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ABSTRACT

Author: Mueid, Rifat M. MSECE
Institute: Purdue University
Degree Received: May 2017
Title: Vehicle-Pedestrian Interaction using Naturalistic Driving Video through Trac-
tography of Relative Positions and Pedestrian Pose Estimation.
Major Professor: Lauren A. Christopher.

Research on robust Pre-Collision Systems (PCS) requires new techniques that will al-

low a better understanding of the vehicle-pedestrian dynamic relationship, and which

can predict pedestrian future movements. Our research analyzed videos from the

Transportation Active Safety Institute (TASI) 110-Car naturalistic driving dataset

to extract two dynamic pedestrian semantic features. The dataset consists of videos

recorded with forward facing cameras from 110 cars over a year in all weather and illu-

mination conditions. This research focuses on the potential-conflict situations where

a collision may happen if no avoidance action is taken from driver or pedestrian. We

have used 1000 such 15 seconds videos to find vehicle-pedestrian relative dynamic

trajectories and pose of pedestrians. Adaptive structural local appearance model and

particle filter methods have been implemented and modified to track the pedestrians

more accurately. We have developed new algorithm to compute Focus of Expansion

(FoE) automatically. Automatically detected FoE height data have a correlation of

0.98 with the carefully clicked human data. We have obtained correct tractography

results for over 82% of the videos. For pose estimation, we have used flexible mix-

ture model for capturing co-occurrence between pedestrian body segments. Based

on existing single-frame human pose estimation model, we have introduced Kalman

filtering and temporal movement reduction techniques to make stable stick-figure

videos of the pedestrian dynamic motion. We were able to reduce frame to frame
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pixel offset by 86% compared to the single frame method. These tractographs and

pose estimation data were used as features to train a neural network for classifying

‘potential conflict’ and ‘no potential conflict’ situations. The training of the network

achieved 91.2% true label accuracy, and 8.8% false level accuracy. Finally, the trained

network was used to assess the probability of collision over time for the 15 seconds

videos which generates a spike when there is a ‘potential conflict’ situation. We have

also tested our method with TASI mannequin crash data. With the crash data we

were able to get a danger spike for 70% of the videos. The research enables new anal-

ysis on potential-conflict pedestrian cases with 2D tractography data and stick-figure

pose representation of pedestrians, which provides significant insight on the vehicle-

pedestrian dynamics that are critical for safe autonomous driving and transportation

safety innovations.
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1. INTRODUCTION

Vehicle (driver)-pedestrian interaction is a very important aspect for transportation

safety, especially as driving becomes more autonomous. Current systems operate

mainly using Crash Imminent Braking (CIB) where the brakes are only applied at the

last minute to avoid collisions. As driving becomes more autonomous, earlier actions

by the vehicle must be developed in a more comprehensive way to avoid getting into

the CIB situations. The dynamic behavior of the pedestrian in traffic can indicate

whether the pedestrian is aware or unaware of the oncoming vehicle. Pedestrians also

have a negotiation strategy for crossing traffic which is dynamic in nature, and the

pedestrian pose (waving vehicle ahead, running, starting and stopping) can indicate

to the vehicle important information.

This research has been built on the extensive database of naturalistic driving data

taken in recent years at Indiana by Transportation Active Safety Institute (TASI)

in Indiana University-Purdue University Indianapolis (IUPUI). This study collected

continuous video using forward-facing camera and synchronized other vehicle data

from 110 cars for over 1 year of driving. The overall dataset includes video, GPS,

accelerometer, vehicle velocity, time, and other information. During the preliminary

analysis, HOG-based automatic pedestrian detection algorithm has been applied to

search for pedestrian from the raw video, and corresponding short video clips were

generated. Combing these video clips and GPS-based map information, data was

then manually extracted identifying the traffic controls (stoplights, stop signs, etc.),

crosswalk, average speed of pedestrian, location, etc. There were around 62,000

pedestrian detections and of these there was about 3000 ‘potential conflict’ (vehicle-

pedestrian interaction) cases identified in the database. ‘Potential conflict’ is defined

as if the direction and current speed of vehicle or pedestrian are not changed, they

would cross at a point.
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We have used machine learning techniques to analyze 1500 such ‘potential con-

flict’ videos to classify and understand the dynamic vehicle-pedestrian interactions.

We have implemented visual tracker model [1–3] to recognize pedestrians and track

them. Then, we have computed depth and lateral position of the pedestrians with re-

spect to the vehicle. Next, we have employed the flexible mixture-of-parts method [4]

to estimate human pose, and made some improvements to the basic algorithm. We

have used this semantic behavior features data to inform a classification process, em-

ploying machine learning, to cluster behaviors into possible scenarios and provide an

understanding of the significance of these new semantic features. We have also applied

our method to TASI mannequin crash data to verify the accuracy of the algorithm.

