
30
 08 14

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

Department

To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement,
Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation
adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of
copyrighted material.

Ali Gholamjafari

A GENETIC ALGORITHM APPROACH TO BEST SCENARIO SELECTION FOR PERFORMANCE
EVALUATION OF VEHICLE ACTIVE SAFETY SYSTEMS

Master of Science in Electrical and Computer Engineering

Lingxi Li

Maher Rizkalla

Brian King

Lingxi Li

Brian King 07/18/2014

A GENETIC ALGORITHM APPROACH TO BEST SCENARIOS SELECTION

FOR PERFORMANCE EVALUATION OF VEHICLE ACTIVE SAFETY

SYSTEMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Ali Gholamjafari

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

May 2015

Purdue University

Indianapolis, Indiana

ii

First and foremost, I have to thank my parents for their love and support throughout

my life. Thank you both for giving me strength to reach for the stars and chase my

dreams. To all my friends, thank you for your understanding and encouragement in

my many, many moments of crisis. Your friendship makes my life a wonderful

experience. I cannot list all the names here, but you are always on my mind.

iii

ACKNOWLEDGMENTS

I would like to thank Dr. Lingxi Li for his endless academic and financial support

during my research and study, and provisions above the academic contexts. I would

like to thank my committee members Dr. Rizkalla and Dr. King for their assistance

and supervision in preparation of this thesis. Finally, I reserve special thanks for my

family, for their boundless mental, emotional, and financial support during my hard

work.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . viii

ABSTRACT . ix

1 INTRODUCTION . 1

1.1 Choosing a Subset of Accident Scenarios to Evaluate the Performance
of Pre-collision System . 1

1.2 Different Methods of Choosing a Subset of Accident Scenarios . . . 2

2 RELATED WORK . 5

3 PROBLEM FORMULATION . 8

3.1 The General Problem . 8

3.1.1 Accident Scenarios . 8

3.1.2 The Set of Constraints . 10

3.2 Model Verification with Experimental Data 11

3.2.1 Trimming the Scenario Table by Cleaning and Combining Sce-
nario . 11

3.2.2 Mapping the Scenarios . 11

3.3 Generating the Set of Constraints 11

3.3.1 A systematic Way to Determine the Frequencies of the Individual
Attributes . 13

3.4 The System as a Black Box . 23

3.5 Problem Formulation in Mathematical Form 23

4 EXHAUSTIVE SEARCH METHOD . 26

4.1 Results . 27

4.2 Performance and Limitations of Exhaustive Search Algorithm . . . 28

5 GENETIC ALGORITHM . 31

v

Page

5.1 Fundamentals of Genetic Algorithm 32

5.1.1 Initial Population . 32

5.1.2 Mutation . 32

5.1.3 Cross Over . 32

5.1.4 Evaluation Function . 32

5.1.5 Tuning . 33

5.1.6 Time and the Result . 33

5.2 Developing GA for the Scenario Selection Problem 33

5.2.1 Defining chromosomes . 33

5.2.2 Initial Population . 34

5.2.3 Cross Over . 38

5.2.4 Mutation . 40

5.2.5 Evaluation Function . 46

5.3 Intuition of our Approach . 50

5.4 Experimental Results . 52

5.4.1 Sample of Top Scenarios . 52

5.4.2 Convergence Table and The Accuracy 54

5.4.3 Time of GA Compared to Brute Force Search 56

6 CONCLUSION AND FUTURE WORK 57

6.1 Future Work . 60

LIST OF REFERENCES . 62

vi

LIST OF TABLES

Table Page

1.1 Top Scenarios Based on different costs 3

3.1 A Sample of 20 Accident Scenarios . 9

3.2 Attributes of Valuable 4 . 10

3.3 Scenarios with some missing information 12

3.4 Scenario table with several repeated accident scenarios 12

3.5 Scenario table after combining the scenarios 13

3.6 A mapping table for the scenarios in table 14

3.7 Mapped Scenario Table . 15

3.8 Initialized Variables . 16

3.9 The percentages of individual attributes 17

3.10 Desired frequencies of individual attributes for the cases that P ranges
from 2 to 5 and the cost is fatality . 18

3.11 Desired frequencies of individual attributes for the cases that P ranges
from 6 to 10 and the cost is fatality . 19

3.12 First round of finding the frequencies 20

3.13 Second round of finding the frequencies 20

3.14 Third round of finding the frequencies 21

3.15 Fourth round of finding the frequencies 22

3.16 Fifth round of finding the frequencies 22

4.1 Final result for the case that P=5 and the cost is social cost 27

4.2 Final result for the case that P=5 and the cost is Crash 27

4.3 Final result for the case that P=5 and the cost is fatality 28

4.4 A lower bound time estimation for several different cases with different
values of N and P . 30

5.1 A simple example . 36

vii

Table Page

5.2 Contents of data structure . 37

5.3 Three different random tests to confirm the uniform distribution of the
random fuction . 46

5.4 Chromosome 127 with its corresponding scenarios 48

5.5 Approximated top 5 scenarios for social cost calculated by GA 53

5.6 Approximated top 10 scenarios for crash calculated by GA 53

5.7 Comparing the performance of GA and exhaustive search 56

6.1 The selected scenarios for the cases that P ranges from 2 to 8 and the cost
is crash . 58

6.2 Total cost percentage covered by the selected scenarios for the cases that
the constraints are considered / not considered 59

viii

LIST OF FIGURES

Figure Page

3.1 A sample of set of constraints for the case that the scenario table has five
variables . 10

3.2 The main problem as a black box. 23

4.1 Flow chart of exhaustive search algorithm 26

5.1 A simple flow chart of the Genetic Algorithm 31

5.2 Three samples of three valid chromosomes 34

5.3 Set of constraints . 38

5.4 A sample of a simple Cross Over . 39

5.5 Step 1 . 40

5.6 Step 2 . 41

5.7 Step 3 . 41

5.8 Step 4 . 42

5.9 Groups 1 through 10 . 44

5.10 Groups 1 through 10 . 44

5.11 Chro-God . 50

5.12 Generation of Chro-God through Cross Over 50

5.13 Generation of Chro-God trough Mutation 51

5.14 The Flow chart of our Algorithm . 52

5.15 Convergence Figure . 55

6.1 Percentage of hitting the optimal solution for P=5 and different sizes of
initial population . 61

ix

ABSTRACT

Gholamjafari, Ali. MSECE, Purdue University, May 2015. A Genetic Algorithm
Approach to Best Scenarios Selection for Performance Evaluation of Vehicle Active
Safety Systems. Major Professor: Dr. Lingxi Li.

One of the most crucial tasks for Intelligent Transportation Systems is to enhance

driving safety. During the past several years, active safety systems have been broadly

studied and they have been playing a significant role in vehicular safety. Pedestrian

Pre- Collision System (PCS) is a type of active safety systems which is used toward

pedestrian safety. Such system utilizes camera, radar or a combination of both to

detect the relative position of the pedestrians towards the vehicle. Based on the speed

and direction of the car, position of the pedestrian, and other useful information, the

systems can anticipate the collision/near-collision events and take proper actions to

reduce the damage due to the potential accidents. The actions could be triggering the

braking system to stop the car automatically or could be simply sending a warning

signal to the driver depending on the type of the events.

We need to design proper testing scenarios, perform the vehicle testing, collect and

analyze data to evaluate the performance of PCS systems. It is impossible though to

test all possible accident scenarios due to the high cost of the experiments and the time

limit. Therefore, a subset of complete testing scenarios (which is critical due to the

different types of cost such as fatalities, social costs, the numbers of crashes, etc.) need

to be considered instead. Note that selecting a subset of testing scenarios is equivalent

to an optimization problem which is maximizing a cost function while satisfying a set

of constraints. In this thesis, we develop an approach based on Genetic Algorithm to

solve such optimization problems. We then utilize crash and field database to validate

x

the accuracy of our algorithm. We show that our method is effective and robust, and

runs much faster than exhaustive search algorithms. We also present some crucial

testing scenarios as the result of our approach, which can be used in PCS field testing.

1

1. INTRODUCTION

1.1 Choosing a Subset of Accident Scenarios to Evaluate the Performance

of Pre-collision System

Recently, the science, engineering, and technology areas have given a great deal

of attention to vehicular active safety systems [1], [2], [3]. These systems are able to

predict potential crash/near-crash events by taking advantage of advanced sensing/

communication/ control techniques. The systems then take appropriate actions by

sending a warning signal to the driver and/or automatically braking, thus preventing

and/or reducing the cost of damage caused by potential accidents. Some of these sys-

tems are specifically designed for enhancing pedestrian safety. They achieve this goal

by using the data collected by radar and camera to determine the position of the pedes-

trian and use an advanced algorithm to estimate the crash and near-crash events. Much

research has been done in this area (see, for instance, [4], [5], [6], [7], [8], [9], [10], [11]

and references therein) and many pedestrian safety system-related products have been

on market and occupied in vehicles such as the pre-collision system [12], the crash

imminent braking system [13], the pedestrian and cyclist detection system [14], and

others.

These advanced pedestrian safety systems have undoubtedly improved driving

safety. However, the performance of these systems, even for the same accident sce-

narios, are significantly different. Currently, there is no common standard in order

to evaluate, compare, and improve the performance of these systems. In general, in

2

order to evaluate their performance, we need to design and implement accident test

scenarios, perform the experiment in the testing field, collect the data, and analyze it

to see how the system performs for certain accident scenarios.

