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ABSTRACT

Moghe, Prajakta S. M.S.E.C.E., Purdue University, May 2016. Zigbee Based Wireless
Adjustable Speed Drive System. Major Professor: Euzeli dos Santos Jr.

This thesis proposes a remotely controlled motor drive system which is able to sup-

ply a regulated voltage for both DC and AC motors. The proposed system integrates

two different technologies, each of which belongs to the field of wireless communica-

tions and semiconductor power electronics. The introduction highlights the literature

review and technical contributions in these two electrical engineering fields. The

pulse width modulated control algorithm for speed control is discussed in detail. In-

corporating the zigbee wireless technology into the motor drive system, for the speed

control of an AC and a DC motor, by implementing digital pulse width modulation

technique is the aim of this thesis. The main characteristics of the proposed system

are: 1) its universal feature since it can feed either DC or AC motor without changing

the hardware, 2) remotely controlled, which allows the end-user to control the motor

speed safely from a remote distance, 3) flexibility in installation of the motor drives in

areas that are not easily accessible by end-users, and 4) uninterrupted speed control

for distance of up to few 100 feet.
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1. INTRODUCTION AND STATE OF ART

1.1 Introduction

Wireless communication is a self-defined term which means communication or

transfer of data without the use of wires. As the cellular technology advances bring-

ing the world closer, wireless communication is gaining in popularity. The ability to

transmit data over larger distances with cheap devices and extreme low power losses

has truly brought up the radio technology [1]. Some of the challenges that make this

technology interesting include, but are not limited to, simultaneous use of multiple

channels of communication [2–5], designing of a robust network [6–8], concatenating

the use of several systems in one single network [9–16] to name a few.

Depending on the distance that a data can be wirelessly transferred, wireless com-

munication is mainly divided into three categories: short range, medium range and

long range wireless communication [17–21]. The short range wireless communication

implies use of devices to transfer data over a short distance which ranges from few

centimeters to several meters. As the wireless technologies evolved, different stan-

dards have been set up which enable the use of short range wireless technology in

both industrial and domestic market. Bluetooth, Infra-red and the Zigbee are three

of the many standards/devices that are comparable in terms of their application in

short range wireless communication [22–25]. When it comes to general application,

the short range wireless technology can be used in home-entertainment remote con-

trol [26], robot-control system, cordless microphones, remote control of environmental

control system [27,28], energy monitoring, home security, monitoring residential wind

turbines, etc. are to name a few. Fig. 1.1, 1.2 and 1.3 display a few applications of

the Bluetooth, Infra-red and the Zigbee respectively.
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Bluetooth CarMobile Device

Home entertainment

ComputerHealth Monitoring

Audio,video streaming

Fig. 1.1. Applications of a Bluetooth.

Infra-red
Home Appliances

Camera

Cellphones

Laptop

Fig. 1.2. Applications of an Infra-red.

Zigbee

Energy Management

Lighting controlIndustrial Control

Irrigation

Fig. 1.3. Applications of a Zigbee.

One of the rapidly growing areas of research is the application of wireless tech-

nology to remotely control the real time operation of a motor [29–31]. The authors

in [31] suggests the use of a wireless mode of data realization from a rotating rotor

or shaft instead of connecting wires as the former is much simpler and cheaper so-

lution as compared to the wired realization. Whether it is a DC motor or an AC

motor, speed control of any motor is an important task from application point of

view [32–34]. In [29], the authors discuss a novel approach to implement a real time

control network based on zigbee to implement the control strategy for a DC motor.

They also state the fact that the zigbee network helps in minimizing the delays in
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the control loop of the DC motor. [35] sheds light on the importance of wireless sen-

sor networks in monitoring the real time parameters such as voltage, current, input

power, power factor, torque and speed of a motor. The authors further conclude that

real time monitoring of such parameters greatly helps in determining the condition

of a motor.

The research interest for this thesis focuses on developing a remote control based

on Zigbee protocol, as oppose to an Infra-red remote, to control the speed of a motor

whether AC or DC. To achieve this, a wireless network is established by using XBEE

Series-1 radio modules which operate on the Zigbee protocol. The value of the speed

regulator is sent over the wireless communication. The receiver is then responsible

to convert this value to a corresponding modulation index value which will in turn

modulate the applied voltage of the motor. This voltage control is then further con-

verted to obtain the desired speed control irrespective of the type of motor attached.

The chapters of this thesis are organized in the following manner. The second

half of Chapter 1 describes the state of art for this thesis. Moving forward a detailed

insight on the establishment of the wireless communication using a Zigbee protocol is

presented in Chapter 2. Chapter 3 describes the general approach to implement speed

control methodologies in both AC and DC motors. The experimental setup and an in-

troduction to the hardware and software that are implemented are explained in detail

in Chapter 4. Chapter 5 then presents detail results demonstrating the speed control

of a universal motor. Chapter 6 finally concludes the thesis topic by highlighting the

advantages of this design and its application.

1.2 State of Art

1.2.1 Wireless Communication Technology

When selecting a short range wireless communication technology for the appli-

cation of this thesis, comparisons were made mainly based on the operating range,

battery life and maximum range of uninterrupted transmission that can be achieved.



4

The Bluetooth and the Zigbee protocol both operate in the 2.4 GHz ISM Band,

the Infra-red (IR) operation frequency range is 800 to 1000 m [22]. Infra-red has

been used as the wireless technology for most of the remote control design for gen-

eral household appliances [23]. However, it faces certain issues, one of the major one

being the Line of Sight. Infra-red does not work well with walls or obstructions in

between the transmitter and the receiver. This problem does not exist in a Zigbee

radio which can be used even with walls in between. If required, to further boost up

the transmission energy, a simple antenna can be attached to the zigbee radios which

will help in increasing the overall range of transmission as well. That being said, an

IR is focused on a point to point communication where a Zigbee radio can be used

in a point to multi-point configuration where multiple devices can be controlled over

a single remote. Speaking of the transmission range, in general, an IrDA infra-red

wireless communication can last up to 1m in range [23] where as a zigbee radio un-

der consideration can be implemented up to 100 feet (30 m) indoors and up to 90m

outdoors [26] and [36]. Today, Zigbee radios up to 40 mile of range are also available.