The results of this research can be used for developing autonomous driving rules, or

for autonomous vehicle testing. Most part of the research has been presented in 45th

IEEE Applied Imagery Pattern Recognition (AIPR) workshop (2016) in Washington

D.C. and the paper is awaiting publication [5].

1.1 Objective and Motivation

Vehicle (driver)-pedestrian interactions such as: relative distances, trajectories,

instantaneous velocities, and human pose changes all convey semantic information

that can be used to interpret the behaviors of human subjects with respect to the

vehicles autonomous or semi-autonomous driving system. The objective is to extract

these data from existing naturalistic driving video through machine learning and

tracking, modeling pedestrian-vehicle interactions in terms of crash avoidance and

crossing/passing negotiation, and test the hypothesis through statistical analysis to

explore these relationships.

According to National Highway and Traffic Safety Administration, in the US,the

number of pedestrian fatalities in traffic crashes in the year 2015 was 5,376 [6]. If we

are able to understand pedestrian behavior and predict their future movement, it is

possible to reduce the number.
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1.2 Literature Review

This research uses existing pedestrian detection method [7], modifies and improves

the tracking and 3D tractography of our previous work [2], improves pose estimation

from the existing literature [4], and combines it all into a machine learning classifier

to detect ‘potential conflict’ situations. The literature is reviewed for each of these

four cases.

1.2.1 Pedestrian Detection

A wide variety of techniques is used to detect pedestrians. Wavelet templates have

been used as described in [8] to detect pedestrians in static images of cluttered scenes.

The combination of local and global features via probabilistic top-down segmentation

have been used to detect pedestrians in crowded scenes [9]. A template hierarchy and

combined coarse-to-fine technique in shape and parameter space is used in [10] to

detect pedestrians in moving vehicle. Pedestrian detection with unsupervised multi-

stage feature learning is employed in [11]. In recent years, deep learning techniques

have been used in a lot of research to detect pedestrians [12–15]. Deep network

cascade, deformable template model, HOG based descriptor, etc. have been used

for different real-time pedestrian detection systems [16–18]. Sixteen state-of-the-art

pedestrian detectors have been evaluated across six different datasets in [19]. We have

used pedestrian detection method using multimodal HOG for extracting pedestrian

features as described in [7].

1.2.2 Pedestrian Tracking

A shape model for pedestrians and an effective variant of the condensation tracker

is employed in [20] to track pedestrians from moving vehicle. Pedestrian activity can

be understood and classified with motion history image, HOG and SVM in [21]. A

combination of Kalman filter and mean shift tracking has been used to track pedes-



4

trian with night vision camera [22]. A prototype of automotive Pedestrian Protection

Systems (PPS) has been implemented with a passive stereo vision configuration to

have 3D vision sensing for pedestrian tracking [23]. Along with vision, LIDAR work

with gaussian mixture model classifier and adaBoost classifier to detect and track

pedestrian in [24]. Robust multi-person pedestrian tracking has been demonstrated

in [25–27] using different techniques. For tracking in real-time, HOG and template

matching approach have been employed in [28–30]. We have used adaptive struc-

tural local sparse appearance model and particle filter method to track pedestrians

as outlined in [1, 3].

1.2.3 Pose Estimation

Flexible mixture model for encapsulating contextual co-occurrence relations be-

tween parts has been used for pose estimation in [4, 31]. Fast pose estimation meth-

ods have been developed using hash functions and iterative optimization in [32, 33].

Tracklet-based estimations have been described in [34] to have monocular 3D pose

estimation. In contemporary research work, deep learning has been used extensively

for pose estimation. Deep Neural Network (DNN), Deep Convolutional Network, and

multi-source deep learning has been used to find pose estimation [35–38]. We have

used articulated pedestrian pose estimation method using flexible mixture parts as

described in [4, 31].

1.2.4 Combination for Classification

There has been a lot of research on autonomous and semi-autonomous driving

recently. The prospect of autonomous driving in all situations is still a challenging

problem. The long term challenges that have to be overcome in vehicle safety in

autonomous driving, especially in urban environments, is described in [39]. In [40],

challenges faced by an autonomous vehicle named ‘Boss’, equipped with GPS, lasers,

radars and camera, is outlined.



5

Several crash avoidance system prototypes have been developed understand col-

lision situations and test the designed system. Mannequins have been developed for

evaluation of pre-collision systems in [41]. Collision avoidance model has been devel-

oped with predictive control with multi-constraints in [42]. Semi-autonomous multi-

vehicle collision avoidance algorithm has experimented in an intersection testbed

in [43]. Our research on this area is new and different compared to what others

have done. We have used tractography and pose data to train a neural network to

classify between ’potential conflict’ and ’no potential conflict’ situations, and also find

the probability of collision for each second.

