
DESIGN OF AN AUTOMOBILE ACCELERATOR/BRAKE PEDAL ROBOT

FOR ADVANCED DRIVER ASSISTANCE SYSTEMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Jake S. Schwartz

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

August 2017

Purdue University

Indianapolis, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Yaobin Chen, Chair

Department of Electrical and Computer Engineering

Dr. Yi Qiang

Department of Electrical and Computer Engineering

Dr. Lingxi Li

Department of Electrical and Computer Engineering

Dr. Stanley Yung-Ping Chien

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian S. King

Head of the Graduate Program

iii

I dedicate this to my parents and my siblings; Danke für alles.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Stanley Chien for introducing me to my thesis topic

and for helping with my OBDII speed problem. Thanks Dr. Lingxi Li for your

encouragement and positive attitude. It is contagious and appreciated. Thanks to

Dr. Qiang Yi for theoretical and technical advise and expertises. It was helpful in

modeling my thesis. Lastly, thanks to my advisor, Dr. Yaobin Chen, for all the

emails, meetings, advice, and suggestions. Thanks for the guidance over the past 4

semesters!

I would like to thank Sherrie Tucker for her help throughout my graduate career;

from the graduate school application process to graduation. Thanks for all the emails,

information, reminders, and helping my stay on top of deadlines. Lastly, thanks for

helping me with my last minute POS. It was much appreciated!

Finally, I would like to thank my family for their continued love and support

throughout my life. Thanks to my parents for their unwavering faith in all my en-

deavors. A special thanks to my sister, Katie, for her help in the last year of my

graduate studies. Thanks for all the food, for all the errands and tasks you have

done for me so I could complete my thesis on time. And finally, thanks for the moral

support throughout this past year.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . x

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Background . 1

1.2 Objective . 3

2 PLANT MODEL . 5

2.1 Car Model . 5

2.1.1 Accelerator Pedal Model . 5

2.1.2 Car Body Model . 6

2.1.3 Engine Model . 9

2.1.4 Car Model . 10

2.2 Electric Linear Actuator Model . 11

2.2.1 DC Motor . 12

2.2.2 Angular to Linear Displacement 14

2.2.3 Actuator Controller . 15

2.3 Parallel Linkage Design . 16

2.4 Plant Model . 18

3 PID CONTROL . 19

3.1 PID Design . 19

3.2 PID Control Simulation . 20

3.3 Implementation . 23

4 FUZZY CONTROLLER . 25

vi

Page

4.1 Fuzzy Design . 25

4.2 Fuzzy Control Simulation . 32

4.3 Implementation . 34

5 TESTING AND EXPERIMENTAL RESULTS 35

5.1 Implementation . 35

5.2 PID Control Adjustments . 37

5.3 Fuzzy Control Adjustments . 39

5.4 Actual Results Compared . 39

5.4.1 Parallel Linkage Results . 39

5.4.2 Fuzzy vs. PID . 41

6 SUMMARY . 44

6.1 Conclusion . 44

6.2 Future Work . 44

REFERENCES . 47

APPENDICES

A PARAMETERS . 48

A.1 Electric Actuator Motor Parameters . 48

A.2 Drag Force Parameters . 48

B ALL TESTING AND EXPERIMENTAL RESULTS 49

vii

LIST OF TABLES

Table Page

4.1 Rule-Base . 27

4.2 Rule-Base Acronym Table . 27

5.1 PID Parameter Effects . 38

6.1 MATLAB and Arduino Fuzzy Control Output Discrepancy 46

viii

LIST OF FIGURES

Figure Page

1.1 Combined Brake and Accelerator Robot from AB Dynamics Ltd 3

2.1 Accelerator Pedal Diagram . 6

2.2 Schematic Diagram of a Car on a Sloped Road [5] 7

2.3 Momentum Balance Model vs. MATLAB’s SDL Car Body Model 8

2.4 MATLAB’s SDL Car Body . 9

2.5 Simplified Engine Model . 10

2.6 Simplified Car Model (SCM) . 11

2.7 SDL vs SCM Open Loop Simulation . 11

2.8 DC Motor Circuit [7] . 12

2.9 Mechanical Load of a Motor . 13

2.10 Angular and Linear Movement Relationship 14

2.11 Actuator Model . 15

2.12 Actuator Model Simulation . 16

2.13 Parallel Linkage: Brake Applied . 17

2.14 Parallel Linkage: Accelerator Applied . 17

2.15 Plant . 18

2.16 Open Loop Plant vs. SDL Car Simulation 18

3.1 PID Simulink Model with Derivative Filter 21

3.2 PID Simulink Model with Plant . 21

3.3 PID Simulation Results . 22

4.1 Fuzzy Control Architecture [10] . 25

4.2 PD Fuzzy Controller Block Diagram [11] 26

4.3 Fuzzy Membership Functions [12] . 28

4.4 Fuzzy Error Membership Function . 29

ix

Figure Page

4.5 Fuzzy Change-in-Velocity Membership Function 29

4.6 Fuzzy Output Membership Function . 29

4.7 Evaluation of Fuzzy Rule-Base [3] . 30

4.8 Fuzzy Surface . 31

4.9 Simulink Diagram of Fuzzy Controller with Plant 31

4.10 PD Fuzzy Controller Simulink Diagram . 32

4.11 Fuzzy Control Simulation . 33

5.1 Electrical Hardware System Diagram . 35

5.2 Software Flowchart . 36

5.3 System Installed in Car 1 . 36

5.4 Controller Box and Actuator System . 37

5.5 PID Tuning Process Example . 38

5.6 Test Matrix . 39

5.7 With and Without Parallel Linkage Results 40

5.8 Parallel Linkage Travel Distance . 41

5.9 PID vs. Fuzzy: Car 1 at 25 MPH . 42

5.10 PID vs. Fuzzy: Car 2 at 25 MPH . 43

6.1 Two Actuator System . 45

B.1 Car 1 Fuzzy Control Results . 49

B.2 Car 1 PID Control Results . 50

B.3 Car 2 Fuzzy Control Results . 51

B.4 Car 2 PID Results . 52

x

ABBREVIATIONS

PAEB Pedestrian Automatic Emergency Braking

ADAS Advanced Driver Assistance Systems

Car 1 2007 Ford Focus

Car 2 2008 Toyota Prius

xi

ABSTRACT

Schwartz, Jake S. M.S.E.C.E., Purdue University, August 2017. Design of an Au-
tomobile Accelerator/Brake Pedal Robot for Advanced Driver Assistance Systems.
Major Professor: Yaobin Chen.