Another important aspect of the wireless technology selection is its battery life. In

general a zigbee radio has an extended battery life due to its low power consumption.

Hence a radio based on Zigbee protocol will be an ideal choice for building up a

remote to control the speed of a motor. The Xbee Series-1 radio module used in this

thesis is based on the Zigbee Protocol. ZigBee (Alliance, 2006) is a wireless standard

of ZigBee Alliance based on IEEE 802.15.4 standard [37].

1.2.2 Adjustable Speed Drive System

In the earlier days, a motor-generator set was used to control the speed of a motor.

Gradually the motor-generator set was replaced by DC drives [38]. In the past few

years, AC drives have steadily managed to replace their DC drive counterparts owing

to the developments in reliable power electronics and robust controller algorithms
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[39, 40]. As the name suggests, the DC motor drives are used to control the speed

of a DC motor whereas the AC motor drives are used to control the speed of an AC

induction motor and Synchronous motors. DC drives were exclusively used in offshore

drilling rigs and production platforms. But recently, a combination of AC and DC

drives are being used [41]. The applications of a DC drive were well known in the

metal Industry [39]. In recent years, an AC drive, in the metal industry, has found

its use in circulating fans on batch process furnaces, in fluid pumping, in conveyor

applications, for crane hoist application and in tension changing and speed matching

of rolls [42], thus replacing majority of the applications of the DC drives in the metal

industry. Among the AC drives, speed control of the wound rotor induction motor

has found its application in high power system with a narrow speed range [43]. The

evolution of drives can be seen when we come across the comparative study of three

types of AC drives: induction motor (IM) drives, permanent magnet brushless dc

motor (BDCM) drives and the Switched reluctance motor (SRM) drives in [44], in

order to elect the best suitable AC drive for electric vehicle propulsion application.

An adjustable speed drive is a controller which can be implemented to control

the speed of both AC and DC motors [45]. Power quality is an important parameter

when dealing with any system that involves motors. In commercial and industrial

applications, the use of adjustable drive system has gained popularity as it helps in

maintaining the energy efficiency and the power quality [46]. Use of such adjustable

drive systems is rapidly increasing in the cement industry where speed controllable

fans with adjustable speed drives are being implemented [47]. An important aspect

of the motor drive system is the inverter. The NPC inverter are widely used in

motor drive systems. [48] discusses one such model of a NPC inverter with motor

drive system. The adjustable drive system are also known as variable speed motor

drive system. Their applications can range from transportation, elevators to home

appliances and air conditioners [49].

From research perspective, this thesis focuses on developing one such adjustable

speed drive system which can be used for both AC and DC motors without changing
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the hardware. Such adjustable drives can be implemented in systems where DC

motors are being replaced by AC motors or in systems where the exact identification

of the motor attached is not known.

1.2.3 The Controller

The goal of the thesis is to control the speed of either a DC or AC motor by using

the same hardware. This universal feature increases flexibility of the motor drive

system. The speed control of a motor has been a topic of research interest for a very

long time. The speed control is in general obtained with the help of a dsPIC or a

microcontroller which acts as the central controlling unit. The output of these con-

trollers will be connected to the driver units which then supply the required voltage

to the motor thus controlling the speed [50,51]. For a wireless control of the speed of

a motor, presence of two controller units - one at the transmitter end and the other

at the receiver end is necessary.

In [52], the authors state the volts/hertz (V/f) method and the vector control

based speed controllers for induction motors. The paper also states that the stator

voltage control method is suitable for fan type loads only. In [53] the use of dsPIC

microcontroller as the controller for the AC drive system has been highlighted.

Tacho generators are used to convert the speed to voltage in a DC motor. The

voltage is then fed back to control the speed of the DC motor [54]. Use of advanced

speed control methods such as the Pulse-Width Modulation (PWM) is discussed

in [55]. The author also states that this approach is flexible in terms of practical

implementation with the use of a microcontroller.

Pulse width modulation has been a topic of extensive research when it comes to

implementing of controls in power electronics [56]. Application of PWM in variable

speed drives has gradually became the standard for present industry [57]. The output

voltage of an inverter is controlled by controlling the pulse width modulation [58].

The PWM inverters have built in under voltage and current protection in case of
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abnormal operating conditions [57] and [59]. A vast literature on a variety of PWM

techniques have been presented in [60–65] depending on the type of inverter, applica-

tion of the drive and ongoing research in improving the PWM techniques. The vector

space modulation technique becomes complex when the number of switches increase.

Hence a PWM carrier based techniques for multi-level inverters, has been discussed

in [66]. [60] enlightens the advantages of microcontroller generated PWM over ana-

log generated PWM. [67] further develops a strategy to implement both analog and

digital PWM, where the entire control is handled by the microprocessor.

The above thus leads us to the conclusion that the development of a PWM strategy

using a dsPIC for implementing the speed control logic for a motor drive to operate

a fan is acceptable.
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2. ZIGBEE (XBEE) COMMUNICATION

2.1 Introduction

Keeping in mind the building of a low cost and a low power wireless network, Zig-

bee wireless technology was established. The zigbee standard operates on the IEEE

802.15.4 standard [68]. The IEEE 802.15.4 standard is maintained by the IEEE 802.15

working group. The standard specifies the physical layer and the media access control

for low data wireless network. It assists in secure machine to machine communication

and low data transfer rate [69]. The Zigbee standard, being a high level communica-

tion protocol, builds on IEEE 802.15.4 and further develops the higher layers which

are not supported by IEEE 802.15.4. Fig. 2.1 shows the establishments of the Zigbee

standard.

ZigBee Alliance is a group that maintains the Zigbee protocol. Some members of

this group are companies that produce their own radio modules which operate under

the Zigbee protocol/standard. Xbee Series-1 (Xbee S1) radio modules are one of the

most basic and easy to implement radios operating under this protocol. The 802.15.4

firmware is by default present in the Xbee S1 radio modules. This makes them suit-

able for a point to point or a star topology of network. The Xbee S1 radio modules

operate in the ISM 2.4 GHz band with interface data rate of up to 115.2 Kbps [19].