1.3 Our Contributions

This research explores challenges on autonomous driving scenarios and pedestrian

behavioral feature extractions. Our primary contributions to this research are:

• Improving pedestrian tracking algorithm for moving camera for more accurate

tractography.

• Developing new algorithm for calculating Focus of Expansion automatically for

automating tractography.

• Predicting intermediate frame body pose of pedestrian if the pose is wrong or

unrecognizable.

• Estimating stable and continuous pedestrian pose in frames using distance fac-

tor, Kalman filter and smoothing filter.

• Combining the tractography and pose data into a classifier achieving high ac-

curacy of detecting potential conflict situations.
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1.4 Organization

Our detailed research work is presented in the next three chapters and the dis-

sertation concludes in the fifth chapter. In the next chapter, chapter 2, we discuss

the theory and implementation process of the tractography. In chapter 3, we talk

about the theory, modifications and improvements of pose estimation. In chapter 4,

we present the results and statistically analyze the data.
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2. TRACTOGRAPHY

To understand pedestrian semantic behavior, it is important to understand the dy-

namic relative positions of the vehicle and the pedestrian. Therefore, we need a trace

of this data over time. The total process of the tractography data extraction is shown

in the block diagram of Fig. 2.1. In this chapter, we discuss the techniques in details

that have been used to determine pedestrian-vehicle spatial position. We complete

the task in three steps as following:

1. Tracking the pedestrian.

2. Calculating Focus of Expansion.

3. Creating tractograph from the data obtained in first two steps.

Fig. 2.1. Block diagram for tractography data extraction.
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2.1 Tracking

Precise tractography data largely depends on the accuracy of the tracking. The

tracking is important for two reasons:

1. The pedestrian must be tracked well in each frame to create an accurate graph.

2. The dimension of the tracking box around the pedestrian is later used for cal-

culating depth and lateral position.

In this case we have used the adaptive structural local appearance model and

particle filter methods described in [1–3]. From this base algorithm, we have done

extensive experiments with these methods and modified several parameters so the

code is best customized for pedestrians.

2.1.1 Pedestrian Detection

Pedestrians were extracted beforehand using (HOG-based) pattern recognition

techniques [7] from the TASI 100 car naturalistic video dataset. After detection

of a single pedestrian (verified manually and best pedestrian image frame chosen

manually), these videos were organized into 5 seconds and 15 second videos centered

in time on the detected pedestrian single frame. A database of manually identified

features was made, and we used one of these features as the starting point for this

research: potential conflict. Potential conflict is defined as if the direction and current

speed of vehicle or pedestrian would cross at a point. Because we had no crashes,

this implied that either the vehicle or the pedestrian changed speed or trajectory to

avoid the collision. We have used these 15 second videos with potential conflict cases

as our analysis starting point. Each video in the database has a log that contains

some data analyst information, including position boxes of pedestrians and bicyclists

in a frame and the reference frame number (out of the 15 seconds of frames). In our

research, we used this log file for the starting frame and position box to further track

the pedestrian in both directions (forward and back in time) from this center frame.
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2.1.2 Particle Filter Method

The particle filter gives an approximation of the posterior distribution of a random

variable that is related to a Markov chain as described in [3]. It gives a key tool for

estimating the target in the next video frame without knowing the actual observation

probability. The method consists of two major steps: prediction and update.

At the frame t, xt describes the shape and location of the pedestrian. The

observation of the pedestrian from the first frame to the frame t1 is denoted by

y1:t1 = {y1, y2, ..., yt1}. The filter proceeds two steps mentioned above with the fol-

lowing two probabilities:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (2.1)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1
(2.2)

The maximal approximate posterior probability is used to find the optimal state

for the frame t is as follows: x∗t = argmax(p(x|y1:t)). The posterior probability as

described in equation 2.2 is estimated by using finite samples St = {x1t , x2t , ..., xNt } with

different weights W = {w1
t , w

2
t , ..., w

N
t } where N represents the number of samples.