This paper delves into designing an actuator system to control the accelerator and

brake pedal to control the speed of an automobile. The actuator system comprises

of an electric actuator that controls the accelerator pedal and a parallel linkage that

controls the brake pedal. The parallel linkage is connected to the actuator such

that it provides an opposite reaction to the brake pedal. This paper compares the

speed control with and without the use of a parallel linkage with respect to overshoot

and steady state error. A simplified actuator and car model are developed. A PID

controller and a Fuzzy controller were designed, simulated, and compared in their

ability to control the developed car model. Both controllers were then implemented

and tested in two different cars.

1

1. INTRODUCTION

1.1 Background

As vehicles become more and more advanced, safety becomes a bigger concern.

Features like Lane-Keep (lane-assist), Blind-Spot Detection, Adaptive Cruise Control,

and Pedestrian Automatic Emergency Braking features all fall under a broad category

called Advanced Driver Assistance Systems (ADAS). When new ADAS functionally

is added or changed the car must go through long and rigorous testing to ensure

that the features are safe for consumer use. One feature that is focused on is the

Pedestrian Automatic Emergency Braking (PAEB) system. This is a type of collision

avoidance and collision mitigation system. Its goal is to avoid a collision by reducing

vehicle speed. If a collision is unavoidable, the goal becomes to mitigate or reduce the

severity of the collision by reducing vehicle speed. The performance testing evaluates

the PAEB system’s ability to avoid collisions at a range of speeds. One obstacle in

the way of this testing and analysis is accurate vehicle speed. It is difficult to analyze

the performance if the vehicle speed is not at the desired speed during the testing.

It can be more frustrating if the actual vehicle speed is not consistent for a given set

point. This problem gives rise to the need for an accurate vehicle speed controller.

The cruise control system is a very accurate vehicle controller and it has been

perfected over the past couple of decades. It is robust in that it accounts for flat

terrain as well as for rolling hills. However, there are two issues with using cruise

control for this testing. One is that when cruise control is active it often deactivates

the PAEB system and secondly, vehicles on the market normally do not go below 20

mph.

The first issue is self explanatory. Both the Volvo S60 and Lexus LX460 have the

PAEB functionality, and in both cars it is disabled when the cruise control system is

2

active. However, even if the cruise control could be used in the testing of the PAEB

system, there is another issue: the cruise control function is disabled in most cars for

speeds below 20 mph. For example, in many GM cars the lower limit is 25 mph [1]

and in many Ford cars it is 20 mph [2]. It’s not clear why automakers do this, but

one argument is that it is a safety hazard in school zones. The logic behind this idea

states that if the driver has set the cruise control, his/her foot is most likely not on

the accelerator and is relaxed on the floorboard. If a child were to run in the path

of the driver, the reaction time of hitting the brakes would be slower. On the other

hand, if the driver is actively controlling the speed with his/her foot, the reaction

time of releasing the accelerator and applying the brakes is faster, thus reducing the

probably of a collision. Another argument is that it is dangerous to set the cruise

control speed on highways and interstates where the speed limit is much higher. This

large speed difference could increase the probability of an accident.

While this is a good safety feature it produces a hindrance when it comes to the

testing of PAEB systems. As one might guess, using the human foot for vehicle speed

control leads to inconsistencies from test to test as well as inaccurate speed control.

This brings about the need for a vehicle speed control system that is precise

and accurate. However this system also needs to be dynamic enough to adapt to

many different vehicle makes and models with different vehicle characteristics and

dynamics. This desired capability arises from the fact that PAEB testing needs to be

done in a wide range of vehicles and the controller is moved and installed from vehicle

to vehicle. Having a system that automatically adapts to the vehicle characteristics

would decrease setup time for the testing.

AB Dynamics has built a similar system. They have a product called Combined

Brake and Accelerator Robot (CBAR) shown in Fig. 1.1. However, this product is

very expensive. The high cost brings the need for a more cost effective solution that

is adaptable from one car to another.

3

Fig. 1.1. Combined Brake and Accelerator Robot from AB Dynamics Ltd

1.2 Objective

The goal was to design and implement an actuator system to control the acceler-

ator and brake pedal to accurately control the speed of an automobile. Two different

control techniques were used and their performances were compared. This analysis

also looks at the ability to control accurately from one car to another.

The first algorithm used was the very common PID controller. It is be compared

to a Fuzzy controller. This paper also compares speed control with and without the

use of a parallel linkage to control overshoot and steady state error in both algorithms.

A model of the plant is developed and used for simulation of the performance of the

controllers. The plant includes a car model with a electric linear actuator and parallel

linkage to push the accelerator and brake pedals. The two control algorithms are

compared using simulation results as well as implemented and tested in two different

cars.

The two cars being used are a 2007 Ford Focus and 2008 Toyota Prius. These

cars were simply chosen because of their availability. The Ford Focus will be referred

from here on as Car 1 and the Prius will be referred from here on as Car 2. The plant

model is be based on Car 1. During the testing the controllers were tuned for Car 1.

4

Once reasonable results were achieved from both controllers the system was installed

in Car 2 to evaluate the performance of the controllers.

5

2. PLANT MODEL

In this chapter the system will be modeled and simulated for the development of the

control algorithms. There are two major components: linear actuator system and the

car. The proceeding sections will take a closer look into both areas in order to model

each subcomponent. At the end the individual transfer functions will be cascaded

together to represent the plant in its entirety.

2.1 Car Model

A complete car model has many dynamic subsystems, but for the purpose of this

paper a simplified model is used. Models for control are in general more simplified

to help in designing the controller [3]. The focus will be on three subsystems: the

accelerator pedal, engine, and car body.