These modules use the IEEE 802.15.4 networking protocol for fast networking. For

extending the transmission range, compatible antennas can be used. These antennas

come in the form of U.FL, Reverse Polarity SMA (RPSMA), chip antenna or wired

whip antenna [19].
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MAC
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Fig. 2.1. OSI Model for Zigbee Standard.

2.2 Xbee Radios and Antenna

The S1 modules require a supply voltage of 3.3V typical to power up. For this

thesis, two different modules were implemented for the wireless communication. Fig.

2.2(a) shows the Xbee S1 wire module and Fig. 2.2(b) shows the Xbee S1 RPSMA

module.

The difference between these two modules is that the Xbee S1 wire module has

(a) (b)

Fig. 2.2. (a)Xbee Series 1 Wire Module (b)Xbee Series 1 RPSMA Module.
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a wire antenna attached to it whereas the Xbee S1 RPSMA module has a connector

where the user can connect an RPSMA antenna of his/her choice. The RPSMA an-

tenna is as shown in Fig. 2.3. It is important to note that even when these modules

are structurally different in terms of antenna mounted, both the modules belong to

the same series S1. This is important for setting up the communication.

When considering the positioning of the antenna it should be noted that the an-

(a) (b)

Fig. 2.3. RPSMA Antenna.

tennas in general have a strong radiation and reception in the direction perpendicular

to where they point. Hence to obtain a strong horizontal radiation, always keep the

antenna in the vertical direction and vice-versa.

2.3 Radio Configuration and Set up

2.3.1 Zigbee Network

A zigbee network in general consist of two or more modules. The module that

is present at the center of the network is configured as the Coordinator which sends

commands to all the other modules and is connected to them wirelessly. The module

present at the end node is configured as the end device. All the remaining modules

in between the coordinator and the end devices are configured as the routers which

help in routing the information wirelessly. Fig. 2.4 below shows an example of the

zigbee network.
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Coordinator

Router

End Device

Fig. 2.4. Simple Zigbee Network.

The requirements of this thesis are limited to use of two radio modules the trans-

mitter and the receiver. Hence we can either configure one of the modules as the

coordinator and the other as the end device or we can keep both the modules as

routers. Any of the above configurations works.

2.3.2 Initial Configuration and Mode of Operation

To set up a one-to-one communication link between the transmitter radio and the

receiver radio module, certain parameters of both the modules need to be modified.

A set of command called the AT command was developed which is the most widely

used language to talk to the zigbee radios.

For communication to be established, each radio in the network should have the

same PAN ID. This ID can be setup with the use of AT commands. Thus in this

thesis experiments, the transmitter and the receiver radio modules are set up with

the same PAN ID. Each Xbee radio module has a 64-bit address which is its unique

identifier [28]. No other zigbee radio will have this address. When setting up the
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communication, it is important that the 64-bit address of the destination radio is

fed into the source radio, so that the source radio knows where to send the given

information.

The data transfer operation for Xbee radios can be performed in two modes API

Frame mode or the Transparent Mode. The API or the Application Programming

Interface requires all communication with the module are to be done in a fixed frame

format. The API mode specifies how a command is sent or received in the UART

frame format. In this mode, the initial configuration of the PAN IDs and the destina-

tion address can be done by sending out the desired frame format. The transparent

mode is the default mode of operation of Xbee radios. In this mode any data received

via the DI pin is lined up for the RF transmission. To set the initial configuration of

the PAN IDs and the destination address, one has to enter the AT command mode

and complete the parameter setup. Another alternative is to make use of the X-CTU

software which is a free software provided by the Xbee to update the radio firmware

and set up the basic communication.

For this thesis, the transparent mode of operation was selected. The radio config-

urations were updated by using the AT commands and a free terminal software Tera

Term.

2.3.3 Implementation

This thesis requires working with two radio modules. The first step is to note

down the 64-bit address of both the radios. These address are written on the back

side of each radio. This will then be used to set up the destination addresses on both

the radios. The next step to configure the radio is to connect it to a computer via

a USB. As mentioned in the earlier section, Tera Term is a free terminal software

which is used to talk to the radios by making use of the AT command set via a serial

port. Once the radio is connected to the computer, open Tera term. Select the port

to which the radio is connected. Set the port baud rate to 9600 as it is the standard
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rate for the radios to communicate via a serial port. Set the number of data bits to 8

with no parity and 1 stop bit. Fig. 2.5 shows the initial windows for configuring the

serial port. After setting up the port for communication, the terminal screen will be

open. On the terminal screen send the special characters ’+++’ to the radio so as

to enter into the command mode. The radio replies back with an ’OK’ which is an

indication that the radio module has entered the AT command mode. It is important

to wait for the guard time before and after sending the ’+++’ command. The guard

time by default is of 1 second but can be changed according to the user needs by

making use of the AT command ATGT. The radio will be in the AT command mode

for 10 sec. Once in the AT command mode, all Transparent mode operations will be

halted. To move out of the AT command mode back to the transparent mode before

the 10 sec mark, use the AT command ATCN.

In the AT command mode, the personal area network ID (PAN ID) can be easily

accessed by the command ATID. To set a desired PAN ID write the command ATID

XXXX where XXXX represent the ID number. For the thesis set up, the command

ATID 3332 was sent which sets up the PAN ID to 3332 for this network. Perform

this step by first connecting the transmitter radio and then by connecting the receiver

radio so as to set the same PAN ID on both these radios. Next to read the source

address (or the self-address), write the command ATSH to read the higher register of

source address and ATSL to read the lower register of the source address. The source

address will be same as the address that was earlier noted from the back side of the

Xbee. The transmitter source address in this case is 0013A200 40C90BC5 and the

receiver source address is 0013A200 40C31FF6. Now we will have to set the source

address of the receiver as the destination address of the transmitter and vice versa. To

set the destination address on the transmitter, use ATDH 0013A200 to set the higher

register and ATDL 40C31FF6 to set the lower register of the destination address. To

set the destination address on the receiver, use the command ATDH 0013A200 and

ATDL 40C90BC5. To check if the destination address has been properly set, write

the command ATDH and ATDL without any value. This should return the values
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(a)