Using sequential importance distribution
∏

(xt|y1:t, x1:t−1), the samples are generated

and weights are updated by:

wi
t ∝ wi

t−1
p(yt|xit)p(xit|xit−1)∏

(xt|y1:t, x1:t−1)
(2.3)

In the case of
∏

(xt|y1:t, x1:t−1) = p(xt|xt1), the equation 2.3 has a rather simple

form wi
t ∝ wi

t1p(yt|xit). To avoid degenerate increase of particle weights, in every step,

samples are re-sampled to generate new sample set corresponding to their weights

distribution. So, the weights in new sample set reflect the similarity between a target

pedestrian candidate and target pedestrian template.
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2.1.3 Implementation Process

Using the initial pedestrian detection described in section 2.1.2, we use the par-

ticle filter method to find pedestrian in all frames from the center frame [2]. The

implementation process is given below:

1. The target template is obtained from the reference frame using the log infor-

mation as shown in Fig. 2.2. Then we apply an affine transformation to make

a customized template size.

Fig. 2.2. Target template from the reference frame.

2. Using particle filter method, target candidates or particles are generated. In

our case the number of generated particle is 600. A Gaussian distribution is

employed to model the state transition distribution. An example of 7 particle

windows are shown in Fig. 2.3.

3. Region of interest (ROI) from the image is cropped by applying an affine trans-

formation in Fig. 2.3 using the state information of the pedestrian as parameters
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Fig. 2.3. Generated particles.

described in section 2.1.2. Then, the cropped image is normalized to have its

dimension same as the dimensions of the target template.

Fig. 2.4. Cropped ROI with affine transform.
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4. The similarity between the target candidates and the target template is calcu-

lated and the most similar one is found. Five target templates from Fig. 2.3

and the most similar with a circle is shown in Fig. 2.4.

5. The weights of particles are updated based on the computed similarity results.

The process is repeated in both temporal directions from the reference frame. The

tracked box positions for all frames are stored to be used later for the tractography

plot.

2.2 Focus of Expansion

The Focus of Expansion (FoE) is an important parameter to compute the relative

distance between the pedestrian and vehicle, and the height parameter of the FoE

strongly effects the depth calculation in the tractography as showed in the error

analysis in [2]. We have improved the automation of the FoE calculation. We calculate

this automated focus of expansion using the following process:

1. Take 30 frames (a 1-second clip) of a sequence where the vehicle is moving in

the videos, then average them, forming a single image. This produces a smear

of the video, centered at the FoE. This is shown in the left column of Fig. 2.5.

2. Apply a Hough transform to find lines in the image which will converge to

the FoE, along the smeared video. Some lines are then eliminated based on

orientation angle, as the FoE is expected only in the center of the image, and

must pass through a center ROI. These remaining lines are extended in both

directions and are shown in the center column of Fig. 2.5.

3. Calculate the FoE from the intersection of lines using the center of mass of the

crossing points of the lines as the expected FoE, as shown in the right column

of Fig. 2.5 (small red ‘x’ in FoE center).
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Fig. 2.5. Focus of Expansion. Averaged image (left column), Ex-
tended hough lines (center column), FoE detection (right column).

We have applied several conditions and imposed restrictions to find out the ac-

curate FoE. For more accuracy, we have calculated FoE for each second and selected

the best one (highest number of lines, with low variance for the crossing points) for

the total video.

We have used automatically generated FoE data to compare with the carefully

clicked FoE data by humans. We have stated above that the height parameter (y) of

FoE strongly affects the depth calculation. So, it is very important to have an accurate

height measurement from automatic FoE algorithm. The automatically detected FoE

height have a correlation of 0.98 with the human clicked FoE height. However, the

width parameter has a correlation of 0.70. The result is not as good for the width

parameter (x) mainly when the car changes its direction, the FoE width moves in the

same direction. From the tractography, this performance is adequate, as it does not

affect the error as strongly. The results are plotted in figures 2.6 and 2.7.
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Fig. 2.6. Comparing height parameter of automatic vs. human clicked FoE.

Fig. 2.7. Comparing width parameter of automatic vs. human clicked FoE.

2.3 Tractography Data Extraction

2.3.1 Depth and Lateral Position Calculation

We have developed a prototype of calculating distance from camera to pedestrian

(depth) and lateral position using computer vision techniques combined with 2D to
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3D projection geometries. The geometric relationship between a pedestrian and the

pedestrian projection of the image plane is shown in Fig. 2.8 as described in [44,45].

Fig. 2.8. Pedestrian projected in the image plane.

In Fig. 2.8, X, Y, Z denotes euclidean coordinates, F denotes focal length, S de-

notes size of the pedestrian and s denotes size of the pedestrian in the image plane.

We can get the following equation from the geometric relationship of Fig. 2.8.

1

s
=

Z

S ∗ F
(2.4)

The distance of the pedestrian from camera was calculated first to determine the

lateral position as described in [2] and [46]. To do so, the geometry of the pedestrian

is shown Fig. 2.9.
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Fig. 2.9. Geometry of pedestrian (side view).