Currently, the Transportation Active Safety Institute (TASI) at Indiana University-

Purdue University Indianapolis (IUPUI), with the support of Collaborative Safety

Research Center (CSRC) of Toyota, is conducting independent research on gener-

ating test scenarios and procedures for evaluating pedestrian Pre-Collision System

(PCS). The general approach adopted in this study is to use the recent statistical

US pedestrian crash data for 2010 and 2011, State pedestrian crash data, and the

data from the IUPUI TASI 110-Car Naturalistic Driving Study [15] to create test

scenarios. Understandably, it is impossible to test every scenario for performance eval-

uation due to the time and cost of vehicle field testing. Therefore, a critical subset of

test scenarios (that capture key crash parameters) must be obtained for vehicle testing.

1.2 Different Methods of Choosing a Subset of Accident Scenarios

Based on different criteria, different scenarios can be chosen to form the suitable

subset of accident scenarios to study. One way is based on the cost of the accidents.

From the crash databases, there are three different types of costs, namely, the crashes,

fatalities, and social costs. Clearly, different types of costs might lead to different

testing scenarios to be the candidates of the cost-based subset. For instance, the

scenarios shown in Table 1.1 are the highest-cost scenarios based on the costs of the

crashes and social costs. According to these scenarios, when the cost is in terms of

crashes, maximum cost is for the case that the light condition is Day-light whereas

when the cost is in terms of social costs, it is maximum when the light condition is

Dark-Lit.

3

T
ab

le
1.

1.
:

T
op

S
ce

n
ar

io
s

B
as

ed
on

d
iff

er
en

t
co

st
s

P
ed

es
tr

ia
n

A
ct

io
n

V
eh

ic
le

L
ig

h
t

P
m

an
n

P
S
p

ee
d

C
ra

sh
es

S
oC

os
t

S
ta

n
d
in

g
A

ct
io

n

T
op

S
ce

n
ar

io
C

ro
ss

in
g

S
tr

ai
gh

t
D

ay
li
gh

t
fi
t

1.
8

80
62

.1
1

22
11

.9

B
as

ed
on

C
ra

sh

T
op

S
ce

n
ar

io
C

ro
ss

in
g

S
tr

ai
gh

t
D

ar
k

L
it

fi
t

1.
8

61
14

.4
1

57
76

.3

B
as

ed
on

F
at

al
it

ie
s

4

Besides the cost, each attribute for a certain variable of scenarios might also be

important to determine the testing scenarios. Hence, the subset of top scenarios can

be obtained based on the collection of important attributes other than costs. This

gives us an optimization problem which can be solved using different methods. One

way to approach this problem is using exhaustive search algorithm, which gives us

the exact solutions. However, it turns out that finding the exact solutions is not

always possible due to time constraints. Therefore, we will also solve this problem

using approximation methods (e.g., Genetic Algorithm). Other than finding the

exact solutions, approximation algorithms are able to find the approximated optimal

solutions in a much faster time.

In this thesis, we will introduce some related works using approximation methods,

formulate the problem to be studied, present our exhaustive search algorithm and

show some results. We then show our Genetic Algorithm and customize it to solve

the formulated problem and finally show some results and compare the efficiency of

the Genetic Algorithm and exhaustive search approach.

5

2. RELATED WORK

A Genetic Algorithm (GA) is a very strong approximation method that has been

used widely to solve complex engineering problems [16-23]. In [16], Parallel GA has

been used to determine the common areas formed by arbitrarily shaped beam. In

finding the exact solution the amplitude and phase angle of each element need to

be calculated which require lots of calculation and it is not affordable. Thus the

authors used GA as an approximation method to reduce the number of calculations.

In [17], GA has been introduced and used in 1D and 2D antenna design. The authors

argued that GA is more efficient than conventional methods that are based on greedy

algorithm or random walk approach. In [18], A Genetic Algorithm has been used

to identify the blind channel. GA has been used instead of gradient search method.

The challenge of the gradient search method is to come up with a good initial pop-

ulation to prevent from trapping in local minimum. The authors claimed that GA

is very robust and efficient. In [19], The author illustrates that the combinatorial

problems are the types of the problems that can be solved through GA. Eventually,

the application of GA on electromagnetic problems was discussed. In [20], a hybrid

of partial swarm optimization (PSO) and GA has been used for recurrent network

design. The author compared the results and efficiency calculated by PSO, GA, and

the hybrid method. In [21], a combination of Taguchi and Genetic Algorithm method

(TCGA) have been used to solve an optimization problem. The optimization problem

is defined for PID controller and the goal is to minimize the maximum percentage

overshoot, the rise time, the set up time, and the steady state error. In [22], GA has

been modified, redesigned, and applied to two different problems. The first problem

is a two-dimensional quadratic function and the second is the optimal design of a

permanent magnet motor. The author changed the policy of fitness function in terms

of giving scores to chromosomes and elimination and also the rate of cross over and

6

mutation. The authors have shown that their method is robust and efficient for both

problems. In [23], GA has been used in image and video processing. The author

showed that for real-time constraint cases, GA is more efficient than conventional

methods.

In addition to engineering problems, GA has been used to solve a variety of science

and technology problems [24-38]. In [24], a combination of GA and Taguchi algorithm

has been utilized to a neural network. The author showed that in the combination

method, Taguchi method chooses the appropriate chromosomes for cross over and

consequently the chromosomes approach to the solution faster. The authors have

applied the hybrid method to three different real problems and showed that their

algorithm is more efficient compared to the previous methods. In [25], GA has been

applied to the design of large power distribution system. The authors have utilized

and examined GA to determine the solution of real distribution systems. In [26],

GA has been utilized and applied to solve CPU scheduling problems. These types

of problems are in general NP-hard. The author compared the optimal scheduling

with the results calculated by GA for different cases with different numbers of tasks.

In [27], GA has been used for nonlinear systems for active noise control. The author

showed that GA can present solutions from being trapped into local minimum and

results obtained by GA are satisfactory. In [28], GA has been applied to energy

management to minimize the cost and maximize the efficiency. The author compared

the results calculated by GA and by the classical methods. In [29], GA and ant

colony algorithms have been applied to robot path integration. The results of both

algorithms have been compared and the pros and cons have been discussed. In [30],

GA has been used to the local-area networks with the purpose of minimizing the delay

of the system. The authors compared the delays calculated by GA and the lower

bound delays and showed the results are satisfactory. In [31], GA has been used to

approximate the optimal values of resistors, inductors, etc. for the design of digital

circuits. The author compared the results of other optimization methods with GA

7

and discussed the benefits of GA. In [32], a hybrid of GA and simulated annealing

approach has been used to predict the software reliability. The author argued that the

hybrid algorithm is superior compared with GA. The authors have shown that this

method is more efficient and has smaller errors. In [33], GA has been applied to the

image segmentation problem. In this problem, the segmentation should change as the

variable conditions of the environment (such as the light, season, etc.) change. The

authors have shown that this method has improved the performance of the system

over 30 percent. In [34], GA has been applied to multi-level inverters to determine the

optimal switching angles for certain harmonics elimination. The authors have proved

the accuracy of their algorithm and claimed that their approach can be applied to all

similar optimization problems. In [35], GA has been discussed and used to model and

optimize microwave devices. The impacts of several different sizes of initial population

besides several different rates of cross over and mutation have been analyzed. In [36],

a hybrid of Petri Net and extended GA has been used to minimize the scheduling

methods for wafer fabrication. Throughput and mean cycle obtained by GA have

been used to compare with results from two other methods. In [37], a hybrid of GA

and simplex method has been used to model metabolic systems. The hybrid method

then was used to be compared with five other methods. The author showed that this

approach is the fastest method to solve such optimization problems. In [38], GA has

been applied to aerodynamic design of cascade airfoil. The authors showed that this

approach leads to high pressure rise, high tuning angle, and low total pressure loss,

which are satisfactory for such systems.

8

3. PROBLEM FORMULATION

3.1 The General Problem

The general form of the problem we analyze in this thesis is as the following: we

are given a table that contains a set of N scenarios of accidents where N ranges from

100 to several thousands. We are also given a set of constraints and P where P can

range from 2 to 25. We are looking for a subset of P scenarios out of N scenarios that

satisfy the following conditions:

1. Satisfy all constraints

2. Maximize the total cost

Note that for each problem, N and P are constants that are given.

3.1.1 Accident Scenarios

Each scenario is a combination of different attributes and a cost (such as social

costs, fatalities, and crashes). Scenarios come as a table that contains V variables and

one cost where V ranges from 4 to 8. Each variable can have different attributes where

the numbers of attributes range from 2 to 8. For each problem, V and the numbers

of attributes are fixed. Table 3.1 shows a small sample of a scenario table with 20

scenarios. In this case, the table has five variables as pedestrian action, vehicle action,

light condition, pedestrian type, pedestrian speed, and a cost that is social cost. Each

variable in this case can have up to four attributes. For example the fourth variable

(p mann) has three attributes shown in Table 3.2.

9

Table 3.1.: A Sample of 20 Accident Scenarios

PedAction VehAction light p mann P Speed Social cost

Crossing Straight Dark Lit fit 1.8 5776.342

Crossing Straight Dark Unlit fit 1.8 3462.494

Crossing Straight Dark Lit Obese 1.8 2594.5

Crossing Straight Daylight fit 1.8 2211.911

Standing Straight Dark Unlit fit 0 1591.939

Crossing Straight Dark Unlit Obese 1.8 1504.528

Walk/Run Straight Dark Unlit fit 1.5 1425.011

with Vehicle

Crossing Straight Dark Lit fit 1.5 1358.357

Crossing Straight Daylight fit 1.5 1070.68

Standing Straight Dark Lit fit 0 1010.4

Crossing Straight Daylight Obese 1.8 831.9123

Crossing Turning Left Daylight fit 1.5 727.803

Standing Straight Dark Unlit Obese 0 648.6777

Walk/Run Straight Dark Lit fit 1.5 611.7579

with Vehicle

Walk/Run Straight Dark Unlit Obese 1.5 587.8934

with Vehicle

Crossing Straight Dark Lit Obese 1.5 577.9891

Crossing Straight Daylight kid 1.8 469.6301

Standing Straight Daylight fit 0 431.507

Standing Straight Dark Lit Obese 0 427.1868

Crossing Straight Daylight kid 1.5 408.1051

10

Table 3.2.: Attributes of Valuable 4

Attribute 1 Obese

Attribute 2 Kid

Attribute 3 Fit

3.1.2 The Set of Constraints

The set of constraints is a set of V lines where V is the number of variables. Each

line of constraints specifies the desired frequencies of attributes of one of the variables

for P desired scenarios. Line 2 for instance, specifies the frequencies of attributes of

variable 2 for P desired scenarios. Figure 3.1 shows a sample of a set of constraints for

the case where V = 5 and P = 10. Assuming that the set in Figure 3.1 corresponds to

one of the scenarios from Table 3.3, Line 4, for example, means that out of 10 selected

scenarios, we want one scenario with obese, one scenario with kid and 8 scenarios with

fit. Note that each line should sum to P where for this case P is equal to 10.