2.1.1 Accelerator Pedal Model

The accelerator converts the actuator’s linear position to an angle. From the

accelerator pedal diagram in Figure 2.1, we have:

xp = lp sin(α) (2.1)

The sine function causes this equation to be nonlinear. However, since the accelerator

pedal does not rotate more than approximately twenty degrees, the small angle ap-

proximation can be taken advantage of [4]. This concept states that for small angles

α

sin(α) ≈ α (2.2)

6

Fig. 2.1. Accelerator Pedal Diagram

and so the a new equation for xp can be written as:

xp = lpα (2.3)

which is now a linear equation. Using the Laplace transform and rearranging produces

the transfer function for the accelerator pedal:

α(s)

Xp(s)
=

1

lp
(2.4)

Since lp is a constant it will be represented as a simple gain in the overall model.

2.1.2 Car Body Model

A momentum balance is one way to model a car body [5]. The major factor for

momentum is the product of the velocity v and the mass m of the car. There are also

momenta from the rotation of the crank shaft in the engine and the velocities of the

cylinders, but these are much smaller than mv and so will be ignored. θ is the slope

of the road. The momentum balance can be written as:

m
dv

dt
+ Fd = Fe −mg sin(θ) (2.5)

7

Fig. 2.2. Schematic Diagram of a Car on a Sloped Road [5]

where the term Fd describes the momentum loss due to air resistance called the drag

force [6]

Fd =
1

2
ρv2cDA (2.6)

The the square of the velocity introduces a non-linearity to the model. To avoid this,

it was assumed that:

v2 ≈ 2v (2.7)

hence:

Fd ≈ ρvcDA (2.8)

Now let:

Fd = cav (2.9)

where ca defined to be:

ca = ρcDA (2.10)

where ρ is air density, A is the cross sectional area of the front of the car, and cD is

the drag coefficient. The rolling resistance is small enough to be ignored [3]. Fe is

the force generated by the engine. The opposing force from the slope of the road is

assumed to be proportional to the sine of the angle. However for this paper, it can be

assumed that θ is zero because the testing of the PAEB takes place on a level track.

8

Also, it is assumed that Fe is proportional to the signal u sent to the throttle [5].

Hence, the momentum balance equation 2.5, becomes:

m
dv

dt
+ cav = Fe (2.11)

Now taking the Laplace transform:

msV (s) + caV (s) = Fe(s) (2.12)

and rearranging produces the momentum balance car body model with engine force

input and car velocity output:

V (s)

Fe(s)
=

1

ms+ ca
(2.13)

If it is assumed that ρ = 1.225 (15C◦), cD = .4, and A = 3m2 (see Appendix A.2),

the equation becomes:
V (s)

Fe(s)
=

1

1200s+ 1.47
(2.14)

This model is compared to Simulink’s SimscapeTM DrivelineTM full car model called

sdl_car. Fig. 2.3 shows the open loop response of both models and it can be seen that

the momentum car body model in equation 2.14 is not adequate. The momentum car

body’s response is very flat and that is due to it very large time constant. Because the

Fig. 2.3. Momentum Balance Model vs. MATLAB’s SDL Car Body Model

9

momentum balance car model is not comparable to the sdl_car model, the sdl_car

was used instead. It is more complex but it provides a more better representation of

vehicle dynamics. It is shown in Fig 2.4. Notice this model takes into account the

tires and brakes.

Fig. 2.4. MATLAB’s SDL Car Body

2.1.3 Engine Model

There are many different engine models but the model in equation 2.15 was chosen

from the Automotive Control Systems textbook because of its simplicity [3].

Fe(s)

α(s)
=

k

τs+ 1
(2.15)

When the accelerator angle changes the force Fe(s) is not instantaneous, but instead,

there is a time constant τ , that represents the lag time before the engine reaches

Fe(s). The variable k, is depended on the speed of the car. There is also a dead

time in the engine that takes place during the combustion process but for the sake of

simplicity it is ignored.

10

Fig. 2.5. Simplified Engine Model

The simplified engine model can be seen in Fig. 2.5. The gain, k, used in the engine

is dependent on the throttle position. The engine time constant,τ , is dependent on

the current gear. The engine time constants and the gain k, were found by comparing

the velocity output to that of the full sdl_car model.

2.1.4 Car Model

The engine model is combined with the vehicle body model to form the Simplified

Car Model (SCM). It is shown in Fig. 2.6. The full sdl_car model is compared

to this model to insure it is reasonable. Notice that the SDL Car model includes

torque converter and transmission whereas the SCM omits those features for simplic-

ity. However, the results are comparable. Fig. 2.7 shows that for reference of 25 miles

the velocity curve is very similar and the gear numbers are very similar as well.

11

Fig. 2.6. Simplified Car Model (SCM)

Fig. 2.7. SDL vs SCM Open Loop Simulation

2.2 Electric Linear Actuator Model

The electric linear actuator is an electromechanical system that converts voltage

into linear movement. It will be used to control the position of the accelerator and

the brake pedal. This actuator can be broken down into two components: DC Motor

and the Ball-Screw.

12

2.2.1 DC Motor

Fig. 2.8. DC Motor Circuit [7]

Figure 2.8 shows the electric diagram of a simple DC motor. In this figure, va(t)

is the applied armature voltage; it is the motor input. Ra and La are the armature

resistance and inductance respectively. The voltage em(t) is the back EMF created

from the motion of the armature coil in the motor’s fixed magnetic field. The back

EMF voltage equation can be written as: [7] [8]

em(t) = kb
dθ

dt
(2.16)

where kb is the fem constant, θ is the angle of the motor shaft and dθm(t)/dt is the

angular velocity of the motor. The mesh equation from the armature circuit in Figure

2.8 can be written as:

Raia(t) + La
dia(t)

dt
+ em(t) = va(t) (2.17)

Combining equations 2.16 and 2.17 produces:

Raia(t) + La
dia(t)

dt
+ kb

dθ

dt
= va(t) (2.18)

13

The Laplace transform yields:

Va(s) +RaIa(s) + LasIa(s) = kbsΘ(s) (2.19)

and solving for: Ia(s)