In the Fig. 2.9, Z represents the distance of pedestrian from camera (depth), H

represents height of the camera, θh represents the vertical angle of the horizon with

the camera axis, and θbv represents the vertical angle of the pedestrian’s bottom with

camera axis. If the horizon and the pedestrian’s bottom edge are defined in the image,

the angles of θh and θbh can be determined. In our case, the horizon was specified

with FoE and the pedestrian’s bottom edge was found in tracking part, both described

above. The equation 2.5 is used to calculate distance Z.

Z =
H

tan(θbv − θh
) (2.5)

To determine the lateral position, we need a top view geometry of the pedestrian.

This is shown in Fig. 2.10. In the figure, Xc and Zc signify pedestrian position in the

coordinate system with respect to the camera, Xv and Zv signify pedestrian position

in the coordinate system with respect to the camera, θc signifies the angle between

vehicle moving direction and camera axis, and θbh signifies the horizontal angle of the

pedestrian in the camera coordinate system. The vehicle moving direction was found
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Fig. 2.10. Geometry of pedestrian (top view).

from the FoE, and the θbh was computed from the tracking rectangle. The rotation of

the coordinate systems is shown in equation 2.6 and 2.7, which are used to compute

lateral position Xv.

Xc = Zctanθbh (2.6)

Xv

Zv

 =

cosθc −sinθc
sinθc cosθc

Xc

Zc

 (2.7)

2.3.2 Tractography Results

Understanding of the vehicle-pedestrian dynamic position is very important for

understanding of vehicle-pedestrian semantic behavior. Therefore, we need to plot the
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relative distance of pedestrian from vehicle over time. The time series of the tracks

can be collected together and visualized as a tractograph as shown in Fig. 2.11.

Fig. 2.11. Tractograph of 40 videos.

In this figure, the instantaneous positions of 40 randomly chosen pedestrian videos

have been overlaid into a single plot. The graph is relative position of the pedestrian

with respect to the vehicle position, where the vehicle is centered anchored between

the dashed lines at the center-bottom of the graph. The start point (first appearance

of the pedestrian in time) is denoted by red ”o” and end point (disappearance point)

is denoted by red ”x”. The direction of the movement with time is denoted by the

color of the trace as shown in the sidebar of the figure. The sidebar scale represents

frame number at 30 frames per second. So, from the color of a trace at the end point

we can understand how much time that trace denotes. The features from the relative



19

positions and dynamic behaviors developed from this tractography can also be used

to inform the semantic human-vehicle interaction. Later in the data analysis, large

variations may be smoothed with filtering or outliers eliminated to produce smoother

tracks. Also, we know from our previous work [2], that the position data accuracy

reduces with distance from the car, so the best region of interest for accurate data

will be in a half circle in front of the car. Typical scenarios can then be gleaned from

this data that are useful for autonomous driving control or for testing such vehicle

systems.

From the database of our TASI 110-car study, human generated vehicle-pedestrian

motion has tagged this pedestrian motion into four different broad categories:

1. Pedestrian crossing from right to left (of the vehicle).

2. Pedestrian crossing left to right.

3. Pedestrian walking towards the vehicle.

4. Pedestrian walking in the same direction as the vehicle.

These four scenarios are shown in figures 2.12 to 2.15, collecting 15 cases of each

scenario.

Tractography can give us significant insight of vehicle-pedestrian negotiation. For

example, when pedestrian walking in the opposite direction of the vehicle the relative

distance decreases very fast. We can see that for some cases in Fig. 2.14 relative

distance (depth) has decreased a lot in just a small period of time which is visualized

by a little change in color. This we can glean from the color change in the trace. This

understating can be an important factor for calculating risk factor, time to collision

and other parameters which are essential for autonomous driving.
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Fig. 2.12. Pedestrians crossing from left to right.

Fig. 2.13. Pedestrian crossing from right to left.
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Fig. 2.14. Pedestrians walking towards the vehicle.

Fig. 2.15. Pedestrians walking with the vehicle.
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2.4 Conclusion

In this chapter, we have discussed the theory and implementation process of the

tracking algorithm based on adaptive structural local appearance model and particle

filter methods. Then, we detailed how we used a novel method to calculate FoE

automatically. Finally, we have created tractograph using tracking and FoE data

and interpreted the graphs. In the next chapter, we will dive into the details of our

modified pose estimation algorithm.
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3. POSE ESTIMATION

Pose estimation is very important for understanding pedestrian semantic behavior.

We have used an articulated flexible mixture model for human pose estimation in

static images based on a representation of part models described in [4]. The total

process of pose estimation is shown in the block diagram in Fig. 3.1.

3.1 Video Frame Processing

Frames of a video are cropped using the pedestrian position information from the

tracking. The cropped images are little larger than the box size. In our case, we will

provide these cropped images from tracking as input rather than the whole image to

reduce computational time.