Fig. 3.1.: A sample of set of constraints for the case that the scenario table has five

variables

11

3.2 Model Verification with Experimental Data

Before working on the table we should trim the scenario table and get rid of

duplicate scenarios.

3.2.1 Trimming the Scenario Table by Cleaning and Combining Scenario

The first step of cleaning data is to drop the scenarios that miss certain information.

Table 3.3 shows such scenarios that have some unknown attributes for one or several

variables. These scenarios will cause inconsistency in our approach. Thus we simply

delete all of them. The next step is to sort the scenarios and combine the ones that

have the same attributes. Table 3.4 shows some scenarios that are exactly the same,

except for the cost part. Such scenarios should be combined in a sense that they

have only one representative with a cost which comes from the sum of the individual

costs. Table 3.5 shows the scenarios given in Table 3.4 after being combined. After

combining the scenarios, all scenarios in the table become unique. After cleaning

the redundant scenarios and combining the scenarios we call the scenarios table as

trimmed table.

3.2.2 Mapping the Scenarios

For simplicity, the attributes can be mapped into positive integers. Table 3.6 is

a mapping table that is used to map the scenarios in Table 3.1. Table 3.7 shows

the mapped scenario table for the scenarios of Table 3.1 using the mapping table in

Table 3.6.

3.3 Generating the Set of Constraints

Considering the percentages of individual attributes is one criterion that the

constraints can be built based upon. Table 3.9 shows the percentages of individual

attributes in terms of social cost, crashes, and fatalities. Note that the assumption is

12

Table 3.3.: Scenarios with some missing information

PedAction VAction Light p mann P speed Crashes

Unknown Turning Right 3 Dark Unlit Fit 0 31.39056

Unknown Turning Right 4 Twilight Fat 2.2 62.16197

Unknown Turning Right 4 Twilight Fit 0 218.7786

Unknown Turning Right 4 Twilight Kid 0 1.127399

Playing/ Unknown 1 Daylight Fat 2.2 54.85905

Lying/Standing

Playing/ Unknown 1 Daylight Fit 2.2 107.1003

Lying/Standing

Table 3.4.: Scenario table with several repeated accident scenarios

PedAction2 VehAction Light p mann P Speed Crashes

Crossing Straight 2 Dark Lit Fat 2.2 25.71934

Crossing Straight 2 Dark Lit Fat 2.2 45.93587

Crossing Turning Right 2 Dark Lit Fat 2.2 6.23494

Crossing Turning Right 2 Dark Lit Fat 2.2 5.334997

Crossing Straight 2 Dark Lit Fat 1.5 837.273

Crossing Straight 2 Dark Lit Fat 1.5 97.65648

Crossing Straight 2 Dark Lit Fat 1.5 121.168

Crossing Straight 2 Dark Lit Fat 1.5 87.61506

that variables are uncorrelated. Table 3.10 and table 3.11 show the desired frequencies

of attributes calculated based on such percentages given in Table 3.9. The frequencies

shown in Table 3.10 and Table 3.11 are for the cases that P=2, 3 up to 10 and the cost

13

Table 3.5.: Scenario table after combining the scenarios

PedAction2 VehAction Light p mann P Speed Crashes

Crossing Straight 2 Dark Lit Fat 2.2 71.65521

Crossing Turning Right 2 Dark Lit Fat 2.2 11.56994

Crossing Straight 2 Dark Lit Fat 1.5 1143.713

is fatality. Determining the frequencies of individual attributes based on percentages

can be subjective most of the time. Thus, we introduce and explain a systematic way

to determine these frequencies.

3.3.1 A systematic Way to Determine the Frequencies of the Individual

Attributes

We define remaining frequencies needed (RFN) as a variable with initial value of

P. We also define minimum percentage needed (MPN) as another variable with initial

value of 100/P where P is the number of desired scenarios. For each variable, we first

consider the percentages of individual attributes. We select the attribute with the

highest cost percentage and we call it AHCP. If AHCP is less than MPN we renew the

value of MPN by the value of AHCP. We find the floor of AHCP/MPN as determined

frequencies DF. We then allocate DF frequencies to the attribute of the selected one.

We renew RFN as (RFN-DF) and the percentage of the selected attribute as the

remainder of AHCP/MPN. We keep following above steps until RFN=0. Example

3.1 illustrates the steps of the above procedure for one of the variables (P Speed) and

the case that P=9 and the cost is Social Cost. Note that these frequencies can be

calculated based on the percentages given in Table 3.9.

14

Table 3.6.: A mapping table for the scenarios in table

Ped action Veh Action

Attribute name Mapped Value Attribute name Mapped Value

Crossing 1 Straight 1

Standing 2 Turning Left 2

Walk/Run against Vehicle 3 Turning Right 3

Walk/Run with Vehicle 4

Light P man

Attribute name Mapped Value Attribute name Mapped Value

1 Daylight 1 Fat 1

2 Dark Lit 2 Fit 2

3 Dark Unlit 3 Kid 3

P speed

Attribute name Mapped Value

1.8 1

1.5 2

2.2 3

0 4

15

Table 3.7.: Mapped Scenario Table

PedAction2 VehAction Light p mann P Speed Soccost

1 1 2 2 1 5776.342

1 1 3 2 1 3462.494

1 1 2 1 1 2594.5

1 1 1 2 1 2211.911

2 1 3 2 4 1591.939

1 1 3 1 1 1504.528

4 1 3 2 2 1425.011

1 1 2 2 2 1358.357

1 1 1 2 2 1070.68

2 1 2 2 4 1010.4

1 1 1 1 1 831.9123

1 2 1 2 2 727.803

2 1 3 1 4 648.6777

4 1 2 2 2 611.7579

4 1 3 1 2 587.8934

1 1 2 1 2 577.9891

1 1 1 3 1 469.6301

2 1 1 2 4 431.507

2 1 2 1 4 427.1868

1 1 1 3 2 408.1051

16

Example 3.1: Determining the desired frequencies of the attributes for P Speed

based on the percentages given in Table 3.9 for the case that P = 9 and the cost is

social cost.

Initializing variables: RFN = P =9; MPN = 100/P = 100/9 11.1;

Is AHCP smaller than MPN? No

Table 3.8.: Initialized Variables

Initial Initial Allocated

percentages values frequencies

P Speed=1 54.80163 RFN 9 P Speed=1 0

P Speed=2 29.97826 MPN 11.1 P Speed=2 0

P Speed=3 0.655744 AHCP 54.80163 P Speed=3 0

P Speed=4 14.56437 P Speed=4 0

Allocating frequencies to the attributes:

DF = Floor of (AHCP/MPN) = 4;

Renewing the contents of the variables:

Remainder of (AHCP/MPN) = 10.40; RFN = RFN DF = 5;

AHCP = 29.97826;

Is AHCP smaller than MPN? No

17

Table 3.9.: The percentages of individual attributes

Crashes Falities Soccost

PedAction2=1 83.94721 72.199 74.0321

PedAction2=2 9.154159 15.76087 14.56437

PedAction2=3 1.165246 1.04515 1.05045

PedAction2=4 5.733382 10.99498 10.35308

VehAction=1 65.63668 94.83696 91.7486

VehAction=2 27.95616 4.264214 6.694718

VehAction=3 6.407161 0.898829 1.556682

light=1 61.46597 21.65552 26.37567

light=2 30.69221 43.7291 42.68684

light=3 7.841822 34.61538 30.93749

p mann=1 24.04242 28.83608 28.09089

p mann=2 65.42596 67.02488 66.83074

p mann=3 10.53162 4.139044 5.07837

P Speed=1 37.1527 56.98161 54.80163

P Speed=2 51.84289 26.77676 29.97826

P Speed=3 1.850248 0.480769 0.655744

P Speed=4 9.154159 15.76087 14.56437

18

Table 3.10.: Desired frequencies of individual attributes for the cases that P ranges

from 2 to 5 and the cost is fatality

Individual Desired Desired Desired Desired

attributes frequency for frequency for frequency for frequency for

P=2 P=3 P=4 P=5

PedAction2=1 2 2 3 4

PedAction2=2 0 1 1 1

PedAction2=3 0 0 0 0

PedAction2=4 0 0 0 0

VehAction=1 2 3 4 5

VehAction=2 0 0 0 0

VehAction=3 0 0 0 0

light=1 0 1 1 1

light=2 1 1 2 2

light=3 1 1 1 2

p mann=1 1 1 1 2

p mann=2 1 2 3 3

p mann=3 0 0 0 0

P Speed=1 1 2 2 3

P Speed=2 1 1 1 1

P Speed=3 0 0 0 0

P Speed=4 0 0 1 1

19

Table 3.11.: Desired frequencies of individual attributes for the cases that P ranges

from 6 to 10 and the cost is fatality

Individual Desired Desired Desired Desired Desired

attributes frequency frequency frequency frequency frequency

for P = 6 for P=7 for P = 8 for P=9 for P = 10

PedAction2=1 4 5 6 7 7

PedAction2=2 1 1 1 1 2

PedAction2=3 0 0 0 0 0

PedAction2=4 1 1 1 1 1

VehAction=1 6 7 8 9 10

VehAction=2 0 0 0 0 0

VehAction=3 0 0 0 0 0

light=1 1 2 2 2 2

light=2 3 3 3 4 4

light=3 2 2 3 3 4

p mann=1 2 2 2 3 3

p mann=2 4 5 6 6 7

p mann=3 0 0 0 0 0

P Speed=1 3 4 5 5 6

P Speed=2 2 2 2 2 3

P Speed=3 0 0 0 0 0

P Speed=4 1 1 1 2 1

20

Table 3.12.: First round of finding the frequencies

new new Allocated

percentages values frequencies

P Speed=1 10.4 RFN 5 P Speed=1 4

P Speed=2 29.97826 MPN 11.1 P Speed=2 0

P Speed=3 0.655744 AHCP 29.97826 P Speed=3 0

P Speed=4 14.56437 P Speed=4 0

Does RFN equal to 0? No

Allocating frequencies to the attributes:

