 could not see each other, because their views are

blocked by vehicle 2. However, vehicle 1 and vehicle 2 can see this pedestrian.

For this experiment scenario, two cases will be run separately to check if the

V2V-PAEB system works better than the PAEB system.

Case 1: Only vehicle 5 is equipped with V2V-PAEB system. So vehicle 5 cannot

receive any V2V-PAEB Messages from other vehicles, and it uses only PAEB system

to detect pedestrians. Since the line of sight of on-board sensors is blocked by vehicle
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2, the PAEB system may have a poor performance. In this case, we will examine if

the potential collision can be avoided without the assistance of V2V-PAEB Messages.

Case 2: Vehicle 1, 2 and 5 are equipped with V2V-PAEB system, and vehicle 1 and

2 can detect this pedestrian and they will report this pedestrian to vehicle 5 through

V2V-PAEB Message. Theoretically speaking, vehicle 5 can detect this pedestrian

much earlier through the received V2V-PAEB Message than through its on-board

sensors. The performance of the V2V-PAEB simulation model can be evaluated by

examining if the collision between the pedestrian and vehicle 5 can be avoided or

mitigated.

Fig. 6.1. The experiment scenario for testing the V2V-PAEB model.

This experiment can be easily built in PreScans GUI by using drag and drop

actions to the library elements of road sections, infrastructure components (trees,

buildings, traffic signs), actors (cars, trucks, bikes and pedestrians), sensors (radars,

cameras, lidars), weather conditions (such as rain, snow and fog) and light sources

(such as the sun, headlights and lampposts). Figure 6.2 shows the built experiment

in the GUI. This experiment scenario is exactly the same as the one described in the

above figure.
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Fig. 6.2. The built experiment scenario in PreScans GUI.

As has been mentioned in section 5, the V2V-PAEB simulation model uses two

sensors (one radar sensor and one camera sensor) for pedestrian detection. PreScan

has provided the simulation models of both the radar sensor and camera sensor,

and both of them can be configured with different performances. Table 6.1 and

Table 6.2 present the configuration of Radar Sensor Model and Camera Sensor Model

respectively.

Table 6.1. The configuration of Radar Sensor Model.

Parameter Configuration
Scan Pattern Line Scan
Number of Beams 1
Beam Type Elliptical Cone
Beam Range [m] 40
Beam ∆θ [deg] 60
Beam ∆φ [deg] 9
Capture Frequency [Hz] 25
Max Number of Objects 10
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Table 6.2. The configuration of Camera Sensor Model.

Parameter Configuration
Stereo Vision Disabled
Horizontal Resolution [pixel] 500
Vertical Resolution [pixel] 375
Frame Rate [Hz] 50
Color/Monochrome Monochrome
Intensity Factor [RGB] 1/1/1
CCD Parameters Enabled
Focal length 7.5
CCD Chip Size [mm] 1/2 (6.4*4.8)

After the experiment scenario is built in PreScans GUI, then the experiment is

compiled into a dedicated MATLAB/Simulink Engineering Workspace (see Figure

6.3). The models of vehicles and pedestrians as well as the sensors are generated

automatically and ready to use.

Fig. 6.3. The simulation models of the experiment.
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6.2 Add V2V-PAEB Simulation Model to Vehicle Model

When click on one of this vehicle model (Audi A8 1) in Figure 6.3, we can go

to inside of the vehicle model where all the supporting models required by the V2V-

PAEB simulation model are readily available. Note that all the vehicles have not been

equipped with the V2V-PAEB model yet, so we need to add the V2V-PAEB model

to the requested vehicles. Figure 6.4 shows that the V2V-PAEB model is added to a

vehicle model and connected with its supporting models. For the sake of simplicity

only vehicle 1, vehicle 2 and vehicle 5 are equipped with a V2V-PAEB model.

As has been mentioned before, the V2V-PAEB simulation model accepts four

types of input parameters (The inputs from Vehicle State Model, Radar Sensor Model,

Camera Sensor Model and DSRC Receiver Model). Figure 6.4 has shown how to con-

nect the V2V-PAEB model with these input simulation models. Additionally, the

output of V2V-PAEB simulation model should also connect with the DSRC trans-

mitter model or actuator models.

Fig. 6.4. The internal of Audi A8 1 simulation model.
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6.3 Configuration of V2V-PAEB Model

In section 5 we have discussed how the algorithms in each block have been imple-

mented, so in this section we do not describe the internal algorithms of V2V-PAEB

simulation model again. Since current implementation is not mature, we may need

to modify the algorithms for some blocks of V2V-PAEB model in the future. When

one block is modified, other blocks are not affected. So the algorithms can be easily

modified and evaluated V2V-PAEB simulation model.

Before running the simulation, the V2V-PAEB simulation model should be con-

figured properly. In section 5.1, all the configurations of the V2V-PAEB model have

been presented. We use a graphic interface to configure these parameters. Figure 6.5

shows the configurations in this study.

Fig. 6.5. The configurations of the V2V-PAEB simulation model.
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In this study, two cases will be run separately to proof the V2V-PAEB system has

a better performance than PAEB system. In this simulation experiment, vehicle 1, 2

and 5 are equipped with V2V-PAEB simulation model. When run the simulation for

case 1, the V2V capability on vehicle 1, 2 and 5 is disabled, so they cannot send out

V2V-PAEB Messages. And vehicle 5 cannot receive any V2V-PAEB Messages and

it can only use PAEB system to handle the potential collision with the pedestrian.