Ia(s) =
Ea(s) − kbsΘ(s)

sLa(s) +Ra

(2.20)

The equation for the torque produced by the armature current is:

Tm(t) = kτ ia(t) (2.21)

where kτ is the motor torque constant. The Laplace transform yields:

Tm(s) = kτIa(s) (2.22)

Figure 2.9 shows the mechanical load on a motor. Jm is the equivalent inertia in

Fig. 2.9. Mechanical Load of a Motor

the armature and includes armature and load inertias. Dm is the equivalent viscous

damping in the armature. Tm can be written as: [7] [8]

Tm(t) = Jm
d2θ

dt2
+Dm

dθ

dt
(2.23)

where Kτ is the torque constant (in a consistent set of units the value of Kτ is equal

to the value of Kb) and Jm is equal to:

Jm = Ja + Jl(N1/N2)2 (2.24)

and Dm is:

Dm = Da +Dl(N1/N2)2 (2.25)

14

For simplicity it is assumed that the inertia and the damping effect from the load is

minimal, resulting in:

Jm = Ja (2.26)

and,

Dm = Da (2.27)

The Laplace transform of the equation 2.23 is:

Tm(s) = Jms
2Θ(s) +DmsΘ(s) (2.28)

Finally, combining equations 2.20, 2.22, 2.28 produces the DC motor transfer function:

Θm(s)

Va(s)
=

kτ
JmLas3 + (DmLa + JmRa)s2 + (DmRa + kτkb)s

(2.29)

2.2.2 Angular to Linear Displacement

Fig. 2.10. Angular and Linear Movement Relationship

Figure 2.10 shows the relationship between the angular position of the motor and

the linear advance from the ball-screw. β represents the angle of the ball-screw lead,

l represents the step size of the lead after one revolution of the motor, and x(t)

is the linear advance. Equation 2.30 represents the relationship between the angular

position of the motor, θ(t), in radians, and linear advance of the actuator shaft x(t) [8]

x(t) =
l

2π
θm(t) (2.30)

15

rewriting and taking the Laplace transform produces:

θm(s) = X(s)
2π

l
(2.31)

Substituting equation 2.31 into the DC motor transfer function results in:

X(s)2π
l

Va(s)
=

kτ
JmLas3 + (DmLa + JmRa)s2 + (DmRa + kτka)s

(2.32)

Finally, equation 2.33 shows the combined transfer function of a linear actuator:

X(s)

Va(s)
=

lkτ
2π[JmLas3 + (DmLa + JmRa)s2 + (DmRa + kτka)s]

(2.33)

2.2.3 Actuator Controller

The actuator model with the controller can be seen in Fig. 2.11. The parameters

used in the actuator model were based on Tolomatic’s ICR SmartActuator (config:

ICR20S BN05 SM10 LMI SV1P CPS CNC1 MET FFG). The parameters can found

in the Appendix A.1. In reality an actuator can only extent to the length of its shaft.

To represent this physical limitation a saturation function was added to the model.

Fig. 2.11. Actuator Model

Simulink’s PID Tuner was used to create a PID controller that emulates the

SmartActuator’s actual controller. The controller was designed to have a similar

response to the actuator’s actual response to a full-extend command. This simulation

can be seen in Fig. 2.12.

16

Fig. 2.12. Actuator Model Simulation

2.3 Parallel Linkage Design

During the initial testing it was seen that overshoot and steady state error was a

problem. A braking action, in theory, would help decrease this problem. Every time

the car surpassed the set point the brakes would be applied to slow down the car to

the desired speed. A braking action can be achieved by adding second actuator to

the system to apply the brakes. However, aside from the added design cost, there

is the problem of controlling the two drives in such a way to avoid the undesired

event where both the actuators are extended at the same time; the brake and the

accelerator are being applied at the same time.

To combat this issue, a cost effective design known as the Four-par parallel linkage

was used. This is a subset of Watt’s Linage. There are two sets of parallel linkage

to form a parallelogram. An illustration can be seen in Fig. 2.13 and Fig. 2.14.

The black dots represents joints that allow the linages to swing. The orange dots are

secured joints. The semi vertical linages pivot about the orange points. The vertical

position of orange dots dictates the amount of movement the brake linage travels

17

Fig. 2.13. Parallel Linkage: Brake Applied

Fig. 2.14. Parallel Linkage: Accelerator Applied

The braking action is modeled in the vehicle body model in Fig. 2.4. The logic

is such that the brake is applied when the actuator is retracted. The brakes will be

applied until the car slows down to the set point.

18

2.4 Plant Model

The engine and vehicle body are combined with actuator model to form the com-

plete plant. The diagram can be seen in Fig. 2.15. The open loop simulation of the

plant is very similar to that of the SCM as shown in Fig. 2.16.

Fig. 2.15. Plant

Fig. 2.16. Open Loop Plant vs. SDL Car Simulation

19

3. PID CONTROL

3.1 PID Design

The first control strategy covered is the industry common PID controller. Carl

Johan Astrom defines the PID control law as:

u(t) = Ke(t) +
K

Ti

∫ t

0

e(τ) dτ +KTd
de(t)

dt
(3.1)

where:

e(t) = r(t) − y(t) (3.2)

where y is the measured plant output and r the reference. The controller parameters

are proportional gain K, integral time Ti, and derivative time Td. It is desirable for

the integration to go to infinity and the derivative time go to zero [5]. The control

law is a sum of three terms: the proportional term that is proportional to the error,

the integrating term that is proportional to the integral of the error, and a derivative

term that is proportional to the derivative of the error. The three terms are a control

strategy based on the past, the present and the future. The integral term contains

past information about the system behavior, the proportional term correlates to the

present behavior and the derivative term is a prediction of how the system will behave

in the future.

Now by letting:

Kp = K,Ki =
K

Ti
, Kd = KTd (3.3)

produces the classical derivation of PID control [9].