DF = Floor of (AHCP/MPN) =2;

Renewing the contents of the variables:

Remainder of (AHCP/MPN) = 7.77; RFN = RFN DF = 3;

AHCP = 14.56437;

Is AHCP smaller than MPN? No

Table 3.13.: Second round of finding the frequencies

new new Allocated

percentages values frequencies

P Speed=1 10.4 RFN 3 P Speed=1 4

P Speed=2 7.77 MPN 11.1 P Speed=2 2

P Speed=3 0.655744 AHCP 14.56437 P Speed=3 0

P Speed=4 14.56437 P Speed=4 0

21

Does RFN equal to 0? No

Allocating frequencies to the attributes:

DF = Floor of (AHCP/MPN) =1;

Renewing the contents of the variables:

Remainder of (AHCP/MPN) = 3.46; RFN = RFN DF = 2;

AHCP = 10.40;

Is AHCP smaller than MPN? Yes → MPN = AHCP = 10.40;

Table 3.14.: Third round of finding the frequencies

new new Allocated

percentages values frequencies

P Speed=1 10.4 RFN 2 P Speed=1 4

P Speed=2 7.77 MPN 10.4 P Speed=2 2

P Speed=3 0.655744 AHCP 10.4 P Speed=3 0

P Speed=4 3.46 P Speed=4 1

Does RFN equal to 0? No

Allocating frequencies to the attributes:

DF = Floor of (AHCP/MPN) =1;

Renewing the contents of the variables:

Remainder of (AHCP/MPN) = 0; RFN = RFN DF = 1;

AHCP = 7.77;

Is AHCP smaller than MPN? Yes → MPN = AHCP = 7.77;

22

Table 3.15.: Fourth round of finding the frequencies

new new Allocated

percentages values frequencies

P Speed=1 0 RFN 1 P Speed=1 5

P Speed=2 7.77 MPN 7.77 P Speed=2 2

P Speed=3 0.655744 AHCP 7.77 P Speed=3 0

P Speed=4 3.46 P Speed=4 1

Does RFN equal to 0? No

Allocating frequencies to the attributes:

DF = Floor of (AHCP/MPN) =1;

Renewing the contents of the variables:

Remainder of (AHCP/MPN) = 0; RFN = RFN DF = 0;

AHCP = 3.46;

Is AHCP smaller than MPN? Yes → MPN = AHCP = 3.46;

Table 3.16.: Fifth round of finding the frequencies

new new Allocated

percentages values frequencies

P Speed=1 0 RFN 0 P Speed=1 5

P Speed=2 0 MPN 3.46 P Speed=2 3

P Speed=3 0.655744 AHCP 3.46 P Speed=3 0

P Speed=4 3.46 P Speed=4 1

23

Does RFN equal to 0? Yes → Quit.

3.4 The System as a Black Box

The main problem is defined based on a given table of N accident scenarios and

a set of constraint as discussed in this chapter. Figure 3.2 shows the problem as a

black box with inputs and outputs. In next chapter, we introduce an algorithm based

on exhaustive search method to solve this problem. We also show some results and

discuss the performance and limitation of this algorithm.

Fig. 3.2.: The main problem as a black box.

3.5 Problem Formulation in Mathematical Form

Considering a discrete function as C(Xi) = Ci where Xi is a v dimensional vector

defined on Z+v
and belongs to the set X={X1, X2, X3, . . . , Xn} (Set of all attribute

vectors) and C is the cost function where Ci ∈ Set C={C1, C2, C3, . . . , Cn} (Set of

costs) and Set C is a set of n members that each belongs to <+ and i ∈ {1, 2, . . . , n}.

In general, v is a variable that belongs to {4, 5, 6, 7, 8} and n is a variable that belongs

to {170, 171, . . . , 3000} . However, in each case that we consider, v has a constant

value equals to V and n has a fixed value equals to N.

24

Let us define cost vector V Cj ∈ <n as any vector with the following condition: The

ith element of V Cj is either Ci or 0. For each V Cj let us also define a corresponding

sum vector (binary vector) as Ij ∈ Z(+n) such that the ith element of Ij equals to 0 if

ith element of V Cj equals to 0 and the ith element of Ij equals to 1, otherwise. We

also define set VC and set I as the set of all V Cj and all Ij, respectively.

Consider a V Cj with K non zero elements. There are total of K attribute vectors

(Xi) such that each corresponds to one of the none-zero elements of V Cj . For instance,

if the 3rd, 5th and 6th elements of V Cj are the only none-zero elements (which are

C3, C5 and C6), then X3,X5 and X6 are the corresponding Xi vectors. For each

V Cj and its corresponding Xi vectors we define a frequency function FreqV Cj
where

FreqV Cj
(y,z) is a number that shows, out of K corresponding Xi vectors how many

of them have value z in their yth elements. For instance, if X3, X5 and X6 are the

corresponding Xi vectors to V C7 and X3 = [1 1 2 1 1]T , X5 = [2 3 1 2 2]T , X6 = [1 1

2 1 1]T then FreqV C7(3,2) = 2.

Considering all definitions above, our problem is formulated as follows.

Given sets C and X and a constraint matrix

Q =


q11 . . . q1m
...

. . .
...

qv1 . . . qvm


vXm

where each row of matrix Q sums to p (1≤ p ≤ N), we would like to find a

specific vector Tj ∈ VC that satisfies the following two conditions.

1:


FreqTj

(1, 1) . . . F reqTj
(1,m)

...
. . .

...

FreqTj
(v, 1) . . . F reqTj

(v,m)


vXm

=


q11 . . . q1m
...

. . .
...

qv1 . . . qvm


vXm

25

2: ITj · T T
j ≥ Ij · V CT

j

∀ VCj ∈ VC that satisfies the first condition.

Note that Q is a v = V by m= M matrix where v is the dimension of Xi and m is

a variable that belongs to {4, 5, 6, 7, 8} . It is defined as the maximum of maximum

value that an element of Xi has for all Xi vectors that belong to set X. For instance, m

= Max{Max(xi1),Max(xi2),Max(xi3), . . . ,Max(xiv)} for all i ∈ {1, 2, . . . , n = N}.

26

4. EXHAUSTIVE SEARCH METHOD

One way to approach this problem is using the exhaustive search algorithm.

Figure 4.1 shows the flow chart on how this algorithm works. This algorithm first

finds all P elements subsets out of the N elements universal set. The algorithm then

checks if each of these subsets satisfies all constraints by counting the frequencies

of the attributes of the P elements selected and comparing them with the desired

frequencies that are specified in the constraints set. We mark all subsets that satisfy all

constraints. Eventually, the algorithm chooses the marked subset with the maximum

total cost as the solution.

Fig. 4.1.: Flow chart of exhaustive search algorithm

27

4.1 Results

Table 4.1, Table 4.2, and Table 4.3 contain the final results calculated by exhaustive

search algorithm for the cases that the costs are social costs, crashes, fatalities, and P

equals to 5.

Table 4.1.: Final result for the case that P=5 and the cost is social cost

PedAction2 VehAction Light p mann P Speed Soccost

Crossing Straight Dark Lit Obese 1.8 2594.5

Crossing Straight Dark Lit Fit 1.8 5776.342

Crossing Straight Dark Unlit Fit 1.8 3462.494

Crossing Straight Daylight Obese 1.5 370.2002

Standing Straight Dark Unlit Fit 0 1591.939

Table 4.2.: Final result for the case that P=5 and the cost is Crash

PedAction2 VehAction Light p mann P Speed Crashes

Crossing Straight Daylight Fit 1.8 8062.02

Crossing Straight Dark Lit Fit 1.8 6114.414

Crossing Straight Daylight Fit 1.5 7019.07

Crossing Turning Left Daylight Fit 1.5 7970.328

Standing Turning Left Dark Lit Obese 0 63.39208

28

Table 4.3.: Final result for the case that P=5 and the cost is fatality

PedAction2 VehAction Light p mann P Speed Fatality

Crossing Straight 1 Daylight Obese 1.5 44.52323

Crossing Straight 2 Dark Lit Obese 1.8 414.5695

Crossing Straight 2 Dark Lit Fit 1.8 910.493

Standing Straight 3 Dark Unlit Fit 0 268.4724

Crossing Straight 3 Dark Unlit Fit 1.8 571.0684

4.2 Performance and Limitations of Exhaustive Search Algorithm

The advantage of exhaustive search is that results are exact and reliable. However,

due to the complexity of the algorithm, calculating the results takes long time for

some cases. As N and P grow the time needed to calculate the result grows with

a combinatorial rate. For the case that N=124 and P=5 it takes approximately 40

minutes for a normal computer to calculate the result. This is due to the complexity

of the algorithm. The program finds all P elements subsets of an N elements universal

set which are totally C (N,P). The result of this combination can be a very large

number. For instance for the case that N=170 and P=10, C(170,10) = 4.2419e+015

which is large. Note that N can range from 100 to several thousands and P can range

from 2 to 25. Also note that C (N,P) is just the numbers of subsets that the program

finds. For each subsets then the program needs to check if the subset satisfies the

constraints. Depending on the outcome then the program might need to add the

selected subset to the set of marked subsets. So the complexity of the algorithm is

O(C(N,P) × T (checking the constraints and possibly marking them)). Thus the

29

numbers of instructions are much higher than C(N,P). Table 4.4 shows a lower bound

time estimation for several different cases based on the performance of the program

on a Quad 2 Gigahertz computer.