When run the simulation for case 2, the V2V capability on vehicle 1, 2 and 5 will be

enabled and they can share the V2V-PAEB Messages with each other. So vehicle 5

can use not only its PAEB system and the received V2V-PAEB Messages to detect

pedestrian and make safety decisions. In the V2V-PAEB simulation model, we have

implemented a switch to enable and disable the V2V capability.

6.4 Simulation Result

Figure 6.6 is the simulation result of vehicle 5 for case 1. It shows that there

was collision between vehicle 5 and the pedestrian with collision speed 19 km/h. The

pedestrian was detected by the PAEB system when TTC was 0.45. However, at that

time the PAEB system did not know this object was a pedestrian, and this pedestrian

was classified when TTC was 0.15. Once the pedestrian was identified, both the driver

warning and automatic braking were applied by the PAEB system at TTC equals to

0.15. Since it was too late and the PAEB system has no enough time to react, the

collision was not avoided.

Figure 6.7 is the simulation result of vehicle 5 for case 2. It shows that the

potential collision between vehicle 5 and the pedestrian was avoided successfully.

The pedestrian was detected when TTC equaled to 1.99s. When TTC equaled to

1.57s the driver warning was triggered and the automatic full braking was started at

TTC equaled to 0.59s. So the simulation results for vehicle 5 in case 1 and case 2

vary signicantly.
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Fig. 6.6. The simulation results of case 1.

Fig. 6.7. The simulation results of case 2.
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Table 6.3 shows the comparison of the simulation results of case 1 and case 2.

We can see that in case 2 the V2V-PAEB system on vehicle 5 can detect pedestrians

much earlier than that in case 1. And the V2V-PAEB system can have more reaction

time and has a better performance than PAEB system only. So the V2V-PAEB

system can compensate the limitations of PAEB system, and improve pedestrian

safety significantly.

Table 6.3. The comparison of the simulation results for case 1 and case 2.

Item Case 1 Case 2
Pedestrian Detected before collision [s] 0.45 1.99
Pedestrian Classified before collision [s] 0.15 1.99
Warning generated before collision [s] 0.15 1.57
Full Braking generated before collision [s] 0.15 0.59
Collision Avoided [Yes/No] No Yes
Collision Speed [km/h] 19 NA

Usually, there are many factors can affect the simulation results. For example,

the accuracy of various types of sensors or the speed for data processing. If the

sensor accuracy is lower or the data processing slower, then the performance of this

simulation model will be worse. In this study, in order to show that the V2V-PAEB

simulation model is working, and to proof the V2V-PAEB system can improve the

performance of PAEB system, we assume that the information provided by sensors

are accurate and there is no delay for data processing. So the simulation results

obtained in this study are the best performance that the V2V-PAEB system have.
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7. CONCLUSION AND FUTURE WORK

This study discussed the advantages and limitations of PAEB system. The limita-

tions of PAEB system is its short detection range and unable to detect objects being

obscured. To further improve the performance of PAEB system, we proposed an idea

that integrating the capabilities of V2V and PAEB to allow the information of pedes-

trians detected by PAEB system to be shared in the V2V network. Theoretically, the

V2V-PAEB system may have better performance than PAEB system because other

vehicles can report the pedestrians that one vehicles PAEB system failed to detect.

In this thesis, we defined the structure and information processing stages of V2V-

PAEB system. This system consists of ten blocks and each block is designed to solve

some specific problems. In additional, the input and output parameters of the V2V-

PAEB system as well as its each block are also defined. For further studying the

V2V-PAEB system, we also developed a V2V-PAEB simulation tool using PreScan

software. Based on this simulation tool, we also developed the basic internal control

algorithms of V2V-PAEB simulation model. And the simulation results show that

the V2V-PAEB system can improve pedestrian safety significantly.

Since the V2V-PAEB system is quite complicated, this study cannot handle all the

problems, and only part of the problems are solved. As a result, current implementa-

tion of the V2V-PAEB simulation has many limitations and can only work properly

under some specific conditions. So one of the direction to improve the V2V-PAEB

simulation model is developing the robust internal algorithms. Especially the algo-

rithms for solving the problems of message information inaccuracy, message explosion,

and message fusion and so on. Based on the predefined architecture and blocks of

V2V-PAEB model, the internal algorithms are easily modified and upgraded. When

one block is modified, other blocks are not affected.
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In addition, current V2V-PAEB system is designed only for improving the road

safety of pedestrians. However, there are many other types of objects that the V2V-

PAEB system can benefit the safety. For example, the vehicles have no V2V-PAEB

system, bicyclist, and animals and so on. The key point of this work is develop-

ing the algorithms for identifying type of the object. It is similar with pedestrian

identification, but usually different classifiers are used.

Besides those, current V2V-PAEB system shares the pedestrian information only

among vehicles. However, there are many other types of objects (such as infras-

tructures, pedestrians) have DSRC communication capability. So another direction

to improve the V2V-PAEB system is to expend it to V2X-PAEB system. The ”X”

means everything.
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