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ +Kd
de(t)

dt
(3.4)

A strict implementation of the three term PID control law will most likely not result

in a good controller [5]. It is well known that differentiation is sensitive to noise. A

20

simple example of this be seen in the example below. The output signal y, contains

a plant modeled as sin(t), with added noise.

y(t) = sin(t) + noise(t) = sin(t) + ansin(ωnt) (3.5)

The derivative of the output signal is:

dy(t)

dt
= cos(t) + anωcos(ωnt) (3.6)

Notice the signal to noise ratio for the output signal is 1
an

but the signal to noise ratio

of the differentiated output signal is ω
an

. This ratio can be very high if ω is large. In

practice it is often necessary to filter the high frequency gain of the derivative term.

This can be accomplished by altering the derivative term to:

D(s) = Kd
N

1 +N 1
s

e(s) (3.7)

where N is the pole location of the filter in the derivative action. The new PID control

law becomes:

u(s) = Kpe(s) +
Ki

s
e(s) +Kd

N

1 +N 1
s

e(s) (3.8)

3.2 PID Control Simulation

This new controller is represented in Simulink in Fig. 3.2. Simulink’s PID Tuner

was used to help tune in the plant. Fig. 3.3 shows the simulation results for 10 mph,

25 mph, and 45 mph. The overshoot is near 10% for all three speeds. The settling

time is higher than desired: 20, 27, and 30 seconds respectively. There is no steady

state error for the 10 and 25 mph simulation with the PID controller. The 40 mph

simulation has some error but it is very small: .3 mph or .75%. Finally, notice the

brakes were only applied by the controller in the 10 mph simulation.

21

Fig. 3.1. PID Simulink Model with Derivative Filter

Fig. 3.2. PID Simulink Model with Plant

22

Fig. 3.3. PID Simulation Results

23

3.3 Implementation

The Implementation of a continuous-time PID controller in a digital computer

requires the approximation of the derivatives and the integrals in the control law.

One possible way to do this is shown in the following equations. The proportional

term does not change:

P (n) = Kpe(n) (3.9)

where:

e(n) = r(n) − y(n) (3.10)

The integral action:

I(t) = Ki

∫ t

0

e(τ) dτ (3.11)

is converted to a derivative. The derivative can then be estimated as a difference.

dI(t)

dt
= Kie(t) (3.12)

I(n+ 1) − I(n)

Ts
= Kie(n) (3.13)

moving the Ts to the other side and solving for the future term produces the discretized

integral equation:

I(n+ 1) = I(n) +KiTse(n) (3.14)

The modified derivative term from equation 3.7 can be written as:

sD(s) +ND(s) = KdNse(s) (3.15)

Using the inverse Laplace transform to the convert to time domain:

dD(t)

dt
+ND(t) = KdN

de(t)

dt
(3.16)

and substituting the derivative term with a difference equation:

D(n) −D(n− 1)

Ts
+ND(n) = KdN

e(n) − e(n− 1)

Ts
(3.17)

24

and rewriting produces the discretized derivative term with a high frequency filter.

D(n) =
KdNTs

(1 +NTs)
[e(n) − e(n− 1)] +

1

(1 +NTs)
D(n− 1) (3.18)

Tying the discretized equations together results in the equations below. It is one

possible version of a digital implementation of a PID controller.

e(n) = r(n) − y(n)

P (n) = Kpe(n)

D(n) = KdNTs
(1+NTs)

[e(n) − e(n− 1)] + 1
(1+NTs)

D(n− 1)

u(n) = P (n) + I(n) +D(n)

I(n+ 1) = I(n) +KiTse(n)

25

4. FUZZY CONTROLLER

The second control strategy used is Fuzzy controller. This control strategy takes on a

human thinking approach to controlling the plant. A set of if-then rules defines what

the controller should do based on the input. Fuzzy control is based on four main parts:

rule-base, inference mechanism, fuzzification interface, and defuzzification interface

[10]. Fig. 4.1 shows the relationship between the four parts and the process. The

inner workings of this controller are detailed in the following sections.

Fig. 4.1. Fuzzy Control Architecture [10]

4.1 Fuzzy Design

A proportional-derivative Fuzzy Controller was chosen because of the information

the inputs provide. The first input is the error equation:

e(t) = r(t) − y(t) (4.1)

26

where y(t) is the automobile velocity and r(t) is the reference signal. r(t) is initially

a ramp and then levels off at the set point speed. The second input is chosen to be

the negative derivative of the velocity. The derivative of the error equation is:

de

dt
=
dr

dt
− dy

dt
(4.2)

however, after the ramp plateaus, r(t) becomes constant. At that point the derivative

of r(t) becomes zero. Resulting in the second input to the fuzzy controller: the

negative derivative of the velocity.

de

dt
= −dy

dt
(4.3)

The two inputs are valuable because it gives information about what the car is cur-

rently doing and what it will do in the future. The proportional-derivative fuzzy

controller is depicted in Fig. 4.2.

Fig. 4.2. PD Fuzzy Controller Block Diagram [11]

With the inputs defined, a rule-base can be created. A rule-base is a set of If-Then

rules, linguistic representation, of how to achieve good control. The if-then rules of

three extreme events for the two inputs are described in the list below (−∆V is the

negative derivative of the velocity).

• If (Error is VN) and (−∆V is VN) then (Output is LD): If the error is very neg-

ative (the car is going very fast) and the change in velocity (−∆V) is increasing

very quickly, then decrease the speed by a large amount (LD).

27

• If (Error is ZE and (−∆V is ZE) then (Output is NC): If the error is zero (the

car is at the set point velocity) and the change in velocity (∆E) is not increasing

or decreasing (constant), then make no change (NC) to the controller output.

• If (Error is VP) and (−∆V is VP) then (Output is LI): If the car is going very

slowly (VP) and the change in velocity (∆E) is very positive (the car is slowing

down at large rate), then increase the output my large amount (LI).

The complete rule-base can be seen in Table 4.1. The acronyms are defined in Table

4.2. The extreme cases are obvious but the intermediate rules appear subjective.

However, these rules were adjusted in the tuning phase to achieve the desired perfor-

mance.