For most of the cases that P>7 and N>100, using the exhaustive search algorithm

to calculate results is impossible for a normal computer with an 8 Gigahertz CPU.

Since the result of the problem is important, we can compensate for the speed by using

some approximation methods. In approximation methods we may lose the accuracy of

the result but we may find some results that are satisfactory. In other words, we might

not find the best solution of the problem. However, we may find something that is

close enough to the solution that we can accept it as an approximation solution. Our

need to such methods takes us to the next chapter. In the next chapter we introduce a

very powerful approximation algorithm named Genetic Algorithm. We then customize

and design the Genetic Algorithm for our problem and analyze the results.

30

Table 4.4.: A lower bound time estimation for several different cases with different

values of N and P

N P Lower bound time

80 5 5 min

100 5 15 min

120 5 40 min

170 5 4 hours

30 10 6 min

80 10 228 days

100 10 6.5 years

120 10 44 years

170 10 16 centuries

30 15 31 min

80 15 25 centuries

100 15 963 centuries

40 30 3 hours

50 30 17 years

31

5. GENETIC ALGORITHM

Genetic Algorithm (GA) is an approximation method based on natural selection

theory that starts with a world of Initial Population of species where each individual is

called a chromosome. Each chromosome is composed of a fixed number of genes. Once

the initial chromosomes are generated they start to produce new chromosomes through

two processes called Mutation and Cross over. The chromosomes with weaker genes

then get eliminated by a function called evaluation function. Mutation, Cross Over

and Elimination processes keep happening until the desired chromosome is generated

or the set up time expires. The desired chromosome is the one that is either the

solution or is relatively close enough to the solution of the problem that it can be

accepted as an approximation solution. Figure 5.1 is a simple flow chart that indicates

how GA works in general:

Fig. 5.1.: A simple flow chart of the Genetic Algorithm

32

5.1 Fundamentals of Genetic Algorithm

5.1.1 Initial Population

Initial Population is the first generation of the chromosomes. Generating an

appropriate Initial Population is one of the key points that guarantee GA converges

to the solution.

5.1.2 Mutation

During the process of Mutation first a group of chromosomes are randomly se-

lected and then for each selected chromosome one of its genes are randomly selected,

arbitrarily turns into a new gene and the process produces new chromosomes.

5.1.3 Cross Over

During the process of Cross Over first a group of chromosomes are randomly

selected. For the selected chromosomes every two arbitrarily selected chromosomes

mate and produce a new chromosome as a child. The child has half of its genes from

its mother and the other half from its father.

5.1.4 Evaluation Function

Evaluation function is a process in which the chromosomes with weaker genes get

eliminated. The strength of the genes depends on the nature of the problem. For

example if in our design we know that chromosomes with certain genes would not

help in evolving towards the solution they should be eliminated. In general evaluation

function first assigns scores to all of the chromosomes based on the strength of their

genes. The function then eliminates the chromosomes that their scores are under a

33

defined threshold. The threshold can be defined based on the overall scores of the

current population. As the program progresses the threshold can be fixed or can

change depending on the nature of the problem and the overall performance of the

scores.

5.1.5 Tuning

Tuning is a very important part of a GA. The size of the Initial Population and

the rates of Cross Over Mutation and Elimination are the factors that need to be

tuned in a way that results in convergence. Usually tuning is a trial and error method

and requires lots of time. However statistical analysis can be done to accelerate the

process of tuning.

5.1.6 Time and the Result

In general proving that the approximation solution equals to the exact solution is

impossible unless we already know the exact solution using other methods. All we

can claim about GA is that as the time of running the program approaches to infinity

or is significantly large enough the approximation solution approaches to the exact

solution and GA may finally hit the exact solution.

5.2 Developing GA for the Scenario Selection Problem

5.2.1 Defining chromosomes

The first step of customizing a GA to a certain problem is defining chromosome.

A chromosome is a data structure that can potentially contain the solution of the

problem. Recall that our problem was to find P scenarios of accident out of total N

scenarios while satisfying several constraints. In that sense

pagebreak we define a chromosome as an array of P integers where each element of

this array is an integer between 1 to N. We know that the solution is P scenarios.

34

Therefore, the defined chromosome can be potentially the solution of our problem.

Figure 5.2 are three samples of three valid chromosomes for the case that P equals to

5 and N equals to 420.

Fig. 5.2.: Three samples of three valid chromosomes

5.2.2 Initial Population

The next step after defining chromosomes is to generate a suitable Initial Population.

As we mentioned before, an appropriate Initial Population is one of the important

elements of a GA that guarantees the convergence. In terms of tuning, the size of

Initial Population is one of the parameters that is flexible and may need to be tuned.

We name this parameter as tune1 which can be initially set as 104. Also we define

our chromosome space as an array of chromosomes with the size of MaxChromIndex

where it is initially 5× 106, however, tune1 and MaxChromIndex can change based on

the size of P and N. Having tune1, chromosome space and MaxChromIndex in mind

we may start defining the Initial Population generator.

35

5.2.2.1 Initial Population Generator Function

This function generates V (the number of variables) sets of chromosome that each

set of chromosomes has tune1 chromosomes where tune1 is 104 as our initial approach.

Recall that each chromosome is composed of P integer numbers where P is the number

of desired scenarios and integer numbers are the row numbers of each accident scenario.

The V sets of chromosomes would be generated in such a way that the chromosomes

in each set would satisfy at least one of the constraints. Obviously, if one of the V sets

remains empty the problem does not have any solution. In order to generate theses

sets we define another function Partitioner to partition the accident scenarios such that

looking at the constraints we can simply choose P scenarios randomly from the corre-

sponding partitions and we can guarantee that at least one of the constraints is satisfied.

In order to create the Initial Population we need a Partitioner function which

creates a three dimensional array name PartList. PartList is a V X MaxVal X N array.

Where V is the number of variables MaxVal is the maximum value that a variable

can have and N is the number of total scenarios. PartList[i][j] contains all accident

scenarios row numbers that has value j in their variable i. For instance, PartList[2][3]

contains scenario row numbers that have value 3 in their variable 2. In order to have

a better understating, let us consider a simple example in Table 5.1:

36

Table 5.1.: A simple example

Row Variable Variable Variable Variable Variable Cost

Number 1 2 3 4 5 1

1 1 1 3 2 1 1000

2 2 2 2 2 4 2000

3 1 1 1 2 2 400

4 3 2 2 1 1 500

5 2 1 1 1 1 202

6 3 2 2 2 2 952

7 4 1 2 3 4 272

8 2 2 2 1 3 22

9 2 1 1 1 3 33

10 2 4 4 3 3 77

11 1 2 3 3 1 780

For this case PartList[3][2] for example contains the highlighted rows. The content

of this data structure shown in Table 5.2:

37

Table 5.2.: Contents of data structure

PartList[3][2]

2

4

6

7

8

-

-

-

-

-

-

Once the Partioner function is called and PartList array is built, we can generate

the Initial Population. Recall that the Initial Population contained V sets where each

set satisfied at least one of the constraints. To generate the chromosomes of each of

these sets we should get help from PartList. For more intuition let us consider the set

of constraints shown in Figure 5.3 for the sets of scenarios of Table 5.1:

Our goal is to generate chromosomes to satisfy at least one of the constraints. For

instance let us assume that we would like to generate a chromosome that satisfies at

least the third constraint: Line 3: 0 3 0 1

38

Fig. 5.3.: Set of constraints

From this set of constraints, we know that variable 3 should have 1 scenario with

value 4 and 3 scenarios with value 2. If we choose 4 unrepeated scenarios, 3 from

PartList[3][2] and 1 from PartList[3][4] the four selected scenarios would at least satisfy

the third line constraint. Using this method we can generate many chromosomes that

satisfy the third constraint. Therefore we can generate all V sets which form the

Initial Population.

5.2.3 Cross Over

Simple Cross Over is a process in which two chromosomes would be randomly

selected as the parents. The chromosomes would mute then and produce a new

chromosome as their child which half of the genes of the child come from the mother

and the other half come from the father. For the case that P is odd, (P-1)/2 of the

genes of the child come from the father and (P+1)/2 come from the mother. Where

the father is the first selected chromosome and the mother is the second one. Figure 5.4

is a sample of a simple Cross Over for the case that P=11.

39

The rate of Cross Over is another factor that may need to be tuned. It determines

how many Simple Cross Over occur during an iteration. We call this rate as Tune2

and initially we set it as 20 percent of the current population. We shall now define

the Cross Over as putting the Simple Cross Over in a loop with the size of Tune2.

Fig. 5.4.: A sample of a simple Cross Over

40

5.2.4 Mutation

A simple Mutation is a process in which one of the current chromosomes would be

randomly selected, one of its genes would then be randomly selected and randomly

changes into a valid number which result in a new muted chromosome. Here a valid

number is an integer between 1 to N. Example 5.1 shows all the steps of a simple

Mutation.