3.2 Image Preprocessing

For image preprocessing, initially we used histogram equalization and adaptive

histogram equalization. Though adaptive histogram equalization performed better

than histogram equalization, we experimented with different sharpening filters for

more accuracy. Sharpening filter with an unsharp masking performed better than

adaptive histogram equalization. However, adaptive histogram equalization along

with the sharpening filter performed almost as good as the sharpening filter alone.

So, we used the sharpening filter alone and also both sharpening filter and adaptive

histogram equalization interchangeably to boost the high frequency components of

the images. This is a very important finding from our current research that for natu-

ralistic videos sharpening alone or combination of sharpening and adaptive histogram

equalization perform better than solo histogram equalization or adaptive histogram
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Fig. 3.1. Block diagram for pose estimation.
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equalization. The original paper [4] used very good high-contrast, high resolution

human figure pictures. Our data has varying resolutions and contrast, due to the

natural light variation across the day, and the distance to the pedestrian.

3.3 Articulated Pose Estimation with Flexible Mixture of Parts

The pose estimation method that we used does not use articulated limb parts,

but rather captures how the templates of each part orient with each other. A gen-

eral, flexible mixture model is used for capturing co-occurrence relations between

segments. Then, standard spring models are augmented that encode spatial rela-

tions. It has been shown in [4] that such relations can capture notions of underlying

local structure. The model can be effectively optimized with dynamic programming

when co-occurrence and spatial relations are tree-structured.

A feature pyramid is created for each image considering all limb parts of the

human. Corresponding confidence scores are also calculated for each limb part. Then

a dynamic programming algorithm is implemented to select the best combination

of the parts and a corresponding confidence score of the whole human pose is also

calculated. The pedestrian is modeled with 14 part articulated parts as shown in Fig.

3.2.

Let, the image is represented with I. In the image, pi = (x, y) denotes the pixel

location of part i and ti denotes the mixture component of part i. In order to score of

a configuration of parts, a compatibility function for part types is defined in equation

3.1 which considers sum of local and pairwise score [4].

S(t) =
∑
i∈V

btii +
∑
ij∈E

b
ti,tj
ij (3.1)

In above equation, particular co-occurrence of part types is favored by the pairwise

parameter b
ti,tj
ij while particular type assignment for part i is favored by parameter

btii . The full score corresponds to a configuration of part types and positions is

calculated with equation 3.2 where φ(I, pi) is a feature vector. The pedestrian parts
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Fig. 3.2. Pedestrian body pose model.

are modeled with G = (V,E), a (tree-structured) K-node relational graph, to learn

which collections of parts are rigid to find corresponding pose estimation.

S(I, p, t) = S(t) +
∑
i∈V

wti
i · φ(I, pi) +

∑
ij∈E

w
ti,tj
ij · ψ(pi − pj) (3.2)

Using dynamic programming with tree-structured G = (V,E) graph, the local score

of part i and for every j, the best scoring position and location of part i are computed

with equations 3.3 and 3.4 respectively.

scorei(ti, pi) = btii + wi
ti
· φ(I, pi) +

∑
k∈kids(i)

mk(ti, pi) (3.3)

mi(tj, pj) = max
ti

b
ti,tj
ij + max

ti
score(ti, pi) + wti,tj · ψ(pi − pj) (3.4)
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3.4 Temporal Movement Factor

From the original algorithm, we have improved the result by using temporal in-

formation. At this step, we choose the single best (highest confidence score) frame

of the pose estimation in the video sequence. Then, the algorithm is modified to

extend in both temporal directions to estimate the new adapted human pose. For

this purpose, we track the confidence scores and we also consider relative position

of the human limb parts in the frame compared to previous three frames, as human

movement should be small from frame to frame. The new algorithm then selects the

best pose using confidence score and relative distances. It is shown in Fig. 3.3.

Fig. 3.3. The top row stick figures with original algorithm [4]. The
bottom row stick figures with the new improved algorithm with pre-
processed images and temporal information.
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3.5 Kalman Filter

To further improve the result, we have used Kalman filter to estimate the future

location of the different body parts that has been used to create the estimated stick

figures. It improved the result significantly, especially with the frames where there

was missing pedestrian pose data. We could predict the stick figure joint locations of

the non-detected frame with the Kalman filter. The filter also did a very good job at

reducing the weight of the wrong detections among frames.

3.6 Smoothing Filter

After the use of Kalman filter, a moving average smoothing filter was to smooth

the changes of positions of the stick figures. The final output is the stable and smooth

stick figures of the pedestrian poses.