Table 4.1.
Rule-Base

Table 4.2.
Rule-Base Acronym Table

28

This leads to the membership functions that are needed in the fuzzification, infer-

ence, and finally defuzzification process. Fig. 4.3 shows a generic triangular member-

ship functions for the input and the output. B is the maximum value of the controller

output and A is the input that results in an output of B. The gains g0, g1, and g2

Fig. 4.2 can be adjusted to map their respective signals to the bounds of A and B.

4.4, Fig. 4.5, and Fig. 4.6 show the two inputs and output membership functions

designed in Matlab. Notice that these membership function have different widths.

That also results from tuning to obtain desirable results from the controller.

Fig. 4.3. Fuzzy Membership Functions [12]

The whole process from crisp input to linguistic input to linguistic output to crisp

out is a complex process but Fig. 4.7 does a great job of depicting the process. T0

and P0 are the two inputs. This figure shows how the two crisp inputs are made fuzzy

by converting them to linguistic variables with membership grades between 0 and 1.

This grade is found through linear extrapolation. The MIN-MAX inference scheme

is used to determine the linguistic outputs µB1 and µB2 for the two rules. In general

there are R µBi values, where R is the number of rules. The designed controller uses

49 rules (7 input members by 7 output members). The defuzzification process uses

29

Fig. 4.4. Fuzzy Error Membership Function

Fig. 4.5. Fuzzy Change-in-Velocity Membership Function

Fig. 4.6. Fuzzy Output Membership Function

center of gravity (COG) or centroid method to obtain a crisp output. This achieved

by using equation 4.4

ycrispn =

∑R
i=1 b

n
i

∫
µBin(yn)dy∑R

i=1

∫
µBik(yn)dy

(4.4)

30

Fig. 4.7. Evaluation of Fuzzy Rule-Base [3]

where ycrispn is the crisp output at discrete time n, bni is the center of the membership

function µBi
n (the location of the peak of the membership function), and∫

µBin (4.5)

is the area under the membership function µBin .

31

Fig. 4.8. Fuzzy Surface

Fig. 4.8 is a fuzzy surface that shows the relationship between the the two inputs

and the output. A quick sanity check proves out. At the extreme input of [-1,-1]

(Error, ChangeInVelocity), the output is -1 which is correct. When converted to

linguistic terms: if the error and the velocity are very negative (VN) then from the

Rule-Base in Table 4.2 the output should be large decrease (LD) or -1. The opposite

is true about the inputs 1,1. Another check at (1,-1) also checks out: an error that is

very positive (VP) and a change in velocity that is very negative (VN) results make no

change (NC). Notice the symmetry of the Rule-Base surface matches the symmetry

of the Rule-Base table.

Fig. 4.9. Simulink Diagram of Fuzzy Controller with Plant

32

4.2 Fuzzy Control Simulation

Finally, Fig. 4.9 and Fig. 4.10 shows the Simulink model of the PD-Fuzzy con-

troller with the plant. The simulation results are shown in Fig. 4.11. Unlike the

Fig. 4.10. PD Fuzzy Controller Simulink Diagram

PID simulation the Fuzzy controller response has no steady state error and has no

overshoot. It also has a much faster settling time at the three chosen velocities. The

Fuzzy controller has a settling time of 6, 8, 7 seconds for 10 mph, 25 mph, and 40

mph respectively while the PID simulation has 20, 27, 30 seconds respectively.

Similar to the PID simulation the brake was extensively used on the 10 mph

simulation. This makes sense because the car is more likely to overshoot the reference

on its own because of the low speed. The brake was also used briefly on the 40 mph

simulation. The brakes were applied as the automobile was reaching the reference. It

appears that brake usage helped eliminate overshoot.

33

Fig. 4.11. Fuzzy Control Simulation

34

4.3 Implementation

Like the PID controller, this control law must to be discretized to work in a

microcontroller. The error signal is a simple difference equation so no change is

necessary.

e(n) = r(n) − y(n) (4.6)

However, a pure derivative can not be realized in discrete time and so it must be

approximated.
de

dt
= −dy

dt
(4.7)

Like in the PID controller, the derivative can be approximated with a backwards

difference equation: [13]

cy(n) = −y(n) − y(n− 1)

Ts
(4.8)

Where Ts is the sampling period. The microcontroller realization is:

e(n) = r(n) − y(n)

cy(n) = −y(n)−y(n−1)
Ts

FuzzyIn(e(n), cy(n))

u = FuzzyOut()

35

5. TESTING AND EXPERIMENTAL RESULTS

5.1 Implementation

After the simulations were completed both controllers were tested in Car 1 and

Car 2. Before the testing could be completed, the hardware and software had to

be built and developed respectively. Fig. 5.1 shows the electrical hardware system

diagram. The system was powered from the cars’ 12V auxiliary port. An Arduino

Fig. 5.1. Electrical Hardware System Diagram

Mega 2560 microcontroller was used because of its ability to accept a 12V power

input. A 12V-24V DC-DC converter was used to step up the voltage to 24V to

power the linear actuator. A 20x4 LED display provided system information to the

user. A keypad was used for the actuator setup and to enter the desired set point.

The velocity feedback was obtained through the cars’ OBDII port. A CAN-UART

converter converted the communication from the OBDII port to UART, a protocol

that is supported on the arduino microcontroller. Lastly, an E-stop button was added

to retract the actuator any time the process needed to be stopped. The software was

developed in Arduino Software, Arduino’s integrated development environment. The

software flowchart is shown in Fig. 5.2 illustrates the software’s major components.

After initializing all variables the software goes through an actuator setup loop. The

36

Fig. 5.2. Software Flowchart

actuator parameters and speed reference can be changed and set via the keypad.

Once the setup is complete and the user starts the controller the software goes in a

endless loop where it requests the speed of the car through the OBDII port, uses this

speed to calculate the controller output, and finally the microcontroller updates the

actuator position via digital pins. This process could be interrupted with the push of

the E-stop button.

Fig. 5.3. System Installed in Car 1

37

The actuator system was built in a shop. The base was made out of pine boards

and plywood. The parallel linkage consisted up angle iron for the linkages and bolts

and washers for the joints. The orange joint in Fig. 2.13 was moved as close to the

actuator as possible to obtain maximum travel distance of the brake linkage. This

was done because distance between the accelerator and the brake pedal is small.