(b)

Fig. 2.5. Serial Port Setting.

that had been set to the registers. After all the necessary changes have been made,

use the command ATWR to write and save all the changes. The radios will reply

back with an ’OK’. This finishes the basic configuration of the radios. Fig. 2.6 shows

the set up commands for the transmitter side whereas Fig. 2.7 shows the command

set on the receiver side.
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(a) (b)

Fig. 2.6. (a)Transmitter Configuration - Setting the Destination Ad-
dress
(b)Transmitter Configuration - Verifying the Set Destination Address.
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(a) (b)

Fig. 2.7. (a)Receiver Configuration - Setting the Destination Address
(b)Receiver Configuration - Verifying the Set Destination Address.
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3. ADJUSTABLE MOTOR DRIVE SYSTEM

3.1 Introduction

In any process which makes use of a motor, the best method of controlling that

process can be obtained by controlling the speed of the motor [70]. Thus depending

on various parameters like the horsepower rating, the motor application, a motor

drive system can be divided into different categories. A motor drive system mainly

consists of a converter/inverter which is used to control the speed of a particular

motor within a range specified for it. The Pulse Width Modulated (PWM) DC to

AC inverter is most widely used in motor drive system [71]. Due to excellent power

quality and lower switching losses, multilevel inverters have found their applications

in medium and high power areas [72]. A motor drive system connected to a multilevel

inverter is expected to deliver high efficiency as the harmonic losses are reduced by

the use of a multilevel inverter [73].

Renewable energy sources like wind and solar have seen an increase in their appli-

cation when it comes to irrigation system [74–76]. With solar powered applications

like water pumping system for irrigation which makes use of either AC or DC mo-

tor [74], an adjustable drive system presented in this thesis would be an ideal fit as

the speed control strategies for this drive system work for both AC and DC motors.

Also, the control of this drive system is based on a wireless network, which gives the

user the extra flexibility needed to have a good control on the speed of the motor

attached. Fig. 3.1 shows the block diagram of a general motor drive system.

This chapter describes in detail how a motor drive system works. The chapter

highlights the inverter topology used and the Pulse Width Modulation technique for

the motor drive system in this thesis. Two different control strategies for controlling

the speed of a DC and an AC motor are described.
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Power Supply
Three Phase
Inverter

Control
Strategies

Motor

Fig. 3.1. Block Diagram - General Motor Drive System.

3.2 Motor Drive System

3.2.1 Power Electronics - The Inverter

The main device that constitutes a motor drive system is a DC to AC inverter. A

three phase inverter is as shown in Fig. 3.2.

A power inverter is a device present in the system to convert DC-AC or convert

Fig. 3.2. DC-AC Inverter.

AC-DC-AC. The three phase inverter consists of three legs with two power switches

(IGBTs) on each leg. The six switches S1, S1, S2, S2, S3, S3 are as shown in Fig.

3.2. Each switch pair Sx and Sx, where x= 1, 2 or 3 are complementary to each
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other. This implies if one switch is in the ON state, its complementary switch is in

the OFF state. The switching of these power switches is controlled by application

of PWM modulation control strategy. The modulation strategy can be performed in

terms either frequency or amplitude to obtain a regulated voltage at the output [77].

The inverter apart from regulating the output voltage for the motor drive system has

other applications like overvoltage protection, under voltage protection, over current

protection.

For this thesis, a DC-AC inverter with six power switches is implemented to reg-

ulate the output voltage by applying the amplitude modulation strategy to control

the power switches.

3.2.2 Pulse Width Modulation

Various PWM techniques have been studied to improve the quality of the reg-

ulated voltage at the output of the inverter [78]. [79] describes a technique where

unipolar PWM is implemented with a triangular carrier wave. This technique helps

in controlling the current and minimizing the ripples in the current. The three most

common PWM techniques that can be applied to a multilevel inverter are Multilevel

Sinusoidal PWM (SPWM), Space Vector PWM and Multilevel Selective Harmonic

Elimination [80]. These techniques are implemented so as to obtain better quality of

output voltage and current. PWM implementation can be either unipolar or bipo-

lar. The advantages and disadvantages of both these implementations is discussed

in [81] and a new technique which uses a combination of both unipolar and bipolar

PWM is developed, which is found useful in reduction of total harmonic losses. Im-

plementation of PWM helps in suppressing the ripples in the torque as the harmonic

component due to PWM is relatively low [82].

The amplitude modulated PWM in this thesis is Sinusoidal Pulse Width Mod-

ulation where the modulating signal for the output voltage is a sinusoidal wave of
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low frequency, v∗sin and the carrier signal is a triangular wave of high frequency, v∗t .

Fig. 3.3 demonstrates the sinusoidal PWM technique applied to a single leg of the

inverter, using a comparator. The control outputs q1 and its complementary q1=1-q1

obtained as the PWM signal are then applied to the switches S1 and S1 respectively.

v
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t

*

T

(b)

Fig. 3.3. (a)PWM using Comparator (b)Sinusoidal Pulse Width Modulation.

The three phase inverter consists of three legs, each corresponding to the three

phase voltages at the output, VA, VB, VC as shown in the Fig. 3.2 above. The output

voltages can be obtained as a function of the pole voltages V10, V20, V30 as seen in

Fig. 3.2. Where, the pole voltages are obtained as a result of the application of the

control signals q1, q1, q2, q2, q3, q3 to the switches S1, S1, S2, S2, S3, S3 respectively.

Another important factor in the PWM implementation is the modulation index.

As mentioned above, this thesis implements amplitude modulated PWM and hence
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it is important to understand how the amplitude modulation index affects the PWM

implementation. For a PWM implementation, the peak amplitude of the fundamen-

tal component of the pole voltage is given by 3.1.

v10(fundamental) = (
v∗sin
v∗t

)
Vdc
2

(3.1)

Where, (v∗sin/v∗t )=ma, ma= modulation index

Thus lower the modulation index, lower is the amplitude for the pole voltage and

hence reduction in the output voltage. And with higher modulation index, a higher

output voltage can be obtained. Thus from the application point of view of this

thesis, it can be seen that the speed of a motor which is a function of the output

voltage of the inverter can be controlled by changing the modulation index.