Example 5.1: Steps of a simple Mutation:

Step 1) Randomly select a chromosome:

Fig. 5.5.: Step 1

41

Step 2) Randomly choose a gene:

Fig. 5.6.: Step 2

Step 3) Randomly generate a valid number:

Fig. 5.7.: Step 3

Step 4) Produce a new chromosome with a muted gene:

42

Fig. 5.8.: Step 4

The Mutation rate is the next factor that may need to be tuned we call this rate

as Tune3 and initially we set it as two percent of the size of current population. The

Mutation is defined as putting Simple Mutation Function in a loop with the size of

tune3.

Initial Population, Cross Over and Mutation all need a random function. Since the

random generator in C language was not satisfactory in terms of uniformly distribution

and the output range, we had to expand that function and make it suitable for our

task. Next we would discuss the limitations of the rand function in C language and

how we made this function usable for our purpose.

5.2.4.1 Random Function

Rand Function in C generates an integer number between 0 to RAND MAX where

RAND MAX is 32767 and the distribution is uniform. If the goal is to generate a

number in a different range the function should be modified or a new function needs to

be written. In our case we need to generate an integer between two arbitrary integers

which both are less than a predefined MAX where we initially set the Max as nine

43

hundred million. We decided to write a new function which uses the Rand function in

C and expand and control it in a way that is suitable for our task. We would like our

function to receive two integers (both smaller than MAX) and randomly generates an

integer between the two given inputs. The first and easy step to change the range is

to use modulo operator which finds the remainder. Simply using modulo operation for

an integer, T, we can guarantee that the max is definitely less than T. we can also use

modulo operator to force the output to be in a range between min and max. To do so

we first generate a number and then find the remainder of that number for max-min+1.

There is an issue with this method regarding the distribution. Using the modulo

operator corrupts the distribution of some numbers. This method cause some numbers

have more likelihood than the others. To illustrate this issue let us consider example 5.2.

Example 5.2) For simplicity, Assume that there is a rand function that generates

number between 0 to 105. Now assume we would like to change the range to 0 to 9

rather than 0 to 105.

Using modulo operator will guarantee that any generated number belongs to the

group 1 to group 10 will be mapped to 0 to 9.

44

Fig. 5.9.: Groups 1 through 10

The tricky part is that the last group will mapped only to 0 to 5.

Fig. 5.10.: Groups 1 through 10

Which makes the likely hood of 0,1,2,3,4,5 higher than 6,7,8,9.

To deal with this issue we can ignore the last group which guarantees that the

distribution would remain uniform. Thus once the rand function is performed before

using the modulo operation, the outcome needs to be checked. If the outcome belongs

to the Last group the rand function should be recalled. Otherwise the modulo operator

can be used.

45

Having a significantly small max which is 32767 is the next issue. Extending the

max into RAND MAX 2 which is greater than 9 × 108 will solve our problem. To

extend the max we can try two independent random experiments. To illustrate this

technique let us consider Example 5.3.

Example 5.3)

Let us assume that the RAND MAX is 4 and a max random number higher than that

is needed. Let us assume the MAX needed number is 14.

The normal random experience can generate 5 different numbers between 0 to 4. If

we perform this random experiment two times independently the sample space of the

joint has 25 different combinations which can be map to integers in the range of 0 to 24

and form a random variable. If the max number needed is 14 we shall first perform the

experiment twice independently and then find the modulo operator for 15. Of course if

just in case the outcome belong to the last group we can simply reform the independent

experiments for the sake of the uniform distribution. Utilizing this technique for our

problem we can expand the RAND MAX from 32767 to a number greater than 9×108.

To check how the function works we did some test. We generated 3× 108 random

numbers in a fixed range and found the max and min frequency of the generated

numbers and compare it with expected frequency for a uniform distribution. Table 5.3

contains the results of our three different tests.

46

Table 5.3.: Three different random tests to confirm the uniform distribution of the

random fuction

Title Min Max Expected Min Max

Value Freq Freq

1st Test 0 49999 6000 5687 6338

2nd Test 0 9999 30000 29310 30585

3rd Test 0 999 300000 298492 301500

In one of these cases we set the max as 49999 which is greater than 32767. Our

result shows that our function can generate random numbers for higher ranges. Also

according the Table 5.3 as the expected value grows the Min freq and Max freq are

getting close. This indicates that the random function has a uniform distribution.

5.2.5 Evaluation Function

The last major function that we need to define for GA is evaluation function. This

function first needs to assign values of worth to chromosomes and then it needs to

kill all chromosomes that their values of worth are under a pre set threshold. Setting

the right values of worth and the right threshold are the tricky parts. Designing an

appropriate evaluation function besides a good Initial Population can guarantee that

the chromosomes evolve and approach to the solution in an asymptotic way. Instead

of setting certain values of worth we decided to categorize our chromosomes based on

the strength of their genes. The categories are defined as follows.

47

5.2.5.1 Defining Chromosome Types

The strongest Chromosome is Chro-God which is defined as a chromosome that

satisfies all of the constraints. We also name the solution of our problem as Chro-God∗.

The second and third strongest chromosomes are King and Lord. In order to define

king and Lord first we define the concepts of a perfect father & a perfect mother. A

chromosome is a perfect father if all its top genes are correct (Compared to the top

part of a Chro-God). A chromosome is a perfect mother if all its bottom genes are

correct (Compared to the bottom part of a Chro-God). We shall now define Lord as a

chromosome that is either a perfect father or a perfect mother and not both. We also

define a chromosome as a King if it acts as a perfect mother and a perfect father but

it is not a Chro-God. We define a Chromosome as Middle Class if it can potentially

turn into a Lord due to one step simple Mutation.We simply define the rest of the

Chromosomes as poor. The level of the strength of the genes is defined as follows:

Chro-God∗ ≥ Chro-God > King > Middle Class > Poor

5.2.5.2 How to Determine the Type of a Chromosome

In order to determine the type of a chromosome we need to determine how many

genes are potentially correct in the top, bottom and the whole part of a chromosome.

To achieve this we need to check how many attributes a chromosome or part of the

chromosome is missing (considering the set of constraints). To illustrate this let us

consider Example 5.4:

Example 5.4) Assume that the line 3 of the given set of constraint is as follows:

Line 3: 3 0 0 2

48

Obviously, this constraint is defined on the third variable and it means that out of

5 selected scenarios 3 of them should have variable 3 with value 1 and 2 of them should

have variable 3 with value 4. Let us assume that we are considering the chromosome

127 which corresponds to the scenarios given in the Table 5.4 The selected scenarios

have variable 3 with 2 value 1, one value 2, one value 3 and 1 value 4. Considering

line 3 of the constraint this chromosome is missing one value 1 and one value 4 which

we say that it lacks two. Considering just this constraint we can say for sure that at

least 2 of the selected scenarios are incorrect.

Table 5.4.: Chromosome 127 with its corresponding scenarios

Genes of the Var1 Var2 Var3 Var4 Var5 Cost

Chromosome 127

(Scenario row

numbers)

5 1 2 4 2 2 5000

7 2 1 1 1 2 200

13 4 3 1 2 1 300

22 5 2 3 1 1 202

19 5 2 2 1 1 209

To determine at least how many selected scenarios are incorrect we need to consider

all of the constraints and see how many each lacks. To do so let us define Max-L. We

consider all of the variables of the certain selected (genes) scenarios and check how

many each variable lacks. We define L(i) as the numbers of values that variable i of a

set of genes lacks. We also define Max-L, as the max of L(i)s.

49

For the case that P is even, if the Max-L equals to 0 for all selected P genes then

the chromosome is a Chro-God. If Max-L equals to P/2 for the top P/2 genes and

Max-L equals to P/2 for the bottom P/2 genes of a chromosomes and the chromosome

is Not a Chro-God then it is a King. If Max-L equals to P/2 for either top P/2 genes

or bottom P/2 genes and not for both part of a chromosome then the chromosome is

a Lord. If Max-L equals to (P/2)+1 for either top P/2 genes or bottom P/2 genes or

both parts of a chromosome then the chromosome is a Middle Class. If a Chromosome

is none of the defined chromosomes then it is a Poor Chromosome.

For the case that P is odd if the Max-L equals to 0 for all selected P genes then

the chromosome is a Chro-God. If Max-L equals to (P-1)/2 for the top (P-1)/2 genes

and Max-L equals to (P+1)/2 for the bottom (P+1)/2 genes of a chromosomes and

the chromosome is Not a Chro-God then it is a King. If Max-L equals to (P-1)/2 for

the top (P-1)/2 genes or Max-L equals to (P+1)/2 for the bottom (P+1)/2 genes

and the chromosome is not a King then the chromosome is a Lord. If Max-L equals

to ((P-1)/2)+1 for the top (P-1)/2 genes or Max-L equals to (P+1)/2)+1 for the

bottom (P+1)/2 genes of a chromosome then the chromosome is a Middle Class. If a

Chromosome is none of the defined chromosomes then it is a Poor Chromosome.

After categorizing the chromosomes for each generation, the evaluation function

should kill (eliminate with no further consideration) the chromosomes with weaker

genes. The evaluation function of our program starts eliminating Poor Chromosomes

in age1 and depending on the progress of the program it will change the threshold

from Poor to middle class in age2 and continue eliminating both middle class and poor

in the second age. We could also consider changing the threshold to Lord however

since we got a reasonable and satisfactory result we did not take our function that far.

50

5.3 Intuition of our Approach

Our goal is to complete the Chro-God set. Clearly, if Chro-God set is not empty

Chro-God* exists. Our goal is to use GA to generate Chro-Gods randomly. Since

GA hits the Chro-Gods randomly finding Chro-God* is just the matter of time

and if the program runs long enough based on randomization hitting Chro-God* is

guaranteed. Let us assume rows 7,11,3,101 and 5 of the accident scenarios satisfy

all of the constaraint. Therefore the chromosome in Figure 5.11 is a Chro-God. If

this Chromosomes does not exist in Initial Population it can only get generated in

one iteration either by a one step simple Cross Over or Mutation. Figure 5.12 and

Figure 5.13 shows how the generation of the Chro-God through one step Cross Over

and Mutation.