Fig. 5.3 shows the whole system installed in Car 1. The actuator system sits in

the floorboard and is secured by the floorboard walls (packaging foam may need to

be used to secure the actuator when the product is used in different cars because the

floorboards vary for each make and model). The controller box, that houses all the

electrical hardware, sits in the passenger seat. Fig. 5.4 provides a closer look of the

controller box and the actuator system.

Fig. 5.4. Controller Box and Actuator System

5.2 PID Control Adjustments

The PID parameters from the simulation did not produce desirable results. This

was in part predicted because the car model used in the simulation was simplified and

didn’t account for all the dynamic subsystems that effect the car speed. Thus the

control parameters needed to be manually tuned for the Car 1 and Car 2. The pa-

rameters were systematically tuned by starting with the proportional gain parameter

38

Kp. The tuning was started by adjusting the proportional gain and keeping the other

parameters zero. After finding the best value for Kp, another parameter was adjusted

while keeping the parameters constant. Fig. 5.5 illustrates this process. Table. 5.5

was used to understand the basic effects each parameter had on the the system [14].

Fig. 5.5. PID Tuning Process Example

Table 5.1.
PID Parameter Effects

Params Rise Time Overshoot Settling Time SS Error Stability

Kp Decrease Increase Small Change Decrease Degrade

Ki Decrease Increase Increase Eliminate Degrade

Kd Minor Change Decrease Decrease No Effect Improve

39

5.3 Fuzzy Control Adjustments

Unlike the PID controller, the Fuzzy controller had fewer adjustments that were

needed. The controller output gain needed to be increased until the controller pushed

the accelerator far enough. Again, this is from the simulation model not being exact.

However, this took much less time than tuning the PID controller. In general this

may not be the case because of the complexity of the fuzzy controller.

5.4 Actual Results Compared

The test matrix in Fig. 5.6 shows all the test combinations completed during the

testing. WPL and NPL are acronyms that are defined as ”With Parallel Linkage” and

”No Parallel Linkage” respectively. Most tests was completed 3 times. This results

in 3 x 24, or 72 tests.

Fig. 5.6. Test Matrix

5.4.1 Parallel Linkage Results

All the test scenarios were completed twice: once without the parallel linkage

(NPL) and again with the parallel linkage (WPL). The comparison of the two sets

of data found that there was not a significant difference in the performance of the

40

Fig. 5.7. With and Without Parallel Linkage Results

NPL and WPL in either car. Fig. 5.7 shows the difference of the averaged absolute

errors of the Fuzzy controller in Car 1 at 10 mph. The absolute value of the error

curves were used so that the error curves could not cancel each other out. The plot

shows that for the fuzzy controller in Car at 10 mph the WPL did slightly better than

the NPL. However, in some other scenarios the NPL did slightly better than WPL.

Nevertheless, in all cases there was no significant difference. This fact can most likely

be explained from the physical realization of the parallel linkage. From Fig. 5.8 the

travel distance d, is the distance that the brake plunger travels during the braking

action. If d is not very large than the brake pedal will not be decompressed very

much, resulting in limited effect on the system. Ideally the green linkage should be

lengthen and the orange stationary joints should be adjusted until a desirable d is

achieved. However, given the small distance between the accelerator and the brake

pedal, the distance of the green linkage was limited, resulting in a small d. To achieve

a larger d a more advanced parallel linkage design will need to be used.

41

Fig. 5.8. Parallel Linkage Travel Distance

5.4.2 Fuzzy vs. PID

One of the main comparison of this paper is the Fuzzy vs. PID performance in

Car 1. From the test matrix in Fig. 5.6 three car speeds were considered: 10 mph,

25 mph, and 40 mph. I choose to show the results for 25 mph in this chapter but

all the results can be found in Appendix B. The top two plots of Fig. 5.9 show the

PID and Fuzzy controller results for Car 1 with a reference of 25 mph. The bottom

plot of Fig. 5.9 shows a zoomed in error curve of the Fuzzy controller. It can be seen

that the Fuzzy controller performed much better than the PID controller. The Fuzzy

controller had a steady state absolute error of less than 1 mph or 4% while the PID

controller was more than 4 mph or 16%. The overshoot for the Fuzzy controller was

2.5% compared to the PID controller’s 16%. Since the Fuzzy controller performed

better in Car 1 it was not surprising that it outperformed the PID controller in Car 2

as well. The fuzzy controller error stayed within 2 mph or 8% while the PID controller

had a steady state error greater than 5 mph or 20%. The overshoot for the Fuzzy

controller in Car 2 was also 2.4% while the PID controller in Car 2 was around 25%.

From the above results that the Fuzzy controller adapted better from Car 1 to Car

2 than the PID controller. This could be also predicted from past experience. The

PID controller is fined tuned for a specific plant. Changing the plant will diminish

42

Fig. 5.9. PID vs. Fuzzy: Car 1 at 25 MPH

the performance. While the fuzzy controller’s performance diminished as well, but

not to the same extent. It can be reasoned that the linguistic approach makes the

fuzzy controller easier to adapt from one plant to another.

43

Fig. 5.10. PID vs. Fuzzy: Car 2 at 25 MPH

44

6. SUMMARY

6.1 Conclusion

In conclusion the fuzzy controller worked much better in both cars when compared

to the PID controller. The fuzzy controller had a steady state error of 1 mph in Car 1

and 2 mph in Car 2, while the PID controller had more than 4 in both cars. The poor

performance of the PID controller was surprising considering that the PID method is

the most common in the automobile industry. Perhaps a more experienced controls

engineer could have tuned the PID controller to achieve better performance. A more

advanced PID algorithm might also improve the performance. The parallel linkage

under performed on controlling over-shoot, especially with the PID controller. This

in part due to the small distance between the accelerator and the brake pedal. This

resulted in limited force being applied to the brake.

6.2 Future Work

There are many avenues for future work from this paper. One is improving the

braking action design. One could improve either the parallel linkage design or add

another actuator to the system that is dedicated to braking.