Hence to prove the concept of wireless speed control of a motor, bipolar PWM

with single carrier and multiple (three) modulation signal is selected for this thesis.

The reason behind this selection is that this PWM approach is one of the simplest

techniques that can be implemented in terms of both hardware and software.

3.2.3 AC Motor

For a three phase AC motor, the PWM implementation is similar to as shown in

Fig. 3.3. A three phase motor is connected as shown in Fig. 3.4.

A three phase balanced AC system has three voltages of same magnitude but

separated by an angle of 120 degrees. Thus to obtain the control signals for the

six switches, we need three reference voltages separated by 120 degrees. The PWM

signals are obtained by comparing the three reference voltages v∗10, v
∗
20, v

∗
30 as given in

3.2, 3.3 and 3.4 with a triangular carrier wave of high frequency. Fig. 3.5 illustrates

the implementation of the PWM strategy.
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Fig. 3.4. Three Phase AC Motor Drive

v∗10 = ma× Vdc
2

× sin(θ) (3.2)

v∗20 = ma× Vdc
2

× sin(θ − 2π

3
) (3.3)

v∗30 = ma× Vdc
2

× sin(θ +
2π

3
) (3.4)

The duty cycles τ1,τ2,τ3 of the PWM waveform that is generated corresponding

to the three phases are obtained by implementing 3.5, 3.6 and 3.7.

τ1 = (
v∗10
Vdc

+
1

2
) × Ts (3.5)

τ2 = (
v∗20
Vdc

+
1

2
) × Ts (3.6)

τ3 = (
v∗30
Vdc

+
1

2
) × Ts (3.7)

Where, Ts is the total switching period of the generated PWM signal.

It can be observed from Fig. 3.5 , for a higher modulation index of 0.9, the duty

cycle of the PWM is nearly 90% whereas for a modulation index of 0.1 the duty cycle

is 10%. Thus we can conclude that for the given PWM strategy, the speed of a motor

can be controlled from a maximum value to a minimum value.
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Fig. 3.5. (a)PWM Control for Three Phase Inverter (b)PWM for
3-phase AC motor.

3.2.4 DC Motor

The inverter presented in Fig. 3.3 can as well be implemented in a DC motor drive

system with a DC motor. Fig. 3.6 represents a DC motor load connected between

the two legs of a three phase inverter.

Since the load is a DC motor, the PWM signals for the DC drive system are

obtained by comparing a single DC reference voltage vref as given in 3.8, with a
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Fig. 3.6. DC Motor Drive System.

triangular carrier wave of high frequency. Thus it can be said that for a DC mo-

tor connected to a three phase inverter, v∗10=v
∗
20=v

∗
30=vref . Fig. 3.7 illustrates the

implementation of PWM strategy for a DC motor.

vref = ma× VDC

2
(3.8)

v
ref v

t

*

T

Fig. 3.7. PWM Implementation for a DC Motor Drive System.
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The duty cycle of the PWM generated is calculated using 3.5, 3.6 and 3.7 by

replacing v∗10, v
∗
20, v

∗
30 by vref . It can be observed from Fig. 3.5 that for a modulation

index of 0.9, the duty cycle obtained is 90%, but for modulation index of nearly 0.1,

the minimum duty cycle obtained is 50%. This implies that a DC motor with the

given PWM strategy can be controlled from maximum speed to a speed which lies at

the mid-range value.

The reason behind the difference in the duty cycle of a DC motor with respect

to an AC motor for a modulation index of 0.1 is, that for an AC motor the refer-

ence signal being a sine wave can interact with the negative portion of the triangular

wave, which corresponds to 50% of the time period of the triangular wave. But in a

DC motor drive, as the reference signal is a DC, this interaction does not take place

and hence the comparison with the remaining 50% of the period of the triangular

waveform is not seen. The solution to this problem is implemented in the software

by changing vref . This is further explained in Section 3.3.

3.3 Input to the Motor Drive System - Wireless technology

3.3.1 Transmitter

Being an implementation of the wireless technology, this thesis can be divided

into two parts: the transmitter and the receiver. As mentioned before the aim of

this thesis is to control the speed of a motor. One of the applications for this remote

speed control can be in ceiling fans.

The speed of a motor varies with respect to its input voltage. This voltage is

supplied by the inverter in the motor drive system. The inverter output voltage is a

linear function of the modulation index used to implement the PWM control strategy.

Hence higher the modulation index, higher is the inverter output voltage and thus the

speed of the motor and lower the modulation index, lower is the speed of the motor.

The transmitter end of this motor drive system has a speed regulator with which

the user can adjust the speed of a motor according to his needs. The modulation
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index parameter is obtained as an output of the speed regulator which is in control

of the user. For this thesis, the output of the speed regulator is varied from 0 to 3V .

This voltage information is then transmitted using the wireless Xbee radios.

3.3.2 Receiver

At the receiver end, the Xbee radio receives the information of the output voltage

of the speed regulator. This voltage is then converted to the corresponding modu-

lation index. The relation between the speed regulator voltage and the modulation

index is as shown in Fig. 3.8.
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Fig. 3.8. Relation Between Speed Regulator Output Voltage - Modulation Index.

This modulation index is then applied to the PWM strategy as discussed in the

previous sections. The comparator output is a PWM with the duty cycle that cor-

responds to the modulation index. The relation between the modulation index and

the duty cycle is a linear one as shown in Fig. 3.9.

Thus as the user would change the regulator for different speeds, the information

will be transferred to the receiver side with the use of wireless communication without

significant delays and the speed of the motor can be controlled wirelessly.

For a DC motor, we did see that the PWM strategy can make a motor reach up to

a minimum speed of 50% and not go below it. To compensate for this, the reference
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Fig. 3.9. Relation Between Modulation Index and PWM Duty Cycle .

voltage was derived from the following relationship between modulation index and

reference voltage. This is shown in Fig. 3.10. The technique helps in compensating

for the negative half cycle of the triangular wave and thus changes the speed range

of 50-100% to go from 0 to 100%.