Fig. 5.11.: Chro-God

Fig. 5.12.: Generation of Chro-God through Cross Over

51

Fig. 5.13.: Generation of Chro-God trough Mutation

In the case of Cross Over the God can get generated when the parents are either

a Lords or Kings. So completing the sets of Lords and Kings would lead to hitting

the Chro-Gods. Note that by completing the sets we do not need all combinations

of Lords or Kings. As long as the right genes (the gene of the half Chro-God) are

generated hitting the Chro-God is guaranteed. To have decent sets of Kings and Lords

we need an almost complete set of middle class. Middle class then can turn into Lords

through one step simple Mutations. In the Initial Population we need to make sure

that we have enough middle class chromosomes before we run the next steps of the

algorithm. Middle Class belongs to the complete set of Initial Population and the

likelihood of middle class is very high for the cases that P is small. When P=5 either

one or maximum two selected lines must be correct in order for a chromosome to

be a middle class. Clearly as P grows, the likelihood of middle class in the Initial

Population decreases. So we can keep generating the Initial Population until we make

sure that we have enough numbers of middle class compared to a pre set threshold and

then we can proceed with the next steps of the algorithm. The idea of our algorithm

is to first generate a decent amount of different middle class chromosomes through the

process of Initial Population, we then generate Lords through Mutations of Middle

classes then increase the population of Kings through Cross Over of the Lords and

eventually hit the Chro-God through Cross Over of the Kings and Lords. Figure ??

shows the flow chart of our algorithm. As it is shown in Figure 5.14 in the first age

52

we kill only Poor Chromosomes. When we have enough numbers of Lord and Kings

we start killing the middle class besides Poor in the second age since clearly we will

no longer need middle class.

Fig. 5.14.: The Flow chart of our Algorithm

5.4 Experimental Results

5.4.1 Sample of Top Scenarios

Table 5.5 and Table 5.6 show the top 5 and 10 selected scenarios. For the top 5

the result maximized based on Social Cost and for top 10 it is maximized based on

Crashes. Both of the tables are for the case that the total number of the scenarios were

initially about 300 lines and reduced to 124 lines. In the case of 5 selected scenarios

the solution is exact and we can verify that by comparing the result of the brute force.

In the case of 10 selected scenarios however, the result is an approximation and we

cannot verify that it is the best solution.

53

Table 5.5.: Approximated top 5 scenarios for social cost calculated by GA

Ped Veh Light p mann P Speed Soccost

Action2 Action

Crossing Straight Dark Lit Obese 1.8 2594.5

Crossing Straight Dark Lit Fit 1.8 5776.342

Crossing Straight Dark Unlit Fit 1.8 3462.494

Crossing Straight Daylight Obese 1.5 370.2002

Standing Straight Dark Unlit Fit 0 1591.939

Table 5.6.: Approximated top 10 scenarios for crash calculated by GA

PedActionStanding VehAction Light p mann P Speed Crashes

Crossing Straight 1 Daylight Fit 1.8 8062.02

Crossing Turning Left 1 Daylight Fit 1.5 7970.328

Crossing Straight 1 Daylight Fit 1.5 7019.07

Crossing Straight 2 Dark Lit Fit 1.8 6114.414

Crossing Turning Left 2 Dark Lit Fit 1.5 3509.129

Crossing Straight 1 Daylight Kid 1.5 3187.769

Crossing Straight 1 Daylight Fat 1.8 2756.603

Crossing Straight 2 Dark Lit Fat 1.8 2368.723

Walk/Run Turning Right 1 Daylight Fit 1.5 22.40009

against Vehicle

Standing Turning Left 3 Dark Unlit Fit 0 17.07412

54

5.4.2 Convergence Table and The Accuracy

One of the things we need to show is that the GA is convergent to the optimal

solution. Figure 5.15 shows the performance of our program in terms of convergence.

The horizontal axis is the time line and it contained of approximately 50 trials where

each trial takes about 3 minutes. The vertical axis is the total cost axis and shows

the total cost of the best Chro-God. The top diagram contains a red line which

shows the total cost of top ten scenarios while we are not considering any of the

constraint. Clearly, the red line is a supremum for our problem and in the case that

the corresponding scenarios to the red line do not satisfy all of the constraint we can

call the red line an unreachable supremum. In Figure 5.15 the top diagram indicates

that the total cost of best God is around 42000 while the unreachable supremum is

around 48000. Even though we cannot prove that our solution is the best solution,

the total cost of our solution is high enough compared to the unreachable supremum

that we can accept it as a satisfactory approximation solution. To show the progress

of the diagram in terms of total cost we connected the mid points of each horizontal

line in the bottom diagram of the Figure 5.15. As the bottom diagram shows the

total cost starts from 38500 in the first trial and saturated in midpoint 30 which is

approximately 90 minutes. Clearly if the longer we run the program the more accurate

the approximation result is compared to the exact one.

55

Fig. 5.15.: Convergence Figure

56

5.4.3 Time of GA Compared to Brute Force Search

GA performs much faster than Brute force algorithm. Table 5.7 summarizes the

performance of GA compared to the exhaustive search algorithm. In the case of

selecting 5 scenarios, GA takes seconds to hit the exact results, which is much faster

compared to 40 minutes needed for exhaustive search algorithm. In case of N = 124

and P = 10, even though we cannot guarantee that GA-approximated results are the

same as exact results found by exhaustive search, we can confirm that all constraints

are met and the total cost is very close to the theoretical upper bound. For this case

(P = 10), if we are using exhaustive search algorithm, obtaining exact solutions will

be un-affordable due to the time needed to run the program.

Table 5.7.: Comparing the performance of GA and exhaustive search

N P Running time of exhaustive Running time of Does GA

exhaustive our GA hit the exact

search algorithm Approach solution?

124 5 40 minutes 30 seconds Yes

124 10 Not affordable 150 minutes Unknown

57

6. CONCLUSION AND FUTURE WORK

In this thesis, we introduced methods of choosing a subset of testing scenarios

from a complete set of testing scenarios based on the importance of the cost and

individual attributes. We designed an exhaustive search algorithm to find the results

and discussed the complexity and limitations of this algorithm. We then introduced

Genetic Algorithm and developed a GA-based method to approximate the optimal

results of the problem. We illustrated that our GA-based approach is very fast and

efficient compared to the exhaustive search method and showed that, for some cases it

takes several seconds to approximate the results and for some other cases with larger

values of N and P, it takes several hours to approximate satisfactory results while due

to the complexity of exhaustive search algorithm, these cases are impossible to solve

using exhaustive search algorithm.

Table 6.1 shows the selected scenario lines from a sorted table for a case that there

are totally 64 scenarios. The scenarios are sorted from large to small based on the cost

of the crashes and the results are for the cases that P ranges from 2 to 8. By comparing

the total cost of the selected scenarios shown in Table 6.1 with the total costs of the

top scenarios without considering the constraints we can conclude that as the numbers

of the desired scenarios grow the percentage coverage of the two methods becomes

tight. Table 6.2 shows the total percentage cost coverage by the selected scenarios

for both of the methods and the cases that P ranges from 2 to 8. Table 6.1 indicates

that for several of the cases the difference between both of the methods is very small.

As the numbers of the desired scenarios increase, the percentage cost covered by the

selected scenarios approaches to one hundred percent. Thus from a certain number of

selected scenarios we can choose the top scenarios without considering the constraints

which gives us enough variation of different attributes.

58

Table 6.1.: The selected scenarios for the cases that P ranges from 2 to 8 and the cost

is crash

PedAction2 VehAction light p mann P Speed Crashes 2 3 4 5 6 7 8

Crossing Straight 1 Daylight Obese&fit 1.8&1.5 19824.7 x x X x x X

Crossing Turning Left 1 Daylight Obese&fit 1.8&1.5 13981.3 X x x X x x X

Crossing Straight 2 Dark Lit Obese&fit 1.8&1.5 12749.2 X x x X x x X

Crossing Turning Left 2 Dark Lit Obese&fit 1.8&1.5 6763.66 X x x X

Crossing Straight 1 Daylight Kid 1.8&1.5 5757.95 x x X

Crossing Straight 3 Dark Unlit Obese&fit 1.8&1.5 3362.42 x X

Crossing Turning Right 1 Daylight Obese&fit 1.8&1.5 3200.67 X

Standing Straight 1 Daylight Obese&fit 0 2920.13 x x x X

Walk/Run Straight 2 Dark Lit Obese&fit 1.8&1.5 1735.32

with Vehicle

Walk/Run Straight 1 Daylight Obese&fit 1.8&1.5 1474.45

with Vehicle

Walk/Run Straight 3 Dark Unlit Obese&fit 1.8&1.5 1431.67

with Vehicle

Standing Straight 2 Dark Lit Obese&fit 0 1251.88

Crossing Turning Right 2 Dark Lit Obese&fit 1.8&1.5 1113.52

Standing Straight 3 Dark Unlit Obese&fit 0 957.76

Crossing Straight 1 Daylight Obese&fit 2.2 836.62

Standing Turning Left 1 Daylight Obese&fit 0 835.69

Standing Straight 1 Daylight Kid 0 731.27 X

Crossing Straight 2 Dark Lit Kid 1.8&1.5 667.35644

Walk or Straight 3 Dark Unlit Kid 1.8&1.5 0.14

Run against Veh.

Crossing Turning Right 3 Dark Unlit Kid 1.8&1.5 0.13

Walk or Turning Right 1 Daylight Kid 1.8&1.5 0.09

Run against Veh.