Fig. 3.4. Pedestrian pose estimation.
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3.7 Final Results

Using the above described method, we have been able to reduce frame to frame

pixel offset by 86% compared with the previous single frame model. Ten consecutive

output frames for pedestrian pose estimation for three videos are shown in Fig. 3.4.

3.8 Conclusion

In this chapter, we have discussed the theory and implementation of the pose

estimation step by step. It includes how we did the image preprocessing, how we did

different filtering, and how the original algorithm was modified to suit our purpose.

In the next chapter, we will analyze the data that we computed in tractography and

pose estimation.
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4. CLASSIFICATION AND STATISTICAL DATA

ANALYSIS

We have analyzed the data that we obtained from tractography and pose estimation

in this section. We have used neural network to train a classifier using tractography

and pose data to identify and classify ‘potential conflict’ situations. The reasons for

choosing neural network includes [47]:

1. An ability to learn how to perform a task based on the given training data.

2. Neural network can create its own representation of the information when re-

ceiving during the training time.

3. Neural network is fault tolerant via redundant information coding.

We haven’t used deep learning because the size of the training dataset is not large

enough. We have used feature selection to check if we can remove some redundant

features from training set.

We have used 34 examples of the 5-second video sequences that were human-

labeled with ‘potential conflict’ signifying that at some point in the video, the path

of the pedestrian and the path of the automobile would cross (without avoidance

behavior). Since none of the vehicles in our study encountered a true crash, we

were using the potential conflict as a training set for the statistical analysis. We

also obtained 34 vehicle-pedestrian 5 seconds videos that were labeled ‘no potential

conflict’. For example, a pedestrian on a sidewalk parallel to the motion of the

vehicle is considered ‘no potential conflict’. This data for 68 videos was used for

feature selection and neural network training.
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4.1 Feature Selection

Feature Selection can be a useful tool in the neural network in reducing the number

of features to train the network. But for our case, the tractography data is a time

series of data. So, if the series of data is used to train a neural network we can find

out which data points are most important. Again, we can check the pose data if any

articulated part is more prominent in determining if a situation is a potential conflict

or no potential conflict. For 5 seconds videos we have 150 frames. We have used 150

tractography data points as 150 features. Here, Principal Component Analysis (PCA)

is done on the data point of (x,y) coordinates to make it a single feature. To get the

general idea of how each feature can separate the groups we have the Cumulative

Distribution Function (CDF) vs P value graph for the 150 features of tractography

as shown in Fig. 4.1.

Fig. 4.1. CDF vs P value for tractography features.
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As the CDF is zero for P values near zero, it is evident that no specific feature or

very few features can successfully classify between the groups. Though some features

are more dominant and some can be eliminated to reduce the feature dimension, the

reduction is not significant. The result is actually consistent with our experimental

result because as the features are time series of data, no single or few data points in

the time series can successfully separate the groups.

We also used the PCA for pose estimation to have one feature for each articulated

body part. To find the dominant articulated part or parts from pose estimation data

which can classify between the groups we produced the graph shown in Fig. 4.2.

Fig. 4.2. CDF vs P value for articulated parts.

From the graph, we can understand that no single articulated part movement

can successfully classify the groups. But, all parts comprehensively can be used to

separate group for the case of pose estimation.
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4.2 Neural Network Training

First the Principle Component Analysis (PCA) was done on the input data (trac-

tography and pose) similarly as it was done for feature selection, and then a 2-layer

neural network was trained with this input. We randomly sampled the input PCA

data into 70% training, 15% validation, and 15% test. The training of this network

achieved 91.2% true label accuracy, and 8.8% false label accuracy. This can be seen

in the blue square of the All Confusion Matrix in Fig. 4.3.

Fig. 4.3. Confusion matrix for trained neural network.
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It is common in neural net research that random sampling of test and training

data and different initial conditions will affect the confusion matrices on 68 data size.

In our case, as can be seen in Fig. 4.3, the result for test confusion matrix is not so

good. We got better results for test confusion matrix for other trainings when the

initial random test samples were different but we have used it because it had the

highest true positive for all confusion matrix.

4.3 Danger Assessment

Since any real-time system will not have the advantage of the ‘future’ time of the

whole interaction between the pedestrian and the vehicle, the data must be labeled

over time, so this task is to run short segments of time through the trained network

to identify the key features that indicate potential conflict outcomes. As from the

tractography data we can extrapolate that there is a chance of collision if the path

of the vehicle and pedestrian crosses, it can be used for used for continuous danger

assessment over time.

Fig. 4.4. Danger assessment in a 15 seconds video.
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The neural network that we have trained to classify between potential conflict and

no potential conflict situations was used to assess the risk of collision over time for

the 15 seconds potential conflict videos, our main database for this project. Fig. 4.4

shows the probability of ‘potential conflict’ over 15 seconds of a video.