By application of this correction, the reference voltage for the PWM implemen-
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Fig. 3.10. DC Motor PWM Compensation Technique.

tation for a DC motor drive is now re-defined as in 3.9.

vref = (
VDC

2
)(2 ×ma− 1) (3.9)
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4. EXPERIMENTAL SETUP

4.1 Introduction

As described in earlier sections, the thesis is focused on implementing a wireless

remote to control the speed of a motor. The experimental setup can be separated

into two sections: the Transmitter section and the Receiver section. A general block

diagram of the entire system is shown in Fig. 4.1.

The hardware was set up using the blocks presented in Fig. 4.1. Initially, the

Speed
Regulator Xbee

Transmitter
dsPIC

Motor
Drive
System

Xbee
Receiver

dsPIC Motor

Wireless Link

Fig. 4.1. Block Diagram of the Proposed Wireless Motor Speed Control System.

experiment was performed for a separation distance of 1 foot between the wireless

link. This distance was then increased to 18 feet, to test the wireless communication

with the motor drive system. The tests were performed for AC and DC motors and

the results are as described in Chapter 5.

For the hardware to perform up to the mark, use of three important software

programs was made. The X-CTU software was used for updating the radio firmware.

The Tera Term terminal software was used to setup the required communication

network by configuring the Xbee radios. For this thesis, all the control algorithms

are programmed in the dsPIC. MPLAB-X was used to debug and program the dsPIC.
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4.2 X-CTU

The X-CTU software is a free software that Digi International provides for its

Xbee radio modules. The most important application of this software is to update

the firmware library for the Xbee radio modules. If two radios in a network are up-

dated to different firmware versions, the wireless communication between these radios

is hampered. Hence it is important to update the firmware for both the radios using

X-CTU to the exact same version.

4.3 Transmitter Setup

The transmitter section is basically a remote to control the speed of a motor. This

remote consists of a speed regulator, a process controller and a wireless communica-

tion radio.

Fig. 4.2 is a schematic of the remote i.e. the transmitter section of this experi-

ment.

3V 3.3V

Xbee
Series 1

dsPIC33FJ64MC802

DITx

3.3V

Potentiometer

ADC

Fig. 4.2. Transmitter Schematic.

The speed regulator in this thesis is implemented with the use of a 1kΩ poten-

tiometer connected to a 100Ω resistance in series. The Potentiometer is supplied with

a voltage of 3V . An output at the series connection of the potentiometer and the
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resistance is fed to the dsPIC. Thus the dsPIC receives voltage from 0.27V to 2.72V .

The lower voltage of 0.27V is translated to the low speed of a motor and the higher

voltage of 2.72V gets translated to the high speed of the motor. This range for the

voltages is thus used to define the range for the speed of the motor. In other words,

the speed of the motor can be changed by changing the value on the potentiometer.

The process controller for this remote is the dsPIC. The dsPIC33FJ64MC802 was

selected keeping in mind the PWM requirements for the motor drive system at the

receiver end. The dsPIC is a 16-bit digital signal controller with 28 pins, which re-

quires a typical power supply of 3.3V . On the transmitter end, the function of the

dsPIC is to sense the voltage coming from the potentiometer and transmit this value

to the Xbee radio on the transmitter side using the UART Tx pin. The advanced

analog feature of the dsPIC provides us with a 10/12 bit ADC. The 12 bit ADC is

used to sense the input voltage from the potentiometer. The UART for the dsPIC

is set for a 9600 baud rate, 8 data bits, no parity and 1 stop bit. These setting are

selected as the Xbee radios operate at a 9600 baud rate and 8 data bit configuration.

As the data is sensed at the ADC, it is continuously transmitted to the Xbee radios

using the Tx pin on the dsPIC. The radio then further transmits the data over the

wireless link. The program is implemented in MPLAB-X which uses C-30 compiler

for coding.

For the wireless communication, Xbee series 1 radio are being implemented. These

radios require an operating voltage of 3.3V typical. The Xbee radio on the trans-

mitter end is configured to operate in the transparent mode as described in chapter

2. The Tx pin on the dsPIC is connected to the DI (Rx) pin on the radio module.

The DI pin is ideally in the high state when no data is being received by the mod-

ule. The radio module receives the data i.e. the voltage information from the UART

on the DI pin as an asynchronous serial signal. As the radios are operating in the

transparent mode, any data received on the DI pin is immediately lined up for the

RF transmission. And thus the voltage information gets transferred to the receiver

side.
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4.4 Receiver Setup

The receiver section of the experimental setup acts as the decision maker unit

to generate the required speed of the motor. This section consists of the wireless

communication module, the process controller, the motor drive system and the load

i.e. AC or DC motor. The schematic for the receiver section is as shown in Fig. 4.3.

3.3V

Xbee
Series 1

DO Rx

3.3V

dsPIC33FJ64MC802

Six PWM
Signals

Three
Phase
Inverter

AC or DC
Motor

PWM

Fig. 4.3. Receiver Schematic.

The Xbee radio module at the receiver side receives the RF-packets that are sent

by the transmitter radio. The module at the receiver is configured in the transparent

mode. Hence any data received through the RF communication is immediately lined

up in the data out buffer and transferred to the UART via the DO pin.

The process controller for the receiver side is the dsPIC33FJ64MC802. The main

feature of the dsPIC is its motor control PWM signal which makes it an ideal choice.

The speed regulator information in terms of the potentiometer voltage is transferred

from the DO pin of the radio to the Rx pin of the dsPIC via UART. The dsPIC

then processes this voltage information and converts it into the corresponding mod-

ulation index value by the relation explained in chapter 3. Using this modulation

index value, and depending on the nature of the motor connected i.e. AC or DC, the

reference voltages are calculated using (2), (3), (4) or (9) respectively as in chapter 3.