59

Table 6.2.: Total cost percentage covered by the selected scenarios for the cases that

the constraints are considered / not considered

Numbers Total percentage Total percentage Difference

of desired of cost covered of cost covered of percentage

scenarios (P) by P scenarios by P scenarios coverage

selected based on selected based on between

satisfying the maximizing the two methods

constraints while total cost

maximizing the without considering

total cost the constraints

2(% Coverage) 31.76269878 40.17018626 8.407487475

3(% Coverage) 55.31950461 55.31950577 1.16E-06

4(% Coverage) 58.78936066 63.35644635 4.567085691

5(% Coverage) 64.22538523 70.19835155 5.972966321

6(% Coverage) 73.66821224 74.19375796 0.525545717

7(% Coverage) 77.66361488 77.99696505 0.333350176

8(% Coverage) 81.46682691 81.46682691 0

60

6.1 Future Work

Even though we have shown that our GA approach is reliable, more data analysis

can be done to improve the algorithm. The size of the Initial Population (tune1),

the rate of Cross Over and Mutation (tune2 & tune3), and the total size of the

chromosomes space can be tuned based on the values of N and P and the nature of

the data in a way that the program works more efficient and faster. Figure 6.1 shows

the percentage of hitting the best solution using GA-based approach for different sizes

of initial population for the case that P is equal to 5. The result clearly indicates

that, as the size of initial population grows, the hit percentage grows and for the case

that tune1 equals to 500,000 the percentage of success is 93.7 percent. Of course for

P=5, since the size of the memory we allocated is huge compared to the size of the

problem, we can increase the likelihood of success very close to one hundred percent

whereas this is not possible for larger problems. Also the bigger the size of the initial

population and the size of the chromosome space, the slower the program will be. For

the case corresponding to Figure 6.1, we do not need to make the size any bigger than

5,000,000. Thus it is always a tradeoff between the size and the speed of the program

which can be optimized by data analysis for different cases. Also for larger values of P

and N, we can keep the size of the initial population relatively large and, by repeating

the experiment and choosing the best of N trials, we can increase the likelihood of

success. Additional data analysis can be done for different size of the tuning variables

to find the numbers of God-Chros, Kings, Lords, Middle-Class and find relations to

find the best tuning values.

61

Fig. 6.1.: Percentage of hitting the optimal solution for P=5 and different sizes of

initial population

LIST OF REFERENCES

62

LIST OF REFERENCES

[1] J. Clanton, “A low-cost solution for an integrated multisensor lane departure
warning system,” IEEE Transactions on Intelligent Transportation Systems,
vol. 10, pp. 47–59, 2009.

[2] C. Desjardins and B. Chaib-draa, “Cooperative adaptive cruise control: A rein-
forcement learning approach,” IEEE Transactions on Intelligent Transportation
Systems, vol. 12, pp. 1248–1260, 2011.

[3] H. Xiong and L. N. Boyle, “Drivers adaptation to adaptive cruise control: Ex-
amination of automatic and manual braking,” IEEE Transactions on Intelligent
Transportation Systems, vol. 13, pp. 1469–1473, 2012.

[4] S. Nedevschi, “Stereo-based pedestrian detection for collision-avoidance appli-
cations,” IEEE Transactions on Intelligent Transportation Systems, vol. 10, pp.
380–391, 2009.

[5] T. Gandhi and M. M. Trivedi, “Pedestrian protection systems: Issues, survey,
and challenges,” IEEE Transactions on Intelligent Transportation Systems, vol. 8,
pp. 413–430, 2007.

[6] C. Keller, “Active pedestrian safety by automatic braking and evasive steering,”
IEEE Transactions on Intelligent Transportation Systems, vol. 12, pp. 1292–1304,
2011.

[7] D. Geronimo, “Survey of pedestrian detection for advanced driver assistance
systems,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, pp. 1239–1258, 2010.

[8] R. Tian, “Study on the display positions for the haptic rotary device-based
integrated in-vehicle infotainment interface,” IEEE Transactions on Intelligent
Transportation Systems, vol. 15, pp. 1234–1245, 2014.

[9] L. Lingxi, “Studying the effects of driver distraction and traffic density on the
probability of crash and near-crash events in naturalistic driving environment,”
IEEE Transactions on Intelligent Transportation Systems, vol. 14, pp. 1547–1555,
2013.

[10] S. Chien, “A novel evaluation methodology for combined performance of warning
and braking in crash imminent braking systems,” IEEE Intelligent Transportation
Systems Magazine, vol. 5, pp. 62–72, 2013.

[11] A. Ari, “A new scoring mechanism for vehicle crash imminent braking systems,”
IEEE Intelligent Transportation Systems Magazine, vol. 4, pp. 17–29, 2012.

[12] [Online]. Available: http://www.autoblog.com/2013/10/13/toyota-pre-collision-
system-steering-assist/ Last Date Accessed: 12/01/2014

63

[13] [Online]. Available: http://en.wikipedia.org/wiki/Pre-CollisionSystem Last Date
Accessed: 12/01/2014

[14] [Online]. Available: http://www.kbb.com/car-news/all-the-latest/2014-volvos-
will-offer-new-cyclist-detection-safety-system-option/2000009157/ Last Date
Accessed: 12/01/2014

[15] R. Tian, “Estimation of the vehicle/pedestrian encounter/conflict risk on the
road based on tasi-110 car naturalistic driving data collection,” in Proc. 2014
IEEE Intelligent Vehicles Symposium, 2014.

[16] F. J. Villegas, “Parallel genetic-algorithm optimization of shaped beam coverage
areas using planar 2-d phased arrays,” IEEE Transactions on Antennas and
Propagation, vol. 55, 2007.

[17] J. M. Johnson and Y. Rahmat-samii, “Genetic algorithm optimization and its
application to antenna design,” Antennas and Propagation Society International
Symposium, vol. 1, 1994.

[18] S. Chen, “Genetic algorithm optimization for blind channel identification with
higher order cumulant fitting,” IEEE Transactions on Evolutionary Computation,
vol. 1, 1997.

[19] J. M. Johnson and Y. Rahmat-Samii, “Genetic algorithms in engineering electro-
magnetics,” IEEE Antennas and Propagation Magazine, vol. 39, 1997.

[20] C.-F. Juang, “A hybrid of genetic algorithm and particle swarm optimization for
recurrent network design,” IEEE Transactions On Systems, Man, And Cybernet-
icsPart B: Cybernetics, vol. 34, 2004.

[21] H. M. Hasanien, “Design optimization of pid controller in automatic voltage
regulator system using taguchi combined genetic algorithm method,” IEEE
Systems Journal, vol. 7, 2013.

[22] D.-J. Sim, “Application of vector optimization employing modified genetic algo-
rithm to permanent magnet motor design,” IEEE Transactions On Magnetics,
vol. 33, 1997.

[23] D. R. Bull, “Optimization of image coding algorithms and architectures using
genetic algorithms,” IEEE Transactions On Industrial Electronics, vol. 43, 1996.

[24] J.-T. Tsai, “Tuning the structure and parameters of a neural network by using
hybrid taguchi-genetic algorithm,” IEEE Transactions On Neural Networks,
vol. 17, 2006.

[25] L. Bernal-Agustin, “Genetic algorithms applied to the design of large power
distribution systems,” IEEE Transactions on Power Systems, vol. 13, 1998.

[26] H. Hou, “A genetic algorithm for multiprocessor scheduling,” IEEE Transactions
On Parallel And Distributed Systems, vol. 5, 1994.

[27] “Accuracy and performance evaluation in the genetic optimization of nonlinear
systems for active noise control,” IEEE Transactions On Instrumentation And
Measurement, vol. 56, 2007.

64

[28] A. Arabali, “Genetic-algorithm-based optimization approach for energy manage-
ment,” IEEE Transactions On Power Delivery, vol. 28, 2013.

[29] G. S. Tewolde, “Robot path integration in manufacturing processes: Genetic
algorithm versus ant colony optimization,” IEEE Transactions On Systems, Man,
And CyberneticsPart A: Systems And Humans, vol. 38, 2008.

[30] R. Elbaum and M. Sidi, “Topological design of local-area networks using genetic
algorithms,” IEEE Transactions On Networking, vol. 4, 1996.

[31] C. J. Fourie and W. J. Perold, “Comparison of genetic algorithms to other
optimization techniques for raising circuit yield in superconducting digital circuits,”
IEEE Transactions On Applied Superconductivity, vol. 13, 2003.

[32] C. Jin, “Software reliability prediction based on support vector regression using
a hybrid genetic algorithm and simulated annealing algorithm,” IET Software,
vol. 5, pp. 398–405, 2011.

[33] B. Bhanu, “Adaptive image segmentation using a genetic algorithm,” IEEE
Transactions On Systems, Man, And Cybernetics, vol. 25, 1995.

[34] B. Ozpineci, “Harmonic optimization of multilevel converters using genetic algo-
rithms,” IEEE Power Electronics Letters, vol. 3, 2005.

[35] Y. A. Hussein, “Modeling and optimization of microwave devices and circuits using
genetic algorithms,” IEEE Transactions On Microwave Theory And Techniques,
vol. 52, 2004.

[36] F. Qiao, “A petri net and extended genetic algorithm combined scheduling
method for wafer fabrication,” IEEE Transactions On Automation Science And
Engineering, vol. 10, 2013.

[37] J. Yen, “A hybrid approach to modeling metabolic systems using a genetic
algorithm and simplex method,” IEEE Transactions On Systems, Man, And
CyberneticsPart B: Cybernetics, vol. 28, 1998.

[38] S. Obayashi, “Multiobjective genetic algorithm applied to aerodynamic design of
cascade airfoils,” IEEE Transactions On Industrial Electronics, vol. 47, 2000.

	GS_Form_30Filledoutstablized
	thesis