The implemented parallel linkage design did not work as well as expected. The

main reason was because of the short distance between the accelerator and the brake

pedal. This translated to a short travel distance of the brake plunger. It is possible

that a more advanced parallel linkage design could be used to introduce more travel

distance for the brake plunger. This would allow the designer to set the brake plunger

in such a position so that it has a smooth braking action that would decrease the

overshoot.

45

Fig. 6.1. Two Actuator System

Another option is to introduce another actuator to the system to control the

braking action as depicted in Fig. 6.1. This system would be more expensive and

more complex but has an upside of having very good control. The second actuator

replaces the need for the parallel linkage mechanism. Both actuators would have their

own control law. However, there would need to be some logic put in places so avoid

the event where both the brake and the accelerator are being pressed at the same

time. In other words, one actuator cannot extend forward until the other actuator is

retracted and vise versa.

PID self-tuning is an area that would improve the implementation of the PID

controller. As stated in the results section, the PID controller did not do as well

expected and this is at least in part from controller not have an optimal tuning. A

self-tuning algorithm could help with finding the optimal control parameters resulting

in improved performance. This algorithm could also help with the car adaptability

issue. It be used to find the optimal parameters any time the controller is moved

from to another car.

Another potential improvement is adding an adaptive algorithm to the fuzzy con-

troller. This could decrease the steady state even more, as well as improve its ability

to adapt from one car to another.

Finally, another area that needs work is improving the Arduino fuzzy library.

When comparing the output of MATLAB’s Fuzzy controller and Arduino’s Embedded

46

Table 6.1.
MATLAB and Arduino Fuzzy Control Output Discrepancy

Fuzzy Logic Library (eFLL) there was some discrepancies. These discrepancies are

highlighted in Table. 6.1. The values are within a couple hundredths for most inputs

but between -.45 and -.25 and between .25 and .45 the two outputs differ. These

values were as much as two tenths off which in the case is significant. Future work

would include finding the reason for this difference and fixing the issue and retesting

the two cars to see if there is an improvement in the controller’s performance. During

the testing the actuator occasionally oscillated from the max position to min position

and this fuzzy library error could be causing some of it.

REFERENCES

47

REFERENCES

[1] Safe Driving with Cruise Control! - GM Fleet. Warren, MI: General Motors,
2012, http://www.gmfleet.com/content/dam/gmfleet/global/master/nscwebsite
/en/Home/Shared_Resources/PDFs/gmc1-12-03142-259-cruise-control.pdf,
Last date accessed: May, 17, 2017.

[2] Adaptive Cruise Control and Collision Warning - Ford Media. Dear-
born, MI: Ford Motor Company, 2012, https://web.archive.org/web/2013101421
0324/http://corporate.ford.com/doc/Adaptive_Cruise.pdf, Last date accessed:
May, 17, 2017.

[3] U. Kiencke and L. Nielsen, Automotive Control Systems. Berlin, Germany:
Springer-Verlag, 2005.

[4] M. L. Boas, Mathematical Methods in the Physical Sciences, 3rd ed. Indianapo-
lis, IN: Wiley Publishing Inc, 2005.

[5] K. J. Åström, Control System Design. Santa Barbara California: Karl Johan
Åström, 2002.

[6] G. K. Batchelor, An Introduction to Fluid Dynamics. Cambridge, UK: Cam-
bridge University Press, 2000.

[7] J. M. Parr and C. L. Phillips, Feedback Control Systems, 5th ed. Upper Saddle
River New Jersey: Pearson Education, Inc, 2011.

[8] E. D. Ruiz-Rojas, J. L. Vazquez-Gonzalez, R. Alejos-Palomares, A. Z. Escudero-
Uribe, and J. R. Mendoza-Vzquez, Mathematical Model of a Linear Electric
Actuator with Prosthesis Applications. New York New York: IEEE, 2008.

[9] K. J. Åström and T. Hägglund, PID Controllers: Theory, Design, and Tunning,
2nd ed. Research Triangle Park, NC: Instrument Society of America, 1995.

[10] K. M. Passino and S. Yurkovich, Fuzzy Control. Chicago, IL: Addison-Wesley
Longman, Inc., 1998.

[11] K. Mahmud and L. Tao, Vehicle Speed Control Through Fuzzy Logic. Xian
710072, P.R. China: 2013 IEEE Global High Tech Congress on Electronics, 2013.

[12] D. L. Jenkins and K. M. Passino, Introduction to Nonlinear Analysis of Fuzzy
Control Systems. Clifton, VA: IOS Press, 1999.

[13] M. B. Trabia, L. Z. Shi, and N. E. Hodge, ”A Fuzzy Logic Controller for Au-
tonomous Wheeled Vehicles”, Mobile Robots, Moving Intelligence. Rijeka, Croa-
tia: InTech, 2006.

[14] K. Ang, G. Chong, and Y. Li, PID Control System Analysis, Design, and Tech-
nology. New York, NY: IEEE Trans Control Systems Tech, 2005.

APPENDICES

48

A. PARAMETERS

A.1 Electric Actuator Motor Parameters

The following parameters are from Tolomatic’s ICR SmartActuator (config:

ICR20S BN05 SM10 LMI SV1P CPS CNC1 MET FFG)

Parameter value Description

Jm 3.9545 · 10−5 kg·m2 Motor inertia

kb .1198 V· s/rad Fem Constant

Ra 0.59 Ω Armature Resistance

La 5.2 · 10−4 H Armature Inductance

kτ .1198 N· m/A Motor torque constant

Dm 1 ∗ 10−7N ·m · s/rad Air and bearing friction

L 5.08 mm/rev Ball-screw lead step size

A.2 Drag Force Parameters

Parameter value Description

cd 0.4 Drag Coefficient

A 3 m2 Car Front Cross-sectional Area

ρ 1.225 kg
m3 Air Density @ 15C◦

49

B. ALL TESTING AND EXPERIMENTAL RESULTS

Fig. B.1. Car 1 Fuzzy Control Results

50

Fig. B.2. Car 1 PID Control Results

51

Fig. B.3. Car 2 Fuzzy Control Results

52

Fig. B.4. Car 2 PID Results