Further, these reference voltages are then used to calculate the duty cycle by using
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the relation described in (5), (6) and (7) in chapter 3. A total of 6 PWM signals are

generated using the three reference voltages. The six PWM signals from the dsPIC

are obtained from the pins PWM1H1, PWM1H2, PWM1H3, PWM1L1, PWM1L2

and PWM1L3.These are then applied as the gating signals for the switching of the

IGBT switches of the inverter.

The inverter is a three phase inverter which has a total of six IGBT switches. The

three signals PWM1H1, PWM1H2 and PWM1H3 from the dsPIC are applied to the

switches S1, S2, S3 respectively, and their complement signals PWM1L1, PWM1L2

and PWM1L3 are applied to switches S1, S2, S3 respectively. For this experimental

set up, International Rectifier’s IRAM630-1562F is used as the inverter chip. It is

a 15A, 600V Inverter Intelligent Power Module (IPM). The PWM signals from the

dsPIC are 3V in amplitude and can be directly applied to the pins of the inverter chip.

The chip requires a power supply of 15V . The 15V supply is obtained by using the

regulator chip LM7815 from Texas Instrument. Thus the six PWM signals are used

to generate the three phase voltage at the output of the inverter. This experiment

was performed separately for AC motor and DC motor. The distance between the

transmitter and the receiver was maintained at 18 feet in the laboratory environment.

For a three phase AC motor, the tests were performed by connecting the AC motor to

the three phases of the inverter. While for a DC motor, the tests were performed by

connecting a resistance between two of the three phases and monitoring the applied

voltages. All test results are presented in chapter 5.
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5. EXPERIMENTAL RESULTS

5.1 Introduction

To implement the proposed system, the hardware is set up as described in chapter

4. Each experiment is performed for three different modulation index (ma) values of

0.9, 0.5 and 0.12 which translate to the high, medium and low speed of operation of

the motor respectively.

The first set of experiments were performed without the motor drive system con-

nected. This was to make sure that the signal at the receiver is exactly same as the

signal sent by the transmitter. Next the motor drive system i.e. the inverter was

connected to the receiver radio, and tests were performed by connecting the resistive

load first to and then by connecting the AC motor. The last step was implementing

the DC motor. Due to unavailability of this motor, experiments were performed by

connecting a resistive load to the inverter and the applied signals were observed.

Fig. 5.1 shows the experimental setup of the transmitter and Fig. 5.2 shows the

experimental set up of the receiver with an AC motor.

dsPIC Potentiometer

Xbee radio

Fig. 5.1. Transmitter Setup.



34

AC motor
Three Phase

Inverter

Xbee radio

dsPIC

Fig. 5.2. Receiver Setup with AC Motor.

5.2 Wireless Link - 1 Foot Separation

For the initial part of the testing, the distance between the transmitter and the

receiver was 1 foot. Both the transmitter emitted signal and the receiver emitted sig-

nal were monitored by continuously changing the modulation index. To perform this,

the transmitter signal was monitored by using a PWM output pin on the transmitter

dsPIC. The signal received on the ADC of the transmitter dsPIC was converted to

a PWM signal at the transmitter so as to verify the signal being transmitted and

received was the same. This was done only for validating the results and will not be

applied in the actual system. For this experimental setup, the wireless transmission

worked perfectly without connecting the antennas to the radio.

For a modulation index of 0.12, 0.5 and 0.9, the results were as observed in Fig.

5.3, 5.4 and 5.5 respectively. The channel 1 represented by the yellow signal is cor-

responding to the transmitter signal whereas the channel 2 represented by the green

signal corresponds to the receiver side.

It is observed for all the three cases, the frequency of the transmitter and the

receiver is set to 20 kHz. This is due to the frequency of the triangular wave used in
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the PWM modulation which is 20 kHz. It can also be noted that the receiver wave-

form is not synchronous to the transmitter waveform. This is due to the fact that the

wireless transmission makes use of asynchronous transmission. The main aim of this

thesis is to control the duty cycle of the PWM waveform in order to control the speed

of a motor. It can be observed from Fig. 5.3 that for a ma= 0.12, the duty cycle at

the receiver is 12%. For a ma =0.5, the duty cycle increases to 50.2% as in Fig. 5.4.

Finally for a ma=0.9, the duty cycle reaches the maximum value of 90% as in Fig.

5.5. Thus a change in the duty cycle is observed with a change in the modulation

index.

Fig. 5.3. Wireless Link Distance of 1 foot, ma = 0.12.
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Fig. 5.4. Wireless Link Distance of 1 foot, ma = 0.5.

Fig. 5.5. Wireless Link Distance of 1 foot, ma = 0.9.
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5.3 Wireless Link - 18 Feet Separation

The next step was to test the wireless link for a distance of 18 feet. As it was

observed from the previous results that the receiver did receive the exact duty cycle as

of the transmitter, it was considered safe to connect the receiver to the inverter. Since

the distance was increased to 18 feet, connecting the antenna to the radio module

was mandatory for a clear communication.

This part of the experiment was performed in the order of the following sections.

5.3.1 Resistive Load

As the radio module was connected to the three phase inverter, to make sure that

the six PWM signals worked as desired and the output voltage of the inverter was

appropriate, a resistive load was connected at the output of the inverter. Each phase

of the inverter was connected to a 100 Ω resistance as load. The DC link voltage

for the inverter was at a constant value of 20V and the frequency of the reference

voltages was set at 60Hz in the software. The receiver dsPIC was programmed with

the PWM algorithm of the AC motor. The duty cycle at the receiver end for ma

= 0.12, 0.5 and 0.9 was monitored and three phase voltage at the inverter output

was observed. Fig. 5.6, 5.7 and 5.8 represent the duty cycle at the receiver for a

modulation index of 0.12, 0.5 and 0.9.

It is observed from Fig. 5.6 that for a ma = 0.12, the duty cycle was at 12%.

On increasing the ma value to 0.5, the duty cycle changed to 50.6% as in Fig. 5.7.

For a higher ma = 0.9, the duty cycle switched to 90% as shown in Fig. 5.8.

Fig. 5.9 represents the line-to-line voltage of the inverter. The line-to-line voltage

for this inverter is a three level signal. The line-to-neutral voltage of the inverter is as

shown in Fig. 5.10. The line-to-neutral voltage is a five level signal. These voltages

remain fixed even when the modulation index is changed.
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Fig. 5.6. Wireless Link Distance of 18 feet, ma = 0.12.