From Fig. 4.4, we can see that there is a chance of ‘potential conflict’ above the

threshold of 0.5 value around 9-11 seconds. The accuracy of the graph can be verified

manually by watching the video if really there is a ‘potential conflict’ situation in the

video in the same time as the spike of the graph.

(a) (b)

(c) (d)

Fig. 4.5. Danger assessment of more potential conflict videos.
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We have checked that for 90% cases the trained network can produce a spike

when there is visibly a ‘potential conflict’ situation. Some more examples of danger

assessment in potential conflict videos are shown in Fig. 4.5.

4.4 Mannequin Crash Data Analysis

In this section, we test our trained network with the mannequin crash data. Two

frames of a standard crash video are shown in Fig. 4.6 to understand the set up.

The crash video was captured in a TASI test site using TASI designed mannequins

which can be restored easily after crashing with a car [41]. We have used these crash

video to do the tracking of the mannequins, find FoE of the camera and eventually

tractography. We also did the pose estimation for the mannequins. Then, we used

these data to find the probability of collision using the neural net which we have

trained before. The danger assessments of some mannequin crash videos are shown

in Fig. 4.7.

In the danger assessment graphs, we can clearly see that there is a high probability

of collision and the mannequins did collude with the car. In two out of four videos,

the probability of collision almost reaches ‘1.0’ probability which signifies imminent

collision possibility.

For 70% of the crash videos, we get a spike which indicates the menacing proba-

bility of collision. But in a numeric sense, it is lower than what we got in the previous

section for ’potential conflict’ videos. There are several reasons for that. The primary

two reasons are:

1. When the pedestrian gets close to the car, the feet of the mannequins gets

occluded by the front part of the car. The occlusion in turn makes the size of

the mannequin smaller, resulting in apparent bigger distance from the car in

the tractography.

2. The occlusion of the feet in the tracking part contributes to the deterioration

of pose estimation as we use the tracking box to find pose estimation.
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For the above mentioned reasons, the pose estimation results for mannequins are

not as much accurate as pedestrians. In future, we will work to improve that.

Fig. 4.6. Two frames from a crash video.
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(a) (b)

(c) (d)

Fig. 4.7. Danger assessment of crash videos.

4.5 Conclusion

In this chapter, we have statistically analyzed the data obtained from chapter 2

and chapter 3. We have used feature selection and neural network to examine the

data. We have also trained a network to access the probability of collision and tested

the network with mannequin crash videos. In the next chapter, we will conclude the

dissertation and state we plan to do in future to improve the research.
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5. CONCLUSION

The long-term goal of the research is to enable advances in computer vision, robotics,

vehicle safety, and consumer electronics by capturing human semantic information

from naturalistic driving movies. This study will inform the future test scenarios and

provide more advanced concepts for autonomous driving systems about the probable

vehicle-pedestrian interactions.

As pedestrian-vehicle interaction is better understood, systems can be created to

reduce confusion and wrong decisions from the two parties, improve traffic efficiencies,

and prevent injuries or fatalities. In addition, the false alarms (false positives) from

these autonomous or semi-autonomous driving systems can be reduced, if normal

pedestrian behavior is understood.

5.1 Summary

In this research, we have improved the tracking algorithm to be better suited for

pedestrians and obtained accurate tractography for more than 82% of the videos. We

have developed a new algorithm to calculate Focus of Expansion automatically with

a height parameter correlation of 0.98 with the carefully manually clicked data. We

have been able to predict the future movement of the pedestrian using Kalman filter

and temporal movement factor reducing 86% of frame to frame pixel offset. Even if

the pedestrian is not detected or falsely detected, we can estimate pedestrian position

from the previous frames. So, we can get continuous pedestrian pose for all frames of

the video. Using all these information, we have successfully classified 90% pedestrian

and 70% mannequin potential conflict cases.
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5.2 Future Works

Even though we have achieved good results, there is room for improvements in

our research. In future, we will work on increasing the percent of videos with accu-

rate tracking. We would also like to work on improving the width parameter of the

automatically detected FoE. For pose estimation, when there is occlusion, especially

self-occlusion of pedestrian hand by the torso, the pose estimation doesn’t work very

well in that scenario. We will work to enhance the pose estimation accuracy in oc-

cluded scenes. To improve performance in occluded scenes, we should use only the

top of the human to approximate overall size of the human and distance between car

and pedestrian more precisely. Our major area of improvement in future would be

an upgrade of neural net performance for crash videos. We would also like to use

state-of-the-art deep learning techniques to understand vehicle-pedestrian semantic

behavior.
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