Fig. 5.7. Wireless Link Distance of 1 foot, ma = 0.5.
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Fig. 5.8. Wireless Link Distance of 18 feet, ma = 0.9.

Fig. 5.9. Line-to-Line Voltage at Inverter Output.
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Fig. 5.10. Line-to-Neutral Voltage at Inverter Output.

5.3.2 AC Motor

After performing the experiments in section 5.3.1, the inverter output voltages

and the receiver duty cycle for a wireless communication distance of 18 feet were

validated. Hence, the next step was to connect the AC motor at the output of the

inverter. The AC motor is a heavily inductive load. The three phase output of the

inverter were connected to the three phases of the AC motor. The program in the re-

ceiver dsPIC was kept same as the previous test i.e. PWM algorithm for AC motors.

The frequency of the reference voltage was reduced to 10Hz and the DC link voltage

was kept at 30V constant. The potentiometer at the transmitter end was set to 0.12

modulation index. The motor was then switched ON. For a modulation index of 0.12,

the motor did not start rotating. As the modulation index was gradually increased,

the motor started rotating and its speed was observed to be changing with a change

in the modulation index. The maximum speed of rotation for this case was observed

at ma = 0.9.
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The motor current was observed for modulation index of 0.12, 0.5 and 0.9. Fig.

5.11, 5.12 and 5.13 represent the motor current for ma = 0.12, 0.5 and 0.9 respec-

tively. The line-to-line voltage was observed to be same as that for the resistive load.

This voltage is as shown in Fig. 5.14.

Fig. 5.11. AC Motor Current for ma = 0.12.

The scale for all the three plots for the motor current has been kept constant at

200 mA/div. Hence just by observation, it can be concluded that an increase in the

motor current is observed as the modulation index is changed from 0.12 to 0.9. This

increase in current corresponds to a increase in the speed of the motor.



42

Fig. 5.12. AC Motor Current for ma = 0.5.

Fig. 5.13. AC Motor Current for ma = 0.9.
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Fig. 5.14. Line-to-Line Inverter Voltage with AC motor Connected.

5.3.3 DC Motor

After the experiment involving AC motor, the next step is to check for DC motor.

One of the applications that the proposed system focuses on is the implementation

of this drive in ceiling fans. Thus the motor under consideration will be a DC motor.

Due to unavailability of a DC motor, this tests was performed by connecting a resistive

load between two of the three phases of the inverter output. The dsPIC at the receiver

was programmed with the PWM algorithm for DC motors. The DC link voltage was

set to 17V . Fig. 5.15 shows the experimental set up at the receiver end for the

DC motor. The PWM signals at the receiver were observed for ma = 0.12, 0.5 and

0.9. Fig. 5.16, 5.17 and 5.18 represent the PWM signal for ma = 0.12, 0.5 and 0.9

respectively.

From Fig. 5.16, 5.17 and 5.18 it can be observed that for a load connected

between the two phases of the inverter, on implementation of the DC motor PWM

algorithm, the duty cycle corresponding to the modulation indices can be obtained.

From Fig. 5.16 for a ma = 0.12, a duty cycle of 12% is obtained. A 50% duty cycle
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Fig. 5.15. Experimental Set up for DC Motor.

Fig. 5.16. PWM for ma = 0.12, DC Motor Application.

is obtained when the modulation index is increased to 0.5 as shown in Fig. 5.17.

While it can be seen from Fig. 5.18 that 90% duty cycle is obtained on setting up the

modulation index to 0.9. Thus for a DC motor application, increasing the modulation

index increases the duty cycle of the PWM and hence the speed of the motor.
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Fig. 5.17. PWM for ma = 0.5, DC Motor Application.

Fig. 5.18. PWM for ma = 0.9, DC Motor Application.
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6. CONCLUSION

The proposed system with integration of zigbee to the motor drive system was suc-

cessfully implemented and tested. The speed of rotation of an AC motor and the duty

cycle for the DC motor application were observed as a function of the modulation

index, thus validating the PWM strategy for both AC and DC motors. The modu-

lation index was continuously changed using the potentiometer from 0.12 to 0.9 and

back to 0.12, and the corresponding change in the speed of the motor was observed.

The Xbee modules which operate on the zigbee protocol were set to a baud rate of

9600. The fast RF- transmission due to its operation in the transparent mode helps

in immediate transfer of the data from the transmitter to the receiver end. The ease

of configuration of the radio modules by using AT commands and simplicity in the

network set up makes Xbee radios one of the best choice for this application. With

the transmission range of nearly few 100 feet makes this application user friendly for

remote access.

As discussed in the chapters above, the system is implemented for both AC and

DC motors. The hardware is kept same for both the motor operation. By changing

the reference voltages, the PWM algorithm for AC motors was converted into the

PWM algorithm for the DC motor. Hence ease of implementation became a major

advantage. By keeping the same hardware for the drives of AC and DC motor, over-

all cost saving can be achieved in processes where one motor replaces other. Also in

applications such as irrigation, the speed control from a remote distance can be of

great use.

The Sinusoidal PWM technique is one of the most basic PWM algorithms that

can be developed and tested. By making use of dsPIC33F, digital PWM signals were

obtained which have better accuracy as compared to their analog counterparts. Since

the chosen dsPIC had PWM pins devoted to motor control application, implementa-
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tion of six PWM signals was done with minimal hardware.

The inverter was a conventional three phase inverter with a 3 level line to line

voltage. The three phase AC motor was connected to the three phases of the inverter

and the experiments were successfully performed. For the DC motor application, a

resistive load was connected between two of the three phases and the experiments

were successfully performed.

The future extension of this system can comprise of developing an algorithm to

find the type of motor connected and setting up the PWM algorithm with respect to

that. Secondly various PWM techniques can be implemented to improve the quality

of output voltage which will ensure better operation of the motor. A higher version

of Xbee module can be implemented to further increase the range and expand this

two point system to a multipoint network.
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